WO2012136282A1 - Générateur hf - Google Patents

Générateur hf Download PDF

Info

Publication number
WO2012136282A1
WO2012136282A1 PCT/EP2011/067927 EP2011067927W WO2012136282A1 WO 2012136282 A1 WO2012136282 A1 WO 2012136282A1 EP 2011067927 W EP2011067927 W EP 2011067927W WO 2012136282 A1 WO2012136282 A1 WO 2012136282A1
Authority
WO
WIPO (PCT)
Prior art keywords
longitudinal end
waveguide
generator
horn
horn waveguide
Prior art date
Application number
PCT/EP2011/067927
Other languages
German (de)
English (en)
Inventor
Oliver Heid
Timothy Hughes
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to RU2012102609/28A priority Critical patent/RU2597684C2/ru
Publication of WO2012136282A1 publication Critical patent/WO2012136282A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/02Circuits or systems for supplying or feeding radio-frequency energy

Definitions

  • the present invention relates to an HF generator according to the preamble of patent claim 1 and a sectionchenbe ⁇ accelerator with an RF generator according to claim 11.
  • the object of the present invention is to provide a device in which the generation of RF power and the transmission of the generated RF power through the same
  • An inventive RF generator comprises a solid-state switch, a running in a z-direction horn waveguide having a first longitudinal end and a second longitudinal end and extending in the z direction cylindrical waveguide having a third longitudinal end.
  • first cross-sectional area of the horn waveguide at the first longitudinal end is less than a second in which is arranged in a xy-plane cross-sectional area of the horn waveguide at the second longitudinal end.
  • the second longitudinal end of the horn waveguide is arranged at the third longitudinal end of the Hohllei ⁇ age .
  • the solid state switch is disposed at the first longitudinal end of the horn waveguide to excite electromagnetic vibration in the horn waveguide.
  • this RF generator the RF power is excited directly in the horn waveguide and forwarded by this in the waveguide, which transports them to a consumer. This reduces the complexity and manufacturing costs of the HF generator.
  • Another advantage is the use of the solid-state switch, which offers increased flexibility over conventional RF power generation devices and can be made more compact and less expensive. That the horn waveguide danztransformation an impedance-is also advantageous takes between the low impedance of the solid state switch and the high impedance of the waveguide before ⁇ .
  • the solid-state switch is arranged in an x-z plane.
  • the solid-state switch can then apply a high-frequency electromagnetic voltage between two opposite walls of the horn waveguide. It is expedient that the solid state switch a first
  • the solid state switch which is arranged on an upper side of the solid ⁇ body switch, and has a second Congressan ⁇ circuit, which on an underside of the solid state Switch is arranged, wherein the first output terminal is electrically conductively connected to a first wall of the horn waveguide and the second output terminal is electrically connected to a first wall opposite the second wall of the horn waveguide.
  • the solid state switch may then be configured as a two-sided module and allows easy Inte ⁇ gration of solid state switch and horn waveguide.
  • the waveguide has a rectangular cross-section.
  • the waveguide has a waveguide with rectangu ⁇ gem cross section through suitable vibration modes ⁇ example, via an O-TE1 vibration mode.
  • the horn waveguide has a rectangular cross-section.
  • the horn waveguide and the waveguide can then be formed into one another and allow a transmission of RF power from the horn waveguide into the waveguide.
  • the horn waveguide widens in the y direction between the first longitudinal end and the second longitudinal end.
  • the horn waveguide widens in the x direction between the first longitudinal end and the second longitudinal end.
  • the waveguide and the horn waveguide are integrally formed.
  • Advantageously ⁇ thereby minimizes losses at the transition between the horn waveguide and the waveguide.
  • the horn waveguide has a center position arranged between the first longitudinal end and the second longitudinal end, the horn waveguide having a constant cross-sectional area between the first longitudinal end and the center position.
  • the section of the horn waveguide between the first longitudinal end and the center position is then particularly well suited for connection to the solid-state switch.
