JP2018161860A - Production method of pellets of thermoplastic resin composition - Google Patents

Production method of pellets of thermoplastic resin composition Download PDF

Info

Publication number
JP2018161860A
JP2018161860A JP2017061721A JP2017061721A JP2018161860A JP 2018161860 A JP2018161860 A JP 2018161860A JP 2017061721 A JP2017061721 A JP 2017061721A JP 2017061721 A JP2017061721 A JP 2017061721A JP 2018161860 A JP2018161860 A JP 2018161860A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin composition
screw
pellet
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017061721A
Other languages
Japanese (ja)
Inventor
太三 梅村
Taizo Umemura
太三 梅村
川上 弘二
Koji Kawakami
弘二 川上
博充 梅田
Hiromitsu Umeda
博充 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2017061721A priority Critical patent/JP2018161860A/en
Publication of JP2018161860A publication Critical patent/JP2018161860A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/482Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs
    • B29B7/483Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs the other mixing parts being discs perpendicular to the screw axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/823Temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/345Extrusion nozzles comprising two or more adjacently arranged ports, for simultaneously extruding multiple strands, e.g. for pelletising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a pellet of a thermoplastic resin composition in which resin deterioration (brown streak) is suppressed while maintaining dispersibility of a filler component and strength thereof in a high level even at high output.SOLUTION: There is provided a method that comprises melt-kneading of a thermoplastic resin composition containing at least a thermoplastic resin using a twin-screw extruder, and when a pellet is produced, the twin-screw extruder has a die head having a mouth ring, a screw and a screw head, and the screw head has a cylindrical portion, and melt-kneading is performed so as to satisfy the following formula (1) and formula (2): Q>0.045Dformula (1); S/D<1.35 formula (2). In the formula, Q represents an amount of output (kg/h), D represents a screw outer diameter (diameter; mm), and S represents a contact area (mm) between the cylindrical portion and the resin composition.SELECTED DRAWING: Figure 1

Description

本発明は、熱可塑性樹脂組成物のペレットの製造方法に関するものである。   The present invention relates to a method for producing pellets of a thermoplastic resin composition.

融点の高いエンジニアリングプラスチックは、二軸押出機を用い、高い溶融混練温度で、種々の添加剤や無機フィラーと混練し、熱可塑性樹脂組成物を調製する事で、目的とする物性を得ている。   Engineering plastics with a high melting point are obtained by kneading with various additives and inorganic fillers at a high melt kneading temperature using a twin-screw extruder to prepare the thermoplastic resin composition. .

エンジニアリングプラスチックを含む熱可塑性樹脂組成物のペレットを製造する方法は、一般的に、図1に例示する構成からなる二軸押出機を使用し、熱可塑性樹脂や添加剤、無機フィラー等の充填材をホッパーから供給し、シリンダ内の二軸のスクリュウで混練溶融させ、ダイヘッドで混練物が通る流路の断面形状を変形させ、複数の吐出孔を有する口金から複数の熱可塑性樹脂組成物のストランドを押し出し、冷却し造粒する工程を含む。   A method for producing pellets of a thermoplastic resin composition containing an engineering plastic generally uses a twin-screw extruder having the configuration illustrated in FIG. 1, and a filler such as a thermoplastic resin, an additive, or an inorganic filler. From a hopper, kneaded and melted with a biaxial screw in a cylinder, deformed the cross-sectional shape of the flow path through which the kneaded material passes by a die head, and a plurality of thermoplastic resin composition strands from a die having a plurality of discharge holes A step of extruding, cooling and granulating.

熱可塑性樹脂の種類、充填材の配合比などでその最適な溶融混練温度は異なるが、温度が高すぎると樹脂劣化や粘度低下による混練不足が生じ、温度が低すぎると粘度が増大し、樹脂と充填材の反応性低下、繊維状充填材の破断による強度低下や、装置への過負荷による吐出量の低下が課題となるため、最適とされる温度範囲は狭い。   The optimum melt-kneading temperature differs depending on the type of thermoplastic resin, the blending ratio of the filler, etc., but if the temperature is too high, there will be insufficient kneading due to resin deterioration or viscosity reduction, and if the temperature is too low, the viscosity will increase and the resin will increase. The reduction in the reactivity of the filler, the decrease in strength due to the breakage of the fibrous filler, and the decrease in the discharge amount due to overload on the apparatus are problems, so the optimum temperature range is narrow.

近年、二軸押出機はスクリュウのトルク強度の向上により、スクリュウの深溝化が可能となり、より小型の二軸押出機でも従来の大型の押出機と同等の吐出量が可能となってきた。このため、省スペース化、コスト削減の観点から二軸押出機の小型化が進んでいる。しかし、小型の二軸押出機で高吐出量の溶融混練を行おうとすると、大型の二軸押出機で同じ吐出量で溶融混練をするときと比べ、押出機内の滞留時間が減少する。このため小型の二軸押出機で高吐出量の溶融混練をするには、樹脂の溶融混練温度をより緻密にコントロールする事により、充填材をいっそう効率的に分散、反応させることが重要となってきている。   In recent years, twin screw extruders have been able to deepen the screw groove by improving the torque strength of the screw, and even smaller twin screw extruders have been able to deliver the same amount of discharge as conventional large extruders. For this reason, miniaturization of the twin screw extruder is progressing from the viewpoint of space saving and cost reduction. However, when trying to carry out a high discharge amount of melt kneading with a small twin-screw extruder, the residence time in the extruder is reduced compared to when melting and kneading with the same discharge amount with a large twin-screw extruder. For this reason, it is important to more efficiently disperse and react the filler by controlling the melt kneading temperature of the resin more precisely in order to carry out melt kneading at a high discharge rate with a small twin screw extruder. It is coming.

高吐出量で熱可塑性樹脂組成物のペレットを製造する際、ダイヘッドから口金の吐出孔へ向けて混練物が通る流路の断面形状を変形させる工程で、溶融樹脂の熱劣化が起きると思われる。その結果、着色したペレット(茶スジペレット)が発生し、歩留まりの低下が問題となっている。このため、茶スジペレットを、不良品として仕分ける処理、または吐出量を落とすなどの対応を余儀なくされ、熱可塑性樹脂組成物を製造する生産性の低下を招いている。   When pellets of thermoplastic resin composition are produced at a high discharge rate, it is thought that thermal degradation of the molten resin occurs in the process of deforming the cross-sectional shape of the flow path through which the kneaded material passes from the die head toward the discharge hole of the die. . As a result, colored pellets (tea stripe pellets) are generated, and a decrease in yield is a problem. For this reason, it is unavoidable to deal with the processing of sorting the tea streak pellets as a defective product, or to reduce the discharge amount, and the productivity of manufacturing the thermoplastic resin composition is reduced.

従来、二軸押出機のスクリュウエレメントの固定のためにスクリュウ先端部に取り付けられるスクリュウヘッド形状を変更する事によって、ダイヘッドから口金の吐出孔までの流路における溶融樹脂の劣化を抑制する押出技術が提案されている。   Conventionally, an extrusion technology that suppresses the deterioration of the molten resin in the flow path from the die head to the die discharge hole by changing the shape of the screw head attached to the screw tip for fixing the screw element of the twin screw extruder Proposed.

例えば、特許文献1では、ダイヘッド部での樹脂滞留を抑制するため、スクリュウヘッド形状を楕円形とし、長径から短径方向へと傾斜する屋根形状を形成させ、かつ互いのスクリュウヘッドの長径が直角を成すよう組み付けている。   For example, in Patent Document 1, in order to suppress resin stagnation in the die head portion, the screw head shape is elliptical, a roof shape that is inclined from the major axis to the minor axis direction is formed, and the major axes of the screw heads are perpendicular to each other. It is assembled to form.

