WO2012137665A1 - Process for producing pellets of glass-fiber-reinforced thermoplastic resin composition - Google Patents
Process for producing pellets of glass-fiber-reinforced thermoplastic resin composition Download PDFInfo
- Publication number
- WO2012137665A1 WO2012137665A1 PCT/JP2012/058397 JP2012058397W WO2012137665A1 WO 2012137665 A1 WO2012137665 A1 WO 2012137665A1 JP 2012058397 W JP2012058397 W JP 2012058397W WO 2012137665 A1 WO2012137665 A1 WO 2012137665A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- screw
- glass fiber
- thermoplastic resin
- kneading
- resin composition
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/203—Solid polymers with solid and/or liquid additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/34—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
- B29B7/38—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
- B29B7/46—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
- B29B7/48—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
- B29B7/482—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs
- B29B7/483—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs the other mixing parts being discs perpendicular to the screw axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/88—Adding charges, i.e. additives
- B29B7/90—Fillers or reinforcements, e.g. fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/04—Particle-shaped
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/285—Feeding the extrusion material to the extruder
- B29C48/288—Feeding the extrusion material to the extruder in solid form, e.g. powder or granules
- B29C48/2886—Feeding the extrusion material to the extruder in solid form, e.g. powder or granules of fibrous, filamentary or filling materials, e.g. thin fibrous reinforcements or fillers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/395—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
- B29C48/40—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
- B29C48/405—Intermeshing co-rotating screws
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/54—Screws with additional forward-feeding elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/55—Screws having reverse-feeding elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/56—Screws having grooves or cavities other than the thread or the channel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/57—Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/585—Screws provided with gears interacting with the flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/78—Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
- B29C48/793—Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling upstream of the plasticising zone, e.g. heating in the hopper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/12—Making granules characterised by structure or composition
- B29B9/14—Making granules characterised by structure or composition fibre-reinforced
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/285—Feeding the extrusion material to the extruder
- B29C48/297—Feeding the extrusion material to the extruder at several locations, e.g. using several hoppers or using a separate additive feeding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
- B29K2105/12—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
Definitions
- the present invention relates to a method for producing glass fiber reinforced thermoplastic resin composition pellets.
- thermoplastic resin composition pellets As a method for producing glass fiber reinforced thermoplastic resin composition pellets by mixing and kneading glass fibers with a thermoplastic resin, first, a thermoplastic resin is supplied to an extruder and the thermoplastic resin is melted. Next, glass fibers are supplied to the molten thermoplastic resin, and the thermoplastic resin and glass fibers are mixed and kneaded in an extruder. Finally, a method of cooling and granulating the mixture is common.
- the extruder generally, a single-screw extruder and a fully meshed twin-screw extruder in the same direction (hereinafter sometimes referred to as a twin-screw extruder) are used. Compared with a single screw extruder, a twin screw extruder has higher productivity and freedom of operation, and therefore, a twin screw extruder is more preferably used for producing glass fiber reinforced thermoplastic resin pellets. .
- the glass fiber used in the production of the glass fiber reinforced thermoplastic resin composition pellets is a monofilament having a diameter of 6 ⁇ m to 20 ⁇ m, which is bundled into about 300 to 3000 pieces and wound on a roving, or the roving has a length of 1 Cut to 4 mm (hereinafter sometimes referred to as chopped strands).
- thermoplastic resin Since chopped glass can be used more easily, in the case of producing glass fiber reinforced thermoplastic resin composition pellets industrially, the thermoplastic resin is supplied to a twin screw extruder, and after the thermoplastic resin is melted, The most common method is to supply chopped glass from the middle of a shaft extruder, mix and knead a molten thermoplastic resin and glass fiber, extrude the mixture, and cool and solidify.
- the productivity of the glass fiber reinforced thermoplastic resin composition pellets using the above twin screw extruder is determined by the plasticizing and mixing and kneading ability of the twin screw extruder.
- the plasticizing ability of the twin screw extruder depends on the screw design, the torque generated by the screw, the groove depth of the screw (the difference between the outer diameter and the valley diameter of the screw), the rotational speed of the screw, and the like.
- Patent Document 1 discloses a twin-screw extruder having a high plasticizing ability and excellent productivity, in which a value obtained by dividing the distance between the centers of two screws by the third power is defined as torque density.
- the mixing and kneading ability of the twin screw extruder depends on the screw design.
- the residence time decreased with the improvement of the plasticizing ability of the twin screw extruder. For this reason, development of a screw design having an efficient mixing and kneading ability in a short time is required.
- studies on techniques for increasing the plasticizing ability and kneading ability of a twin-screw extruder have been conducted.
- a monofilament bundle is used as described above. This is because, in the method of supplying glass fibers to a twin-screw extruder without forming a bundle of monofilaments, the monofilament becomes cottony, loses fluidity, and is difficult to handle.
- the chopped strand is mixed and kneaded in a twin-screw extruder until it is fibrillated and becomes a monofilament. At the same time, the chopped strand is broken by a screw or the like until the monofilament length reaches an average of 200 ⁇ m to 800 ⁇ m.
- the monofilament will not be defibrated, and a part or all of the chopped strand that is in the state of a monofilament aggregate (undefibrated glass fiber bundle) will be resin composition It remains in the product pellet. If some or all of the chopped strands remain in the glass fiber reinforced thermoplastic resin composition pellets, in injection molding, some or all of the chopped strands may be clogged in the gate, making injection molding impossible, or injection molding. Even if it is possible, some or all of the chopped strands are present in the molded product, resulting in poor appearance or reduced function.
- glass fiber reinforced thermoplastic resin compositions used as parts are required to be thin and molded into complex shapes.
- the gate nozzle of a molding machine that performs such precision molding is often 1 mm or less.
- the presence of undefined glass fiber bundles becomes a very serious defect.
- the present invention has been made in order to solve the above-mentioned problems.
- the object of the present invention is to increase the productivity of glass fiber reinforced thermoplastic resin composition pellets as compared with the prior art, and to collect the monofilaments in the manufactured pellets. It is providing the manufacturing method of the glass fiber reinforced thermoplastic resin composition pellet which can make very low the probability that (un-defibrated glass fiber bundle) remains.
- the inventors of the present invention have made extensive studies to solve the above problems.
- the physical quantities obtained by numerical analysis such as average shear stress history, average shear strain history, specific energy, shortest particle outflow time, etc. are all the number N of pellets containing undefined glass fiber bundles (per unit weight). It is found that there is no clear correlation with the number of pellets containing undefined glass fiber bundles) and the smallest value among the time integral values of shear stress applied to each glass fiber bundle, which is derived by the particle tracking method. It was found that the minimum shear stress history value T min is correlated with the number N of pellets including undefined glass fiber bundles.
- the shear stress generated in the twin screw extruder is analyzed, and when the ratio (Q / Ns) between the discharge amount Q and the screw rotation speed Ns is constant, the minimum shear stress history value T min is controlled.
- the present inventors have found that the number N of pellets per unit amount including undefined glass fibers can be controlled. Further, even if the ratio (Q / Ns) is not constant, the number N of pellets per unit amount including undefined glass fibers can be expressed by a specific formula using the T min and (Q / Ns). I found out.
- the present inventors have found that the above-mentioned problems can be solved by having a screw element having a specific shape for a screw for kneading a thermoplastic resin and glass fiber, thereby completing the present invention. More specifically, the present invention provides the following.
- thermoplastic resin pellets using a twin screw extruder provided with screws that rotate and mesh with each other, wherein the thermoplastic resin is supplied to the extruder and heated.
- a kneading step of kneading the plasticized thermoplastic resin with a screw an extrusion step of extruding the glass fiber reinforced thermoplastic resin composition after the kneading step, and the extruded glass fiber reinforced thermoplastic resin composition.
- thermoplastic resin is at least one selected from polybutylene terephthalate resin, liquid crystalline resin, and polyarylene sulfide resin
- the screw includes a single forward feed screw element having a flight part in which an arc-shaped notch satisfying the following inequalities (I) to (III) is formed on the outer periphery.
- thermoplastic resin composition pellets using a biaxial extruder equipped with screws that rotate and mesh with each other, A plasticizing step of supplying a thermoplastic resin to the extruder and heating, kneading and plasticizing; After the plasticizing step, one or more glass fiber bundles are supplied to the extruder, and the defibrated glass fibers and the plasticized thermoplastic resin are screwed together while defibrating the glass fiber bundles.
- a kneading step for kneading After the kneading step, an extrusion step of extruding the glass fiber reinforced thermoplastic resin composition, Pelletizing step of pelletizing the extruded glass fiber reinforced thermoplastic resin composition,
- the viscosity of the thermoplastic resin is 100 Pa ⁇ s or less under the condition of a shear rate of 1000 sec ⁇ 1 ;
- the screw has a glass fiber reinforced heat having one or more progressive screw elements each having a flight portion in which an arc-shaped notch satisfying the following inequalities (I) to (III) is formed on the outer periphery.
- a method for producing a plastic resin composition pellet A method for producing a plastic resin composition pellet.
- the screw has at least one reverse feed screw element having a flight portion having an arc-shaped notch formed on the outer periphery thereof.
- (1) or (2) A method for producing a thermoplastic resin composition pellet.
- the productivity of the glass fiber reinforced thermoplastic resin composition pellets is increased more than before, and the probability that monofilament aggregates (undefined glass fiber bundles) remain in the manufactured pellets is very high.
- the fiber length distribution of the glass fiber can be controlled.
- FIG. 1 is a schematic diagram illustrating an example of a screw configuration of an extruder.
- FIG. 2 is a diagram schematically showing a forward feed single screw element having a flight portion in which an arcuate cutout is formed.
- FIG. 3 is a schematic diagram showing the screw configuration of the extruder used in the examples.
- FIG. 4 is a diagram showing a specific screw pattern used in the example.
- FIG. 5 is a diagram showing a specific screw shape used in the example.
- FIG. 1 is a schematic diagram illustrating an example of a screw configuration of an extruder.
- FIG. 2 is a diagram schematically showing a forward feed single screw element having a flight portion in which an arcuate
- FIG. 8 shows the minimum shear stress history value (Pa ⁇ sec) independent of the Q / Ns of the extruder used in the examples, and the number of pellets in which part or all of the glass fiber bundle is not defibrated (pieces / pellet 10 kg). It is a figure which shows the relationship (correlation line).
- FIG. 9 is a diagram showing the relationship between the number of notches n and the minimum shear stress history value Tmin .
- FIG. 10 is a diagram showing the distribution of shear stress history values for each type of screw element.
- FIG. 11 is a schematic diagram showing a screw configuration of a screw disposed in the extruder used in the examples and comparative examples.
- the manufacturing method of the glass fiber reinforced thermoplastic resin composition pellet of the present invention includes the following steps.
- a plasticizing process in which a thermoplastic resin is supplied to an extruder and heated, kneaded and plasticized. After the plasticization step, one or more glass fiber bundles are supplied to the extruder, and the glass fiber bundles and the plasticized thermoplastic resin are screwed together while the glass fiber bundles are defibrated.
- a pelletizing step of pelletizing the extruded glass fiber reinforced thermoplastic resin composition.
- the production method of the present invention uses a screw having a specific screw element in the kneading step.
- FIG. 1 shows a twin-screw extruder including a cylinder 1, a screw 2 disposed in the cylinder, and a die 3 provided at a downstream end portion of the cylinder 1.
- FIG. 1 also shows the screw configuration of the screw 2.
- the screw 2 includes a supply unit 20, a plasticizing unit 21, a transport unit 22, and a kneading unit 23 in this order from the upstream side. A plasticizing process is performed in the supply unit 20 and the plasticizing unit 21.
- a kneading step is performed in the conveying unit 22 and the kneading unit 23.
- the extrusion process is performed after the kneading section 23.
- a pelletization process is performed after the glass fiber reinforced thermoplastic resin composition is extruded from the die
- the cylinder 1 in which the screw 2 is disposed includes a hopper 10 for supplying a raw material such as a thermoplastic resin to the supply unit 20 and a feed port for supplying auxiliary materials such as a glass fiber bundle to the conveyance unit 22. 11 and a vacuum vent 12 having vacuuming means such as a vacuum pump for performing vacuum deaeration at a predetermined degree of vacuum.
- thermoplastic resin supplied from the hopper 10 is transferred and melted to make a homogeneous melt.
- thermoplastic resin will be described, and then the details of the plasticizing process until the thermoplastic resin supplied from the hopper becomes a homogeneous melt will be described.
- thermoplastic resin refers to a polybutylene terephthalate resin, a liquid crystalline resin, or a polyarylene sulfide resin. Even a resin having a low viscosity tends to exhibit the effects of the present invention.
- the above-mentioned resin having low viscosity tends to cause a problem of undefining the glass fiber bundle. This is because if the viscosity is low, shear stress hardly occurs in the molten state, and the glass fiber bundle in which the monofilaments are converged is difficult to be defibrated.
- the low viscosity resin means that the viscosity of the thermoplastic resin is 100 Pa ⁇ s or less under the condition of a shear rate of 1000 sec ⁇ 1 .
- thermoplastic tree used as a raw material is shaped into a pellet.
- thermoplastic resin composition containing other components may be used into the pellet form.
- the plasticizing process is performed in the supply unit 20 and the plasticizing unit 21 of the screw 2.
- the screw element used in the supply unit 20 include a transport element made of a flight.
- the screw element used for the plasticizing portion 21 generally include a combination of screw elements such as reverse flight, seal ring, forward kneading disk, and reverse kneading disk.
- Supplied part 20 transfers resin pellets.
- the supply unit 20 functions to transfer the resin pellets from the hopper 10 side to the die 3 direction side. In general, preheating by an external heater is performed as a melting preparation stage. Further, since the resin pellet is sandwiched between the rotating screw 2 and the cylinder 1, a frictional force is applied to the resin pellet to generate frictional heat. The resin pellets may start to melt due to the preheating or frictional heat. In some cases, the supply unit 20 needs to adjust the groove depth of the screw 2 and adjust the preheating temperature by a conventionally known method so that the transfer of the resin pellets proceeds smoothly.
- the plasticizing unit 21 applies pressure to the resin pellets transferred from the supply unit 20 to melt the resin pellets.
- the resin pellets are further transferred forward (in the direction from the hopper 10 to the die 3) while melting.
- the kneading step After the plasticizing step, one or more glass fiber bundles are supplied to an extruder and the glass fiber bundle is defibrated and melted in the plasticizing step with the defibrated glass fibers. And knead.
- the kneading step is performed by the conveying unit 22 and the kneading unit 23 of the screw 2.
- a screw element used by the conveyance part 22 the element for conveyance which consists of a forward flight, for example is mentioned.
- screw element used in the kneading part 23 the combination of screw elements, such as a reverse flight, a seal ring, a forward kneading disk, a reverse kneading disk, is common.
- a continuous feed having a flight part in which at least a part of the kneading part 22 of the screw 2 has an arc-shaped notch satisfying the inequalities (I) to (III) formed on the outer periphery.
- a screw element is provided.
- the kneading part 22 includes the screw element and a single reverse feed screw element having a flight part having a notch formed on the outer periphery.
- the glass fiber bundle is a chopped strand in which 300 to 3000 monofilaments are bundled.
- chopped strands in which 1100 pieces or 2200 pieces are bundled are preferably used.
- the diameter of the monofilament is not particularly limited, but is preferably in the range of 6 ⁇ m to 20 ⁇ m, and those having a diameter of 6 ⁇ m, 10 ⁇ m, and 13 ⁇ m are widely distributed in the market.
- a bundle of monofilaments can be continuously fed to the twin screw extruder while roving.
- the chopped strand from which roving is cut is easy to handle in transportation and supply to a twin screw extruder.
- the glass fiber bundle and the molten resin introduced from the feed port 11 are conveyed to the kneading unit 23.
- this conveyance part 22 it is an area
- shear stress is applied to the glass fiber bundle and the molten resin.
- the glass fiber bundle is defibrated and the monofilament and the molten resin are kneaded.
- the glass fiber reinforced thermoplastic resin composition is extruded and how it is pelletized.
- the glass fiber reinforced thermoplastic resin composition extruded into a rod shape from the die 3 can be cut and pelletized.
- the cutting method is not particularly limited, and a conventionally known method can be used.
- the discharge amount in the extrusion process corresponds to the discharge amount Q
- the rotation speed of the screw corresponds to the rotation speed Ns.
- ⁇ Screw element> As a conventional kneading part of a screw, a combination of screw elements such as a reverse flight, a seal ring, a forward kneading disk, and a reverse kneading disk is generally used. However, in the case of high discharge under conditions where Q / Ns is large, some glass fiber bundles are not defibrated and remain undefibrated.
- the present invention is a manufacturing method determined by using, as an index, a shear stress history value received by each glass fiber bundle in an extruder.
- the minimum shear stress history value T min is the minimum value of the shear stress history value each glass fiber bundle is subjected in a twin-screw extruder.
- the following formula (IV) is derived based on the number of pellets including fiber glass fiber bundles.
- the following formula (IV) is also useful in that the amount of pellets containing undefined glass fiber bundles can be studied with one formula even if the Q / Ns condition changes.
- the quantity of the pellet containing an undefined glass fiber bundle can be examined with one numerical formula (IV).
- the size of the twin-screw extruder is changed, it is necessary to derive the formula (IV) again.
- a small twin screw extruder and a large twin screw extruder have different heat transfer amounts from the cylinders and heat energy applied to the molten resin. It is.
- the screw diameter D is uniquely determined. Based on the screw diameter D, the arbitrarily determined length L of the kneading portion 23, the discharge amount Q as the arbitrarily determined molding condition, and the screw rotation speed Ns, the minimum shear stress history value Tmin is derived.
- the minimum shear stress history value T min can be derived using conventionally known three-dimensional flow analysis software in a twin-screw extruder. For example, it can be derived by particle tracking analysis as described in the examples.
- the minimum shear stress history value T min is a time integral value obtained by performing time integration of the shear stress.
- the integration section is a section where the shear stress is applied to the molten resin and the glass fiber bundle, and the extrusion shown in FIG. In the case of a machine, it is a section of the kneading unit 23.
- the method for deriving the minimum shear stress history value Tmin is not particularly limited. A method of deriving using commercially available software, a method of deriving by experiment, and the like can be mentioned.
- the number N of undefibrated pellets may be derived experimentally or using an analysis method or the like.
- the horizontal axis is the minimum shear stress history value T min
- the vertical axis is the number N of undefined pellets.
- Screw diameter D of the screw element vary from d1 to d2, the following equation (V) is established between the discharge amount Q M in the discharge amount Q m and a large extruder in a small extruder and, following equation (VI) is established between the screw rotation speed Ns M at a screw rotation speed Ns m and a large extruder a small extruder.
- ⁇ and ⁇ in the above formulas (V) and (VI) are determined so that the specific energy applied to the molten resin is equal.
- a method for determining ⁇ and ⁇ either a theoretical determination method or an experimental determination method may be used.
- the parameter ⁇ is set so that the specific function, the total shearing amount, the residence time, etc. of the objective function are the same between the small machine and the large machine.
- ⁇ are derived. Assuming the difference in heat transfer between the small machine and the large machine, the parameters ⁇ and ⁇ can be derived so that the specific energy as the objective function matches between the small machine and the large machine.
- the objective function is a specific energy, or a parameter indicating physical properties is adopted, and the parameter ⁇ is statistically set so that the objective function matches between a small machine and a large machine. And a method of calculating ⁇ .
- the viscosity of the thermoplastic resin used as a raw material is high, the value of the minimum shear stress history value Tmin increases, which is advantageous for defibration of the glass fiber bundle, and glass undefibration is unlikely to occur even by a normal method.
- the present invention provides a method that is particularly effective when the viscosity of a thermoplastic resin is low and it is difficult to disentangle a glass fiber bundle by a normal method.
- the discharge rate is increased by a twin screw extruder, the glass undefibrated bundle is obtained when the viscosity of the thermoplastic resin is 100 Pa ⁇ s or less at a shear rate of 1000 sec ⁇ 1 at the processing temperature in the extruder. Is likely to occur.
- the viscosity is expressed as a value at 1000 sec ⁇ 1 ).
- fluidity is required in precision molding, and a resin having a viscosity of 30 to 70 Pa ⁇ s is used.
- the resin composition has a viscosity of 50 to 200 Pa ⁇ s.
- the screw element for defibrating the glass fiber bundle in such a low viscosity region will be described.
- a single screw element having a flight part with a notch formed on the outer periphery is preferable because the minimum shear stress history value T min tends to increase.
- a single screw element itself having a flight part with a notch formed on the outer periphery is known, and is described, for example, in Patent Document (DE4134026A1).
- the number N of undefined pellets can be suppressed to a small value by using a single progressive screw element described below.
