WO2012137403A1 - Power converter and solar power generation system - Google Patents

Power converter and solar power generation system Download PDF

Info

Publication number
WO2012137403A1
WO2012137403A1 PCT/JP2012/001383 JP2012001383W WO2012137403A1 WO 2012137403 A1 WO2012137403 A1 WO 2012137403A1 JP 2012001383 W JP2012001383 W JP 2012001383W WO 2012137403 A1 WO2012137403 A1 WO 2012137403A1
Authority
WO
WIPO (PCT)
Prior art keywords
power conversion
conversion circuit
input current
circuit unit
integrated value
Prior art date
Application number
PCT/JP2012/001383
Other languages
French (fr)
Japanese (ja)
Inventor
塩田 奈津子
木戸 稔人
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2012529453A priority Critical patent/JP5093425B1/en
Publication of WO2012137403A1 publication Critical patent/WO2012137403A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel

Definitions

  • the present invention relates to a power conversion device that converts input power input as DC power and outputs the power, and a solar power generation system using the power conversion device.
  • FIG. 21 is a graph showing an example of characteristics of a general solar cell.
  • the horizontal axis represents the output voltage of the solar cell
  • the vertical axis represents the output current of the solar cell.
  • the output characteristics of the solar cell vary greatly depending on the amount of solar radiation, and the output current width varies particularly greatly.
  • connection matching device when the electric power generated by the solar cell is used as commercial power, it is necessary to match the DC output power of the solar cell with the AC frequency and voltage of the commercial power.
  • a device that performs this matching is called a connection matching device, but in order to keep the efficiency of matching in the connection matching device high, instead of directly inputting the output of the solar cell to the connection matching device, It is preferable to convert the input voltage and input current into a range in which the efficiency of the interconnection matching device can be kept high before inputting to the interconnection matching device.
  • a circuit that performs this conversion is called a power conversion circuit.
  • a power converter circuit has high conversion efficiency in a wide input current area according to the output characteristic of a solar cell with a large fluctuation range.
  • a power conversion circuit in order to maintain high conversion efficiency for a wide input current range, high conversion efficiency is required even when the output current range is wide.
  • the output voltage is maintained at a constant value, it is possible to realize a power conversion circuit having high conversion efficiency in a predetermined range of output current, but power that maintains high conversion efficiency in a wide output current range. It is difficult to realize a conversion circuit.
  • the conversion efficiency of the power conversion circuit is lowered. In other words, when a large current is required as the output current, a power conversion circuit having high conversion efficiency may be used when the output current is a large current, but when a small current is output by the power conversion circuit, Conversion efficiency may be reduced.
  • the frequency and control method (PWM ⁇ PFM) in power conversion according to the range of output current ) And other control conditions are changed.
  • the circuit is controlled as PWM control with a constant frequency when the output current is large, and as PFM control with a constant ON width when the output current is small.
  • Patent Document 1 discloses a power supply apparatus having a plurality of power conversion circuits having the same configuration and increasing or decreasing the number of circuits to be used according to the output current.
  • a power conversion circuit corresponding to the output current can be configured, and high conversion efficiency can be maintained in a wider output current region than when a single power conversion circuit is used.
  • the power supply device of Patent Document 1 can widen the range of the output current region in which high conversion efficiency can be maintained by increasing the number of circuits to be combined, but the range is also limited, and the output of the solar cell is efficiently It's not enough to take it out. Since the power supply device of Patent Document 1 combines circuits having the same configuration, the number of required circuits is relatively large, and thus there is a problem that the power supply device is increased in size and cost. Further, in order to construct an optimum power conversion circuit in a wide output current range by combining circuits having the same configuration, there is a problem that the circuit design becomes complicated and the time required for the circuit design becomes long.
  • An object of the present invention is to provide a power converter that has a wide input current range and an output current range, efficiently outputs power in response to fluctuations in input current over a wide range, and can be reduced in size and cost. Is to provide.
  • a power converter is a power converter that converts input power input as DC power and outputs the power, and is an integrated value over a predetermined time of the input current that is the current of the input power.
  • An input current integration detection unit that repeatedly detects the input current integration value and a plurality of input current ranges that are different from each other and that overlap with adjacent input current ranges And a power conversion circuit unit selected from the plurality of power conversion circuit units based on the detected integrated input current value, and the most suitable for the selected power conversion circuit unit.
  • a power conversion control unit that performs control under a control condition that provides a large output power.
  • the power conversion device of one embodiment has a wide input current range and an output current range, and efficiently outputs power in response to fluctuations in the input current over a wide range, and can be reduced in size and cost. Is possible.
  • FIG. 1 is a block diagram showing a configuration of a photovoltaic power generation system using a power conversion device according to the present embodiment.
  • a photovoltaic power generation system used in conjunction with a commercial power system can be realized using the power conversion device 100 and the solar battery PV according to this embodiment.
  • the solar cell PV, the power conversion device 100 connected to the solar cell PV, the output converted by the power conversion device 100 is further transformed, or the DC-AC conversion is performed.
  • An interconnection matching device 200 for matching with the commercial power system is provided, and the interconnection matching device 200 is connected to the commercial power system.
  • the solar cell PV generates power according to the amount of solar radiation and outputs power.
  • the power conversion device 100 converts the input power with high conversion efficiency and outputs it. Details of the power conversion apparatus 100 will be described later.
  • the interconnection matching device 200 includes, for example, a DC-AC inverter circuit, and converts the output from the power conversion device 100 into an AC voltage of about 100V or about 200V of commercial power so that the output can be transmitted to the commercial power system.
  • the power output from the solar cell PV generated by the incidence of sunlight is input to the power conversion device 100.
  • the power converter 100 the output from the solar cell PV is used as input, and the power is converted with high conversion efficiency regardless of the range of the input current value.
  • the power converted by the power conversion device 100 is input to the interconnection matching device 200, appropriately converted so as to be transmitted through the commercial power system, and transmitted to the commercial power system.
  • the output from the solar cell PV can be sold effectively.
  • the input side of the power converter 100 can be connected to the solar battery PV
  • the output side can be connected to the storage battery
  • the power generated by the solar battery PV can be stored in the storage battery.
  • the power conversion device 100 By using the power conversion device 100 according to the present embodiment, it is possible to configure a solar power generation system that can extract the output from the solar cell PV with high conversion efficiency.
  • a power conversion apparatus 100 according to the present embodiment will be described with reference to the drawings.
  • FIG. 2 is a block diagram showing an example of the configuration of the power conversion apparatus according to this embodiment.
  • FIG. 3 is an explanatory diagram in which a part of an example of the configuration of the power conversion device according to this embodiment is a circuit diagram, and a solar cell PV is connected to the power conversion device 100.
  • the power conversion apparatus 100 includes a power conversion control unit 1, an input current detection unit 2 that detects an input current Iin that is a current of the input power Pin, and an input voltage Vin that is a voltage of the input power Pin.
  • An input voltage detection unit 3 that detects power
  • a first power conversion circuit unit 4 that performs power conversion
  • a second power conversion circuit unit 5 and a third power conversion circuit unit 6 and an output current Iout that is a current of the output power Pout.
  • An output current detection unit 7 for detecting, an output voltage detection unit 8 for detecting an output voltage Vout which is a voltage of the output power Pout, an alarm output unit 9 for outputting an alarm signal, and an input current integration detection unit 10 are provided. Yes.
  • the first to third power conversion circuit units 4 to 6 are circuits each configured to convert and output input power, and these have different input current ranges.
  • the first to third power conversion circuit units 4 to 6 receive the power input to the power conversion apparatus 100, and the input is controlled by the power conversion control unit 1.
  • the first to third power conversion circuit units 4 to 6 are switching elements FET1, FET2, and FET3, commutation diodes D1, D2, and D3, and inductors for storing energy during power conversion.
  • a certain coil (reactor) L1, L2, L3 and capacitors C1, C2, C3 are provided.
  • All of the switching elements FET1 to FET3 may be MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors: metal-oxide-semiconductor field effect transistors).
  • the commutation diodes D1 to D3 may be ordinary diodes or Zener diodes.
  • the first to third power conversion circuit units 4 to 6 constitute a step-down DC / DC converter.
  • the gates of the switching elements FET1 to FET3 are respectively connected to the power conversion control unit 1, and are controlled to be turned on and off by drive signals S1 to 3 transmitted from the power conversion control unit 1.
  • the power conversion control unit 1 can select which of the first to third power conversion circuit units 4 to 6 is used to convert the output of the solar cell PV, and the power conversion control unit 1 further selects the first Each of the 3 to 3 power conversion circuit units 4 to 6 is controlled.
  • the inductances of the coils L1 to L3 have different values, and the values of the output power with respect to the input current are different from each other.
  • FIG. 4 is a graph showing the relationship between the input current and the output power of each power conversion circuit unit of the power conversion apparatus according to this embodiment.
  • the first to third power conversion circuit units 4 to 6 have different characteristics of the output power Pout with respect to the input current Iin.
  • the value of the input current Iin when obtaining the peak output power in each of the first to third power conversion circuit units 4 to 6 is also different from each other in each power conversion circuit unit.
  • the input current ranges of the first to third power conversion circuit units 4 to 6 are different from each other and have a portion overlapping with the adjacent input current range. That is, as shown in FIG. 4, the input current ranges of the first power conversion circuit unit 4 and the second power conversion circuit unit 5 are adjacent to each other, and these current ranges are overlapped (in FIG. 4, a broken line). (See the part shown in). Similarly, the input current ranges of the second power conversion circuit unit 5 and the third power conversion circuit unit 6 are adjacent to each other, and these current ranges overlap (see the portion indicated by the broken line in FIG. 4).
  • the boundary of the input current Iin of each power conversion circuit unit that can obtain the largest output power Pout is
  • the threshold values th1 and th2, which are located on the small current side, are defined as the small current side threshold value th1, and those located on the large current side are defined as the large current side threshold value th2.
  • the input current Iin is smaller than the small current side threshold th1, it is preferable to perform power conversion by the first power conversion circuit unit 4, and when the input current Iin is not less than the small current side threshold th1 and the large current side threshold is reached.
  • it is smaller than the value th2 it is preferable to perform power conversion by the second power conversion circuit unit 5, and when the input current Iin is greater than or equal to the large current side threshold th2, the third power conversion circuit unit 6 performs power conversion. Preferably it is done.
  • the conversion efficiency of the first to third power conversion circuit units 4 to 6 varies depending on the values of the input current Iin and the output current Iout. In particular, the level of conversion efficiency is determined by the inductance and DC resistance of the coils L1-3.
  • FIG. 5 is a graph showing an example of the relationship between the output current and the conversion efficiency in the power conversion circuit unit.
  • FIG. 5A is a graph related to a power conversion circuit unit that is preferable when the output current Iout is relatively large
  • FIG. 5B is a graph related to a power conversion circuit unit that is preferable when the output current Iout is relatively small.
  • the conversion efficiency ⁇ is the ratio of the output power Pout to the input power Pin, and it can be said that the conversion efficiency ⁇ is a power conversion unit capable of performing power conversion with higher efficiency as the conversion efficiency ⁇ increases.
  • Each of the power conversion circuit units used in FIGS. 5A and 5B is a power conversion circuit unit having a circuit configuration similar to that of the first to third power conversion circuit units 4 to 6,
  • the coils have different inductances.
  • 5A operates under the conditions of an input voltage of 120 V, an output voltage of 100 V, and an output current of about 0.2 A to 10 A, and can obtain the highest conversion efficiency ⁇ when the input current is around 10 A.
  • a coil capable of outputting a large current is selected for the power conversion circuit unit.
  • a large current type coil has a comparatively small L value of 0.1 ⁇ H to several ⁇ H, and PWM switching control at a high frequency of 300 KHz to 1 MHz can realize a conversion efficiency of 90% or more when the output current is around 10 A.
  • the output current is 1 A or less, the self-circuit loss is large, so that the conversion efficiency ⁇ is reduced to about 50%.
  • the power conversion circuit unit in FIG. 5B operates under conditions of an input voltage of 120 V, an output voltage of 100 V, and an output current of about 0 A to 1 A so that the highest conversion efficiency ⁇ can be obtained when the input current is around 1 A.
  • a coil capable of outputting a small current is selected for the power conversion circuit unit.
  • a small current type coil has an L value of several tens of ⁇ H to several hundred ⁇ H, and PWM switching control is performed at a relatively low frequency of 300 KHz or less, so that the conversion efficiency is 90% in a current range of about 0.01 A to 1 A. Front and back can be realized. However, when the output current exceeds 1 A, the output decreases and a large current cannot be output.
  • the first to third power conversion circuit units 4 to 6 perform power conversion with high conversion efficiency in different input current ranges, and are scheduled to be input to the power conversion device 100 depending on the input current ranges.
  • the input current range can be covered.
  • the first to third power conversion circuit units 4 to 6 are not limited to the circuit configuration shown in FIG. 3 as long as the converters have different input current ranges in which high conversion efficiency can be obtained. . What is necessary is just to design according to the intended purpose of the power converter device 100, respectively.
  • a bipolar transistor may be used as the switching element instead of the MOSFET.
  • a power conversion circuit unit that operates in the same manner as the first to third power conversion circuit units 4 to 6 can be configured by using a switching element such as a MOSFET or a bipolar transistor instead of the commutation diode and using a synchronous rectification type. Can do.
  • a power conversion circuit unit having a configuration different from that of the first to third power conversion circuit units 4 to 6 may be used.
  • a boost type or a step-up / down type may be used.
  • the number of power conversion circuit units is not limited to three as long as it is plural. The circuit configuration and the number of the power conversion circuit units may be appropriately adjusted according to the input current range of the power conversion device 100 determined according to the output of the power source connected to the power conversion device 100 and the like.
  • the input current detection unit 2 detects the value of the input current Iin as needed and transmits it to the power conversion control unit 1.
  • the input current detection unit 2 is configured using, for example, a current detection resistor, has an A / D converter, converts an analog signal detection value into a digital signal, and transmits the digital signal to the power conversion control unit 1.
  • the input voltage detection unit 3 detects the value of the input voltage Vin as needed and transmits it to the power conversion control unit 1.
  • the input voltage detection unit 3 is configured using, for example, a voltage dividing resistor, has an A / D converter, converts an analog signal detection value into a digital signal, and transmits the digital signal to the power conversion control unit 1.
  • the input current integration detection unit 10 detects the integrated value of the input current Iin every predetermined time and transmits it to the power conversion control unit 1.
  • the input current integration detection unit 10 is configured using, for example, a current detection resistor, has an A / D converter, converts an analog signal detection value into a digital signal, and transmits the digital signal to the power conversion control unit 1. .
  • the detected value of the input current detected by the input current detection unit 2 converted into a digital signal and transmitted to the power conversion control unit 1 is used as the power conversion control unit 1.
  • the integrated value of the input current Iin may be calculated by integrating with a later-described CPU or the like.
  • the output current detection unit 7 detects the value of the output current Iout as needed and transmits it to the power conversion control unit 1.
  • the output current detection unit 7 is configured using, for example, a resistor for current detection, has an A / D converter, converts the detected value of the analog signal into a digital signal, and transmits the digital signal to the power conversion control unit 1.
  • the output voltage detection unit 8 detects the value of the output voltage Vout as needed and transmits it to the power conversion control unit 1.
  • the output voltage detection unit 8 is configured using, for example, a voltage dividing resistor, and has an A / D converter.
  • the output voltage detection unit 8 converts an analog signal detection value into a digital signal and transmits the digital signal to the power conversion control unit 1.
  • the power conversion control unit 1 includes an efficiency versus output current data storage unit 12, an optimum integrated value range storage unit 13, a selection unit 14, and a control condition determination unit 15.
  • the power conversion control unit 1 can be configured using, for example, a CPU, a nonvolatile memory, a RAM, and the like.
  • the power conversion control unit 1 selects one power conversion circuit unit from the first to third power conversion circuit units 4 to 6 based on the integrated value of the input current Iin detected by the input current integration detection unit 10.
  • the power conversion circuit unit is controlled under control conditions such that the selected power conversion circuit unit can obtain the largest output power Pout.
  • the efficiency versus output current data storage unit 11 is, for example, a nonvolatile memory, and stores efficiency versus output current data TD1 to TD3 as shown in FIGS.
  • the efficiency versus output current data TD1 to TD3 is data obtained by measurement in advance for each of the first to third power conversion circuit units 4 to 6, and the conversion efficiency in each of the first to third power conversion circuit units 4 to 6 It is data which shows the relationship between (eta) and output current Iout.
  • the efficiency versus output current data TD1 to TD3 are graphs showing the relationship between the conversion efficiency ⁇ and the output current Iout, which are in the form of a table with the input current Iin and the output voltage Vout as parameters as shown in FIGS. Can be represented.
  • 6 to 8 are diagrams showing examples of efficiency versus output current data regarding the first to third power conversion circuit units 4 to 6, respectively.
  • the efficiency vs. output current data TD1 to TD3 are data for each input current Iin and for each output voltage Vout in each power conversion circuit unit.
  • the input current Iin is selected in 5A increments of 2A in the range of 1A to 9A
  • the output voltage is 80 to 120V
  • 5 points are selected in increments of 10V.
  • the efficiency versus output current data TD1 to TD3 is data in a table format divided by the input current Iin and the output voltage Vout.
  • the range of the input current Iin in the efficiency vs. output current data TD1 to TD3 is the range of the input current Iin that is actually planned to be used in the power converter 100.
  • the range of the output voltage Vout in the efficiency versus output current data TD1 to TD3 is the range of the output voltage Vout that is actually planned to be used in the power conversion apparatus 100. In these ranges, it can be said that the more the plurality of graphs, the more accurate power conversion can be performed.
  • the efficiency vs. output current data TD1 to TD3 is obtained by measurement, the amount of the efficiency vs. output current data TD1 to TD3 is increased by making the step of the input current Iin and the step of the output voltage Vout smaller. Therefore, more accurate power conversion is possible.
  • the optimal integrated value range storage unit 13 is, for example, a nonvolatile memory, and stores the optimal integrated value range corresponding to each power conversion circuit unit.
  • the optimum integrated value range is a range set for each power conversion circuit unit, and the power conversion circuit unit corresponding to the optimum integrated value range including the input current integrated value Iint that is an integrated value of the input current Iin Conversion is preferable in terms of conversion efficiency ⁇ .
  • the optimum integrated value ranges respectively corresponding to the first power conversion circuit unit 4, the second power conversion circuit unit 5, and the third power conversion circuit unit 6 are a first optimum integrated value range, a second optimum integrated value range, and a third optimum integrated value range, respectively. It is the optimum integrated value range.
  • the power conversion device 100 of the present embodiment maintains a high conversion efficiency ⁇ by switching the power conversion circuit unit according to which optimum integrated value range the input current integrated value Iint is included in.
  • the first power conversion circuit unit 4 When there are three power conversion circuit units as in the present embodiment, it is preferable to select the first power conversion circuit unit 4 when the input current integrated value Iint is within the first optimum integrated value range.
  • the second power conversion circuit unit 5 When the input current integrated value Iint is within the second optimum integrated value range, the second power conversion circuit unit 5 is preferably selected.
  • the third power conversion circuit unit 6 When the input current integrated value Iint is larger than the second optimum integrated value range, the third power conversion circuit unit 6 may be selected. Therefore, the third optimum integrated value range need not be stored. Good.
  • These optimum integrated value ranges may be obtained in advance by measurement and stored in the optimum integrated value range storage unit 13.
  • the first power conversion circuit unit 4 is selected, and the input current integrated value Iint is the first
  • the third power conversion circuit unit 6 is selected when the input current integrated value Iint is larger than the second optimum integrated value range. May be.
  • the selection unit 14 compares the input current integration value Iint detected by the input current integration detection unit 10 with the optimum integration value range stored in the optimum integration value range storage unit 13 and includes the input current integration value Iint.
  • the optimum integrated value range is obtained, and one power conversion circuit unit corresponding to the optimum integrated value range is selected.
  • the control condition determination unit 15 obtains the highest conversion efficiency ⁇ when operating the selected power conversion circuit unit based on the efficiency versus output current data TD1 to TD3 stored in the efficiency versus output current data storage unit 12.
  • the output voltage Vout that can be obtained is acquired, and the acquired output voltage Vout is set as a target value of the output voltage Vout.
  • the target value of the output voltage Vout is the output voltage Vout when the largest output power Pout is obtained in the selected power conversion circuit unit.
  • the alarm output unit 9 receives the signal from the power conversion control unit 1 and outputs an alarm signal to notify the operator that an abnormality has occurred in the operation of the power conversion device 100.
  • the alarm output unit 9 is a buzzer for notifying the operator of an abnormality by sounding an alarm sound, an alarm lamp (lamp) for notifying the operator of an abnormality by lighting or flashing, and displaying characters or the like on the display screen indicating the abnormality.
  • a display device or the like that informs the operator may be used.
  • the power conversion apparatus 100 In the solar power generation system shown in FIG. 1, the power generated by the solar cell PV is input to the power conversion device 100.
  • the power conversion control unit 1 selects from the first to third power conversion circuit units 4 to 6 every time a predetermined time (integrated time) for detecting the input current integrated value Iint elapses. Processing (selection processing) for selecting one power conversion circuit unit that can obtain preferable output power is performed.
  • the input current integration detection unit 10 detects the integrated value of the input current over this integration time, and the selection unit 14 selects the power conversion circuit unit based on this detection value.
  • the integration time may be about several tens of seconds to several minutes. Preferably it is about 30 seconds.
  • the power conversion control unit 1 obtains a control condition for obtaining the maximum output power when PWM (Pulse Width Modulation) switching control is performed on the selected power conversion circuit unit, and is selected according to the control condition. Only one power conversion circuit unit is controlled.
  • the control conditions include switching frequency, output voltage target value Vm, ON-OFF duty ratio, and the like.
  • the power conversion control unit 1 continues to control the power conversion circuit unit so as to obtain the largest output power Pout. Continue. However, when the newly selected power conversion circuit unit is different from the power conversion circuit unit currently used, the power conversion control unit 1 inputs the input power Pin to the selected power conversion circuit unit. In this way, the selected power conversion circuit unit is controlled.
  • FIG. 9 is a flowchart illustrating an example of the switching process of the power conversion circuit unit
  • FIG. 10 is a flowchart illustrating an example of the selection process of the power conversion circuit unit.
  • the power conversion control unit 1 determines whether or not the power conversion circuit unit needs to be switched every predetermined time (for example, 30 seconds) (# 11). This predetermined time is equal to the integrated time of the input current integrated value Iint.
  • the power conversion control unit 1 selects a power conversion circuit unit different from the power conversion circuit unit currently used based on the result of the selection process of the power conversion circuit unit described later, the power conversion circuit unit Switching is necessary (Yes in # 11).
  • the switching of the power conversion circuit unit is performed by the drive signals S1 to S3 of the power conversion control unit 1.
  • the drive signal S1 is a signal for the first power conversion circuit unit 4 to perform PWM switching control, and is a signal that repeats ON and OFF at a constant cycle. Since the drive signal S2 and the drive signal S3 are OFF, the input power Pin is not input to the second power conversion circuit unit 5 and the third power conversion circuit unit 6. Input power Pin is input only to the first power conversion circuit unit 4, and output power Pout is output.
  • the power conversion control unit 1 turns off the drive signal S1 and transmits only the drive signal S2. Since the drive signal S1 and the drive signal S3 are OFF, the input power Pin is not input to the first power conversion circuit unit 4 and the third power conversion circuit unit 6. Input power Pin is input only to the second power conversion circuit unit 5, and output power Pout is output. In this way, the power conversion circuit unit is switched.
  • the power conversion control unit 1 sets the target value of the output voltage Vout of the second power conversion circuit unit 5 instead of the first power conversion circuit unit 4 (# 12).
  • the target value of the output voltage Vout is the output voltage Vout when the largest output power Pout is obtained in the selected power conversion circuit unit.
  • the target value of the output voltage Vout is obtained in the selection process. Setting the target value of the output voltage Vout means controlling the power conversion circuit unit so that the target value of the output voltage Vout is obtained.
  • the switching frequency and the duty ratio at which the power conversion control unit 1 can obtain the target value of the output voltage Vout in the PWM switching control when the input current Iin flows to the second power conversion circuit unit 5 are as follows: It is required in the selection process.
  • the power conversion control unit 1 transmits the drive signal S2, and controls the second power conversion circuit unit 5 according to the obtained control conditions (switching frequency and duty ratio). Accordingly, the second power conversion circuit unit 5 outputs the output voltage Vout around the target value of the output voltage Vout, and the largest output power Pout is obtained.
  • the detected value of the output voltage Vout detected by the output voltage detector 8 and the target value of the output voltage Vout are compared by the power conversion controller 1 (# 13). In the case of No in # 11, power conversion may be performed by the currently selected first power conversion circuit unit 4, and thus the process proceeds to # 13 without performing # 12. In # 13, based on the comparison result, the power conversion control unit 1 adjusts the duty ratio by feedback control so that the detected value of the detected output voltage Vout and the target value of the output voltage Vout are matched ( # 14).
  • the power conversion control unit 1 determines whether it is necessary to reset the target value of the output voltage Vout (# 15). Specifically, the power conversion control unit 1 compares the detected value of the current input current Iin with the detected value of the input current Iin used when obtaining the target value of the output voltage Vout. If these values are different and the difference is greater than or equal to a predetermined value set in advance, it is determined that it is necessary to reset the target value of the output voltage Vout (Yes in # 15). This is because it is considered that the target value of the output voltage Vout may have changed significantly compared to the value when the second power conversion circuit unit 5 is selected.
  • the target value of the output voltage Vout is again acquired and reset by the power conversion control unit 1 based on the efficiency versus output current data TD2 of the second power conversion circuit unit 5 shown in FIG. 7 (# 16). That is, when the current detection value of the input current Iin is input to the second power conversion circuit unit 5, the power conversion control unit 1 can obtain the target value of the output voltage Vout acquired again by PWM switching control. A switching frequency and a duty ratio that can be calculated are calculated, and the second power conversion circuit unit 5 is controlled based on the control conditions.
  • the power conversion circuit unit is automatically controlled by feedback. For example, when the operation of the power conversion circuit unit is terminated because power generation by the solar cell PV cannot be performed due to sunset or the like, for example, the output current from the input current detection unit 2 is set to a predetermined value in the power conversion control unit 1. What is necessary is just to have a function of detecting the following state and terminating the loop of FIG. 9 by interrupt processing or the like.
  • the selection process for selecting one power conversion circuit unit will be described with reference to FIG. The selection process is performed prior to the step # 11 of FIG.
  • the input current integration detection unit 10 detects the input current integration value Iint for each integration time (# 21).
  • the input current integrated value Iint is obtained by integrating the input current Iin over time. Every time the integration time elapses, the input current integration value Iint is detected.
  • the detection value in the input current integration detection unit 10 is reset, and the input current integration value Iint again becomes zero. Integration of the input current Iin is started.
  • the selection unit 14 determines whether or not the detected input current integrated value Iint is included in the first optimal integrated value range stored in the optimal integrated value range storage unit 13 (# 22). When the detected input current integrated value Iint is included in the first optimal integrated value range (Yes in # 22), the first power conversion circuit unit 4 is selected by the selection unit 14 (# 23).
  • the selection unit 14 causes the detected input current integrated value Iint to be stored in the optimal integrated range storage unit 13. It is determined whether it is included within the stored second optimum integrated value range (# 24). When the detected input current integrated value Iint is included in the second optimum integrated value range (Yes in # 24), the second power conversion circuit unit 5 is selected by the selection unit 14 (# 25).
  • the selection unit 14 selects the third power conversion circuit unit 6 (# 26).
  • control condition determination unit 15 selects the largest power conversion circuit unit. Control conditions (duty ratio, target value of output voltage Vout, switching frequency, etc.) for obtaining output power are determined (# 27). Then, the process proceeds to step # 11 in FIG.
  • the second power conversion circuit unit 5 is selected in the selection unit 14, the detected value of the input current Iin is 5A, and the range that the output voltage can take is 80 to 120V.
  • the range that the output voltage Vout can take is a value that is determined according to the output of the power source connected to the power conversion apparatus 100, and the range of the output voltage Vout used in the power conversion apparatus 100.
  • the control condition determining unit 15 extracts five data of 80V, 90V, 100V, 110V, and 120V in the 5A row from the efficiency versus output current data TD2 shown in FIG.
  • the range that the output current Iout can take is a value determined according to the output of the power source connected to the power conversion device 100, and the range of the output current Iout used in the power conversion device 100. If the output current Iout when the conversion efficiency ⁇ is maximum is obtained, the target value of the output voltage Vout is obtained from that value.
  • the power conversion control unit 1 does not store the efficiency versus output current data TD1 to TD3, and obtains the maximum output power Pout with respect to the input current Iin in the first to third power conversion circuit units 4 to 6 by measurement in advance. In addition, these values may be stored. In that case, the power conversion control unit 1 can obtain the maximum output power Pout in the selected power conversion circuit unit based on the detected value of the input current Iin, and further output the output power Pout based on the detected value of the output current Iout. A target value of the voltage Vout can be obtained.
  • the maximum output power Pout with respect to the input current Iin, the target value of the output voltage Vout at that time, the duty ratio, and the switching frequency are also obtained in advance by measurement, and the power conversion control unit 1 stores these values. It is good to be.
  • the PWM switching control is used for the control of the first to third power conversion circuit units 4 to 6.
  • the power conversion can be performed, and other control methods such as PFM control may be used.
  • PFM control may be used.
  • the input voltage Vin is a fixed value
  • the input voltage detection unit 3 may not be provided. However, by providing the input voltage detection unit 3 and detecting the input voltage Vin, a more accurate value can be used. And high-precision control is possible.
  • the power conversion control unit 1 calculates the fluctuation range per predetermined time of the input voltage Vin detected by the input voltage detection unit 3 and compares it with a predetermined set value stored in advance.
  • a signal may be transmitted to the alarm output unit 9, and the alarm output unit 9 outputs an alarm signal to notify the operator.
  • the lamp may be turned on, an alarm sound may be generated, or a warning display may be displayed on the display screen.
  • the power conversion control unit 1 calculates the output power Pout as needed by multiplying the output current Iout detected by the output current detection unit 7 and the output voltage Vout detected by the output voltage detection unit 8. A signal may be transmitted to the alarm output unit 9 when the value of the output power Pout becomes smaller than a predetermined value set in advance.
  • FIG. 11 is a timing chart showing an example of switching of the power conversion circuit unit using the selection process of the flowchart of FIG.
  • the upper part is a diagram showing the relationship between the input current integrated value Iint and time
  • the lower part is a power conversion circuit unit that is selected when the input current integrated value Iint changes with time as shown in the upper part.
  • FIG. 11 a case where the two power conversion circuit units of the first power conversion circuit unit 4 and the second power conversion circuit unit 5 are switched will be described in order to simplify the description.
  • the first optimum integrated value range is 0 or more and I1 or less.
  • the second optimum integrated value range is greater than I1 and less than or equal to I2.
  • the horizontal axis indicates the time, and numbers are added to the integration time intervals for detecting the input current integration value Iint.
  • the input current Iin is integrated between adjacent numbers (integrated time) to detect the input current integrated value Iint, which is used for selection of the power conversion circuit unit.
  • the input current integrated value Iint is once reset to 0 and the input current integrated value Iint is detected again.
  • the input current integrated value Iint increases with time. However, the input current integrated value Iint may be detected at each integration time (at each timing indicated with a number), and the input current integrated value Iint is continuously calculated. It does not continue to measure.
  • the number “0” to the number “1” indicated on the horizontal axis is the first period
  • the number “1” to the number “2” is the second period
  • To the number “3” is described as the third cycle.
  • the input current integrated value Iint exceeds I1 and is included in the second optimum integrated value range. Therefore, since the second power conversion circuit unit 5 is selected by the power conversion control unit 1, the power conversion circuit unit is switched.
  • the power conversion control unit 1 selects the second power conversion circuit unit 5.
  • the power conversion control unit 1 selects the first power conversion circuit unit 4.
  • the power conversion control unit 1 selects the second power conversion circuit unit 5, so that the power conversion circuit unit is switched.
  • the first power conversion circuit unit 4 is selected by the power conversion control unit 1, so that the power conversion circuit unit is switched.
  • the power conversion control unit 1 selects the first power conversion circuit unit 4.
  • the second power conversion circuit unit 5 is selected by the power conversion control unit 1, so that the power conversion circuit unit is switched.
  • the input current integrated value Iint is included in the second optimum integrated value range, so the power conversion control unit 1 selects the second power conversion circuit unit 5.
  • the integrated value of the input current Iin over the integrated time is repeatedly detected, and a preferred power conversion circuit unit is selected based on this value.
  • a preferred power conversion circuit unit is selected from the plurality of first to third power conversion circuit units 4 to 6, and power conversion is performed by the power conversion circuit unit. Therefore, the current value range of the input current Iin Can maintain a high conversion efficiency .eta.
  • the selection process which is a determination as to which of the first to third power conversion circuit units 4 to 6 is selected, is performed every integration time in which the input current integration value Iint is detected. Since the number of times of selection processing is reduced as compared with the case where selection processing of the power conversion circuit unit is performed at any time according to the change in the value of, the number of switching of the power conversion circuit unit is reduced. For this reason, loss caused by switching the power conversion circuit portion hardly occurs, and power loss is low.
  • the first to third power conversion circuit units 4 to 6 also lose when starting and stopping. For example, when the input to the operating power conversion circuit unit stops due to switching, there is power already stored in the circuit unit, and a loss related to the power occurs. In addition, in the power conversion circuit unit that has started to operate by switching, at the moment of switching, high conversion efficiency ⁇ is not realized and loss occurs.
  • a preferable power conversion circuit unit can be selected according to the change in the input current Iin.
  • a loss is caused by switching the first to third power conversion circuit units 4 to 6 at any time following the conversion of the input current Iin. If the switching is performed too frequently, the loss becomes high, and the efficiency of the power converter as a whole decreases.
  • the output of the solar cell PV is not smooth, and there is a high possibility that it constantly fluctuates in a minute range. That is, since the input current Iin of the power conversion device also constantly fluctuates, if the input current Iin is located near the switching boundary of the power conversion circuit unit, the power fluctuations even if there is no significant fluctuation of the input current There is a high possibility that the circuit part is frequently switched. In such a case, the loss due to switching increases, and the power from the solar cell PV cannot be taken out efficiently.
  • switching the power conversion circuit unit based on the integrated input current value Iint eliminates unnecessary switching of the power conversion circuit unit and maintains a high conversion efficiency ⁇ .
  • FIG. 12 is a diagram for explaining the difference in output power between when the power conversion circuit unit is switched and when there is no switching.
  • the vertical axis represents the output power of the power conversion circuit unit
  • the horizontal axis represents time. The case where switching is performed using the first power conversion circuit unit 4 and the second power conversion circuit unit 5 is shown.
  • the change in output power when switching is shown by a solid line.
  • the cycle in which the first power conversion circuit unit 4 and the second power conversion circuit unit 5 are switched is constant, and the cycle is T. If the output power is 80 W or less, the conversion efficiency is high when power conversion is performed using the first power conversion circuit unit 4. If the output power is greater than 80 W, the power conversion is performed using the second power conversion circuit unit 5. If conversion is performed, the conversion efficiency is assumed to be high. In order to simplify the description, the power conversion circuit unit is selected based on the output power, but the same applies if the power conversion circuit unit is selected based on the input current Iin. A change in output power when the power conversion is performed using the second power conversion circuit unit 5 without switching is shown by a broken line.
  • the first power conversion circuit unit 4 When switching the power conversion circuit unit, the first power conversion circuit unit 4 is used when the output power is 80 W or less, and when the output power is greater than 80 W, the second power conversion circuit unit 5 is used. When the power conversion circuit unit is not switched, the second power conversion circuit unit 5 is used regardless of the value of the output power.
  • the output power is reduced by ⁇ P when switching is not performed. This is because the conversion efficiency ⁇ is lowered by using the second power conversion unit 5 in a range where it is preferable to use the first power conversion unit 4.
  • the number of switching times (N), and the first power conversion circuit unit 4 are preferably used for switching the power conversion circuit unit Using the difference ( ⁇ P) between the output power and the output power when the first power conversion circuit unit 4 is used and the time (T) when the first power conversion circuit unit 4 is preferably used, When the relationship expressed is satisfied, it is preferable not to switch. N is switched from the first power conversion circuit unit 4 to the second power conversion circuit unit 5 and switched to the first power conversion circuit unit 4 again, or from the second power conversion circuit unit 5 to the first power. When switching to the conversion circuit unit 4 and switching to the second power conversion circuit unit 5 again, it is assumed to be once each.
  • a power conversion circuit on the large current side is compared to using a power conversion circuit unit on the small current side, that is, a power conversion circuit unit with a small input current range, at a large current.
  • the loss is lower when the power converter circuit portion having a large input current range is used with a small current. Therefore, in the example described with reference to FIG. 12 above, when power conversion is performed using the first power conversion circuit unit 4 regardless of the output power (no switching), ⁇ P increases, which is not preferable. .
  • the power conversion circuit unit is selected based on the integrated input current value Iint, and power conversion is performed using the power conversion circuit unit. Therefore, even when the range of the input current Iin is wide Thus, power conversion having high conversion efficiency ⁇ can be performed over the entire range. Furthermore, it is possible to suppress the number of switching of the power conversion circuit unit, suppress unnecessary switching, and reduce loss caused by switching. Thereby, efficient power conversion can be performed.
  • the power conversion device 100 that selects the power conversion circuit unit using the detected input current integrated value Iint for each integration time for detecting the input current integrated value Iint has been described.
  • the input current integrated value Iint may be detected a plurality of times, and the power conversion circuit unit may be selected when the value is continuously included in the same optimum integrated value range for a predetermined number of times.
  • the configuration of the power conversion apparatus 100 in this case is the same as that described above, but the operation of the selection unit 14 in the selection process is slightly different.
  • the selection unit 14 has a predetermined number of times determined in each optimum integrated value range, and the input current integrated value Iint is continuously included in the same optimal integrated value range by the predetermined number of times (selection set number). In this case, the selection unit 14 selects a power conversion circuit unit corresponding to the optimum integrated value range.
  • the selection unit 14 compares the input current integration value Iint detected by the input current integration detection unit 10 with the optimum integration value range stored in the optimum integration value range storage unit 13, and inputs An optimum integrated value range including the current integrated value Iint is obtained.
  • the selection unit 14 does not select the power conversion circuit unit based on only this result, but waits for the input current integration detection unit 10 to detect the next input current integration value Iint. In this way, the selection unit 14 repeatedly waits for the input current integrated value Iint to be detected, and determines each time within which optimum integrated value range the input current integrated value Iint is included.
  • the selection unit 14 waits until it can be determined that the input current integrated value Iint is continuously included in the same optimal integrated value range, and that the number of times is the number of times of selection and setting of the optimal integrated value range. If it can be determined, the power conversion circuit unit corresponding to the optimum integrated value range is selected.
  • the number of times of selection setting may be plural, and the first to third power conversion circuit units 4 to 6 may be different from each other.
  • the loss is greater when the power conversion circuit unit on the large current side is used with a small current than when the power conversion circuit unit on the small current side is used with a large current. Few.
  • the input current Iin is near the boundary for switching the power conversion unit, it is preferable to use the power conversion circuit unit on the large current side, so that the power conversion on the large current side is compared to the power conversion circuit unit on the small current side. It is preferable that the circuit portion is easily selected.
  • the number of times of selection and setting of the optimum integrated value range corresponding to the power conversion circuit unit on the large current side is small, and the number of times of selection and setting of the optimum integrated value range corresponding to the power conversion circuit unit on the small current side may be set large.
  • FIG. 13 is a flowchart illustrating another example of the selection process of the power conversion circuit unit.
  • the number of times of selection and setting of the first optimum integrated value range corresponding to the first power conversion circuit unit 4 is 3 times
  • the number of times of selection and setting of the second optimum integrated value range corresponding to the second power conversion circuit unit 5 is 2 times. Since there are only two power conversion circuit units, it is not necessary to provide an upper limit for the second optimum integrated value range.
  • the selection unit 14 determines whether or not the input current integration value Iint detected by the input current integration detection unit 10 is included in the second optimum integration value range stored in the optimum integration value range storage unit 13. (# 31).
  • the input current integrated value Iint is continuously included in the second optimal integrated value range by the selection unit 14. Is detected (# 32).
  • Whether the number of times the input current integrated value Iint is continuously included in the second optimum integrated value range is the selected set number, that is, whether the input current integrated value Iint is within the second optimal integrated value range Is determined by the selection unit 14 (# 33).
  • the second power conversion circuit unit 5 is selected by the selection unit 14 (# 34).
  • the selection unit 14 determines in step # 31 that the input current integrated value Iint is not included in the second optimal integrated value range (No in # 31), the input current integrated value Iint is the first optimal integrated value. It should be included in the integrated value range.
  • the selection unit 14 detects whether or not the input current integrated value Iint is continuously included in the first optimum integrated value range (# 35).
  • Whether the number of times the input current integrated value Iint is continuously included in the first optimal integrated value range is the selected set number, that is, whether the input current integrated value Iint is within the first optimal integrated value range Is determined by the selection unit 14 (# 36).
  • the first power conversion circuit unit 4 is selected by the selection unit 14 (# 37).
  • control condition determination unit 15 obtains the largest output power in each selected power conversion circuit unit. Control conditions (duty ratio, target value of the output voltage Vout, switching frequency, etc.) are determined (# 38), and the selection process ends.
  • step # 33 if the number of times the input current integrated value Iint is within the second optimum integrated value range is less than twice, that is, the input current integrated value Iint is within the first optimum integrated value range before continuing twice. If it is (No in # 33), the selection process is terminated.
  • step # 36 if the number of times the input current integrated value Iint is within the first optimum integrated value range is less than 3, that is, before the input current integrated value Iint continues to be 3 times, the input current integrated value Iint is the second optimal integrated value. If it is within the range (No in # 36), the selection process is terminated.
  • the method for determining the target value of the output voltage Vout in the selected power conversion circuit unit may be the same as described above.
  • the selection process it is determined whether or not the power conversion circuit unit needs to be switched in # 11 of FIG.
  • FIG. 14 is a timing chart showing an example of switching of the power conversion circuit unit using the selection process of the flowchart of FIG.
  • the upper part shows the relationship between the input current integrated value Iint and time
  • the lower part shows the power conversion circuit unit selected when the input current integrated value Iint changes with time as shown in the upper part.
  • FIG. 14 is the same as FIG. 11 except that the switching timing of the power conversion circuit unit shown in the lower stage is different, and thus detailed description thereof is omitted.
  • the input current integrated value Iint in the upper part of FIG. 14 is the same as that in the upper part of FIG. Since there are only two power conversion circuit units, the upper limit value (I2) is not provided for the second optimum integrated value range, and the range may be larger than I1.
  • the input current integrated value Iint exceeds I1 and is included in the second optimum integrated value range. However, since the input current integrated value Iint is included in the second optimum integrated value range for the first time this time, the process waits until the next input current integrated value Iint is detected.
  • the input current integrated value Iint is included in the second optimum integrated value range.
  • the number of times that the input current integrated value Iint is continuously included in the second optimum integrated value range is two. Since the second optimum integrated value range is selected and set twice, the power conversion control unit 1 selects the second power conversion circuit unit 5 and switches the power conversion circuit unit.
  • the process waits until the next input current integrated value Iint is detected.
  • the input current integrated value Iint is included in the first optimal integrated value range.
  • the number of times of selection and setting of the first optimum integrated value range is three and the input current integrated value Iint is included in the first optimum integrated value range for the second time this time, the next input current integrated value Iint is Wait until it is detected.
  • the input current integrated value Iint is included in the second optimum integrated value range. Since the number of times that the input current integrated value Iint is included in the first optimal integrated value range is less than three consecutive times, the current selection process ends. Since the input current integrated value Iint is included in the second optimum integrated value range and the input current integrated value Iint is included in the second optimal integrated value range for the first time this time, the next input current integrated value Iint Wait until is detected.
  • the input current integrated value Iint is included in the first optimal integrated value range. Since the number of times that the input current integrated value Iint is included in the second optimum integrated value range is less than twice in succession, the current selection process ends. Since the input current integrated value Iint is included in the first optimum integrated value range and the input current integrated value Iint is included in the first optimal integrated value range for the first time this time, the next input current integrated value Iint Wait until is detected.
  • the input current integrated value Iint is included in the first optimal integrated value range. Since the input current integrated value Iint is included in the first optimum integrated value range for the second time this time, the process waits until the next input current integrated value Iint is detected.
  • the input current integrated value Iint is included in the first optimum integrated value range.
  • the input current integrated value Iint is continuously included in the first optimum integrated value range three times, and the power conversion control unit 1 selects the first power conversion circuit unit 4, so that the power conversion circuit The part is switched.
  • the input current integrated value Iint is included in the first optimum integrated value range. Since the first power conversion circuit unit 4 is selected and the selection process is completed in the eighth period, the input current integrated value Iint is included in the first optimum integrated value range for the first time this time. Therefore, it waits until the next integrated input current value Iint is detected.
  • the input current integrated value Iint is included in the second optimum integrated value range. Since the number of times that the input current integrated value Iint is included in the first optimal integrated value range is less than three consecutive times, the current selection process ends. Since the input current integrated value Iint is included in the second optimum integrated value range and the input current integrated value Iint is included in the second optimal integrated value range for the first time this time, the next input current integrated value Iint Wait until is detected.
  • the input current integrated value Iint is included in the second optimum integrated value range.
  • the number of times the input current integrated value Iint is continuously included in the second optimum integrated value range is two times, and the second power conversion circuit unit 5 is selected by the power conversion control unit 1. The part is switched.
  • the power conversion circuit unit is selected when the input current integrated value Iint is continuously included in the same optimum integrated value range for the selected set number of times. Since the selection process is not performed every time the input current integrated value Iint is detected, the number of switching of the power conversion circuit unit can be reduced. Since the power conversion circuit unit is selected based on the integrated input current value Iint, the number of times of switching can be suppressed while maintaining high conversion efficiency ⁇ .
  • the above-described power conversion device 100 that selects the power conversion circuit unit when the input current integrated value Iint is continuously included in the same optimum integrated value range for the number of times selected and set, even if the input current Iin suddenly increases. If the integrated input current value Iint is not detected the selected number of times, the power conversion circuit unit is not switched.
  • the power conversion circuit unit is switched from the small current side to the large current side power conversion circuit unit.
  • the change is made after the integration time necessary for detection of the input current integration value Iint ⁇ the number of selected selections.
  • the loss increases because the input of the large current must be converted by the power conversion circuit unit on the small current side for the above time.
  • the optimum integrated value range of the power conversion circuit on the large current side is divided into two, and the large current side range (large current side optimum range) and the small current side range (small current side optimum range) are set.
  • the input current integrated value Iint is within the large current side optimum range within the optimum integrated value range of the power conversion circuit section on the large current side. Is included, it is preferable that the power conversion circuit unit corresponding to the optimum integrated value range is selected without waiting for the selected set number of times.
  • the lower limit of the large current side optimum range may be set in consideration of the fact that the power conversion circuit is switched when the input current integrated value Iint is included in the large current side optimum range.
  • the optimum range may be a range lower than the optimum range on the large current side.
  • the selection unit 14 may select a power conversion circuit unit corresponding to the optimum integrated value range.
  • the optimum integrated value range storage unit 13 also includes a large current side optimum range and a small current side optimum range set in each optimum integrated value range. It may be stored. Note that the setting of the optimum range for the large current side and the optimum range for the small current side is performed in order to switch to the power conversion circuit section on the large current side more quickly in response to the sudden increase in the input current Iin. In the power conversion circuit unit (first power conversion circuit unit 4) having a small input current range, the large current side optimum range and the small current side optimum range may not be set.
  • FIG. 15 is a flowchart showing still another example of the selection process of the power conversion circuit unit. Similar to the description of the selection process in FIG. 13, a case where the power conversion circuit unit is selected from the first power conversion circuit unit 4 and the second power conversion circuit unit 5 will be described. Similarly to the selection processing of FIG. 13, the number of times of selection and setting of the first optimum integrated value range corresponding to the first power conversion circuit unit 4 is three, and the second optimal integration corresponding to the second power conversion circuit unit 5 is performed. The value range selection setting count is two.
  • the second power conversion circuit unit 5 is selected by the selection unit 14 (# 45).
  • the detected input current integrated value Iint is stored in the optimal integrated value range storage unit 13. It is judged by the selection part 14 whether it is included in the small electric current side optimal range within the 2nd optimal integrated value range (# 42).
  • the second power conversion circuit unit 5 is selected by the selection unit 14 (# 45).
  • the selection unit 14 determines in step # 42 that the input current integrated value Iint is not included in the small current side optimal range (No in # 42), the input current integrated value Iint is the first optimal integrated value. Should be included in the value range. The selection unit 14 detects whether the input current integrated value Iint is continuously included in the first optimal integrated value range (# 46).
  • Whether the number of times the input current integrated value Iint is continuously included in the first optimal integrated value range is the selected set number, that is, whether the input current integrated value Iint is within the first optimal integrated value range Is determined by the selection unit 14 (# 47).
  • the first power conversion circuit unit 4 is selected by the selection unit 14 (# 48).
  • control condition determination unit 15 obtains the largest output power in each selected power conversion circuit unit. Control conditions (duty ratio, target value of output voltage Vout, switching frequency, etc.) are determined (# 49), and the selection process ends.
  • the method for determining the target value of the output voltage Vout in the selected power conversion circuit unit may be the same as described above.
  • the selection process it is determined whether or not the power conversion circuit unit needs to be switched in # 11 of FIG.
  • FIG. 16 is a timing chart showing an example of switching of the power conversion circuit unit using the selection process of the flowchart of FIG.
  • the horizontal axis of the vertical axis in the upper and lower diagrams is the same as the upper and lower diagrams in FIG. 11, but the change in the input current integrated value Iint and the lower switching timing are different from those in FIG.
  • I21 that is a boundary between the large current side optimum range and the small current side optimum range within the second optimum integrated value range is added.
  • a range larger than I1 and not more than I21 is set as a small current side optimum range
  • a range larger than I21 and not more than I2 is set as a large current side optimum range. Since there are only two power conversion circuit units, the upper limit value (I2) may not be provided for the second optimum integrated value range, and the large current side optimum range may be a range larger than I21.
  • the integrated input current value Iint is greater than I1 and less than or equal to I21, so it is included in the small current side optimum range. However, since the input current integrated value Iint is included in the small current side optimum range for the first time this time, it waits until the next input current integrated value Iint is detected.
  • the input current integrated value Iint is included in the small current side optimum range.
  • the number of times that the integrated input current value Iint is continuously included in the small current side optimum range is two. Since the second optimum integrated value range (small current side optimum range) is selected and set twice, the power conversion control unit 1 selects the second power conversion circuit unit 5 and switches the power conversion circuit unit.
  • the process waits until the next input current integrated value Iint is detected.
  • the input current integrated value Iint is included in the first optimal integrated value range.
  • the number of times of selection and setting of the first optimum integrated value range is three and the input current integrated value Iint is included in the first optimum integrated value range for the second time this time, the next input current integrated value Iint is Wait until it is detected.
  • the input current integrated value Iint is included in the first optimum integrated value range.
  • the input current integrated value Iint is continuously included in the first optimum integrated value range three times, and the power conversion control unit 1 selects the first power conversion circuit unit 4, so that the power conversion circuit The part is switched.
  • the input current integrated value Iint is larger than I21, so the input current integrated value Iint is included in the large current side optimal range within the second optimal integrated value range. Therefore, the second power conversion circuit unit 5 is selected by the power conversion control unit 1, and the power conversion circuit unit is switched.
  • the input current integrated value Iint is included in the small current side optimum range. Since the input current integrated value Iint is included in the first optimum integrated value range for the first time this time, the process waits until the next input current integrated value Iint is detected.
  • the input current integrated value Iint is included in the small current side optimum range.
  • the number of times the input current integrated value Iint is continuously included in the second optimum integrated value range is two times, and the second power conversion circuit unit 4 is selected by the power conversion control unit 1, but the second Since the power conversion circuit unit 5 is selected, the selection process ends without switching the power conversion circuit unit.
  • the input current integrated value Iint is included in the first optimum integrated value range. However, since the input current integrated value Iint is included in the first optimum integrated value range for the first time this time, the process waits until the next input current integrated value Iint is detected.
  • the input current integrated value Iint is included in the first optimum integrated value range.
  • the number of times of selection and setting of the first optimum integrated value range is three and the input current integrated value Iint is included in the first optimum integrated value range for the second time this time, the next input current integrated value Iint is Wait until it is detected.
  • the input current integrated value Iint is included in the first optimum integrated value range.
  • the input current integrated value Iint is continuously included in the first optimum integrated value range three times, and the power conversion control unit 1 selects the first power conversion circuit unit 4, so that the power conversion circuit The part is switched.
  • the input current integrated value Iint is large within the optimal integrated value range.
  • the power conversion circuit unit corresponding to the optimum integrated value range is selected without waiting for the selected set number of times.
  • the power conversion device 100 selects any one power conversion circuit unit based on the input current integrated value Iint, but not only based on the input current integrated value Iint but also input within a predetermined time. Any one of the power conversion circuit units may be selected based on the maximum value of the current Iin (maximum input current Imax).
  • the power conversion device 100B selects any one power conversion circuit unit based on both the input current integrated value Iint and the maximum input current Imax.
  • the maximum input current Imax may be the maximum value of the input current Iin within the integration time.
  • FIG. 17 is a block diagram illustrating an example of a configuration of a power conversion device according to another embodiment.
  • the power conversion device 100B members having the same functions as those of the components of the power conversion device 100 described above are denoted by the same reference numerals, and description thereof is omitted.
  • the power conversion device 100B has a maximum input current calculation unit 16 and an input current threshold storage unit 17, and is different from the power conversion device 100 in that a selection unit 14B is provided instead of the selection unit 14.
  • the selection unit 14B selects any one of the power conversion circuit units based on the maximum input current Imax, and selects based on the power conversion circuit unit and the integrated input current value Iint.
  • the power conversion circuit unit is compared with the selected power conversion circuit unit, and one of the power conversion circuit units is selected.
  • the selection unit 14B selects the first candidate for the power conversion circuit unit based on the integrated input current value Iint as described with reference to FIG. Furthermore, the selection unit 14B selects the second candidate for the power conversion circuit unit by comparing the maximum input current Imax with the threshold value stored in the input current threshold value storage unit 17. When the two power conversion circuit units that are the first candidate and the second candidate are the same, the selection unit 14B finally selects the power conversion circuit unit. When the two power conversion circuit units that are the first candidate and the second candidate are different from each other, a power conversion circuit unit on the larger current side, that is, a power conversion circuit unit having a larger input current range is selected from among them. Finally select.
  • the large-current-side power conversion circuit unit is selected as described above because it is larger than the small-current-side power conversion circuit unit is used with a large current. This is because the loss is lower when the current-side power conversion circuit unit is used with a small current.
  • the maximum input current calculation unit 16 includes a storage element such as a RAM that can temporarily store data.
  • the maximum input current calculation unit 16 calculates the maximum value of the input current Iin within the integration time. Specifically, simultaneously with the start of integration of the input current integrated value Iint, the detected value of the input current Iin is input and stored in the maximum input current calculation unit 16, but the newly input value of the input current Iin is stored. If the detected value is larger than the currently stored detection value, the newly input detection value is stored, and the currently stored detection value is erased. The operation is performed until the detection of the integrated input current value Iint is completed, and the detected value of the input current Iin that is finally stored is sent to the selection unit 14B as the maximum input current Imax.
  • the input current threshold storage unit 17 is composed of a nonvolatile memory or the like.
  • the input current threshold storage unit 17 preferably switches the power conversion circuit unit in order to obtain the largest output power Pout.
  • Threshold values th1 and th2 which are values of the input current Iin are stored. Since the threshold values th1 and th2 have already been described with reference to FIG. 4, the description thereof is omitted here.
  • the small current side threshold th1 and the large current side threshold th2 may be obtained by measurement in advance and stored in the input current threshold storage unit 17.
  • the switching process of the power conversion circuit unit in the power conversion device 100B according to another embodiment is the same as the flowchart shown in FIG.
  • steps # 21 to # 26 shown in FIG. 10 are performed by the selection unit 14B, and any one of the first to third power conversion circuit units 4 to 6 is selected. (# 51).
  • the selection unit 14B selects any one power conversion circuit unit based on the maximum input current Imax (# 52). This process will be described in detail later.
  • the selection unit 14B compares the power conversion circuit unit selected in the step # 51 with the power conversion circuit unit selected in the step # 52 (# 53).
  • the selection unit 14B When the compared power conversion circuit units are different (No in # 53), the selection unit 14B finally selects the power conversion circuit unit on the large current side from them (# 55), and the selection process Ends.
  • Control conditions duty ratio, target value of output voltage Vout, switching frequency, etc. that can obtain the largest output power in the finally selected power conversion circuit unit are determined by the control condition determination unit 15 (# 56). .
  • the method for determining the target value of the output voltage Vout in the selected power conversion circuit unit may be the same as described above.
  • the selection process it is determined whether or not the power conversion circuit unit needs to be switched in # 11 of FIG.
  • FIG. 19 is a table showing the relationship between the combination of the selection result based on the integrated input current value and the selection result based on the maximum input current, and the selected power conversion circuit unit.
  • the second power conversion circuit unit 5 When the second power conversion circuit unit 5 is selected based on the integrated input current value Iint, the second power conversion circuit is used except when the third power conversion circuit unit 6 is selected based on the maximum input current Imax. When the unit 5 is finally selected and the third power conversion circuit unit 6 is selected based on the maximum input current Imax, the third power conversion circuit unit 6 is finally selected.
  • the third power conversion circuit unit 5 is selected based on the integrated input current value Iint, the third power conversion circuit unit 6 is not related to the power conversion circuit unit selected based on the maximum input current Imax. Finally selected.
  • the input current Iin is detected by the input current detector 2 simultaneously with the timing of starting the integration of the input current Iin for detecting the input current integrated value Iint (# 61).
  • the maximum input current calculation unit 16 compares the detected value of the input current Iin with the maximum input current Imax stored in the maximum input current calculation unit 16 (# 62). At the start of measurement of the maximum input current Imax, the maximum input current Imax stored in the maximum input current calculation unit 16 is set to 0A.
  • step # 64 If the detected value of the input current Iin is not larger than the currently stored maximum input current Imax (No in # 62), the process proceeds to step # 64.
  • the maximum input current Imax is updated to the detected value of the input current Iin (# 63).
  • the maximum input current calculation unit 16 determines whether or not the integration time that is a predetermined time for detecting the input current integration value Iint has elapsed (# 64), and if it has not elapsed (No in # 64), again. Return to step # 61.
  • the maximum input current Imax stored in the maximum input current calculation unit 16 at that time is the calculated maximum input current Imax, and is sent to the selection unit 14B. Then, the selection processing after the step # 65 is performed.
  • the maximum input current calculation unit 16 resets the stored maximum input current Imax to 0 A, and starts calculating the maximum input current Imax within the next integration time.
  • the selection unit 14B compares the calculated maximum input current Imax with the large current side threshold th2 stored in the input current threshold storage unit 17 (# 65).
  • the third power conversion circuit unit 6 is selected by the selection unit 14B (# 66).
  • the selection unit 14B When the maximum input current Imax is smaller than the large current side threshold th2 (No in # 65), the selection unit 14B causes the maximum input current Imax and the small current side stored in the input current threshold storage unit 17 to be reduced.
  • the threshold value th1 is compared (# 67). If the maximum input current Imax is equal to or greater than the small current side threshold th1 (Yes in # 67), the second power conversion circuit unit 5 is selected by the selection unit 14B (# 68).
  • the first power conversion circuit unit 4 is selected by the selection unit 14B (# 69).
  • the power conversion device 100B selects the power conversion circuit unit based not only on the input current integrated value Iint but also on the maximum input current Imax as described above, a preferable power conversion circuit Parts are selected with higher accuracy. Further, since the selection process is performed every integration time, the number of times of switching of the power conversion circuit unit is suppressed, and an increase in loss due to switching can be suppressed.
  • the method according to the flowchart shown in FIG. 10 is used to select the power conversion circuit unit based on the integrated input current value Iint.
  • the method according to the flowchart shown in FIG. Good is used to select the power conversion circuit unit based on the integrated input current value Iint.
  • the power conversion devices 100 and 100B according to the present embodiment have a plurality of power conversion circuit units having different input current-output power characteristics, and maintain high conversion efficiency in a wide input current range by switching them. Can do. Therefore, the configuration is not complicated and can be simplified, and the circuit design is easy. In addition, compared to power converters that have multiple identical circuits and combine them to accommodate a wide input current range, the increase in the number of parts for configuring the circuit is suppressed and a wide input current range is achieved. On the other hand, an output can be obtained efficiently. Therefore, downsizing and cost reduction are possible.
  • the power conversion circuit unit is switched based on the integrated input current value, the number of switching of the power conversion circuit unit can be suppressed, and unnecessary switching can be eliminated. It can be carried out.
  • the structure, shape, dimensions, number, material, composition, etc. of the entire power conversion device 100, 100B or each part can be appropriately changed in accordance with the spirit of the present invention.
  • the power converters 100 and 100B have a wide input current range and an output current range, and can output maximum power in the entire current range in response to fluctuations in a wide range of input current. And loss is small. Further, downsizing and cost reduction are possible. For example, the power generated by the solar cell can be taken out more effectively by connecting to the solar cell. Therefore, it can be suitably used as a component of a solar power generation system.