また、特許文献2では、ダイヘッド内部での局所的な摩擦を低減するため、スクリュウヘッドに複数の羽根を周方向に間隔をおいて突設され、ダイヘッド内面に近接させるよう設置している。   Further, in Patent Document 2, in order to reduce local friction inside the die head, a plurality of blades are protruded from the screw head at intervals in the circumferential direction and installed so as to be close to the inner surface of the die head.

さらに、特許文献3では、滞留劣化を防ぎ、均一な樹脂組成物の加熱のため、先端に向かって混練部のスクリュウ径より徐々に拡径されたテーパー部とテーパー部より先端側にバレル内径との隙間が一定である平行部とにより構成されたスクリュウヘッドを取り付けている。   Furthermore, in Patent Document 3, in order to prevent stagnation deterioration and to heat a uniform resin composition, a taper portion gradually expanded from the screw diameter of the kneading portion toward the tip and a barrel inner diameter on the tip side from the taper portion. A screw head constituted by a parallel portion having a constant gap is attached.

特開昭55−57444号公報JP-A-55-57444 特開平9−76326号公報Japanese Patent Laid-Open No. 9-76326 特開平9−85804号公報JP-A-9-85804

しかしながら、特許文献1、2、3に記載されたスクリュウヘッドは、いずれも一般的な形状ではなく、加工難度が高い。そのうち、特許文献1、2に記載のスクリュウヘッドは組み付けに一対のスクリュウヘッドの位相合わせが必要となり、組み付けが容易ではない。また、特に高吐出での連続生産時に問題となるスクリュウヘッドの磨耗による形状変化時には、機械強度の低下による破損の恐れや、目的である樹脂劣化抑制の効果も奏しない。特許文献3に記載されるスクリュウヘッドは、樹脂組成物の押出機内での滞留抑制には効果を奏するが、スクリュウヘッドを拡径することで、高吐出条件化では、より激しいせん断がかかり、熱劣化が促進してしまう。   However, the screw heads described in Patent Documents 1, 2, and 3 are not general shapes and have a high degree of processing difficulty. Among them, the screw heads described in Patent Documents 1 and 2 require phase alignment of a pair of screw heads for assembly, and the assembly is not easy. Further, at the time of shape change due to wear of the screw head, which becomes a problem particularly in continuous production with high discharge, there is no fear of breakage due to a decrease in mechanical strength and the intended effect of suppressing resin deterioration. The screw head described in Patent Document 3 is effective in suppressing the retention of the resin composition in the extruder, but by increasing the diameter of the screw head, more severe shearing is applied under high discharge conditions, Deterioration is accelerated.

一方、熱可塑性樹脂組成物のペレットの製造条件として、スクリュウ回転数の低減、シリンダ温度の低減により、溶融樹脂の劣化を抑制する事が考えられる。しかしながら、小型の二軸押出機で高吐出量の溶融混練を行うとき、スクリュウ回転数の低減は、充填材成分(例えばガラス繊維)の未分散が問題となり、シリンダ温度の低減は、充填材との反応性減による強度低下が問題となる。このため、高吐出量における、充填材成分の分散性、強度を高いレベルで維持しながら、樹脂劣化(茶スジ)を抑制する事は、非常に困難であった。   On the other hand, as a manufacturing condition of the pellets of the thermoplastic resin composition, it is conceivable to suppress deterioration of the molten resin by reducing the screw rotation speed and the cylinder temperature. However, when melt-kneading a high discharge amount with a small twin-screw extruder, the reduction in screw rotation speed is a problem of undispersed filler components (for example, glass fibers), and the reduction in cylinder temperature The decrease in strength due to a decrease in reactivity is a problem. For this reason, it has been very difficult to suppress resin deterioration (tea stripes) while maintaining the dispersibility and strength of the filler component at a high level at a high discharge rate.

本発明の目的は、小型の二軸押出機で高吐出量の溶融混練を行うときでも、充填材成分の分散性、強度を高いレベルで維持しながら、樹脂劣化(茶スジ)を抑制し、優れた品質を有する熱可塑性樹脂組成物のペレットの製造方法を提供することにある。   The purpose of the present invention is to suppress resin deterioration (tea stripes) while maintaining a high level of dispersibility and strength of the filler component even when performing high-discharge-rate melt kneading with a small twin-screw extruder. It is providing the manufacturing method of the pellet of the thermoplastic resin composition which has the outstanding quality.

上記課題を解決する本発明の熱可塑性樹脂組成物のペレットの製造方法は、以下(1)〜(8)の構成からなる。(1)少なくとも熱可塑性樹脂を含む熱可塑性樹脂組成物を、二軸押出機を用いて溶融混練し、熱可塑性樹脂組成物のペレットを製造する方法であって、前記二軸押出機がダイヘッド、スクリュウ、および該スクリュウの先端に取り付けられるスクリュウヘッドを有し、前記ダイヘッドが口金を有し、前記スクリュウヘッドが円柱部を有し、かつ、以下の(1)式および(2)式が満足されるように溶融混練する、熱可塑性樹脂組成物のペレットの製造方法。
Q>0.045D2.3 ・・・(1)式
S/D<1.35 ・・・(2)式
ここで、Qは熱可塑性樹脂組成物の吐出量(kg/h)、Dはスクリュウ外径(直径;mm)、Sは円柱部と樹脂組成物との接触面積(mm)を表す。
(2)更に以下の(3)式を満たすように溶融混練する、前記(1)に記載の熱可塑性樹脂組成物のペレットの製造方法。
S/D<1.10 ・・・(3)式
ここで、Dはスクリュウ外径(直径;mm)、Sは円柱部と樹脂組成物との接触面積(mm)を表す。
(3)前記熱可塑性樹脂の融点が200℃以上である、前記(1)または(2)に記載の熱可塑性樹脂組成物のペレットの製造方法。
(4)前記熱可塑性樹脂がポリアミドである、前記(1)〜(3)のいずれかに記載の熱可塑性樹脂組成物のペレットの製造方法。
(5)前記熱可塑性樹脂組成物が、さらに無機フィラーを含む、前記(1)〜(4)のいずれかに記載の熱可塑性樹脂組成物のペレットの製造方法。
(6)前記無機フィラーがガラス繊維である、前記(5)に記載の熱可塑性樹脂組成物のペレットの製造方法。
(7)前記無機フィラーの含有量が、前記熱可塑性樹脂100重量部に対し、80重量部以上である、前記(5)または(6)に記載の熱可塑性樹脂組成物のペレットの製造方法。
(8)前記口金が複数の吐出孔を有し、全ての吐出孔において、それぞれの吐出孔から吐出される前記熱可塑性樹脂組成物の温度Tcと前記熱可塑性樹脂の融点Tmとの差(Tc−Tm)が35℃以上55℃以下である、前記(1)〜(7)のいずれかに記載の熱可塑性樹脂組成物のペレットの製造方法。
The manufacturing method of the pellet of the thermoplastic resin composition of this invention which solves the said subject consists of the structure of (1)-(8) below. (1) A method of producing a pellet of a thermoplastic resin composition by melt-kneading a thermoplastic resin composition containing at least a thermoplastic resin using a twin screw extruder, wherein the twin screw extruder is a die head, A screw and a screw head attached to the tip of the screw; the die head has a base; the screw head has a cylindrical portion; and the following expressions (1) and (2) are satisfied: A method for producing pellets of a thermoplastic resin composition, which is melt-kneaded as described above.
Q> 0.045D 2.3 (1) Formula S / D 2 <1.35 (2) Formula where Q is the discharge amount (kg / h) of the thermoplastic resin composition, D Represents an outer diameter of the screw (diameter: mm), and S represents a contact area (mm 2 ) between the cylindrical portion and the resin composition.
(2) The method for producing pellets of the thermoplastic resin composition according to (1), further melt-kneaded so as to satisfy the following expression (3).
S / D 2 <1.10 (3) where D represents the screw outer diameter (diameter; mm), and S represents the contact area (mm 2 ) between the cylindrical portion and the resin composition.
(3) The manufacturing method of the pellet of the thermoplastic resin composition as described in said (1) or (2) whose melting | fusing point of the said thermoplastic resin is 200 degreeC or more.
(4) The method for producing pellets of the thermoplastic resin composition according to any one of (1) to (3), wherein the thermoplastic resin is polyamide.
(5) The method for producing pellets of the thermoplastic resin composition according to any one of (1) to (4), wherein the thermoplastic resin composition further contains an inorganic filler.
(6) The manufacturing method of the pellet of the thermoplastic resin composition as described in said (5) whose said inorganic filler is glass fiber.
(7) The method for producing pellets of the thermoplastic resin composition according to (5) or (6), wherein the content of the inorganic filler is 80 parts by weight or more with respect to 100 parts by weight of the thermoplastic resin.
(8) The base has a plurality of discharge holes, and the difference between the temperature Tc of the thermoplastic resin composition discharged from each discharge hole and the melting point Tm of the thermoplastic resin (Tc) in all the discharge holes. -Tm) is the manufacturing method of the pellet of the thermoplastic resin composition in any one of said (1)-(7) whose are 35 degreeC or more and 55 degrees C or less.