- the screw elements having the above-mentioned notches it is possible to use the forward-feeding one because the value of the minimum shear stress history value Tmin is increased, and the glass fiber is used in a shorter time than when other screw elements are used. This is preferable because the bundle can be defibrated.
- This one-step progressive screw element has a flight part in which an arc-shaped notch satisfying the following inequalities (I) to (III) is formed on the outer periphery.
- FIG. 2 is a schematic view of the above-mentioned one-step progressive screw element, where (a) is a sectional view in the axial direction, and (b) is a side view.
- the single progressive screw element 4 has a flight part 40 and an arc-shaped notch 41 formed on the outer periphery of the flight part 40.
- the notch 41 is formed in a direction from the outer periphery of the flight part toward the axis of the screw element. 2 shows a case where the ellipse forms an arc shape, but the ellipse or the center of the circle forming the arc shape exists on the outer periphery of the flight part 40 (in FIG. 2A, the center of the ellipse is present). Indicated by O).
- the notch has an arc shape, and the arc shape is formed by the circle or ellipse, so that there are advantages in manufacturing and an effect of minimizing a decrease in strength of the flight portion due to the notch.
- the said circular arc shape should just be formed by said circle
- the present invention is not limited to one in which the entire cutout is formed by the one circle or ellipse described above. However, it is preferable that substantially the entire arc shape is formed by one circle or ellipse.
- the arc shape is most preferably a circle.
- the range of the radius r is preferably 0.05D ⁇ r ⁇ 0.15D. If r is within the above range, the minimum shear stress history value Tmin tends to increase, which is preferable. A more preferable range of r is 0.06D ⁇ r ⁇ 0.12D.
- the minimum shear stress history value T min tends to increase as the number of notches n increases.
- the mechanical strength of the screw element is lowered when the number of notches n is excessively increased, the number of notches n is adjusted within the range of inequality (II).
- a particularly preferable range of the number of notches n is 10 ⁇ n ⁇ 12, and the most preferable number of notches is 11.
- the lead length Le of the screw element is not more than 0.3 times the screw diameter D of the screw element (Le is not more than 0.3D). If the lead length Le is 0.3D or less, even if the discharge rate Q is very high, undisrupted glass fibers tend not to be contained in the manufactured pellets. It should be noted that the discharge amount Q is very high, for example, when the screw element is provided with an axial length of 2D and a screw diameter D is 47 mm, the screw diameter is 47 mm. This is a twin screw extruder having a diameter D of 69 mm and is 800 kg / h or more. Even in such a high discharge area, problems due to the above-described undefined glass fibers can be suppressed.
- the upper limit of the lead length Le of the screw element used in the present invention is preferably 0.3D or less, but the lower limit is preferably 0.1D or more. Setting it above this lower limit is preferable because the thickness of the flight part is maintained and the strength is maintained.
- the length of a single screw element having a flight part with a notch formed in the outer peripheral surface used for the kneading part 23 is expressed as L / D (L is a screw in the kneading part 23).
- D is the screw diameter
- T min the minimum shear stress history value
- said preferable length changes with kinds of resin.
- polybutylene terephthalate resin it is preferably 2D or more and 3.5D or less.
- each screw element is more effective to combine a reverse screw element of a single screw element having a flight part with a notch formed in the outer peripheral surface and the forward screw element.
- the most effective combination is a combination in which each is alternately arranged.
- the length of each screw element can be adjusted as appropriate.
- a single feed forward screw element having a flight part with a notch formed on the outer periphery, or a combination of a reverse feed screw element and a forward feed screw element includes almost no glass undefibration. It is possible to efficiently produce a glass reinforced resin composition with high productivity.
- Carbon masterbatch glass fiber bundle 3 mm long chopped strand obtained by bundling 2200 monofilaments having a diameter of 13 ⁇ m
- the composition is as follows. PBT is 67.5 mass%, carbon masterbatch is 2.5 mass%, glass fiber bundle is 30 mass% Extrusion conditions are as follows.
- Extruder Same direction full meshing type twin screw extruder TEX44 ⁇ II (manufactured by Nippon Steel) Screw diameter D of screw element is 0.047m Extrusion conditions; Barrel temperature; 220 ° C Screw design; (1) Outline The screw of the extruder can be represented as shown in FIG. 3, and the outline of the screw pattern shown in FIG. 3 is as follows.
- L / D is the ratio (L / D) between the lead length (L) of the kneading part b1 and the screw diameter (D) of the screw element.
- the screw patterns shown in FIG. 4 differ only in the kneading part B of C11.
- the shape of the screw of the kneading part B of C11 is shown in FIG.
- the screw shape of the pattern of FIG. 4 (a) is shown in FIG. 5 (a)
- the screw shape of the pattern of FIG. 4 (b) is shown in FIG. 5 (b)
- the screw shape of the pattern of FIG. 4 (d) is shown in FIG. 5 (d)
- the screw shape of the pattern of FIG. 4 (e) is shown in FIG.
- the screw shown in FIG. 5 (a) has a kneading part b1 with a forward feed kneading disk having a length of 1.0D, and the kneading part b2 has a reverse feed flight with a length of 0.5D.
- the screw shown in FIG. 5 (c) has a single knot containing a knotting part b1 with a length of 1.0D.
- the screw shown in FIG. 5 (d) is a single reverse feed kneading disk with kneading part b1 containing notches with a length of 2.0D.
- the kneading part b2 has a reverse feed flight with a length of 0.5D.
- the screw shown in FIG. 5 (e) has a kneading part b1 with a notch containing a notch with a length of 2.5D.
- the analysis method is a finite volume method, a SOR method, or a SIMPLE algorithm.
- a steady analysis is first performed, and an unsteady analysis is performed using this as an initial value.
- tracer particles were arranged (about 5000 particles), and local information concerning the tracer particles was collected (particle tracking analysis).
- Minimum value T min of the time integral value of the shear stress by integrating the shear stress of the local information relating to the tracer particles time, in which determining the minimum value of the total particle.
- the correlation line is different for each Q / Ns. Therefore, the function of the formula (IV) is approximated by the method of least squares.
- the approximate curve is shown in FIG. As shown in FIG. 8, it was possible to approximate with one correlation line independent of Q / Ns. Note that ⁇ was 3.0.
- Formula (IV) can be used to study the amount of undefined glass fiber bundles contained in the pellet, and the screw element that the kneading unit has It was confirmed that the amount of undefined glass fiber bundles contained in the pellets can be examined with a single mathematical formula (IV) even if the types of are different.
- FIG. 3 shows a raw material having the same composition of PBT resin 70% by mass and glass fiber 30% by mass as used in Evaluation 1 in a twin screw extruder (screw diameter D is 47 mm), and an arc-shaped notch.
- the screw elements of Article having formed flight portion and a length of 2.0D, to simulate a case of using a twin-screw extruder kneading section 23 shown in FIG. 1, the minimum shear stress history value T min, cut
- T min the minimum shear stress history value
- the center of the ellipse forming the arc shape is the outer periphery, and the minor axis / 2 of the ellipse is 3 mm and the major axis / 2 is 4.15 mm. Further, the direction in which the major axis extends coincides with the direction in which the cutout extends.
- FIG. 10 shows the distribution of shear stress history values obtained by performing time integration of the shear stress of the local information applied to the tracer particles by the same method as described in 1.
- the center of the notch is the outer peripheral part
- the distribution spreads over a wide range from where the shear stress history value is small. Having a small shear stress history value means that there is a high probability that glass undefibration remains.
- the minimum shear stress history value is large. For this reason, if the screw element which has the said notch is used, it will become difficult to remain
- a kneading part is composed of a single screw element having a flight part in which an arc-shaped notch is formed with a composition of 70% by mass of PBT resin and 30% by mass of glass fiber.
- the simulation when used in the No. 23 was performed. Specifically, the relationship between the minimum shear stress history value T min obtained by the same method as in Evaluation 1 and the number of notches (groove number) n was obtained.
- the minimum shear stress history value T min shows a high value when the number n of notches per lead length Le is 13 to 15.
- the minimum shear stress history value Tmin is higher when the number of notches n is larger.
- the mechanical strength of the screw element decreases as the number of notches n increases, it can be said that 13 to 15 is preferable.
- the center of the notch is on the outer periphery of the flight part, the shape of the notch is an ellipse, the short diameter / 2 of the notch on the outer periphery is 3 mm, and the long diameter / 2 (the direction in which the notch extends) is 3 mm, 4 mm, 5 mm.
- the minimum shear stress history value T min has a maximum value when the major axis of the notch groove depth / 2 is 4 to 5 mm.
- the radius range of the notch on the outer periphery is 0.064D
- the major axis length / 2 in the groove depth direction is 0.085D to 0.11D.
- the minimum shear stress history value increases as the radius increases even when the arc forms a circle.
- the minimum shear stress history value is larger when the circular arc is formed than the ellipse is formed.
- Carbon masterbatch glass fiber bundle 3 mm long chopped strand obtained by bundling 2200 monofilaments having a diameter of 13 ⁇ m
- the composition is as follows. PBT is 67.5 mass%, carbon masterbatch is 2.5 mass%, glass fiber bundle is 30 mass%
- Extruder Same direction full meshing type twin screw extruder TEX44 ⁇ II (manufactured by Nippon Steel) Screw diameter D of screw element is 0.047m
- the cylinder temperature (° C.) in the molding of the examples is shown in the table below.
- the specific screw pattern used in the examples is as shown in FIG.
- the kneading disc is 90 ° out of phase with each disc, CK, the screw element with a notch in one reverse flight, BMS, and the screw with a notch in one forward flight.
- the element be FMS.
- the short diameter / 2 of the notch on the outer periphery is 3 mm, and the long diameter / 2 (the direction in which the notch extends) is 4.15 mm.
- Comparative Example 1 The screw shown in FIG. 11 (a) is a kneading part (C8) with a 90 ° phase orthogonal kneading disk having a length of 2.5D.
- Example 1 The screw shown in FIG.
- FIG. 11 (b) is a kneading part (C8).
- Example 2 The screw shown in FIG. 11 (c) is a single feed forward screw element FMS in which the kneading part (C8) has a flight part with a notch formed on the outer periphery having a length of 3.0D.
- Example 3 The screw shown in FIG. 11 (d) has a kneading part (C8) with a length of 3.0D, a single reverse feed screw element BMS and a forward feed screw having a flight part with a notch formed on the outer periphery.
- FMS1D is followed by BMS1D, then FMS
- a 90 ° phase orthogonal kneading disk CK was used, but this was changed to a single progressive screw element FMS having a flight part with a notch formed on the outer periphery.
- the length is 3.0D, pellets containing undefined glass fiber bundles are not generated. However, if the discharge rate is further increased, pellets containing undefined glass fiber bundles are generated.
- the kneading part is a combination of FMS1D, BMS1D, and FMS1D.
Landscapes
- Mechanical Engineering (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
A process for producing pellets of a glass-fiber-reinforced thermoplastic resin composition is provided with which the productivity of pellets of a glass-fiber-reinforced thermoplastic resin composition can be rendered higher than in conventional processes and it is possible to minimize the probability that monofilament masses (unfibrillated glass-fiber bundles) remain in the produced pellets.
In the process, a thermoplastic resin and glass fibers are kneaded with a screw which comprises a screw element having a specific shape. The specific screw element is a single-thread progressive screw element which has a flight part having circular-arc-shaped notches that satisfy specific requirements.
Description
本発明は、ガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法に関する。
The present invention relates to a method for producing glass fiber reinforced thermoplastic resin composition pellets.
熱可塑性樹脂にガラス繊維を混合混練し、ガラス繊維強化熱可塑性樹脂組成物ペレットを製造する方法としては、先ず、押出機に熱可塑性樹脂を供給し、該熱可塑性樹脂を溶融させる。次いで、溶融させた熱可塑性樹脂にガラス繊維を供給し、押出機内で熱可塑性樹脂とガラス繊維とを混合混練する。最後に、混合物を冷却、造粒する方法が一般的である。押出機は、一般的に、単軸押出機と同方向完全噛み合い型二軸押出機(以下、二軸押出機という場合がある)が使用される。単軸押出機と比較して、二軸押出機は、生産性と運転の自由度がより高いので、ガラス繊維強化熱可塑性樹脂組成物ペレットの製造には、二軸押出機がより好ましく用いられる。
As a method for producing glass fiber reinforced thermoplastic resin composition pellets by mixing and kneading glass fibers with a thermoplastic resin, first, a thermoplastic resin is supplied to an extruder and the thermoplastic resin is melted. Next, glass fibers are supplied to the molten thermoplastic resin, and the thermoplastic resin and glass fibers are mixed and kneaded in an extruder. Finally, a method of cooling and granulating the mixture is common. As the extruder, generally, a single-screw extruder and a fully meshed twin-screw extruder in the same direction (hereinafter sometimes referred to as a twin-screw extruder) are used. Compared with a single screw extruder, a twin screw extruder has higher productivity and freedom of operation, and therefore, a twin screw extruder is more preferably used for producing glass fiber reinforced thermoplastic resin pellets. .
上記ガラス繊維強化熱可塑性樹脂組成物ペレットの製造において使用されるガラス繊維は、直径が6μm~20μmのモノフィラメントを300本~3000本くらいにまとめてロービングに巻き取ったものか、ロービングを長さ1~4mmにカットしたもの(以下、チョップドストランドという場合がある)である。チョップドガラスの方が容易に使用できるため、工業的にガラス繊維強化熱可塑性樹脂組成物ペレットを製造する場合においては、二軸押出機に熱可塑性樹脂を供給し、熱可塑性樹脂の溶融後、二軸押出機の途中からチョップドガラスを供給し、溶融状態の熱可塑性樹脂とガラス繊維とを混合混練し、混合物を押し出して、冷却固化する方法が最も多く行われている。
The glass fiber used in the production of the glass fiber reinforced thermoplastic resin composition pellets is a monofilament having a diameter of 6 μm to 20 μm, which is bundled into about 300 to 3000 pieces and wound on a roving, or the roving has a length of 1 Cut to 4 mm (hereinafter sometimes referred to as chopped strands). Since chopped glass can be used more easily, in the case of producing glass fiber reinforced thermoplastic resin composition pellets industrially, the thermoplastic resin is supplied to a twin screw extruder, and after the thermoplastic resin is melted, The most common method is to supply chopped glass from the middle of a shaft extruder, mix and knead a molten thermoplastic resin and glass fiber, extrude the mixture, and cool and solidify.
上記の二軸押出機を用いて行うガラス繊維強化熱可塑性樹脂組成物ペレットの生産性は、二軸押出機の可塑化と混合混練の能力によって決定される。二軸押出機の可塑化能力は、スクリューデザイン、スクリューが発生するトルク、スクリューの溝深さ(スクリューの外径と谷径の差)、スクリューの回転数等に依存する。特許文献1には、2本のスクリューの芯間距離の3乗で割った値をトルク密度と定義し、可塑化能力が高く、生産性に優れた二軸押出機が開示されている。
The productivity of the glass fiber reinforced thermoplastic resin composition pellets using the above twin screw extruder is determined by the plasticizing and mixing and kneading ability of the twin screw extruder. The plasticizing ability of the twin screw extruder depends on the screw design, the torque generated by the screw, the groove depth of the screw (the difference between the outer diameter and the valley diameter of the screw), the rotational speed of the screw, and the like. Patent Document 1 discloses a twin-screw extruder having a high plasticizing ability and excellent productivity, in which a value obtained by dividing the distance between the centers of two screws by the third power is defined as torque density.
また、二軸押出機の混合混練能力は、スクリューデザインにも依存する。二軸押出機の可塑化能力の向上に伴い、滞留時間が減少した。このため、短時間で効率のよい混合混練能力を持ったスクリューデザインの開発が求められている。このように二軸押出機の可塑化能力、混練能力を高める技術に関する検討が行なわれている。
Also, the mixing and kneading ability of the twin screw extruder depends on the screw design. The residence time decreased with the improvement of the plasticizing ability of the twin screw extruder. For this reason, development of a screw design having an efficient mixing and kneading ability in a short time is required. As described above, studies on techniques for increasing the plasticizing ability and kneading ability of a twin-screw extruder have been conducted.
ところで、ガラス繊維としては、上述の通り、モノフィラメントが束になったものを使用する。ガラス繊維をモノフィラメントの束にせずに二軸押出機に供給する方法では、モノフィラメントが綿状になり、流動性がなくなり、取り扱いが難しいためである。上記チョップドストランドは、二軸押出機内で、解繊されモノフィラメントになるまで混合混練される。同時に、モノフィラメントの長さが、平均で200μm~800μmになるまでチョップドストランドはスクリュー等によって破断される。
By the way, as the glass fiber, a monofilament bundle is used as described above. This is because, in the method of supplying glass fibers to a twin-screw extruder without forming a bundle of monofilaments, the monofilament becomes cottony, loses fluidity, and is difficult to handle. The chopped strand is mixed and kneaded in a twin-screw extruder until it is fibrillated and becomes a monofilament. At the same time, the chopped strand is broken by a screw or the like until the monofilament length reaches an average of 200 μm to 800 μm.
二軸押出機内での混合混練が不十分であると、モノフィラメントに解繊しないで、モノフィラメントの集合体(未解繊ガラス繊維束)の状態である、チョップドストランドの一部、もしくは全部が樹脂組成物ペレット中に残存する。ガラス繊維強化熱可塑性樹脂組成物ペレットに、チョップドストランドの一部、もしくは全部が残存した場合、射出成形において、ゲートに上記チョップドストランドの一部又は全部が詰まり、射出成形ができなくなるか、射出成形ができたとしても、成形品に上記チョップドストランドの一部又は全部が存在し、外観不良又は機能低下の原因となる。
If mixing and kneading in the twin-screw extruder is insufficient, the monofilament will not be defibrated, and a part or all of the chopped strand that is in the state of a monofilament aggregate (undefibrated glass fiber bundle) will be resin composition It remains in the product pellet. If some or all of the chopped strands remain in the glass fiber reinforced thermoplastic resin composition pellets, in injection molding, some or all of the chopped strands may be clogged in the gate, making injection molding impossible, or injection molding. Even if it is possible, some or all of the chopped strands are present in the molded product, resulting in poor appearance or reduced function.
特に近年、エレクトロニクス関連の技術の進歩に伴い、部品として使用されるガラス繊維強化熱可塑性樹脂組成物は、薄肉で、複雑な形状に成形することが求められている。このような精密成形を行う成形機のゲートノズルは、1mm以下になる場合も多い。精密成形品においては、未解繊ガラス繊維束の存在が、非常に重大な欠陥になる。
Particularly in recent years, with the advancement of electronics-related technology, glass fiber reinforced thermoplastic resin compositions used as parts are required to be thin and molded into complex shapes. The gate nozzle of a molding machine that performs such precision molding is often 1 mm or less. In precision molded products, the presence of undefined glass fiber bundles becomes a very serious defect.
特許文献1の二軸押出機を使用すれば、生産性が向上するとされているが、特に上記のような精密成形品においては、高い吐出量の条件で滞留時間が短くなり、チョップドストランドを完全にモノフィラメントに解繊し、且つ、繊維長を短くすることが一層難しくなっている。
The use of the twin-screw extruder of Patent Document 1 is said to improve productivity. Particularly in the precision molded product as described above, the residence time is shortened under the condition of a high discharge amount, and the chopped strand is completely removed. It is even more difficult to defibrate monofilaments and shorten the fiber length.
本発明は、上記課題を解決するためになされたものであり、その目的は、ガラス繊維強化熱可塑性樹脂組成物ペレットの生産性を従来よりも高めるとともに、製造されたペレット中にモノフィラメントの集合体(未解繊ガラス繊維束)が残存する確率を非常に低くすることが可能なガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法を提供することにある。
The present invention has been made in order to solve the above-mentioned problems. The object of the present invention is to increase the productivity of glass fiber reinforced thermoplastic resin composition pellets as compared with the prior art, and to collect the monofilaments in the manufactured pellets. It is providing the manufacturing method of the glass fiber reinforced thermoplastic resin composition pellet which can make very low the probability that (un-defibrated glass fiber bundle) remains.