  • the waveguide has a fourth longitudinal end, which is connected to an HF cavity.
  • the RF power generated by the HF generator can then be fed into the HF cavity and used there further.
  • a particle accelerator according to the invention has an HF generator of the aforementioned type.
  • the particle accelerator may then use the RF power generated by the RF generator to accelerate charged particles.
  • FIG. 1 shows a section through an HF generator according to a first embodiment
  • Figure 2 is a plan view of the RF generator of the first embodiment
  • FIG. 3 is a perspective view of the RF generator of the first embodiment.
  • Figure 4 is a plan view of an RF generator according to a
  • FIG. 1 shows a section through an HF generator 100 according to a first embodiment.
  • the HF generator 100 serves to generate high-frequency electromagnetic waves with high power.
  • the RF power generated by the RF generator 100 can be used, for example, in a particle accelerator for accelerating charged particles.
  • the RF generator is cut at a yz plane. The z-direction corresponds to a longitudinal direction of the RF generator 100 and also to the direction of an energy flow 110 into which the RF power generated by the RF generator 100 is conducted.
  • the HF generator 100 comprises a solid-state switch 200, a horn waveguide 300 and a waveguide 400, which are arranged one behind the other in the z-direction.
  • the RF generator 100 thus comprises both means for generating the RF power and means for guiding the generated RF power.
  • the RF generator 100 compared to conventional RF generators on a reduced complexity and can be produced more cheaply.
  • the solid state switch 200 includes a circuit board 230 disposed in an x-z plane.
  • the printed circuit board 230 has an upper side 231 pointing in the positive y-direction and a lower side 232 pointing in the negative y-direction.
  • one or more transistors 240 are arranged, which are designed to switch RF power.
  • the one or more transistors 240 are preferably semiconductor transistors, for example, SiC JFETs.
  • the transistors 240 may be disposed on the upper side 231, the lower side 232 or on both the upper side 231 and the lower side 232 of the printed circuit board 230.
  • Next 200 includes the solid state switch to a first exemplary input terminal 210, which is arranged on the upper side 231 of the conductor plate ⁇ 230th
  • the solid ⁇ switch 200 also has a second output terminal 220, which is disposed on the bottom 232 of the circuit board 230th Zvi ⁇ rule the output terminals 210, 220 may be of the solid state switch 200 to create a high-frequency electric voltage is switched by the one or more transistors 240th
  • the solid-state switch 200 has a DC voltage supply, not shown in the figures, via which the solid state switch 200 is supplied with electrical power.
  • the horn waveguide 300 is designed as a metallic waveguide whose cross-sectional area in the z direction between a first longitudinal end 310 of the horn waveguide 300 and ei ⁇ nem second longitudinal end 320 of the horn waveguide 300 increases. Between the first longitudinal end 310 and the second longitudinal end 320, the horn waveguide 300 has a center position 330. Between the first longitudinal end 310 and the center position 330 extends a cylindrical portion 350 of the horn waveguide 300. Between the center position 330 and the second longitudinal end 320 of the horn waveguide 300, a conical portion 360 of the horn waveguide 300 extends. In the cylindrical portion 350, the cross-section ⁇ surface of the horn waveguide 300 does not vary in the z direction. In ko ⁇ African portion 360, the cross-sectional area of the horn waveguide 300 increases in the z-direction.
  • Cylindrical portion 350 has a top wall 351 pointing in the positive y direction and a bottom wall 352 facing a negative y direction.
  • the upper wall 351 and the lower wall 352 are oriented parallel to each other.
  • the top wall 351 merges into a first wall 370 of the conical section 360.
  • the bottom wall 352 at the center position 330 merges into a second wall 380 of the conical section 360.
  • the first wall 370 and second wall 380 of the tapered portion 360 are not oriented parallel zuein ⁇ other, but include a vertical opening angle 340 a, which may, for example, 90 ° Betra ⁇ gen.
