WO2012134211A2 - Microgel and method for preparing same, and water-soluble paint composition - Google Patents

Microgel and method for preparing same, and water-soluble paint composition Download PDF

Info

Publication number
WO2012134211A2
WO2012134211A2 PCT/KR2012/002358 KR2012002358W WO2012134211A2 WO 2012134211 A2 WO2012134211 A2 WO 2012134211A2 KR 2012002358 W KR2012002358 W KR 2012002358W WO 2012134211 A2 WO2012134211 A2 WO 2012134211A2
Authority
WO
WIPO (PCT)
Prior art keywords
shell
unsaturated monomer
microgel
acid
forming
Prior art date
Application number
PCT/KR2012/002358
Other languages
French (fr)
Korean (ko)
Other versions
WO2012134211A3 (en
Inventor
문태권
이종택
이현숙
박종윤
고건혁
Original Assignee
주식회사 케이씨씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이씨씨 filed Critical 주식회사 케이씨씨
Priority to CN201280016943.2A priority Critical patent/CN103562275B/en
Publication of WO2012134211A2 publication Critical patent/WO2012134211A2/en
Publication of WO2012134211A3 publication Critical patent/WO2012134211A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0052Preparation of gels
    • B01J13/0065Preparation of gels containing an organic phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/20After-treatment of capsule walls, e.g. hardening
    • B01J13/22Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/126Polymer particles coated by polymer, e.g. core shell structures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/024Organogel, i.e. a gel containing an organic composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters

Definitions

  • the present invention relates to microgels and methods for their preparation, and to water-soluble coating compositions.
  • Addition of an effect pigment such as aluminum or mica to the automotive coating composition can impart a so-called glamor finish to the automotive appearance.
  • the surface coated with such an effect pigment may have a different color depending on the angle viewed by light absorption, reflection, refraction effects, and the like. This is called a metallic effect.
  • the water-soluble coating composition unlike the solvent type coating composition, most of the volatile components are composed of water, so that drying of the volatile components may be considerably delayed compared to the solvent type. As a result, the flow of the effect pigment, staining, etc. become more severe. At this time, the drying of the volatile components may be sensitively affected by the temperature and relative humidity at the time of coating the coating composition. Therefore, in the water-soluble coating composition for automobiles, it is preferable to enlarge the temperature and humidity area
  • each rheology (thixotropy) at the various coating stages of the storage, transportation, painting, holding, coating composition and drying of the coating composition should be optimized. That is, when storing the paint composition, it should maintain a suitable viscosity in order to prevent the sedimentation of the pigment, and when transporting it should be easy to transport because the viscosity is moderately low, and when painting the paint should be as low as possible, so that the paint atomization well. . After arrival, the viscosity should be rapidly restored to control the flow of the coating film and the flow of the effect pigment.
  • the present invention is to provide a microgel and a method for preparing the same, and a water-soluble coating composition capable of maximizing the plasticity properties to maximize the temperature and humidity range.
  • Method for producing a microgel according to the present invention preparing a core; Forming a first shell on the core; And forming a second shell on the first shell, and using a hydroxyl group-containing unsaturated monomer having polyalkylene glycol in at least one of forming the first shell and the second shell.
  • an acid-containing unsaturated monomer and a hydroxyl group-containing unsaturated monomer including the polyalkylene glycol may be added and reacted to form the second shell.
  • the hydroxyl group-containing unsaturated monomer having the polyalkylene glycol may be represented by the following formula.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkyl group having 2 to 4 carbon atoms
  • n is an integer of 3 to 20
  • an acid-free or acid-containing unsaturated monomer may be added to a seed to form the core.
  • the first shell may be formed by adding and reacting an acid-free or acid-containing unsaturated monomer with a hydroxyl-free or hydroxyl-containing unsaturated monomer.
  • the core may be formed by injecting a hydroxyl-free or hydroxyl-containing unsaturated monomer having a polyalkylene glycol with an acid-containing unsaturated monomer.
  • a neutralizing agent may be added to the core, and an acid-free or acid-containing unsaturated monomer may be added and reacted to form the first shell while inducing phase inversion.
  • the acid value measured after the forming of the second shell may be higher than the acid value measured after the forming of the first shell.
  • the acid value of the microgel may be 40 ⁇ 200 mgKOH / g and the hydroxyl value is 1 ⁇ 80 mgKOH / g.
  • the weight of the unsaturated monomer added in the step of preparing the core is 35 ⁇ 60, of the unsaturated monomer added in the step of forming the first shell
  • the weight part may be 20 to 40
  • the weight part of the unsaturated monomer added in the step of forming the second shell may be 10 to 30.
  • the microgel according to the present invention is prepared by the method for producing a microgel described above.
  • the water soluble coating composition according to the present invention comprises such a microgel.
  • Microgel according to the present invention the core; A first shell formed on the core; And a second shell formed on the first shell and formed by reacting an acid-containing unsaturated monomer with a hydroxyl group-containing unsaturated monomer having polyalkylene glycol.
  • the water soluble coating composition according to the present invention comprises such a microgel.
  • the present invention it is possible to stably polymerize a relatively high acid value microgel.
  • the hydroxyl group-containing unsaturated monomer having polyalkylene glycol is used in the step of forming the second shell, there is an effect that can further maximize the interaction with the adjacent factors. Thereby, a viscosity and plasticity characteristic can be improved.
  • the stability of the particles can be improved during storage, the paint atomization can be well achieved during the coating film formation, and the viscosity is increased at the low shear rate after arrival to effectively control the flow of the coating film and the like. That is, the paintable temperature and humidity application window can be maximized and the rheology in the paint step can be optimized.
  • microgel according to the present invention a manufacturing method thereof, and a water-soluble coating composition will be described in detail.
  • the method for producing a microgel according to the present invention includes preparing a core, forming a first shell on the core, and forming a second shell on the first shell. At this time, the second shell is formed by reacting an acid-containing unsaturated monomer with a hydroxyl group-containing unsaturated monomer having polyalkylene glycol.
  • an acid-free or acid-containing unsaturated monomer, a polymerization initiator, an emulsifier and ionized water are added to the seed to form a core.
  • an acid-free or acid-containing unsaturated monomer, a hydroxyl-free or hydroxyl-containing unsaturated monomer, a polymerization initiator, an emulsifier and ionized water are charged to form a first shell.
  • an acid-containing unsaturated monomer, a hydroxyl group-containing unsaturated monomer, a polymerization initiator, an emulsifier and ionized water are formed by input reaction.
  • a hydroxyl-containing unsaturated monomer having polyalkylene glycol as the hydroxyl-containing unsaturated monomer in at least one of the steps of forming the first shell and the second shell can be used.
  • the step of forming the second shell preferably includes a hydroxyl-containing unsaturated monomer having polyalkylene glycol.
  • the above-mentioned seed may be formed by input reaction of an acid-free or acid-containing unsaturated monomer, a polymerization initiator, an emulsifier, and ionized water.
  • the monomer used at the time of manufacture of a general microgel can be used.
  • at least one of a polymerizable aromatic monomer such as styrene and ⁇ -methylstyrene, or a polymerizable nitrile monomer such as
  • the acid-containing unsaturated monomer may be at least one of two carboxylic acid groups such as single carboxylic acid group, crotonic acid, itaconic acid, maleic acid, and pmaric acid, such as acrylic acid, methacrylic acid, vinylbenzene acid, and isopentyl benzene acid. It may include one.
  • the hydroxyl-containing unsaturated monomer may include at least one of hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, product names PLACCEL FM1D, PLACCEL FM2D, etc. of DAICEL.
  • hydroxyl group-containing unsaturated monomer having a polyalkylene glycol may be represented by the formula (1) below.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkyl group having 2 to 4 carbon atoms
  • n is an integer of 3 to 20
  • hydroxyl group-containing unsaturated monomer including polyalkylene glycol, polyethylene glycol acrylate, polypropylene glycol acrylate, polybutylene glycol acrylate, etc., each of which is added with ethylene oxide, propylene oxide, butylene oxide, etc., are added.
  • Various materials can be used. In this case, a material in which ethylene oxide, propylene oxide, butylene oxide and the like are added in various amounts may be used.
  • An emulsifier can be used individually or in mixture of an anionic emulsifier, a nonionic, a reactive emulsifier, etc.
  • Anionic emulsifiers include sodium dodecyl sulfate, sodium dodecylbenzene sulfate, sodium oleic sulfate, potassium dodecyl sulfate, dioctyl sodium sulfosuccinate, sodium stearate, potassium stearate, and polyoxyethylene alkylphenyl ether ammonium sulfide Fading and so on.
  • Nonionic emulsifiers include polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyethylene fatty acid esters, and polyoxyethylene polypropylene copolymers.
  • the reactive emulsifier is an emulsifier for copolymerizing with a polymer synthesized by having an unsaturated double bond in the emulsifier component, and may have anionic or nonionic properties (for example, ADEKA brand name ADEKAREASOAP SE-1025A, DKS International company name HITENOL HS-10).
  • Polymerization initiators include oil-soluble initiators consisting of hydrogen peroxide, diisopropylene hydroperoxide, cumene hydroperoxide, benzoyl peroxide, t-butyl hydroperoxide, lauroyl peroxide, or potassium persulfate, ammonium peroxide. Any one or more of water-soluble initiators, such as sulfate and sodium persulfate, can be selected and used.
  • a chain transfer agent may be further used to control the molecular weight when forming the seed, the core, the first shell, and the second shell.
  • Various materials may be used as the chain transfer agent, and for example, mercaptoethanol, ⁇ -methylstyrene dimer, methyl mercaptopropionate, and the like may be used.
  • the crosslinking monomer may be included in an amount of 0 to 10 parts by weight based on 100 parts by weight of the unsaturated monomer used in each of the above-described steps.
  • the amount of the crosslinking monomer exceeds 10 parts by weight, the interlayer adhesion may be lowered or the plasticity of the paint may be lowered.
  • crosslinking monomer the monomer which has 2 or more unsaturated bonds is used,
  • Allyl compounds such as vinyl compounds, such as divinyl benzene, an aryl (meth) acrylate, and a di (meth) aryl (meth) acrylamide, and ethylene Alkylenediol di (meth), such as glycol di (meth) acrylate, 1, 3- butanediol di (meth) acrylate, 1, 4- butanediol (meth) acrylate, and 1, 6- hexanediol (meth) acrylate ) At least one selected from the group consisting of an acrylate compound and the like.
  • the core is formed on the seed after forming the seed.
  • the seed is formed by input reaction of an acid-free or acid-containing unsaturated monomer, a polymerization initiator, an emulsifier, and ionized water, and an acid value may be 200 mgKOH / g or less. If the acid value exceeds 200 mgKOH / g, it is because the subsequent polymerization may not be performed smoothly.
  • the particle size of the prepared seed may be 20 ⁇ 200nm, which is an appropriate size to appropriately size the particle diameter of the core.
  • the core is formed by input reaction of an acid-free or acid-containing unsaturated monomer, a polymerization initiator, an emulsifier and ionized water, and an acid value may be 30 mgKOH / g or less. This is because if the acid value exceeds 30 mgKOH / g, the polymerization may not be performed smoothly and the core may not be smoothly formed on the seed. At this time, the acid value may be 1 ⁇ 30 mgKOH / g.
  • the particle diameter of the prepared core may be 25-250 nm, which is an appropriate size to disperse the microgel in which the first shell and the second shell are formed on the core in the water-soluble coating composition to impart proper viscosity and plasticity.