本発明者らは、上記課題を解決するために鋭意研究を重ねた。
その結果、数値解析によって得られる物理量である、平均剪断応力履歴、平均剪断歪履歴、比エネルギー、最短粒子流出時間等のいずれも、未解繊ガラス繊維束を含むペレット数N(単位重量あたりの未解繊ガラス繊維束を含むペレットの個数)と明確な相関がないこと、を見出すとともに、粒子追跡法によって導出される、各ガラス繊維束に加わる剪断応力の時間積分値の中で最も小さい値である最小剪断応力履歴値Tminが、未解繊ガラス繊維束を含むペレット数Nと相関があることを見出した。
また、二軸押出機内で発生する剪断応力を解析し、吐出量Qとスクリュー回転数Nsとの比(Q/Ns)が一定の場合には、最小剪断応力履歴値Tminを制御することで、未解繊ガラス繊維を含む単位量あたりのペレット数Nを制御できることを見出した。
さらに、上記比(Q/Ns)が一定でない場合であっても、未解繊ガラス繊維を含む単位量あたりのペレット数Nは上記Tmin及び(Q/Ns)を用いて特定の数式で表せることを見出した。
さらに、熱可塑性樹脂とガラス繊維とを混練するスクリューが、特定の形状を有するスクリューエレメントを有することで、上記課題を解決できることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のものを提供する。 The inventors of the present invention have made extensive studies to solve the above problems.
As a result, the physical quantities obtained by numerical analysis, such as average shear stress history, average shear strain history, specific energy, shortest particle outflow time, etc. are all the number N of pellets containing undefined glass fiber bundles (per unit weight). It is found that there is no clear correlation with the number of pellets containing undefined glass fiber bundles) and the smallest value among the time integral values of shear stress applied to each glass fiber bundle, which is derived by the particle tracking method. It was found that the minimum shear stress history value T min is correlated with the number N of pellets including undefined glass fiber bundles.
Further, the shear stress generated in the twin screw extruder is analyzed, and when the ratio (Q / Ns) between the discharge amount Q and the screw rotation speed Ns is constant, the minimum shear stress history value T min is controlled. The present inventors have found that the number N of pellets per unit amount including undefined glass fibers can be controlled.
Further, even if the ratio (Q / Ns) is not constant, the number N of pellets per unit amount including undefined glass fibers can be expressed by a specific formula using the T min and (Q / Ns). I found out.
Furthermore, the present inventors have found that the above-mentioned problems can be solved by having a screw element having a specific shape for a screw for kneading a thermoplastic resin and glass fiber, thereby completing the present invention. More specifically, the present invention provides the following.
その結果、数値解析によって得られる物理量である、平均剪断応力履歴、平均剪断歪履歴、比エネルギー、最短粒子流出時間等のいずれも、未解繊ガラス繊維束を含むペレット数N(単位重量あたりの未解繊ガラス繊維束を含むペレットの個数)と明確な相関がないこと、を見出すとともに、粒子追跡法によって導出される、各ガラス繊維束に加わる剪断応力の時間積分値の中で最も小さい値である最小剪断応力履歴値Tminが、未解繊ガラス繊維束を含むペレット数Nと相関があることを見出した。
また、二軸押出機内で発生する剪断応力を解析し、吐出量Qとスクリュー回転数Nsとの比(Q/Ns)が一定の場合には、最小剪断応力履歴値Tminを制御することで、未解繊ガラス繊維を含む単位量あたりのペレット数Nを制御できることを見出した。
さらに、上記比(Q/Ns)が一定でない場合であっても、未解繊ガラス繊維を含む単位量あたりのペレット数Nは上記Tmin及び(Q/Ns)を用いて特定の数式で表せることを見出した。
さらに、熱可塑性樹脂とガラス繊維とを混練するスクリューが、特定の形状を有するスクリューエレメントを有することで、上記課題を解決できることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のものを提供する。 The inventors of the present invention have made extensive studies to solve the above problems.
As a result, the physical quantities obtained by numerical analysis, such as average shear stress history, average shear strain history, specific energy, shortest particle outflow time, etc. are all the number N of pellets containing undefined glass fiber bundles (per unit weight). It is found that there is no clear correlation with the number of pellets containing undefined glass fiber bundles) and the smallest value among the time integral values of shear stress applied to each glass fiber bundle, which is derived by the particle tracking method. It was found that the minimum shear stress history value T min is correlated with the number N of pellets including undefined glass fiber bundles.
Further, the shear stress generated in the twin screw extruder is analyzed, and when the ratio (Q / Ns) between the discharge amount Q and the screw rotation speed Ns is constant, the minimum shear stress history value T min is controlled. The present inventors have found that the number N of pellets per unit amount including undefined glass fibers can be controlled.
Further, even if the ratio (Q / Ns) is not constant, the number N of pellets per unit amount including undefined glass fibers can be expressed by a specific formula using the T min and (Q / Ns). I found out.
Furthermore, the present inventors have found that the above-mentioned problems can be solved by having a screw element having a specific shape for a screw for kneading a thermoplastic resin and glass fiber, thereby completing the present invention. More specifically, the present invention provides the following.
(1) 互いに回転して噛み合うスクリューを備えた二軸の押出機を用いて、ガラス繊維強化熱可塑性樹脂組成物ペレットを製造する方法であって、熱可塑性樹脂を前記押出機に供給して加熱、混練し可塑化する可塑化工程と、前記可塑化工程後に、一束以上のガラス繊維束を前記押出機に供給して、前記ガラス繊維束を解繊しながら、解繊されたガラス繊維と可塑化した前記熱可塑性樹脂とをスクリューで混練する混練工程と、前記混練工程後に、ガラス繊維強化熱可塑性樹脂組成物を押出す押出工程と、押出された前記ガラス繊維強化熱可塑性樹脂組成物をペレット化するペレット化工程とを備え、前記熱可塑性樹脂は、ポリブチレンテレフタレート樹脂、液晶性樹脂、及びポリアリーレンサルファイド樹脂から選択される少なくとも一種の樹脂から構成され、前記混練工程において、前記スクリューは、外周に、以下の不等式(I)から(III)を満たす円弧状の切り欠きが形成されたフライト部を有する一条の順送りスクリューエレメントを一以上有するガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法。
0.05D≦r≦0.15D (I)
7≦n≦20 (II)
Le≦0.3D (III)
(上記不等式(I)中のrは、上記円弧状を形成する円の半径又は上記円弧状を形成する楕円の長径/2、もしくは短径/2であり、上記不等式(II)中のnは、上記一条の順送りスクリューエレメントの1リード長あたりの切り欠き数であり、上記不等式(III)中のLeは、上記一条の順送りスクリューエレメントのリード長であり、上記不等式(I)、(II)中のDは、スクリュー口径である。) (1) A method for producing glass fiber reinforced thermoplastic resin pellets using a twin screw extruder provided with screws that rotate and mesh with each other, wherein the thermoplastic resin is supplied to the extruder and heated. A plasticizing step of kneading and plasticizing, and after the plasticizing step, supplying one or more bundles of glass fibers to the extruder, defibrating the glass fibers while disentangling the glass fiber bundles, A kneading step of kneading the plasticized thermoplastic resin with a screw, an extrusion step of extruding the glass fiber reinforced thermoplastic resin composition after the kneading step, and the extruded glass fiber reinforced thermoplastic resin composition. A pelletizing step of pelletizing, wherein the thermoplastic resin is at least one selected from polybutylene terephthalate resin, liquid crystalline resin, and polyarylene sulfide resin In the kneading step, the screw includes a single forward feed screw element having a flight part in which an arc-shaped notch satisfying the following inequalities (I) to (III) is formed on the outer periphery. The manufacturing method of the glass fiber reinforced thermoplastic resin composition pellet which has the above.
0.05D ≦ r ≦ 0.15D (I)
7 ≦ n ≦ 20 (II)
Le ≦ 0.3D (III)
(R in the inequality (I) is the radius of the circle forming the arc or the major axis / 2 or the minor axis / 2 of the ellipse forming the arc, and n in the inequality (II) is , The number of notches per lead length of the one-step progressive screw element, and Le in the inequality (III) is the lead length of the one-step progressive screw element, and the inequality (I), (II) D in the inside is a screw diameter.)
0.05D≦r≦0.15D (I)
7≦n≦20 (II)
Le≦0.3D (III)
(上記不等式(I)中のrは、上記円弧状を形成する円の半径又は上記円弧状を形成する楕円の長径/2、もしくは短径/2であり、上記不等式(II)中のnは、上記一条の順送りスクリューエレメントの1リード長あたりの切り欠き数であり、上記不等式(III)中のLeは、上記一条の順送りスクリューエレメントのリード長であり、上記不等式(I)、(II)中のDは、スクリュー口径である。) (1) A method for producing glass fiber reinforced thermoplastic resin pellets using a twin screw extruder provided with screws that rotate and mesh with each other, wherein the thermoplastic resin is supplied to the extruder and heated. A plasticizing step of kneading and plasticizing, and after the plasticizing step, supplying one or more bundles of glass fibers to the extruder, defibrating the glass fibers while disentangling the glass fiber bundles, A kneading step of kneading the plasticized thermoplastic resin with a screw, an extrusion step of extruding the glass fiber reinforced thermoplastic resin composition after the kneading step, and the extruded glass fiber reinforced thermoplastic resin composition. A pelletizing step of pelletizing, wherein the thermoplastic resin is at least one selected from polybutylene terephthalate resin, liquid crystalline resin, and polyarylene sulfide resin In the kneading step, the screw includes a single forward feed screw element having a flight part in which an arc-shaped notch satisfying the following inequalities (I) to (III) is formed on the outer periphery. The manufacturing method of the glass fiber reinforced thermoplastic resin composition pellet which has the above.
0.05D ≦ r ≦ 0.15D (I)
7 ≦ n ≦ 20 (II)
Le ≦ 0.3D (III)
(R in the inequality (I) is the radius of the circle forming the arc or the major axis / 2 or the minor axis / 2 of the ellipse forming the arc, and n in the inequality (II) is , The number of notches per lead length of the one-step progressive screw element, and Le in the inequality (III) is the lead length of the one-step progressive screw element, and the inequality (I), (II) D in the inside is a screw diameter.)
(2)互いに回転して噛み合うスクリューを備えた二軸の押出機を用いて、ガラス繊維強化熱可塑性樹脂組成物ペレットを製造する方法であって、
熱可塑性樹脂を前記押出機に供給して加熱、混練し可塑化する可塑化工程と、
前記可塑化工程後に、一束以上のガラス繊維束を前記押出機に供給して、前記ガラス繊維束を解繊しながら、解繊されたガラス繊維と可塑化した前記熱可塑性樹脂とをスクリューで混練する混練工程と、
前記混練工程後に、ガラス繊維強化熱可塑性樹脂組成物を押出す押出工程と、
押出された前記ガラス繊維強化熱可塑性樹脂組成物をペレット化するペレット化工程と、を備え、
前記熱可塑性樹脂の粘度が、剪断速度1000sec-1の条件で、100Pa・s以下であり、
前記混練工程において、前記スクリューは、外周に、以下の不等式(I)から(III)を満たす円弧状の切り欠きが形成されたフライト部を有する一条の順送りスクリューエレメントを一以上有するガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法。
0.05D≦r≦0.15D (I)
7≦n≦20 (II)
Le≦0.3D (III)
(上記不等式(I)中のrは、上記円弧状を形成する円の半径又は上記円弧状を形成する楕円の長径/2、もしくは短径/2であり、上記不等式(II)中のnは、上記一条の順送りスクリューエレメントの1リード長あたりの切り欠き数であり、上記不等式(III)中のLeは、上記一条の順送りスクリューエレメントのリード長であり、上記不等式(I)、(II)中のDは、スクリュー口径である。) (2) A method of producing glass fiber reinforced thermoplastic resin composition pellets using a biaxial extruder equipped with screws that rotate and mesh with each other,
A plasticizing step of supplying a thermoplastic resin to the extruder and heating, kneading and plasticizing;
After the plasticizing step, one or more glass fiber bundles are supplied to the extruder, and the defibrated glass fibers and the plasticized thermoplastic resin are screwed together while defibrating the glass fiber bundles. A kneading step for kneading;
After the kneading step, an extrusion step of extruding the glass fiber reinforced thermoplastic resin composition,
Pelletizing step of pelletizing the extruded glass fiber reinforced thermoplastic resin composition,
The viscosity of the thermoplastic resin is 100 Pa · s or less under the condition of a shear rate of 1000 sec −1 ;
In the kneading step, the screw has a glass fiber reinforced heat having one or more progressive screw elements each having a flight portion in which an arc-shaped notch satisfying the following inequalities (I) to (III) is formed on the outer periphery. A method for producing a plastic resin composition pellet.
0.05D ≦ r ≦ 0.15D (I)
7 ≦ n ≦ 20 (II)
Le ≦ 0.3D (III)
(R in the inequality (I) is the radius of the circle forming the arc or the major axis / 2 or the minor axis / 2 of the ellipse forming the arc, and n in the inequality (II) is , The number of notches per lead length of the one-step progressive screw element, and Le in the inequality (III) is the lead length of the one-step progressive screw element, and the inequality (I), (II) D in the inside is a screw diameter.)
熱可塑性樹脂を前記押出機に供給して加熱、混練し可塑化する可塑化工程と、
前記可塑化工程後に、一束以上のガラス繊維束を前記押出機に供給して、前記ガラス繊維束を解繊しながら、解繊されたガラス繊維と可塑化した前記熱可塑性樹脂とをスクリューで混練する混練工程と、
前記混練工程後に、ガラス繊維強化熱可塑性樹脂組成物を押出す押出工程と、
押出された前記ガラス繊維強化熱可塑性樹脂組成物をペレット化するペレット化工程と、を備え、
前記熱可塑性樹脂の粘度が、剪断速度1000sec-1の条件で、100Pa・s以下であり、
前記混練工程において、前記スクリューは、外周に、以下の不等式(I)から(III)を満たす円弧状の切り欠きが形成されたフライト部を有する一条の順送りスクリューエレメントを一以上有するガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法。
0.05D≦r≦0.15D (I)
7≦n≦20 (II)
Le≦0.3D (III)
(上記不等式(I)中のrは、上記円弧状を形成する円の半径又は上記円弧状を形成する楕円の長径/2、もしくは短径/2であり、上記不等式(II)中のnは、上記一条の順送りスクリューエレメントの1リード長あたりの切り欠き数であり、上記不等式(III)中のLeは、上記一条の順送りスクリューエレメントのリード長であり、上記不等式(I)、(II)中のDは、スクリュー口径である。) (2) A method of producing glass fiber reinforced thermoplastic resin composition pellets using a biaxial extruder equipped with screws that rotate and mesh with each other,
A plasticizing step of supplying a thermoplastic resin to the extruder and heating, kneading and plasticizing;
After the plasticizing step, one or more glass fiber bundles are supplied to the extruder, and the defibrated glass fibers and the plasticized thermoplastic resin are screwed together while defibrating the glass fiber bundles. A kneading step for kneading;
After the kneading step, an extrusion step of extruding the glass fiber reinforced thermoplastic resin composition,
Pelletizing step of pelletizing the extruded glass fiber reinforced thermoplastic resin composition,
The viscosity of the thermoplastic resin is 100 Pa · s or less under the condition of a shear rate of 1000 sec −1 ;
In the kneading step, the screw has a glass fiber reinforced heat having one or more progressive screw elements each having a flight portion in which an arc-shaped notch satisfying the following inequalities (I) to (III) is formed on the outer periphery. A method for producing a plastic resin composition pellet.
0.05D ≦ r ≦ 0.15D (I)
7 ≦ n ≦ 20 (II)
Le ≦ 0.3D (III)
(R in the inequality (I) is the radius of the circle forming the arc or the major axis / 2 or the minor axis / 2 of the ellipse forming the arc, and n in the inequality (II) is , The number of notches per lead length of the one-step progressive screw element, and Le in the inequality (III) is the lead length of the one-step progressive screw element, and the inequality (I), (II) D in the inside is a screw diameter.)
(3) 前記混練工程において、前記スクリューは、外周に円弧状の切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメントを一以上有する(1)又は(2)に記載のガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法。
(3) In the kneading step, the screw has at least one reverse feed screw element having a flight portion having an arc-shaped notch formed on the outer periphery thereof. (1) or (2) A method for producing a thermoplastic resin composition pellet.
本発明によれば、ガラス繊維強化熱可塑性樹脂組成物ペレットの生産性を従来よりも高めるとともに、製造されたペレット中にモノフィラメントの集合体(未解繊ガラス繊維束)が残存する確率を非常に低くでき、かつガラス繊維の繊維長分布を制御することができる。
According to the present invention, the productivity of the glass fiber reinforced thermoplastic resin composition pellets is increased more than before, and the probability that monofilament aggregates (undefined glass fiber bundles) remain in the manufactured pellets is very high. The fiber length distribution of the glass fiber can be controlled.
以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。
<ガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法>
本発明のガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法は、以下の工程を備える。
熱可塑性樹脂を押出機に供給して加熱、混練し可塑化する可塑化工程。
上記可塑化工程後に、一束以上のガラス繊維束を上記押出機に供給して、上記ガラス繊維束を解繊しながら、解繊されたガラス繊維と可塑化した上記熱可塑性樹脂とをスクリューで混練する混練工程。
上記混練工程後に、ガラス繊維強化熱可塑性樹脂組成物を押出す押出工程。
押出された上記ガラス繊維強化熱可塑性樹脂組成物をペレット化するペレット化工程。 Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment.
<Method for Producing Glass Fiber Reinforced Thermoplastic Resin Composition Pellet>
The manufacturing method of the glass fiber reinforced thermoplastic resin composition pellet of the present invention includes the following steps.
A plasticizing process in which a thermoplastic resin is supplied to an extruder and heated, kneaded and plasticized.
After the plasticization step, one or more glass fiber bundles are supplied to the extruder, and the glass fiber bundles and the plasticized thermoplastic resin are screwed together while the glass fiber bundles are defibrated. A kneading step for kneading.
An extrusion step of extruding the glass fiber reinforced thermoplastic resin composition after the kneading step.
A pelletizing step of pelletizing the extruded glass fiber reinforced thermoplastic resin composition.
<ガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法>
本発明のガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法は、以下の工程を備える。
熱可塑性樹脂を押出機に供給して加熱、混練し可塑化する可塑化工程。
上記可塑化工程後に、一束以上のガラス繊維束を上記押出機に供給して、上記ガラス繊維束を解繊しながら、解繊されたガラス繊維と可塑化した上記熱可塑性樹脂とをスクリューで混練する混練工程。
上記混練工程後に、ガラス繊維強化熱可塑性樹脂組成物を押出す押出工程。
押出された上記ガラス繊維強化熱可塑性樹脂組成物をペレット化するペレット化工程。 Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment.
<Method for Producing Glass Fiber Reinforced Thermoplastic Resin Composition Pellet>
The manufacturing method of the glass fiber reinforced thermoplastic resin composition pellet of the present invention includes the following steps.
A plasticizing process in which a thermoplastic resin is supplied to an extruder and heated, kneaded and plasticized.
After the plasticization step, one or more glass fiber bundles are supplied to the extruder, and the glass fiber bundles and the plasticized thermoplastic resin are screwed together while the glass fiber bundles are defibrated. A kneading step for kneading.
An extrusion step of extruding the glass fiber reinforced thermoplastic resin composition after the kneading step.
A pelletizing step of pelletizing the extruded glass fiber reinforced thermoplastic resin composition.
本発明の製造方法は、混練工程において、特定のスクリューエレメントを備えるスクリューを用いる。
The production method of the present invention uses a screw having a specific screw element in the kneading step.
以下、図1に記載の二軸押出機を用いる場合を例に、本発明のガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法を説明する。図1には、シリンダー1と、シリンダーに配設されたスクリュー2と、シリンダー1の下流側端部に設けられたダイ3と、を備える二軸押出機が示されている。そして、図1には、上記スクリュー2のスクリュー構成も示されている。具体的に、スクリュー2は、供給部20、可塑化部21、搬送部22、混練部23を、上流側からこの順で有する。供給部20及び可塑化部21で可塑化工程が行われる。搬送部22及び混練部23で混練工程が行われる。混練部23以降で押出工程が行われる。そして、押出機のダイ3からガラス繊維強化熱可塑性樹脂組成物が押し出されてからペレット化工程が行われる。
Hereinafter, the manufacturing method of the glass fiber reinforced thermoplastic resin composition pellets of the present invention will be described taking the case of using the twin screw extruder shown in FIG. 1 as an example. FIG. 1 shows a twin-screw extruder including a cylinder 1, a screw 2 disposed in the cylinder, and a die 3 provided at a downstream end portion of the cylinder 1. FIG. 1 also shows the screw configuration of the screw 2. Specifically, the screw 2 includes a supply unit 20, a plasticizing unit 21, a transport unit 22, and a kneading unit 23 in this order from the upstream side. A plasticizing process is performed in the supply unit 20 and the plasticizing unit 21. A kneading step is performed in the conveying unit 22 and the kneading unit 23. The extrusion process is performed after the kneading section 23. And a pelletization process is performed after the glass fiber reinforced thermoplastic resin composition is extruded from the die | dye 3 of an extruder.