本発明の熱可塑性樹脂組成物のペレットの製造方法によれば、スクリュウヘッドと熱可塑性樹脂組成物の接触面積を低減する事で、小型の二軸押出機を使用して高吐出量で溶融混練しても、充填材成分の分散性、強度を維持しつつ、樹脂劣化(茶スジペレット数)を低減させることが可能となる。   According to the method for producing a pellet of the thermoplastic resin composition of the present invention, by reducing the contact area between the screw head and the thermoplastic resin composition, it is melt kneaded at a high discharge rate using a small twin screw extruder. Even so, it is possible to reduce resin deterioration (the number of tea streak pellets) while maintaining the dispersibility and strength of the filler component.

本発明の製造方法に使用する二軸押出機の実施形態の一例の断面を示す概略図である。It is the schematic which shows the cross section of an example of embodiment of the twin-screw extruder used for the manufacturing method of this invention. 図1に記載の二軸押出機における吐出部の(A)上面図および(B)側面図である。It is the (A) top view and (B) side view of the discharge part in the twin-screw extruder of FIG. 実施例および比較例の製造方法における熱可塑性樹脂組成物の吐出温度分布を示すグラフである。It is a graph which shows the discharge temperature distribution of the thermoplastic resin composition in the manufacturing method of an Example and a comparative example.

以下、本発明の実施形態などについて図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の熱可塑性樹脂組成物のペレットの製造方法において、好適に使用される二軸押出機の実施形態の一例を示す模式的断面図である。この二軸押出機は、原料供給部(a)、溶融混錬部(b)、及び吐出部(c)を含む。   FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of a twin-screw extruder suitably used in the method for producing pellets of the thermoplastic resin composition of the present invention. This twin-screw extruder includes a raw material supply unit (a), a melt kneading unit (b), and a discharge unit (c).

図2は、吐出部(c)の実施形態の1例を示す模式的断面図であり、(A)は上面図、(B)は側面図である。   FIG. 2 is a schematic cross-sectional view showing an example of an embodiment of the discharge section (c), where (A) is a top view and (B) is a side view.

原料供給部(a)は、少なくとも1組のフィーダーおよびホッパーにより構成され、二軸押出機の上部および/または側部から、熱可塑性樹脂、無機フィラー、その他配合剤等の原料を投入する機能を有する。また二軸押出機の最も上流側(駆動機側)に配置された主投入口および/または二軸押出機の上流から下流の間の任意の位置に配置されたサイド口から、原料を供給することができる。原料の形態は、固体状、液体状のいずれでもよい。フィーダーは、容量式、重量計量式、のいずれでもよく、また単軸スクリュウ型、二軸スクリュウ型、振動型、ポンプ型、ベルト型のいずれでもよい。   The raw material supply unit (a) is composed of at least one pair of feeders and hoppers, and has a function of supplying raw materials such as thermoplastic resin, inorganic filler, and other compounding agents from the upper part and / or the side part of the twin screw extruder. Have. In addition, the raw material is supplied from the main input port arranged on the most upstream side (driving machine side) of the twin-screw extruder and / or the side port arranged at an arbitrary position between the upstream and downstream of the twin-screw extruder. be able to. The form of the raw material may be either solid or liquid. The feeder may be any of a capacity type and a weight measurement type, and may be any of a single-screw type, a bi-axial screw type, a vibration type, a pump type, and a belt type.

溶融混錬部(b)は、シリンダ(d)およびスクリュウ(e)により構成され、2本のスクリュウ(e)が、機械方向に平行に配置されたシリンダ(d)内部の空間に収容され、駆動機に接続される。2本のスクリュウ(e)は、それぞれの軸心を回転軸にし、互いに同方向または異方向に回転する。スクリュウ(e)の回転に伴い、原料供給部(a)に投入された原料が、吐出部(c)に向かって搬送されながら熱を受け、原料樹脂が溶融し、分配、分散され混練される。シリンダ(d)は、複数のバレルを並べて配置して構成され、バレル毎に温度制御を行うと共に、原料投入口および脱気口の有無を決めることができる。スクリュウ(e)は、複数のスクリュウエレメントからなり、フルフライト、ニーディングディスク、ミキシング、等の任意のエレメントを組合わせることができる。また各エレメントのねじり方向は、混練物の流れ方向に対し、順方向、中立、逆方向のいずれでもよい。さらにエレメント断面は、二条形、三条形のいずれでもよく、噛み合い式、非噛み合い式のいずれでもよく、深溝式、浅溝式のいずれでもよく、これらを組み合わせてもよい。一組のスクリュウは、各スクリュウ軸に複数のエレメントを組合わせて、任意の形式で嵌め込み、そのスクリュウ軸の先端にスクリュウヘッド(h)が嵌められ固定されることにより、組み立てられる。本明細書において、スクリュウ(e)の駆動機側端部からスクリュウヘッド(h)より上流側を、溶融混錬部(b)という。   The melt kneading part (b) is constituted by a cylinder (d) and a screw (e), and two screws (e) are accommodated in a space inside the cylinder (d) arranged in parallel to the machine direction, Connected to the drive. The two screws (e) rotate in the same direction or different directions from each other with their respective axis centers as rotational axes. As the screw (e) rotates, the raw material charged into the raw material supply unit (a) receives heat while being conveyed toward the discharge unit (c), and the raw material resin melts, is distributed, dispersed, and kneaded. . The cylinder (d) is configured by arranging a plurality of barrels side by side, performs temperature control for each barrel, and can determine the presence or absence of a raw material inlet and a deaeration port. The screw (e) is composed of a plurality of screw elements, and arbitrary elements such as full flight, kneading disk, and mixing can be combined. Further, the twisting direction of each element may be any of the forward direction, the neutral direction, and the reverse direction with respect to the flow direction of the kneaded material. Further, the element cross section may be either a two-row shape or a three-row shape, may be either a meshing type or a non-meshing type, may be either a deep groove type or a shallow groove type, or a combination thereof. A set of screws is assembled by combining a plurality of elements on each screw shaft, fitting them in an arbitrary form, and fitting and fixing a screw head (h) to the tip of the screw shaft. In the present specification, the upstream side from the screw head (h) from the drive side end of the screw (e) is referred to as a melt kneading part (b).