  • FIG. 2 shows a plan view of the HF generator 100 of the first embodiment. From FIG.
  • the conical section 360 has a third wall 390 arranged in a yz plane and a likewise in a yz plane.
  • fourth wall 395 has.
  • the third wall 390 and the fourth wall 395 respectively connect the first wall 370 to the second wall 380 and are oriented parallel to each other.
  • Al ⁇ le walls 351, 352, 370, 380, 390, 395 of the horn waveguide 300 are made of an electrically conductive material, preferably of a metal.
  • the first output terminal 210 of the solid state switch 200 is electrically conductively connected to the upper wall 351 of the cylindrical portion 350 of the horn waveguide 300 at the first longitudinal end 310 of the horn waveguide 300.
  • the second output terminal 220 of the solid-state switch 200 is at the ers ⁇ th longitudinal end 310 of the horn waveguide 300 electrically lei ⁇ tend connected to the lower wall 352 of the cylindrical portion 350 of the horn waveguide 300.
  • the hard ⁇ state switch 200 is put in a position, called Kule- across the output terminals 210, 220 a high-frequency voltage between the upper wall 351 and lower wall 352 of the cylindrical portion 250 of the horn waveguide 300, whereby the horn waveguide 300 an electromagnetic oscillation is excited.
  • the horn waveguide 300 passes the RF power excited by the solid state switch 200 to the waveguide 400.
  • the horn waveguide 300 serves as an impedance transformer that performs impedance conversion between the low impedance of the solid state switch 200 and the high impedance of the Hohllei ⁇ ters 400th
  • the waveguide 400 has a third longitudinal end 410 and a fourth longitudinal end 420.
  • the waveguide 400 is cylindrical and has a rectangular cross-sectional area corresponding to the cross-sectional area of the horn waveguide 300 at its second longitudinal end 320.
  • the waveguide 400 is connected at its third longitudinal end 410 to the second longitudinal end 320 of the horn waveguide 300.
  • the waveguide 400 also has walls of electrically conductive material, preferably of metal. For clarity, FIG.
  • FIG 3 shows a perspective view of the HF generator 100. It can be seen, in particular, that the conical section 360 of the horn waveguide 300 has two walls 390, 395 parallel to one another and two walls inclined toward one another and perpendicular to the walls 390, 395 370, 380 on ⁇ points.
  • Figure 4 shows a plan view of an RF generator 1100 according to a second disclosed embodiment.
  • the basic structure and operation of the RF generator 1100 of the second exporting ⁇ approximate shape correspond to those of the RF generator 100 of the first disclosed embodiment.
  • the HF Generator 1100 includes a solid state switch 1200, a horn waveguide 1300, and a waveguide 1400.
  • the solid state switch 1200 is similar in construction and function to the solid state switch 200 of the RF generator 100 of the first embodiment.
  • the waveguide 1400 corresponds in structure and function to the waveguide 400 of the RF generator 100 of the first imple mentation form.
  • the horn waveguide 1300 replaces the horn waveguide 300 of the rf generator 100 of the first embodiment with the rf generator 1100 of the second embodiment.
  • the horn waveguide 1300 has a cylindrical portion 1350 and a tapered portion 1360 In the z-direction are arranged one behind the other and correspond to the cylindrical portion 350 and the conical portion 360 of the horn waveguide 300 of the RF generator 100 of the first Ausure ⁇ ment form.
  • the conical portion 1360 of the horn waveguide 1300 has a fifth wall 1390 and a sixth wall 1395 instead of the third wall 390 and the fourth wall 395.
  • the fifth wall 1390 and the sixth wall 1395 are not oriented parallel to each other. Instead, the fifth wall and the sixth wall 1395 are inclined to each other. ordered and include a horizontal opening angle 1340.
  • the tapered portion 1360 widens not only in the y-direction but also in the x-direction.
  • the waveguide 400 of the HF generator 100 or the waveguide 1400 of the HF generator 1100 can be coupled to an RF cavity.
  • Suitable coupling ⁇ structures are known from the prior art.
  • the RF cavity can be for example an RF cavity of a Crystalchenbe ⁇ Schleuniger.
  • the RF power generated by the RF generator 100, 1100 in the particle accelerator may serve to accelerate electrically charged particles.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)
  • Waveguide Aerials (AREA)