また、スクリュー2が配設されたシリンダー1は、供給部20に熱可塑性樹脂等の原料を供給するためのホッパ10と、搬送部22にガラス繊維束等の副原料を供給するためのフィード口11と、真空ポンプ等の減圧手段を有し所定の真空度で真空脱気を行なうための真空ベント12とを有する。
The cylinder 1 in which the screw 2 is disposed includes a hopper 10 for supplying a raw material such as a thermoplastic resin to the supply unit 20 and a feed port for supplying auxiliary materials such as a glass fiber bundle to the conveyance unit 22. 11 and a vacuum vent 12 having vacuuming means such as a vacuum pump for performing vacuum deaeration at a predetermined degree of vacuum.
[可塑化工程]
可塑化工程では、ホッパ10から供給された熱可塑性樹脂を移送・溶融して、均質な溶融体を作る。先ず、熱可塑性樹脂について説明し、次いで、ホッパから供給された熱可塑性樹脂が均質な溶融体になるまでの可塑化工程の詳細を説明する。 [Plasticization process]
In the plasticizing step, the thermoplastic resin supplied from thehopper 10 is transferred and melted to make a homogeneous melt. First, the thermoplastic resin will be described, and then the details of the plasticizing process until the thermoplastic resin supplied from the hopper becomes a homogeneous melt will be described.
可塑化工程では、ホッパ10から供給された熱可塑性樹脂を移送・溶融して、均質な溶融体を作る。先ず、熱可塑性樹脂について説明し、次いで、ホッパから供給された熱可塑性樹脂が均質な溶融体になるまでの可塑化工程の詳細を説明する。 [Plasticization process]
In the plasticizing step, the thermoplastic resin supplied from the
(熱可塑性樹脂)
熱可塑性樹脂は、ポリブチレンテレフタレート樹脂、液晶性樹脂、ポリアリーレンサルファイド樹脂を指す。上記のような粘性が低い傾向にある樹脂であっても本発明の効果を奏する。粘性の低い上記の樹脂は、上記ガラス繊維束の未解繊の問題は生じやすい。粘性が低いと溶融状態では剪断応力が発生し難くなり、モノフィラメントを収束したガラス繊維束は、解繊し難くなるからである。粘性の低い樹脂とは、熱可塑性樹脂の粘度が、剪断速度1000sec-1の条件で、100Pa・s以下である。 (Thermoplastic resin)
The thermoplastic resin refers to a polybutylene terephthalate resin, a liquid crystalline resin, or a polyarylene sulfide resin. Even a resin having a low viscosity tends to exhibit the effects of the present invention. The above-mentioned resin having low viscosity tends to cause a problem of undefining the glass fiber bundle. This is because if the viscosity is low, shear stress hardly occurs in the molten state, and the glass fiber bundle in which the monofilaments are converged is difficult to be defibrated. The low viscosity resin means that the viscosity of the thermoplastic resin is 100 Pa · s or less under the condition of a shear rate of 1000 sec −1 .
熱可塑性樹脂は、ポリブチレンテレフタレート樹脂、液晶性樹脂、ポリアリーレンサルファイド樹脂を指す。上記のような粘性が低い傾向にある樹脂であっても本発明の効果を奏する。粘性の低い上記の樹脂は、上記ガラス繊維束の未解繊の問題は生じやすい。粘性が低いと溶融状態では剪断応力が発生し難くなり、モノフィラメントを収束したガラス繊維束は、解繊し難くなるからである。粘性の低い樹脂とは、熱可塑性樹脂の粘度が、剪断速度1000sec-1の条件で、100Pa・s以下である。 (Thermoplastic resin)
The thermoplastic resin refers to a polybutylene terephthalate resin, a liquid crystalline resin, or a polyarylene sulfide resin. Even a resin having a low viscosity tends to exhibit the effects of the present invention. The above-mentioned resin having low viscosity tends to cause a problem of undefining the glass fiber bundle. This is because if the viscosity is low, shear stress hardly occurs in the molten state, and the glass fiber bundle in which the monofilaments are converged is difficult to be defibrated. The low viscosity resin means that the viscosity of the thermoplastic resin is 100 Pa · s or less under the condition of a shear rate of 1000 sec −1 .
一般的に、原料となる上記熱可塑性樹は、ペレット状に成形したものが使用される。なお、その他の成分を含む熱可塑性樹脂組成物をペレット状にしたものを原料として用いてもよい。
Generally, the thermoplastic tree used as a raw material is shaped into a pellet. In addition, you may use what made the thermoplastic resin composition containing other components into the pellet form.
(可塑化工程の詳細)
可塑化工程は、スクリュー2の供給部20と可塑化部21で行われる。供給部20で使用するスクリューエレメントとしては、例えばフライトからなる搬送用のエレメント等が挙げられる。可塑化部21に使用するスクリューエレメントとしては、一般的には、逆フライト、シールリング、順ニーディングディスク、逆ニーディングディスク等のスクリューエレメントの組み合わせ等が挙げられる。 (Details of plasticization process)
The plasticizing process is performed in thesupply unit 20 and the plasticizing unit 21 of the screw 2. Examples of the screw element used in the supply unit 20 include a transport element made of a flight. Examples of the screw element used for the plasticizing portion 21 generally include a combination of screw elements such as reverse flight, seal ring, forward kneading disk, and reverse kneading disk.
可塑化工程は、スクリュー2の供給部20と可塑化部21で行われる。供給部20で使用するスクリューエレメントとしては、例えばフライトからなる搬送用のエレメント等が挙げられる。可塑化部21に使用するスクリューエレメントとしては、一般的には、逆フライト、シールリング、順ニーディングディスク、逆ニーディングディスク等のスクリューエレメントの組み合わせ等が挙げられる。 (Details of plasticization process)
The plasticizing process is performed in the
供給部20では樹脂ペレットを移送する。供給部20は、樹脂ペレットをホッパ10側からダイ3方向側に移送する働きをする。溶融の準備段階として外部ヒータによる予熱が行われる場合が一般的である。また、樹脂ペレットは、回転するスクリュー2とシリンダー1に挟まれるため、樹脂ペレットには摩擦力が加わり、摩擦熱が発生する。上記予熱や摩擦熱によって、樹脂ペレットが溶融し始める場合もある。場合によっては、供給部20では、樹脂ペレットの移送がスムーズに進むように、スクリュー2の溝深さの調整、予熱の温度調製を従来公知の方法で行う必要がある。
Supplied part 20 transfers resin pellets. The supply unit 20 functions to transfer the resin pellets from the hopper 10 side to the die 3 direction side. In general, preheating by an external heater is performed as a melting preparation stage. Further, since the resin pellet is sandwiched between the rotating screw 2 and the cylinder 1, a frictional force is applied to the resin pellet to generate frictional heat. The resin pellets may start to melt due to the preheating or frictional heat. In some cases, the supply unit 20 needs to adjust the groove depth of the screw 2 and adjust the preheating temperature by a conventionally known method so that the transfer of the resin pellets proceeds smoothly.
可塑化部21では、供給部20から移送された樹脂ペレットに圧力を加えて樹脂ペレットを溶融する。可塑化部21では、樹脂ペレットに剪断応力が加わる結果、樹脂ペレットは溶融しながら、さらに前方(ホッパ10からダイ3の方向)へと移送される。
The plasticizing unit 21 applies pressure to the resin pellets transferred from the supply unit 20 to melt the resin pellets. In the plasticizing part 21, as a result of applying shear stress to the resin pellets, the resin pellets are further transferred forward (in the direction from the hopper 10 to the die 3) while melting.
[混練工程]
混練工程では、可塑化工程後に、一束以上のガラス繊維束を押出機に供給して、上記ガラス繊維束を解繊しながら、解繊されたガラス繊維と可塑化工程で溶融した熱可塑性樹脂とを混練する。混練工程は、スクリュー2の搬送部22と混練部23とで行われる。搬送部22で使用するスクリューエレメントとしては、例えば順フライトからなる搬送用のエレメントが挙げられる。また、混練部23で使用するスクリューエレメントとしては、逆フライト、シールリング、順ニーディングディスク、逆ニーディングディスク等のスクリューエレメントの組み合わせが一般的である。 [Kneading process]
In the kneading step, after the plasticizing step, one or more glass fiber bundles are supplied to an extruder and the glass fiber bundle is defibrated and melted in the plasticizing step with the defibrated glass fibers. And knead. The kneading step is performed by the conveyingunit 22 and the kneading unit 23 of the screw 2. As a screw element used by the conveyance part 22, the element for conveyance which consists of a forward flight, for example is mentioned. Moreover, as a screw element used in the kneading part 23, the combination of screw elements, such as a reverse flight, a seal ring, a forward kneading disk, a reverse kneading disk, is common.
混練工程では、可塑化工程後に、一束以上のガラス繊維束を押出機に供給して、上記ガラス繊維束を解繊しながら、解繊されたガラス繊維と可塑化工程で溶融した熱可塑性樹脂とを混練する。混練工程は、スクリュー2の搬送部22と混練部23とで行われる。搬送部22で使用するスクリューエレメントとしては、例えば順フライトからなる搬送用のエレメントが挙げられる。また、混練部23で使用するスクリューエレメントとしては、逆フライト、シールリング、順ニーディングディスク、逆ニーディングディスク等のスクリューエレメントの組み合わせが一般的である。 [Kneading process]
In the kneading step, after the plasticizing step, one or more glass fiber bundles are supplied to an extruder and the glass fiber bundle is defibrated and melted in the plasticizing step with the defibrated glass fibers. And knead. The kneading step is performed by the conveying
本発明の製造方法においては、スクリュー2の混練部22の少なくとも一部に、外周に、上記不等式(I)から(III)を満たす円弧状の切り欠きが形成されたフライト部を有する一条の順送りスクリューエレメントを備える。混練部22の少なくとも一部に上記のスクリューエレメントを備えることで、製造されるペレット中に未解繊のガラス繊維束がほとんど残存しなくなる。
In the manufacturing method of the present invention, a continuous feed having a flight part in which at least a part of the kneading part 22 of the screw 2 has an arc-shaped notch satisfying the inequalities (I) to (III) formed on the outer periphery. A screw element is provided. By providing the screw element in at least a part of the kneading part 22, almost no undefined glass fiber bundle remains in the manufactured pellet.
なお、本実施形態において、混練部22は、上記スクリューエレメントと、外周に切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメントと、を備える。
In the present embodiment, the kneading part 22 includes the screw element and a single reverse feed screw element having a flight part having a notch formed on the outer periphery.
先ず、ガラス繊維束について簡単に説明する。ガラス繊維束は、300本から3000本のモノフィラメントが束になったチョップドストランドである。特に、1100本か2200本が束になったチョップドストランドが好ましく使用されている。また、モノフィラメントの径は、特に限定されないが、6μmから20μmの範囲のものが好ましく、6μm、10μm、13μmのものが、市場では多く流通している。なお、ロービングのままモノフィラメントの束を連続的に二軸押出機に供給することもできる。しかし、ロービングをカットしたチョップドストランドは、輸送、二軸押出機への供給において、取り扱いが容易である。
First, the glass fiber bundle will be briefly described. The glass fiber bundle is a chopped strand in which 300 to 3000 monofilaments are bundled. In particular, chopped strands in which 1100 pieces or 2200 pieces are bundled are preferably used. The diameter of the monofilament is not particularly limited, but is preferably in the range of 6 μm to 20 μm, and those having a diameter of 6 μm, 10 μm, and 13 μm are widely distributed in the market. A bundle of monofilaments can be continuously fed to the twin screw extruder while roving. However, the chopped strand from which roving is cut is easy to handle in transportation and supply to a twin screw extruder.
搬送部22では、フィード口11から投入されたガラス繊維束と溶融樹脂とを混練部23まで搬送する。この搬送部22においては、スクリューの溝内部にガラス繊維束や溶融樹脂が完全に充満せず、ガラス繊維束に剪断力がかからない領域である。
In the conveyance unit 22, the glass fiber bundle and the molten resin introduced from the feed port 11 are conveyed to the kneading unit 23. In this conveyance part 22, it is an area | region where a glass fiber bundle and molten resin are not completely filled into the groove | channel of a screw, but a shearing force is not applied to a glass fiber bundle.
混練部23では、ガラス繊維束及び溶融樹脂に剪断応力がかかる。剪断応力がかかることでガラス繊維束の解繊及びモノフィラメントと溶融樹脂との混練が進む。
In the kneading part 23, shear stress is applied to the glass fiber bundle and the molten resin. When the shear stress is applied, the glass fiber bundle is defibrated and the monofilament and the molten resin are kneaded.
[押出工程、ペレット化工程]
ガラス繊維強化熱可塑性樹脂組成物がどのように押出され、どのようにペレット化されるかは特に限定されない。例えば、ダイ3から棒状に押出されたガラス繊維強化熱可塑性樹脂組成物を切断してペレット化することができる。なお、切断方法は特に限定されず、従来公知の方法を利用することができる。なお、押出工程における吐出量が吐出量Qにあたり、スクリューの回転数が回転数Nsにあたる。 [Extrusion process, pelletizing process]
There are no particular limitations on how the glass fiber reinforced thermoplastic resin composition is extruded and how it is pelletized. For example, the glass fiber reinforced thermoplastic resin composition extruded into a rod shape from thedie 3 can be cut and pelletized. The cutting method is not particularly limited, and a conventionally known method can be used. The discharge amount in the extrusion process corresponds to the discharge amount Q, and the rotation speed of the screw corresponds to the rotation speed Ns.
ガラス繊維強化熱可塑性樹脂組成物がどのように押出され、どのようにペレット化されるかは特に限定されない。例えば、ダイ3から棒状に押出されたガラス繊維強化熱可塑性樹脂組成物を切断してペレット化することができる。なお、切断方法は特に限定されず、従来公知の方法を利用することができる。なお、押出工程における吐出量が吐出量Qにあたり、スクリューの回転数が回転数Nsにあたる。 [Extrusion process, pelletizing process]
There are no particular limitations on how the glass fiber reinforced thermoplastic resin composition is extruded and how it is pelletized. For example, the glass fiber reinforced thermoplastic resin composition extruded into a rod shape from the
<スクリューエレメント>
従来のスクリューの混練部としては、逆フライト、シールリング、順ニーディングディスク、逆ニーディングディスク等のスクリューエレメントの組み合わせが一般的である。しかし、Q/Nsが大きい条件で、高吐出の場合、一部のガラス繊維束は解繊されず、未解繊のまま残存することになる。 <Screw element>
As a conventional kneading part of a screw, a combination of screw elements such as a reverse flight, a seal ring, a forward kneading disk, and a reverse kneading disk is generally used. However, in the case of high discharge under conditions where Q / Ns is large, some glass fiber bundles are not defibrated and remain undefibrated.
従来のスクリューの混練部としては、逆フライト、シールリング、順ニーディングディスク、逆ニーディングディスク等のスクリューエレメントの組み合わせが一般的である。しかし、Q/Nsが大きい条件で、高吐出の場合、一部のガラス繊維束は解繊されず、未解繊のまま残存することになる。 <Screw element>
As a conventional kneading part of a screw, a combination of screw elements such as a reverse flight, a seal ring, a forward kneading disk, and a reverse kneading disk is generally used. However, in the case of high discharge under conditions where Q / Ns is large, some glass fiber bundles are not defibrated and remain undefibrated.
本発明は、押出機内で各ガラス繊維束が受ける剪断応力履歴値を指標として決められた製造方法である。具体的には、各ガラス繊維束が二軸押出機内で受ける剪断応力履歴値の中の最小値である最小剪断応力履歴値Tminを指標とする。最小剪断応力履歴値Tminを指標とすることで、未解繊ガラス繊維束が残存する製造方法と、未解繊ガラス繊維束がほとんど残存しない製造方法とを区別することができる。本発明は、未解繊ガラス繊維束が残存したペレットをほとんど生じさせないガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法である。
The present invention is a manufacturing method determined by using, as an index, a shear stress history value received by each glass fiber bundle in an extruder. Specifically, as an index the minimum shear stress history value T min is the minimum value of the shear stress history value each glass fiber bundle is subjected in a twin-screw extruder. By using the minimum shear stress history value T min as an index, it is possible to distinguish between a production method in which an undisentangled glass fiber bundle remains and a production method in which an undefined glass fiber bundle hardly remains. This invention is a manufacturing method of the glass fiber reinforced thermoplastic resin composition pellet which hardly produces the pellet with which the undisentangled glass fiber bundle remained.
先ず、最小剪断応力履歴値Tminを指標にすることについて説明する。ガラス繊維強化熱可塑性樹脂組成物の吐出量Q、混練部23におけるスクリューエレメントのスクリュー口径D、スクリュー回転数Ns、最小剪断応力履歴値Tmin、単位量あたりの未解繊ペレット数N(未解繊のガラス繊維束を含むペレットの数)に基づいて、下記数式(IV)を導出する。下記数式(IV)はQ/Nsの条件が変化しても、一つの式で、未解繊ガラス繊維束を含むペレットの量を検討できる点においても有用である。また、混練部が有するスクリューエレメントの種類が異なっても一つの数式(IV)で、未解繊ガラス繊維束を含むペレットの量を検討できる。ただし二軸押出機のサイズが変更になると、数式(IV)を導出しなおす必要がある。同じ吐出量Q及び同じスクリュー回転数Nsの条件であっても、小型の二軸押出機と大型の二軸押出機とでは、シリンダーからの伝熱量が異なり、溶融樹脂にかかる熱エネルギーが異なるからである。
First, using the minimum shear stress history value T min as an index will be described. The discharge amount Q of the glass fiber reinforced thermoplastic resin composition, the screw diameter D of the screw element in the kneading unit 23, the screw rotation speed Ns, the minimum shear stress history value T min , the number N of undefined pellets per unit amount (undissolved The following formula (IV) is derived based on the number of pellets including fiber glass fiber bundles. The following formula (IV) is also useful in that the amount of pellets containing undefined glass fiber bundles can be studied with one formula even if the Q / Ns condition changes. Moreover, even if the kind of screw element which a kneading part has differs, the quantity of the pellet containing an undefined glass fiber bundle can be examined with one numerical formula (IV). However, when the size of the twin-screw extruder is changed, it is necessary to derive the formula (IV) again. Even under the same discharge amount Q and the same screw rotation speed Ns, a small twin screw extruder and a large twin screw extruder have different heat transfer amounts from the cylinders and heat energy applied to the molten resin. It is.
使用する二軸押出機を決めると、一義的にスクリュー口径Dが決まる。このスクリュー口径D、任意に決定した混練部23の長さL、任意に決定した成形条件である吐出量Q、スクリュー回転数Nsに基づいて、最小剪断応力履歴値Tminを導出する。
When the twin screw extruder to be used is determined, the screw diameter D is uniquely determined. Based on the screw diameter D, the arbitrarily determined length L of the kneading portion 23, the discharge amount Q as the arbitrarily determined molding condition, and the screw rotation speed Ns, the minimum shear stress history value Tmin is derived.
最小剪断応力履歴値Tminは、従来公知の二軸押出機内3次元流動解析ソフトウェアを用いて導出することができる。例えば、実施例に記載するような、粒子追跡解析で導出できる。最小剪断応力履歴値Tminは剪断応力の時間積分を行うことで得られる時間積分値であるが、積分区間は、溶融樹脂及びガラス繊維束に剪断応力がかかる区間であり、図1に示す押出機の場合には、混練部23の区間である。
The minimum shear stress history value T min can be derived using conventionally known three-dimensional flow analysis software in a twin-screw extruder. For example, it can be derived by particle tracking analysis as described in the examples. The minimum shear stress history value T min is a time integral value obtained by performing time integration of the shear stress. The integration section is a section where the shear stress is applied to the molten resin and the glass fiber bundle, and the extrusion shown in FIG. In the case of a machine, it is a section of the kneading unit 23.
最小剪断応力履歴値Tminの導出方法は、特に限定されない。市販のソフトウェアを用いて導出する方法、実験により導出する方法等が挙げられる。
The method for deriving the minimum shear stress history value Tmin is not particularly limited. A method of deriving using commercially available software, a method of deriving by experiment, and the like can be mentioned.
未解繊ペレット数Nについては、実験的に導出してもよいし、解析手法等を用いて導出してもよい。
The number N of undefibrated pellets may be derived experimentally or using an analysis method or the like.
そして、これらの導出結果に基づき、横軸を最小剪断応力履歴値Tmin、縦軸を未解繊ペレット数Nとして、上記数式(IV)を表すグラフを作成することで、数式(IV)を導出する。
And based on these derivation results, the horizontal axis is the minimum shear stress history value T min , and the vertical axis is the number N of undefined pellets. To derive.
このグラフから未解繊ペレット数Nを所望の値以下にするために必要な最小剪断応力履歴値Tminを導出することができる。
From this graph, it is possible to derive the minimum shear stress history value T min necessary for setting the number N of undefined pellets to a desired value or less.