吐出部(c)は、溶融混錬部(b)で得られた溶融混練物を、機外に所定の形状で押出すためのダイヘッド(f)からなり、その内部にスクリュウヘッド(h)を有する。図2は、溶融混錬部(b)で得られた溶融混練物を、ダイヘッド(f)およびその先端の口金(g)の長い矩形領域内に配置された複数の吐出孔を通し、複数のストランドとして押出す装置構成を例示するものである。押し出されたストランドは、任意の方法で冷却され、ストランドカッターで切断されて、ペレットが製造される。図2の例は、複数の吐出孔を長い矩形領域内に配置する口金(g)を記載するが、口金(g)における複数の吐出孔の配置はこれに限定されるものではなく、円周上、または複数の同心円の周上に配置してもよい。また、溶融混練物が吐出孔から押し出した直後に、ホットカット、水中カットなどにより切断し、ペレット形状にした後に冷却してもよい。   The discharge part (c) consists of a die head (f) for extruding the melt-kneaded product obtained in the melt-kneading part (b) in a predetermined shape outside the machine, and a screw head (h) inside Have. FIG. 2 shows that the melt-kneaded product obtained in the melt-kneading part (b) passes through a plurality of discharge holes arranged in a long rectangular region of the die head (f) and the base (g) at the tip thereof, The apparatus structure which extrudes as a strand is illustrated. The extruded strand is cooled by an arbitrary method and cut with a strand cutter to produce pellets. The example of FIG. 2 describes a base (g) in which a plurality of discharge holes are arranged in a long rectangular region, but the arrangement of the plurality of discharge holes in the base (g) is not limited to this, You may arrange | position on the circumference | surroundings of the top or several concentric circles. Further, immediately after the melt-kneaded product is extruded from the discharge hole, it may be cut by hot cutting, underwater cutting, etc., and cooled to a pellet shape.

本発明の製造方法に使用する二軸押出機は、少なくともダイヘッド(f)、スクリュウ(e)、およびスクリュウの先端に取り付けられるスクリュウヘッド(h)を有する。またダイヘッド(f)が口金(g)を有し、スクリュウヘッド(h)が円柱部を有する。この円柱部は、円柱の中心線が、スクリュウ(e)の軸心の延長線と重なるように配置する他は、特に制限されるものではなく、スクリュウヘッド(h)の任意の一部を構成する。円柱部の外径(直径)は、好ましくはスクリュウ(e)の溝底の内接円と略同じにしてもよく、異ならせてもよい。   The twin-screw extruder used in the production method of the present invention has at least a die head (f), a screw (e), and a screw head (h) attached to the tip of the screw. The die head (f) has a base (g), and the screw head (h) has a cylindrical portion. The cylindrical part is not particularly limited except that the center line of the cylinder overlaps with the extension line of the axial center of the screw (e), and constitutes an arbitrary part of the screw head (h). To do. The outer diameter (diameter) of the cylindrical portion is preferably substantially the same as or different from the inscribed circle at the groove bottom of the screw (e).

本発明におけるスクリュウヘッド(h)の形状は、摩擦により形状変化しても溶融樹脂温度に影響を及ぼすことがなく、加工がしやすく組み付けがしやすい円柱部を有している事を特徴としている。スクリュウヘッド(h)の円柱部以外の形状については、特に限定されない。また、ダイヘッド(f)は、ダイヘッド内の圧力を低減するため、スクリュウヘッド周辺の空間をシリンダ内径より広げていても良い。   The shape of the screw head (h) in the present invention is characterized by having a cylindrical portion that does not affect the molten resin temperature even if the shape changes due to friction, and that is easy to process and easy to assemble. . The shape other than the cylindrical portion of the screw head (h) is not particularly limited. Further, the die head (f) may have a space around the screw head wider than the cylinder inner diameter in order to reduce the pressure in the die head.

またスクリュウヘッド(h)の材質は、磨耗による形状変化を防止するため、HRC硬度が50以上である事が好ましく、クロムメッキや窒化チタンコーティング等の表面処理を施していても良い。   The material of the screw head (h) preferably has an HRC hardness of 50 or more in order to prevent a shape change due to wear, and may be subjected to a surface treatment such as chrome plating or titanium nitride coating.

本発明者らは、研究の結果、スクリュウヘッド(h)の延長線上に存在する吐出孔から吐出される樹脂の温度が、他の吐出孔から吐出される樹脂の温度より高いと茶スジを有するペレットの量が増えること、および全ての吐出孔から吐出される樹脂温度の最大値が高いと茶スジを有するペレットの量が増えるという相関がある事を見出した。そして、以下の(1)式を満たす高吐出量の混練条件において、以下の(2)式の要件を満たすこと、より好ましくは(3)式の要件を満たすことにより、溶融混練温度を下げず優れた混練性能を確保しながら、吐出される樹脂温度の最大値を低減し、茶スジを有するペレットの量を大幅に削減することを見出した。
Q>0.045D2.3 ・・・(1)式
S/D<1.35 ・・・(2)式
S/D<1.10 ・・・(3)式
ここで、Qは熱可塑性樹脂組成物の吐出量(kg/h)、Dはスクリュウ外径(直径;mm)、Sは円柱部と樹脂組成物との接触面積(mm)を表す。
As a result of research, the inventors of the present invention have brown stripes when the temperature of the resin discharged from the discharge holes existing on the extension line of the screw head (h) is higher than the temperature of the resin discharged from the other discharge holes. It has been found that there is a correlation that the amount of pellets increases, and that the amount of pellets having brown stripes increases when the maximum value of the resin temperature discharged from all the discharge holes is high. And in the kneading conditions of the high discharge amount satisfying the following formula (1), the melt kneading temperature is not lowered by satisfying the requirement of the following formula (2), more preferably satisfying the requirement of the formula (3). It has been found that while ensuring excellent kneading performance, the maximum value of the discharged resin temperature is reduced and the amount of pellets having tea streaks is greatly reduced.
Q> 0.045D 2.3 (1) Formula S / D 2 <1.35 (2) Formula S / D 2 <1.10 (3) where Q is The discharge amount (kg / h) of the thermoplastic resin composition, D is the screw outer diameter (diameter: mm), and S is the contact area (mm 2 ) between the cylindrical portion and the resin composition.

本発明の製造方法は、前記(1)式を満たし、吐出量Q(kg/h)が、スクリュウ外径D(mm)に対して高吐出量でペレットを製造するという、茶スジを有するペレットが発生しやすい条件下において、係る課題を解決するものである。一般的に二軸押出機は押出機のスクリュウ外径D(mm)が大きいほど、高吐出量が可能である。本発明では、吐出量Q(kg/h)が、前記(1)式を満たすように、スクリュウ外径に対して高吐出量でペレットを製造することにより、二軸押出機内の圧力が大きくなる事で、溶融樹脂により大きなせん断がかかり、溶融樹脂温度が高くなる。また、多量の溶融樹脂を押し出すため、スクリュウ回転数を高くする必要があり、スクリュウ回転数を高くすると、さらに大きなせん断がかかり溶融樹脂温度はさらに上昇してしまうため、前記(1)式を満たす高吐出量でのペレットの製造では、樹脂劣化(茶スジ)を引き起こしやすい。本発明は、高吐出でのペレットの製造時でも、前記(2)式を満たすことにより、樹脂劣化を生じさせない、または大幅に削減することができる。   The manufacturing method of the present invention satisfies the formula (1), and has a tea streak in which a discharge amount Q (kg / h) is manufactured at a high discharge amount with respect to the screw outer diameter D (mm). This is to solve the problem under the condition where the occurrence of the problem is likely to occur. Generally, a twin screw extruder is capable of a higher discharge amount as the screw outer diameter D (mm) of the extruder is larger. In the present invention, the pressure in the twin-screw extruder is increased by producing pellets with a high discharge amount with respect to the screw outer diameter so that the discharge amount Q (kg / h) satisfies the formula (1). As a result, a large shear is applied to the molten resin, and the molten resin temperature increases. Further, in order to extrude a large amount of molten resin, it is necessary to increase the screw rotation speed. If the screw rotation speed is increased, the shearing resin temperature further rises and the molten resin temperature further rises. Therefore, the above equation (1) is satisfied. In the production of pellets at a high discharge rate, resin degradation (tea stripes) is likely to occur. In the present invention, even when the pellets are produced at a high discharge rate, the deterioration of the resin can be prevented or greatly reduced by satisfying the formula (2).