  • 35 to 60 parts by weight of the unsaturated monomer can be added to 100 parts by weight of the total unsaturated monomer used in the preparation of the microgel. If the unsaturated monomer is added below 35 in the step of forming the core, the size of the core may become small and may not be suitable for forming the first shell and the second shell. If more than 60 parts by weight of the unsaturated monomer is added, the core may be too large and the thickness of the first shell and the second shell may be thin, making it difficult to have adequate viscosity and plasticity.
  • the polymerization initiator is added by 1 to 15 parts by weight, the emulsifier is added by 1 to 25 parts by weight, and the ionized water may be added by 60 to 98 parts by weight based on 100 parts by weight of the unsaturated monomer to be added during core formation. This is only an example of a suitable range required for synthesis, the present invention is not limited thereto.
  • an acid-free or acid-containing unsaturated monomer, a hydroxyl-free or hydroxyl-containing unsaturated monomer, a polymerization initiator, an emulsifier and ionized water are charged to form a first shell.
  • the acid value measured after the forming of the first shell may be 100 mgKOH / g or less and the hydroxyl value may be 80 mgKOH / g or less.
  • the acid value may be 1 ⁇ 100 mgKOH / g or less and the hydroxyl value is 0.01 ⁇ 80 mgKOH / g or less.
  • the step of forming the first shell 20 to 40 parts by weight of the unsaturated monomer may be added to and used with respect to 100 parts by weight of the total unsaturated monomer used in the preparation of the microgel.
  • the unsaturated monomer is added to less than 20 in the step of forming the first shell, the thickness of the first shell becomes thin and it is difficult to obtain the effect by forming the first shell. If more than 40 parts by weight of unsaturated monomer is added, the thickness of the first shell may be thicker than necessary, which may unnecessarily increase the cost of the material.
  • the polymerization initiator is added by 1 to 15 parts by weight, the emulsifier is added by 1 to 25 parts by weight, and the ionized water may be added by 60 to 98 parts by weight with respect to 100 parts by weight of the unsaturated monomer to be added at the time of forming the first shell. .
  • an acid-containing unsaturated monomer, a hydroxyl group-containing unsaturated monomer having polyalkylene glycol, a polymerization initiator, an emulsifier, and ionized water are added and reacted to form a second shell.
  • the unsaturated monomer in the forming of the second shell, 10 to 30 parts by weight of the unsaturated monomer may be added to and used with respect to 100 parts by weight of the total unsaturated monomer used in the preparation of the microgel.
  • the unsaturated monomer is added to less than 10 in the step of forming the first shell, the thickness of the first shell becomes thin and it is difficult to obtain the effect by forming the second shell. If more than 30 parts by weight of the unsaturated monomer is added, the thickness of the second shell having a high acid value becomes thicker than necessary, which may unnecessarily increase the cost of the material.
  • the polymerization initiator is added by 1 to 15 parts by weight, the emulsifier is added by 1 to 25 parts by weight, and the ionized water may be added by 60 to 98 parts by weight with respect to 100 parts by weight of the unsaturated monomer to be added during the formation of the second shell. .
  • the microgel thus prepared may be neutralized with a neutralizing agent consisting of a base.
  • a neutralizing agent consisting of a base.
  • inorganic bases such as ammonia, sodium hydroxide, potassium hydroxide, and inorganic bases, primary or tertiary amines such as dimethyl ethanol amine, triethyl amine, and the like can be used.
  • the microgel thus prepared comprises a core, a first shell formed on the core, a second shell formed on the first shell, and the second shell includes a hydroxyl group-containing unsaturated monomer having an acid-containing unsaturated monomer and a polyalkylene glycol. It is formed by reacting monomers.
  • the acid value of the prepared microgel may be 40 ⁇ 200 mgKOH / g and the hydroxyl value is 1 ⁇ 80 mgKOH / g.
  • the acid value after the second shell is made higher than the acid value after the first shell is formed, thereby increasing the acid value step by step, thereby stably polymerizing and forming a relatively high acid value microgel. Therefore, a higher acid value can be realized than when only one layer of shell is provided, and the interaction with adjacent particles can be increased, thereby improving the plasticity characteristics.
  • the hydroxyl group-containing unsaturated monomer having polyalkylene glycol is used in forming the second shell, there is an effect of maximizing the interaction with adjacent factors.
  • the stability of the particles can be improved during storage, the paint atomization can be well achieved during the coating film formation, and the viscosity is increased at the low shear rate after arrival to effectively control the flow of the coating film and the like. That is, the paintable temperature and humidity application window can be maximized and the rheology in the paint step can be optimized.
  • a core is formed by adding a hydroxyl-free or hydroxyl-containing unsaturated monomer, an acid-containing unsaturated monomer, a polymerization initiator, an emulsifier and ionized water with polyalkylene glycol.
  • the core obtained by this has an acid value of 50 mgKOH / g or less, and a hydroxyl value of 50 mgKOH / g or less.
  • the acid value may be 1-50 mgKOH / g and the hydroxyl value may be 0.01-50 mgKOH / g.
  • a neutralizing agent is added, and an acid-free or acid-containing unsaturated monomer, a polymerization initiator, an emulsifier, and ionized water are added and reacted to form a first shell while inducing phase inversion.
  • the acid value measured after the step of forming the first shell may be 30 mmKOH / g or less, and may be 1-30 mmKOH / g.
  • the neutralizing agent may be added to the amount of acid in the step of preparing the core by 0.3 to 1.5 equivalents. If the neutralizing agent is less than 0.3 equivalent, there is a problem that the degree of solubility during neutralization does not play a role of the emulsifier in the subsequent shell process. If the neutralizing agent exceeds 1.5 equivalents, it may be fully solubilized that it will not be able to act as an emulsifier in the subsequent shell process.
  • the acid-containing unsaturated monomer and the hydroxyl group-containing unsaturated monomer including polyalkylene glycol, a polymerization initiator, an emulsifier, and ionized water are formed by input reaction.
  • the acid value of the thus prepared microgel may be 40 ⁇ 200 mgKOH / g and the hydroxyl value is 1 ⁇ 80 mgKOH / g.
  • microgels may have excellent plasticity properties. This maximizes the range of paintable temperature and humidity and optimizes rheology during the painting phase.
  • the water-soluble coating composition containing the microgel as mentioned above can maximize plasticity by a microgel, and can raise the density of a coating film. As a result, properties such as stain resistance, compactness, water resistance, alkali corrosion resistance, adhesion, appearance, gloss, and flip flop can be improved. This water-soluble coating composition will be described in more detail.
  • Water-soluble coating composition is 10-30 weight% of microgels, 5-15 weight% of auxiliary resins, 1-10 weight% of amino resins, 5-15 weight% of cosolvents, 1-20 weight% of effect pigments, 0-20 weight of colored pigments %, Thickener 0-10% by weight, antifoam 1-5% by weight and the balance of other additives.
  • the auxiliary resin plays a role of forming a coating film, protecting the body, improving the appearance, and the like, and various materials such as polyurethane dispersion or polyester can be used.
  • the amino resin serves to form a network of the coating film through a curing reaction with the main resin, and methoxy melamine, butoxy melamine, melamine containing an amino group, and the like can be used.
  • the co-solvent improves the smoothness of the coating film and the storage stability of the paint, lowers the minimum film forming temperature, and contributes to the volatilization of the solvent during painting.
  • the co-solvent includes at least one of propylene glycol, N-methyl-2-pyrrolidone, n-propyl alcohol, n-butanol, propylene glycol monomethyl ether, butyl glycol, hexyl glycol, 2-ethylhexyl alcohol, butyl carbitol and the like. It may include more.
  • the effect pigment is for imparting a metallic effect to the coating film, and may be used alone or in combination with an aqueous flake, aluminum flake, mica pigment, and the like. At this time, the effect pigment may be included in 1 to 20% by weight, preferably 1 to 15% by weight based on the water-soluble paint composition.
  • Colored pigments are those which, in combination with coating-forming materials in coating compositions, impart color and concealment effects. Generally, effect pigments and transparent or translucent colored pigments are used in combination.
  • an azo inorganic pigment, a polycyclic organic pigment containing an vat pigment, an anthraquinone organic pigment, or the like can be widely applied. Pure metallic colors may contain no colored pigments.
  • Thickeners are used to prevent flowability and to contribute to paintability and coating roughness.
  • an acrylic thickener a urethane thickener, fused silica, a cellulose thickener, a benton thickener and the like can be used alone or in combination.
  • Antifoaming agent is used in order to suppress the generation of bubbles generated in various processes such as at the time of production of coating composition, at the time of painting work and after the arrival of the paper, or to quickly remove the bubbles generated.
  • the antifoaming agent fluorine modified siloxane based, polysiloxane emulsion, organic modified siloxane based, hydrophobic silica, mineral oil and the like can be used alone or in combination.
  • CO-436 Sulfated ammonium salt of alkylphenoxypoly (5 moles of ethylene oxy) ethanol, manufactured by Rhodia
  • MAA methacrylic acid
  • BLEMMER AE-400 Polyethylene glycol acrylate (10 mol addition of ethylene oxide)
  • an acid value 81 prepared by mixing monomer 4 of Table 1 and 5 g of CO-436 in 200 g of DIW, a pre-emulsion of hydroxyl value 60, and an initiator solution having 1 g of APS dissolved in 50 g of DIW were added dropwise simultaneously for 1 hour. After aging for 1 hour, a second shell was formed.
  • the reactor was cooled to 40 ° C. and neutralized by dropwise adding an aqueous solution of 20 g of DMEA, neutralized in 40 g of DIW. Filtered with a 200 mesh filter to remove the aggregates and left for 1 day after packaging.
  • the pre-emulsion of acid value 32.6 prepared by mixing monomer 3-1 and 1.25 g of CO-436 in Table 1 to 100 g of DIW and an initiator solution of 0.5 g of APS dissolved in 50 g of DIW were added dropwise at the same time for 1 hour and then maintained for 1 hour. To form a core.
  • the reactor was cooled to 40 ° C. and filtered through a 200 mesh filter to remove aggregates and left for 1 day after packing.
  • Preparation Example 1 except that monomers 2 and 3 of Table 1 were used in forming the core, and monomers 4 of Table 1 were used in the formation of the first shell, and a second shell was not formed.
  • An emulsion was prepared by the same method as described above.
  • the solids content, acid value and hydroxyl value of the final emulsions prepared in Preparation Examples 1 and 2 and Comparative Examples 1 and 2 were measured, and the pH, particle size and viscosity were measured and shown in Table 2 below.
  • particle size was measured using an Autosizer Lo-C Model laser light scattering analyzer from Malvern. Viscosity was measured in CS mode using a 600 mm cone-plate method of the Haake RS-100 model. The measurement method of particle size and viscosity was the same below.
  • (1) Ford cup The viscosity was measured using the pod cup which is a kind of viscosity cup. That is, the cylindrical composition of a fixed volume was filled with the coating composition, and the viscosity was measured according to the time taken for all the coating composition to flow out from the hole in the bottom.
  • Coating film thickness 10-15 micrometers was defined as the coating thickness.
  • the prescribed coating film thickness was 35-45 ⁇ m.
  • WAVESCAN DOI The coating quality was measured using a wave scan which is a portable device for measuring the coating quality of the finished coating film. The better the appearance quality, the higher the LU, SH, and OP values. CF is converted from each value.
  • the microgel according to the present invention uses a hydroxyl group-containing unsaturated monomer having polyalkylene glycol in the step of forming the second shell, the interaction with adjacent factors can be further maximized, thereby improving viscosity and plasticity characteristics.
  • the preparation method of the microgel it is possible to stably polymerize the microgel having a relatively high acid value, and the microgel can improve the stability of the particles during storage and to make the paint atomization well during the film formation. It is very useful industrially as a composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