続いて、二軸押出機のサイズを変更する場合について説明する。この場合、上記の関係式を導出しなおす必要があるが、所定の二軸押出機の場合の上記数式(IV)を既に導出している場合には、以下の方法で容易に、異なるサイズの二軸押出機を使用する場合に適用できる数式を導出することができる。
Next, the case of changing the size of the twin screw extruder will be described. In this case, the above relational expression needs to be derived again. However, when the above formula (IV) in the case of a predetermined twin-screw extruder has already been derived, different sizes can be easily obtained by the following method. Formulas applicable when using a twin screw extruder can be derived.
スクリューエレメントのスクリュー口径Dが、d1からd2に変更になる場合、小型の押出機での吐出量Qmと大型の押出機での吐出量QMとの間には下記数式(V)が成立し、小型の押出機でのスクリュー回転数Nsmと大型の押出機でのスクリュー回転数NsMとの間には下記数式(VI)が成立する。
Screw diameter D of the screw element, vary from d1 to d2, the following equation (V) is established between the discharge amount Q M in the discharge amount Q m and a large extruder in a small extruder and, following equation (VI) is established between the screw rotation speed Ns M at a screw rotation speed Ns m and a large extruder a small extruder.
溶融樹脂にかかる比エネルギーが同等になるように上記数式(V)、(VI)のδ及びεを決定する。δ及びεの決定方法としては、理論的に決定する方法、実験的に決定する方法のいずれでもよい。理論的に決定する方法としては、一般的には、断熱状態と仮定して、目的関数を比エネルギー、あるいは総剪断量、滞留時間等が、小型機と大型機で一致するように、パラメーターδ及びεが導出される。小型機と大型機の伝熱量の差を仮定して、目的関数としての比エネルギーが、小型機と大型機で一致するように、パラメーターδ及びεを導出することもできる。実験的に決定する方法としては、目的関数を、比エネルギーとするか、もしくは、物性を示すパラメーターを採用し、目的関数が、小型機と大型機とで一致するように、統計的にパラメーターδ及びεを算出するような方法が挙げられる。
Δ and ε in the above formulas (V) and (VI) are determined so that the specific energy applied to the molten resin is equal. As a method for determining δ and ε, either a theoretical determination method or an experimental determination method may be used. As a theoretical determination method, in general, assuming the adiabatic state, the parameter δ is set so that the specific function, the total shearing amount, the residence time, etc. of the objective function are the same between the small machine and the large machine. And ε are derived. Assuming the difference in heat transfer between the small machine and the large machine, the parameters δ and ε can be derived so that the specific energy as the objective function matches between the small machine and the large machine. As a method for experimental determination, the objective function is a specific energy, or a parameter indicating physical properties is adopted, and the parameter δ is statistically set so that the objective function matches between a small machine and a large machine. And a method of calculating ε.
小型の押出機と大型の押出機との間に成立する上記数式(V)、(VI)を導出することで、大型の押出機に成立する単位量あたりの未解繊ペレット数Nと最小剪断応力履歴値Tminとの間の下記数式(VII)を容易に導出することができる。
By deriving the above formulas (V) and (VI) that are established between the small extruder and the large extruder, the number N of unfiltrated pellets per unit amount and the minimum shearing that is established in the large extruder The following mathematical formula (VII) between the stress history value T min can be easily derived.
このように、最小剪断応力履歴値Tminの値が大きいほど、未解繊ペレット数Nの値が少なくなる傾向にある。したがって、最小剪断応力履歴値Tminが大きくなるような条件で、ガラス繊維強化熱可塑性樹脂組成物ペレットを製造する必要がある。
Thus, the larger the value of the minimum shear stress history value T min, there is a tendency that the value of the non-fibrillation pellets number N is reduced. Accordingly, it is necessary to produce glass fiber reinforced thermoplastic resin composition pellets under conditions that increase the minimum shear stress history value Tmin .
原料とする熱可塑性樹脂の粘度が高いと、最小剪断応力履歴値Tminの値が大きくなり、ガラス繊維束の解繊には有利であり、通常の方法でもガラス未解繊は発生し難い。本発明は、熱可塑性樹脂の粘度が低く、通常の方法では、ガラス繊維束の解繊が難しい場合に、特に有効な方法を提供するものである。二軸押出機で吐出量を上げていくと、熱可塑性樹脂の粘度が、押出機内でプロセッシングしている温度下で、剪断速度1000sec-1の粘度が100Pa・s以下では、ガラス未解繊束が発生し易くなる。以後、粘度は1000sec-1のときの値を表記)特に、精密成形では流動性が求められ、粘度が30~70Pa・sの樹脂を使用する。これにガラス繊維を加え、混練すると、樹脂組成物としては、50~200Pa・sの粘度になる。このような低粘度領域で、ガラス繊維束を解繊するスクリューエレメントを説明する。
When the viscosity of the thermoplastic resin used as a raw material is high, the value of the minimum shear stress history value Tmin increases, which is advantageous for defibration of the glass fiber bundle, and glass undefibration is unlikely to occur even by a normal method. The present invention provides a method that is particularly effective when the viscosity of a thermoplastic resin is low and it is difficult to disentangle a glass fiber bundle by a normal method. When the discharge rate is increased by a twin screw extruder, the glass undefibrated bundle is obtained when the viscosity of the thermoplastic resin is 100 Pa · s or less at a shear rate of 1000 sec −1 at the processing temperature in the extruder. Is likely to occur. Hereinafter, the viscosity is expressed as a value at 1000 sec −1 ). In particular, fluidity is required in precision molding, and a resin having a viscosity of 30 to 70 Pa · s is used. When glass fiber is added to this and kneaded, the resin composition has a viscosity of 50 to 200 Pa · s. The screw element for defibrating the glass fiber bundle in such a low viscosity region will be described.
外周に、切り欠きが形成されたフライト部を有する一条のスクリューエレメントは、上記最小剪断応力履歴値Tminが大きくなる傾向にあるため好ましい。外周に切り欠きが形成されたフライト部を有する一条のスクリューエレメント自体は公知であり、例えば、特許文献(DE4134026A1)に記載されている。
A single screw element having a flight part with a notch formed on the outer periphery is preferable because the minimum shear stress history value T min tends to increase. A single screw element itself having a flight part with a notch formed on the outer periphery is known, and is described, for example, in Patent Document (DE4134026A1).
特に、以下に説明する一条の順送りスクリューエレメントを使用することで、未解繊ペレット数Nを小さい値に抑えることができる。特に、上記切り欠きを有するスクリューエレメントの中でも、順送りのものを使用することが、最小剪断応力履歴値Tminの値が大きくなり、他のスクリューエレメントを使用する場合よりも短時間で、ガラス繊維束を解繊できるという理由で好ましい。
In particular, the number N of undefined pellets can be suppressed to a small value by using a single progressive screw element described below. In particular, among the screw elements having the above-mentioned notches, it is possible to use the forward-feeding one because the value of the minimum shear stress history value Tmin is increased, and the glass fiber is used in a shorter time than when other screw elements are used. This is preferable because the bundle can be defibrated.
混練部23で使用される、上記一条の順送りスクリューエレメントについて説明する。この一条の順送りスクリューエレメントは、外周に、下記不等式(I)から(III)を満たす円弧状の切り欠きが形成されたフライト部を有する。
0.05D≦r≦0.15D (I)
7≦n≦20 (II)
Le≦0.3D (III)
(上記不等式(I)中のrは、上記円弧状を形成する円の半径又は上記円弧状を形成する楕円の長径/2、あるいは短径/2であり、上記不等式(II)中のnは、上記一条の順送りスクリューエレメントの1リード長あたりの切り欠き数であり、上記不等式(III)中のLeは、上記一条の順送りスクリューエレメントのリード長であり、上記不等式(I)、(II)中のDは、スクリュー口径である。) The single feed progressive screw element used in thekneading section 23 will be described. This one-step progressive screw element has a flight part in which an arc-shaped notch satisfying the following inequalities (I) to (III) is formed on the outer periphery.
0.05D ≦ r ≦ 0.15D (I)
7 ≦ n ≦ 20 (II)
Le ≦ 0.3D (III)
(The r in the inequality (I) is the radius of the circle forming the arc or the major axis / 2 or the minor axis / 2 of the ellipse forming the arc, and n in the inequality (II) is , The number of notches per lead length of the one-step progressive screw element, and Le in the inequality (III) is the lead length of the one-step progressive screw element, and the inequality (I), (II) D in the inside is a screw diameter.)
0.05D≦r≦0.15D (I)
7≦n≦20 (II)
Le≦0.3D (III)
(上記不等式(I)中のrは、上記円弧状を形成する円の半径又は上記円弧状を形成する楕円の長径/2、あるいは短径/2であり、上記不等式(II)中のnは、上記一条の順送りスクリューエレメントの1リード長あたりの切り欠き数であり、上記不等式(III)中のLeは、上記一条の順送りスクリューエレメントのリード長であり、上記不等式(I)、(II)中のDは、スクリュー口径である。) The single feed progressive screw element used in the
0.05D ≦ r ≦ 0.15D (I)
7 ≦ n ≦ 20 (II)
Le ≦ 0.3D (III)
(The r in the inequality (I) is the radius of the circle forming the arc or the major axis / 2 or the minor axis / 2 of the ellipse forming the arc, and n in the inequality (II) is , The number of notches per lead length of the one-step progressive screw element, and Le in the inequality (III) is the lead length of the one-step progressive screw element, and the inequality (I), (II) D in the inside is a screw diameter.)
上記一条の順送りスクリューエレメントについて、図2を用いて説明する。図2には、上記一条の順送りスクリューエレメントの模式図が示されており、(a)は軸方向の断面図であり、(b)は側面図である。
The one-step progressive screw element will be described with reference to FIG. FIG. 2 is a schematic view of the above-mentioned one-step progressive screw element, where (a) is a sectional view in the axial direction, and (b) is a side view.
図2に示す通り、一条の順送りスクリューエレメント4は、フライト部40と、フライト部40の外周に形成される円弧状の切り欠き41とを有する。切り欠き41は、フライト部の外周からスクリューエレメントの軸に向かう方向に形成される。図2では、楕円が円弧状を形成する場合を示したが、上記円弧状を形成する惰円又は円の中心はフライト部40の外周に存在する(図2(a)では上記楕円の中心をOで示した。)。上記切り欠きが、円弧状であり、且つこの円弧状が上記の円又は楕円で形成されることにより、製作上の利便さと、切り欠きによるフライト部の強度低下を最小にするという効果がある。なお、上記円弧状の一部が、上記の円又は楕円で形成されていればよい。また、本発明は切り欠き全体が上記の一つの円又は楕円で形成されるものに限定されない。しかし、円弧状の略全体が一つの円又は楕円で形成されるものが好ましい。
As shown in FIG. 2, the single progressive screw element 4 has a flight part 40 and an arc-shaped notch 41 formed on the outer periphery of the flight part 40. The notch 41 is formed in a direction from the outer periphery of the flight part toward the axis of the screw element. 2 shows a case where the ellipse forms an arc shape, but the ellipse or the center of the circle forming the arc shape exists on the outer periphery of the flight part 40 (in FIG. 2A, the center of the ellipse is present). Indicated by O). The notch has an arc shape, and the arc shape is formed by the circle or ellipse, so that there are advantages in manufacturing and an effect of minimizing a decrease in strength of the flight portion due to the notch. In addition, the said circular arc shape should just be formed by said circle | round | yen or ellipse. Further, the present invention is not limited to one in which the entire cutout is formed by the one circle or ellipse described above. However, it is preferable that substantially the entire arc shape is formed by one circle or ellipse.
また、上記円弧状は円で形成されるものが最も好ましい。また、上記円弧状が楕円で形成される場合には、切り欠きが延びる方向と楕円の長径が延びる方向とは、略一致することが好ましい。
The arc shape is most preferably a circle. When the arc shape is formed as an ellipse, it is preferable that the direction in which the cutout extends and the direction in which the major axis of the ellipse extend substantially coincide.
また、上記半径rの大きさの範囲は、0.05D≦r≦0.15Dであることが好ましい。rが上記範囲内であれば、最小剪断応力履歴値Tminが大きくなる傾向にあるため好ましい。より好ましいrの大きさの範囲は、0.06D≦r≦0.12Dである。
The range of the radius r is preferably 0.05D ≦ r ≦ 0.15D. If r is within the above range, the minimum shear stress history value Tmin tends to increase, which is preferable. A more preferable range of r is 0.06D ≦ r ≦ 0.12D.
また、切り欠き数nが多いほど、最小剪断応力履歴値Tminが大きくなる傾向にある。しかし、切り欠き数nが多くなり過ぎると、スクリューエレメントの機械的強度が低くなるため、切り欠き数nは不等式(II)の範囲に調整する。特に好ましい切り欠き数nの範囲は、10≦n≦12であり、最も好ましい切り欠き数は11である。
Also, the minimum shear stress history value T min tends to increase as the number of notches n increases. However, since the mechanical strength of the screw element is lowered when the number of notches n is excessively increased, the number of notches n is adjusted within the range of inequality (II). A particularly preferable range of the number of notches n is 10 ≦ n ≦ 12, and the most preferable number of notches is 11.
上記スクリューエレメントのリード長Leは、上記スクリューエレメントのスクリュー口径Dの0.3倍以下(Leが0.3D以下)である。上記リード長Leが0.3D以下であれば、吐出量Qが非常に高い条件であっても、製造されるペレットに未解繊のガラス繊維が含まれにくい傾向にある。なお、吐出量Qが非常に高いとは、例えば、上記スクリューエレメントを軸方向の長さが2Dになるように設け、スクリュー口径Dが47mmの2軸押出機で、およそ300kg/h以上、スクリューの口径Dが69mmの2軸押出機で、800kg/h以上であることを指す。このような高吐出領域でも、上述の未解繊ガラス繊維による問題を抑えることができる。
The lead length Le of the screw element is not more than 0.3 times the screw diameter D of the screw element (Le is not more than 0.3D). If the lead length Le is 0.3D or less, even if the discharge rate Q is very high, undisrupted glass fibers tend not to be contained in the manufactured pellets. It should be noted that the discharge amount Q is very high, for example, when the screw element is provided with an axial length of 2D and a screw diameter D is 47 mm, the screw diameter is 47 mm. This is a twin screw extruder having a diameter D of 69 mm and is 800 kg / h or more. Even in such a high discharge area, problems due to the above-described undefined glass fibers can be suppressed.
上記の通り、本発明に用いる上記スクリューエレメントのリード長Leの上限は、0.3D以下であることが好ましいが、下限は0.1D以上であることが好ましい。この下限値以上に設定することは、フライト部の厚みを維持して強度を保つという理由で好ましい。
As described above, the upper limit of the lead length Le of the screw element used in the present invention is preferably 0.3D or less, but the lower limit is preferably 0.1D or more. Setting it above this lower limit is preferable because the thickness of the flight part is maintained and the strength is maintained.
また、本発明の製造方法においては、混練部23に使用される外周面に切り欠きが形成されたフライト部を有する一条のスクリューエレメントの長さを、L/D(Lは混練部23におけるスクリューの軸方向の長さ、Dはスクリュー口径)で表現すると、1D以上20D以下で、連続で使用することが望ましい。連続で使用することで、最小剪断応力履歴値Tminが、より大きくなる傾向になるからである。より好ましくは2D以上8D以下である。なお、上記の好ましい長さは、樹脂の種類によって異なる。ポリブチレンテレフタレート樹脂の場合には2D以上3.5D以下であることが好ましい。
In the manufacturing method of the present invention, the length of a single screw element having a flight part with a notch formed in the outer peripheral surface used for the kneading part 23 is expressed as L / D (L is a screw in the kneading part 23). When expressed in terms of the axial length of D, D is the screw diameter), it is preferably 1D or more and 20D or less and used continuously. This is because the minimum shear stress history value T min tends to become larger when used continuously. More preferably, it is 2D or more and 8D or less. In addition, said preferable length changes with kinds of resin. In the case of polybutylene terephthalate resin, it is preferably 2D or more and 3.5D or less.
さらに、本発明では、外周面に切り欠きが形成されたフライト部を有する一条のスクリューエレメントの逆送りのスクリューエレメントと上記順送りのスクリューエレメントを組み合わせると、さらに効果的である。最も効果の高い組み合わせは、それぞれを交互に配置する組み合わせである。それぞれのスクリューエレメントの長さは、適宜調整することができる。
Furthermore, in the present invention, it is more effective to combine a reverse screw element of a single screw element having a flight part with a notch formed in the outer peripheral surface and the forward screw element. The most effective combination is a combination in which each is alternately arranged. The length of each screw element can be adjusted as appropriate.
3次元流動解析の結果から、外周面に切り欠きが形成されたフライト部を有する一条のスクリューエレメントを通過するガラス繊維強化熱可塑性樹脂組成物は、大半が、外周面の切り欠きを通過しながら前へ進んでいくことがわかっている。しかし、ごく一部が、フライトに沿って流れていく。このフライトに沿って流れていく部分では、ガラス繊維束にかかる剪断応力が低いので、ガラス繊維束は解繊しにくい。前述のように、外周面に切り欠きが形成されたフライト部を有する一条のスクリューエレメントの長さを長くすることで、フライトに沿って流れていく部分の存在確率を低くすることができる。逆送りのスクリューエレメントと順送りのスクリューエレメントを組み合わせることで、さらにフライトに沿って流れていく部分の存在確率を低くすることができる。
From the results of the three-dimensional flow analysis, most of the glass fiber reinforced thermoplastic resin composition passing through a single screw element having a flight part with a notch formed on the outer peripheral surface passes through the notch on the outer peripheral surface. I know I will go forward. However, only a small part flows along the flight. In the portion that flows along the flight, the shear stress applied to the glass fiber bundle is low, so that the glass fiber bundle is difficult to be defibrated. As described above, by increasing the length of the single screw element having the flight portion in which the notch is formed on the outer peripheral surface, the existence probability of the portion that flows along the flight can be lowered. By combining the reverse feed screw element and the forward feed screw element, the existence probability of the portion that flows along the flight can be further lowered.
以上、本発明では、混練工程において、外周に切り欠きが形成されたフライト部を有する一条の順送りスクリューエレメント、又は、逆送りスクリューエレメントと順送りスクリューエレメントを組み合わせることで、ガラス未解繊をほとんど含まないガラス強化樹脂組成物を効率よく高い生産性で製造することができる。
As described above, in the present invention, in the kneading step, a single feed forward screw element having a flight part with a notch formed on the outer periphery, or a combination of a reverse feed screw element and a forward feed screw element includes almost no glass undefibration. It is possible to efficiently produce a glass reinforced resin composition with high productivity.
以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
Hereinafter, although an example and a comparative example are shown and the present invention is explained concretely, the present invention is not limited to these examples.
<評価1>
評価1においては以下の材料を用いた。
熱可塑性樹脂:ポリブチレンテレフタレート樹脂(PBT)(メルトインデックス(MI)=70g/10分、粘度60Pa・s at 1000sec-1)
カーボンマスターバッチ
ガラス繊維束:直径が13μmのモノフィラメントを2200本束ねた長さ3mmのチョップドストランド
また、組成は以下の通りである。
PBTが67.5質量%、カーボンマスターバッチが2.5質量%、ガラス繊維束が30質量%
押出条件は以下の通りである。
押出機:同方向完全噛み合い型二軸押出機TEX44αII(日本製鋼所製)スクリューエレメントのスクリュー口径Dが0.047m
押出条件;
バレル温度;220℃
スクリューデザイン;
(1)概略
押出機のスクリューは図3のように表すことができ、図3に示すスクリューパターンの概略は以下の通りである。
C1:ホッパ
C2~C5:供給部
C5~C6:可塑化部
C6~C8:輸送部
C9:フィード口
C10:混練部A
C11:混練部B(混練部b1、混練部b2からなる)
(2)評価1で使用した具体的なスクリューパターンは、図4に示す通りである。なお、ニーディングディスクで、各ディスクが送り方向に45°位相がずれているものをFKとし、逆送りの1条のフライトで切り欠きのあるエレメントをBMSとする。また、1.0D等は、混練部b1の長さを表す。
図4(a)に示すスクリューパターンをFK1.0D(L/D=1)、
図4(b)に示すスクリューパターンをFK2.0D(L/D=2)、
図4(c)に示すスクリューパターンをBMS1.0D(L/D=1)、
図4(d)に示すスクリューパターンをBMS2.0D(L/D=2)、
図4(e)に示すスクリューパターンをBMS2.5D(L/D=2.5)、
とする。L/Dは、混練部b1のリード長(L)とスクリューエレメントのスクリュー口径(D)との比(L/D)である。なお、実施形態の説明における混練部23の長さLは、混練部b1の長さにあたる。
(3)スクリューの形状
図4に示すスクリューパターンはそれぞれC11の混練部Bのみ異なる。C11の混練部Bのスクリューの形状を図5に示す。図4(a)のパターンのスクリュー形状を図5(a)に示し、図4(b)のパターンのスクリュー形状を図5(b)に示し、図4(c)のパターンのスクリュー形状を図5(c)に示し、図4(d)のパターンのスクリュー形状を図5(d)に示し、図4(e)のパターンのスクリュー形状を図5(e)に示した。
図5(a)に示すスクリューは混練部b1が長さ1.0Dの順送りニーディングディスク、混練部b2が長さ0.5Dの逆送りフライト
図5(b)に示すスクリューは混練部b1が長さ2.0Dの順送りニーディングディスク、混練部b2が長さ0.5Dの逆送りフライト
図5(c)に示すスクリューは混練部b1が長さ1.0Dの切り欠き含有の1条の逆送りニーディングディスク、混練部b2が長さ0.5Dの逆送りフライト
図5(d)に示すスクリューは混練部b1が長さ2.0Dの切り欠き含有の1条の逆送りニーディングディスク、混練部b2が長さ0.5Dの逆送りフライト
図5(e)に示すスクリューは混練部b1が長さ2.5Dの切り欠き含有の1条の逆送りニーディングディスク、混練部b2が長さ0.5Dの逆送りフライト <Evaluation 1>
In Evaluation 1, the following materials were used.