研究の結果、熱可塑性樹脂組成物がスクリュウヘッド(h)の円柱部に接触すると、その樹脂温度が局所的に高くなりやすく、スクリュウヘッド(h)の円柱部と熱可塑性樹脂組成物の接触面積(S)が大きいほど、スクリュウヘッド(h)の延長線上に存在する吐出孔から吐出される樹脂の温度が、他の吐出孔から吐出される樹脂温度より高くなるという知見が得られた。更に、全ての吐出孔から吐出される樹脂温度の最大値と茶スジ量に相関がある事を見出した。   As a result of research, when the thermoplastic resin composition comes into contact with the cylindrical portion of the screw head (h), the resin temperature tends to increase locally, and the contact area between the cylindrical portion of the screw head (h) and the thermoplastic resin composition It was found that the larger the (S), the higher the temperature of the resin discharged from the discharge holes existing on the extension line of the screw head (h) than the temperature of the resin discharged from the other discharge holes. Furthermore, it has been found that there is a correlation between the maximum value of the resin temperature discharged from all the discharge holes and the amount of tea streaks.

スクリュウ外径Dに対する、スクリュウヘッド(h)の円柱部と熱可塑性樹脂組成物の接触面積Sの関係は、S/Dが、1.35以下であることが必要であり、好ましくは、1.10以下であるとよい。S/Dを1.35以下にすることにより、吐出孔から吐出される樹脂の温度を適正化し、温度分布を小さくすることができる。ただし、機械強度を保つためには、S/Dが0.30以上であることが好ましい。円柱部と熱可塑性樹脂組成物の接触面積Sは、溶融樹脂を口金から圧力をかけて押し出すため、ダイヘッドからスクリュウヘッドの周囲にかけて熱可塑性樹脂組成物が密に充填されることから、円柱部の外周表面の面積を、熱可塑性樹脂組成物との接触面積Sとすることができ、円柱部の外周長×円柱長で算出できる。通常、二軸押出機の特性は、スクリュウ外径Dの二乗Dに相似形であることから、接触面積Sをスクリュウ外径の二乗Dで規格化することにより、異なるスクリュウ外径Dを有する二軸押出機にも適用することができる。 The relationship between the cylindrical portion of the screw head (h) and the contact area S of the thermoplastic resin composition with respect to the screw outer diameter D requires that S / D 2 is 1.35 or less, preferably 1 .10 or less. By the S / D 2 to 1.35, and optimizing the temperature of the resin discharged from the discharge hole, it is possible to reduce the temperature distribution. However, in order to maintain the mechanical strength, it is preferable S / D 2 is at least 0.30. The contact area S between the cylindrical portion and the thermoplastic resin composition is that the molten resin is extruded from the die by applying pressure, so the thermoplastic resin composition is densely filled from the die head to the periphery of the screw head. The area of the outer peripheral surface can be defined as the contact area S with the thermoplastic resin composition, and can be calculated by the outer peripheral length of the cylindrical portion × the cylindrical length. Normally, the characteristics of the twin screw extruder, because it is similar in shape to the square D 2 of the screw outer diameter D, by normalizing the contact area S in square D 2 of the screw outer diameter, a different screw outer diameter D It is applicable also to the twin-screw extruder which has.

本発明の製造方法は、熱可塑性樹脂の融点が200℃以上であり、高温での混練が必要な茶スジの発生しやすい高融点の熱可塑性樹脂を含む熱可塑性樹脂組成物に好適に用いることができる。熱可塑性樹脂として、例えば、ポリアミド(ナイロン6、ナイロン66、ナイロン610、ナイロン9T、ナイロン10T等)、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリフェニレンエーテル、ポリエーテルエーテルケトン、液晶プラスチック等を用いることができる。このうち、さらに好適である熱可塑性樹脂は、茶スジの発生しやすいポリアミドである。   The production method of the present invention is preferably used for a thermoplastic resin composition containing a thermoplastic resin having a high melting point where the melting point of the thermoplastic resin is 200 ° C. or higher and tea streaks that require kneading at a high temperature are likely to occur. Can do. As the thermoplastic resin, for example, polyamide (nylon 6, nylon 66, nylon 610, nylon 9T, nylon 10T, etc.), polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polyphenylene ether, polyether ether ketone, liquid crystal plastic, etc. are used. Can do. Of these, a more suitable thermoplastic resin is a polyamide that easily generates tea stripes.

熱可塑性樹脂組成物に無機フィラーを配合すると、粘度が高くなるため、せん断発熱が大きくなり、樹脂劣化が生じやすくなるが、熱可塑性樹脂組成物の機械的強度を向上させることができるため、好ましい。無機フィラーを含む熱可塑性樹脂組成物を製造するとき、本発明の製造方法を用いることにより、茶スジを有するペレットの発生を抑制することができる。   When an inorganic filler is blended in the thermoplastic resin composition, the viscosity becomes high, so that shear heat generation becomes large and resin degradation is likely to occur, but it is preferable because the mechanical strength of the thermoplastic resin composition can be improved. . When manufacturing the thermoplastic resin composition containing an inorganic filler, generation | occurrence | production of the pellet which has a tea streak can be suppressed by using the manufacturing method of this invention.

本発明で使用できる無機フィラーとしては、熱可塑性樹脂組成物の無機フィラーとして通常、使用されるものが使用できる。無機フィラーとして、例えば、ガラス繊維、炭素繊維、アスベスト繊維、グラファイト繊維、金属繊維、チタン酸カリウムウイスカ、ホウ酸アルミニウムウイスカ、マグネシウム系ウイスカ、珪素系ウイスカ、スラグ繊維、石膏繊維、シリカ繊維、シリカアルミナ繊維、ジルコニア繊維、窒化ホウ素繊維、窒化硅素繊維及びホウ素繊維などの無機強化繊維や、ベントナイト、ドロマイト、モンモリロナイト、バーライト、微粉ケイ酸、ケイ酸アルミニウム、酸化ケイ素、ドーソナイト、シラスバルーン、クレー、セリサイト、長石粉、タルク、炭酸カルシウム、炭酸リチウム、水酸化マグネシウム、カオリン、ゼオライト(合成ゼオライトも含む)、滑石、マイカ、合成マイカおよびワラステナイト(合成ワラステナイトも含む)、ガラスフレーク、ガラスビーズ、ハイドロタルサイトおよびシリカ等の珪酸鉱物、珪酸塩鉱物や種々の鉱物類を粉砕などの加工により微粉化した板状、針状、および粒状の無機フィラーが挙げられ、またこれら無機フィラーを2種以上配合してもよい。このうち、使用する無機フィラーとして、ガラス繊維が好ましい。また、本発明の製造方法は、熱可塑性樹脂100重量部に対し、無機フィラーを好ましくは80重量部以上配合する、高粘度となる熱可塑性樹脂組成物のペレットを製造するのに好適である。   As the inorganic filler that can be used in the present invention, those usually used as an inorganic filler of a thermoplastic resin composition can be used. Examples of inorganic fillers include glass fiber, carbon fiber, asbestos fiber, graphite fiber, metal fiber, potassium titanate whisker, aluminum borate whisker, magnesium whisker, silicon whisker, slag fiber, gypsum fiber, silica fiber, and silica alumina. Fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber and boron fiber, etc. Site, feldspar powder, talc, calcium carbonate, lithium carbonate, magnesium hydroxide, kaolin, zeolite (including synthetic zeolite), talc, mica, synthetic mica and wollastonite (including synthetic wollastonite), glass fiber Silicate minerals such as ceramics, glass beads, hydrotalcite and silica, silicate minerals and various minerals, such as plate, needle, and granular inorganic fillers that have been pulverized by processing such as grinding. Two or more inorganic fillers may be blended. Among these, glass fiber is preferable as the inorganic filler to be used. The production method of the present invention is suitable for producing pellets of a thermoplastic resin composition having a high viscosity, in which an inorganic filler is preferably blended in an amount of 80 parts by weight or more with respect to 100 parts by weight of the thermoplastic resin.