Abstract

This power converter performs power conversion of input power that is input as direct current power and creates an output. The power converter has an input current integrated detection unit that detects an input current integrated value which is a value integrated over a prescribed time period for an input current, which is the current for input power, a plurality of power conversion circuit units that perform power conversion of the input power and have different input current ranges from each other and overlapping parts with the input current range of adjacent power conversion circuit units, and a power conversion control unit that selects one power conversion circuit unit from the plurality of power conversion circuit units on the basis of the detected input current integrated value and carries out control at control conditions that obtain the maximum output power for the selected power conversion circuit unit.

Description

電力変換装置および太陽光発電システムPower converter and solar power generation system
 本発明は、直流電力として入力される入力電力を、電力変換して出力する電力変換装置、およびその電力変換装置を用いた太陽光発電システムに関する。 The present invention relates to a power conversion device that converts input power input as DC power and outputs the power, and a solar power generation system using the power conversion device.
 近年、化石燃料の枯渇に対応するため、環境への配慮の必要性等から、再生可能な自然エネルギーの普及が望まれている。特に太陽電池は、環境への影響が少なく、今後の一層の発展が期待される。太陽電池により発電された電力は、蓄電池に蓄電されたり、電力会社に売電されることにより有効に利用されている。太陽電池は日射量により出力が変動することから、天候等により出力が左右されるため、電力の供給量を制御することは困難である。太陽電池の出力の変動幅の全域において、高い変換効率で出力が取り出されることが好ましい。 In recent years, in order to cope with the depletion of fossil fuels, the spread of renewable natural energy is desired due to the need for environmental considerations. In particular, solar cells have little impact on the environment, and further development is expected in the future. The electric power generated by the solar battery is effectively used by being stored in a storage battery or sold to an electric power company. Since the output of a solar cell varies depending on the amount of solar radiation, the output depends on the weather and the like, so it is difficult to control the amount of power supplied. It is preferable that the output is taken out with high conversion efficiency over the entire fluctuation range of the output of the solar cell.
 図21は、一般的な太陽電池の特性の例を示すグラフである。図21において、横軸は、太陽電池の出力電圧を示し、縦軸は太陽電池の出力電流を示す。図21に示されているように、太陽電池の出力特性は、日射量により大きく変動し、出力電流幅が特に大きく変動する。 FIG. 21 is a graph showing an example of characteristics of a general solar cell. In FIG. 21, the horizontal axis represents the output voltage of the solar cell, and the vertical axis represents the output current of the solar cell. As shown in FIG. 21, the output characteristics of the solar cell vary greatly depending on the amount of solar radiation, and the output current width varies particularly greatly.
 例えば、太陽電池により発電された電力を商用電力として利用する場合は、太陽電池の直流の出力電力を商用電力の交流周波数と電圧とに整合させる必要がある。この整合を行う装置を連系用整合装置と呼ぶが、連系用整合装置での整合の効率を高く保つために、太陽電池の出力を連系用整合装置に直接に入力するのではなく、連系用整合装置の効率を高く保てる範囲の入力電圧および入力電流に変換してから連系用整合装置に入力することが好ましい。この変換を行う回路を電力変換回路と呼ぶ。そして、電力変換回路は、変動幅の大きい太陽電池の出力特性に合わせて、広い入力電流域において高い変換効率を有することが好ましい。 For example, when the electric power generated by the solar cell is used as commercial power, it is necessary to match the DC output power of the solar cell with the AC frequency and voltage of the commercial power. A device that performs this matching is called a connection matching device, but in order to keep the efficiency of matching in the connection matching device high, instead of directly inputting the output of the solar cell to the connection matching device, It is preferable to convert the input voltage and input current into a range in which the efficiency of the interconnection matching device can be kept high before inputting to the interconnection matching device. A circuit that performs this conversion is called a power conversion circuit. And it is preferable that a power converter circuit has high conversion efficiency in a wide input current area according to the output characteristic of a solar cell with a large fluctuation range.
 電力変換回路において、広い入力電流域に対して高い変換効率を維持するためには、出力電流域が広い場合であっても高い変換効率が要求される。出力電圧を一定の値に維持する場合には、所定の範囲の出力電流において高い変換効率を有する電力変換回路を実現することは可能であるが、広い出力電流域において高い変換効率を維持する電力変換回路を実現することは困難である。従来の電力変換回路においては、出力電流が所定の範囲から外れると、電力変換回路の変換効率が低下することになる。つまり、出力電流として大電流が必要な場合には、出力電流が大電流である場合に高い変換効率を有する電力変換回路を用いればよいが、その電力変換回路により小電流を出力させる場合には、変換効率が低下する可能性がある。 In a power conversion circuit, in order to maintain high conversion efficiency for a wide input current range, high conversion efficiency is required even when the output current range is wide. When the output voltage is maintained at a constant value, it is possible to realize a power conversion circuit having high conversion efficiency in a predetermined range of output current, but power that maintains high conversion efficiency in a wide output current range. It is difficult to realize a conversion circuit. In the conventional power conversion circuit, when the output current is out of the predetermined range, the conversion efficiency of the power conversion circuit is lowered. In other words, when a large current is required as the output current, a power conversion circuit having high conversion efficiency may be used when the output current is a large current, but when a small current is output by the power conversion circuit, Conversion efficiency may be reduced.
 単一の電力変換回路により、大電流の出力電流および小電流の出力電流のいずれにおいても高い変換効率を実現するために、出力電流の範囲に応じて電力変換における周波数、制御方式(PWM・PFM)等の制御条件を変更することが行われている。例えば、出力電流が大きい場合は周波数一定のPWM制御とし、出力電流が小さい場合にはON幅一定のPFM制御として回路を制御する。 In order to achieve high conversion efficiency for both large output current and small output current with a single power conversion circuit, the frequency and control method (PWM · PFM) in power conversion according to the range of output current ) And other control conditions are changed. For example, the circuit is controlled as PWM control with a constant frequency when the output current is large, and as PFM control with a constant ON width when the output current is small.
 また、特許文献1には、同じ構成の電力変換回路を複数持ち、出力電流に応じて、使用する回路数を増減する電源装置が開示されている。この電源装置は、複数の回路を組み合わせることで、出力電流に応じた電力変換回路を構成し、単一の電力変換回路を用いる場合よりも広い出力電流域において高い変換効率を維持することができる。 Further, Patent Document 1 discloses a power supply apparatus having a plurality of power conversion circuits having the same configuration and increasing or decreasing the number of circuits to be used according to the output current. In this power supply device, by combining a plurality of circuits, a power conversion circuit corresponding to the output current can be configured, and high conversion efficiency can be maintained in a wider output current region than when a single power conversion circuit is used. .
 上述したように、単一の電力変換回路において、周波数、制御方式(PWM・PFM)等を変更することで、ある程度の範囲の出力電流域において高い変換効率を維持することは可能である。しかし、その出力電流域の範囲には限界があり、太陽電池の出力を効率よく取り出すには十分な範囲とは言えない。 As described above, high conversion efficiency can be maintained in a certain range of output current by changing the frequency, control method (PWM / PFM), etc. in a single power conversion circuit. However, there is a limit to the range of the output current region, and it cannot be said that the range is sufficient to efficiently extract the output of the solar cell.
 特許文献1の電源装置は、組み合わせる回路の数を増やすことにより、高い変換効率を維持できる出力電流域の範囲を広げることができるが、その範囲にも限界があり、太陽電池の出力を効率よく取り出すには十分な範囲とは言えない。特許文献1の電源装置は、同じ構成の回路を組み合わせることから、必要とする回路の数が比較的多くなるため、電源装置が大型化、高コスト化するという問題がある。また、同じ構成の回路を組み合わせることにより、広い出力電流域において最適の電力変換回路を構成するには、回路の設計が複雑になり、回路設計にかかる時間が長くなるという問題がある。 The power supply device of Patent Document 1 can widen the range of the output current region in which high conversion efficiency can be maintained by increasing the number of circuits to be combined, but the range is also limited, and the output of the solar cell is efficiently It's not enough to take it out. Since the power supply device of Patent Document 1 combines circuits having the same configuration, the number of required circuits is relatively large, and thus there is a problem that the power supply device is increased in size and cost. Further, in order to construct an optimum power conversion circuit in a wide output current range by combining circuits having the same configuration, there is a problem that the circuit design becomes complicated and the time required for the circuit design becomes long.
特開2009-232587号公報JP 2009-232587 A
 本発明の目的は、広い入力電流域および出力電流域を持ち、広い範囲での入力電流の変動に対応して効率よく電力を出力し、かつ、小型化・低コスト化が可能な電力変換装置を提供することである。 An object of the present invention is to provide a power converter that has a wide input current range and an output current range, efficiently outputs power in response to fluctuations in input current over a wide range, and can be reduced in size and cost. Is to provide.
 本発明に係る一実施形態の電力変換装置は、直流電力として入力される入力電力を電力変換して出力する電力変換装置であって、前記入力電力の電流である入力電流の所定時間にわたる積算値である入力電流積算値を反復して検出する入力電流積算検出部と、前記入力電力を電力変換するものであり、入力電流範囲が互いに異なりかつ隣合う入力電流範囲とは重複する部分を有する複数の電力変換回路部と、検出された前記入力電流積算値に基づいて、前記複数の電力変換回路部から1つの電力変換回路部を選択し、選択した前記1つの電力変換回路部に対して最も大きい出力電力が得られる制御条件で制御を行う電力変換制御部と、を有する。 A power converter according to an embodiment of the present invention is a power converter that converts input power input as DC power and outputs the power, and is an integrated value over a predetermined time of the input current that is the current of the input power. An input current integration detection unit that repeatedly detects the input current integration value and a plurality of input current ranges that are different from each other and that overlap with adjacent input current ranges And a power conversion circuit unit selected from the plurality of power conversion circuit units based on the detected integrated input current value, and the most suitable for the selected power conversion circuit unit. And a power conversion control unit that performs control under a control condition that provides a large output power.
 一実施形態の電力変換装置によれば、広い入力電流域および出力電流域を持ち、広い範囲での入力電流の変動に対応して効率よく電力を出力し、かつ、小型化・低コスト化が可能である。 According to the power conversion device of one embodiment, it has a wide input current range and an output current range, and efficiently outputs power in response to fluctuations in the input current over a wide range, and can be reduced in size and cost. Is possible.
本実施形態に係る電力変換装置を用いた太陽光発電システムの構成を示すブロック図である。It is a block diagram which shows the structure of the solar energy power generation system using the power converter device which concerns on this embodiment. 本実施形態に係る電力変換装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the power converter device which concerns on this embodiment. 本実施形態に係る電力変換装置の構成の一例の一部を回路図とした説明図である。It is explanatory drawing which made a part of example of a structure of the power converter device which concerns on this embodiment into the circuit diagram. 本実施形態に係る電力変換装置の各電力変換回路部の入力電流と出力電力との関係を示すグラフである。It is a graph which shows the relationship between the input current and output power of each power inverter circuit unit of the power converter concerning this embodiment. 電力変換回路部における出力電流と変換効率との関係の例を示すグラフである。It is a graph which shows the example of the relationship between the output current in a power converter circuit unit, and conversion efficiency. 第1電力変換回路部に関する効率対出力電流データの一例を示す図である。It is a figure which shows an example of the efficiency versus output current data regarding a 1st power converter circuit unit. 第2電力変換回路部に関する効率対出力電流データの一例を示す図である。It is a figure which shows an example of the efficiency versus output current data regarding the 2nd power inverter circuit unit. 第3電力変換回路部に関する効率対出力電流データの一例を示す図である。It is a figure which shows an example of the efficiency versus output current data regarding the 3rd power converter circuit unit. 電力変換回路部の切換え処理の一例を示すフローチャートである。It is a flowchart which shows an example of the switching process of a power converter circuit unit. 電力変換回路部の選択処理の一例を示すフローチャートである。It is a flowchart which shows an example of the selection process of a power inverter circuit unit. 図10のフローチャートの選択処理を用いた電力変換回路部の切換えの一例を示すタイミングチャートである。11 is a timing chart showing an example of switching of the power conversion circuit unit using the selection process of the flowchart of FIG. 10. 電力変換回路部の切換え有りと、切換え無しとの出力電力の違いを説明するための図である。It is a figure for demonstrating the difference of the output electric power with switching of a power converter circuit part, and without switching. 電力変換回路部の選択処理の他の一例を示すフローチャートである。It is a flowchart which shows another example of the selection process of a power inverter circuit unit. 図13のフローチャートの選択処理を用いた電力変換回路部の切換えの一例を示すタイミングチャートである。It is a timing chart which shows an example of the switching of the power converter circuit unit using the selection process of the flowchart of FIG. 電力変換回路部の選択処理のさらに他の一例を示すフローチャートである。It is a flowchart which shows another example of the selection process of a power inverter circuit unit. 図15のフローチャートの選択処理を用いた電力変換回路部の切換えの一例を示すタイミングチャートである。16 is a timing chart showing an example of switching of the power conversion circuit unit using the selection process of the flowchart of FIG. 15. 他の実施形態に係る電力変換装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the power converter device which concerns on other embodiment. 他の実施形態に係る電力変換回路部の選択処理の一例を示すフローチャートである。It is a flowchart which shows an example of the selection process of the power inverter circuit unit which concerns on other embodiment. 入力電流積算値による選択結果および最大入力電流による選択結果の組合せと、選択される電力変換回路部との関係を示すテーブルである。It is a table which shows the relationship between the combination of the selection result by the input current integrated value and the selection result by the maximum input current, and the selected power conversion circuit unit. 最大電流値に基づいて1つの電力変換回路部を選択するときの一例を示すフローチャートである。It is a flowchart which shows an example when one power converter circuit unit is selected based on the maximum current value. 太陽電池の特性の例を示すグラフである。It is a graph which shows the example of the characteristic of a solar cell.
 図1は、本実施形態に係る電力変換装置を用いた太陽光発電システムの構成を示すブロック図である。図1に示すように、本実施形態に係る電力変換装置100および太陽電池PVを用いて、商用電力系統と連系して使用される太陽光発電システムを実現することができる。この太陽光発電システムは、太陽電池PVと、太陽電池PVに接続された電力変換装置100と、電力変換装置100により電力変換された出力をさらに変圧したり、直流-交流変換等を行うことで商用電力系統に整合させるための連系用整合装置200とを備え、連系用整合装置200は商用電力系統に接続されている。 FIG. 1 is a block diagram showing a configuration of a photovoltaic power generation system using a power conversion device according to the present embodiment. As shown in FIG. 1, a photovoltaic power generation system used in conjunction with a commercial power system can be realized using the power conversion device 100 and the solar battery PV according to this embodiment. In this solar power generation system, the solar cell PV, the power conversion device 100 connected to the solar cell PV, the output converted by the power conversion device 100 is further transformed, or the DC-AC conversion is performed. An interconnection matching device 200 for matching with the commercial power system is provided, and the interconnection matching device 200 is connected to the commercial power system.
 太陽電池PVは日射量に応じて発電を行い、電力を出力する。 The solar cell PV generates power according to the amount of solar radiation and outputs power.
 電力変換装置100は、入力された電力を高い変換効率で変換して出力する。電力変換装置100の詳細については、後述する。 The power conversion device 100 converts the input power with high conversion efficiency and outputs it. Details of the power conversion apparatus 100 will be described later.
 連系用整合装置200は、例えばDC-ACインバータ回路を備え、電力変換装置100からの出力を商用電力系統に送電できるように、100V程度または200V程度の商用電力の交流電圧へと変換する。 The interconnection matching device 200 includes, for example, a DC-AC inverter circuit, and converts the output from the power conversion device 100 into an AC voltage of about 100V or about 200V of commercial power so that the output can be transmitted to the commercial power system.
 太陽光が入射することで発電した太陽電池PVから出力された電力が、電力変換装置100に入力される。電力変換装置100では、太陽電池PVからの出力を入力とし、その入力電流値の範囲にかかわらず高い変換効率で電力変換して出力する。電力変換装置100により変換された電力は連系用整合装置200に入力され、商用電力系統で伝送されるように適宜変換され、商用電力系統へと送電される。このように、太陽電池PVからの出力を有効に売電することができる。 The power output from the solar cell PV generated by the incidence of sunlight is input to the power conversion device 100. In the power converter 100, the output from the solar cell PV is used as input, and the power is converted with high conversion efficiency regardless of the range of the input current value. The power converted by the power conversion device 100 is input to the interconnection matching device 200, appropriately converted so as to be transmitted through the commercial power system, and transmitted to the commercial power system. Thus, the output from the solar cell PV can be sold effectively.
 また、電力変換装置100の入力側は太陽電池PVに接続した状態で、出力側を蓄電池に接続して、太陽電池PVにより発電された電力を蓄電池に蓄電することもできる。 In addition, the input side of the power converter 100 can be connected to the solar battery PV, the output side can be connected to the storage battery, and the power generated by the solar battery PV can be stored in the storage battery.
 本実施形態に係る電力変換装置100を用いることにより、太陽電池PVからの出力を高い変換効率で取り出すことができる太陽光発電システムを構成することができる。本実施形態に係る電力変換装置100について、図面を参照して説明する。 By using the power conversion device 100 according to the present embodiment, it is possible to configure a solar power generation system that can extract the output from the solar cell PV with high conversion efficiency. A power conversion apparatus 100 according to the present embodiment will be described with reference to the drawings.
 図2は本実施形態に係る電力変換装置の構成の一例を示すブロック図である。図3は本実施形態に係る電力変換装置の構成の一例の一部を回路図とした説明図であって、電力変換装置100に太陽電池PVが接続されている。 FIG. 2 is a block diagram showing an example of the configuration of the power conversion apparatus according to this embodiment. FIG. 3 is an explanatory diagram in which a part of an example of the configuration of the power conversion device according to this embodiment is a circuit diagram, and a solar cell PV is connected to the power conversion device 100.
 図2に示すように、電力変換装置100は、電力変換制御部1と、入力電力Pinの電流である入力電流Iinを検出する入力電流検出部2と、入力電力Pinの電圧である入力電圧Vinを検出する入力電圧検出部3と、電力変換を行う第1電力変換回路部4、第2電力変換回路部5および第3電力変換回路部6と、出力電力Poutの電流である出力電流Ioutを検出する出力電流検出部7と、出力電力Poutの電圧である出力電圧Voutを検出する出力電圧検出部8と、警報信号を出力する警報出力部9と、入力電流積算検出部10とを備えている。 As illustrated in FIG. 2, the power conversion apparatus 100 includes a power conversion control unit 1, an input current detection unit 2 that detects an input current Iin that is a current of the input power Pin, and an input voltage Vin that is a voltage of the input power Pin. An input voltage detection unit 3 that detects power, a first power conversion circuit unit 4 that performs power conversion, a second power conversion circuit unit 5 and a third power conversion circuit unit 6, and an output current Iout that is a current of the output power Pout. An output current detection unit 7 for detecting, an output voltage detection unit 8 for detecting an output voltage Vout which is a voltage of the output power Pout, an alarm output unit 9 for outputting an alarm signal, and an input current integration detection unit 10 are provided. Yes.
 第1~3電力変換回路部4~6は、それぞれ入力電力を変換して出力するように構成された回路であって、これらは互いに入力電流範囲が異なる。第1~3電力変換回路部4~6には、電力変換装置100に入力された電力が入力されるが、その入力は電力変換制御部1により制御されている。 The first to third power conversion circuit units 4 to 6 are circuits each configured to convert and output input power, and these have different input current ranges. The first to third power conversion circuit units 4 to 6 receive the power input to the power conversion apparatus 100, and the input is controlled by the power conversion control unit 1.
 図3に示すように、第1~3電力変換回路部4~6は、スイッチング素子FET1、FET2、FET3と、転流ダイオードD1、D2、D3と、電力変換時にエネルギーを蓄積するためのインダクタであるコイル(リアクトル)L1、L2、L3と、コンデンサC1、C2、C3とを備えている。 As shown in FIG. 3, the first to third power conversion circuit units 4 to 6 are switching elements FET1, FET2, and FET3, commutation diodes D1, D2, and D3, and inductors for storing energy during power conversion. A certain coil (reactor) L1, L2, L3 and capacitors C1, C2, C3 are provided.
 スイッチング素子FET1~3は、いずれもMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor :金属-酸化物-半導体電界効果型トランジスタ)とすればよい。転流ダイオードD1~3は、通常のダイオードであってもツェナーダイオードであってもよい。第1~3電力変換回路部4~6は、降圧型のDC/DCコンバーターを構成している。 All of the switching elements FET1 to FET3 may be MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors: metal-oxide-semiconductor field effect transistors). The commutation diodes D1 to D3 may be ordinary diodes or Zener diodes. The first to third power conversion circuit units 4 to 6 constitute a step-down DC / DC converter.
 スイッチング素子FET1~3のゲートは、それぞれ電力変換制御部1に接続されていて、電力変換制御部1から送信される駆動信号S1~3により、ON、OFFが制御される。電力変換制御部1により、太陽電池PVの出力を変換するために第1~3電力変換回路部4~6のいずれを用いるかを選択することができ、さらに電力変換制御部1により、第1~3電力変換回路部4~6のそれぞれが制御される。 The gates of the switching elements FET1 to FET3 are respectively connected to the power conversion control unit 1, and are controlled to be turned on and off by drive signals S1 to 3 transmitted from the power conversion control unit 1. The power conversion control unit 1 can select which of the first to third power conversion circuit units 4 to 6 is used to convert the output of the solar cell PV, and the power conversion control unit 1 further selects the first Each of the 3 to 3 power conversion circuit units 4 to 6 is controlled.
 第1~3電力変換回路部4~6において、各コイルL1~3のインダクタンスは互いに異なる値を有しており、それぞれにおける入力電流に対する出力電力の値が互いに異なる。 In the first to third power conversion circuit units 4 to 6, the inductances of the coils L1 to L3 have different values, and the values of the output power with respect to the input current are different from each other.
 図4を用いて、第1~3電力変換回路部4~6の入力電流Iinと出力電力Poutとの関係について説明する。図4は本実施形態に係る電力変換装置の各電力変換回路部の入力電流と出力電力との関係を示すグラフである。 The relationship between the input current Iin and the output power Pout of the first to third power conversion circuit units 4 to 6 will be described with reference to FIG. FIG. 4 is a graph showing the relationship between the input current and the output power of each power conversion circuit unit of the power conversion apparatus according to this embodiment.
 図4に示すように、第1~3電力変換回路部4~6は、それぞれ入力電流Iinに対する出力電力Poutの特性が異なる。各第1~3電力変換回路部4~6におけるピークの出力電力を得るときの入力電流Iinの値も各電力変換回路部において互いに異なる。 As shown in FIG. 4, the first to third power conversion circuit units 4 to 6 have different characteristics of the output power Pout with respect to the input current Iin. The value of the input current Iin when obtaining the peak output power in each of the first to third power conversion circuit units 4 to 6 is also different from each other in each power conversion circuit unit.
 第1~3電力変換回路部4~6の各入力電流範囲が互いに異なり、かつ隣合う入力電流範囲とは重複する部分を有している。つまり、図4に示しているように、第1電力変換回路部4および第2電力変換回路部5の入力電流範囲は隣合っていて、これらの電流範囲は重複している(図4において破線で示した部分を参照)。同様に、第2電力変換回路部5および第3電力変換回路部6の入力電流範囲は隣合っていて、これらの電流範囲は重複している(図4において破線で示した部分を参照)。 The input current ranges of the first to third power conversion circuit units 4 to 6 are different from each other and have a portion overlapping with the adjacent input current range. That is, as shown in FIG. 4, the input current ranges of the first power conversion circuit unit 4 and the second power conversion circuit unit 5 are adjacent to each other, and these current ranges are overlapped (in FIG. 4, a broken line). (See the part shown in). Similarly, the input current ranges of the second power conversion circuit unit 5 and the third power conversion circuit unit 6 are adjacent to each other, and these current ranges overlap (see the portion indicated by the broken line in FIG. 4).
 第1~3電力変換回路部4~6のいずれか1つを用いて電力変換を行う場合に、最も大きな出力電力Poutを得ることができる各電力変換回路部の入力電流Iinの境界が、しきい値th1およびth2であり、小電流側に位置するものを小電流側しきい値th1とし、大電流側に位置するものを大電流側しきい値th2とする。 When power conversion is performed using any one of the first to third power conversion circuit units 4 to 6, the boundary of the input current Iin of each power conversion circuit unit that can obtain the largest output power Pout is The threshold values th1 and th2, which are located on the small current side, are defined as the small current side threshold value th1, and those located on the large current side are defined as the large current side threshold value th2.
 入力電流Iinが小電流側しきい値th1よりも小さい場合は第1電力変換回路部4により電力変換を行うことが好ましく、入力電流Iinが小電流側しきい値th1以上で大電流側しきい値th2よりも小さい場合は第2電力変換回路部5により電力変換を行うことが好ましく、入力電流Iinが大電流側しきい値th2以上である場合は第3電力変換回路部6により電力変換を行うことが好ましい。 When the input current Iin is smaller than the small current side threshold th1, it is preferable to perform power conversion by the first power conversion circuit unit 4, and when the input current Iin is not less than the small current side threshold th1 and the large current side threshold is reached. When it is smaller than the value th2, it is preferable to perform power conversion by the second power conversion circuit unit 5, and when the input current Iin is greater than or equal to the large current side threshold th2, the third power conversion circuit unit 6 performs power conversion. Preferably it is done.
 第1~3電力変換回路部4~6は、入力電流Iinおよび出力電流Ioutの値により変換効率が変化する。特に、コイルL1~3のインダクタンスおよび直流抵抗により変換効率の高低が決まってくる。図5は、電力変換回路部における出力電流と変換効率との関係の例を示すグラフである。図5(A)は出力電流Ioutが比較的大きい場合に好ましい電力変換回路部に関するグラフであり、図5(B)は出力電流Ioutが比較的小さい場合に好ましい電力変換回路部に関するグラフである。変換効率ηは入力電力Pinに対する出力電力Poutの比であり、変換効率ηが大きいほど高い効率の電力変換が可能な電力変換部であるといえる。 The conversion efficiency of the first to third power conversion circuit units 4 to 6 varies depending on the values of the input current Iin and the output current Iout. In particular, the level of conversion efficiency is determined by the inductance and DC resistance of the coils L1-3. FIG. 5 is a graph showing an example of the relationship between the output current and the conversion efficiency in the power conversion circuit unit. FIG. 5A is a graph related to a power conversion circuit unit that is preferable when the output current Iout is relatively large, and FIG. 5B is a graph related to a power conversion circuit unit that is preferable when the output current Iout is relatively small. The conversion efficiency η is the ratio of the output power Pout to the input power Pin, and it can be said that the conversion efficiency η is a power conversion unit capable of performing power conversion with higher efficiency as the conversion efficiency η increases.
 図5(A)および図5(B)において用いた電力変換回路部は、いずれも、第1~3電力変換回路部4~6と同様の回路構成を有する電力変換回路部であるが、それぞれのコイルのインダクタンスは互いに異なる。 Each of the power conversion circuit units used in FIGS. 5A and 5B is a power conversion circuit unit having a circuit configuration similar to that of the first to third power conversion circuit units 4 to 6, The coils have different inductances.
 図5(A)の電力変換回路部は、入力電圧120V、出力電圧100V、出力電流が0.2A~10A程度の条件において動作し、入力電流が10A付近において最も高い変換効率ηを得ることができるように設計されている。この電力変換回路部には、大電流出力が可能なコイルが選択される。一般的に大電流型のコイルはL値が0.1μH~数μHと比較的小さく、300KHz~1MHzの高周波でPWMスイッチング制御することにより、出力電流が10A付近で変換効率90%以上を実現できる。しかし、出力電流が1A以下では自己回路損失が大きいため50%程度まで変換効率ηが低下する。 5A operates under the conditions of an input voltage of 120 V, an output voltage of 100 V, and an output current of about 0.2 A to 10 A, and can obtain the highest conversion efficiency η when the input current is around 10 A. Designed to be able to. A coil capable of outputting a large current is selected for the power conversion circuit unit. Generally, a large current type coil has a comparatively small L value of 0.1 μH to several μH, and PWM switching control at a high frequency of 300 KHz to 1 MHz can realize a conversion efficiency of 90% or more when the output current is around 10 A. . However, when the output current is 1 A or less, the self-circuit loss is large, so that the conversion efficiency η is reduced to about 50%.
 図5(B)の電力変換回路部は、入力電圧120V、出力電圧100V、出力電流0A~1A程度の条件において動作し、入力電流が1A付近において最も高い変換効率ηを得ることができるように設計されている。この電力変換回路部には、小電流出力が可能なコイルが選択される。一般的に小電流型のコイルはL値が数十μH~数百μHで、300KHz以下の比較的低い周波数でPWMスイッチング制御することにより、0.01A~1A程度の電流域において変換効率90%前後を実現できる。しかし、出力電流が1Aを超えると出力が低下し、大電流を出力することができない。 The power conversion circuit unit in FIG. 5B operates under conditions of an input voltage of 120 V, an output voltage of 100 V, and an output current of about 0 A to 1 A so that the highest conversion efficiency η can be obtained when the input current is around 1 A. Designed. A coil capable of outputting a small current is selected for the power conversion circuit unit. Generally, a small current type coil has an L value of several tens of μH to several hundred μH, and PWM switching control is performed at a relatively low frequency of 300 KHz or less, so that the conversion efficiency is 90% in a current range of about 0.01 A to 1 A. Front and back can be realized. However, when the output current exceeds 1 A, the output decreases and a large current cannot be output.