Thermoplastic resin: polybutylene terephthalate resin (PBT) (melt index (MI) = 70 g / 10 min,viscosity 60 Pa · s at 1000 sec− 1 )
Carbon masterbatch glass fiber bundle: 3 mm long chopped strand obtained by bundling 2200 monofilaments having a diameter of 13 μm The composition is as follows.
PBT is 67.5 mass%, carbon masterbatch is 2.5 mass%, glass fiber bundle is 30 mass%
Extrusion conditions are as follows.
Extruder: Same direction full meshing type twin screw extruder TEX44αII (manufactured by Nippon Steel) Screw diameter D of screw element is 0.047m
Extrusion conditions;
Barrel temperature; 220 ° C
Screw design;
(1) Outline The screw of the extruder can be represented as shown in FIG. 3, and the outline of the screw pattern shown in FIG. 3 is as follows.
C1: Hoppers C2 to C5: Supply section C5 to C6: Plasticizing section C6 to C8: Transport section C9: Feed port C10: Kneading section A
C11: Kneading part B (consisting of kneading part b1 and kneading part b2)
(2) The specific screw pattern used in Evaluation 1 is as shown in FIG. A kneading disk having a 45 ° phase shift in the feeding direction is defined as FK, and an element having a notch in one reverse flight is defined as BMS. Moreover, 1.0D etc. represents the length of the kneading part b1.
The screw pattern shown in FIG. 4A is FK1.0D (L / D = 1),
The screw pattern shown in FIG. 4B is FK2.0D (L / D = 2),
The screw pattern shown in FIG. 4 (c) is BMS1.0D (L / D = 1),
The screw pattern shown in FIG. 4 (d) is BMS2.0D (L / D = 2),
The screw pattern shown in FIG. 4 (e) is BMS2.5D (L / D = 2.5),
And L / D is the ratio (L / D) between the lead length (L) of the kneading part b1 and the screw diameter (D) of the screw element. Note that the length L of the kneadingpart 23 in the description of the embodiment corresponds to the length of the kneading part b1.
(3) Screw shape The screw patterns shown in FIG. 4 differ only in the kneading part B of C11. The shape of the screw of the kneading part B of C11 is shown in FIG. The screw shape of the pattern of FIG. 4 (a) is shown in FIG. 5 (a), the screw shape of the pattern of FIG. 4 (b) is shown in FIG. 5 (b), and the screw shape of the pattern of FIG. 5 (c), the screw shape of the pattern of FIG. 4 (d) is shown in FIG. 5 (d), and the screw shape of the pattern of FIG. 4 (e) is shown in FIG. 5 (e).
The screw shown in FIG. 5 (a) has a kneading part b1 with a forward feed kneading disk having a length of 1.0D, and the kneading part b2 has a reverse feed flight with a length of 0.5D. The screw shown in FIG. A forward kneading disc with a length of 2.0D, a reverse feed flight with a kneading part b2 having a length of 0.5D. The screw shown in FIG. 5 (c) has a single knot containing a knotting part b1 with a length of 1.0D. Reverse feed kneading disk, reverse feed flight with kneading part b2 of 0.5D length The screw shown in FIG. 5 (d) is a single reverse feed kneading disk with kneading part b1 containing notches with a length of 2.0D. The kneading part b2 has a reverse feed flight with a length of 0.5D. The screw shown in FIG. 5 (e) has a kneading part b1 with a notch containing a notch with a length of 2.5D. 0.5D length reverse feed Light
評価1においては以下の材料を用いた。
熱可塑性樹脂:ポリブチレンテレフタレート樹脂(PBT)(メルトインデックス(MI)=70g/10分、粘度60Pa・s at 1000sec-1)
カーボンマスターバッチ
ガラス繊維束:直径が13μmのモノフィラメントを2200本束ねた長さ3mmのチョップドストランド
また、組成は以下の通りである。
PBTが67.5質量%、カーボンマスターバッチが2.5質量%、ガラス繊維束が30質量%
押出条件は以下の通りである。
押出機:同方向完全噛み合い型二軸押出機TEX44αII(日本製鋼所製)スクリューエレメントのスクリュー口径Dが0.047m
押出条件;
スクリューデザイン;
(1)概略
押出機のスクリューは図3のように表すことができ、図3に示すスクリューパターンの概略は以下の通りである。
C1:ホッパ
C2~C5:供給部
C5~C6:可塑化部
C6~C8:輸送部
C9:フィード口
C10:混練部A
C11:混練部B(混練部b1、混練部b2からなる)
(2)評価1で使用した具体的なスクリューパターンは、図4に示す通りである。なお、ニーディングディスクで、各ディスクが送り方向に45°位相がずれているものをFKとし、逆送りの1条のフライトで切り欠きのあるエレメントをBMSとする。また、1.0D等は、混練部b1の長さを表す。
図4(a)に示すスクリューパターンをFK1.0D(L/D=1)、
図4(b)に示すスクリューパターンをFK2.0D(L/D=2)、
図4(c)に示すスクリューパターンをBMS1.0D(L/D=1)、
図4(d)に示すスクリューパターンをBMS2.0D(L/D=2)、
図4(e)に示すスクリューパターンをBMS2.5D(L/D=2.5)、
とする。L/Dは、混練部b1のリード長(L)とスクリューエレメントのスクリュー口径(D)との比(L/D)である。なお、実施形態の説明における混練部23の長さLは、混練部b1の長さにあたる。
(3)スクリューの形状
図4に示すスクリューパターンはそれぞれC11の混練部Bのみ異なる。C11の混練部Bのスクリューの形状を図5に示す。図4(a)のパターンのスクリュー形状を図5(a)に示し、図4(b)のパターンのスクリュー形状を図5(b)に示し、図4(c)のパターンのスクリュー形状を図5(c)に示し、図4(d)のパターンのスクリュー形状を図5(d)に示し、図4(e)のパターンのスクリュー形状を図5(e)に示した。
図5(a)に示すスクリューは混練部b1が長さ1.0Dの順送りニーディングディスク、混練部b2が長さ0.5Dの逆送りフライト
図5(b)に示すスクリューは混練部b1が長さ2.0Dの順送りニーディングディスク、混練部b2が長さ0.5Dの逆送りフライト
図5(c)に示すスクリューは混練部b1が長さ1.0Dの切り欠き含有の1条の逆送りニーディングディスク、混練部b2が長さ0.5Dの逆送りフライト
図5(d)に示すスクリューは混練部b1が長さ2.0Dの切り欠き含有の1条の逆送りニーディングディスク、混練部b2が長さ0.5Dの逆送りフライト
図5(e)に示すスクリューは混練部b1が長さ2.5Dの切り欠き含有の1条の逆送りニーディングディスク、混練部b2が長さ0.5Dの逆送りフライト <Evaluation 1>
In Evaluation 1, the following materials were used.
Thermoplastic resin: polybutylene terephthalate resin (PBT) (melt index (MI) = 70 g / 10 min,
Carbon masterbatch glass fiber bundle: 3 mm long chopped strand obtained by bundling 2200 monofilaments having a diameter of 13 μm The composition is as follows.
PBT is 67.5 mass%, carbon masterbatch is 2.5 mass%, glass fiber bundle is 30 mass%
Extrusion conditions are as follows.
Extruder: Same direction full meshing type twin screw extruder TEX44αII (manufactured by Nippon Steel) Screw diameter D of screw element is 0.047m
Extrusion conditions;
Screw design;
(1) Outline The screw of the extruder can be represented as shown in FIG. 3, and the outline of the screw pattern shown in FIG. 3 is as follows.
C1: Hoppers C2 to C5: Supply section C5 to C6: Plasticizing section C6 to C8: Transport section C9: Feed port C10: Kneading section A
C11: Kneading part B (consisting of kneading part b1 and kneading part b2)
(2) The specific screw pattern used in Evaluation 1 is as shown in FIG. A kneading disk having a 45 ° phase shift in the feeding direction is defined as FK, and an element having a notch in one reverse flight is defined as BMS. Moreover, 1.0D etc. represents the length of the kneading part b1.
The screw pattern shown in FIG. 4A is FK1.0D (L / D = 1),
The screw pattern shown in FIG. 4B is FK2.0D (L / D = 2),
The screw pattern shown in FIG. 4 (c) is BMS1.0D (L / D = 1),
The screw pattern shown in FIG. 4 (d) is BMS2.0D (L / D = 2),
The screw pattern shown in FIG. 4 (e) is BMS2.5D (L / D = 2.5),
And L / D is the ratio (L / D) between the lead length (L) of the kneading part b1 and the screw diameter (D) of the screw element. Note that the length L of the kneading
(3) Screw shape The screw patterns shown in FIG. 4 differ only in the kneading part B of C11. The shape of the screw of the kneading part B of C11 is shown in FIG. The screw shape of the pattern of FIG. 4 (a) is shown in FIG. 5 (a), the screw shape of the pattern of FIG. 4 (b) is shown in FIG. 5 (b), and the screw shape of the pattern of FIG. 5 (c), the screw shape of the pattern of FIG. 4 (d) is shown in FIG. 5 (d), and the screw shape of the pattern of FIG. 4 (e) is shown in FIG. 5 (e).
The screw shown in FIG. 5 (a) has a kneading part b1 with a forward feed kneading disk having a length of 1.0D, and the kneading part b2 has a reverse feed flight with a length of 0.5D. The screw shown in FIG. A forward kneading disc with a length of 2.0D, a reverse feed flight with a kneading part b2 having a length of 0.5D. The screw shown in FIG. 5 (c) has a single knot containing a knotting part b1 with a length of 1.0D. Reverse feed kneading disk, reverse feed flight with kneading part b2 of 0.5D length The screw shown in FIG. 5 (d) is a single reverse feed kneading disk with kneading part b1 containing notches with a length of 2.0D. The kneading part b2 has a reverse feed flight with a length of 0.5D. The screw shown in FIG. 5 (e) has a kneading part b1 with a notch containing a notch with a length of 2.5D. 0.5D length reverse feed Light
Q/Ns=1.0の条件で、図6に示すような最小剪断応力履歴値(Pa・sec)とガラス繊維束の一部又は全部が未解繊のペレット数(個/ペレット10kg)との関係を求めた。具体的には以下のような方法で導出した。
Under the condition of Q / Ns = 1.0, the minimum shear stress history value (Pa · sec) as shown in FIG. 6 and the number of pellets in which part or all of the glass fiber bundle is not defibrated (pieces / pellet 10 kg) Sought the relationship. Specifically, it was derived by the following method.
先ず、上記関係の導出に必要な、L/D、吐出量Q、スクリュー回転数Ns、未解繊ペレット数N、最小剪断応力履歴値Tminの組を複数決定する。L/D、吐出量Q、スクリュー回転数Nsを任意に決めて、以下の方法で、最小剪断応力履歴値Tminを導出し、実験により未解繊ペレット数Nを求めた。具体的には以下のようにして求めた。
First, necessary for derivation of the relationship, L / D, the discharge amount Q, screw rotation speed Ns, non fibrillation pellets number N, a plurality determine a set of minimum shear stress history value T min. L / D, discharge amount Q, screw rotation speed Ns were arbitrarily determined, the minimum shear stress history value Tmin was derived by the following method, and the number N of undefined pellets was determined by experiment. Specifically, it was determined as follows.
先ず、シミュレーションによる最小剪断応力履歴値(Pa・sec)の導出について説明する。
二軸押出機内3次元流動解析ソフト(アールフロー社製ScrewFlow-Multi)を用いて同方向完全噛み合い型二軸押出機内の樹脂挙動を解析した。
解析の際に用いた支配方程式は、連続式(A)、ナビエ-ストークス式(B)、温度バランス式(C)である。
First, the derivation of the minimum shear stress history value (Pa · sec) by simulation will be described.
Resin behavior in the same direction complete meshing type twin screw extruder was analyzed using a three-dimensional flow analysis software in the twin screw extruder (Screw Flow-Multi, manufactured by Earl Flow).
The governing equations used in the analysis are the continuous equation (A), the Navier-Stokes equation (B), and the temperature balance equation (C).
二軸押出機内3次元流動解析ソフト(アールフロー社製ScrewFlow-Multi)を用いて同方向完全噛み合い型二軸押出機内の樹脂挙動を解析した。
解析の際に用いた支配方程式は、連続式(A)、ナビエ-ストークス式(B)、温度バランス式(C)である。
Resin behavior in the same direction complete meshing type twin screw extruder was analyzed using a three-dimensional flow analysis software in the twin screw extruder (Screw Flow-Multi, manufactured by Earl Flow).
The governing equations used in the analysis are the continuous equation (A), the Navier-Stokes equation (B), and the temperature balance equation (C).
解析仮定として、非圧縮性流体で、完全溶融・完全充満とした。また、粘度近似式はアレニウス近似及びWLF近似を使用した。解析手法は、有限体積法、SOR法、SIMPLEアルゴリズムであり、計算としては、まず定常解析を行い、これを初期値として、非定常解析を行った。非定常解析の後、トレーサー粒子を配置(約5000個)して、トレーサー粒子にかかる局所情報を収集した(粒子追跡解析)。剪断応力の時間積分値の最小値Tminは、トレーサー粒子にかかる局所情報の剪断応力を時間積分し、全粒子の最小値を求めたものである。
As an analysis assumption, the incompressible fluid was completely melted and completely filled. Moreover, Arrhenius approximation and WLF approximation were used for the viscosity approximation formula. The analysis method is a finite volume method, a SOR method, or a SIMPLE algorithm. As a calculation, a steady analysis is first performed, and an unsteady analysis is performed using this as an initial value. After unsteady analysis, tracer particles were arranged (about 5000 particles), and local information concerning the tracer particles was collected (particle tracking analysis). Minimum value T min of the time integral value of the shear stress, by integrating the shear stress of the local information relating to the tracer particles time, in which determining the minimum value of the total particle.
次いで、実験による未解繊ペレット数の導出について説明する。
PBTを二軸押出機に供給した後、上記押出条件で、ガラスのチョップドストランドを供給し、混練混合した後、ダイから樹脂組成物を押出し、溶融した樹脂組成をダイから引取りストランドにして、水槽でストランドを冷却固化して、カッターで、ストランドを3mmの長さに切断してペレットを作成した。ペレットを10kg採取し、黒色のペレットの中のガラス未解繊(銀色の凝集塊)を目視にて探し、ガラス未解繊を含んだペレットの個数を数えた。 Next, derivation of the number of undefined pellets by experiment will be described.
After supplying PBT to a twin screw extruder, glass chopped strands are supplied under the above extrusion conditions, kneaded and mixed, then the resin composition is extruded from the die, and the molten resin composition is taken up from the die to form a strand. The strand was cooled and solidified in a water tank, and the strand was cut into a length of 3 mm with a cutter to produce a pellet. 10 kg of the pellets were collected, glass undefibrated (silver-colored agglomerates) in the black pellets were visually found, and the number of pellets containing glass undefibrated was counted.
PBTを二軸押出機に供給した後、上記押出条件で、ガラスのチョップドストランドを供給し、混練混合した後、ダイから樹脂組成物を押出し、溶融した樹脂組成をダイから引取りストランドにして、水槽でストランドを冷却固化して、カッターで、ストランドを3mmの長さに切断してペレットを作成した。ペレットを10kg採取し、黒色のペレットの中のガラス未解繊(銀色の凝集塊)を目視にて探し、ガラス未解繊を含んだペレットの個数を数えた。 Next, derivation of the number of undefined pellets by experiment will be described.
After supplying PBT to a twin screw extruder, glass chopped strands are supplied under the above extrusion conditions, kneaded and mixed, then the resin composition is extruded from the die, and the molten resin composition is taken up from the die to form a strand. The strand was cooled and solidified in a water tank, and the strand was cut into a length of 3 mm with a cutter to produce a pellet. 10 kg of the pellets were collected, glass undefibrated (silver-colored agglomerates) in the black pellets were visually found, and the number of pellets containing glass undefibrated was counted.
未解繊ペレット数と最小剪断応力履歴値と間の関係を表す近似曲線(相関線)を、最小二乗方法で求めた。Q/Ns=1.0で、混練部Bに前述のように図4(a)から(e)の異なるエレメントを入れ、かつ、異なるQで実験とシミュレーションを行った結果、以下のようなひとつの近似曲線が得られた。近似曲線については図6に示した。
An approximate curve (correlation line) representing the relationship between the number of undefined pellets and the minimum shear stress history value was determined by the method of least squares. When Q / Ns = 1.0, the different elements shown in FIGS. 4 (a) to 4 (e) were added to the kneading part B as described above, and the experiment and simulation were performed with different Q values. An approximate curve was obtained. The approximate curve is shown in FIG.
上記数式(IV)のαが11.5042、βが-2.200となった。
In the above formula (IV), α was 11.5042, and β was −2.200.
Q/Ns=0.8、Q/Ns=0.5の条件でも、上記と同様にして、図7に示すように、最小剪断応力履歴値(Pa・sec)とガラス繊維束の一部又は全部が未解繊のペレット数(個/ペレット10kg)との関係(相関線)を求めた。なお、図7にはQ/Ns=1.0の場合の相関線についても示した。
Even under the conditions of Q / Ns = 0.8 and Q / Ns = 0.5, as shown in FIG. 7, the minimum shear stress history value (Pa · sec) and a part of the glass fiber bundle or The relationship (correlation line) with the number of undefibrated pellets (pieces / pellet 10 kg) was obtained. FIG. 7 also shows the correlation line when Q / Ns = 1.0.
図7に示すように、Q/Ns毎に相関線が異なる。そこで、上記数式(IV)の形式の関数に最小二乗法で近似した。近似曲線を図8に示した。図8に示すように、Q/Nsに依存しない一つの相関線で近似できた。なお、γは3.0であった。
As shown in FIG. 7, the correlation line is different for each Q / Ns. Therefore, the function of the formula (IV) is approximated by the method of least squares. The approximate curve is shown in FIG. As shown in FIG. 8, it was possible to approximate with one correlation line independent of Q / Ns. Note that γ was 3.0.
図8に示すように、所定の最小剪断応力履歴値以上であれば、単位量あたりの未解繊ペレット数が所定の値未満になることが確認できた。
As shown in FIG. 8, it was confirmed that the number of undefibrated pellets per unit amount was less than a predetermined value if it was equal to or greater than a predetermined minimum shear stress history value.
以上の通り、数式(IV)はQ/Nsの条件が変化しても、一つの式で、ペレット中に含まれる未解繊ガラス繊維束の量を検討でき、また、混練部が有するスクリューエレメントの種類が異なっても一つの数式(IV)で、ペレット中に含まれる未解繊ガラス繊維束の量を検討できることが確認された。
As described above, even if the Q / Ns condition changes, Formula (IV) can be used to study the amount of undefined glass fiber bundles contained in the pellet, and the screw element that the kneading unit has It was confirmed that the amount of undefined glass fiber bundles contained in the pellets can be examined with a single mathematical formula (IV) even if the types of are different.