添加剤については、可塑剤、離型剤、カップリング剤、結晶核材、酸化防止剤、光安定剤、紫外線吸収剤、エポキシ樹脂、シランカップリング剤、含水珪酸マグネシウム、PEEK樹脂、PTFE樹脂、黒鉛、生カーボン、ステアリン酸塩類、リン酸エステル類、酸化鉄等が挙げられる。   About additives, plasticizer, mold release agent, coupling agent, crystal nucleus material, antioxidant, light stabilizer, ultraviolet absorber, epoxy resin, silane coupling agent, hydrous magnesium silicate, PEEK resin, PTFE resin, Examples thereof include graphite, raw carbon, stearates, phosphate esters, and iron oxide.

本発明において、全ての吐出孔において、それぞれの吐出孔から吐出される熱可塑性樹脂組成物の温度Tcと、熱可塑性樹脂組成物に含まれる熱可塑性樹脂の融点Tmとの差(Tc−Tm)は35℃以上55℃以下である事が好ましい。熱可塑性樹脂組成物の温度Tcと融点Tmとの差(Tc−Tm)が35℃未満である場合、粘度低下による充填材の反応性低下による強度低下や押出機への過負荷が問題となり、(Tc−Tm)が55℃を超えると充填材の分散不良や樹脂劣化が問題となる。   In the present invention, the difference between the temperature Tc of the thermoplastic resin composition discharged from each discharge hole and the melting point Tm of the thermoplastic resin contained in the thermoplastic resin composition (Tc−Tm) in all the discharge holes. Is preferably 35 ° C. or higher and 55 ° C. or lower. If the difference (Tc−Tm) between the temperature Tc and the melting point Tm of the thermoplastic resin composition is less than 35 ° C., strength reduction due to a decrease in the reactivity of the filler due to a decrease in viscosity and an overload on the extruder become a problem. When (Tc−Tm) exceeds 55 ° C., poor dispersion of the filler and resin degradation become a problem.

次に実施例及び比較例によって、本発明の効果を具体的に説明する。   Next, the effects of the present invention will be specifically described with reference to Examples and Comparative Examples.

熱可塑性樹脂および無機フィラーを含む熱可塑性樹脂組成物を、二軸押出機を用い、スクリュウヘッドの形状および混練条件を異ならせ、熱可塑性樹脂組成物のペレットを製造した。得られたペレットについて、茶スジを有するペレットの有無、無機フィラー(ガラス繊維)の分散状態、および成形品の機械的特性を評価した。   The thermoplastic resin composition containing the thermoplastic resin and the inorganic filler was manufactured using a twin screw extruder, and the shape of the screw head and the kneading conditions were varied to produce pellets of the thermoplastic resin composition. About the obtained pellet, the presence or absence of the pellet which has a tea streak, the dispersion state of an inorganic filler (glass fiber), and the mechanical characteristic of a molded article were evaluated.

熱可塑性樹脂組成物の組成は、熱可塑性樹脂としてナイロン66(東レ(株)製 E3001(融点265℃))、無機フィラーとしてガラス繊維(日本電気硝子(株)製 T−253(長さ3mm、繊維径13μmのチョップドストランド))を使用し、熱可塑性樹脂100重量部に対し、無機フィラーを82重量部配合するように、かつ表1に記載された吐出量Q(kg/h)になるように、メインフィーダーからの熱可塑性樹脂の供給量、およびサイドフィーダーからの無機フィラーの供給量をそれぞれ決定した。   The composition of the thermoplastic resin composition is nylon 66 (E3001 (melting point: 265 ° C.) manufactured by Toray Industries, Inc.) as a thermoplastic resin, and glass fiber (T-253 (length: 3 mm, manufactured by Nippon Electric Glass Co., Ltd.) as an inorganic filler. Chopped strands having a fiber diameter of 13 μm)), and 82 parts by weight of the inorganic filler with respect to 100 parts by weight of the thermoplastic resin, and the discharge amount Q (kg / h) described in Table 1 In addition, the supply amount of the thermoplastic resin from the main feeder and the supply amount of the inorganic filler from the side feeder were respectively determined.

使用した二軸押出機は、以下の通りである。
二軸押出機:(株)東芝機械製二軸押出機 TEM75−SS スクリュウ長さ(L); 3000mm
スクリュウ外径(D);75mm
メインフィーダーの位置;L/D= 0〜10のバレルの上方
サイドフィーダーの位置;L/D=50〜60のバレルの側方
この二軸押出機で溶融混練するとき、前記(1)式の右辺の値は、0.045D2.3=924であり、吐出量Qを924(kg/h)より大きくすると、前記(1)式の関係を満たすことになる。
The twin screw extruder used is as follows.
Twin screw extruder: Toshiba Machine twin screw extruder TEM75-SS Screw length (L); 3000 mm
Screw outer diameter (D); 75mm
Position of main feeder; upper part of barrel of L / D = 0 to 10 Side feeder position; side of barrel of L / D = 50 to 60 When melt kneading with this twin-screw extruder, the above formula (1) The value on the right side is 0.045D 2.3 = 924, and when the discharge amount Q is larger than 924 (kg / h), the relationship of the expression (1) is satisfied.

またスクリュウの先端に、円柱部を有するスクリュウヘッドを取り付け、円柱部の形状を以下の通り異ならせた。
スクリュウヘッドA:円柱部長さが20.0mm、円柱部直径が48.0mm、円柱部と樹脂組成物との接触面積が3016mm
スクリュウヘッドB:円柱部長さが40.0mm、円柱部直径が48.0mm、円柱部と樹脂組成物との接触面積が6032mm
スクリュウヘッドC:円柱部長さが50.0mm、円柱部直径が48.0mm、円柱部と樹脂組成物との接触面積が7540mm
スクリュウヘッドD:円柱部長さが73.5mm、円柱部直径が48.0mm、円柱部と樹脂組成物との接触面積が11084mm
Moreover, the screw head which has a cylindrical part was attached to the front-end | tip of a screw, and the shape of the cylindrical part was varied as follows.
Screw head A: cylinder part length is 20.0 mm, cylinder part diameter is 48.0 mm, and the contact area between the cylinder part and the resin composition is 3016 mm 2 .
Screw head B: cylinder part length is 40.0 mm, cylinder part diameter is 48.0 mm, and the contact area between the cylinder part and the resin composition is 6032 mm 2 .
Screw head C: cylinder part length is 50.0 mm, cylinder part diameter is 48.0 mm, and the contact area between the cylinder part and the resin composition is 7540 mm 2 .
Screw head D: cylinder part length is 73.5 mm, cylinder part diameter is 48.0 mm, and the contact area between the cylinder part and the resin composition is 11084 mm 2 .