 第1~3電力変換回路部4~6は、それぞれ異なる入力電流の範囲において高い変換効率の電力変換がなされ、それらの入力電流の範囲により、電力変換装置100に入力されることが予定されている入力電流の範囲をカバーできる。 The first to third power conversion circuit units 4 to 6 perform power conversion with high conversion efficiency in different input current ranges, and are scheduled to be input to the power conversion device 100 depending on the input current ranges. The input current range can be covered.
 なお、第1~3電力変換回路部4~6は、それぞれ高い変換効率を得ることができる入力電流の範囲が異なるコンバーターであればよく、図3に示した回路構成に限定されるわけではない。電力変換装置100の使用目的に応じてそれぞれ設計されればよい。例えば、スイッチング素子としてMOSFETの代わりにバイポーラトランジスタを用いてもよい。また、転流ダイオードの代わりに、MOSFETまたはバイポーラトランジスタといったスイッチング素子を用いて同期整流式としても、第1~3電力変換回路部4~6と同様の動作をする電力変換回路部を構成することができる。 The first to third power conversion circuit units 4 to 6 are not limited to the circuit configuration shown in FIG. 3 as long as the converters have different input current ranges in which high conversion efficiency can be obtained. . What is necessary is just to design according to the intended purpose of the power converter device 100, respectively. For example, a bipolar transistor may be used as the switching element instead of the MOSFET. Also, a power conversion circuit unit that operates in the same manner as the first to third power conversion circuit units 4 to 6 can be configured by using a switching element such as a MOSFET or a bipolar transistor instead of the commutation diode and using a synchronous rectification type. Can do.
 また、第1~3電力変換回路部4~6とは異なる構成の電力変換回路部を用いてもよく、例えば昇圧型や昇降圧型でもよい。また、電力変換回路部の数は複数であればよく、3個に限定されるわけではない。電力変換回路部の回路構成およびその数は、電力変換装置100に接続される電力源の出力等に応じて決定される電力変換装置100の入力電流の範囲等に応じて適宜調整すればよい。 Also, a power conversion circuit unit having a configuration different from that of the first to third power conversion circuit units 4 to 6 may be used. For example, a boost type or a step-up / down type may be used. Further, the number of power conversion circuit units is not limited to three as long as it is plural. The circuit configuration and the number of the power conversion circuit units may be appropriately adjusted according to the input current range of the power conversion device 100 determined according to the output of the power source connected to the power conversion device 100 and the like.
 入力電流検出部2は、入力電流Iinの値を随時検出し、電力変換制御部1に送信する。入力電流検出部2は例えば電流検出用の抵抗等を用いて構成され、A/D変換器を有し、アナログ信号の検出値をデジタル信号へと変換して電力変換制御部1に送信する。 The input current detection unit 2 detects the value of the input current Iin as needed and transmits it to the power conversion control unit 1. The input current detection unit 2 is configured using, for example, a current detection resistor, has an A / D converter, converts an analog signal detection value into a digital signal, and transmits the digital signal to the power conversion control unit 1.
 入力電圧検出部3は、入力電圧Vinの値を随時検出し、電力変換制御部1に送信する。入力電圧検出部3は例えば分圧抵抗等を用いて構成され、A/D変換器を有し、アナログ信号の検出値をデジタル信号へと変換して電力変換制御部1に送信する。 The input voltage detection unit 3 detects the value of the input voltage Vin as needed and transmits it to the power conversion control unit 1. The input voltage detection unit 3 is configured using, for example, a voltage dividing resistor, has an A / D converter, converts an analog signal detection value into a digital signal, and transmits the digital signal to the power conversion control unit 1.
 入力電流積算検出部10は、入力電流Iinの積算値を所定時間ごとに検出し、電力変換制御部1に送信する。入力電流積算検出部10は例えば電流検出用の抵抗等を用いて構成され、A/D変換器を有し、アナログ信号の検出値をデジタル信号へと変換して電力変換制御部1に送信する。 The input current integration detection unit 10 detects the integrated value of the input current Iin every predetermined time and transmits it to the power conversion control unit 1. The input current integration detection unit 10 is configured using, for example, a current detection resistor, has an A / D converter, converts an analog signal detection value into a digital signal, and transmits the digital signal to the power conversion control unit 1. .
 なお、入力電流積算検出部10を設けることなく、入力電流検出部2で検出され、デジタル信号へと変換されて電力変換制御部1に送信された入力電流の検出値を、電力変換制御部1の後述するCPU等により積算することで入力電流Iinの積算値を算出してもよい。 In addition, without providing the input current integration detection unit 10, the detected value of the input current detected by the input current detection unit 2, converted into a digital signal and transmitted to the power conversion control unit 1 is used as the power conversion control unit 1. The integrated value of the input current Iin may be calculated by integrating with a later-described CPU or the like.
 出力電流検出部7は、出力電流Ioutの値を随時検出し、電力変換制御部1に送信する。出力電流検出部7は例えば電流検出用の抵抗等を用いて構成され、A/D変換器を有し、アナログ信号の検出値をデジタル信号へと変換して電力変換制御部1に送信する。 The output current detection unit 7 detects the value of the output current Iout as needed and transmits it to the power conversion control unit 1. The output current detection unit 7 is configured using, for example, a resistor for current detection, has an A / D converter, converts the detected value of the analog signal into a digital signal, and transmits the digital signal to the power conversion control unit 1.
 出力電圧検出部8は、出力電圧Voutの値を随時検出し、電力変換制御部1に送信する。出力電圧検出部8は例えば分圧抵抗等を用いて構成され、A/D変換器を有し、アナログ信号の検出値をデジタル信号へと変換して電力変換制御部1に送信する。 The output voltage detection unit 8 detects the value of the output voltage Vout as needed and transmits it to the power conversion control unit 1. The output voltage detection unit 8 is configured using, for example, a voltage dividing resistor, and has an A / D converter. The output voltage detection unit 8 converts an analog signal detection value into a digital signal and transmits the digital signal to the power conversion control unit 1.
 図2において、電力変換制御部1は、効率対出力電流データ格納部12と、最適積算値範囲格納部13と、選択部14と、制御条件決定部15とを備えている。電力変換制御部1は、例えばCPU、不揮発性メモリ、RAM等を用いて構成することが可能である。電力変換制御部1は、入力電流積算検出部10により検出された入力電流Iinの積算値に基づいて、第1~3電力変換回路部4~6のうちから1つの電力変換回路部を選択し、選択された電力変換回路部が最も大きい出力電力Poutを得ることができるような制御条件で電力変換回路部を制御する。 2, the power conversion control unit 1 includes an efficiency versus output current data storage unit 12, an optimum integrated value range storage unit 13, a selection unit 14, and a control condition determination unit 15. The power conversion control unit 1 can be configured using, for example, a CPU, a nonvolatile memory, a RAM, and the like. The power conversion control unit 1 selects one power conversion circuit unit from the first to third power conversion circuit units 4 to 6 based on the integrated value of the input current Iin detected by the input current integration detection unit 10. The power conversion circuit unit is controlled under control conditions such that the selected power conversion circuit unit can obtain the largest output power Pout.
 効率対出力電流データ格納部11は、例えば不揮発性メモリであって、図6~図8に示すような効率対出力電流データTD1~3を格納している。効率対出力電流データTD1~3は、第1~3電力変換回路部4~6ごとに予め測定により求められたデータであって、第1~3電力変換回路部4~6のそれぞれにおける変換効率ηと出力電流Ioutとの関係を示すデータである。効率対出力電流データTD1~3は、図6~図8に示すように入力電流Iinおよび出力電圧Voutをパラメータとするテーブル形式とされる、変換効率ηと出力電流Ioutとの関係を示すグラフで表すことができる。図6~図8は、それぞれ、第1~3電力変換回路部4~6に関する効率対出力電流データの一例を示す図である。 The efficiency versus output current data storage unit 11 is, for example, a nonvolatile memory, and stores efficiency versus output current data TD1 to TD3 as shown in FIGS. The efficiency versus output current data TD1 to TD3 is data obtained by measurement in advance for each of the first to third power conversion circuit units 4 to 6, and the conversion efficiency in each of the first to third power conversion circuit units 4 to 6 It is data which shows the relationship between (eta) and output current Iout. The efficiency versus output current data TD1 to TD3 are graphs showing the relationship between the conversion efficiency η and the output current Iout, which are in the form of a table with the input current Iin and the output voltage Vout as parameters as shown in FIGS. Can be represented. 6 to 8 are diagrams showing examples of efficiency versus output current data regarding the first to third power conversion circuit units 4 to 6, respectively.
 効率対出力電流データTD1~3は、各電力変換回路部における、入力電流Iinごとおよび出力電圧Voutごとのデータであり、例えば入力電流Iinは1A~9Aの範囲で2A刻みに5点選択され、出力電圧は80~120Vであり10V刻みに5点選択されている。図6~図8に示すように、効率対出力電流データTD1~3は、入力電流Iinおよび出力電圧Voutにより区分されたテーブル形式のデータである。 The efficiency vs. output current data TD1 to TD3 are data for each input current Iin and for each output voltage Vout in each power conversion circuit unit. For example, the input current Iin is selected in 5A increments of 2A in the range of 1A to 9A, The output voltage is 80 to 120V, and 5 points are selected in increments of 10V. As shown in FIGS. 6 to 8, the efficiency versus output current data TD1 to TD3 is data in a table format divided by the input current Iin and the output voltage Vout.
 効率対出力電流データTD1~3における入力電流Iinの範囲は、電力変換装置100において実際に使用することが予定されている入力電流Iinの範囲である。効率対出力電流データTD1~3における出力電圧Voutの範囲は、電力変換装置100において実際に使用することが予定されている出力電圧Voutの範囲である。これらの範囲において、上記複数のグラフが多ければ多いほど、より高精度の電力変換ができるといえる。効率対出力電流データTD1~3を測定により求める際に、入力電流Iinの刻みの度合いおよび出力電圧Voutの刻みの度合いをより小さくすることで、効率対出力電流データTD1~3の量が増加し、より高精度の電力変換が可能となる。 The range of the input current Iin in the efficiency vs. output current data TD1 to TD3 is the range of the input current Iin that is actually planned to be used in the power converter 100. The range of the output voltage Vout in the efficiency versus output current data TD1 to TD3 is the range of the output voltage Vout that is actually planned to be used in the power conversion apparatus 100. In these ranges, it can be said that the more the plurality of graphs, the more accurate power conversion can be performed. When the efficiency vs. output current data TD1 to TD3 is obtained by measurement, the amount of the efficiency vs. output current data TD1 to TD3 is increased by making the step of the input current Iin and the step of the output voltage Vout smaller. Therefore, more accurate power conversion is possible.
 最適積算値範囲格納部13は例えば不揮発性メモリであって、各電力変換回路部に対応する最適積算値範囲を格納している。最適積算値範囲とは電力変換回路部ごとに設定された範囲であり、入力電流Iinの積算値である入力電流積算値Iintが含まれている最適積算値範囲に対応する電力変換回路部により電力変換することが、変換効率ηの点で好ましい。 The optimal integrated value range storage unit 13 is, for example, a nonvolatile memory, and stores the optimal integrated value range corresponding to each power conversion circuit unit. The optimum integrated value range is a range set for each power conversion circuit unit, and the power conversion circuit unit corresponding to the optimum integrated value range including the input current integrated value Iint that is an integrated value of the input current Iin Conversion is preferable in terms of conversion efficiency η.
 第1電力変換回路部4、第2電力変換回路部5および第3電力変換回路部6にそれぞれ対応する最適積算値範囲は、それぞれ第1最適積算値範囲、第2最適積算値範囲および第3最適積算値範囲である。本実施形態の電力変換装置100は、入力電流積算値Iintがいずれの最適積算値範囲に含まれるかに応じて、電力変換回路部を切換えることにより、高い変換効率ηを維持する。 The optimum integrated value ranges respectively corresponding to the first power conversion circuit unit 4, the second power conversion circuit unit 5, and the third power conversion circuit unit 6 are a first optimum integrated value range, a second optimum integrated value range, and a third optimum integrated value range, respectively. It is the optimum integrated value range. The power conversion device 100 of the present embodiment maintains a high conversion efficiency η by switching the power conversion circuit unit according to which optimum integrated value range the input current integrated value Iint is included in.
 なお、本実施形態のように電力変換回路部が3つである場合は、入力電流積算値Iintが第1最適積算値範囲内にある場合は第1電力変換回路部4を選択することが好ましく、入力電流積算値Iintが第2最適積算値範囲内にある場合は第2電力変換回路部5を選択することが好ましい。入力電流積算値Iintが第2最適積算値範囲内よりも大きい場合は、第3電力変換回路部6を選択することとすればよいので、第3最適積算値範囲を格納しておかなくてもよい。これら最適積算値範囲については予め測定により求め、最適積算値範囲格納部13に格納しておけばよい。 When there are three power conversion circuit units as in the present embodiment, it is preferable to select the first power conversion circuit unit 4 when the input current integrated value Iint is within the first optimum integrated value range. When the input current integrated value Iint is within the second optimum integrated value range, the second power conversion circuit unit 5 is preferably selected. When the input current integrated value Iint is larger than the second optimum integrated value range, the third power conversion circuit unit 6 may be selected. Therefore, the third optimum integrated value range need not be stored. Good. These optimum integrated value ranges may be obtained in advance by measurement and stored in the optimum integrated value range storage unit 13.
 さらに、第2最適積算値範囲のみを格納しておき、入力電流積算値Iintが第2最適積算値範囲以下である場合は第1電力変換回路部4を選択し、入力電流積算値Iintが第2最適積算値範囲内にある場合は第2電力変換回路部5を選択し、入力電流積算値Iintが第2最適積算値範囲内よりも大きい場合は、第3電力変換回路部6を選択してもよい。 Furthermore, only the second optimum integrated value range is stored, and when the input current integrated value Iint is equal to or less than the second optimum integrated value range, the first power conversion circuit unit 4 is selected, and the input current integrated value Iint is the first When the input current integrated value Iint is larger than the second optimum integrated value range, the third power conversion circuit unit 6 is selected when the input current integrated value Iint is larger than the second optimum integrated value range. May be.
 選択部14は、入力電流積算検出部10により検出された入力電流積算値Iintと、最適積算値範囲格納部13に格納されている最適積算値範囲とを比較し、入力電流積算値Iintが含まれる最適積算値範囲を求めて、当該最適積算値範囲に対応する1つの電力変換回路部を選択する。 The selection unit 14 compares the input current integration value Iint detected by the input current integration detection unit 10 with the optimum integration value range stored in the optimum integration value range storage unit 13 and includes the input current integration value Iint. The optimum integrated value range is obtained, and one power conversion circuit unit corresponding to the optimum integrated value range is selected.
 制御条件決定部15は、効率対出力電流データ格納部12に格納された効率対出力電流データTD1~3に基づいて、選択された電力変換回路部を動作させる場合に最も高い変換効率ηを得ることができる出力電圧Voutを取得し、取得した出力電圧Voutを出力電圧Voutの目標値とする。出力電圧Voutの目標値とは、選択された電力変換回路部において最も大きい出力電力Poutが得られる際の出力電圧Voutのことである。 The control condition determination unit 15 obtains the highest conversion efficiency η when operating the selected power conversion circuit unit based on the efficiency versus output current data TD1 to TD3 stored in the efficiency versus output current data storage unit 12. The output voltage Vout that can be obtained is acquired, and the acquired output voltage Vout is set as a target value of the output voltage Vout. The target value of the output voltage Vout is the output voltage Vout when the largest output power Pout is obtained in the selected power conversion circuit unit.
 警報出力部9は、電力変換制御部1からの信号を受けて電力変換装置100の動作に異常が生じていることを操作者に知らせるために警報信号を出力する。警報出力部9としては、警報音を鳴らすことで異常を操作者に知らせるブザー、点灯または点滅により異常を操作者に知らせる警報灯(ランプ)、異常であることを表示画面に文字等を表示することにより操作者に知らせる表示装置等とすればよい。 The alarm output unit 9 receives the signal from the power conversion control unit 1 and outputs an alarm signal to notify the operator that an abnormality has occurred in the operation of the power conversion device 100. The alarm output unit 9 is a buzzer for notifying the operator of an abnormality by sounding an alarm sound, an alarm lamp (lamp) for notifying the operator of an abnormality by lighting or flashing, and displaying characters or the like on the display screen indicating the abnormality. Thus, a display device or the like that informs the operator may be used.
 次に、電力変換装置100の動作について説明する。図1に示す太陽光発電システムにおいて、太陽電池PVで発電された電力が電力変換装置100に入力されている。電力変換装置100において、電力変換制御部1は、入力電流積算値Iintを検出するための所定時間(積算時間)が経過する度ごとに、第1~3電力変換回路部4~6のうちから好ましい出力電力が得られる1つの電力変換回路部を選択する処理(選択処理)を行う。入力電流積算検出部10が、この積算時間にわたる入力電流の積算値を検出し、選択部14がこの検出値に基づいて電力変換回路部を選択する。積算時間は、例えば数十秒~数分程度とすればよい。好ましくは30秒程度である。 Next, the operation of the power conversion apparatus 100 will be described. In the solar power generation system shown in FIG. 1, the power generated by the solar cell PV is input to the power conversion device 100. In the power conversion device 100, the power conversion control unit 1 selects from the first to third power conversion circuit units 4 to 6 every time a predetermined time (integrated time) for detecting the input current integrated value Iint elapses. Processing (selection processing) for selecting one power conversion circuit unit that can obtain preferable output power is performed. The input current integration detection unit 10 detects the integrated value of the input current over this integration time, and the selection unit 14 selects the power conversion circuit unit based on this detection value. For example, the integration time may be about several tens of seconds to several minutes. Preferably it is about 30 seconds.
 電力変換制御部1は、選択された電力変換回路部に対してPWM(Pulse Width Modulation)スイッチング制御を行った場合に、最も大きい出力電力が得られる制御条件を求め、その制御条件により、選択された1つの電力変換回路部を制御する。制御条件としては、スイッチング周波数、出力電圧の目標値Vm、ON-OFFのデューティー比等がある。 The power conversion control unit 1 obtains a control condition for obtaining the maximum output power when PWM (Pulse Width Modulation) switching control is performed on the selected power conversion circuit unit, and is selected according to the control condition. Only one power conversion circuit unit is controlled. The control conditions include switching frequency, output voltage target value Vm, ON-OFF duty ratio, and the like.
 選択された電力変換回路部が、現状において使用されている電力変換回路部である場合には、電力変換制御部1は、最も大きい出力電力Poutが得られるように引き続きその電力変換回路部の制御を続ける。しかし、新たに選択された電力変換回路部が現状において使用されている電力変換回路部と異なる場合には、電力変換制御部1により、選択された電力変換回路部に入力電力Pinが入力されるように切換えられて、選択された電力変換回路部が制御される。 When the selected power conversion circuit unit is a power conversion circuit unit currently used, the power conversion control unit 1 continues to control the power conversion circuit unit so as to obtain the largest output power Pout. Continue. However, when the newly selected power conversion circuit unit is different from the power conversion circuit unit currently used, the power conversion control unit 1 inputs the input power Pin to the selected power conversion circuit unit. In this way, the selected power conversion circuit unit is controlled.
 図9および図10を参照して、電力変換装置100の動作について具体的に説明する。図9は、電力変換回路部の切換え処理の一例を示すフローチャートであり、図10は、電力変換回路部の選択処理の一例を示すフローチャートである。 The operation of the power conversion apparatus 100 will be specifically described with reference to FIGS. 9 and 10. FIG. 9 is a flowchart illustrating an example of the switching process of the power conversion circuit unit, and FIG. 10 is a flowchart illustrating an example of the selection process of the power conversion circuit unit.
 図9に示すように、電力変換制御部1が、所定時間(例えば30秒)ごとに電力変換回路部の切換えが必要か否かについて判断する(#11)。この所定時間は、入力電流積算値Iintの積算時間と等しい。後述する電力変換回路部の選択処理の結果に基づいて、現状において使用している電力変換回路部とは異なる電力変換回路部を電力変換制御部1が選択した場合には、電力変換回路部の切換えが必要である(#11でYes)。 As shown in FIG. 9, the power conversion control unit 1 determines whether or not the power conversion circuit unit needs to be switched every predetermined time (for example, 30 seconds) (# 11). This predetermined time is equal to the integrated time of the input current integrated value Iint. When the power conversion control unit 1 selects a power conversion circuit unit different from the power conversion circuit unit currently used based on the result of the selection process of the power conversion circuit unit described later, the power conversion circuit unit Switching is necessary (Yes in # 11).
 電力変換回路部の切換えは、電力変換制御部1の駆動信号S1~3により行われる。例えば、現状は第1電力変換回路部4が選択されているとすると、駆動信号S2および駆動信号S3がOFFであり、駆動信号S1のみが発信されている。駆動信号S1は、第1電力変換回路部4がPWMスイッチング制御を行うための信号であり、ONとOFFとを一定の周期で繰り返す信号である。駆動信号S2および駆動信号S3がOFFであることから、第2電力変換回路部5および第3電力変換回路部6には入力電力Pinは入力されない。第1電力変換回路部4にのみ入力電力Pinが入力され、出力電力Poutが出力される。 The switching of the power conversion circuit unit is performed by the drive signals S1 to S3 of the power conversion control unit 1. For example, assuming that the first power conversion circuit unit 4 is currently selected, the drive signal S2 and the drive signal S3 are OFF, and only the drive signal S1 is transmitted. The drive signal S1 is a signal for the first power conversion circuit unit 4 to perform PWM switching control, and is a signal that repeats ON and OFF at a constant cycle. Since the drive signal S2 and the drive signal S3 are OFF, the input power Pin is not input to the second power conversion circuit unit 5 and the third power conversion circuit unit 6. Input power Pin is input only to the first power conversion circuit unit 4, and output power Pout is output.
 選択処理において、第2電力変換回路部5が選択されたとすると、電力変換制御部1は駆動信号S1をOFFにし、駆動信号S2のみを発信する。駆動信号S1および駆動信号S3がOFFであることから、第1電力変換回路部4および第3電力変換回路部6には入力電力Pinは入力されない。第2電力変換回路部5にのみ入力電力Pinが入力され、出力電力Poutが出力される。このようにして、電力変換回路部の切換えが行われる。 If the second power conversion circuit unit 5 is selected in the selection process, the power conversion control unit 1 turns off the drive signal S1 and transmits only the drive signal S2. Since the drive signal S1 and the drive signal S3 are OFF, the input power Pin is not input to the first power conversion circuit unit 4 and the third power conversion circuit unit 6. Input power Pin is input only to the second power conversion circuit unit 5, and output power Pout is output. In this way, the power conversion circuit unit is switched.
 電力変換制御部1は、第1電力変換回路部4に代えて第2電力変換回路部5の出力電圧Voutの目標値を設定する(#12)。出力電圧Voutの目標値とは、上述したように、選択された電力変換回路部において最も大きい出力電力Poutが得られる際の出力電圧Voutのことである。出力電圧Voutの目標値は、選択処理において求められている。出力電圧Voutの目標値を設定するとは、出力電圧Voutの目標値が得られるように、この電力変換回路部を制御することをいう。 The power conversion control unit 1 sets the target value of the output voltage Vout of the second power conversion circuit unit 5 instead of the first power conversion circuit unit 4 (# 12). As described above, the target value of the output voltage Vout is the output voltage Vout when the largest output power Pout is obtained in the selected power conversion circuit unit. The target value of the output voltage Vout is obtained in the selection process. Setting the target value of the output voltage Vout means controlling the power conversion circuit unit so that the target value of the output voltage Vout is obtained.
 電力変換制御部1が、この入力電流Iinが第2電力変換回路部5に流れた場合に、PWMスイッチング制御において、出力電圧Voutの目標値を得ることができるようなスイッチング周波数およびデューティー比も、選択処理において求められている。電力変換制御部1は駆動信号S2を送信して、求められた制御条件(スイッチング周波数およびデューティー比)により第2電力変換回路部5を制御する。これにより、第2電力変換回路部5が、上記出力電圧Voutの目標値周辺の出力電圧Voutを出力することになり、最も大きい出力電力Poutが得られる。 The switching frequency and the duty ratio at which the power conversion control unit 1 can obtain the target value of the output voltage Vout in the PWM switching control when the input current Iin flows to the second power conversion circuit unit 5 are as follows: It is required in the selection process. The power conversion control unit 1 transmits the drive signal S2, and controls the second power conversion circuit unit 5 according to the obtained control conditions (switching frequency and duty ratio). Accordingly, the second power conversion circuit unit 5 outputs the output voltage Vout around the target value of the output voltage Vout, and the largest output power Pout is obtained.
 電力変換制御部1により、出力電圧検出部8により検出された出力電圧Voutの検出値と、出力電圧Voutの目標値とが比較される(#13)。なお、#11でNoの場合は、現状選択されている第1電力変換回路部4により電力変換を行っておけばよいので、#12を行わずに#13に進む。#13において、比較した結果に基づいて電力変換制御部1により、検出された出力電圧Voutの検出値と、出力電圧Voutの目標値とを合わせるようにフィードバック制御により、デューティー比が調整される(#14)。 The detected value of the output voltage Vout detected by the output voltage detector 8 and the target value of the output voltage Vout are compared by the power conversion controller 1 (# 13). In the case of No in # 11, power conversion may be performed by the currently selected first power conversion circuit unit 4, and thus the process proceeds to # 13 without performing # 12. In # 13, based on the comparison result, the power conversion control unit 1 adjusts the duty ratio by feedback control so that the detected value of the detected output voltage Vout and the target value of the output voltage Vout are matched ( # 14).
 デューティー比が調整された後、出力電圧Voutの目標値の再設定が必要であるか、電力変換制御部1により判断される(#15)。具体的には、電力変換制御部1により、現在の入力電流Iinの検出値と、出力電圧Voutの目標値を求める際に用いた入力電流Iinの検出値とが比較される。これらの値が異なり、その差が予め設定された所定値以上である場合には、出力電圧Voutの目標値の再設定が必要であると判断される(#15でYes)。出力電圧Voutの目標値が、第2電力変換回路部5が選択された時の値に比べて大きく変化している可能性があると考えられるためである。 After the duty ratio is adjusted, the power conversion control unit 1 determines whether it is necessary to reset the target value of the output voltage Vout (# 15). Specifically, the power conversion control unit 1 compares the detected value of the current input current Iin with the detected value of the input current Iin used when obtaining the target value of the output voltage Vout. If these values are different and the difference is greater than or equal to a predetermined value set in advance, it is determined that it is necessary to reset the target value of the output voltage Vout (Yes in # 15). This is because it is considered that the target value of the output voltage Vout may have changed significantly compared to the value when the second power conversion circuit unit 5 is selected.
 電力変換制御部1により、図7に示す第2電力変換回路部5の効率対出力電流データTD2に基づいて出力電圧Voutの目標値が再度取得され、再設定される(#16)。つまり、電力変換制御部1が、現在の入力電流Iinの検出値が第2電力変換回路部5に入力された場合に、PWMスイッチング制御により、再度取得した出力電圧Voutの目標値を得ることができるようなスイッチング周波数およびデューティー比を算出し、この制御条件により第2電力変換回路部5を制御する。 The target value of the output voltage Vout is again acquired and reset by the power conversion control unit 1 based on the efficiency versus output current data TD2 of the second power conversion circuit unit 5 shown in FIG. 7 (# 16). That is, when the current detection value of the input current Iin is input to the second power conversion circuit unit 5, the power conversion control unit 1 can obtain the target value of the output voltage Vout acquired again by PWM switching control. A switching frequency and a duty ratio that can be calculated are calculated, and the second power conversion circuit unit 5 is controlled based on the control conditions.
 出力電圧Voutの目標値の再設定が不要である場合(#15でNo)、および出力電圧Voutの目標値の再設定(#16)後は、#11へと戻り、上記工程を繰り返す。 When it is not necessary to reset the target value of the output voltage Vout (No in # 15) and after resetting the target value of the output voltage Vout (# 16), the process returns to # 11 and the above steps are repeated.
 図9において、電力変換回路部は、フィードバックにより自動制御されている。例えば日没等により太陽電池PVでの発電ができなくなった等で電力変換回路部の動作を終了する場合には、例えば電力変換制御部1に、入力電流検出部2からの出力電流が所定値以下となった状態を検出し、割り込み処理等により図9のループを終了する機能を持たせればよい。 In FIG. 9, the power conversion circuit unit is automatically controlled by feedback. For example, when the operation of the power conversion circuit unit is terminated because power generation by the solar cell PV cannot be performed due to sunset or the like, for example, the output current from the input current detection unit 2 is set to a predetermined value in the power conversion control unit 1. What is necessary is just to have a function of detecting the following state and terminating the loop of FIG. 9 by interrupt processing or the like.
 図10を参照して、1つの電力変換回路部を選択する選択処理について説明する。選択処理は、図9の#11の工程に先行して行われる。入力電流積算検出部10により、積算時間ごとに入力電流積算値Iintが検出される(#21)。入力電流積算値Iintは、入力電流Iinを時間の経過とともに積算したものである。積算時間が経過するごとに入力電流積算値Iintが検出され、入力電流積算値Iintが検出されると入力電流積算検出部10における検出値はリセットされ、再び入力電流積算値Iintが0の状態から入力電流Iinの積算が開始される。 The selection process for selecting one power conversion circuit unit will be described with reference to FIG. The selection process is performed prior to the step # 11 of FIG. The input current integration detection unit 10 detects the input current integration value Iint for each integration time (# 21). The input current integrated value Iint is obtained by integrating the input current Iin over time. Every time the integration time elapses, the input current integration value Iint is detected. When the input current integration value Iint is detected, the detection value in the input current integration detection unit 10 is reset, and the input current integration value Iint again becomes zero. Integration of the input current Iin is started.
 選択部14により、検出された入力電流積算値Iintが最適積算値範囲格納部13に格納されている第1最適積算値範囲内に含まれるか否かが判断される(#22)。検出された入力電流積算値Iintが第1最適積算値範囲内に含まれる場合は(#22でYes)、選択部14により第1電力変換回路部4が選択される(#23)。 The selection unit 14 determines whether or not the detected input current integrated value Iint is included in the first optimal integrated value range stored in the optimal integrated value range storage unit 13 (# 22). When the detected input current integrated value Iint is included in the first optimal integrated value range (Yes in # 22), the first power conversion circuit unit 4 is selected by the selection unit 14 (# 23).