<評価2>
図3は、二軸押出機(スクリュー口径Dが47mm)において、評価1で使用したものと同じPBT樹脂70質量%、ガラス繊維30質量%の組成の原料で、且つ、円弧状の切り欠きが形成されたフライト部を有する一条のスクリューエレメントを長さ2.0Dとし、図1に示す二軸押出機の混練部23に使用した場合のシミュレーションを行い、最小剪断応力履歴値Tminと、切り欠き個数(溝数)nの関係を導出した。円弧状を形成する楕円の中心は外周部として、上記楕円の短径/2は3mm、長径/2は4.15mmである。また、長径が延びる方向と切り欠きが延びる方向とは一致する。上記スクリューエレメントのリード長はL/D=0.25とし、切り欠きが形成されたフライト部を有する一条の逆送りのフライト(BMS)と順逆送りのフライト(FMS)の比較を行った。 <Evaluation 2>
FIG. 3 shows a raw material having the same composition of PBT resin 70% by mass andglass fiber 30% by mass as used in Evaluation 1 in a twin screw extruder (screw diameter D is 47 mm), and an arc-shaped notch. the screw elements of Article having formed flight portion and a length of 2.0D, to simulate a case of using a twin-screw extruder kneading section 23 shown in FIG. 1, the minimum shear stress history value T min, cut The relationship of the number of notches (number of grooves) n was derived. The center of the ellipse forming the arc shape is the outer periphery, and the minor axis / 2 of the ellipse is 3 mm and the major axis / 2 is 4.15 mm. Further, the direction in which the major axis extends coincides with the direction in which the cutout extends. The lead length of the screw element was L / D = 0.25, and a comparison was made between a single reverse flight (BMS) and a forward reverse flight (FMS) having a flight part with a notch.
図3は、二軸押出機(スクリュー口径Dが47mm)において、評価1で使用したものと同じPBT樹脂70質量%、ガラス繊維30質量%の組成の原料で、且つ、円弧状の切り欠きが形成されたフライト部を有する一条のスクリューエレメントを長さ2.0Dとし、図1に示す二軸押出機の混練部23に使用した場合のシミュレーションを行い、最小剪断応力履歴値Tminと、切り欠き個数(溝数)nの関係を導出した。円弧状を形成する楕円の中心は外周部として、上記楕円の短径/2は3mm、長径/2は4.15mmである。また、長径が延びる方向と切り欠きが延びる方向とは一致する。上記スクリューエレメントのリード長はL/D=0.25とし、切り欠きが形成されたフライト部を有する一条の逆送りのフライト(BMS)と順逆送りのフライト(FMS)の比較を行った。 <
FIG. 3 shows a raw material having the same composition of PBT resin 70% by mass and
評価1と同様の手法で最小剪断応力履歴値Tminを導出することで、切り欠き数nと最小剪断応力履歴値Tminとの関係を導出した。結果を図9に示した。
By deriving the minimum shear stress history value T min in the same manner as Evaluation 1, to derive the relationship between the notch number n and the minimum shear stress history value T min. The results are shown in FIG.
図9によれば、BMS、FMSの効果はほぼ同等であることが確認された。FMSの方が切り欠き数の変更による最小剪断応力履歴値Tminの変化が小さいことが確認された。したがって、BMSを使用するよりFMSを使用した方が安定して、ペレット中の未解繊ガラス繊維の数を抑えることができる。
According to FIG. 9, it was confirmed that the effects of BMS and FMS were almost equivalent. That the change of the minimum shear stress history value T min due to the notch change in the number of people of FMS is small it has been confirmed. Therefore, it is more stable to use FMS than to use BMS, and the number of undefined glass fibers in the pellet can be suppressed.
<評価3>
PBT樹脂70質量%、ガラス繊維30質量%(ガラスモノフィラメント径13μm)の組成で、二軸押出機(スクリュー口径47mm)の混練部に、一般に使用されるニーディングディスク(図5(a)及び(b)記号FK)や、切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメント(図5(c)(d)(e)記号BMS)を使用した場合の、それぞれのシミュレーションを、評価1に記載の方法と同様の方法でそれぞれ行い、トレーサー粒子にかかる局所情報の剪断応力を時間積分した剪断応力履歴値の分布を図10に示した。切り欠きの中心は外周部として、逆送りのフライト(図中記号BMS)のリード長LeをL/D=0.25とし、切り欠きの円弧状を形成する円の半径はr=3mmとしている。 <Evaluation 3>
A kneading disc (FIG. 5 (a) and (FIG. 5A) and ( b) Evaluation of each simulation using the symbol FK) and a single reverse feed screw element (Fig. 5 (c) (d) (e) symbol BMS) having a flight part in which a notch is formed. FIG. 10 shows the distribution of shear stress history values obtained by performing time integration of the shear stress of the local information applied to the tracer particles by the same method as described in 1. The center of the notch is the outer peripheral part, the lead length Le of the reverse feed flight (symbol BMS in the figure) is L / D = 0.25, and the radius of the circle forming the arc shape of the notch is r = 3 mm. .
PBT樹脂70質量%、ガラス繊維30質量%(ガラスモノフィラメント径13μm)の組成で、二軸押出機(スクリュー口径47mm)の混練部に、一般に使用されるニーディングディスク(図5(a)及び(b)記号FK)や、切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメント(図5(c)(d)(e)記号BMS)を使用した場合の、それぞれのシミュレーションを、評価1に記載の方法と同様の方法でそれぞれ行い、トレーサー粒子にかかる局所情報の剪断応力を時間積分した剪断応力履歴値の分布を図10に示した。切り欠きの中心は外周部として、逆送りのフライト(図中記号BMS)のリード長LeをL/D=0.25とし、切り欠きの円弧状を形成する円の半径はr=3mmとしている。 <
A kneading disc (FIG. 5 (a) and (FIG. 5A) and ( b) Evaluation of each simulation using the symbol FK) and a single reverse feed screw element (Fig. 5 (c) (d) (e) symbol BMS) having a flight part in which a notch is formed. FIG. 10 shows the distribution of shear stress history values obtained by performing time integration of the shear stress of the local information applied to the tracer particles by the same method as described in 1. The center of the notch is the outer peripheral part, the lead length Le of the reverse feed flight (symbol BMS in the figure) is L / D = 0.25, and the radius of the circle forming the arc shape of the notch is r = 3 mm. .
ニーディングディスク(FK)では、剪断応力履歴値の小さいところから、広い範囲に分布が広がっている。小さい剪断応力履歴値を有することは、ガラス未解繊が残存する確率が高いことを意味している。一方、切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメントでは、剪断応力履歴値の分布は狭いため、最小の剪断応力履歴値の値が大きい。このため、上記切り欠きを有するスクリューエレメントを使用すれば、ペレット中に未解繊ガラス繊維束が残存し難くなる。
In the kneading disc (FK), the distribution spreads over a wide range from where the shear stress history value is small. Having a small shear stress history value means that there is a high probability that glass undefibration remains. On the other hand, in a single reverse feed screw element having a flight part in which a notch is formed, since the distribution of shear stress history values is narrow, the minimum shear stress history value is large. For this reason, if the screw element which has the said notch is used, it will become difficult to remain | survive an undisentangled glass fiber bundle in a pellet.
<評価4>
次に、この最小剪断応力履歴値を、指標として、切り欠きエレメントに求められる形状を、流動解析により説明する。図1に示す二軸押出機(スクリュー口径47mm)において、PBT樹脂70質量%、ガラス繊維30質量%の組成で、円弧状の切り欠きが形成されたフライト部を有する一条のスクリューエレメントを混練部23に使用した場合のシミュレーションを行った。具体的には、評価1と同様の方法で求めた最小剪断応力履歴値Tminと、切り欠き個数(溝数)nの関係を求めた。円弧状の切り欠きの中心は外周部として、円弧状の切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメント(BMS)については、リード長LeがL/D=0.2、0.25、0.3の3条件で評価を行なった。また、円弧状は楕円から形成され、この楕円の短径/2は3mm、長径/2(切り欠きが延びる方向)は4.1mmとした。評価4の結果を表2に示した。
<Evaluation 4>
Next, using the minimum shear stress history value as an index, the shape required for the notch element will be described by flow analysis. In the twin-screw extruder shown in FIG. 1 (screw diameter 47 mm), a kneading part is composed of a single screw element having a flight part in which an arc-shaped notch is formed with a composition of 70% by mass of PBT resin and 30% by mass of glass fiber. The simulation when used in the No. 23 was performed. Specifically, the relationship between the minimum shear stress history value T min obtained by the same method as in Evaluation 1 and the number of notches (groove number) n was obtained. For a single reverse feed screw element (BMS) having an arc-shaped notch as the outer peripheral portion and a flight portion in which the arc-shaped notch is formed, the lead length Le is L / D = 0.2, 0 Evaluation was performed under three conditions of .25 and 0.3. The arc shape is formed from an ellipse, and the minor axis / 2 of this ellipse is 3 mm and the major axis / 2 (the direction in which the notch extends) is 4.1 mm. The results ofEvaluation 4 are shown in Table 2.
次に、この最小剪断応力履歴値を、指標として、切り欠きエレメントに求められる形状を、流動解析により説明する。図1に示す二軸押出機(スクリュー口径47mm)において、PBT樹脂70質量%、ガラス繊維30質量%の組成で、円弧状の切り欠きが形成されたフライト部を有する一条のスクリューエレメントを混練部23に使用した場合のシミュレーションを行った。具体的には、評価1と同様の方法で求めた最小剪断応力履歴値Tminと、切り欠き個数(溝数)nの関係を求めた。円弧状の切り欠きの中心は外周部として、円弧状の切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメント(BMS)については、リード長LeがL/D=0.2、0.25、0.3の3条件で評価を行なった。また、円弧状は楕円から形成され、この楕円の短径/2は3mm、長径/2(切り欠きが延びる方向)は4.1mmとした。評価4の結果を表2に示した。
Next, using the minimum shear stress history value as an index, the shape required for the notch element will be described by flow analysis. In the twin-screw extruder shown in FIG. 1 (screw diameter 47 mm), a kneading part is composed of a single screw element having a flight part in which an arc-shaped notch is formed with a composition of 70% by mass of PBT resin and 30% by mass of glass fiber. The simulation when used in the No. 23 was performed. Specifically, the relationship between the minimum shear stress history value T min obtained by the same method as in Evaluation 1 and the number of notches (groove number) n was obtained. For a single reverse feed screw element (BMS) having an arc-shaped notch as the outer peripheral portion and a flight portion in which the arc-shaped notch is formed, the lead length Le is L / D = 0.2, 0 Evaluation was performed under three conditions of .25 and 0.3. The arc shape is formed from an ellipse, and the minor axis / 2 of this ellipse is 3 mm and the major axis / 2 (the direction in which the notch extends) is 4.1 mm. The results of
表2によると、最小剪断応力履歴値Tminは、1リード長Leあたりの切り欠きの数nが、13~15で高い値を示している。切り欠きの数nが多い方が、最小剪断応力履歴値Tminが高い。しかしながら、切り欠き数nが増加すると、スクリューエレメントの機械的強度が低下するので、13から15が好ましいといえる。
According to Table 2, the minimum shear stress history value T min shows a high value when the number n of notches per lead length Le is 13 to 15. The minimum shear stress history value Tmin is higher when the number of notches n is larger. However, since the mechanical strength of the screw element decreases as the number of notches n increases, it can be said that 13 to 15 is preferable.
<評価5>
図1に示す二軸押出機(口径47mm)において、PBT樹脂70質量%、ガラス繊維30質量%の組成で、円弧状切り欠きが形成されたフライト部を有する一条のスクリューエレメントを混練部23に使用した場合のシミュレーションを行なった。具体的には、評価1に記載の方法と同様の方法で求めた最小剪断応力履歴値Tminと、切り欠きの深さ方向の長径との関係を示している。切欠きの中心はフライト部の外周上で、切り欠きの形状は楕円で、外周上の切欠きの短径/2は3mm、長径/2(切り欠きが延びる方向)が3mm、4mm、5mmの場合でシミュレーションを行なった。また、切り欠き数nを11、上記切り欠きを有するスクリューエレメントのリード長LeはL/D=0.25とした。評価5の結果を表3に示した。
<Evaluation 5>
In the twin-screw extruder (diameter 47 mm) shown in FIG. 1, a single screw element having a flight part in which an arc-shaped notch is formed with a composition of 70% by mass of PBT resin and 30% by mass of glass fiber is added to the kneadingpart 23. A simulation was performed when used. Specifically, the relationship between the minimum shear stress history value T min obtained by the same method as described in Evaluation 1 and the major axis in the depth direction of the notch is shown. The center of the notch is on the outer periphery of the flight part, the shape of the notch is an ellipse, the short diameter / 2 of the notch on the outer periphery is 3 mm, and the long diameter / 2 (the direction in which the notch extends) is 3 mm, 4 mm, 5 mm. A simulation was performed in some cases. Further, the number of notches n was 11, and the lead length Le of the screw element having the notches was L / D = 0.25. The results of Evaluation 5 are shown in Table 3.
図1に示す二軸押出機(口径47mm)において、PBT樹脂70質量%、ガラス繊維30質量%の組成で、円弧状切り欠きが形成されたフライト部を有する一条のスクリューエレメントを混練部23に使用した場合のシミュレーションを行なった。具体的には、評価1に記載の方法と同様の方法で求めた最小剪断応力履歴値Tminと、切り欠きの深さ方向の長径との関係を示している。切欠きの中心はフライト部の外周上で、切り欠きの形状は楕円で、外周上の切欠きの短径/2は3mm、長径/2(切り欠きが延びる方向)が3mm、4mm、5mmの場合でシミュレーションを行なった。また、切り欠き数nを11、上記切り欠きを有するスクリューエレメントのリード長LeはL/D=0.25とした。評価5の結果を表3に示した。
In the twin-screw extruder (diameter 47 mm) shown in FIG. 1, a single screw element having a flight part in which an arc-shaped notch is formed with a composition of 70% by mass of PBT resin and 30% by mass of glass fiber is added to the kneading
表3によると、最小剪断応力履歴値Tminは、切り欠きの溝深さの長径/2が4~5mmで極大値を有する。口径Dに対して、外周上の切欠きの上記半径の範囲は0.064D、溝深さ方向の長径/2は、0.085D~0.11Dである。
According to Table 3, the minimum shear stress history value T min has a maximum value when the major axis of the notch groove depth / 2 is 4 to 5 mm. With respect to the diameter D, the radius range of the notch on the outer periphery is 0.064D, and the major axis length / 2 in the groove depth direction is 0.085D to 0.11D.
<評価6>
短径の大きさを表3に示すものに変更した以外は、評価4と同様の方法で、最小剪断応力履歴値Tminと、切り欠きが形成される方向に対して垂直方向に延びる長径の関係を示した。評価6の結果を表4に示した。
<Evaluation 6>
Except for changing the size of the minor axis to that shown in Table 3, the minimum shear stress history value Tmin and the major axis extending in the direction perpendicular to the direction in which the notch is formed are the same as those inEvaluation 4. The relationship was shown. The results of Evaluation 6 are shown in Table 4.
短径の大きさを表3に示すものに変更した以外は、評価4と同様の方法で、最小剪断応力履歴値Tminと、切り欠きが形成される方向に対して垂直方向に延びる長径の関係を示した。評価6の結果を表4に示した。
Except for changing the size of the minor axis to that shown in Table 3, the minimum shear stress history value Tmin and the major axis extending in the direction perpendicular to the direction in which the notch is formed are the same as those in
評価6によれば、円弧状を形成する楕円の長径が、切り欠きが延びる方向に対して垂直方向に延びるものであっても、長径が大きくなることで、最小剪断応力履歴値の値は大きくなることが確認された。また、評価5と評価6との比較から、上記楕円の長径は、切り欠きが延びる方向に延びる方が効果が高い。
According to the evaluation 6, even if the major axis of the ellipse forming the arc shape extends in the direction perpendicular to the direction in which the notch extends, the larger value of the major axis increases the minimum shear stress history value. It was confirmed that Moreover, from the comparison between Evaluation 5 and Evaluation 6, it is more effective that the major axis of the ellipse extends in the direction in which the notch extends.
<評価7>
円弧状を形成するものが円になった以外は、評価5と同様の方法で、最小剪断応力履歴値Tminと、円の半径の関係を示した。評価7の結果を表5に示した。
<Evaluation 7>
The relationship between the minimum shear stress history value Tmin and the radius of the circle was shown by the same method as inEvaluation 5, except that the arc-shaped shape was a circle. The results of Evaluation 7 are shown in Table 5.
円弧状を形成するものが円になった以外は、評価5と同様の方法で、最小剪断応力履歴値Tminと、円の半径の関係を示した。評価7の結果を表5に示した。
The relationship between the minimum shear stress history value Tmin and the radius of the circle was shown by the same method as in
円弧を形成するのが円の場合においても、半径が大きくなることで、最小剪断応力履歴値が大きくなることが確認された。また、評価4~6の比較から、円弧状を形成するのが楕円よりも円の方が、最小剪断応力履歴値が大きくなることが確認された。
It was confirmed that the minimum shear stress history value increases as the radius increases even when the arc forms a circle. In addition, from the comparison of evaluations 4 to 6, it was confirmed that the minimum shear stress history value is larger when the circular arc is formed than the ellipse is formed.
<実施例>
実施例においては以下の材料を用いた。
熱可塑性樹脂:ポリブチレンテレフタレート樹脂(PBT)(メルトインデックス(MI)=70g/10分)
カーボンマスターバッチ
ガラス繊維束:直径が13μmのモノフィラメントを2200本束ねた長さ3mmのチョップドストランド
また、組成は以下の通りである。
PBTが67.5質量%、カーボンマスターバッチが2.5質量%、ガラス繊維束が30質量%
押出機:同方向完全噛み合い型二軸押出機TEX44αII(日本製鋼所製)スクリューエレメントのスクリュー口径Dが0.047m
実施例の成形におけるシリンダー温度(℃)を下記表に記載した。
<Example>
In the examples, the following materials were used.
Thermoplastic resin: Polybutylene terephthalate resin (PBT) (melt index (MI) = 70 g / 10 min)
Carbon masterbatch glass fiber bundle: 3 mm long chopped strand obtained by bundling 2200 monofilaments having a diameter of 13 μm The composition is as follows.
PBT is 67.5 mass%, carbon masterbatch is 2.5 mass%, glass fiber bundle is 30 mass%
Extruder: Same direction full meshing type twin screw extruder TEX44αII (manufactured by Nippon Steel) Screw diameter D of screw element is 0.047m
The cylinder temperature (° C.) in the molding of the examples is shown in the table below.
実施例においては以下の材料を用いた。
熱可塑性樹脂:ポリブチレンテレフタレート樹脂(PBT)(メルトインデックス(MI)=70g/10分)
カーボンマスターバッチ
ガラス繊維束:直径が13μmのモノフィラメントを2200本束ねた長さ3mmのチョップドストランド
また、組成は以下の通りである。
PBTが67.5質量%、カーボンマスターバッチが2.5質量%、ガラス繊維束が30質量%
押出機:同方向完全噛み合い型二軸押出機TEX44αII(日本製鋼所製)スクリューエレメントのスクリュー口径Dが0.047m
実施例の成形におけるシリンダー温度(℃)を下記表に記載した。
In the examples, the following materials were used.
Thermoplastic resin: Polybutylene terephthalate resin (PBT) (melt index (MI) = 70 g / 10 min)
Carbon masterbatch glass fiber bundle: 3 mm long chopped strand obtained by bundling 2200 monofilaments having a diameter of 13 μm The composition is as follows.
PBT is 67.5 mass%, carbon masterbatch is 2.5 mass%, glass fiber bundle is 30 mass%
Extruder: Same direction full meshing type twin screw extruder TEX44αII (manufactured by Nippon Steel) Screw diameter D of screw element is 0.047m
The cylinder temperature (° C.) in the molding of the examples is shown in the table below.
実施例で使用した具体的なスクリューパターンは、図11に示す通りである。なお、ニーディングディスクで、各ディスクが90°位相がずれているものをCK、逆送りの1条のフライトで切り欠きのあるスクリューエレメントをBMS、順送りの1条のフライトで切り欠きのあるスクリューエレメントをFMSとする。なお、外周上の切欠きの短径/2は3mm、長径/2(切り欠きが延びる方向)は、4.15mmである。
比較例1:図11(a)に示すスクリューは混練部(C8)が長さ2.5Dの90°位相の直交ニーディングディスク
実施例1:図11(b)に示すスクリューは混練部(C8)が長さ2.5Dの外周に切り欠きが形成されたフライト部を有する一条の順送りスクリューエレメントFMS
実施例2:図11(c)に示すスクリューは混練部(C8)が長さ3.0Dの外周に切り欠きが形成されたフライト部を有する一条の順送りスクリューエレメントFMS
実施例3:図11(d)に示すスクリューは混練部(C8)の長さが3.0Dであり、外周に切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメントBMSと順送りスクリューエレメントFMSの組み合わせで、FMS1Dの次にBMS1D、その次にFMSを配置 The specific screw pattern used in the examples is as shown in FIG. The kneading disc is 90 ° out of phase with each disc, CK, the screw element with a notch in one reverse flight, BMS, and the screw with a notch in one forward flight. Let the element be FMS. The short diameter / 2 of the notch on the outer periphery is 3 mm, and the long diameter / 2 (the direction in which the notch extends) is 4.15 mm.