According to the present invention, a method for preparing a microgel comprises: a step of preparing a core; a step of forming a first shell on the core; and a step of forming a second shell on the first shell. The step of forming the first shell and/or the step of forming the second shell uses unsaturated monomers containing hydroxyl radicals and comprising polyalkylene glycols.

Description

마이크로겔 및 이의 제조 방법, 그리고 수용성 도료 조성물Microgels and Methods for Making the Same, and Water-Soluble Coating Compositions
본 발명은 마이크로겔 및 이의 제조 방법, 그리고 수용성 도료 조성물에 관한 것이다. The present invention relates to microgels and methods for their preparation, and to water-soluble coating compositions.
최근 환경 보호를 위한 휘발성 유기 화합 물질에 대한 규제가 강화되고 있고, 이에 대응하기 위한 수용성 도료 조성물의 개발이 활발히 진행되고 있다.  Recently, regulations on volatile organic compounds for environmental protection have been strengthened, and development of water-soluble coating compositions to cope with them has been actively conducted.
자동차용 도료 조성물에 알루미늄 또는 마이카 등의 이펙트(effect) 안료를 첨가하면 자동차 외관에 이른바 글래머 피니쉬를 부여할 수 있다. 이러한 이펙트 안료에 의하여 도장된 표면은 빛의 흡수, 반사, 굴절 효과 등에 의해 바라보는 각도에 따라 다른 색감을 가질 수 있다. 이를 메탈릭 효과라고 한다. Addition of an effect pigment such as aluminum or mica to the automotive coating composition can impart a so-called glamor finish to the automotive appearance. The surface coated with such an effect pigment may have a different color depending on the angle viewed by light absorption, reflection, refraction effects, and the like. This is called a metallic effect.
그런데, 수용성 도료 조성물의 경우는 용제형 도료 조성물과는 달리, 휘발 성분의 대부분이 물로 구성되어 용제형에 비해 휘발 성분의 건조가 상당히 늦어질 수 있다. 이로 인해 이펙트 안료의 흐름, 얼룩 현상 등이 보다 심해지게 된다. 이때, 휘발 성분의 건조가 도료 조성물의 도장시의 온도와 상대 습도에 민감하게 영향을 받을 수 있다. 이에 의하여 따라서, 자동차용 수용성 도료 조성물에 있어서는, 도장 가능한 온도 및 습도 영역(application window)을 가능한 한 확대하는 것이 바람직하다. However, in the case of the water-soluble coating composition, unlike the solvent type coating composition, most of the volatile components are composed of water, so that drying of the volatile components may be considerably delayed compared to the solvent type. As a result, the flow of the effect pigment, staining, etc. become more severe. At this time, the drying of the volatile components may be sensitively affected by the temperature and relative humidity at the time of coating the coating composition. Therefore, in the water-soluble coating composition for automobiles, it is preferable to enlarge the temperature and humidity area | region (application window) which can be painted as much as possible.
이를 구현하기 위해서는, 도료 조성물의 저장, 운송, 도장, 소지 도착, 도막 구성, 건조의 제반 도장 단계에서의 각각의 레오로지(요변성)를 최적화하여야 한다. 즉, 도료 조성물의 저장 시에는 안료의 침강 등을 막기 위하여 적당한 점도를 유지해야 하며, 운송 시에는 적당히 점도가 떨어져서 운송이 쉬워야 하고, 도료 도장 시에는 가능한 한 점도가 낮아서 도료 미립화가 잘 되도록 하여야 한다. 그리고 소지 도착 후에는 점도가 급속도로 회복되어 도막의 흐름 및 이펙트 안료의 흐름을 제어할 수 있어야 한다. In order to realize this, each rheology (thixotropy) at the various coating stages of the storage, transportation, painting, holding, coating composition and drying of the coating composition should be optimized. That is, when storing the paint composition, it should maintain a suitable viscosity in order to prevent the sedimentation of the pigment, and when transporting it should be easy to transport because the viscosity is moderately low, and when painting the paint should be as low as possible, so that the paint atomization well. . After arrival, the viscosity should be rapidly restored to control the flow of the coating film and the flow of the effect pigment.
본 발명은 의소성 특성을 극대화하여 온도 및 습도 영역을 최대화할 수 있는 마이크로겔 및 이의 제조 방법, 그리고 수용성 도료 조성물을 제공하는 데 있다.  The present invention is to provide a microgel and a method for preparing the same, and a water-soluble coating composition capable of maximizing the plasticity properties to maximize the temperature and humidity range.
본 발명에 따른 마이크로겔의 제조 방법은, 코어를 준비하는 단계; 상기 코어 상에 제1 쉘을 형성하는 단계; 및 상기 제1 쉘 상에 제2 쉘을 형성하는 단계를 포함하고, 상기 제1 쉘 및 상기 제2 쉘을 형성하는 단계 중 적어도 어느 하나에 폴리알킬렌글리콜을 구비하는 수산화기 함유 불포화 단량체를 사용한다. Method for producing a microgel according to the present invention, preparing a core; Forming a first shell on the core; And forming a second shell on the first shell, and using a hydroxyl group-containing unsaturated monomer having polyalkylene glycol in at least one of forming the first shell and the second shell. .
상기 제2 쉘을 형성하는 단계는, 산 함유 불포화 단량체와, 상기 폴리알킬렌글리콜을 구비하는 수산화기 함유 불포화 단량체를 투입 반응시켜 상기 제2 쉘을 형성할 수 있다. In the forming of the second shell, an acid-containing unsaturated monomer and a hydroxyl group-containing unsaturated monomer including the polyalkylene glycol may be added and reacted to form the second shell.
상기 폴리알킬렌글리콜을 구비하는 수산화기 함유 불포화 단량체는 아래 화학식으로 표시될 수 있다. The hydroxyl group-containing unsaturated monomer having the polyalkylene glycol may be represented by the following formula.
<화학식> <Formula>
Figure PCTKR2012002358-appb-I000001
Figure PCTKR2012002358-appb-I000001
(여기서, R1은 수소 원자 또는 메틸기를 나타내며, R2는 탄소수 2 내지 4의 알킬기를 나타내며, n은 3 내지 20의 정수이다) (Wherein R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkyl group having 2 to 4 carbon atoms, n is an integer of 3 to 20)
상기 코어를 준비하는 단계에서는, 시드에 산 비함유 또는 산 함유 불포화 단량체를 투입 반응시켜 상기 코어를 형성할 수 있다. 그리고 상기 제1 쉘을 형성하는 단계에서는, 산 비함유 또는 산 함유 불포화 단량체와, 수산화기 비함유 또는 수산화기 함유 불포화 단량체를 투입 반응시켜 상기 제1 쉘을 형성할 수 있다. In the preparing of the core, an acid-free or acid-containing unsaturated monomer may be added to a seed to form the core. In the forming of the first shell, the first shell may be formed by adding and reacting an acid-free or acid-containing unsaturated monomer with a hydroxyl-free or hydroxyl-containing unsaturated monomer.
상기 코어를 준비하는 단계에서는, 폴리알킬렌글리콜을 구비하는 수산화기 비함유 또는 수산화기 함유 불포화 단량체와, 산 함유 불포화 단량체를 투입 반응시켜 상기 코어를 형성할 수 있다. 상기 제1 쉘을 형성하는 단계에서는, 상기 코어에 중화제를 첨가하고, 산 비함유 또는 산 함유 불포화 단량체를 투입 반응시켜 상역전을 유도하면서 상기 제1 쉘을 형성할 수 있다. In the preparing of the core, the core may be formed by injecting a hydroxyl-free or hydroxyl-containing unsaturated monomer having a polyalkylene glycol with an acid-containing unsaturated monomer. In the forming of the first shell, a neutralizing agent may be added to the core, and an acid-free or acid-containing unsaturated monomer may be added and reacted to form the first shell while inducing phase inversion.
상기 제1 쉘을 형성하는 단계 이후에 측정된 산가보다, 상기 제2 쉘을 형성하는 단계 이후에 측정된 산가가 더 높을 수 있다. The acid value measured after the forming of the second shell may be higher than the acid value measured after the forming of the first shell.
상기 마이크로겔의 산가가 40~200 mgKOH/g 이고 수산화기가가 1~80 mgKOH/g일 수 있다. The acid value of the microgel may be 40 ~ 200 mgKOH / g and the hydroxyl value is 1 ~ 80 mgKOH / g.
상기 마이크로겔의 제조에 사용된 총 불포화 단량체 100 중량부에 대하여, 상기 코어를 준비하는 단계에서 투입된 상기 불포화 단량체의 중량부가 35~60이고, 상기 제1 쉘을 형성하는 단계에서 투입된 상기 불포화 단량체의 중량부가 20~40이며, 상기 제2 쉘을 형성하는 단계에서 투입된 상기 불포화 단량체의 중량부가 10~30일 수 있다. With respect to 100 parts by weight of the total unsaturated monomer used in the preparation of the microgel, the weight of the unsaturated monomer added in the step of preparing the core is 35 ~ 60, of the unsaturated monomer added in the step of forming the first shell The weight part may be 20 to 40, and the weight part of the unsaturated monomer added in the step of forming the second shell may be 10 to 30.
본 발명에 따른 마이크로겔은 상술한 마이크로겔의 제조 방법에 의해 제조된다. 본 발명에 따른 수용성 도료 조성물은 이러한 마이크로겔을 포함한다. The microgel according to the present invention is prepared by the method for producing a microgel described above. The water soluble coating composition according to the present invention comprises such a microgel.
본 발명에 따른 마이크로겔은, 코어; 상기 코어 상에 형성되는 제1 쉘; 상기 제1 쉘 상에 형성되며, 산 함유 불포화 단량체와, 폴리알킬렌글리콜을 구비하는 수산화기 함유 불포화 단량체를 반응시켜 형성된 제2 쉘를 포함한다. 본 발명에 따른 수용성 도료 조성물은 이러한 마이크로겔을 포함한다. Microgel according to the present invention, the core; A first shell formed on the core; And a second shell formed on the first shell and formed by reacting an acid-containing unsaturated monomer with a hydroxyl group-containing unsaturated monomer having polyalkylene glycol. The water soluble coating composition according to the present invention comprises such a microgel.
본 발명에 의하면, 상대적으로 높은 산가의 마이크로겔을 안정적으로 중합할 수 있다. 이와 함께, 제2 쉘을 형성하는 단계에서 폴리알킬렌글리콜을 구비하는 수산화기 함유 불포화 단량체를 사용하므로, 인접 인자와의 상호 작용을 좀더 극대화할 수 있는 효과가 있다. 이에 의하여 점도 및 의소성 특성을 향상할 수 있다. According to the present invention, it is possible to stably polymerize a relatively high acid value microgel. In addition, since the hydroxyl group-containing unsaturated monomer having polyalkylene glycol is used in the step of forming the second shell, there is an effect that can further maximize the interaction with the adjacent factors. Thereby, a viscosity and plasticity characteristic can be improved.
이에 따라, 저장 중에는 입자의 안정성을 향상할 수 있으며, 도막 형성 중에는 도료 미립화가 잘 이루어질 수 있도록 하고, 도착 후의 낮은 전단 속도에서는 점도가 높아져 도막의 흐름 등을 효과적으로 제어할 수 있다. 즉, 도장 가능한 온도 및 습도 영역(application window)를 최대화할 수 있으며, 도장 단계에서의 레오로지를 최적화할 수 있다. Accordingly, the stability of the particles can be improved during storage, the paint atomization can be well achieved during the coating film formation, and the viscosity is increased at the low shear rate after arrival to effectively control the flow of the coating film and the like. That is, the paintable temperature and humidity application window can be maximized and the rheology in the paint step can be optimized.
이하, 본 발명에 따른 마이크로겔 및 이의 제조 방법, 그리고 수용성 도료 조성물을 상세하게 설명하면 다음과 같다. Hereinafter, the microgel according to the present invention, a manufacturing method thereof, and a water-soluble coating composition will be described in detail.
본 발명에 따른 마이크로겔의 제조 방법은, 코어를 준비하는 단계, 코어 상에 제1 쉘을 형성하는 단계, 및 제1 쉘 상에 제2 쉘을 형성하는 단계를 포함한다. 이때, 제2 쉘은 산 함유 불포화 단량체와, 폴리알킬렌글리콜을 구비하는 수산화기 함유 불포화 단량체를 반응시켜 형성한다. The method for producing a microgel according to the present invention includes preparing a core, forming a first shell on the core, and forming a second shell on the first shell. At this time, the second shell is formed by reacting an acid-containing unsaturated monomer with a hydroxyl group-containing unsaturated monomer having polyalkylene glycol.
먼저, 본 발명의 일 예에 따른 마이크로겔의 제조 방법에 대하여 설명한다. First, a method of manufacturing a microgel according to an embodiment of the present invention will be described.
코어를 준비하는 단계에서는, 시드에 산 비함유 또는 산 함유 불포화 단량체, 중합 개시제, 유화제 및 이온수를 투입 반응시켜 코어를 형성한다. 제1 쉘을 형성하는 단계에서는, 산 비함유 또는 산 함유 불포화 단량체, 수산화기 비함유 또는 수산화기 함유 불포화 단량체, 중합 개시제, 유화제 및 이온수를 투입 반응시켜 제1 쉘을 형성한다. 제2 쉘을 형성하는 단계에서는, 산 함유 불포화 단량체, 수산화기 함유 불포화 단량체, 중합 개시제, 유화제 및 이온수를 투입 반응시켜 형성한다. 이때, 제1 쉘 및 제2 쉘을 형성하는 단계 중 적어도 어느 하나에서 수산화기 함유 불포화 단량체로 폴리알킬렌글리콜을 구비하는 수산화 함유 불포화 단량체를 사용할 수 있다. 특히, 제2 쉘을 형성하는 단계에서는 폴리알킬렌글리콜을 구비하는 수산화 함유 불포화 단량체를 포함하는 것이 바람직하다. 여기서, 상술한 시드는 산 비함유 또는 산 함유 불포화 단량체, 중합 개시제, 유화제 및 이온수를 투입 반응시켜 형성될 수 있다. In the step of preparing the core, an acid-free or acid-containing unsaturated monomer, a polymerization initiator, an emulsifier and ionized water are added to the seed to form a core. In the step of forming the first shell, an acid-free or acid-containing unsaturated monomer, a hydroxyl-free or hydroxyl-containing unsaturated monomer, a polymerization initiator, an emulsifier and ionized water are charged to form a first shell. In the step of forming the second shell, an acid-containing unsaturated monomer, a hydroxyl group-containing unsaturated monomer, a polymerization initiator, an emulsifier and ionized water are formed by input reaction. At this time, a hydroxyl-containing unsaturated monomer having polyalkylene glycol as the hydroxyl-containing unsaturated monomer in at least one of the steps of forming the first shell and the second shell can be used. In particular, the step of forming the second shell preferably includes a hydroxyl-containing unsaturated monomer having polyalkylene glycol. Here, the above-mentioned seed may be formed by input reaction of an acid-free or acid-containing unsaturated monomer, a polymerization initiator, an emulsifier, and ionized water.