 検出された入力電流積算値Iintが第1最適積算値範囲内に含まれない場合は(#22でNo)、選択部14により、検出された入力電流積算値Iintが最適積算範囲格納部13に格納されている第2最適積算値範囲内に含まれるか否かが判断される(#24)。検出された入力電流積算値Iintが第2最適積算値範囲内に含まれる場合は(#24でYes)、選択部14により第2電力変換回路部5が選択される(#25)。 If the detected input current integrated value Iint is not included in the first optimal integrated value range (No in # 22), the selection unit 14 causes the detected input current integrated value Iint to be stored in the optimal integrated range storage unit 13. It is determined whether it is included within the stored second optimum integrated value range (# 24). When the detected input current integrated value Iint is included in the second optimum integrated value range (Yes in # 24), the second power conversion circuit unit 5 is selected by the selection unit 14 (# 25).
 検出された入力電流積算値Iintが第2最適積算値範囲内に含まれない場合は(#24でNo)、選択部14により第3電力変換回路部6が選択される(#26)。 When the detected input current integrated value Iint is not included in the second optimal integrated value range (No in # 24), the selection unit 14 selects the third power conversion circuit unit 6 (# 26).
 #23、#25、#26の各工程において、第1~3電力変換回路部4~6がそれぞれ選択された後、制御条件決定部15により、選択された各電力変換回路部において、最も大きい出力電力が得られる制御条件(デューティー比、出力電圧Voutの目標値、スイッチング周波数等)が決定される(#27)。そして、図9の#11の工程へと進めばよい。 In each of the steps # 23, # 25, and # 26, after the first to third power conversion circuit units 4 to 6 are selected, the control condition determination unit 15 selects the largest power conversion circuit unit. Control conditions (duty ratio, target value of output voltage Vout, switching frequency, etc.) for obtaining output power are determined (# 27). Then, the process proceeds to step # 11 in FIG.
 制御条件決定部15における、選択された電力変換回路部における出力電圧Voutの目標値の決定方法について具体的に説明する。 The method for determining the target value of the output voltage Vout in the selected power conversion circuit unit in the control condition determination unit 15 will be specifically described.
 選択部14において第2電力変換回路部5が選択されたとし、入力電流Iinの検出値が5Aであり、出力電圧の取り得る範囲が80~120Vであるとする。出力電圧Voutの取り得る範囲とは、電力変換装置100に接続される電力源の出力等に応じて決定される値であり、電力変換装置100において用いられる出力電圧Voutの範囲である。制御条件決定部15は、図7に示される効率対出力電流データTD2から、5Aの行の80V、90V、100V、110V、120Vの5つのデータを抽出する。 Suppose that the second power conversion circuit unit 5 is selected in the selection unit 14, the detected value of the input current Iin is 5A, and the range that the output voltage can take is 80 to 120V. The range that the output voltage Vout can take is a value that is determined according to the output of the power source connected to the power conversion apparatus 100, and the range of the output voltage Vout used in the power conversion apparatus 100. The control condition determining unit 15 extracts five data of 80V, 90V, 100V, 110V, and 120V in the 5A row from the efficiency versus output current data TD2 shown in FIG.
 それらのデータにおいて、出力電流Ioutの取り得る範囲における変換効率ηが最大になるデータを選択する。出力電流Ioutの取り得る範囲とは、電力変換装置100に接続される電力源の出力等に応じて決定される値であり、電力変換装置100において用いられる出力電流Ioutの範囲である。変換効率ηが最大となる場合の出力電流Ioutが求められれば、その値から出力電圧Voutの目標値を求める。 Among these data, select the data that maximizes the conversion efficiency η within the possible range of the output current Iout. The range that the output current Iout can take is a value determined according to the output of the power source connected to the power conversion device 100, and the range of the output current Iout used in the power conversion device 100. If the output current Iout when the conversion efficiency η is maximum is obtained, the target value of the output voltage Vout is obtained from that value.
 検出された入力電流Iin(5A)と各入力電圧Vinとを乗じることにより入力電力Pinが算出される(Iin×Vin=Pin)。入力電圧Vinが固定である場合は、検出せずにその値を用いればよいし、入力電圧Vinが変動する場合は、入力電圧検出部3により検出された値を用いればよい。算出された入力電力Pinに、選択された最大となる変換効率ηを乗じることで、第2電力変換回路部5における最も大きい出力電力Poutが算出される(Pin×η=Pout )。このPoutを、変換効率ηが最大になるIoutにより除することで、出力電圧Voutの目標値を求めることができる(Pout/Iout=Vout)。 The input power Pin is calculated by multiplying the detected input current Iin (5 A) and each input voltage Vin (Iin × Vin = Pin). If the input voltage Vin is fixed, the value may be used without detection, and if the input voltage Vin varies, the value detected by the input voltage detector 3 may be used. By multiplying the calculated input power Pin by the selected maximum conversion efficiency η, the largest output power Pout in the second power conversion circuit unit 5 is calculated (Pin × η = Pout). By dividing this Pout by Iout that maximizes the conversion efficiency η, the target value of the output voltage Vout can be obtained (Pout / Iout = Vout).
 なお、電力変換制御部1は、効率対出力電流データTD1~3を格納せず、第1~3電力変換回路部4~6における、入力電流Iinに対する最大となる出力電力Poutを予め測定により求めておき、それらの値を格納していることとしてもよい。その場合は、電力変換制御部1は、入力電流Iinの検出値により、選択された電力変換回路部において最大となる出力電力Poutを取得することができ、さらに出力電流Ioutの検出値より、出力電圧Voutの目標値を求めることができる。 The power conversion control unit 1 does not store the efficiency versus output current data TD1 to TD3, and obtains the maximum output power Pout with respect to the input current Iin in the first to third power conversion circuit units 4 to 6 by measurement in advance. In addition, these values may be stored. In that case, the power conversion control unit 1 can obtain the maximum output power Pout in the selected power conversion circuit unit based on the detected value of the input current Iin, and further output the output power Pout based on the detected value of the output current Iout. A target value of the voltage Vout can be obtained.
 また、入力電流Iinに対する、最大となる出力電力Pout、そのときの出力電圧Voutの目標値、デューティー比、スイッチング周波数についても予め測定により求めておき、それらの値を電力変換制御部1が格納していることとしてもよい。 Further, the maximum output power Pout with respect to the input current Iin, the target value of the output voltage Vout at that time, the duty ratio, and the switching frequency are also obtained in advance by measurement, and the power conversion control unit 1 stores these values. It is good to be.
 電力変換装置100において、第1~3電力変換回路部4~6の制御は、PWMスイッチング制御を用いたが、電力変換を行うことができればよく、PFM制御等の他の制御法を用いてもよい。また、入力電圧Vinが固定値である場合は入力電圧検出部3を設けなくてもよいが、入力電圧検出部3を設けて入力電圧Vinを検出することにより、より正確な値を用いることができ、精度の高い制御が可能である。 In the power conversion apparatus 100, the PWM switching control is used for the control of the first to third power conversion circuit units 4 to 6. However, it is sufficient that the power conversion can be performed, and other control methods such as PFM control may be used. Good. Further, when the input voltage Vin is a fixed value, the input voltage detection unit 3 may not be provided. However, by providing the input voltage detection unit 3 and detecting the input voltage Vin, a more accurate value can be used. And high-precision control is possible.
 また、入力電圧Vinの変化が大きい場合は、なんらかの異常が発生している可能性がある。電力変換制御部1により、入力電圧検出部3で検出された入力電圧Vinの所定時間当たりの変動幅を算出し、予め記憶されている所定の設定値と比較し、この設定値以上の場合は警報出力部9に信号を送信し、警報出力部9が警報信号を出力し、操作者に知らせることとすればよい。例えば、ランプが点灯したり、警報音が鳴ったり、表示画面に警告表示がなされることとすればよい。 Also, if the change in the input voltage Vin is large, there may be some abnormality. The power conversion control unit 1 calculates the fluctuation range per predetermined time of the input voltage Vin detected by the input voltage detection unit 3 and compares it with a predetermined set value stored in advance. A signal may be transmitted to the alarm output unit 9, and the alarm output unit 9 outputs an alarm signal to notify the operator. For example, the lamp may be turned on, an alarm sound may be generated, or a warning display may be displayed on the display screen.
 また、電力変換制御部1により、出力電流検出部7で検出された出力電流Ioutと、出力電圧検出部8で検出された出力電圧Voutとを乗じることで出力電力Poutを随時算出しておき、出力電力Poutの値が予め設定された所定の値よりも小さくなった場合には、警報出力部9に信号が送信されることとしてもよい。 Further, the power conversion control unit 1 calculates the output power Pout as needed by multiplying the output current Iout detected by the output current detection unit 7 and the output voltage Vout detected by the output voltage detection unit 8. A signal may be transmitted to the alarm output unit 9 when the value of the output power Pout becomes smaller than a predetermined value set in advance.
 上記電力変換装置100における電力変換回路部の切換えについて、図11を用いて説明する。図11は図10のフローチャートの選択処理を用いた電力変換回路部の切換えの一例を示すタイミングチャートである。 Switching of the power conversion circuit unit in the power conversion device 100 will be described with reference to FIG. FIG. 11 is a timing chart showing an example of switching of the power conversion circuit unit using the selection process of the flowchart of FIG.
 図11において、上段は入力電流積算値Iintと時間との関係を示す図であり、下段は入力電流積算値Iintが上段に示すような時間的変化をした場合における、選択される電力変換回路部を示す図である。図11では説明を簡単にするために、第1電力変換回路部4および第2電力変換回路部5の2つの電力変換回路部の切換えがなされた場合について説明する。 In FIG. 11, the upper part is a diagram showing the relationship between the input current integrated value Iint and time, and the lower part is a power conversion circuit unit that is selected when the input current integrated value Iint changes with time as shown in the upper part. FIG. In FIG. 11, a case where the two power conversion circuit units of the first power conversion circuit unit 4 and the second power conversion circuit unit 5 are switched will be described in order to simplify the description.
 図11において、第1最適積算値範囲は0以上I1以下とする。第2最適積算値範囲は、I1よりも大きくI2以下とする。 In FIG. 11, the first optimum integrated value range is 0 or more and I1 or less. The second optimum integrated value range is greater than I1 and less than or equal to I2.
 上段および下段において横軸は時間を示していて、入力電流積算値Iintを検出する積算時間間隔に数字が付されている。隣接する数字の間(積算時間)において入力電流Iinが積算されて入力電流積算値Iintが検出され、電力変換回路部の選択に用いられる。選択に用いられる入力電流積算値Iintが検出されると、一旦入力電流積算値Iintは0にリセットされて再び入力電流積算値Iintが検出される。図11では時間とともに入力電流積算値Iintが増加しているが、入力電流積算値Iintの検出は積算時間ごと(数字が付されているタイミングごと)に行えばよく、絶えず入力電流積算値Iintを測定し続けているわけではない。 In the upper and lower stages, the horizontal axis indicates the time, and numbers are added to the integration time intervals for detecting the input current integration value Iint. The input current Iin is integrated between adjacent numbers (integrated time) to detect the input current integrated value Iint, which is used for selection of the power conversion circuit unit. When the input current integrated value Iint used for selection is detected, the input current integrated value Iint is once reset to 0 and the input current integrated value Iint is detected again. In FIG. 11, the input current integrated value Iint increases with time. However, the input current integrated value Iint may be detected at each integration time (at each timing indicated with a number), and the input current integrated value Iint is continuously calculated. It does not continue to measure.
 以後の説明において、横軸に記載された数字の「0」から数字の「1」までを1周期目、数字の「1」から数字の「2」までを2周期目、数字の「2」から数字の「3」までを3周期目、…として記載する。 In the following description, the number “0” to the number “1” indicated on the horizontal axis is the first period, the number “1” to the number “2” is the second period, and the number “2”. To the number “3” is described as the third cycle.
 1周期目において、入力電流積算値IintはI1を超えていて、第2最適積算値範囲内に含まれる。そこで、電力変換制御部1により第2電力変換回路部5が選択されるので、電力変換回路部が切換えられる。 In the first cycle, the input current integrated value Iint exceeds I1 and is included in the second optimum integrated value range. Therefore, since the second power conversion circuit unit 5 is selected by the power conversion control unit 1, the power conversion circuit unit is switched.
 2周期目においても、入力電流積算値Iintは第2最適積算値範囲内に含まれるので、電力変換制御部1により第2電力変換回路部5が選択される。 Also in the second cycle, since the input current integrated value Iint is included in the second optimum integrated value range, the power conversion control unit 1 selects the second power conversion circuit unit 5.
 3周期目において、入力電流積算値IintがI1以下なので第1最適積算値範囲内に含まれる。そこで、電力変換制御部1により第1電力変換回路部4が選択されるので、電力変換回路部が切換えられる。 In the third period, since the input current integrated value Iint is equal to or less than I1, it is included in the first optimum integrated value range. Therefore, since the first power conversion circuit unit 4 is selected by the power conversion control unit 1, the power conversion circuit unit is switched.
 4周期目においても、入力電流積算値Iintは第1最適積算値範囲内に含まれるので、電力変換制御部1により第1電力変換回路部4が選択される。 Also in the fourth period, since the input current integrated value Iint is included in the first optimum integrated value range, the power conversion control unit 1 selects the first power conversion circuit unit 4.
 5周期目において、入力電流積算値Iintは第2最適積算値範囲内に含まれるので、電力変換制御部1により第2電力変換回路部5が選択されるので、電力変換回路部が切換えられる。 In the fifth cycle, since the input current integrated value Iint is included in the second optimum integrated value range, the power conversion control unit 1 selects the second power conversion circuit unit 5, so that the power conversion circuit unit is switched.
 6周期目において、入力電流積算値Iintは第1最適積算値範囲内に含まれるので、電力変換制御部1により第1電力変換回路部4が選択されるので、電力変換回路部が切り換えられる。 In the sixth period, since the input current integrated value Iint is included in the first optimum integrated value range, the first power conversion circuit unit 4 is selected by the power conversion control unit 1, so that the power conversion circuit unit is switched.
 7~9周期目において、入力電流積算値Iintは第1最適積算値範囲内に含まれるので、電力変換制御部1により第1電力変換回路部4が選択される。 In the seventh to ninth cycles, since the input current integrated value Iint is included in the first optimum integrated value range, the power conversion control unit 1 selects the first power conversion circuit unit 4.
 10周期目において、入力電流積算値Iintは第2最適積算値範囲内に含まれるので、電力変換制御部1により第2電力変換回路部5が選択されるので、電力変換回路部が切換えられる。 In the tenth cycle, since the input current integrated value Iint is included in the second optimum integrated value range, the second power conversion circuit unit 5 is selected by the power conversion control unit 1, so that the power conversion circuit unit is switched.
 11周期目において、入力電流積算値Iintは第2最適積算値範囲内に含まれるので、電力変換制御部1により第2電力変換回路部5が選択される。 In the eleventh cycle, the input current integrated value Iint is included in the second optimum integrated value range, so the power conversion control unit 1 selects the second power conversion circuit unit 5.
 本実施形態では、積算時間にわたる入力電流Iinの積算値(入力電流積算値Iint)を反復検出し、この値に基づいて好ましい電力変換回路部を選択する。これにより、複数の第1~3電力変換回路部4~6の中から好ましい電力変換回路部を1つ選択して、この電力変換回路部により電力変換を行うため、入力電流Iinの電流値範囲が広い場合であっても高い変換効率ηを維持することができる。 In this embodiment, the integrated value of the input current Iin over the integrated time (input current integrated value Iint) is repeatedly detected, and a preferred power conversion circuit unit is selected based on this value. Thus, a preferred power conversion circuit unit is selected from the plurality of first to third power conversion circuit units 4 to 6, and power conversion is performed by the power conversion circuit unit. Therefore, the current value range of the input current Iin Can maintain a high conversion efficiency .eta.
 また、第1~3電力変換回路部4~6の内のいずれを選択するかの判断である選択処理は、入力電流積算値Iintが検出される積算時間ごとに行われることから、入力電流Iinの値の変化に応じて電力変換回路部の選択処理を随時行う場合に比べて選択処理の回数が減るため、電力変換回路部の切換え回数が少なくなる。そのため、電力変換回路部を切換えることにより生じる損失が発生しにくく、電力の損失が低い。 In addition, the selection process, which is a determination as to which of the first to third power conversion circuit units 4 to 6 is selected, is performed every integration time in which the input current integration value Iint is detected. Since the number of times of selection processing is reduced as compared with the case where selection processing of the power conversion circuit unit is performed at any time according to the change in the value of, the number of switching of the power conversion circuit unit is reduced. For this reason, loss caused by switching the power conversion circuit portion hardly occurs, and power loss is low.
 電力変換回路部を切換えることにより生じる損失としては、選択処理において電力変換制御部1で消費される電力損失がある。また、第1~3電力変換回路部4~6においても、起動・停止時に損失が生じる。例えば、動作している電力変換回路部への入力が切り換えにより停止した際には、すでに当該回路部内に蓄えられている電力があり、その電力に関しての損失が生じる。また、切換えにより動作し始めた電力変換回路部において、切換えた瞬間は高い変換効率ηは実現されず損失が生じる。 As a loss caused by switching the power conversion circuit unit, there is a power loss consumed by the power conversion control unit 1 in the selection process. The first to third power conversion circuit units 4 to 6 also lose when starting and stopping. For example, when the input to the operating power conversion circuit unit stops due to switching, there is power already stored in the circuit unit, and a loss related to the power occurs. In addition, in the power conversion circuit unit that has started to operate by switching, at the moment of switching, high conversion efficiency η is not realized and loss occurs.
 入力電流Iinの値の変化に応じて電力変換回路部の選択処理を随時行う場合は、入力電流Iinの変化に応じて好ましい電力変換回路部を選択することができるため、電力変換回路部においては高い変換効率ηが実現されるが、入力電流Iinの変換に追従して第1~3電力変換回路部4~6を随時切換えることにより損失が生じている。切換えが頻繁に行われすぎると損失が高くなり、電力変換装置全体としては効率が低下することになる。 When the selection process of the power conversion circuit unit is performed at any time according to the change in the value of the input current Iin, a preferable power conversion circuit unit can be selected according to the change in the input current Iin. Although a high conversion efficiency η is realized, a loss is caused by switching the first to third power conversion circuit units 4 to 6 at any time following the conversion of the input current Iin. If the switching is performed too frequently, the loss becomes high, and the efficiency of the power converter as a whole decreases.
 特に太陽電池PVの出力は滑らかではなく、微小範囲では絶えず変動している可能性が高い。つまり、電力変換装置の入力電流Iinも絶えず変動していることから、入力電流Iinが電力変換回路部の切換え境界付近に位置している場合には、入力電流の大きな変動がなくても電力変動回路部の切換えが頻繁に行われる可能性が高い。このような場合は、切換えによる損失が大きくなり、太陽電池PVからの電力を効率よく取り出すことができない。 Especially, the output of the solar cell PV is not smooth, and there is a high possibility that it constantly fluctuates in a minute range. That is, since the input current Iin of the power conversion device also constantly fluctuates, if the input current Iin is located near the switching boundary of the power conversion circuit unit, the power fluctuations even if there is no significant fluctuation of the input current There is a high possibility that the circuit part is frequently switched. In such a case, the loss due to switching increases, and the power from the solar cell PV cannot be taken out efficiently.
 本実施形態のように、入力電流積算値Iintに基づいて電力変換回路部の切換えを行うことにより、電力変換回路部の無駄な切換をなくして、高い変換効率ηを維持することができる。 As in this embodiment, switching the power conversion circuit unit based on the integrated input current value Iint eliminates unnecessary switching of the power conversion circuit unit and maintains a high conversion efficiency η.
 電力変換回路部の切換えを行う場合と、切換えを行わない場合との電力変換回路部における出力電力の差について図12を用いて説明する。図12は、電力変換回路部の切換え有りと、切換え無しとの出力電力の違いを説明するための図である。図12は、縦軸を電力変換回路部の出力電力とし、横軸を時間としている。第1電力変換回路部4と第2電力変換回路部5とを用いて切換を行う場合について示している。 The difference in output power in the power conversion circuit unit between when the power conversion circuit unit is switched and when switching is not described with reference to FIG. FIG. 12 is a diagram for explaining the difference in output power between when the power conversion circuit unit is switched and when there is no switching. In FIG. 12, the vertical axis represents the output power of the power conversion circuit unit, and the horizontal axis represents time. The case where switching is performed using the first power conversion circuit unit 4 and the second power conversion circuit unit 5 is shown.
 図12において切換えを行った場合の出力電力の変化を実線で示している。説明を簡単にするために、第1電力変換回路部4と第2電力変換回路部5とがそれぞれ切換えられる周期は一定とし、その周期はTとする。出力電力が80W以下であれば第1電力変換回路部4を用いて電力変換を行うと変換効率が高く、出力電力が80Wよりも大きい場合には第2電力変換回路部5を用いて電力変換を行うと変換効率が高いとする。説明を簡単にするために出力電力に基づいて電力変換回路部の選択を行っているが、入力電流Iinに基づいて電力変換回路部の選択を行っても同様である。切換えを行わず、すべて第2電力変換回路部5を用いて電力変換を行った場合の出力電力の変化を破線で示している。 In FIG. 12, the change in output power when switching is shown by a solid line. In order to simplify the description, it is assumed that the cycle in which the first power conversion circuit unit 4 and the second power conversion circuit unit 5 are switched is constant, and the cycle is T. If the output power is 80 W or less, the conversion efficiency is high when power conversion is performed using the first power conversion circuit unit 4. If the output power is greater than 80 W, the power conversion is performed using the second power conversion circuit unit 5. If conversion is performed, the conversion efficiency is assumed to be high. In order to simplify the description, the power conversion circuit unit is selected based on the output power, but the same applies if the power conversion circuit unit is selected based on the input current Iin. A change in output power when the power conversion is performed using the second power conversion circuit unit 5 without switching is shown by a broken line.
 電力変換回路部を切換える場合には出力電力が80W以下のときに第1電力変換回路部4が用いられ、出力電力が80Wよりも大きい場合には第2電力変換回路部5が用いられる。電力変換回路部を切換えない場合には、出力電力の値に関係なく第2電力変換回路部5が用いられる。 When switching the power conversion circuit unit, the first power conversion circuit unit 4 is used when the output power is 80 W or less, and when the output power is greater than 80 W, the second power conversion circuit unit 5 is used. When the power conversion circuit unit is not switched, the second power conversion circuit unit 5 is used regardless of the value of the output power.
 出力電力が80Wよりも大きい場合は、両者はともに第2電力変換回路部5を用いるので、その特性は等しくなる。80W以下の場合には、切換えない場合の方がΔPだけ出力電力が低くなる。これは、第1電力変換部4を用いることが好ましい範囲において、第2電力変換部5を用いたことにより、変換効率ηが低くなったためである。しかし、ΔPによる出力電力の低下よりも、電力変換回路部を切換えることによる損失の方が大きければ、電力変換回路部を切換えない方が好ましい。 When the output power is larger than 80 W, both use the second power conversion circuit unit 5, so the characteristics are equal. In the case of 80 W or less, the output power is reduced by ΔP when switching is not performed. This is because the conversion efficiency η is lowered by using the second power conversion unit 5 in a range where it is preferable to use the first power conversion unit 4. However, it is preferable not to switch the power conversion circuit unit if the loss due to switching the power conversion circuit unit is larger than the decrease in output power due to ΔP.
 電力変換回路部の切換えにおける電力の消費量(Pchg)と、切換え回数(N)と、第1電力変換回路部4を用いることが好ましい場合に、第2電力変換回路部5を用いた場合の出力電力と第1電力変換回路部4を用いた場合の出力電力との差(ΔP)と、第1電力変換回路部4を用いることが好ましい時間(T)とを用いて、以下の式で表される関係が成り立つ場合には、切換えをしない方が好ましい。なお、Nは第1電力変換回路部4から第2電力変換回路部5に切換わって、再び第1電力変換回路部4に切換わったとき、あるいは第2電力変換回路部5から第1電力変換回路部4に切換わって再び第2電力変換回路部5に切換わったときを、それぞれ1回とする。 When it is preferable to use the first power conversion circuit unit 4 when the power consumption amount (Pchg), the number of switching times (N), and the first power conversion circuit unit 4 are preferably used for switching the power conversion circuit unit Using the difference (ΔP) between the output power and the output power when the first power conversion circuit unit 4 is used and the time (T) when the first power conversion circuit unit 4 is preferably used, When the relationship expressed is satisfied, it is preferable not to switch. N is switched from the first power conversion circuit unit 4 to the second power conversion circuit unit 5 and switched to the first power conversion circuit unit 4 again, or from the second power conversion circuit unit 5 to the first power. When switching to the conversion circuit unit 4 and switching to the second power conversion circuit unit 5 again, it is assumed to be once each.
 Pchg×2×N>ΔP×T
 この式を用いて切換えを行わない場合と切換えを行う場合のいずれを用いることが好ましいかを判断することができる。
Pchg × 2 × N> ΔP × T
Using this equation, it can be determined whether it is preferable to use a case where switching is not performed or a case where switching is performed.
 なお、電流範囲が異なる電力変換回路部を用いる場合に、小電流側の電力変換回路部すなわち入力電流範囲が小さい電力変換回路部を大電流で用いる場合に比べて、大電流側の電力変換回路部すなわち入力電流範囲が大きい電力変換回路部を小電流で用いる場合の方が損失は低い。そこで上記図12を参照して説明した例において、出力電力にかかわらずすべて第1電力変換回路部4を用いて電力変換を行った場合(切換え無し)は、ΔPが大きくなるためあまり好ましくはない。 In addition, when using a power conversion circuit unit having a different current range, a power conversion circuit on the large current side is compared to using a power conversion circuit unit on the small current side, that is, a power conversion circuit unit with a small input current range, at a large current. The loss is lower when the power converter circuit portion having a large input current range is used with a small current. Therefore, in the example described with reference to FIG. 12 above, when power conversion is performed using the first power conversion circuit unit 4 regardless of the output power (no switching), ΔP increases, which is not preferable. .
 本実施形態の電力変換装置100では、入力電流積算値Iintに基づいて電力変換回路部を選択し、その電力変換回路部を用いて電力変換を行うことから、入力電流Iinの範囲が広い場合でも、その範囲全域において高い変換効率ηを有する電力変換を行うことができる。さらに、電力変換回路部の切換え回数を抑制して、無駄な切換を抑え、切換えにより生じる損失を低くすることができる。それにより、効率のよい電力変換を行うことができる。 In the power conversion device 100 of the present embodiment, the power conversion circuit unit is selected based on the integrated input current value Iint, and power conversion is performed using the power conversion circuit unit. Therefore, even when the range of the input current Iin is wide Thus, power conversion having high conversion efficiency η can be performed over the entire range. Furthermore, it is possible to suppress the number of switching of the power conversion circuit unit, suppress unnecessary switching, and reduce loss caused by switching. Thereby, efficient power conversion can be performed.
 上に説明した例では、入力電流積算値Iintを検出するための積算時間ごとに、検出した入力電流積算値Iintを用いて電力変換回路部の選択を行う電力変換装置100について説明したが、これ以外に、例えば、入力電流積算値Iintの検出を複数回数行い、その値が所定回数連続して同一の最適積算値範囲内に含まれた場合に電力変換回路部を選択することとしてもよい。それにより、入力電流Iinが広い範囲で変動する場合でもより好ましい電力変換回路部をもちいて電力変換を行え、かつ電力変換回路の切換えの回数を抑制できる。 In the example described above, the power conversion device 100 that selects the power conversion circuit unit using the detected input current integrated value Iint for each integration time for detecting the input current integrated value Iint has been described. In addition, for example, the input current integrated value Iint may be detected a plurality of times, and the power conversion circuit unit may be selected when the value is continuously included in the same optimum integrated value range for a predetermined number of times. As a result, even when the input current Iin varies in a wide range, it is possible to perform power conversion using a more preferable power conversion circuit unit and to suppress the number of switching of the power conversion circuit.
 この場合の電力変換装置100の構成は上述したものと同様であるが、選択処理における選択部14の動作が少し異なる。選択部14は、各最適積算値範囲において所定の回数が決められていて、その所定の回数(選択設定回数)だけ入力電流積算値Iintが連続して同一の最適積算値範囲内に含まれていた場合に、選択部14はその最適積算値範囲に対応する電力変換回路部を選択する。 The configuration of the power conversion apparatus 100 in this case is the same as that described above, but the operation of the selection unit 14 in the selection process is slightly different. The selection unit 14 has a predetermined number of times determined in each optimum integrated value range, and the input current integrated value Iint is continuously included in the same optimal integrated value range by the predetermined number of times (selection set number). In this case, the selection unit 14 selects a power conversion circuit unit corresponding to the optimum integrated value range.
 より具体的に説明すると、選択部14は、入力電流積算検出部10により検出された入力電流積算値Iintと最適積算値範囲格納部13に格納されている最適積算値範囲とを比較し、入力電流積算値Iintが含まれる最適積算値範囲を求める。選択部14は、この結果だけで電力変換回路部を選択せず、入力電流積算検出部10により次の入力電流積算値Iintが検出されるのを待つ。このように、選択部14は、入力電流積算値Iintが検出されることを繰り返し待ち、そのたびに入力電流積算値Iintがいずれの最適積算値範囲内に含まれるかを判断する。選択部14は、入力電流積算値Iintが連続して同一の最適積算値範囲内に含まれていて、その回数がその最適積算値範囲の選択設定回数であると判断できるまで待つ。判断できた場合にはその最適積算値範囲に対応する電力変換回路部を選択する。 More specifically, the selection unit 14 compares the input current integration value Iint detected by the input current integration detection unit 10 with the optimum integration value range stored in the optimum integration value range storage unit 13, and inputs An optimum integrated value range including the current integrated value Iint is obtained. The selection unit 14 does not select the power conversion circuit unit based on only this result, but waits for the input current integration detection unit 10 to detect the next input current integration value Iint. In this way, the selection unit 14 repeatedly waits for the input current integrated value Iint to be detected, and determines each time within which optimum integrated value range the input current integrated value Iint is included. The selection unit 14 waits until it can be determined that the input current integrated value Iint is continuously included in the same optimal integrated value range, and that the number of times is the number of times of selection and setting of the optimal integrated value range. If it can be determined, the power conversion circuit unit corresponding to the optimum integrated value range is selected.