二軸押出機のダイヘッドは、溶融混錬部(b)から略楕円形の断面形状で押し出される溶融樹脂組成物を、口金へ向けて略水平方向に細長い矩形の断面形状であって、押出圧力が略同程度になるように、口金の形状に合わせるように徐々にその形状を変形させながら流動させる形態を有する。ダイヘッドが備える口金には、57個の吐出孔を略水平方向の直線状に配置した。また、押出機向かって左端の吐出孔の番号を1として、順に右へ2,3,・・・,57と番号付けを行い、各吐出孔から押出される溶融樹脂組成物の温度を測定した。溶融樹脂組成物の温度は、携帯型サーモグラフィー(Fluke社製Ti32)を使用した。   The die head of the twin-screw extruder has a rectangular cross-sectional shape that is elongated in a substantially horizontal direction toward the die, and is extruded from the melt-kneading part (b) with a substantially elliptical cross-sectional shape. In such a manner that the fluid flows while gradually deforming its shape so as to conform to the shape of the die so that it becomes substantially the same. In the die provided in the die head, 57 discharge holes were arranged in a substantially horizontal straight line. In addition, the number of the discharge hole at the left end toward the extruder is set to 1, and numbers 2, 3,..., 57 are sequentially assigned to the right, and the temperature of the molten resin composition extruded from each discharge hole is measured. . The temperature of the molten resin composition was a portable thermography (Ti32 manufactured by Fluke).

上述した熱可塑性樹脂組成物について、表1に記載した7種類の混練条件(実施例1〜3、比較例1、参考例1〜3)により溶融混練を行い、吐出孔から押出される溶融樹脂組成物のストランドを水冷した後、ストランドカッターで切断し、熱可塑性樹脂組成物のペレットを製品として得た。得られたペレットの樹脂劣化(茶スジ不良)、GF未解繊不良、および成形品のシャルピー衝撃強度を以下の方法で評価した。   The above-mentioned thermoplastic resin composition is melt-kneaded under the seven types of kneading conditions described in Table 1 (Examples 1 to 3, Comparative Example 1, Reference Examples 1 to 3), and extruded from the discharge holes. The strand of the composition was water-cooled and then cut with a strand cutter to obtain a thermoplastic resin composition pellet as a product. The obtained pellets were evaluated for resin deterioration (tea stripe failure), GF undefibration failure, and Charpy impact strength of the molded product by the following methods.

樹脂劣化評価(茶スジ入りペレット数)
得られたペレットを250gサンプリングし、この中の茶スジ入りペレットの数(個/250g)を目視観察した。
Evaluation of resin degradation (number of pellets containing tea streaks)
250 g of the obtained pellets were sampled, and the number of pellets containing tea streaks (pieces / 250 g) was visually observed.

充填材分散性評価(GF未解繊ペレット数)
得られたペレットを250gサンプリングし、熱プレスにより薄肉シートを成形した。このシート中のガラス繊維(GF)が未解繊であるペレット数(個/250g)を目視観察した。
Filler dispersibility evaluation (number of GF undefibrated pellets)
250 g of the obtained pellets were sampled, and a thin sheet was formed by hot pressing. The number of pellets (glass pieces / 250 g) in which the glass fibers (GF) in this sheet were not defibrated was visually observed.

機械的特性(シャルピー衝撃強度)
得られたペレットを80℃で12時間真空乾燥させた後、射出成形機(日精樹脂工業社製NS60−9A)を用いて、シリンダ温度290℃、金型温度80℃の条件で、ISO179−1に準拠するISO試験片(3mm厚)を射出成形した。得られたISO試験片)を用い、ISO179−1に準拠し、23℃の条件で、ノッチ付きシャルピー衝撃強度を測定した。
Mechanical properties (Charpy impact strength)
The obtained pellets were vacuum-dried at 80 ° C. for 12 hours, and then ISO 179-1 was used under the conditions of a cylinder temperature of 290 ° C. and a mold temperature of 80 ° C. using an injection molding machine (NS60-9A manufactured by Nissei Plastic Industrial Co., Ltd.). ISO test pieces (3 mm thick) conforming to the above were injection molded. Using the obtained ISO test piece), the Charpy impact strength with a notch was measured under the condition of 23 ° C. in accordance with ISO 179-1.

得られた熱可塑性樹脂組成物の評価結果を、結果表1、および図3に示す。   The evaluation result of the obtained thermoplastic resin composition is shown in result table 1 and FIG.

Figure 2018161860
Figure 2018161860

実施例1〜3および比較例1の製造例は、吐出量が1000kg/hであり、(1)式を満たす高吐出量の条件で混練が行われた。   In the production examples of Examples 1 to 3 and Comparative Example 1, the discharge rate was 1000 kg / h, and kneading was performed under conditions of a high discharge rate satisfying the expression (1).

(2)式について、実施例1〜3の製造例は、S/Dが1.35より小さく、茶スジ入りペレット数が大きく減っている事が分かり、さらにS/Dが1.10より小さい実施例1、2の製造例では、茶スジ入りペレットが全く発生していないことが分かる。これに対し、S/Dが1.35以上である比較例1の製造例では、茶スジ入りペレット数が80個/250gと多くなった。 Regarding the formula (2), it can be seen that in the production examples of Examples 1 to 3, S / D 2 is smaller than 1.35, the number of pellets containing tea streaks is greatly reduced, and S / D 2 is 1.10. In the smaller production examples of Examples 1 and 2, it can be seen that pellets containing tea streaks are not generated at all. In contrast, in the production example of Comparative Example 1 S / D 2 is less than 1.35, Brown streaks Enter the number of pellets becomes large as 80/250 g.

茶スジ数を減らすために、スクリュウ回転数を低減する場合、参考例1に示すようにGF未解繊ペレット数が増えてしまった。また、シリンダ温度を低くする場合、参考例2に示すようにシャルピー衝撃強度が低下してしまった。このため、押出し条件で充填材の分散不良や熱可塑性樹脂組成物の強度低下がないようにするには、参考例3に示すとおり、吐出量を低減するしか手段がないが、参考例3の製造例では生産効率が低く生産コストが高くなってしまう。   In order to reduce the number of tea streaks, as shown in Reference Example 1, the number of GF undefined pellets increased when the screw rotation speed was reduced. Further, when the cylinder temperature was lowered, the Charpy impact strength was lowered as shown in Reference Example 2. For this reason, as shown in Reference Example 3, there is only means for reducing the discharge amount in order to prevent the dispersion of the filler under the extrusion conditions and the decrease in the strength of the thermoplastic resin composition. In the production example, the production efficiency is low and the production cost is high.

実施例1、2、3と比較例1の各吐出孔から吐出される樹脂温度を図3に示す。比較例1の製造例では、スクリュウヘッドの延長線上に存在する吐出孔15〜24、33〜40の樹脂温度が、これ以外の吐出孔の樹脂温度よりも高くなった。これに対して、実施例1、2、3の製造例では、吐出孔15〜24、33〜40の樹脂温度が比較例1の製造例と比べ低く、S/Dが小さいスクリュウヘッドを有する実施例1の製造例がより樹脂温度が低くなり、吐出孔毎の温度分布の幅が小さい事が分かる。 FIG. 3 shows resin temperatures discharged from the discharge holes of Examples 1, 2, and 3 and Comparative Example 1. In the manufacturing example of Comparative Example 1, the resin temperatures of the discharge holes 15 to 24 and 33 to 40 existing on the extension line of the screw head were higher than the resin temperatures of the other discharge holes. In contrast, in the production example of Example 1, 2 and 3, the resin temperature of the discharge hole 15~24,33~40 is lower than that of Preparation of Comparative Example 1, S / D 2 has a smaller screw head It can be seen that the manufacturing example of Example 1 has a lower resin temperature and a smaller temperature distribution width for each discharge hole.