각 단계에서 사용되는 불포화 단량제, 중합 개시제 및 유화제의 물질들을 먼저 살펴본 후에, 각 단계를 좀더 상세하게 설명한다. The materials of the unsaturated monomers, polymerization initiators, and emulsifiers used in each step are first discussed, and then each step is described in more detail.
산 비함유 또는 수산화기 비함유 불포화 단량체로는, 일반적인 마이크로 겔 제조 시에 사용되는 단량체를 사용할 수 있다. 예를 들어 메틸(메타)아크릴레이트, 에틸(메타)아크릴레이트, n-부틸(메타)아크릴레이트, i-부틸(메타)아크릴레이트, t-부틸(메타)아크릴레이트, 2-에틸헥실아크렐레이트, 2-에틸헥실(메타)아크릴레이트, 라우릴 메타아크릴레이트, 페닐아크릴레이트, i-보닐(메타)아크릴레이트, 사이클로헥실 메타아크릴레이트, (메타)아크릴아마이드, N-메틸올(메타)아크릴아마이드 등의 아크릴계 단량체를 사용할 수 있다. 또는, 스티렌, α-메틸스티렌 등의 중합성 방향족 단량체, 또는 아크릴로니트릴 등의 중합성 니트릴 단량체 등 중에서 적어도 하나를 포함할 수 있다. As an acid-free or hydroxyl-free unsaturated monomer, the monomer used at the time of manufacture of a general microgel can be used. For example, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl acryl Late, 2-ethylhexyl (meth) acrylate, lauryl methacrylate, phenyl acrylate, i-bonyl (meth) acrylate, cyclohexyl methacrylate, (meth) acrylamide, N-methylol (meth) Acrylic monomers, such as acrylamide, can be used. Or at least one of a polymerizable aromatic monomer such as styrene and α-methylstyrene, or a polymerizable nitrile monomer such as acrylonitrile.
산 함유 불포화 단량체는 아크릴산, 메타크릴산, 비닐벤젠산 및 이소펜틸 벤젠산 등과 같이 단일 카르복실산기, 크로톤산, 이타콘산, 말레인산 및 프말산 등과 같이 2개의 카르복실산기, 황산, 인산 등 중에 적어도 하나를 포함할 수 있다. The acid-containing unsaturated monomer may be at least one of two carboxylic acid groups such as single carboxylic acid group, crotonic acid, itaconic acid, maleic acid, and pmaric acid, such as acrylic acid, methacrylic acid, vinylbenzene acid, and isopentyl benzene acid. It may include one.
수산화기 함유 불포화 단량체는 하이드록시에틸(메타)아크릴레이트, 하이드록시프로필(메타)아크릴레이트, 하이드록시부틸(메타)아크릴레이트, DAICEL 사의 제품명 PLACCEL FM1D 및 PLACCEL FM2D 등 중에서 적어도 하나를 포함할 수 있다. The hydroxyl-containing unsaturated monomer may include at least one of hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, product names PLACCEL FM1D, PLACCEL FM2D, etc. of DAICEL.
그리고 폴리알킬렌글리콜을 구비하는 수산화기 함유 불포화 단량체는 아래 화학식 1로 표시될 수 있다. And the hydroxyl group-containing unsaturated monomer having a polyalkylene glycol may be represented by the formula (1) below.
<화학식 1> <Formula 1>
Figure PCTKR2012002358-appb-I000002
Figure PCTKR2012002358-appb-I000002
(여기서, R1은 수소 원자 또는 메틸기를 나타내며, R2는 탄소수 2 내지 4의 알킬기를 나타내며, n은 3 내지 20의 정수이다) (Wherein R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkyl group having 2 to 4 carbon atoms, n is an integer of 3 to 20)
이와 같이, 폴리알킬렌글리콜을 구비하는 수산화기 함유 불포화 단량체로는 에틸렌옥사이드, 프로필렌옥사이드, 부틸렌옥사이드 등이 각기 부가되어 형성된 폴리에틸렌글리콜 아크릴레이트, 폴리프로필렌글리콜 아크릴레이트, 폴리부틸렌글리콜 아크릴레이트 등의 다양한 물질을 사용할 수 있다. 이때, 에틸렌옥사이드, 프로필렌옥사이드, 부틸렌옥사이드 등이 다양한 양만큼 부가된 물질을 사용할 수 있다. 일례로, NOF사의 상품명 BLEMMER PE-90, BLEMMER PE-200, BLEMMER PE-350, BLEMMER PP-1000, BLEMMER PP-500, BLEMMER PP-800, BLEMMER 50PEP-300, BLEMMER 70PEP-350B, BLEMMER 55PET-800, BLEMMER 10PPB-500B, BLEMMER AE-90, BLEMMER AE-200, BLEMMER AE-400, BLEMMER AP-150, BLEMMER AP-400, BLEMMER AP-550 등을 들 수 있다. As such, as the hydroxyl group-containing unsaturated monomer including polyalkylene glycol, polyethylene glycol acrylate, polypropylene glycol acrylate, polybutylene glycol acrylate, etc., each of which is added with ethylene oxide, propylene oxide, butylene oxide, etc., are added. Various materials can be used. In this case, a material in which ethylene oxide, propylene oxide, butylene oxide and the like are added in various amounts may be used. As an example, NOF brand name BLEMMER PE-90, BLEMMER PE-200, BLEMMER PE-350, BLEMMER PP-1000, BLEMMER PP-500, BLEMMER PP-800, BLEMMER 50PEP-300, BLEMMER 70PEP-350B, BLEMMER 55PET-800 , BLEMMER 10PPB-500B, BLEMMER AE-90, BLEMMER AE-200, BLEMMER AE-400, BLEMMER AP-150, BLEMMER AP-400, BLEMMER AP-550 and the like.
유화제는 음이온계 유화제, 비이온계, 반응성 유화제 등을 단독 또는 혼합하여 사용할 수 있다. 음이온계 유화제로는 나트륨 도데실설페이트, 나트륨 도데실벤젠설페이트, 나트륨 올레익설페이트, 칼륨 도데실설페이트, 디옥틸나트륨 설퍼석시네이트, 나트륨 스테아레이트, 칼륨 스테아레이트 및 폴리옥시에틸렌 알킬페닐에테르 암모늄설페이드 등이 있다. 비이온 유화제로는 폴리옥시에틸렌 알킬에테르, 폴리옥시에틸렌 알킬페닐에테르, 폴리옥시에틸렌 지방산에스테르 및 폴리옥시에틸렌 폴리프로필렌 공중합체 등이 있다. 반응성 유화제는 유화제 성분에 불포화 이중결합을 지님으로서 합성되는 폴리머와 공중합을 이루도록 하는 유화제로서, 음이온성 또는 비이온성을 가질 수 있다(예를 들면, ADEKA사의 상품명 ADEKAREASOAP SE-1025A, DKS International사의 상품명 HITENOL HS-10). An emulsifier can be used individually or in mixture of an anionic emulsifier, a nonionic, a reactive emulsifier, etc. Anionic emulsifiers include sodium dodecyl sulfate, sodium dodecylbenzene sulfate, sodium oleic sulfate, potassium dodecyl sulfate, dioctyl sodium sulfosuccinate, sodium stearate, potassium stearate, and polyoxyethylene alkylphenyl ether ammonium sulfide Fading and so on. Nonionic emulsifiers include polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyethylene fatty acid esters, and polyoxyethylene polypropylene copolymers. The reactive emulsifier is an emulsifier for copolymerizing with a polymer synthesized by having an unsaturated double bond in the emulsifier component, and may have anionic or nonionic properties (for example, ADEKA brand name ADEKAREASOAP SE-1025A, DKS International company name HITENOL HS-10).
중합 개시제로는 하이드로겐 퍼옥사이드, 디이소프로필렌 하이드로 퍼옥사이드, 큐멘 하이드로 퍼옥사이드, 벤조일 퍼옥사이드, t-부틸 하이드로 퍼옥사이드, 라우로일 퍼옥사이드 등으로 이루어진 유용성 개시제, 또는 칼륨 퍼설페이트, 암모늄 퍼설페이트, 소듐 퍼설페이트 등의 수용성 개시제 중에 어느 하나 이상을 선택하여 사용할 수 있다.Polymerization initiators include oil-soluble initiators consisting of hydrogen peroxide, diisopropylene hydroperoxide, cumene hydroperoxide, benzoyl peroxide, t-butyl hydroperoxide, lauroyl peroxide, or potassium persulfate, ammonium peroxide. Any one or more of water-soluble initiators, such as sulfate and sodium persulfate, can be selected and used.
그리고 시드, 코어, 제1 쉘, 제2 쉘 형성 시 분자량 조절을 위하여 연쇄 이동제 등을 더 사용할 수 있다. 연쇄 이동제로는 다양한 물질을 사용할 수 있는데, 일례로, 메르캅토에탄올, α-메틸스티렌다이머, 메틸 메르캅토프로피오네이트 등을 사용할 수 있다. In addition, a chain transfer agent may be further used to control the molecular weight when forming the seed, the core, the first shell, and the second shell. Various materials may be used as the chain transfer agent, and for example, mercaptoethanol, α-methylstyrene dimer, methyl mercaptopropionate, and the like may be used.
또한, 상술한 단계들 각각에서 사용되는 불포화 단량체 100 중량부에 대하여 0~10 중량부로 가교 단량체를 함께 포함할 수 있다. 가교 단량체의 양이 10 중량부를 초과하면, 층간 부착성이 저하되거나, 도료의 의소성이 저하될 수 있다. 가교 단량체로서는 2개 이상의 불포화 결합을 갖는 단량체가 사용되며, 예를 들어, 디비닐 벤젠 등의 비닐 화합물, 아릴(메타)아크릴레이트, 디(메타)아릴(메타)아크릴아마이드 등의 알릴 화합물, 에틸렌글리콜디(메타)아크릴레이트, 1,3-부탄디올디(메타)아크릴레이트, 1,4-부탄디올(메타)아크릴레이트, 1,6-헥산디올(메타)아크릴레이트 등의 알킬렌디올 디(메타)아크릴레이트계 화합물 등으로부터 하나 이상 선택될 수 있다. In addition, the crosslinking monomer may be included in an amount of 0 to 10 parts by weight based on 100 parts by weight of the unsaturated monomer used in each of the above-described steps. When the amount of the crosslinking monomer exceeds 10 parts by weight, the interlayer adhesion may be lowered or the plasticity of the paint may be lowered. As a crosslinking monomer, the monomer which has 2 or more unsaturated bonds is used, For example, Allyl compounds, such as vinyl compounds, such as divinyl benzene, an aryl (meth) acrylate, and a di (meth) aryl (meth) acrylamide, and ethylene Alkylenediol di (meth), such as glycol di (meth) acrylate, 1, 3- butanediol di (meth) acrylate, 1, 4- butanediol (meth) acrylate, and 1, 6- hexanediol (meth) acrylate ) At least one selected from the group consisting of an acrylate compound and the like.
상술한 불포화 단량체, 유화제, 라디칼 중합 개시제 및 이온수를 사용하는 각 단계을 좀더 상세하게 설명한다. Each step using the above-mentioned unsaturated monomer, emulsifier, radical polymerization initiator and ionized water will be described in more detail.
먼저, 코어를 형성하는 단계에서는, 시드를 형성한 후에 시드 상에 코어를 형성한다. First, in the step of forming the core, the core is formed on the seed after forming the seed.
시드는 산 비함유 또는 산 함유 불포화 단량체, 중합 개시제, 유화제 및 이온수를 투입 반응시켜 형성하여, 산가가 200 mgKOH/g 이하일 수 있다. 산가가 200 mgKOH/g를 초과하면, 이후의 중합이 원활하게 이루어지지 않을 수 있기 때문이다. 제조된 시드의 입경은 20~200nm일 수 있는데, 이는 코어의 입경을 적절하게 하기에 적절한 크기이다. The seed is formed by input reaction of an acid-free or acid-containing unsaturated monomer, a polymerization initiator, an emulsifier, and ionized water, and an acid value may be 200 mgKOH / g or less. If the acid value exceeds 200 mgKOH / g, it is because the subsequent polymerization may not be performed smoothly. The particle size of the prepared seed may be 20 ~ 200nm, which is an appropriate size to appropriately size the particle diameter of the core.
코어는 산 비함유 또는 산 함유 불포화 단량체, 중합 개시제, 유화제 및 이온수를 투입 반응시켜 형성되어, 산가가 30 mgKOH/g 이하일 수 있다. 산가가 30 mgKOH/g를 초과하면, 중합이 원활하게 이루어지지 않아 시드 상에 코어가 원활하게 형성되지 않을 수 있기 때문이다. 이때, 산가가 1~30 mgKOH/g일 수 있다. 제조된 코어의 입경은 25~250nm일 수 있는데, 이는 코어 상에 제1 쉘 및 제2 쉘이 형성된 마이크로겔이 수용성 도료 조성물에 분산되어 적절한 점도 및 의소성을 부여하기에 적절한 크기이다. The core is formed by input reaction of an acid-free or acid-containing unsaturated monomer, a polymerization initiator, an emulsifier and ionized water, and an acid value may be 30 mgKOH / g or less. This is because if the acid value exceeds 30 mgKOH / g, the polymerization may not be performed smoothly and the core may not be smoothly formed on the seed. At this time, the acid value may be 1 ~ 30 mgKOH / g. The particle diameter of the prepared core may be 25-250 nm, which is an appropriate size to disperse the microgel in which the first shell and the second shell are formed on the core in the water-soluble coating composition to impart proper viscosity and plasticity.
코어를 형성하는 단계에서는, 마이크로겔의 제조에 사용된 총 불포화 단량체 100 중량부에 대하여, 35~60 중량부의 불포화 단량체를 투입하여 사용할 수 있다. 코어를 형성하는 단계에서 불포화 단량체를 35 미만으로 투입하면, 코어의 크기가 작아져서 제1 쉘 및 제2 쉘 형성에 적합하지 않을 수 있다. 불포화 단량체를 60 중량부를 초과하여 투입하면, 코어의 크기가 지나치게 커지고 제1 쉘 및 제2 쉘의 두께가 얇아져 적절한 점도 및 의소성을 가지기 어려울 수 있다. In the step of forming the core, 35 to 60 parts by weight of the unsaturated monomer can be added to 100 parts by weight of the total unsaturated monomer used in the preparation of the microgel. If the unsaturated monomer is added below 35 in the step of forming the core, the size of the core may become small and may not be suitable for forming the first shell and the second shell. If more than 60 parts by weight of the unsaturated monomer is added, the core may be too large and the thickness of the first shell and the second shell may be thin, making it difficult to have adequate viscosity and plasticity.