 なお、選択設定回数は複数とすればよく、第1~3電力変換回路部4~6において互いに異なる回数とすればよい。上述したように、電流範囲が異なる電力変換回路部を用いる場合に、小電流側の電力変換回路部を大電流で用いるより、大電流側の電力変換回路部を小電流で用いる方が損失は少ない。入力電流Iinが電力変換部を切換える境界付近である場合には、大電流側の電力変換回路部を用いる方が好ましいことから、小電流側の電力変換回路部に比べて大電流側の電力変換回路部が選択されやすくすることが好ましい。そこで、大電流側の電力変換回路部に対応する最適積算値範囲の選択設定回数は少なく、小電流側の電力変換回路部に対応する最適積算値範囲の選択設定回数は多く設定すればよい。 It should be noted that the number of times of selection setting may be plural, and the first to third power conversion circuit units 4 to 6 may be different from each other. As described above, when using a power conversion circuit unit having a different current range, the loss is greater when the power conversion circuit unit on the large current side is used with a small current than when the power conversion circuit unit on the small current side is used with a large current. Few. When the input current Iin is near the boundary for switching the power conversion unit, it is preferable to use the power conversion circuit unit on the large current side, so that the power conversion on the large current side is compared to the power conversion circuit unit on the small current side. It is preferable that the circuit portion is easily selected. Therefore, the number of times of selection and setting of the optimum integrated value range corresponding to the power conversion circuit unit on the large current side is small, and the number of times of selection and setting of the optimum integrated value range corresponding to the power conversion circuit unit on the small current side may be set large.
 図13を参照して1つの電力変換回路部を選択する選択処理について説明する。図13は電力変換回路部の選択処理の他の一例を示すフローチャートである。なお、説明を簡単にするために第1電力変換回路部4および第2電力変換回路部5の2つから電力変換回路部を選択する場合について説明する。電力変換回路部が3つ以上の場合でも同様である。第1電力変換回路部4に対応する第1最適積算値範囲の選択設定回数は3回とし、第2電力変換回路部5に対応する第2最適積算値範囲の選択設定回数は2回とする。なお、電力変換回路部が2つしかないので、第2最適積算値範囲については上限値を設けなくてもよい。 A selection process for selecting one power conversion circuit unit will be described with reference to FIG. FIG. 13 is a flowchart illustrating another example of the selection process of the power conversion circuit unit. In order to simplify the description, a case where the power conversion circuit unit is selected from the first power conversion circuit unit 4 and the second power conversion circuit unit 5 will be described. The same applies when there are three or more power conversion circuit units. The number of times of selection and setting of the first optimum integrated value range corresponding to the first power conversion circuit unit 4 is 3 times, and the number of times of selection and setting of the second optimum integrated value range corresponding to the second power conversion circuit unit 5 is 2 times. . Since there are only two power conversion circuit units, it is not necessary to provide an upper limit for the second optimum integrated value range.
 まず、入力電流積算検出部10により検出された入力電流積算値Iintが、最適積算値範囲格納部13に格納されている第2最適積算値範囲内に含まれるか否かについて選択部14により判断される(#31)。 First, the selection unit 14 determines whether or not the input current integration value Iint detected by the input current integration detection unit 10 is included in the second optimum integration value range stored in the optimum integration value range storage unit 13. (# 31).
 検出された入力電流積算値Iintが第2最適積算値範囲内に含まれる場合は(#31でYes)、選択部14により入力電流積算値Iintが連続して第2最適積算値範囲内に含まれるか検出される(#32)。 When the detected input current integrated value Iint is included in the second optimal integrated value range (Yes in # 31), the input current integrated value Iint is continuously included in the second optimal integrated value range by the selection unit 14. Is detected (# 32).
 入力電流積算値Iintが連続して第2最適積算値範囲内に含まれる回数が選択設定回数であるか、すなわち2回連続して入力電流積算値Iintが第2最適積算値範囲内であるかが選択部14により判断される(#33)。 Whether the number of times the input current integrated value Iint is continuously included in the second optimum integrated value range is the selected set number, that is, whether the input current integrated value Iint is within the second optimal integrated value range Is determined by the selection unit 14 (# 33).
 2回連続して入力電流積算値Iintが第2最適積算値範囲内である場合は(#33でYes)、選択部14により第2電力変換回路部5が選択される(#34)。 If the input current integrated value Iint is within the second optimum integrated value range twice consecutively (Yes in # 33), the second power conversion circuit unit 5 is selected by the selection unit 14 (# 34).
 #31の工程において選択部14により、入力電流積算値Iintが第2最適積算値範囲内に含まれていないと判断された場合は(#31でNo)、入力電流積算値Iintは第1最適積算値範囲内に含まれるはずである。選択部14により入力電流積算値Iintが連続して第1最適積算値範囲内に含まれるか検出される(#35)。 When the selection unit 14 determines in step # 31 that the input current integrated value Iint is not included in the second optimal integrated value range (No in # 31), the input current integrated value Iint is the first optimal integrated value. It should be included in the integrated value range. The selection unit 14 detects whether or not the input current integrated value Iint is continuously included in the first optimum integrated value range (# 35).
 入力電流積算値Iintが連続して第1最適積算値範囲内に含まれる回数が選択設定回数であるか、すなわち3回連続して入力電流積算値Iintが第1最適積算値範囲内であるかが選択部14により判断される(#36)。 Whether the number of times the input current integrated value Iint is continuously included in the first optimal integrated value range is the selected set number, that is, whether the input current integrated value Iint is within the first optimal integrated value range Is determined by the selection unit 14 (# 36).
 3回連続して入力電流積算値Iintが第1最適積算値範囲内である場合は(#36でYes)、選択部14により第1電力変換回路部4が選択される(#37)。 If the input current integrated value Iint is within the first optimum integrated value range for three consecutive times (Yes in # 36), the first power conversion circuit unit 4 is selected by the selection unit 14 (# 37).
 #34、#37の各工程において、第1~2電力変換回路部4~5がそれぞれ選択された後、制御条件決定部15により、選択された各電力変換回路部において最も大きい出力電力が得られる制御条件(デューティー比、出力電圧Voutの目標値、スイッチング周波数等)が決定され(#38)、選択処理が終了する。 In each of the steps # 34 and # 37, after the first and second power conversion circuit units 4 to 5 are selected, the control condition determination unit 15 obtains the largest output power in each selected power conversion circuit unit. Control conditions (duty ratio, target value of the output voltage Vout, switching frequency, etc.) are determined (# 38), and the selection process ends.
 #33の工程において、入力電流積算値Iintが第2最適積算値範囲内である回数が2回に満たなかった場合、すなわち2回続く前に入力電流積算値Iintが第1最適積算値範囲内であった場合は(#33でNo)、選択処理を終了する。 In step # 33, if the number of times the input current integrated value Iint is within the second optimum integrated value range is less than twice, that is, the input current integrated value Iint is within the first optimum integrated value range before continuing twice. If it is (No in # 33), the selection process is terminated.
 また、#36の工程において、入力電流積算値Iintが第1最適積算値範囲内である回数が3回に満たなかった場合、すなわち3回続く前に入力電流積算値Iintが第2最適積算値範囲内であった場合は(#36でNo)、選択処理を終了する。 In step # 36, if the number of times the input current integrated value Iint is within the first optimum integrated value range is less than 3, that is, before the input current integrated value Iint continues to be 3 times, the input current integrated value Iint is the second optimal integrated value. If it is within the range (No in # 36), the selection process is terminated.
 選択された電力変換回路部における出力電圧Voutの目標値等の決定方法については上述したのと同様とすればよい。選択処理が終了すると、図9の#11で電力変換回路部の切換えが必要か判断される。 The method for determining the target value of the output voltage Vout in the selected power conversion circuit unit may be the same as described above. When the selection process is completed, it is determined whether or not the power conversion circuit unit needs to be switched in # 11 of FIG.
 図13のフローチャートによる選択処理を用いた電力変換装置100における電力変換回路部の切換えについて、図14を用いて説明する。図14は図13のフローチャートの選択処理を用いた電力変換回路部の切換えの一例を示すタイミングチャートである。 Switching of the power conversion circuit unit in the power conversion apparatus 100 using the selection process according to the flowchart of FIG. 13 will be described with reference to FIG. FIG. 14 is a timing chart showing an example of switching of the power conversion circuit unit using the selection process of the flowchart of FIG.
 図14において、上段は入力電流積算値Iintと時間との関係を示す図であり、下段は入力電流積算値Iintが上段に示すような時間的変化をした場合において選択される電力変換回路部を示す図である。なお、図14は、下段で示した電力変換回路部の切換えタイミングが異なる点以外は図11と同様であるので、詳細な説明は省略する。図14の上段における入力電流積算値Iintも図11の上段と同様とした。なお、電力変換回路部が2つしかないので、第2最適積算値範囲については上限値(I2)を設けず、I1よりも大きい範囲としてもよい。 In FIG. 14, the upper part shows the relationship between the input current integrated value Iint and time, and the lower part shows the power conversion circuit unit selected when the input current integrated value Iint changes with time as shown in the upper part. FIG. Note that FIG. 14 is the same as FIG. 11 except that the switching timing of the power conversion circuit unit shown in the lower stage is different, and thus detailed description thereof is omitted. The input current integrated value Iint in the upper part of FIG. 14 is the same as that in the upper part of FIG. Since there are only two power conversion circuit units, the upper limit value (I2) is not provided for the second optimum integrated value range, and the range may be larger than I1.
 1周期目において、入力電流積算値IintはI1を超えていて、第2最適積算値範囲内に含まれる。しかし、入力電流積算値Iintが第2最適積算値範囲内に含まれるのは今回で1回目なので、次の入力電流積算値Iintが検出されるまで待つ。 In the first cycle, the input current integrated value Iint exceeds I1 and is included in the second optimum integrated value range. However, since the input current integrated value Iint is included in the second optimum integrated value range for the first time this time, the process waits until the next input current integrated value Iint is detected.
 2周期目においても、入力電流積算値Iintは第2最適積算値範囲内に含まれる。これで入力電流積算値Iintが連続して第2最適積算値範囲内に含まれた回数が2回となる。第2最適積算値範囲の選択設定回数は2回なので、電力変換制御部1により第2電力変換回路部5が選択され、電力変換回路部が切換えられる。 Also in the second cycle, the input current integrated value Iint is included in the second optimum integrated value range. Thus, the number of times that the input current integrated value Iint is continuously included in the second optimum integrated value range is two. Since the second optimum integrated value range is selected and set twice, the power conversion control unit 1 selects the second power conversion circuit unit 5 and switches the power conversion circuit unit.
 3周期目において、入力電流積算値IintがI1以下なので第1最適積算値範囲内に含まれる。しかし、入力電流積算値Iintが第1最適積算値範囲内に含まれるのは今回で1回目なので、次の入力電流積算値Iintが検出されるまで待つ。 In the third period, since the input current integrated value Iint is equal to or less than I1, it is included in the first optimum integrated value range. However, since the input current integrated value Iint is included in the first optimum integrated value range for the first time this time, the process waits until the next input current integrated value Iint is detected.
 4周期目においても、入力電流積算値Iintは第1最適積算値範囲内に含まれる。しかし、第1最適積算値範囲の選択設定回数は3回であり、入力電流積算値Iintが第1最適積算値範囲内に含まれるのは今回で2回目なので、次の入力電流積算値Iintが検出されるまで待つ。 Also in the fourth cycle, the input current integrated value Iint is included in the first optimal integrated value range. However, since the number of times of selection and setting of the first optimum integrated value range is three and the input current integrated value Iint is included in the first optimum integrated value range for the second time this time, the next input current integrated value Iint is Wait until it is detected.
 5周期目において、入力電流積算値Iintは第2最適積算値範囲内に含まれる。入力電流積算値Iintが第1最適積算値範囲内に含まれた回数が、連続して3回に満たなかったので今回の選択処理は終了する。そして、入力電流積算値Iintが第2最適積算値範囲内に含まれ、入力電流積算値Iintが第2最適積算値範囲内に含まれるのは今回で1回目なので、次の入力電流積算値Iintが検出されるまで待つ。 In the fifth cycle, the input current integrated value Iint is included in the second optimum integrated value range. Since the number of times that the input current integrated value Iint is included in the first optimal integrated value range is less than three consecutive times, the current selection process ends. Since the input current integrated value Iint is included in the second optimum integrated value range and the input current integrated value Iint is included in the second optimal integrated value range for the first time this time, the next input current integrated value Iint Wait until is detected.
 6周期目において、入力電流積算値Iintは第1最適積算値範囲内に含まれる。入力電流積算値Iintが第2最適積算値範囲内に含まれた回数が、連続して2回に満たなかったので今回の選択処理は終了する。そして、入力電流積算値Iintが第1最適積算値範囲内に含まれ、入力電流積算値Iintが第1最適積算値範囲内に含まれるのは今回で1回目なので、次の入力電流積算値Iintが検出されるまで待つ。 In the sixth period, the input current integrated value Iint is included in the first optimal integrated value range. Since the number of times that the input current integrated value Iint is included in the second optimum integrated value range is less than twice in succession, the current selection process ends. Since the input current integrated value Iint is included in the first optimum integrated value range and the input current integrated value Iint is included in the first optimal integrated value range for the first time this time, the next input current integrated value Iint Wait until is detected.
 7周期目においても、入力電流積算値Iintは第1最適積算値範囲内に含まれる。入力電流積算値Iintが第1最適積算値範囲内に含まれるのは今回で2回目なので、次の入力電流積算値Iintが検出されるまで待つ。 Also in the seventh cycle, the input current integrated value Iint is included in the first optimal integrated value range. Since the input current integrated value Iint is included in the first optimum integrated value range for the second time this time, the process waits until the next input current integrated value Iint is detected.
 8周期目においても、入力電流積算値Iintは第1最適積算値範囲内に含まれる。これで入力電流積算値Iintが連続して第1最適積算値範囲内に含まれた回数が3回となり、電力変換制御部1により第1電力変換回路部4が選択されるので、電力変換回路部が切換えられる。 Also in the eighth cycle, the input current integrated value Iint is included in the first optimum integrated value range. As a result, the input current integrated value Iint is continuously included in the first optimum integrated value range three times, and the power conversion control unit 1 selects the first power conversion circuit unit 4, so that the power conversion circuit The part is switched.
 9周期目においても、入力電流積算値Iintは第1最適積算値範囲内に含まれる。8周期目において第1電力変換回路部4が選択されて選択処理が終了したので、入力電流積算値Iintが第1最適積算値範囲内に含まれるのは今回で1回目である。そこで、次の入力電流積算値Iintが検出されるまで待つ。 Also in the ninth cycle, the input current integrated value Iint is included in the first optimum integrated value range. Since the first power conversion circuit unit 4 is selected and the selection process is completed in the eighth period, the input current integrated value Iint is included in the first optimum integrated value range for the first time this time. Therefore, it waits until the next integrated input current value Iint is detected.
 10周期目において、入力電流積算値Iintは第2最適積算値範囲内に含まれる。入力電流積算値Iintが第1最適積算値範囲内に含まれた回数が、連続して3回に満たなかったので今回の選択処理は終了する。そして、入力電流積算値Iintが第2最適積算値範囲内に含まれ、入力電流積算値Iintが第2最適積算値範囲内に含まれるのは今回で1回目なので、次の入力電流積算値Iintが検出されるまで待つ。 In the tenth cycle, the input current integrated value Iint is included in the second optimum integrated value range. Since the number of times that the input current integrated value Iint is included in the first optimal integrated value range is less than three consecutive times, the current selection process ends. Since the input current integrated value Iint is included in the second optimum integrated value range and the input current integrated value Iint is included in the second optimal integrated value range for the first time this time, the next input current integrated value Iint Wait until is detected.
 11周期目においても、入力電流積算値Iintは第2最適積算値範囲内に含まれる。これで入力電流積算値Iintが連続して第2最適積算値範囲内に含まれた回数が2回となり、電力変換制御部1により第2電力変換回路部5が選択されるので、電力変換回路部が切換えられる。 Also in the 11th cycle, the input current integrated value Iint is included in the second optimum integrated value range. As a result, the number of times the input current integrated value Iint is continuously included in the second optimum integrated value range is two times, and the second power conversion circuit unit 5 is selected by the power conversion control unit 1. The part is switched.
 本実施形態によれば、入力電流積算値Iintが連続して同一最適積算値範囲に選択設定回数含まれた場合に、電力変換回路部を選択することとした。入力電流積算値Iintを検出するごとに選択処理を行うわけではないので、電力変換回路部の切換え回数を低減できる。入力電流積算値Iintに基づいて電力変換回路部を選択しているので、高い変換効率ηを維持しながら、切換え回数を抑制できる。 According to the present embodiment, the power conversion circuit unit is selected when the input current integrated value Iint is continuously included in the same optimum integrated value range for the selected set number of times. Since the selection process is not performed every time the input current integrated value Iint is detected, the number of switching of the power conversion circuit unit can be reduced. Since the power conversion circuit unit is selected based on the integrated input current value Iint, the number of times of switching can be suppressed while maintaining high conversion efficiency η.
 また、小電流側の電力変換回路部に比べて大電流側の電力変換回路部が選択されやすくしていることから、仮に入力電流Iinに対応しない電力変換回路部が選択されている場合であっても、変換効率ηが大幅に低下することがない。 In addition, since it is easier to select the power conversion circuit unit on the large current side than the power conversion circuit unit on the small current side, there is a case where a power conversion circuit unit that does not correspond to the input current Iin is selected. However, the conversion efficiency η does not decrease significantly.
 上述した、入力電流積算値Iintが連続して同一最適積算値範囲に選択設定回数だけ含まれた場合に電力変換回路部を選択する電力変換装置100は、急激に入力電流Iinが増加したとしても、入力電流積算値Iintが選択設定回数だけ検出されなければ電力変換回路部を切換えることはない。 The above-described power conversion device 100 that selects the power conversion circuit unit when the input current integrated value Iint is continuously included in the same optimum integrated value range for the number of times selected and set, even if the input current Iin suddenly increases. If the integrated input current value Iint is not detected the selected number of times, the power conversion circuit unit is not switched.
 例えば、雲がかかっていた太陽が急に出てきた場合等のように、太陽電池PVの出力が急激に増加した場合であっても、小電流側から大電流側の電力変換回路部に切換わるのは、入力電流積算値Iintの検出に必要な積算時間×選択設定回数だけ経過した後になる。このような場合は、上記時間については小電流側の電力変換回路部により大電流の入力を変換しなければならないことから損失が増加する。 For example, even when the output of the solar cell PV suddenly increases, such as when the sun with clouds is suddenly coming out, the power conversion circuit unit is switched from the small current side to the large current side power conversion circuit unit. The change is made after the integration time necessary for detection of the input current integration value Iint × the number of selected selections. In such a case, the loss increases because the input of the large current must be converted by the power conversion circuit unit on the small current side for the above time.
 そこで、大電流側の電力変換回路部の最適積算値範囲を2つに分けて、大電流側の範囲(大電流側最適範囲)と小電流側の範囲(小電流側最適範囲)とを設定し、小電流側の電力変換回路部が選択されて動作している場合に、それより大電流側の電力変換回路部の最適積算値範囲内の大電流側最適範囲内に入力電流積算値Iintが含まれた場合には、選択設定回数を待つことなく当該最適積算値範囲に対応する電力変換回路部が選択されることとすることが好ましい。大電流側最適範囲の下限については、大電流側最適範囲内に入力電流積算値Iintが含まれた場合には電力変換回路部が切換えられるという点を考慮して設定すればよく、小電流側最適範囲は大電流側最適範囲より低い範囲とすればよい。 Therefore, the optimum integrated value range of the power conversion circuit on the large current side is divided into two, and the large current side range (large current side optimum range) and the small current side range (small current side optimum range) are set. When the power conversion circuit section on the small current side is selected and operating, the input current integrated value Iint is within the large current side optimum range within the optimum integrated value range of the power conversion circuit section on the large current side. Is included, it is preferable that the power conversion circuit unit corresponding to the optimum integrated value range is selected without waiting for the selected set number of times. The lower limit of the large current side optimum range may be set in consideration of the fact that the power conversion circuit is switched when the input current integrated value Iint is included in the large current side optimum range. The optimum range may be a range lower than the optimum range on the large current side.
 小電流側の電力変換回路部が選択されて制御されている場合に、それより大電流側の電力変換回路部の最適積算値範囲内の大電流側最適範囲内に入力電流積算値Iintが含まれる場合には、選択部14が当該最適積算値範囲に対応する電力変換回路部を選択することとすればよい。 When the power conversion circuit section on the small current side is selected and controlled, the input current integrated value Iint is included in the large current side optimum range within the optimum integrated value range of the power conversion circuit section on the large current side. In such a case, the selection unit 14 may select a power conversion circuit unit corresponding to the optimum integrated value range.
 また、最適積算値範囲格納部13には、各電力変換回路部に対応する最適積算値範囲に加えて、各最適積算値範囲内に設定された大電流側最適範囲および小電流側最適範囲も格納されていることとすればよい。なお、大電流側最適範囲および小電流側最適範囲の設定は、入力電流Iinの急激な増加に対応して、より早く大電流側の電力変換回路部に切換えるために行うものであるから、最も小さい入力電流範囲を有する電力変換回路部(第1電力変換回路部4)においては、大電流側最適範囲および小電流側最適範囲を設定しなくてもよい。 In addition to the optimum integrated value range corresponding to each power conversion circuit unit, the optimum integrated value range storage unit 13 also includes a large current side optimum range and a small current side optimum range set in each optimum integrated value range. It may be stored. Note that the setting of the optimum range for the large current side and the optimum range for the small current side is performed in order to switch to the power conversion circuit section on the large current side more quickly in response to the sudden increase in the input current Iin. In the power conversion circuit unit (first power conversion circuit unit 4) having a small input current range, the large current side optimum range and the small current side optimum range may not be set.
 この電力変換装置100における1つの電力変換回路部を選択する選択処理について、図15を参照して説明する。図15は電力変換回路部の選択処理のさらに他の一例を示すフローチャートである。なお、図13の選択処理の説明と同様に第1電力変換回路部4および第2電力変換回路部5の2つから電力変換回路部を選択する場合について説明する。また、図13の選択処理と同様に、第1電力変換回路部4に対応する第1最適積算値範囲の選択設定回数は3回とし、第2電力変換回路部5に対応する第2最適積算値範囲の選択設定回数は2回とする。 A selection process for selecting one power conversion circuit unit in the power conversion apparatus 100 will be described with reference to FIG. FIG. 15 is a flowchart showing still another example of the selection process of the power conversion circuit unit. Similar to the description of the selection process in FIG. 13, a case where the power conversion circuit unit is selected from the first power conversion circuit unit 4 and the second power conversion circuit unit 5 will be described. Similarly to the selection processing of FIG. 13, the number of times of selection and setting of the first optimum integrated value range corresponding to the first power conversion circuit unit 4 is three, and the second optimal integration corresponding to the second power conversion circuit unit 5 is performed. The value range selection setting count is two.
 まず、入力電流積算検出部10により検出された入力電流積算値Iintが、最適積算値範囲格納部13に格納されている第2最適積算値範囲内の大電流側最適範囲内に含まれるか否かについて選択部14により判断される(#41)。 First, whether or not the input current integrated value Iint detected by the input current integration detection unit 10 is included in the large current side optimal range within the second optimal integrated value range stored in the optimal integrated value range storage unit 13. Is selected by the selection unit 14 (# 41).
 検出された入力電流積算値Iintが大電流側最適範囲内に含まれる場合は(#41でYes)、選択部14により第2電力変換回路部5が選択される(#45)。検出された入力電流積算値Iintが大電流側最適範囲内に含まれない場合は(#41でNo)、検出された入力電流積算値Iintが、最適積算値範囲格納部13に格納されている第2最適積算値範囲内の小電流側最適範囲内に含まれるか否かについて選択部14により判断される(#42)。 When the detected input current integrated value Iint is included in the high current side optimum range (Yes in # 41), the second power conversion circuit unit 5 is selected by the selection unit 14 (# 45). When the detected input current integrated value Iint is not included in the large current side optimal range (No in # 41), the detected input current integrated value Iint is stored in the optimal integrated value range storage unit 13. It is judged by the selection part 14 whether it is included in the small electric current side optimal range within the 2nd optimal integrated value range (# 42).
 検出された入力電流積算値Iintが小電流側最適範囲内に含まれる場合は(#42でYes)、選択部14により入力電流積算値Iintが連続して小電流側最適範囲内に含まれるか検出される(#43)。 If the detected input current integrated value Iint is included in the small current side optimum range (Yes in # 42), is the selection unit 14 continuously including the input current integrated value Iint within the small current side optimum range? It is detected (# 43).
 入力電流積算値Iintが連続して小電流側最適範囲内に含まれる回数が選択設定回数であるか、すなわち2回連続して入力電流積算値Iintが小電流側最適範囲内であるかが選択部14により判断される(#44)。 Select whether the number of times the input current integrated value Iint is continuously included in the small current side optimum range is the selected set number, that is, whether the input current integrated value Iint is continuously within the small current side optimum range This is determined by the unit 14 (# 44).
 2回連続して入力電流積算値Iintが小電流側最適範囲内である場合は(#44でYes)、選択部14により第2電力変換回路部5が選択される(#45)。 When the input current integrated value Iint is within the small current side optimum range for two consecutive times (Yes in # 44), the second power conversion circuit unit 5 is selected by the selection unit 14 (# 45).
 #42の工程において選択部14により、入力電流積算値Iintが小電流側最適範囲内に含まれていないと判断された場合は(#42でNo)、入力電流積算値Iintは第1最適積算値範囲内に含まれるはずである。選択部14により入力電流積算値Iintが連続して第1最適積算値範囲内に含まれるか検出される(#46)。 When the selection unit 14 determines in step # 42 that the input current integrated value Iint is not included in the small current side optimal range (No in # 42), the input current integrated value Iint is the first optimal integrated value. Should be included in the value range. The selection unit 14 detects whether the input current integrated value Iint is continuously included in the first optimal integrated value range (# 46).
 入力電流積算値Iintが連続して第1最適積算値範囲内に含まれる回数が選択設定回数であるか、すなわち3回連続して入力電流積算値Iintが第1最適積算値範囲内であるかが選択部14により判断される(#47)。 Whether the number of times the input current integrated value Iint is continuously included in the first optimal integrated value range is the selected set number, that is, whether the input current integrated value Iint is within the first optimal integrated value range Is determined by the selection unit 14 (# 47).
 3回連続して入力電流積算値Iintが第1最適積算値範囲内である場合は(#47でYes)、選択部14により第1電力変換回路部4が選択される(#48)。 If the input current integrated value Iint is within the first optimum integrated value range for three consecutive times (Yes in # 47), the first power conversion circuit unit 4 is selected by the selection unit 14 (# 48).
 #45、#48の各工程において、第1~2電力変換回路部4~5がそれぞれ選択された後、制御条件決定部15により、選択された各電力変換回路部において最も大きい出力電力が得られる制御条件(デューティー比、出力電圧Voutの目標値、スイッチング周波数等)が決定され(#49)、選択処理が終了する。 In each of the steps # 45 and # 48, after the first to second power conversion circuit units 4 to 5 are selected, the control condition determination unit 15 obtains the largest output power in each selected power conversion circuit unit. Control conditions (duty ratio, target value of output voltage Vout, switching frequency, etc.) are determined (# 49), and the selection process ends.
 #44の工程において、入力電流積算値Iintが小電流側最適範囲内である回数が2回に満たなかった場合は(#33でNo)、選択処理を終了する。 In the process of # 44, when the number of times the input current integrated value Iint is within the small current side optimum range is less than twice (No in # 33), the selection process is terminated.
 また、#48の工程において、入力電流積算値Iintが第1最適積算値範囲内である回数が3回に満たなかった場合は(#36でNo)、選択処理を終了する。 In the process of # 48, when the number of times the input current integrated value Iint is within the first optimum integrated value range is less than 3 (No in # 36), the selection process is terminated.
 選択された電力変換回路部における出力電圧Voutの目標値等の決定方法については上述したのと同様とすればよい。選択処理が終了すると、図9の#11で電力変換回路部の切換えが必要か判断される。 The method for determining the target value of the output voltage Vout in the selected power conversion circuit unit may be the same as described above. When the selection process is completed, it is determined whether or not the power conversion circuit unit needs to be switched in # 11 of FIG.
 図15のフローチャートによる選択処理を用いた電力変換装置100における電力変換回路部の切換えについて、図16を用いて説明する。図16は図15のフローチャートの選択処理を用いた電力変換回路部の切換えの一例を示すタイミングチャートである。 The switching of the power conversion circuit unit in the power conversion apparatus 100 using the selection process according to the flowchart of FIG. 15 will be described with reference to FIG. FIG. 16 is a timing chart showing an example of switching of the power conversion circuit unit using the selection process of the flowchart of FIG.