(a):原料供給部
(b):溶融混錬部
(c):吐出部
(d):シリンダ
(e):スクリュウ
(f):ダイヘッド
(g):口金
(h):スクリュウヘッド
(A): Raw material supply part (b): Melting and kneading part (c): Discharge part (d): Cylinder (e): Screw (f): Die head (g): Die (h): Screw head

Claims (8)

少なくとも熱可塑性樹脂を含む熱可塑性樹脂組成物を、二軸押出機を用いて溶融混練し、熱可塑性樹脂組成物のペレットを製造する方法であって、前記二軸押出機がダイヘッド、スクリュウ、および該スクリュウの先端に取り付けられるスクリュウヘッドを有し、前記ダイヘッドが口金を有し、前記スクリュウヘッドが円柱部を有し、かつ、以下の(1)式および(2)式が満足されるように溶融混練する、熱可塑性樹脂組成物のペレットの製造方法。
Q>0.045D2.3 ・・・(1)式
S/D<1.35 ・・・(2)式
ここで、Qは熱可塑性樹脂組成物の吐出量(kg/h)、Dはスクリュウ外径(直径;mm)、Sは円柱部と樹脂組成物との接触面積(mm)を表す。
A method of producing a pellet of a thermoplastic resin composition by melt-kneading a thermoplastic resin composition containing at least a thermoplastic resin using a twin screw extruder, wherein the twin screw extruder includes a die head, a screw, and It has a screw head attached to the tip of the screw, the die head has a base, the screw head has a cylindrical portion, and the following formulas (1) and (2) are satisfied: A method for producing pellets of a thermoplastic resin composition, which is melt-kneaded.
Q> 0.045D 2.3 (1) Formula S / D 2 <1.35 (2) where Q is the discharge amount (kg / h) of the thermoplastic resin composition, D Represents an outer diameter of the screw (diameter: mm), and S represents a contact area (mm 2 ) between the cylindrical portion and the resin composition.
更に以下の(3)式を満たすように溶融混練する、請求項1に記載の熱可塑性樹脂組成物のペレットの製造方法。
S/D<1.10 ・・・(3)式
ここで、Dはスクリュウ外径(直径;mm)、Sは円柱部と樹脂組成物との接触面積(mm)を表す。
Furthermore, the manufacturing method of the pellet of the thermoplastic resin composition of Claim 1 which melt-kneads so that the following (3) Formula may be satisfy | filled.
S / D 2 <1.10 (3) where D represents the screw outer diameter (diameter; mm), and S represents the contact area (mm 2 ) between the cylindrical portion and the resin composition.
前記熱可塑性樹脂の融点が200℃以上である、請求項1または2に記載の熱可塑性樹脂組成物のペレットの製造方法。     The manufacturing method of the pellet of the thermoplastic resin composition of Claim 1 or 2 whose melting | fusing point of the said thermoplastic resin is 200 degreeC or more. 前記熱可塑性樹脂がポリアミドである、請求項1〜3のいずれかに記載の熱可塑性樹脂組成物のペレットの製造方法。     The manufacturing method of the pellet of the thermoplastic resin composition in any one of Claims 1-3 whose said thermoplastic resin is polyamide. 前記熱可塑性樹脂組成物が、さらに無機フィラーを含む、請求項1〜4のいずれかに記載の熱可塑性樹脂組成物のペレットの製造方法。     The manufacturing method of the pellet of the thermoplastic resin composition in any one of Claims 1-4 in which the said thermoplastic resin composition contains an inorganic filler further. 前記無機フィラーがガラス繊維である、請求項5に記載の熱可塑性樹脂組成物のペレットの製造方法。     The manufacturing method of the pellet of the thermoplastic resin composition of Claim 5 whose said inorganic filler is glass fiber. 前記無機フィラーの含有量が、前記熱可塑性樹脂100重量部に対し、80重量部以上である、請求項5または6に記載の熱可塑性樹脂組成物のペレットの製造方法。     The manufacturing method of the pellet of the thermoplastic resin composition of Claim 5 or 6 whose content of the said inorganic filler is 80 weight part or more with respect to 100 weight part of said thermoplastic resins. 前記口金が複数の吐出孔を有し、全ての吐出孔において、それぞれの吐出孔から吐出される前記熱可塑性樹脂組成物の温度Tcと前記熱可塑性樹脂の融点Tmとの差(Tc−Tm)が35℃以上55℃以下である、請求項1〜7のいずれかに記載の熱可塑性樹脂組成物のペレットの製造方法。     The base has a plurality of discharge holes, and the difference between the temperature Tc of the thermoplastic resin composition discharged from each discharge hole and the melting point Tm of the thermoplastic resin (Tc−Tm) in all the discharge holes The manufacturing method of the pellet of the thermoplastic resin composition in any one of Claims 1-7 whose is 35 to 55 degreeC.
JP2017061721A 2017-03-27 2017-03-27 Production method of pellets of thermoplastic resin composition Pending JP2018161860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017061721A JP2018161860A (en) 2017-03-27 2017-03-27 Production method of pellets of thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017061721A JP2018161860A (en) 2017-03-27 2017-03-27 Production method of pellets of thermoplastic resin composition

Publications (1)

Publication Number Publication Date
JP2018161860A true JP2018161860A (en) 2018-10-18

Family

ID=63860735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017061721A Pending JP2018161860A (en) 2017-03-27 2017-03-27 Production method of pellets of thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JP2018161860A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021120636A (en) * 2020-01-30 2021-08-19 ポリプラスチックス株式会社 Method and system for inspecting unfibrillated filler in fibrous filler-containing pellet
CN116141635A (en) * 2022-11-04 2023-05-23 巴斯夫一体化基地(广东)有限公司 Process for producing high-performance thermoplastic resin pellets

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021120636A (en) * 2020-01-30 2021-08-19 ポリプラスチックス株式会社 Method and system for inspecting unfibrillated filler in fibrous filler-containing pellet
JP7356365B2 (en) 2020-01-30 2023-10-04 ポリプラスチックス株式会社 Inspection method and system for undefibrated filler in pellets containing fibrous filler
CN116141635A (en) * 2022-11-04 2023-05-23 巴斯夫一体化基地(广东)有限公司 Process for producing high-performance thermoplastic resin pellets
CN116141635B (en) * 2022-11-04 2023-09-05 巴斯夫一体化基地(广东)有限公司 Process for producing high-performance thermoplastic resin pellets

Similar Documents

Publication Publication Date Title
JP4768018B2 (en) Reverse rotation twin screw extruder
US11584830B2 (en) Production method for conductive composite material
JP4786648B2 (en) Manufacturing method of resin composition with high concentration of fibrous filler and resin composition pellet
KR101774680B1 (en) Twin-screw extruder and kneading method using twin-screw extruder
JP4555351B2 (en) Kneading degree adjusting device, extruder, and continuous kneader
CN107216517B (en) Preparation method of ultrahigh molecular weight polyethylene 3D printing supplies
CN102205620A (en) Differential-speed conical twin-screw extruder
JP2020040356A (en) Method for manufacturing resin pellet
TWI501859B (en) Glass fiber reinforced thermoplastic synthetic resin composites for the production of compressed products
US20170050359A1 (en) Injection molding apparatus
CN102205619A (en) Exhaust-type differential double-screw extruder
JP2009196303A (en) Kneading disk segment and twin-screw extruder
JP2018161860A (en) Production method of pellets of thermoplastic resin composition
JP5170899B2 (en) Extruded product manufacturing method
JP2008238626A (en) Manufacturing method for thermoplastic resin composition
US20050063246A1 (en) Mixing and kneading device for polymer compositions
JP5536704B2 (en) Method for producing glass fiber reinforced thermoplastic resin composition pellets
JP4414867B2 (en) Method and apparatus for granulating waste plastic
JP5872905B2 (en) Method for producing transparent thermoplastic resin pellets
JP5632235B2 (en) Method for producing glass fiber reinforced thermoplastic resin composition pellets
KR102139497B1 (en) Screw extruder
JP2010247491A (en) Method of manufacturing long fiber-reinforced thermoplastic resin composition and apparatus for manufacturing the same
JP2014131842A (en) Method of producing resin composition
JP7426450B1 (en) Method for producing glass fiber reinforced polyamide resin composition
WO2024070499A1 (en) Production method for glass fiber-reinforced polyamide resin composition