그리고 코어 형성 시 투입되는 불포화 단량체 100 중량부에 대하여 중합 개시제가 1~15 중량부만큼 투입되고, 유화제가 1~25 중량부만큼 투입되며, 이온수가 60~98 중량부만큼 투입될 수 있다. 이는 합성에 필요한 적절한 범위의 일례로 제시한 것일뿐, 본 발명이 이에 한정되는 것은 아니다.The polymerization initiator is added by 1 to 15 parts by weight, the emulsifier is added by 1 to 25 parts by weight, and the ionized water may be added by 60 to 98 parts by weight based on 100 parts by weight of the unsaturated monomer to be added during core formation. This is only an example of a suitable range required for synthesis, the present invention is not limited thereto.
이어서, 제1 쉘을 형성하는 단계에서는, 산 비함유 또는 산 함유 불포화 단량체, 수산화기 비함유 또는 수산화기 함유 불포화 단량체, 중합 개시제, 유화제 및 이온수를 투입 반응시켜 제1 쉘을 형성한다. 제1 쉘을 형성하는 단계 이후에 측정된 산가가 100 mgKOH/g 이하이고 수산화기가가 80 mgKOH/g 이하일 수 있다. 이때, 산가가 1~100 mgKOH/g 이하이고 수산화기가가 0.01~80 mgKOH/g 이하일 수 있다Subsequently, in the step of forming the first shell, an acid-free or acid-containing unsaturated monomer, a hydroxyl-free or hydroxyl-containing unsaturated monomer, a polymerization initiator, an emulsifier and ionized water are charged to form a first shell. The acid value measured after the forming of the first shell may be 100 mgKOH / g or less and the hydroxyl value may be 80 mgKOH / g or less. At this time, the acid value may be 1 ~ 100 mgKOH / g or less and the hydroxyl value is 0.01 ~ 80 mgKOH / g or less.
제1 쉘을 형성하는 단계에서는, 마이크로겔의 제조에 사용된 총 불포화 단량체 100 중량부에 대하여, 20~40 중량부의 불포화 단량체를 투입하여 사용할 수 있다. 제1 쉘을 형성하는 단계에서 불포화 단량체를 20 미만으로 투입하면, 제1 쉘의 두께가 얇아져 제1 쉘 형성에 의한 효과를 얻기에 어려움이 있다. 불포화 단량체를 40 중량부를 초과하여 투입하면, 제1 쉘의 두께가 필요한 것보다 두꺼워져 재료에 의한 비용이 불필요하게 증가될 수 있다. In the step of forming the first shell, 20 to 40 parts by weight of the unsaturated monomer may be added to and used with respect to 100 parts by weight of the total unsaturated monomer used in the preparation of the microgel. When the unsaturated monomer is added to less than 20 in the step of forming the first shell, the thickness of the first shell becomes thin and it is difficult to obtain the effect by forming the first shell. If more than 40 parts by weight of unsaturated monomer is added, the thickness of the first shell may be thicker than necessary, which may unnecessarily increase the cost of the material.
그리고 제1 쉘 형성 시 투입되는 불포화 단량체 100 중량부에 대하여 중합 개시제가 1~15 중량부만큼 투입되고, 유화제가 1~25 중량부만큼 투입되며, 이온수가 60~98 중량부만큼 투입될 수 있다. 이는 합성에 필요한 적절한 범위의 일례로 제시한 것일뿐, 본 발명이 이에 한정되는 것은 아니다. The polymerization initiator is added by 1 to 15 parts by weight, the emulsifier is added by 1 to 25 parts by weight, and the ionized water may be added by 60 to 98 parts by weight with respect to 100 parts by weight of the unsaturated monomer to be added at the time of forming the first shell. . This is only an example of a suitable range required for synthesis, the present invention is not limited thereto.
이어서, 제2 쉘을 형성하는 단계에서는, 산 함유 불포화 단량체, 폴리알킬렌글리콜을 구비하는 수산화기 함유 불포화 단량체, 중합 개시제, 유화제 및 이온수를 투입 반응시켜 제2 쉘을 형성한다. Subsequently, in the step of forming the second shell, an acid-containing unsaturated monomer, a hydroxyl group-containing unsaturated monomer having polyalkylene glycol, a polymerization initiator, an emulsifier, and ionized water are added and reacted to form a second shell.
제2 쉘을 형성하는 단계에서는, 마이크로겔의 제조에 사용된 총 불포화 단량체 100 중량부에 대하여, 10~30 중량부의 불포화 단량체를 투입하여 사용할 수 있다. 제1 쉘을 형성하는 단계에서 불포화 단량체를 10 미만으로 투입하면, 제1 쉘의 두께가 얇아져 제2 쉘 형성에 의한 효과를 얻기에 어려움이 있다. 불포화 단량체를 30 중량부를 초과하여 투입하면, 산가가 높은 제2 쉘의 두께가 필요한 것보다 두꺼워져 재료에 의한 비용이 불필요하게 증가될 수 있다. In the forming of the second shell, 10 to 30 parts by weight of the unsaturated monomer may be added to and used with respect to 100 parts by weight of the total unsaturated monomer used in the preparation of the microgel. When the unsaturated monomer is added to less than 10 in the step of forming the first shell, the thickness of the first shell becomes thin and it is difficult to obtain the effect by forming the second shell. If more than 30 parts by weight of the unsaturated monomer is added, the thickness of the second shell having a high acid value becomes thicker than necessary, which may unnecessarily increase the cost of the material.
그리고 제2 쉘 형성 시 투입되는 불포화 단량체 100 중량부에 대하여 중합 개시제가 1~15 중량부만큼 투입되고, 유화제가 1~25 중량부만큼 투입되며, 이온수가 60~98 중량부만큼 투입될 수 있다. 이는 합성에 필요한 적절한 범위의 일례로 제시한 것일뿐, 본 발명이 이에 한정되는 것은 아니다.The polymerization initiator is added by 1 to 15 parts by weight, the emulsifier is added by 1 to 25 parts by weight, and the ionized water may be added by 60 to 98 parts by weight with respect to 100 parts by weight of the unsaturated monomer to be added during the formation of the second shell. . This is only an example of a suitable range required for synthesis, the present invention is not limited thereto.
이렇게 제조된 마이크로겔은 염기로 이루어진 중화제로 중화될 수 있다. 이러한 중화제로는 암모니아, 수산화나트륨, 수산화 칼륨 등의 무기 염기 및 무기 염기, 디메틸 에탄올 아민, 트리에틸 아민과 같은 1~3급 아민 등을 1종 또는 2종 이상 혼합하여 사용할 수 있다. The microgel thus prepared may be neutralized with a neutralizing agent consisting of a base. As such a neutralizer, inorganic bases such as ammonia, sodium hydroxide, potassium hydroxide, and inorganic bases, primary or tertiary amines such as dimethyl ethanol amine, triethyl amine, and the like can be used.
이렇게 제조된 마이크로겔은, 코어, 코어 상에 형성된 제1 쉘, 제1 쉘 상에 형성된 제2 쉘을 포함하고, 제2 쉘은 산 함유 불포화 단량체와, 폴리알킬렌글리콜을 구비하는 수산화기 함유 불포화 단량체를 반응시켜 형성된다. 이에 의하여 제조된 마이크로겔의 산가가 40~200 mgKOH/g 이고 수산화기가가 1~80 mgKOH/g 일 수 있다.The microgel thus prepared comprises a core, a first shell formed on the core, a second shell formed on the first shell, and the second shell includes a hydroxyl group-containing unsaturated monomer having an acid-containing unsaturated monomer and a polyalkylene glycol. It is formed by reacting monomers. The acid value of the prepared microgel may be 40 ~ 200 mgKOH / g and the hydroxyl value is 1 ~ 80 mgKOH / g.
마이크로겔의 산이 중화제에 의하여 중화되면, 인접 입자와의 상호 작용에 의하여 루스(loose) 네트워크가 형성되어, 낮은 전단 속도에서는 높은 점도를 가질 수 있다. 높은 전단 속도에서는 이 구조가 파괴되어 점도가 낮아졌다가 낮은 전단 속도에서는 점도가 다시 높아진다. 이에 따라 의소성을 가질 수 있게 된다. When the acid of the microgel is neutralized by the neutralizing agent, a loose network is formed by interaction with adjacent particles, which may have a high viscosity at low shear rates. At high shear rates, this structure breaks down, resulting in a lower viscosity, and at low shear rates the viscosity is again high. Accordingly, it is possible to have plasticity.
이때, 본 발명에서는 제1 쉘 형성 후의 산가보다 제2 쉘 형성 후의 산가를 높게 하여 단계적으로 산가를 높여, 상대적으로 높은 산가의 마이크로겔을 안정적으로 중합 형성할 수 있다. 따라서, 한 층의 쉘 만을 구비한 경우보다 높은 산가를 구현할 수 있어, 인접 입자와의 상호 작용을 크게 할 수 있는 바, 의소성 특성을 좀더 향상할 수 있다. 또한, 본 발명에서는 제2 쉘을 형성하는 단계에서 폴리알킬렌글리콜을 구비하는 수산화기 함유 불포화 단량체를 사용하므로, 인접 인자와의 상호 작용을 좀더 극대화할 수 있는 효과가 있다. In this case, in the present invention, the acid value after the second shell is made higher than the acid value after the first shell is formed, thereby increasing the acid value step by step, thereby stably polymerizing and forming a relatively high acid value microgel. Therefore, a higher acid value can be realized than when only one layer of shell is provided, and the interaction with adjacent particles can be increased, thereby improving the plasticity characteristics. In addition, in the present invention, since the hydroxyl group-containing unsaturated monomer having polyalkylene glycol is used in forming the second shell, there is an effect of maximizing the interaction with adjacent factors.
이에 따라, 저장 중에는 입자의 안정성을 향상할 수 있으며, 도막 형성 중에는 도료 미립화가 잘 이루어질 수 있도록 하고, 도착 후의 낮은 전단 속도에서는 점도가 높아져 도막의 흐름 등을 효과적으로 제어할 수 있다. 즉, 도장 가능한 온도 및 습도 영역(application window)를 최대화할 수 있으며, 도장 단계에서의 레오로지를 최적화할 수 있다. Accordingly, the stability of the particles can be improved during storage, the paint atomization can be well achieved during the coating film formation, and the viscosity is increased at the low shear rate after arrival to effectively control the flow of the coating film and the like. That is, the paintable temperature and humidity application window can be maximized and the rheology in the paint step can be optimized.
이하에서는 본 발명의 다른 예에 따른 마이크로겔의 제조 방법에 대하여 설명한다. 본 예는 상술한 마이크로겔의 제조 방법과 유사하므로, 동일 또는 극히 유사한 부분(특히, 사용 가능한 물질, 중량부 등)에 대해서는 상세한 설명을 생략하고 서로 다른 부분을 상세하게 설명한다. Hereinafter, a method for preparing a microgel according to another example of the present invention will be described. Since this example is similar to the method for preparing the microgel described above, the same or extremely similar parts (particularly, usable materials, parts by weight, etc.) will not be described in detail and different parts will be described in detail.
코어를 준비하는 단계에서는, 폴리알킬렌글리콜을 구비하는 수산화기 비함유 또는 수산화기 함유 불포화 단량체, 산 함유 불포화 단량체, 중합 개시제, 유화제 및 이온수를 투입 반응시켜 코어를 형성한다. 이에 의하여 얻어진 코어는 산가가 50 mgKOH/g 이하이고, 수산화기가가 50 mgKOH/g 이하이다. 이때, 산가가 1~50 mgKOH/g 이고 수산화기가가 0.01~50 mgKOH/g 일 수 있다. In preparing the core, a core is formed by adding a hydroxyl-free or hydroxyl-containing unsaturated monomer, an acid-containing unsaturated monomer, a polymerization initiator, an emulsifier and ionized water with polyalkylene glycol. The core obtained by this has an acid value of 50 mgKOH / g or less, and a hydroxyl value of 50 mgKOH / g or less. In this case, the acid value may be 1-50 mgKOH / g and the hydroxyl value may be 0.01-50 mgKOH / g.
제1 쉘을 형성하는 단계에서는, 중화제를 첨가하고, 산 비함유 또는 산 함유 불포화 단량체, 중합 개시제, 유화제 및 이온수를 투입 반응시켜 상역전을 유도하면서 제1 쉘을 형성한다. 제1 쉘을 형성하는 단계 이후에 측정된 산가는 30 mmKOH/g 이하일 수 있고, 1~30 mmKOH/g일 수 있다. In the step of forming the first shell, a neutralizing agent is added, and an acid-free or acid-containing unsaturated monomer, a polymerization initiator, an emulsifier, and ionized water are added and reacted to form a first shell while inducing phase inversion. The acid value measured after the step of forming the first shell may be 30 mmKOH / g or less, and may be 1-30 mmKOH / g.
이때, 중화제는 코어를 준비하는 단계의 산의 양에 0.3~1.5 당량만큼 투입할 수 있다. 중화제가 0.3 당량 미만이면, 중화 시 수용화 정도가 작아 후속되는 쉘 공정에서 유화제의 역할을 못하는 문제가 있다. 중화제가 1.5 당량을 초과하면 완전 수용화되어 후속되는 쉘 공정에서 유화제의 역할을 못하게 될 수 있다. At this time, the neutralizing agent may be added to the amount of acid in the step of preparing the core by 0.3 to 1.5 equivalents. If the neutralizing agent is less than 0.3 equivalent, there is a problem that the degree of solubility during neutralization does not play a role of the emulsifier in the subsequent shell process. If the neutralizing agent exceeds 1.5 equivalents, it may be fully solubilized that it will not be able to act as an emulsifier in the subsequent shell process.
제2 쉘을 형성하는 단계에서는, 산 함유 불포화 단량체와 폴리알킬렌글리콜을 구비하는 수산화기 함유 불포화 단량체, 중합 개시제, 유화제 및 이온수를 투입 반응시켜 형성한다. 이렇게 제조된 마이크로겔의 산가가 40~200 mgKOH/g 이고 수산화기가가 1~80 mgKOH/g 일 수 있다.In the forming of the second shell, the acid-containing unsaturated monomer and the hydroxyl group-containing unsaturated monomer including polyalkylene glycol, a polymerization initiator, an emulsifier, and ionized water are formed by input reaction. The acid value of the thus prepared microgel may be 40 ~ 200 mgKOH / g and the hydroxyl value is 1 ~ 80 mgKOH / g.
이와 같은 마이크로겔은 우수한 의소성 특성을 가질 수 있다. 이에 따라 도장 가능한 온도 및 습도 영역를 최대화할 수 있으며, 도장 단계에서의 레오로지를 최적화할 수 있다. Such microgels may have excellent plasticity properties. This maximizes the range of paintable temperature and humidity and optimizes rheology during the painting phase.