 図16において、上段および下段の図における縦軸横軸は、図11の上段および下段の図と同様であるが、上段の入力電流積算値Iintの変化および下段の切換えタイミングは図11と異なる。また、図16の上段の図において、第2最適積算値範囲内の大電流側最適範囲と小電流側最適範囲との境界であるI21が追加されている。 16, the horizontal axis of the vertical axis in the upper and lower diagrams is the same as the upper and lower diagrams in FIG. 11, but the change in the input current integrated value Iint and the lower switching timing are different from those in FIG. In addition, in the upper diagram of FIG. 16, I21 that is a boundary between the large current side optimum range and the small current side optimum range within the second optimum integrated value range is added.
 第2最適積算値範囲のうち、I1よりも大きくI21以下の範囲を小電流側最適範囲とし、I21よりも大きくI2以下の範囲を大電流側最適範囲とする。なお、電力変換回路部が2つしかないので、第2最適積算値範囲については上限値(I2)を設けなくてもよく、大電流側最適範囲はI21よりも大きい範囲としてもよい。 In the second optimum integrated value range, a range larger than I1 and not more than I21 is set as a small current side optimum range, and a range larger than I21 and not more than I2 is set as a large current side optimum range. Since there are only two power conversion circuit units, the upper limit value (I2) may not be provided for the second optimum integrated value range, and the large current side optimum range may be a range larger than I21.
 1周期目において、入力電流積算値IintはI1より大きくI21以下なので、小電流側最適範囲内に含まれる。しかし、入力電流積算値Iintが小電流側最適範囲内に含まれるのは今回で1回目なので、次の入力電流積算値Iintが検出されるまで待つ。 In the first cycle, the integrated input current value Iint is greater than I1 and less than or equal to I21, so it is included in the small current side optimum range. However, since the input current integrated value Iint is included in the small current side optimum range for the first time this time, it waits until the next input current integrated value Iint is detected.
 2周期目においても、入力電流積算値Iintは小電流側最適範囲内に含まれる。これで入力電流積算値Iintが連続して小電流側最適範囲内に含まれた回数が2回となる。第2最適積算値範囲(小電流側最適範囲)の選択設定回数は2回なので、電力変換制御部1により第2電力変換回路部5が選択され、電力変換回路部が切換えられる。 Also in the second cycle, the input current integrated value Iint is included in the small current side optimum range. As a result, the number of times that the integrated input current value Iint is continuously included in the small current side optimum range is two. Since the second optimum integrated value range (small current side optimum range) is selected and set twice, the power conversion control unit 1 selects the second power conversion circuit unit 5 and switches the power conversion circuit unit.
 3周期目において、入力電流積算値IintがI1以下なので第1最適積算値範囲内に含まれる。しかし、入力電流積算値Iintが第1最適積算値範囲内に含まれるのは今回で1回目なので、次の入力電流積算値Iintが検出されるまで待つ。 In the third period, since the input current integrated value Iint is equal to or less than I1, it is included in the first optimum integrated value range. However, since the input current integrated value Iint is included in the first optimum integrated value range for the first time this time, the process waits until the next input current integrated value Iint is detected.
 4周期目においても、入力電流積算値Iintは第1最適積算値範囲内に含まれる。しかし、第1最適積算値範囲の選択設定回数は3回であり、入力電流積算値Iintが第1最適積算値範囲内に含まれるのは今回で2回目なので、次の入力電流積算値Iintが検出されるまで待つ。 Also in the fourth cycle, the input current integrated value Iint is included in the first optimal integrated value range. However, since the number of times of selection and setting of the first optimum integrated value range is three and the input current integrated value Iint is included in the first optimum integrated value range for the second time this time, the next input current integrated value Iint is Wait until it is detected.
 5周期目においても、入力電流積算値Iintは第1最適積算値範囲内に含まれる。これで入力電流積算値Iintが連続して第1最適積算値範囲内に含まれた回数が3回となり、電力変換制御部1により第1電力変換回路部4が選択されるので、電力変換回路部が切換えられる。 Also in the fifth cycle, the input current integrated value Iint is included in the first optimum integrated value range. As a result, the input current integrated value Iint is continuously included in the first optimum integrated value range three times, and the power conversion control unit 1 selects the first power conversion circuit unit 4, so that the power conversion circuit The part is switched.
 6周期目において、入力電流積算値IintはI21よりも大きいので、入力電流積算値Iintは第2最適積算値範囲内の大電流側最適範囲内に含まれる。そこで、電力変換制御部1により第2電力変換回路部5が選択され、電力変換回路部が切換えられる。 In the sixth cycle, the input current integrated value Iint is larger than I21, so the input current integrated value Iint is included in the large current side optimal range within the second optimal integrated value range. Therefore, the second power conversion circuit unit 5 is selected by the power conversion control unit 1, and the power conversion circuit unit is switched.
 7周期目において、入力電流積算値Iintは小電流側最適範囲内に含まれる。入力電流積算値Iintが第1最適積算値範囲内に含まれるのは今回で1回目なので、次の入力電流積算値Iintが検出されるまで待つ。 In the 7th cycle, the input current integrated value Iint is included in the small current side optimum range. Since the input current integrated value Iint is included in the first optimum integrated value range for the first time this time, the process waits until the next input current integrated value Iint is detected.
 8周期目においても、入力電流積算値Iintは小電流側最適範囲内に含まれる。これで入力電流積算値Iintが連続して第2最適積算値範囲内に含まれた回数が2回となり、電力変換制御部1により第2電力変換回路部4が選択されるが、すでに第2電力変換回路部5が選択されているので、電力変換回路部を切換えずに選択処理が終了する。 Also in the eighth cycle, the input current integrated value Iint is included in the small current side optimum range. As a result, the number of times the input current integrated value Iint is continuously included in the second optimum integrated value range is two times, and the second power conversion circuit unit 4 is selected by the power conversion control unit 1, but the second Since the power conversion circuit unit 5 is selected, the selection process ends without switching the power conversion circuit unit.
 9周期目において、入力電流積算値Iintは第1最適積算値範囲内に含まれる。しかし、入力電流積算値Iintが第1最適積算値範囲内に含まれるのは今回で1回目なので、次の入力電流積算値Iintが検出されるまで待つ。 In the ninth cycle, the input current integrated value Iint is included in the first optimum integrated value range. However, since the input current integrated value Iint is included in the first optimum integrated value range for the first time this time, the process waits until the next input current integrated value Iint is detected.
 10周期目において、入力電流積算値Iintは第1最適積算値範囲内に含まれる。しかし、第1最適積算値範囲の選択設定回数は3回であり、入力電流積算値Iintが第1最適積算値範囲内に含まれるのは今回で2回目なので、次の入力電流積算値Iintが検出されるまで待つ。 In the tenth cycle, the input current integrated value Iint is included in the first optimum integrated value range. However, since the number of times of selection and setting of the first optimum integrated value range is three and the input current integrated value Iint is included in the first optimum integrated value range for the second time this time, the next input current integrated value Iint is Wait until it is detected.
 11周期目においても、入力電流積算値Iintは第1最適積算値範囲内に含まれる。これで入力電流積算値Iintが連続して第1最適積算値範囲内に含まれた回数が3回となり、電力変換制御部1により第1電力変換回路部4が選択されるので、電力変換回路部が切換えられる。 Also in the 11th cycle, the input current integrated value Iint is included in the first optimum integrated value range. As a result, the input current integrated value Iint is continuously included in the first optimum integrated value range three times, and the power conversion control unit 1 selects the first power conversion circuit unit 4, so that the power conversion circuit The part is switched.
 本実施形態によれば、入力電流積算値Iintが連続して同一最適積算値範囲に選択設定回数含まれた場合に電力変換回路部が選択されることに加えて、最適積算値範囲内に大電流側最適範囲を設定し、小電流側の電力変換回路部が選択されて動作している場合に、それより大電流側の電力変換回路部の最適積算値範囲内の大電流側最適範囲内に入力電流積算値Iintが含まれる場合には選択設定回数を待つことなく、当該最適積算値範囲に対応する電力変換回路部が選択されることとした。それにより、急激に入力電流Iinが変化した場合であっても、入力電流Iinの変化に対応して電力変換回路部を迅速に切換えることができ、高い変換効率ηを維持することができる。 According to the present embodiment, in addition to the power conversion circuit unit being selected when the input current integrated value Iint is continuously included in the same optimal integrated value range for the selected set number of times, the input current integrated value Iint is large within the optimal integrated value range. When the current-side optimum range is set and the power conversion circuit section on the small current side is selected and operating, it is within the optimum range of the large current side within the optimum integrated value range of the power conversion circuit section on the larger current side When the input current integrated value Iint is included, the power conversion circuit unit corresponding to the optimum integrated value range is selected without waiting for the selected set number of times. Thereby, even when the input current Iin changes suddenly, the power conversion circuit unit can be quickly switched in response to the change in the input current Iin, and high conversion efficiency η can be maintained.
 (他の実施形態)
 上記、本実施形態に係る電力変換装置100は、入力電流積算値Iintに基づいていずれか1つの電力変換回路部を選択するが、入力電流積算値Iintに基づくだけでなく、所定時間内における入力電流Iinの最大値(最大入力電流Imax)にも基づいて、いずれか1つの電力変換回路部を選択してもよい。他の実施形態に係る電力変換装置100Bは、入力電流積算値Iintおよび最大入力電流Imaxの両者に基づいて、いずれか1つの電力変換回路部を選択する。なお、最大入力電流Imaxは、積算時間内における入力電流Iinの最大値とすればよい。
(Other embodiments)
The power conversion device 100 according to the present embodiment selects any one power conversion circuit unit based on the input current integrated value Iint, but not only based on the input current integrated value Iint but also input within a predetermined time. Any one of the power conversion circuit units may be selected based on the maximum value of the current Iin (maximum input current Imax). The power conversion device 100B according to another embodiment selects any one power conversion circuit unit based on both the input current integrated value Iint and the maximum input current Imax. The maximum input current Imax may be the maximum value of the input current Iin within the integration time.
 他の実施形態に係る電力変換装置100Bの構成について図17を参照して説明する。図17は、他の実施形態に係る電力変換装置の構成の一例を示すブロック図である。電力変換装置100Bにおいて上述の電力変換装置100の構成部材と同様の機能を有する部材については同一の符号を付し、説明を省略する。電力変換装置100Bは最大入力電流算出部16および入力電流しきい値格納部17を有し、選択部14の代わりに選択部14Bを有している点が電力変換装置100とは異なる。 A configuration of a power conversion device 100B according to another embodiment will be described with reference to FIG. FIG. 17 is a block diagram illustrating an example of a configuration of a power conversion device according to another embodiment. In the power conversion device 100B, members having the same functions as those of the components of the power conversion device 100 described above are denoted by the same reference numerals, and description thereof is omitted. The power conversion device 100B has a maximum input current calculation unit 16 and an input current threshold storage unit 17, and is different from the power conversion device 100 in that a selection unit 14B is provided instead of the selection unit 14.
 選択部14Bは、上述の選択部14の機能に加えて、最大入力電流Imaxに基づいていずれか1つの電力変換回路部を選択し、その電力変換回路部と入力電流積算値Iintに基づいて選択された電力変換回路部とを比較して、いずれかの電力変換回路部を選択する機能を有する。 In addition to the function of the selection unit 14 described above, the selection unit 14B selects any one of the power conversion circuit units based on the maximum input current Imax, and selects based on the power conversion circuit unit and the integrated input current value Iint. The power conversion circuit unit is compared with the selected power conversion circuit unit, and one of the power conversion circuit units is selected.
 具体的には、選択部14Bは、図10を用いて説明したように入力電流積算値Iintに基づいて電力変換回路部の第1候補を選択する。さらに、選択部14Bは最大入力電流Imaxと、入力電流しきい値格納部17に格納されているしきい値とを比較することにより電力変換回路部の第2候補を選択する。選択部14Bは、第1候補および第2候補となったこれら2つの電力変換回路部が同一のものである場合は、当該電力変換回路部を最終的に選択する。第1候補および第2候補となったこれら2つの電力変換回路部が互いに異なる場合には、それらの内からより大電流側の電力変換回路部、すなわち入力電流範囲がより大きい電力変換回路部を最終的に選択する。 Specifically, the selection unit 14B selects the first candidate for the power conversion circuit unit based on the integrated input current value Iint as described with reference to FIG. Furthermore, the selection unit 14B selects the second candidate for the power conversion circuit unit by comparing the maximum input current Imax with the threshold value stored in the input current threshold value storage unit 17. When the two power conversion circuit units that are the first candidate and the second candidate are the same, the selection unit 14B finally selects the power conversion circuit unit. When the two power conversion circuit units that are the first candidate and the second candidate are different from each other, a power conversion circuit unit on the larger current side, that is, a power conversion circuit unit having a larger input current range is selected from among them. Finally select.
 選択した電力変換回路部が異なる場合には、大電流側の電力変換回路部を選択することとしたのは、上述したように、小電流側の電力変換回路部を大電流で用いるより、大電流側の電力変換回路部を小電流で用いる方が損失は低いためである。 When the selected power conversion circuit unit is different, the large-current-side power conversion circuit unit is selected as described above because it is larger than the small-current-side power conversion circuit unit is used with a large current. This is because the loss is lower when the current-side power conversion circuit unit is used with a small current.
 最大入力電流算出部16は、データを一時的に格納できるRAM等の記憶素子を含んで構成される。最大入力電流算出部16は、積算時間内における入力電流Iinの最大値を算出する。具体的には、入力電流積算値Iintが積算され始めると同時に、最大入力電流算出部16には入力電流Iinの検出値が入力され記憶するが、新たに入力された入力電流Iinの検出値が現在記憶している検出値よりも大きい場合には、新たに入力された検出値を記憶し、現在記憶している検出値を消去する。そして入力電流積算値Iintの検出が終了するまでその動作を行い、最終的に記憶している入力電流Iinの検出値を最大入力電流Imaxとして選択部14Bに送る。 The maximum input current calculation unit 16 includes a storage element such as a RAM that can temporarily store data. The maximum input current calculation unit 16 calculates the maximum value of the input current Iin within the integration time. Specifically, simultaneously with the start of integration of the input current integrated value Iint, the detected value of the input current Iin is input and stored in the maximum input current calculation unit 16, but the newly input value of the input current Iin is stored. If the detected value is larger than the currently stored detection value, the newly input detection value is stored, and the currently stored detection value is erased. The operation is performed until the detection of the integrated input current value Iint is completed, and the detected value of the input current Iin that is finally stored is sent to the selection unit 14B as the maximum input current Imax.
 入力電流しきい値格納部17は不揮発性メモリ等により構成されている。入力電流しきい値格納部17は、第1~3電力変換回路部4~6を用いて電力変換を行う場合に、最も大きな出力電力Poutを得るために、電力変換回路部を切換えることが好ましい入力電流Iinの値であるしきい値th1およびth2を格納している。しきい値th1、th2については、図4を用いてすでに説明したので、ここでは説明を省略する。小電流側しきい値th1および大電流側しきい値th2については予め測定により求め、入力電流しきい値格納部17に格納しておけばよい。 The input current threshold storage unit 17 is composed of a nonvolatile memory or the like. When the power conversion is performed using the first to third power conversion circuit units 4 to 6, the input current threshold storage unit 17 preferably switches the power conversion circuit unit in order to obtain the largest output power Pout. Threshold values th1 and th2 which are values of the input current Iin are stored. Since the threshold values th1 and th2 have already been described with reference to FIG. 4, the description thereof is omitted here. The small current side threshold th1 and the large current side threshold th2 may be obtained by measurement in advance and stored in the input current threshold storage unit 17.
 他の実施形態に係る電力変換装置100Bにおける、電力変換回路部の切換え処理は図9に示すフローチャートと同様である。 The switching process of the power conversion circuit unit in the power conversion device 100B according to another embodiment is the same as the flowchart shown in FIG.
 図18を参照して、他の実施形態に係る電力変換装置100Bにおける電力変換回路部の選択処理について説明する。まず、選択部14Bにより、図10で示した#21~#26の工程が行われて、第1~3電力変換回路部4~6の内、いずれか1つの電力変換回路部が選択される(#51)。 With reference to FIG. 18, the selection process of the power inverter circuit unit in the power converter 100B according to another embodiment will be described. First, steps # 21 to # 26 shown in FIG. 10 are performed by the selection unit 14B, and any one of the first to third power conversion circuit units 4 to 6 is selected. (# 51).
 #51の工程に並行して、選択部14Bによって、最大入力電流Imaxに基づいていずれか1つの電力変換回路部が選択される(#52)。この工程については後で詳述する。 In parallel with the step # 51, the selection unit 14B selects any one power conversion circuit unit based on the maximum input current Imax (# 52). This process will be described in detail later.
 選択部14Bにより、#51の工程で選択された電力変換回路部と、#52の工程で選択された電力変換回路部とが比較される(#53)。 The selection unit 14B compares the power conversion circuit unit selected in the step # 51 with the power conversion circuit unit selected in the step # 52 (# 53).
 比較された電力変換回路部の両者が同じである場合は(#53でYes)、選択部14Bにより当該電力変換回路部が最終的に選択される(#54)。 When both of the compared power conversion circuit units are the same (Yes in # 53), the power conversion circuit unit is finally selected by the selection unit 14B (# 54).
 比較された電力変換回路部の両者が異なる場合は(#53でNo)、選択部14Bにより、それらの内から大電流側の電力変換回路部が最終的に選択され(#55)、選択処理が終了する。 When the compared power conversion circuit units are different (No in # 53), the selection unit 14B finally selects the power conversion circuit unit on the large current side from them (# 55), and the selection process Ends.
 最終的に選択された電力変換回路部において最も大きい出力電力が得られる制御条件(デューティー比、出力電圧Voutの目標値、スイッチング周波数等)が、制御条件決定部15により決定される(#56)。 Control conditions (duty ratio, target value of output voltage Vout, switching frequency, etc.) that can obtain the largest output power in the finally selected power conversion circuit unit are determined by the control condition determination unit 15 (# 56). .
 選択された電力変換回路部における出力電圧Voutの目標値等の決定方法については上述したのと同様とすればよい。選択処理が終了すると、図9の#11で電力変換回路部の切換えが必要か判断される。 The method for determining the target value of the output voltage Vout in the selected power conversion circuit unit may be the same as described above. When the selection process is completed, it is determined whether or not the power conversion circuit unit needs to be switched in # 11 of FIG.
 図19を参照して、#51の工程で選択された電力変換回路部と、#52の工程で選択された電力変換回路部との組合せと、これらの組合せにおいて最終的に選択される電力変換回路部について説明する。図19は、入力電流積算値による選択結果および最大入力電流による選択結果の組合せと、選択される電力変換回路部との関係を示すテーブルである。 Referring to FIG. 19, the combination of the power conversion circuit unit selected in step # 51 and the power conversion circuit unit selected in step # 52, and the power conversion finally selected in these combinations The circuit unit will be described. FIG. 19 is a table showing the relationship between the combination of the selection result based on the integrated input current value and the selection result based on the maximum input current, and the selected power conversion circuit unit.
 図19に示すように、入力電流積算値Iintに基づいて第1電力変換回路部4が選択された場合は、最大入力電流Imaxに基づいて選択された電力変換回路部が最終的に選択される。 As shown in FIG. 19, when the first power conversion circuit unit 4 is selected based on the integrated input current value Iint, the power conversion circuit unit selected based on the maximum input current Imax is finally selected. .
 また、入力電流積算値Iintに基づいて第2電力変換回路部5が選択された場合は、最大入力電流Imaxに基づいて第3電力変換回路部6が選択された場合以外は第2電力変換回路部5が最終的に選択され、最大入力電流Imaxに基づいて第3電力変換回路部6が選択された場合は第3電力変換回路部6が最終的に選択される。 When the second power conversion circuit unit 5 is selected based on the integrated input current value Iint, the second power conversion circuit is used except when the third power conversion circuit unit 6 is selected based on the maximum input current Imax. When the unit 5 is finally selected and the third power conversion circuit unit 6 is selected based on the maximum input current Imax, the third power conversion circuit unit 6 is finally selected.
 また、入力電流積算値Iintに基づいて第3電力変換回路部5が選択された場合は、最大入力電流Imaxに基づいて選択された電力変換回路部に関係なく、第3電力変換回路部6が最終的に選択される。 When the third power conversion circuit unit 5 is selected based on the integrated input current value Iint, the third power conversion circuit unit 6 is not related to the power conversion circuit unit selected based on the maximum input current Imax. Finally selected.
 次に、図20を参照して、図18の#52の工程である最大入力電流Imaxに基づく電力変換回路部の選択方法について説明する。まず、最大入力電流Imaxの算出について説明する。具体的には、図20の#61~#64の工程により最大入力電流Imaxが算出される。 Next, with reference to FIG. 20, a method for selecting the power conversion circuit unit based on the maximum input current Imax, which is the step # 52 of FIG. 18, will be described. First, calculation of the maximum input current Imax will be described. Specifically, the maximum input current Imax is calculated by the steps # 61 to # 64 in FIG.
 入力電流積算値Iintを検出するための入力電流Iinの積算を開始するタイミングと同時に、入力電流検出部2により入力電流Iinが検出される(#61)。 The input current Iin is detected by the input current detector 2 simultaneously with the timing of starting the integration of the input current Iin for detecting the input current integrated value Iint (# 61).
 最大入力電流算出部16により、入力電流Iinの検出値と最大入力電流算出部16に格納されている最大入力電流Imaxとが比較される(#62)。最大入力電流Imaxの測定開始時は、最大入力電流算出部16に格納されている最大入力電流Imaxは0Aとされる。 The maximum input current calculation unit 16 compares the detected value of the input current Iin with the maximum input current Imax stored in the maximum input current calculation unit 16 (# 62). At the start of measurement of the maximum input current Imax, the maximum input current Imax stored in the maximum input current calculation unit 16 is set to 0A.
 入力電流Iinの検出値が現在格納されている最大入力電流Imaxよりも大きくない場合は(#62でNo)、#64の工程に進む。 If the detected value of the input current Iin is not larger than the currently stored maximum input current Imax (No in # 62), the process proceeds to step # 64.
 入力電流Iinの検出値が現在格納されている最大入力電流Imaxよりも大きい場合は(#62でYes)、最大入力電流Imaxはその入力電流Iinの検出値に更新される(#63)。 If the detected value of the input current Iin is larger than the currently stored maximum input current Imax (Yes in # 62), the maximum input current Imax is updated to the detected value of the input current Iin (# 63).
 最大入力電流算出部16により、入力電流積算値Iintを検出するための所定時間である積算時間が経過したかが判断され(#64)、経過していない場合は(#64でNo)、再び#61の工程に戻る。 The maximum input current calculation unit 16 determines whether or not the integration time that is a predetermined time for detecting the input current integration value Iint has elapsed (# 64), and if it has not elapsed (No in # 64), again. Return to step # 61.
 積算時間が経過した場合は(#64でYes)、そのときに最大入力電流算出部16に格納されている最大入力電流Imaxが、算出された最大入力電流Imaxであり、選択部14Bに送られて#65の工程以降の選択処理が行われる。最大入力電流算出部16は、格納している最大入力電流Imaxを0Aにリセットして、次の積算時間内における最大入力電流Imaxの算出を開始する。 When the integration time has elapsed (Yes in # 64), the maximum input current Imax stored in the maximum input current calculation unit 16 at that time is the calculated maximum input current Imax, and is sent to the selection unit 14B. Then, the selection processing after the step # 65 is performed. The maximum input current calculation unit 16 resets the stored maximum input current Imax to 0 A, and starts calculating the maximum input current Imax within the next integration time.
 選択部14Bにより、算出され最大入力電流Imaxと、入力電流しきい値格納部17に格納されている大電流側しきい値th2が比較される(#65)。 The selection unit 14B compares the calculated maximum input current Imax with the large current side threshold th2 stored in the input current threshold storage unit 17 (# 65).
 最大入力電流Imaxが大電流側しきい値th2以上であれば(#65でYes)、選択部14Bにより、第3電力変換回路部6が選択される(#66)。 If the maximum input current Imax is greater than or equal to the large current side threshold th2 (Yes in # 65), the third power conversion circuit unit 6 is selected by the selection unit 14B (# 66).
 最大入力電流Imaxが大電流側しきい値th2よりも小さい場合は(#65でNo)、選択部14Bにより、最大入力電流Imaxと入力電流しきい値格納部17に格納された小電流側しきい値th1とが比較される(#67)。最大入力電流Imaxが小電流側しきい値th1以上であれば(#67でYes)、選択部14Bにより、第2電力変換回路部5が選択される(#68)。 When the maximum input current Imax is smaller than the large current side threshold th2 (No in # 65), the selection unit 14B causes the maximum input current Imax and the small current side stored in the input current threshold storage unit 17 to be reduced. The threshold value th1 is compared (# 67). If the maximum input current Imax is equal to or greater than the small current side threshold th1 (Yes in # 67), the second power conversion circuit unit 5 is selected by the selection unit 14B (# 68).
 最大入力電流Imaxが小電流側しきい値th1よりも小さい場合は(#67でNo)、選択部14Bにより、第1電力変換回路部4が選択される(#69)。 When the maximum input current Imax is smaller than the small current side threshold th1 (No in # 67), the first power conversion circuit unit 4 is selected by the selection unit 14B (# 69).
 他の実施形態に係る電力変換装置100Bは、上述のように、入力電流積算値Iintに基づくだけでなく、最大入力電流Imaxにも基づいてそれぞれ電力変換回路部を選択するため、好ましい電力変換回路部の選択がより高精度で行われる。また、選択処理は積算時間ごとに行われるので、電力変換回路部の切換え回数が抑制され、切換えにより損失が大きくなることを抑制できる。 Since the power conversion device 100B according to another embodiment selects the power conversion circuit unit based not only on the input current integrated value Iint but also on the maximum input current Imax as described above, a preferable power conversion circuit Parts are selected with higher accuracy. Further, since the selection process is performed every integration time, the number of times of switching of the power conversion circuit unit is suppressed, and an increase in loss due to switching can be suppressed.
 なお、上記説明では、入力電流積算値Iintに基づいて電力変換回路部を選択するにあたり、図10に示すフローチャートによる方法を用いたが、図13または図15に示したフローチャートによる方法を用いてもよい。 In the above description, the method according to the flowchart shown in FIG. 10 is used to select the power conversion circuit unit based on the integrated input current value Iint. However, the method according to the flowchart shown in FIG. Good.
 本実施形態に係る電力変換装置100、100Bによれば、異なる入力電流-出力電力特性を有する複数の電力変換回路部を持ち、それらを切換えることで広い入力電流域において高い変換効率を維持することができる。そのため、構成が複雑でなく、簡素化でき、回路設計も容易である。また、同一の回路を複数有して、それらを組み合わせることで広い入力電流域に対応する電力変換装置に比べて、回路を構成するための部品点数の増加量を抑えて、広い入力電流域に対して、効率よく出力を得ることができる。そのため、小型化・低コスト化が可能である。 The power conversion devices 100 and 100B according to the present embodiment have a plurality of power conversion circuit units having different input current-output power characteristics, and maintain high conversion efficiency in a wide input current range by switching them. Can do. Therefore, the configuration is not complicated and can be simplified, and the circuit design is easy. In addition, compared to power converters that have multiple identical circuits and combine them to accommodate a wide input current range, the increase in the number of parts for configuring the circuit is suppressed and a wide input current range is achieved. On the other hand, an output can be obtained efficiently. Therefore, downsizing and cost reduction are possible.
 また、入力電流積算値に基づいて電力変換回路部を切換えるので、電力変換回路部の切換え回数を抑制し、無駄な切換をなくすことができるため、切換えにより生じる損失が少なく、効率よく電力変換を行うことができる。 In addition, since the power conversion circuit unit is switched based on the integrated input current value, the number of switching of the power conversion circuit unit can be suppressed, and unnecessary switching can be eliminated. It can be carried out.
 上に述べた実施形態において、電力変換装置100、100Bの全体または各部の構造、形状、寸法、個数、材質、組成などは、本発明の趣旨に沿って適宜変更することができる。 In the embodiment described above, the structure, shape, dimensions, number, material, composition, etc. of the entire power conversion device 100, 100B or each part can be appropriately changed in accordance with the spirit of the present invention.
 上に述べた実施形態の電力変換装置100、100Bは、広い入力電流域および出力電流域を持ち、広い範囲の入力電流の変動に対応して全電流域で最大電力を出力することができるうえ、損失も少ない。また、小型化・低コスト化が可能である。例えば、太陽電池に接続することで、太陽電池により発電された電力をより有効に取り出すことができる。したがって、太陽光発電システムの構成部品として好適に使用することができる。 The power converters 100 and 100B according to the above-described embodiments have a wide input current range and an output current range, and can output maximum power in the entire current range in response to fluctuations in a wide range of input current. And loss is small. Further, downsizing and cost reduction are possible. For example, the power generated by the solar cell can be taken out more effectively by connecting to the solar cell. Therefore, it can be suitably used as a component of a solar power generation system.
 1 電力変換制御部
 2 入力電流検出部
 3 入力電圧検出部
 4 第1電力変換回路部
 5 第2電力変換回路部
 6 第3電力変換回路部
 7 出力電流検出部
 8 出力電圧検出部
 9 警報出力部
 10 入力電流積算検出部
 12 効率対出力電流データ格納部
 13 最適積算値範囲格納部
 14、14B 選択部
 15 制御条件決定部
 16 最大入力電流算出部
 17 入力電流しきい値格納部
 100、100B 電力変換装置
 200 連系用整合装置
 L1~3 コイル
 C1~3 コンデンサ
 FET1~3 スイッチング素子
 D1~3 転流ダイオード
 DT1~3 効率対出力電流データ
 PV 太陽電池
DESCRIPTION OF SYMBOLS 1 Power conversion control part 2 Input current detection part 3 Input voltage detection part 4 1st power conversion circuit part 5 2nd power conversion circuit part 6 3rd power conversion circuit part 7 Output current detection part 8 Output voltage detection part 9 Alarm output part DESCRIPTION OF SYMBOLS 10 Input current integration detection part 12 Efficiency vs. output current data storage part 13 Optimal integrated value range storage part 14, 14B Selection part 15 Control condition determination part 16 Maximum input current calculation part 17 Input current threshold value storage part 100, 100B Power conversion Device 200 Matching device for interconnection L1-3 Coil C1-3 Capacitor FET1-3 Switching element D1-3 Commutation diode DT1-3 Efficiency vs. output current data PV Solar cell