Abstract

L'invention concerne un générateur HF comportant un commutateur à corps solide, un guide d'ondes à cornet s'étendant dans une direction z, présentant une première extrémité longitudinale et une deuxième extrémité longitudinale, et un guide d'ondes creux cylindrique s'étendant dans la direction z, présentant une troisième extrémité longitudinale. Une première surface de section transversale du guide d'ondes à cornet, disposée dans un plan x-y, est plus petite sur la première extrémité longitudinale qu'une deuxième surface de section transversale du guide d'ondes à cornet, disposée dans un plan x-y, sur la deuxième extrémité longitudinale. La deuxième extrémité longitudinale du guide d'ondes à cornet est disposée sur la troisième extrémité longitudinale du guide d'ondes creux. Le commutateur à corps solide est disposé sur la première extrémité longitudinale du guide d'ondes à cornet afin d'exciter une oscillation électromagnétique dans le guide d'ondes à cornet.
PCT/EP2011/067927 2011-04-04 2011-10-13 Générateur hf WO2012136282A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012102609/28A RU2597684C2 (ru) 2011-04-04 2011-10-13 Вч генератор

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011006710.8 2011-04-04
DE102011006710A DE102011006710A1 (de) 2011-04-04 2011-04-04 HF-Generator

Publications (1)

Publication Number Publication Date
WO2012136282A1 true WO2012136282A1 (fr) 2012-10-11

Family

ID=45464160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/067927 WO2012136282A1 (fr) 2011-04-04 2011-10-13 Générateur hf

Country Status (3)

Country Link
DE (1) DE102011006710A1 (fr)
RU (1) RU2597684C2 (fr)
WO (1) WO2012136282A1 (fr)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3127572A (en) * 1958-08-29 1964-03-31 Raytheon Co Locked oscillator systems
US3588704A (en) * 1969-05-22 1971-06-28 Univ Washington Swept frequency microwave generator
FR2118964A1 (fr) * 1970-12-23 1972-08-04 Fujitsu Ltd
US3778717A (en) * 1971-04-30 1973-12-11 Hitachi Ltd Solid-state oscillator having such a structure that an oscillating element, a resonator and a radiator of electromagnetic waves are unified in one body
JPS5210656A (en) * 1975-06-19 1977-01-27 Matsushita Electric Ind Co Ltd Micro wave device
WO1989006869A1 (fr) * 1988-01-13 1989-07-27 Thomson-Csf Transformateur de mode pour circuit de transmission d'energie hyperfrequence
EP0606870A1 (fr) 1993-01-11 1994-07-20 Polytechnic University Cavité active à radio-fréquence
WO2001018901A1 (fr) * 1999-09-02 2001-03-15 Commonwealth Scientific And Industrial Research Organisation Structure d'alimentation pour guides d'ondes electromagnetiques
US20070222668A1 (en) * 2006-03-27 2007-09-27 Daniel Schultheiss Wave Guide Adapter with Decoupling Member for Planar Wave Guide Couplings

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU409401A1 (ru) * 1971-10-29 1976-04-05 Линейный ускоритель зар женных частиц
DE3933875A1 (de) * 1989-10-11 1991-04-18 Technics Plasma Gmbh Vorrichtung zum einkoppeln von mikrowellen in einen behandlungsraum zur plasmaerzeugung
DE4126216B4 (de) * 1991-08-08 2004-03-11 Unaxis Deutschland Holding Gmbh Vorrichtung für Dünnschichtverfahren zur Behandlung großflächiger Substrate
RU30216U1 (ru) * 2002-02-18 2003-06-20 Открытое акционерное общество "АВТОВАЗ" Устройство оконечной нагрузки
RU2300831C2 (ru) * 2005-03-29 2007-06-10 Елена Валерьевна Федосеева Способ снижения уровня шума антенны и двухмодовая апертурная антенна