상술한 바와 같은 마이크로 겔을 포함하는 수용성 도료 조성물은, 마이크로겔에 의하여 의소성을 극대화할 수 있으므로, 도막의 밀도를 높힐수 있다. 이에 의하여 내오염성, 치밀성, 내수성, 내알카리성 방청성, 부착력, 외관, 광택, 플립 플랍성 등의 특성을 향상할 수 있다. 이러한 수용성 도료 조성물을 좀더 상세하게 설명한다. The water-soluble coating composition containing the microgel as mentioned above can maximize plasticity by a microgel, and can raise the density of a coating film. As a result, properties such as stain resistance, compactness, water resistance, alkali corrosion resistance, adhesion, appearance, gloss, and flip flop can be improved. This water-soluble coating composition will be described in more detail.
수용성 도료 조성물은, 마이크로겔 10~30 중량%, 보조 수지 5~15 중량%, 아미노 수지 1~10 중량%, 조용제 5~15 중량%, 이펙트 안료 1~20 중량%, 착색 안료 0~20 중량%, 증점제 0~10 중량%, 소포제 1~5 중량% 및 잔량의 기타 첨가제로 이루어질 수 있다. Water-soluble coating composition is 10-30 weight% of microgels, 5-15 weight% of auxiliary resins, 1-10 weight% of amino resins, 5-15 weight% of cosolvents, 1-20 weight% of effect pigments, 0-20 weight of colored pigments %, Thickener 0-10% by weight, antifoam 1-5% by weight and the balance of other additives.
보조 수지는 도막 형성, 소지 보호, 외관 향상 등의 역할을 하며, 폴리우레탄 디스퍼전 또는 폴리에스테르 등의 다양한 물질을 사용할 수 있다. The auxiliary resin plays a role of forming a coating film, protecting the body, improving the appearance, and the like, and various materials such as polyurethane dispersion or polyester can be used.
아미노 수지는 주수지와의 경화 반응을 통하여 도막의 네트워크를 형성하는 역할을 하며, 메톡시 멜라민, 부톡시 멜라민, 아미노기를 함유하는 멜라민 등을 사용할 수 있다. The amino resin serves to form a network of the coating film through a curing reaction with the main resin, and methoxy melamine, butoxy melamine, melamine containing an amino group, and the like can be used.
조용제는 도막의 평활성 및 도료의 저장 안정성을 향상하고, 최저 도막 형성 온도를 낮추어 주며, 도장 작업 시 용제의 휘발에 기여한다. 조용제는, 프로필렌 글리콜, N-메틸-2-피롤리돈, n-프로필알콜, n-부탄올, 프로필렌글리콜 모노메틸에테르, 부틸 글리콜, 헥실 글리콜, 2-에틸헥실알콜, 부틸 카르비톨 등을 적어도 하나 이상 포함할 수 있다. The co-solvent improves the smoothness of the coating film and the storage stability of the paint, lowers the minimum film forming temperature, and contributes to the volatilization of the solvent during painting. The co-solvent includes at least one of propylene glycol, N-methyl-2-pyrrolidone, n-propyl alcohol, n-butanol, propylene glycol monomethyl ether, butyl glycol, hexyl glycol, 2-ethylhexyl alcohol, butyl carbitol and the like. It may include more.
이펙트 안료는 도막에 메탈릭 효과를 부여하기 위한 것으로, 수성화 처리된 알루미늄 플레이크나 마이카 안료 등을 단독 또는 혼합하여 사용할 수 있다. 이때, 이펙트 안료는 수용성 도료 조성물에 대하여 1~20 중량%, 바람직하게는 1~15 중량%만큼 포함될 수 있다. The effect pigment is for imparting a metallic effect to the coating film, and may be used alone or in combination with an aqueous flake, aluminum flake, mica pigment, and the like. At this time, the effect pigment may be included in 1 to 20% by weight, preferably 1 to 15% by weight based on the water-soluble paint composition.
착색 안료는 도료 조성물에서 도막 형성 물질과 조합하여 색상 및 은폐 효과를 부여하는 것이다. 일반적으로 이펙트 안료와 투명 또는 반투명한 착색 안료들이 조합되어 사용된다. 착색 안료로는 옥사이드계의 무기 안료에, 아조(azo), 배트(vat) 안료를 함유하는 폴리사이클릭계의 유기 안료, 안트라퀴논계의 유기 안료 등이 단독 또는 혼합되어 폭넓게 적용될 수 있다. 순수한 메탈릭 색상의 경우는 착색 안료를 전혀 함유하지 않을 수도 있다. Colored pigments are those which, in combination with coating-forming materials in coating compositions, impart color and concealment effects. Generally, effect pigments and transparent or translucent colored pigments are used in combination. As the coloring pigment, an azo inorganic pigment, a polycyclic organic pigment containing an vat pigment, an anthraquinone organic pigment, or the like can be widely applied. Pure metallic colors may contain no colored pigments.
증점제는 수용성 도료 조성물을 흐름성을 방지하고, 도장 작업성 및 도막 조도에 기여하기 위해 사용한다. 증점제로는 아크릴계 증점제와 우레탄계 증점제, 용융 실리카, 셀루로즈계 증점제, 벤톤계 증점제 등을 단독 또는 혼합으로 사용할 수 있다. Thickeners are used to prevent flowability and to contribute to paintability and coating roughness. As the thickener, an acrylic thickener, a urethane thickener, fused silica, a cellulose thickener, a benton thickener and the like can be used alone or in combination.
소포제는 도료 조성물의 제조 시, 도장 작업 시 및 소지 도착 후 등의 제반 공정에서 발생하는 기포의 발생을 억제하거나, 발생한 기포를 신속히 제거하기 위하여 사용한다. 소포제로는 플루오린 모디파이드 실록산계, 폴리실록산 에멀젼, 오가닉 모디파이드 실록산계, 하이드로포빅 실리카, 미네랄오일 등을 단독 또는 혼합으로 사용할 수 있다. Antifoaming agent is used in order to suppress the generation of bubbles generated in various processes such as at the time of production of coating composition, at the time of painting work and after the arrival of the paper, or to quickly remove the bubbles generated. As the antifoaming agent, fluorine modified siloxane based, polysiloxane emulsion, organic modified siloxane based, hydrophobic silica, mineral oil and the like can be used alone or in combination.
이하 본 발명을 하기 제조예 및 비교예에 의해 보다 구체적으로 설명한다. 그러나 이들 제조예는 본 발명에 대한 이해를 돕기 위한 것일 뿐 이들에 의해 본 발명이 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail by the following Preparation Examples and Comparative Examples. However, these preparation examples are only for helping understanding of the present invention, and the present invention is not limited thereto.
하기 제조예 및 비교예에서 시드, 코어, 제1 단계 쉘 및 제2 단계 쉘을 형성할 때 사용한 단량체 및 사용 중량(g)을 하기 표 1에 정리하였다. The monomers and use weights (g) used to form the seed, core, first step shell and second step shell in the following Preparation Examples and Comparative Examples are summarized in Table 1 below.
표 1
단량체 종류 단량체 1 단량체 2 단량체 3 단량체 3-1 단량체 4 단량체 5
MA 2     20 5 15
EA   50 10 50 20 20
BA 2 20 35 10    
MMA 1 30   15    
2-EHA     20      
SM   10 30      
MAA       5 25 25
2-HEMA         17 20
1,6-HDDA   5 5      
BLEMMER AE-400         13  
Table 1
Monomer type Monomer 1 Monomer 2 Monomer 3 Monomer 3-1 Monomer 4 Monomer 5
MA 2 20 5 15
EA 50 10 50 20 20
BA 2 20 35 10
MMA One 30 15
2-EHA 20
SM 10 30
MAA 5 25 25
2-HEMA 17 20
1,6-HDDA 5 5
BLEMMER AE-400 13
표 1에서의 약어는 다음과 같다.Abbreviations in Table 1 are as follows.
DIW: 탈이온수DIW: Deionized Water
CO-436: 로디아(Rhodia)사 제품, 알킬페녹시폴리(에틸렌 옥시 5몰) 에탄올의 설페이트화된 암모늄염CO-436: Sulfated ammonium salt of alkylphenoxypoly (5 moles of ethylene oxy) ethanol, manufactured by Rhodia
APS: 암모늄퍼설페이트APS: Ammonium Persulfate
MA: 메틸아크릴레이트MA: methyl acrylate
EA: 에틸아크릴레이트 EA: ethyl acrylate
BA: 부틸아크릴레이트BA: Butylacrylate
MMA: 메틸메타크릴레이트MMA: Methyl methacrylate
2-EHA: 에틸헥실아크릴레이트2-EHA: ethylhexyl acrylate
SM: 스티렌모노머SM: Styrene Monomer
MAA: 메타크릴산MAA: methacrylic acid
2-HEMA: 2-하이드록시에틸 메타크릴레이트 2-HEMA: 2-hydroxyethyl methacrylate
BLEMMER AE-400: 폴리에틸렌글리콜 아크릴레이트(에틸렌 옥사이드 10몰 부가)BLEMMER AE-400: Polyethylene glycol acrylate (10 mol addition of ethylene oxide)
1,6-HDDA: 1,6-헥산디올디아크릴레이트1,6-HDDA: 1,6-hexanedioldiacrylate
DMEA: 디메틸 에탄올아민DMEA: Dimethyl Ethanolamine
제조예 1Preparation Example 1
온도계가 장치된 5리터의 4구 플라스크에 이온수로 DIW 140g, 유화제로 CO-436 1g, 단량체로 표 1의 단량체 1을 투입하고 온도를 80℃로 승온하였다. 80℃로 유지하면서 질소를 5분간 사입하여 반응부를 질소분위기로 한 후 질소를 제거하였다. 중합 개시제로 APS 3 g을 DIW 10 g에 녹인 후 반응기에 사입하고 30분간 숙성하여 시드를 형성하였다. In a 5-liter four-necked flask equipped with a thermometer, DIW 140g with ionized water, CO-436 1g with an emulsifier, and monomer 1 of Table 1 were added as monomers, and the temperature was raised to 80 ° C. Nitrogen was injected for 5 minutes while maintaining the temperature at 80 ° C. to make the reaction part nitrogen atmosphere, and then nitrogen was removed. As a polymerization initiator, 3 g of APS was dissolved in 10 g of DIW, and then charged into a reactor and aged for 30 minutes to form a seed.
표 1의 단량체 2와 CO-436 2.5g을 DIW 100g에 혼합하여 제조한 프리에멀젼과 APS 0.5g을 DIW 50g에 녹인 중합 개시제 용액을 동시에 1시간 동안 적하한 후 1시간 유지하여 코어를 형성하였다. A pre-emulsion prepared by mixing monomer 2 of Table 1 and 2.5 g of CO-436 in 100 g of DIW and a polymerization initiator solution in which 0.5 g of APS was dissolved in 50 g of DIW was added dropwise at the same time for 1 hour and then maintained for 1 hour to form a core.
표 1의 단량체 3과 CO-436 2.5g을 DIW 100g에 혼합하여 제조한 프리에멀젼과 APS 0.5g을 DIW 50g에 녹인 개시제 용액을 1시간 동안 동시에 적하한 후 1시간 숙성하여 제1 쉘을 형성하였다. A pre-emulsion prepared by mixing monomer 3 of Table 1 and 2.5 g of CO-436 in 100 g of DIW and an initiator solution of 0.5 g of APS dissolved in 50 g of DIW was added dropwise at the same time for 1 hour and then aged for 1 hour to form a first shell. .
여기에 표 1의 단량체 4와 CO-436 5 g을 DIW 200 g에 혼합하여 제조한 산가 81, 수산기가 60의 프리에멀젼과 APS 1 g을 DIW 50 g 에 녹인 개시제 용액을 1시간 동안 동시에 적하한 후 1시간 숙성하여 제2 쉘을 형성하였다. Here, an acid value 81 prepared by mixing monomer 4 of Table 1 and 5 g of CO-436 in 200 g of DIW, a pre-emulsion of hydroxyl value 60, and an initiator solution having 1 g of APS dissolved in 50 g of DIW were added dropwise simultaneously for 1 hour. After aging for 1 hour, a second shell was formed.
반응기를 40℃로 냉각하고 중화제인 DMEA 20g을 DIW 40g에 녹인 수용액을 적하하여 중화하였다. 200 메쉬필터로 여과하여 응집물을 제거하고 포장 후 1일간 방치하였다. The reactor was cooled to 40 ° C. and neutralized by dropwise adding an aqueous solution of 20 g of DMEA, neutralized in 40 g of DIW. Filtered with a 200 mesh filter to remove the aggregates and left for 1 day after packaging.
제조예 2Preparation Example 2
온도계가 장치된 5리터의 4구 플라스크에 DIW 140g, CO-436 0.5g, 단량체로 표 1의 단량체 1을 투입하고 온도를 80℃로 승온하였다. 80℃로 유지하면서 질소를 5분간 사입하여 반응부를 질소분위기로 한 후 질소를 제거하였다. In a 5-liter four-necked flask equipped with a thermometer, DIW 140g, CO-436 0.5g, and monomer 1 of Table 1 were added as monomers, and the temperature was raised to 80 ° C. Nitrogen was injected for 5 minutes while maintaining the temperature at 80 ° C. to make the reaction part nitrogen atmosphere, and then nitrogen was removed.
여기에 표 1의 단량체 3-1과 CO-436 1.25g을 DIW 100g에 혼합하여 제조한 산가 32.6의 프리에멀젼과 APS 0.5g을 DIW 50g에 녹인 개시제 용액을 동시에 1시간 동안 적하한 후 1시간 유지하여 코어를 형성하였다. The pre-emulsion of acid value 32.6 prepared by mixing monomer 3-1 and 1.25 g of CO-436 in Table 1 to 100 g of DIW and an initiator solution of 0.5 g of APS dissolved in 50 g of DIW were added dropwise at the same time for 1 hour and then maintained for 1 hour. To form a core.
여기에 DMEA 20g을 DIW 40g에 녹인 수용액을 적하하여 중화하고 10분간 유지한 후, 표 1의 단량체 2와 CO-436 2.5g을 DIW 100g에 혼합하여 제조한 프리에멀젼과 APS 0.5g을 DIW 50 g에 녹인 중합 개시제 용액을 1시간 동안 동시에 적하한 후 1시간 숙성하여 역상 코어 및 제1 쉘을 형성하였다. After neutralizing by dropping an aqueous solution of 20 g of DMEA dissolved in 40 g of DIW, and maintaining the mixture for 10 minutes, the monomer 2 and CO-436 2.5 g of Table 1 were mixed with 100 g of DIW, and 50 g of APS 0.5 g of DIW was added thereto. The polymerization initiator solution dissolved in was added dropwise at the same time for 1 hour and then aged for 1 hour to form a reverse phase core and a first shell.
여기에 표 1의 단량체 4와 CO-436 5g을 DIW 200g에 혼합하여 제조한 산가 81 mgKOH/g, 수산기가 60 mgKOH/g의 프리에멀젼과 APS 1g을 DIW 50g 에 녹인 중합 개시제 용액을 1시간 동안 동시에 적하한 후 1시간 숙성하여 제2 쉘을 형성하였다. Here, a pre-emulsion of 81 mgKOH / g, a hydroxyl value of 60 mgKOH / g, and a polymerization initiator solution in which 1 g of APS was dissolved in 50 g of DIW prepared by mixing monomer 4 and 5 g of CO-436 in 200 g of DIW for 1 hour. At the same time, after dropping, the mixture was aged for 1 hour to form a second shell.
반응기를 40℃로 냉각하고 200 메쉬필터로 여과하여 응집물을 제거하고 포장 후 1일간 방치하였다. The reactor was cooled to 40 ° C. and filtered through a 200 mesh filter to remove aggregates and left for 1 day after packing.
비교예 1Comparative Example 1
코어를 형성하는 단계에서 표 1의 단량체 2, 3을 사용하고, 제1 쉘을 형성하는 단계에서 표 1의 단량체 4를 사용하며, 제 2쉘을 형성하지 않았다는 점을 제외하고는, 제조예 1과 동일한 방법에 의하여 에멀젼을 제조하였다. Preparation Example 1, except that monomers 2 and 3 of Table 1 were used in forming the core, and monomers 4 of Table 1 were used in the formation of the first shell, and a second shell was not formed. An emulsion was prepared by the same method as described above.