Claims (9)

  1.  直流電力として入力される入力電力を電力変換して出力する電力変換装置であって、
     前記入力電力の電流である入力電流の所定時間にわたる積算値である入力電流積算値を反復して検出する入力電流積算検出部と、
     前記入力電力を電力変換するものであり、入力電流範囲が互いに異なりかつ隣合う入力電流範囲とは重複する部分を有する複数の電力変換回路部と、
     検出された前記入力電流積算値に基づいて、前記複数の電力変換回路部から1つの電力変換回路部を選択し、選択した前記1つの電力変換回路部に対して最も大きい出力電力が得られる制御条件で制御を行う電力変換制御部と、
     を有する電力変換装置。
    A power conversion device that converts input power input as DC power and outputs the power,
    An input current integration detection unit that repeatedly detects an input current integration value that is an integration value over a predetermined time of the input current that is the current of the input power;
    A plurality of power conversion circuit units that convert the input power into power, and have different input current ranges and overlapping with adjacent input current ranges;
    Control that selects one power conversion circuit unit from the plurality of power conversion circuit units based on the detected integrated input current value, and obtains the largest output power for the selected one power conversion circuit unit A power conversion control unit that performs control under conditions;
    A power conversion device.
  2.  前記電力変換制御部は、前記入力電流積算検出部により検出された前記入力電流積算値が、前記複数の電力変換回路部ごとに対応する前記入力電流積算値の最適範囲である複数の最適積算値範囲のうちのいずれの前記最適積算値範囲内に含まれるかを判断し、該当する最適積算値範囲に対応する前記電力変換回路部を前記1つの電力変換回路部として選択する選択部を備える、
     請求項1記載の電力変換装置。
    The power conversion control unit includes a plurality of optimum integrated values in which the input current integrated value detected by the input current integration detecting unit is an optimum range of the input current integrated value corresponding to each of the plurality of power conversion circuit units. A selection unit that determines which of the ranges is included in the optimum integrated value range and selects the power conversion circuit unit corresponding to the corresponding optimum integrated value range as the one power conversion circuit unit;
    The power conversion device according to claim 1.
  3.  入力電流を検出する入力電流検出部をさらに備え、
     前記電力変換制御部は、前記入力電流検出部により検出される入力電流から、前記所定時間内における最大入力電流を反復して算出する最大入力電流算出部と、
     前記1つの電力変換回路部を選択するにあたり、前記入力電流積算値に基づいて電力変換回路部の第1候補を選択し、前記最大入力電流に基づいて電力変換回路部の第2候補を選択し、前記第1候補および前記第2候補となった電力変換回路部のうちから、入力電流範囲がより大きい前記電力変換回路部を前記1つの電力変換回路部として選択する選択部とを備える、
     請求項1記載の電力変換装置。
    It further includes an input current detection unit for detecting the input current,
    The power conversion control unit is configured to repeatedly calculate a maximum input current within the predetermined time from an input current detected by the input current detection unit, and
    In selecting the one power conversion circuit unit, the first candidate of the power conversion circuit unit is selected based on the integrated input current value, and the second candidate of the power conversion circuit unit is selected based on the maximum input current. A selection unit that selects the power conversion circuit unit having a larger input current range as the one power conversion circuit unit from among the power conversion circuit units that are the first candidate and the second candidate.
    The power conversion device according to claim 1.
  4.  前記電力変換制御部は、前記最大入力電流に基づいて電力変換回路部を選択するにあたり、算出された前記最大入力電流において最も大きい出力電力が得られる電力変換回路部を選択する、
     請求項3記載の電力変換装置。
    The power conversion control unit selects a power conversion circuit unit that obtains the largest output power at the calculated maximum input current when selecting the power conversion circuit unit based on the maximum input current.
    The power conversion device according to claim 3.
  5.  前記電力変換制御部は、前記入力電流積算検出部により検出された前記入力電流積算値が、前記複数の電力変換回路部ごとに対応する前記入力電流積算値の最適範囲である複数の最適積算値範囲のうちのいずれの最適積算値範囲内に含まれるかを反復して判断し、前記入力電流積算値が所定回数だけ連続して、同一の最適積算値範囲内に含まれるときに、当該最適積算値範囲に対応する前記電力変換回路部を前記1つの電力変換回路部として選択する選択部を備える、
     請求項1記載の電力変換装置。
    The power conversion control unit includes a plurality of optimum integrated values in which the input current integrated value detected by the input current integration detecting unit is an optimum range of the input current integrated value corresponding to each of the plurality of power conversion circuit units. It is repeatedly determined which of the ranges is within the optimum integrated value range, and when the input current integrated value is continuously included in the same optimum integrated value range for a predetermined number of times, the optimum A selection unit that selects the power conversion circuit unit corresponding to an integrated value range as the one power conversion circuit unit;
    The power conversion device according to claim 1.
  6.  前記所定回数は、選択される前記電力変換回路部によって異なっていて、
     入力電流範囲が小さい前記電力変換回路部を前記1つの電力変換回路部として選択するときの前記所定回数の方が、入力電流範囲が大きい前記電力変換回路部を前記1つの電力変換回路部として選択するときの前記所定回数よりも多い、
     請求項5記載の電力変換装置。
    The predetermined number of times varies depending on the selected power conversion circuit unit,
    When the power conversion circuit unit having a small input current range is selected as the one power conversion circuit unit, the power conversion circuit unit having a larger input current range is selected as the one power conversion circuit unit. More than the predetermined number of times when
    The power conversion device according to claim 5.
  7.  前記最適積算値範囲は、前記入力電流積算値が大きい範囲である大電流側最適範囲と、前記入力電流積算値が小さい範囲である小電流側最適範囲とを含み、
     前記選択部は、前記入力電流積算検出部により検出された前記入力電流積算値が、現在選択されている電力変換回路部よりも前記入力電流範囲が大きい前記電力変換回路部に対応する前記最適積算値範囲の前記大電流側最適範囲内に含まれる場合は、当該最適積算値範囲に対応する前記電力変換回路部を前記1つの電力変換回路部として選択し、
     前記選択部は、前記入力電流積算検出部により検出された入力電流積算値が、現在選択されている電力変換回路部よりも前記入力電流範囲が大きい前記電力変換回路部に対応する前記最適積算値範囲の前記小電流側最適範囲に2回以上の前記所定回数だけ連続して含まれた場合は、当該最適積算値範囲に対応する前記電力変換回路部を前記1つの電力変換回路部として選択する、
     請求項5記載の電力変換装置。
    The optimal integrated value range includes a large current side optimal range in which the input current integrated value is large, and a small current side optimal range in which the input current integrated value is small,
    The selection unit includes the optimum integration corresponding to the power conversion circuit unit in which the input current integration value detected by the input current integration detection unit is larger in the input current range than the currently selected power conversion circuit unit. When included in the large current side optimum range of the value range, the power conversion circuit unit corresponding to the optimum integrated value range is selected as the one power conversion circuit unit,
    The selection unit includes the optimum integration value corresponding to the power conversion circuit unit in which the input current integration value detected by the input current integration detection unit is larger in the input current range than the currently selected power conversion circuit unit. In the case where the small current side optimum range of the range is continuously included twice or more times, the power conversion circuit unit corresponding to the optimum integrated value range is selected as the one power conversion circuit unit. ,
    The power conversion device according to claim 5.
  8.  前記複数の電力変換回路部は、それぞれ、スイッチング素子、電力変換時にエネルギーを蓄積するためのコイル、およびコンデンサを備え、
     前記複数の電力変換回路部のそれぞれが備える前記コイルのインダクタンスが互いに異なっている、
     請求項1から7のいずれかに記載の電力変換装置。
    Each of the plurality of power conversion circuit units includes a switching element, a coil for storing energy during power conversion, and a capacitor.
    The inductances of the coils provided in each of the plurality of power conversion circuit units are different from each other.
    The power converter device in any one of Claim 1 to 7.
  9.  入射光を変換して電力を出力する太陽電池と、
     前記太陽電池の出力を電力変換する請求項1から8のいずれか1項に記載の電力変換装置と、
     前記電力変換装置の出力を商用電力の周波数および電圧に変換する連系用整合装置と、
     を備える太陽光発電システム。
    A solar cell that converts incident light and outputs power;
    The power conversion device according to any one of claims 1 to 8, wherein the output of the solar cell is converted into power.
    An interconnection matching device that converts the output of the power converter into a frequency and voltage of commercial power;
    A solar power generation system comprising:
PCT/JP2012/001383 2011-04-01 2012-02-29 Power converter and solar power generation system WO2012137403A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012529453A JP5093425B1 (en) 2011-04-01 2012-02-29 Power converter and solar power generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-081607 2011-04-01
JP2011081607 2011-04-01