Comparative Example 1: The screw shown in FIG. 11 (a) is a kneading part (C8) with a 90 ° phase orthogonal kneading disk having a length of 2.5D. Example 1: The screw shown in FIG. 11 (b) is a kneading part (C8). ) Is a single feed progressive screw element FMS having a flight part with a notch formed in the outer periphery of length 2.5D
Example 2: The screw shown in FIG. 11 (c) is a single feed forward screw element FMS in which the kneading part (C8) has a flight part with a notch formed on the outer periphery having a length of 3.0D.
Example 3 The screw shown in FIG. 11 (d) has a kneading part (C8) with a length of 3.0D, a single reverse feed screw element BMS and a forward feed screw having a flight part with a notch formed on the outer periphery. In combination with element FMS, FMS1D is followed by BMS1D, then FMS
比較例1:図11(a)に示すスクリューは混練部(C8)が長さ2.5Dの90°位相の直交ニーディングディスク
実施例1:図11(b)に示すスクリューは混練部(C8)が長さ2.5Dの外周に切り欠きが形成されたフライト部を有する一条の順送りスクリューエレメントFMS
実施例2:図11(c)に示すスクリューは混練部(C8)が長さ3.0Dの外周に切り欠きが形成されたフライト部を有する一条の順送りスクリューエレメントFMS
実施例3:図11(d)に示すスクリューは混練部(C8)の長さが3.0Dであり、外周に切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメントBMSと順送りスクリューエレメントFMSの組み合わせで、FMS1Dの次にBMS1D、その次にFMSを配置 The specific screw pattern used in the examples is as shown in FIG. The kneading disc is 90 ° out of phase with each disc, CK, the screw element with a notch in one reverse flight, BMS, and the screw with a notch in one forward flight. Let the element be FMS. The short diameter / 2 of the notch on the outer periphery is 3 mm, and the long diameter / 2 (the direction in which the notch extends) is 4.15 mm.
Comparative Example 1: The screw shown in FIG. 11 (a) is a kneading part (C8) with a 90 ° phase orthogonal kneading disk having a length of 2.5D. Example 1: The screw shown in FIG. 11 (b) is a kneading part (C8). ) Is a single feed progressive screw element FMS having a flight part with a notch formed in the outer periphery of length 2.5D
Example 2: The screw shown in FIG. 11 (c) is a single feed forward screw element FMS in which the kneading part (C8) has a flight part with a notch formed on the outer periphery having a length of 3.0D.
Example 3 The screw shown in FIG. 11 (d) has a kneading part (C8) with a length of 3.0D, a single reverse feed screw element BMS and a forward feed screw having a flight part with a notch formed on the outer periphery. In combination with element FMS, FMS1D is followed by BMS1D, then FMS
次いで、実験による未解繊ペレット数の導出について説明する。PBTを二軸押出機に供給した後、ガラスのチョップドストランドを二軸押出機に供給した。下記表7に示す押出条件で、混練混合した後、ダイからガラス繊維強化熱可塑性樹脂組成物を押出し、溶融した樹脂組成をダイから引取りストランドにして、水槽でストランドを冷却固化して、カッターで、ストランドを3mmの長さに切断してペレットを作成した。ペレットを10kg採取し、黒色のペレットの中のガラス未解繊(銀色の凝集塊)を目視にて探し、未解繊ガラス繊維を含んだペレットの個数を数えた。上記ペレットの個数を以下の表7に示した。
Next, derivation of the number of undefined pellets by experiment will be described. After feeding PBT to the twin screw extruder, glass chopped strands were fed to the twin screw extruder. After kneading and mixing under the extrusion conditions shown in Table 7 below, the glass fiber reinforced thermoplastic resin composition is extruded from the die, the melted resin composition is taken from the die, and the strand is cooled and solidified in a water tank, and then the cutter Then, the strand was cut into a length of 3 mm to prepare a pellet. 10 kg of the pellets were collected, and glass undefibrated (silver-colored agglomerates) in the black pellets were searched visually, and the number of pellets containing undefined glass fibers was counted. The number of the pellets is shown in Table 7 below.
本実施例では、スクリュー口径Φ=47mmの二軸押出機を使用しているが、このサイズで、Q=650kg/hの吐出は、従来にはなく非常に高いものである。このため、従来から一般的に使用されてきた図11(a)のスクリューでは、未解繊ガラス繊維束を含むペレット数が多量に発生している。これに対して実施例1~3においては、未解繊ガラス繊維束を含むペレットがほとんど発生していない。
In this example, a twin-screw extruder with a screw diameter of Φ = 47 mm is used. With this size, the discharge of Q = 650 kg / h is very high compared to the conventional case. For this reason, in the screw of FIG. 11A that has been generally used conventionally, a large number of pellets including undefined glass fiber bundles are generated. In contrast, in Examples 1 to 3, almost no pellets containing undefined glass fiber bundles were generated.
図11(a)のスクリューでは、90°位相の直交ニーディングディスクCKを使用したが、これを外周に切り欠きが形成されたフライト部を有する一条の順送りスクリューエレメントFMSに変更し、混練部の長さを3.0Dにすると、未解繊ガラス繊維束を含むペレットは発生しない。しかし、さらに吐出量を増加すると、未解繊ガラス繊維束を含むペレットが発生する。図11(d)に示すスクリューパターンは、混練部は、FMS1D、BMS1D、FMS1Dの組み合わせである。混練部に逆送りと順送りの切り欠きエレメントを組み合わせることで、未解繊ガラス繊維束を含むペレット発生はさらに削減される。
In the screw of FIG. 11 (a), a 90 ° phase orthogonal kneading disk CK was used, but this was changed to a single progressive screw element FMS having a flight part with a notch formed on the outer periphery. When the length is 3.0D, pellets containing undefined glass fiber bundles are not generated. However, if the discharge rate is further increased, pellets containing undefined glass fiber bundles are generated. In the screw pattern shown in FIG. 11D, the kneading part is a combination of FMS1D, BMS1D, and FMS1D. By combining reverse feed and forward cut-out elements in the kneading section, the generation of pellets containing undefined glass fiber bundles can be further reduced.
1 シリンダー
10 ホッパ
11 フィード口
12 真空ベント
2 スクリュー
20 供給部
21 可塑化部
22 搬送部
23 混練部
3 ダイ
4 一条の順送りスクリューエレメント
40 フライト部
41 切り欠き DESCRIPTION OF SYMBOLS 1Cylinder 10 Hopper 11 Feed port 12 Vacuum vent 2 Screw 20 Supply part 21 Plasticizing part 22 Conveying part 23 Kneading part 3 Die 4 Single feed forward screw element 40 Flight part 41 Notch
10 ホッパ
11 フィード口
12 真空ベント
2 スクリュー
20 供給部
21 可塑化部
22 搬送部
23 混練部
3 ダイ
4 一条の順送りスクリューエレメント
40 フライト部
41 切り欠き DESCRIPTION OF SYMBOLS 1
Claims (3)
- 互いに回転して噛み合うスクリューを備えた二軸の押出機を用いて、ガラス繊維強化熱可塑性樹脂組成物ペレットを製造する方法であって、
熱可塑性樹脂を前記押出機に供給して加熱、混練し可塑化する可塑化工程と、
前記可塑化工程後に、一束以上のガラス繊維束を前記押出機に供給して、前記ガラス繊維束を解繊しながら、解繊されたガラス繊維と可塑化した前記熱可塑性樹脂とをスクリューで混練する混練工程と、
前記混練工程後に、ガラス繊維強化熱可塑性樹脂組成物を押出す押出工程と、
押出された前記ガラス繊維強化熱可塑性樹脂組成物をペレット化するペレット化工程と、を備え、
前記熱可塑性樹脂は、ポリブチレンテレフタレート樹脂、液晶性樹脂、及びポリアリーレンサルファイド樹脂から選択される少なくとも一種の樹脂から構成され、
前記混練工程において、前記スクリューは、外周に、以下の不等式(I)から(III)を満たす円弧状の切り欠きが形成されたフライト部を有する一条の順送りスクリューエレメントを一以上有するガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法。
0.05D≦r≦0.15D (I)
7≦n≦20 (II)
Le≦0.3D (III)
(上記不等式(I)中のrは、上記円弧状を形成する円の半径又は上記円弧状を形成する楕円の長径/2、もしくは短径/2であり、上記不等式(II)中のnは、上記一条の順送りスクリューエレメントの1リード長あたりの切り欠き数であり、上記不等式(III)中のLeは、上記一条の順送りスクリューエレメントのリード長であり、上記不等式(I)、(II)中のDは、スクリュー口径である。)
A method for producing glass fiber reinforced thermoplastic resin pellets using a twin-screw extruder equipped with screws that rotate and mesh with each other,
A plasticizing step of supplying a thermoplastic resin to the extruder and heating, kneading and plasticizing;
After the plasticizing step, one or more glass fiber bundles are supplied to the extruder, and the defibrated glass fibers and the plasticized thermoplastic resin are screwed together while defibrating the glass fiber bundles. A kneading step for kneading;
After the kneading step, an extrusion step of extruding the glass fiber reinforced thermoplastic resin composition,
Pelletizing step of pelletizing the extruded glass fiber reinforced thermoplastic resin composition,
The thermoplastic resin is composed of at least one resin selected from polybutylene terephthalate resin, liquid crystal resin, and polyarylene sulfide resin,
In the kneading step, the screw has a glass fiber reinforced heat having one or more progressive screw elements each having a flight portion in which an arc-shaped notch satisfying the following inequalities (I) to (III) is formed on the outer periphery. A method for producing a plastic resin composition pellet.
0.05D ≦ r ≦ 0.15D (I)
7 ≦ n ≦ 20 (II)
Le ≦ 0.3D (III)
(R in the inequality (I) is the radius of the circle forming the arc or the major axis / 2 or the minor axis / 2 of the ellipse forming the arc, and n in the inequality (II) is , The number of notches per lead length of the one-step progressive screw element, and Le in the inequality (III) is the lead length of the one-step progressive screw element, and the inequality (I), (II) D in the inside is a screw diameter.)
- 互いに回転して噛み合うスクリューを備えた二軸の押出機を用いて、ガラス繊維強化熱可塑性樹脂組成物ペレットを製造する方法であって、
熱可塑性樹脂を前記押出機に供給して加熱、混練し可塑化する可塑化工程と、
前記可塑化工程後に、一束以上のガラス繊維束を前記押出機に供給して、前記ガラス繊維束を解繊しながら、解繊されたガラス繊維と可塑化した前記熱可塑性樹脂とをスクリューで混練する混練工程と、
前記混練工程後に、ガラス繊維強化熱可塑性樹脂組成物を押出す押出工程と、
押出された前記ガラス繊維強化熱可塑性樹脂組成物をペレット化するペレット化工程と、を備え、
前記熱可塑性樹脂の粘度が、剪断速度1000sec-1の条件で、100Pa・s以下であり、
前記混練工程において、前記スクリューは、外周に、以下の不等式(I)から(III)を満たす円弧状の切り欠きが形成されたフライト部を有する一条の順送りスクリューエレメントを一以上有するガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法。
0.05D≦r≦0.15D (I)
7≦n≦20 (II)
Le≦0.3D (III)
(上記不等式(I)中のrは、上記円弧状を形成する円の半径又は上記円弧状を形成する楕円の長径/2、もしくは短径/2であり、上記不等式(II)中のnは、上記一条の順送りスクリューエレメントの1リード長あたりの切り欠き数であり、上記不等式(III)中のLeは、上記一条の順送りスクリューエレメントのリード長であり、上記不等式(I)、(II)中のDは、スクリュー口径である。) A method for producing glass fiber reinforced thermoplastic resin pellets using a twin-screw extruder equipped with screws that rotate and mesh with each other,
A plasticizing step of supplying a thermoplastic resin to the extruder and heating, kneading and plasticizing;
After the plasticizing step, one or more glass fiber bundles are supplied to the extruder, and the defibrated glass fibers and the plasticized thermoplastic resin are screwed together while defibrating the glass fiber bundles. A kneading step for kneading;
After the kneading step, an extrusion step of extruding the glass fiber reinforced thermoplastic resin composition,
Pelletizing step of pelletizing the extruded glass fiber reinforced thermoplastic resin composition,
The viscosity of the thermoplastic resin is 100 Pa · s or less under the condition of a shear rate of 1000 sec −1 ;
In the kneading step, the screw has a glass fiber reinforced heat having one or more progressive screw elements each having a flight portion in which an arc-shaped notch satisfying the following inequalities (I) to (III) is formed on the outer periphery. A method for producing a plastic resin composition pellet.
0.05D ≦ r ≦ 0.15D (I)
7 ≦ n ≦ 20 (II)
Le ≦ 0.3D (III)
(R in the inequality (I) is the radius of the circle forming the arc or the major axis / 2 or the minor axis / 2 of the ellipse forming the arc, and n in the inequality (II) is , The number of notches per lead length of the one-step progressive screw element, and Le in the inequality (III) is the lead length of the one-step progressive screw element, and the inequality (I), (II) D in the inside is a screw diameter.) - 前記混練工程において、前記スクリューは、外周に円弧状の切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメントを一以上有する請求項1又は2に記載のガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法。 3. The glass fiber reinforced thermoplastic resin composition according to claim 1, wherein, in the kneading step, the screw has at least one reverse feed screw element having a flight portion having an arc-shaped notch formed on an outer periphery. Pellet manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280017520.2A CN103492141B (en) | 2011-04-01 | 2012-03-29 | The production method of glass fiber-reinforced thermoplastic resin composition's particle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-082312 | 2011-04-01 | ||
JP2011082312A JP5536704B2 (en) | 2011-04-01 | 2011-04-01 | Method for producing glass fiber reinforced thermoplastic resin composition pellets |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012137665A1 true WO2012137665A1 (en) | 2012-10-11 |
Family
ID=46969066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/058397 WO2012137665A1 (en) | 2011-04-01 | 2012-03-29 | Process for producing pellets of glass-fiber-reinforced thermoplastic resin composition |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5536704B2 (en) |
CN (1) | CN103492141B (en) |
MY (1) | MY162770A (en) |
TW (1) | TWI496675B (en) |
WO (1) | WO2012137665A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2965889A1 (en) | 2014-07-11 | 2016-01-13 | Covestro Deutschland AG | Mixing elements with improved dispersant effect |
CN104441511A (en) * | 2014-12-16 | 2015-03-25 | 江苏宏远新材料科技有限公司 | Injection screw for injection molding machine |
CN106426867A (en) * | 2016-09-20 | 2017-02-22 | 四川中旺科技有限公司 | Tooth-shaped disk, tooth-shaped disk assembly, screw assembly and double-screw assembly |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0860001A (en) * | 1994-06-14 | 1996-03-05 | Toray Ind Inc | Fiber-reinforced thermoplastic resin pellet and production thereof |
JPH10180841A (en) * | 1996-12-25 | 1998-07-07 | Asahi Chem Ind Co Ltd | Side feed extruder of powder and extrusion method using the extruder |
JP2002018842A (en) * | 2000-07-10 | 2002-01-22 | Sumitomo Chem Co Ltd | Method for manufacturing liquid crystalline resin pellet |
JP2002103327A (en) * | 2000-10-04 | 2002-04-09 | Asahi Kasei Corp | Method for manufacturing glass fiber reinforced polyamide resin |
WO2005099984A1 (en) * | 2004-04-15 | 2005-10-27 | Polyplastics Co., Ltd. | Method for producing resin composition pellet containing fibrous filler having controlled length |
WO2006123824A1 (en) * | 2005-05-18 | 2006-11-23 | Polyplastics Co., Ltd. | Process for producing resin composition containing fibrous filler in high concentration and resin composition pellet |
JP2010000654A (en) * | 2008-06-19 | 2010-01-07 | Japan Steel Works Ltd:The | Method and equipment for manufacturing fiber-reinforced resin pellet |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4387036B2 (en) * | 2000-04-28 | 2009-12-16 | 旭化成ケミカルズ株式会社 | Method of kneading liquid additive using single thread reverse screw notch screw |
JP2002120271A (en) * | 2000-10-13 | 2002-04-23 | Japan Steel Works Ltd:The | Screw for twin-screw kneader-extruder |
JP2004284195A (en) * | 2003-03-24 | 2004-10-14 | Toshiba Mach Co Ltd | Screws of twin-screw extruder |
JP3886467B2 (en) * | 2003-04-10 | 2007-02-28 | 株式会社日本製鋼所 | Screw kneading extruder |
JP2007007864A (en) * | 2005-06-28 | 2007-01-18 | Toshiba Mach Co Ltd | Plasticator of on-line blending injection molding machine |
-
2011
- 2011-04-01 JP JP2011082312A patent/JP5536704B2/en active Active
-
2012
- 2012-03-29 MY MYPI2013003307A patent/MY162770A/en unknown
- 2012-03-29 WO PCT/JP2012/058397 patent/WO2012137665A1/en active Application Filing
- 2012-03-29 CN CN201280017520.2A patent/CN103492141B/en active Active
- 2012-03-29 TW TW101110992A patent/TWI496675B/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0860001A (en) * | 1994-06-14 | 1996-03-05 | Toray Ind Inc | Fiber-reinforced thermoplastic resin pellet and production thereof |
JPH10180841A (en) * | 1996-12-25 | 1998-07-07 | Asahi Chem Ind Co Ltd | Side feed extruder of powder and extrusion method using the extruder |
JP2002018842A (en) * | 2000-07-10 | 2002-01-22 | Sumitomo Chem Co Ltd | Method for manufacturing liquid crystalline resin pellet |
JP2002103327A (en) * | 2000-10-04 | 2002-04-09 | Asahi Kasei Corp | Method for manufacturing glass fiber reinforced polyamide resin |
WO2005099984A1 (en) * | 2004-04-15 | 2005-10-27 | Polyplastics Co., Ltd. | Method for producing resin composition pellet containing fibrous filler having controlled length |
WO2006123824A1 (en) * | 2005-05-18 | 2006-11-23 | Polyplastics Co., Ltd. | Process for producing resin composition containing fibrous filler in high concentration and resin composition pellet |
JP2010000654A (en) * | 2008-06-19 | 2010-01-07 | Japan Steel Works Ltd:The | Method and equipment for manufacturing fiber-reinforced resin pellet |
Also Published As
Publication number | Publication date |
---|---|
CN103492141A (en) | 2014-01-01 |
CN103492141B (en) | 2015-09-23 |
TWI496675B (en) | 2015-08-21 |
JP5536704B2 (en) | 2014-07-02 |
TW201247392A (en) | 2012-12-01 |
JP2012213996A (en) | 2012-11-08 |
MY162770A (en) | 2017-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69916894T2 (en) | METHOD AND DEVICE FOR EXTRUDING POLYCARBONATE WITH A LOW BULK DENSITY | |
CN100575029C (en) | Be mixed with the preparation method and the resin composition pellet of resin combination of the fibrous filler of high concentration | |
JP5536705B2 (en) | Method for producing glass fiber reinforced thermoplastic resin composition pellets | |
EP1768823B1 (en) | Apparatus for plasticating thermoplastic resin including polypropylene | |
JP5457933B2 (en) | Method for producing composite pellet for extrusion molding, and composite pellet for extrusion produced by the above method | |
JP5632236B2 (en) | Simulation device, program, and recording medium | |
JP5536704B2 (en) | Method for producing glass fiber reinforced thermoplastic resin composition pellets | |
JP5632235B2 (en) | Method for producing glass fiber reinforced thermoplastic resin composition pellets | |
US20050063246A1 (en) | Mixing and kneading device for polymer compositions | |
JP2018161860A (en) | Production method of pellets of thermoplastic resin composition | |
JP6173996B2 (en) | Twin screw extruder used for the production of fiber reinforced resin composition | |
JP7125604B2 (en) | Reinforced resin molding manufacturing apparatus and manufacturing method | |
JP7361240B2 (en) | Method for producing thermoplastic resin composition | |
CN218557913U (en) | Extrusion screw for BFS | |
JP2023079184A (en) | Molding machine for molded product of thermoplastic resin composition, and method for manufacturing molded product | |
JP4707377B2 (en) | Molding method for thermoplastic resin film | |
JPS63199623A (en) | Thermoplastic resin molding screw | |
JPH07290555A (en) | Screw for single screw extrusion molding machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12768130 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1301005632 Country of ref document: TH |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12768130 Country of ref document: EP Kind code of ref document: A1 |