비교예 2Comparative Example 2
제1 쉘을 형성하는 단계에서 표 1의 단량체 3-2을 사용하고, 제2 쉘을 형성하는 단계에서 표 1의 단량체 5를 사용하였다는 점을 제외하고는, 제조예 1과 동일한 방법에 의하여 에멀젼을 제조하였다. By the same method as Preparation Example 1, except that monomer 3-2 of Table 1 was used in forming the first shell and monomer 5 of Table 1 was used in forming the second shell. An emulsion was prepared.
제조예 1 및 2, 비교예 1 및 2에 의해 제조된 최종 에멀젼의 고형분 함량, 산가, 수산기가, pH, 입자 크기 및 점도를 측정하여 하기 표 2에 나타내었다. 여기서, 입자 크기는 말번(Malvern) 사의 오토사이저 Lo-C 모델(Autosizeer Lo-C Model) 레이저 광산란 분석기를 이용하여 측정되었다. 점도는 Haake사의 RS-100 모델의 600mm 콘-플레이트(cone-plate)법을 이용하여 CS 모드에서 측정하였다. 이하에서도 입자 크기 및 점도의 측정 방법은 동일하였다.The solids content, acid value and hydroxyl value of the final emulsions prepared in Preparation Examples 1 and 2 and Comparative Examples 1 and 2 were measured, and the pH, particle size and viscosity were measured and shown in Table 2 below. Here, particle size was measured using an Autosizer Lo-C Model laser light scattering analyzer from Malvern. Viscosity was measured in CS mode using a 600 mm cone-plate method of the Haake RS-100 model. The measurement method of particle size and viscosity was the same below.
표 2
제조예 1 제조예 2 비교예 1 비교예 2
고형분[%] 35 35 35 35
산가[mgKOH/g] 42 50 42 42
수산기가[mgKOH/g] 31 31 31 31
pH 8.1 7.8 8.1 8.1
입자 크기[nm] 142 155 125 138
점도[cps] 285 303 185 230
TABLE 2
Preparation Example 1 Preparation Example 2 Comparative Example 1 Comparative Example 2
Solid content [%] 35 35 35 35
Acid value [mgKOH / g] 42 50 42 42
Hydroxyl value [mgKOH / g] 31 31 31 31
pH 8.1 7.8 8.1 8.1
Particle Size [nm] 142 155 125 138
Viscosity [cps] 285 303 185 230
표 2를 참조하면, 제조예 1 및 2에 따른 경우의 점도가 비교예 1 및 2에 따른 경우의 점도보다 매우 우수한 것을 알 수 있다. 이때, 제조예 2에 따르면 제조예 1에서보다 우수한 점도를 가질 수 있음을 알 수 있다. Referring to Table 2, it can be seen that the viscosity in the case according to Preparation Examples 1 and 2 is much superior to the viscosity in the case according to Comparative Examples 1 and 2. At this time, according to Preparation Example 2 it can be seen that it can have a superior viscosity than in Preparation Example 1.
실험예 1 및 2, 그리고 비교실험예 1 및 2Experimental Examples 1 and 2, and Comparative Experimental Examples 1 and 2
제조예 1 및 2, 그리고 비교예 1 및 2에 따라 제조된 마이크로겔과 다른 성분들을 하기 표 3의 조성비로 혼합하여 실험예 1 및 2, 그리고 비교실험예 1 및 2에 따른 수용성 도료 조성물을 각기 제조하였다. Preparation Examples 1 and 2, and microgels prepared according to Comparative Examples 1 and 2 and other components were mixed in the composition ratios of Table 3 below to prepare the water-soluble coating compositions according to Experimental Examples 1 and 2 and Comparative Experimental Examples 1 and 2 Prepared.
표 3
수용성 도료 조성물 성분 중량비
마이크로겔 20
보조수지 12
증류수 25
조용제 12
아미노 수지 6
첨가제 혼합물 4
소포제 3
중화제 3
증점제 6
알루미늄 페이스트 6
착색 안료 페이스트 3
100
TABLE 3
Water Soluble Coating Composition Weight ratio
Microgel 20
Auxiliary resin 12
Distilled water 25
Solvent 12
Amino resin 6
Additive mixture 4
Antifoam 3
corrector 3
Thickener 6
Aluminum paste 6
Coloring pigment paste 3
system 100
상기 제조된 실험예 1 및 2, 비교실험예 1 및 2에 대하여, 저온 고습 도장 시(온도 20℃, 습도 80%)의 외관을 측정하여 하기 표 4에 나타내고, 중온 중습 도장 시(온도 24℃, 습도 70%)의 외관을 측정하여 하기 표 5에 나타내고, 고온 저습 도장 시(온도 28℃, 습도 60%)의 외관을 측정하여 하기 표 6에 나타내었다. 또한 종합 물성을 측정하여 하기 표 7에 나타내었다.For Experimental Examples 1 and 2, and Comparative Experimental Examples 1 and 2 prepared above, the appearance of low temperature and high humidity coating (temperature 20 ° C., humidity 80%) was measured and shown in Table 4 below. , And the appearance of humidity 70%) is shown in Table 5 below, and the appearance of the high temperature and low humidity coating (temperature 28 ℃, humidity 60%) was measured and shown in Table 6 below. In addition, to measure the physical properties are shown in Table 7.
표 4
실험예 1 실험예 2 비교실험예 1 비교실험예 2
도료 점도(포드컵 #4/25℃) 56 55 56 54
도막 두께(㎛) 10-15 10-15 10-15 10-15
클리어코트(Clear Coat)두께(㎛) 35-45 35-45 35-45 35-45
웨이브스캔(Wavescan) DOI LU 52.3 50.3 47.7 48.3
SH 62.9 61.1 60.4 60.1
OP 71.8 69.8 64.5 64.4
CF 65.8 63.8 60.5 60.5
Table 4
Experimental Example 1 Experimental Example 2 Comparative Experimental Example 1 Comparative Experiment 2
Paint Viscosity (Pod Cup # 4/25 ° C) 56 55 56 54
Coating thickness (μm) 10-15 10-15 10-15 10-15
Clear Coat Thickness (㎛) 35-45 35-45 35-45 35-45
Wavescan DOI LU 52.3 50.3 47.7 48.3
SH 62.9 61.1 60.4 60.1
OP 71.8 69.8 64.5 64.4
CF 65.8 63.8 60.5 60.5
표 5
실험예 1 실험예 2 비교실험예 1 비교실험예 2
도료 점도(포드컵 #4/23℃) 56 55 56 54
도막 두께(㎛) 10-15 10-15 10-15 10-15
클리어코트 두께(㎛) 35-45 35-45 35-45 35-45
웨이브스캔(Wavescan) DOI LU 51.5 52.4 49.3 47.7
SH 62.9 64.8 61.5 58.9
OP 70.9 71.6 66.2 62.5
CF 65.2 66.3 62.0 59.0
Table 5
Experimental Example 1 Experimental Example 2 Comparative Experimental Example 1 Comparative Experiment 2
Paint Viscosity (Pod Cup # 4/23 ° C) 56 55 56 54
Coating thickness (μm) 10-15 10-15 10-15 10-15
Clear coat thickness (㎛) 35-45 35-45 35-45 35-45
Wavescan DOI LU 51.5 52.4 49.3 47.7
SH 62.9 64.8 61.5 58.9
OP 70.9 71.6 66.2 62.5
CF 65.2 66.3 62.0 59.0
표 6
실험예 1 실험예 2 비교실험예 1 비교실험예 2
도료 점도 (포드컵 #4/23℃) 56 55 56 54
도막 두께(㎛) 10-15 10-15 10-15 10-15
클리어코트 두께(㎛) 35-45 35-45 35-45 35-45
웨이브스캔(Wavescan) DOI LU 55.3 58.4 49.0 47.9
SH 66.5 69.3 60.8 58.8
OP 73.6 76.2 62.9 61.4
CF 68.4 71.1 60.1 58.5
Table 6
Experimental Example 1 Experimental Example 2 Comparative Experimental Example 1 Comparative Experiment 2
Paint Viscosity (Pod Cup # 4/23 ℃) 56 55 56 54
Coating thickness (μm) 10-15 10-15 10-15 10-15
Clear coat thickness (㎛) 35-45 35-45 35-45 35-45
Wavescan DOI LU 55.3 58.4 49.0 47.9
SH 66.5 69.3 60.8 58.8
OP 73.6 76.2 62.9 61.4
CF 68.4 71.1 60.1 58.5
표 7
실험예 1 실험예 2 비교실험예 1 비교실험예 2 비고
도료 저장안정성 30% 이내 : 우수(◎)50% 이내 : 양호(O)70% 이내 : 보통(△)70% 이상 : 불량(X)
외관 저온고습 CF 65이상 : 우수(◎)CF 60~65 : 양호(○)CF 55~60 : 보통(△)CF 55 미만 : 불량(X)
중온중습
고온저습
광택 저온고습 LU 55이상 : 우수(◎)LU 50 이상 : 양호(○)LU 45~50 : 보통(△)LU 45 미만 : 불량(X)
중온중습
고온저습
내수성 δE 0.5 이하 : 양호(○)δE 0.5-1 : 보통(△)δE 1 이상 : 불량(X)
부착성 부착눈수 100/100: 우수(◎)부착눈수 90-99: 양호(○)부착눈수 80-89: 보통(△)부착눈수 79이하: 불량(X)
TABLE 7
Experimental Example 1 Experimental Example 2 Comparative Experimental Example 1 Comparative Experiment 2 Remarks
Paint storage stability Within 30%: Excellent (◎) Within 50%: Good (O) Within 70%: Normal (△) Above 70%: Bad (X)
Exterior Low temperature and high humidity CF 65 or more: Good (◎) CF 60 to 65: Good (○) CF 55 to 60: Normal (△) CF less than 55: Bad (X)
Medium temperature and humidity
High temperature and low humidity
Polish Low temperature and high humidity LU 55 or more: Excellent (◎) LU 50 or more: Good (○) LU 45 ~ 50: Normal (△) LU 45 or less: Bad (X)
Medium temperature and humidity
High temperature and low humidity
Water resistance δE 0.5 or less: Good (○) δE 0.5-1: Normal (△) δE 1 or more: Bad (X)
Adhesion Attachment 100/100: Excellent (◎) Attachment 90-99: Good (○) Attachment 80-89: Normal (△) Attachment 79 or less: Bad (X)
표 4 내지 표 7에서 각 특성의 시험 및 평가 방법은 다음과 같다. In Tables 4 to 7, the test and evaluation methods of each property are as follows.
(1) 포드컵(Ford cup): 점도컵의 일종인 포드컵을 이용하여 점도를 측정하였다. 즉, 일정 용량의 원통형 용기에 도료 조성물을 가득 채워, 그 바닥에 있는 구멍으로부터 도료 조성물이 전부 유출되는데 걸리는 시간에 따라 점도를 계측하였다.  (1) Ford cup: The viscosity was measured using the pod cup which is a kind of viscosity cup. That is, the cylindrical composition of a fixed volume was filled with the coating composition, and the viscosity was measured according to the time taken for all the coating composition to flow out from the hole in the bottom.
(2) 도료 저장 안정성: 밀폐 용기에 도료 조성물을 넣은 후 43℃ 온도에서 5일간 열 저장 후 점도 변화 및 외관 변화를 체크하였다. 점도 변화는 포드 컵 #4로 50% 이내로 상승이면 양호하며, 외관 변화는 없어야 한다. (2) Paint storage stability: After putting the coating composition in a closed container, the viscosity change and the appearance change were checked after heat storage at 43 ° C for 5 days. Viscosity changes should be good within 50% with Pod Cup # 4, with no change in appearance.
(3) 도막 두께: 도장 두께로 10-15㎛을 규정 도막으로 하였다. (3) Coating film thickness: 10-15 micrometers was defined as the coating thickness.
(4) 클리어 코트: 본 발명의 도료 조성물의 도장 소지의 후속 도장 되는 도료로 자동차 도막에 광택 등의 외관과 내화학적 및 물리적 내구성을 부여하기 위한 것이다. 규정 도막 두께는 35-45㎛으로 하였다. (4) Clear coat: This is a paint which is subsequently coated with the coating material of the coating composition of the present invention to impart the appearance and chemical and physical durability of gloss and the like to the automotive coating film. The prescribed coating film thickness was 35-45 µm.
(5) 웨이브스캔(WAVESCAN) DOI: 완성 도막의 도장 품질을 측정하는 휴대용 기기인 웨이브스캔을 이용하여 도장 품질을 측정하였다. 외관 품질이 좋을수록 LU, SH, OP 값이 높다. CF는 각각의 수치로부터 환산된 것이다. (5) WAVESCAN DOI: The coating quality was measured using a wave scan which is a portable device for measuring the coating quality of the finished coating film. The better the appearance quality, the higher the LU, SH, and OP values. CF is converted from each value.
(6) 광택: 웨이브스캔(WAVESCAN) DOI의 LU 값으로 측정하였다.(6) Gloss: Measured by LU value of WAVESCAN DOI.
(7) 내수성: 수중 240시간 침적 후 변색 및 부착성을 평가하였다. (7) Water resistance: Discoloration and adhesion were evaluated after immersion in water for 240 hours.
(8) 부착성: 10*10 크로스 컷(Cross Cut)을 평가하였다. (8) Adhesiveness: 10 * 10 cross cut was evaluated.
표 4 내지 표 7를 참조하면, 실험예 1 및 2에 따르면, 저온 고습, 중온 중습, 고온 저습에서의 도료 저장 안정성, 외관, 광택, 내수성 등이 비교 실험예 1 및 2보다 우수한 것을 알 수 있다. Referring to Tables 4 to 7, according to Experimental Examples 1 and 2, it can be seen that the paint storage stability, appearance, gloss, and water resistance at low temperature, high humidity, medium temperature, medium humidity, and high temperature and low humidity are superior to Comparative Experimental Examples 1 and 2. .
상술한 바에 따른 특징, 구조, 효과 등은 본 발명에 포함된다. 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.Features, structures, effects, and the like as described above are included in the present invention. Features, structures, effects, and the like illustrated in each embodiment may be combined or modified with respect to other embodiments by those skilled in the art to which the embodiments belong. Therefore, contents related to such combinations and modifications should be construed as being included in the scope of the present invention.
본 발명에 따른 마이크로겔은 제2 쉘을 형성하는 단계에서 폴리알킬렌글리콜을 구비하는 수산화기 함유 불포화 단량체를 사용하므로, 인접 인자와의 상호 작용을 좀더 극대화할 수 있어 점도 및 의소성 특성이 향상되고, 마이크로겔의 제조방법 면에서 상대적으로 높은 산가의 마이크로겔을 안정적으로 중합할 수 있으며, 이러한 마이크로겔은 저장 중에는 입자의 안정성을 향상할 수 있으며, 도막 형성 중에는 도료 미립화가 잘 이루어질 수 있도록 하여 도료 조성물로서 산업적으로 매우 유용하다.Since the microgel according to the present invention uses a hydroxyl group-containing unsaturated monomer having polyalkylene glycol in the step of forming the second shell, the interaction with adjacent factors can be further maximized, thereby improving viscosity and plasticity characteristics. In terms of the preparation method of the microgel, it is possible to stably polymerize the microgel having a relatively high acid value, and the microgel can improve the stability of the particles during storage and to make the paint atomization well during the film formation. It is very useful industrially as a composition.