Publications (1)

Publication Number Publication Date
WO2012137403A1 true WO2012137403A1 (en) 2012-10-11

Family

ID=46968821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001383 WO2012137403A1 (en) 2011-04-01 2012-02-29 Power converter and solar power generation system

Country Status (2)

Country Link
JP (1) JP5093425B1 (en)
WO (1) WO2012137403A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016106510A (en) * 2015-11-24 2016-06-16 有限会社エーユー建築工房 Charging device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003280584A (en) * 2002-03-26 2003-10-02 Sanyo Electric Co Ltd Display device
JP2010158098A (en) * 2008-12-26 2010-07-15 Hitachi Ltd Power supply unit and electronic apparatus
JP2010213466A (en) * 2009-03-11 2010-09-24 Oki Power Tech Co Ltd Voltage converter
JP2011114938A (en) * 2009-11-26 2011-06-09 Ohatsu Co Ltd Conversion apparatus of power generated by natural energy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003280584A (en) * 2002-03-26 2003-10-02 Sanyo Electric Co Ltd Display device
JP2010158098A (en) * 2008-12-26 2010-07-15 Hitachi Ltd Power supply unit and electronic apparatus
JP2010213466A (en) * 2009-03-11 2010-09-24 Oki Power Tech Co Ltd Voltage converter
JP2011114938A (en) * 2009-11-26 2011-06-09 Ohatsu Co Ltd Conversion apparatus of power generated by natural energy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016106510A (en) * 2015-11-24 2016-06-16 有限会社エーユー建築工房 Charging device

Also Published As

Publication number Publication date
JPWO2012137403A1 (en) 2014-07-28
JP5093425B1 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
US10104732B2 (en) LED drive method and LED drive device
JP5320144B2 (en) Solar cell maximum output power tracking control device
US20140376278A1 (en) Method and apparatus for providing power conversion using an interleaved flyback converter with reactive power control
JP2014099669A (en) Systems for highly efficient solar power
KR20040014328A (en) Power converter and electric power generator
JP2014513915A (en) Method and apparatus for controlling the output power of a resonant converter
US9350257B2 (en) Power supply apparatus and driving method thereof
US11031786B2 (en) Power convertor, power generation system, and power generation control method
Zeng et al. A single-switch isolated DC-DC converter for photovoltaic systems
JP6539172B2 (en) Power supply
US20140015496A1 (en) Charging device
JP2011024285A (en) Power converter
TW201020712A (en) Frequency-varied incremental conductance maximum power point tracking controller and algorithm for PV converter
US11081961B2 (en) Power convertor, power generation system, and power generation control method
JP5093425B1 (en) Power converter and solar power generation system
JP5062386B1 (en) Power converter
JP2012029415A (en) Dc-dc converter and switching control circuit
JP4753826B2 (en) Multi-output power supply
JP2012191824A (en) Power conversion device
JP6307334B2 (en) Solar cell control device
JP5093426B1 (en) Power converter and solar power generation system
JP2006014526A (en) Power supply control method and power supply
JP4337060B2 (en) Switching power supply device and its control device
JP2012191823A (en) Power conversion device
KR101301179B1 (en) Switching buck converter

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012529453

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12767584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12767584

Country of ref document: EP

Kind code of ref document: A1