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3127572A (en) * 1958-08-29 1964-03-31 Raytheon Co Locked oscillator systems
US3588704A (en) * 1969-05-22 1971-06-28 Univ Washington Swept frequency microwave generator
FR2118964A1 (fr) * 1970-12-23 1972-08-04 Fujitsu Ltd
US3778717A (en) * 1971-04-30 1973-12-11 Hitachi Ltd Solid-state oscillator having such a structure that an oscillating element, a resonator and a radiator of electromagnetic waves are unified in one body
JPS5210656A (en) * 1975-06-19 1977-01-27 Matsushita Electric Ind Co Ltd Micro wave device
WO1989006869A1 (fr) * 1988-01-13 1989-07-27 Thomson-Csf Transformateur de mode pour circuit de transmission d'energie hyperfrequence
EP0606870A1 (fr) 1993-01-11 1994-07-20 Polytechnic University Cavité active à radio-fréquence
WO2001018901A1 (fr) * 1999-09-02 2001-03-15 Commonwealth Scientific And Industrial Research Organisation Structure d'alimentation pour guides d'ondes electromagnetiques
US20070222668A1 (en) * 2006-03-27 2007-09-27 Daniel Schultheiss Wave Guide Adapter with Decoupling Member for Planar Wave Guide Couplings

Also Published As

Publication number Publication date
RU2012102609A (ru) 2015-05-10
DE102011006710A1 (de) 2012-10-04
RU2597684C2 (ru) 2016-09-20

Similar Documents

Publication Publication Date Title
DE112017006415T5 (de) Wellenleiter-mikrostreifenleiter-wandler
EP1968188A1 (fr) Agencement d'amplificateur de classe D
EP3580825B1 (fr) Filtre actif pour sources de tension bipolaires
EP2997801A1 (fr) Dispositif et module électrique permettant de convertir une tension continue en tension alternative
DE112018006818T5 (de) Wellenleiter-mikrostreifenleitungs-wandler und antennenvorrichtung
DE1282102B (de) Einrichtung zur Verarbeitung elektrischer Signalenergie fuer Frequenzen bis einschliesslich des Millimeter- und Submillimeterwellen-laengengebietes
DE3942560A1 (de) Hochfrequenz-generator fuer einen plasma erzeugenden verbraucher
EP2684249B1 (fr) Générateur haute fréquence
WO2012136282A1 (fr) Générateur hf
WO2012152341A1 (fr) Générateur hf
DE2253710A1 (de) Festkoerper-mikrowellenoszillator
EP2520019B1 (fr) Composant amplificateur comportant un élément de compensation
DE1286585B (de) Frequenzvervielfacher mit mindestens einem ein nichtlineares Element enthaltenden Leitungskreis
WO2012136281A1 (fr) Générateur hf
EP2625933B1 (fr) Dispositif hf et accélérateur doté d'un tel dispositif hf
WO2021037576A1 (fr) Procédé pour produire une décharge gazeuse
DE112007001152T5 (de) Vorrichtung und Verfahren zum Erzeugen von Atmosphärendruckplasma
EP3471516A1 (fr) Unité amplificateur haute fréquence pourvu de modules amplificateurs disposés sur un conducteur extérieur
EP4143876B1 (fr) Module semi-conducteur doté d'une cavité
DE2745566A1 (de) Anordnung einer mikrostrip-schaltung mit einem halbleiter-bauelement
WO2012041540A1 (fr) Cavité hf dotée d'un émetteur
WO2024028275A1 (fr) Module semiconducteur de puissance
DE102022201016A1 (de) Leistungsmodul für einen Stromrichter mit optimierten Signalpins
WO2022018056A1 (fr) Procédé de production d'un module d'alimentation, module d'alimentation, dispositif électrique et véhicule à moteur
EP3945572A1 (fr) Module de semi-conducteur de puissance et procédé de fabrication d'un module de semi-conducteur de puissance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012102609

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11771104

Country of ref document: EP

Kind code of ref document: A1