Claims (12)

  1. 코어를 준비하는 단계;Preparing a core;
    상기 코어 상에 제1 쉘을 형성하는 단계; 및 Forming a first shell on the core; And
    상기 제1 쉘 상에 제2 쉘을 형성하는 단계Forming a second shell on the first shell
    를 포함하고, Including,
    상기 제1 쉘 및 상기 제2 쉘을 형성하는 단계 중 적어도 어느 하나에 폴리알킬렌글리콜을 구비하는 수산화기 함유 불포화 단량체를 사용하는 마이크로겔의 제조 방법.A method for producing a microgel using a hydroxyl group-containing unsaturated monomer having a polyalkylene glycol in at least one of the step of forming the first shell and the second shell.
  2. 제1항에 있어서, The method of claim 1,
    상기 제2 쉘을 형성하는 단계는, 산 함유 불포화 단량체와, 상기 폴리알킬렌글리콜을 구비하는 수산화기 함유 불포화 단량체를 투입 반응시켜 상기 제2 쉘을 형성하는 마이크로겔의 제조 방법. In the forming of the second shell, a method of preparing a microgel in which an acid-containing unsaturated monomer and a hydroxyl group-containing unsaturated monomer including the polyalkylene glycol are added to and reacted to form the second shell.
  3. 제1항에 있어서, The method of claim 1,
    상기 폴리알킬렌글리콜을 구비하는 수산화기 함유 불포화 단량체는 아래 화학식으로 표시되는 마이크로겔의 제조 방법. A hydroxyl-containing unsaturated monomer comprising the polyalkylene glycol is a method for producing a microgel represented by the following formula.
    <화학식> <Formula>
    Figure PCTKR2012002358-appb-I000003
    Figure PCTKR2012002358-appb-I000003
    (여기서, R1은 수소 원자 또는 메틸기를 나타내며, R2는 탄소수 2 내지 4의 알킬기를 나타내며, n은 3 내지 20의 정수이다) (Wherein R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkyl group having 2 to 4 carbon atoms, n is an integer of 3 to 20)
  4. 제1항에 있어서,The method of claim 1,
    상기 코어를 준비하는 단계에서는, 시드에 산 비함유 또는 산 함유 불포화 단량체를 투입 반응시켜 상기 코어를 형성하고, In the preparing of the core, an acid-free or acid-containing unsaturated monomer is added to a seed and reacted to form the core,
    상기 제1 쉘을 형성하는 단계에서는, 산 비함유 또는 산 함유 불포화 단량체와, 수산화기 비함유 또는 수산화기 함유 불포화 단량체를 투입 반응시켜 상기 제1 쉘을 형성하는 마이크로겔의 제조 방법. In the step of forming the first shell, an acid-free or acid-containing unsaturated monomer and a hydroxyl-free or hydroxyl-containing unsaturated monomer is added to the reaction method for producing a microgel.
  5. 제1항에 있어서, The method of claim 1,
    상기 코어를 준비하는 단계에서는, 폴리알킬렌글리콜을 구비하는 수산화기 비함유 또는 수산화기 함유 불포화 단량체와, 산 함유 불포화 단량체를 투입 반응시켜 상기 코어를 형성하고,In the preparing of the core, the core is formed by injecting and reacting a hydroxyl-free or hydroxyl-containing unsaturated monomer having a polyalkylene glycol with an acid-containing unsaturated monomer,
    상기 제1 쉘을 형성하는 단계에서는, 상기 코어에 중화제를 첨가하고, 산 비함유 또는 산 함유 불포화 단량체를 투입 반응시켜 상역전을 유도하면서 상기 제1 쉘을 형성하는 마이크로겔의 제조 방법. In the forming of the first shell, a neutralizing agent is added to the core, and an acid-free or acid-containing unsaturated monomer is added and reacted to form the first shell while inducing phase inversion.
  6. 제4항 또는 제5항에 있어서,  The method according to claim 4 or 5,
    상기 제1 쉘을 형성하는 단계 이후에 측정된 산가보다, 상기 제2 쉘을 형성하는 단계 이후에 측정된 산가가 더 높은 마이크로 겔의 제조 방법. A method of making a microgel, wherein the acid value measured after the forming of the second shell is higher than the acid value measured after forming the first shell.
  7. 제1항에 있어서, The method of claim 1,
    상기 마이크로겔의 산가가 40~200 mgKOH/g 이고 수산화기가가 1~80 mgKOH/g인 마이크로 겔의 제조 방법. The acid value of the microgel is 40 ~ 200 mgKOH / g and the hydroxyl value is 1 ~ 80 mgKOH / g method of producing a microgel.
  8. 제4항 또는 제5항에 있어서, The method according to claim 4 or 5,
    상기 마이크로겔의 제조에 사용된 총 불포화 단량체 100 중량부에 대하여,Based on 100 parts by weight of the total unsaturated monomer used in the preparation of the microgel,
    상기 코어를 준비하는 단계에서 투입된 상기 불포화 단량체의 중량부가 35~60이고, The weight part of the unsaturated monomer added in the step of preparing the core is 35 ~ 60,
    상기 제1 쉘을 형성하는 단계에서 투입된 상기 불포화 단량체의 중량부가 20~40이며, The weight part of the unsaturated monomer added in the step of forming the first shell is 20 to 40,
    상기 제2 쉘을 형성하는 단계에서 투입된 상기 불포화 단량체의 중량부가 10~30인 마이크로겔의 제조 방법. Method for producing a microgel of 10 to 30 parts by weight of the unsaturated monomer added in the step of forming the second shell.
  9. 제1항에 의한 마이크로겔의 제조 방법에 의해 제조된 마이크로겔. Microgel prepared by the method for producing a microgel according to claim 1.
  10. 제9항에 의한 마이크로겔을 포함하는 수용성 도료 조성물.  A water-soluble coating composition comprising the microgel according to claim 9.
  11. 코어; core;
    상기 코어 상에 형성된 제1 쉘; 및A first shell formed on the core; And
    상기 제1 쉘 상에 형성되며, 산 함유 불포화 단량체와, 폴리알킬렌글리콜을 구비하는 수산화기 함유 불포화 단량체를 반응시켜 형성된 제2 쉘A second shell formed on the first shell and formed by reacting an acid-containing unsaturated monomer with a hydroxyl group-containing unsaturated monomer having polyalkylene glycol;
    를 포함하는 마이크로겔. Microgel comprising a.
  12. 제11항에 의한 마이크로겔을 포함하는 수용성 도료 조성물. A water-soluble coating composition comprising the microgel according to claim 11.
PCT/KR2012/002358 2011-03-31 2012-03-30 Microgel and method for preparing same, and water-soluble paint composition WO2012134211A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280016943.2A CN103562275B (en) 2011-03-31 2012-03-30 Microgel and preparation method thereof, and water-soluble coating composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0029374 2011-03-31
KR1020110029374A KR101828605B1 (en) 2011-03-31 2011-03-31 Microgel and method for manufacturing the same, and water-soluble paint composition

Publications (2)

Publication Number Publication Date
WO2012134211A2 true WO2012134211A2 (en) 2012-10-04
WO2012134211A3 WO2012134211A3 (en) 2012-12-27

Family

ID=46932154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002358 WO2012134211A2 (en) 2011-03-31 2012-03-30 Microgel and method for preparing same, and water-soluble paint composition

Country Status (3)

Country Link
KR (1) KR101828605B1 (en)
CN (1) CN103562275B (en)
WO (1) WO2012134211A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180077252A (en) * 2015-10-30 2018-07-06 클라리언트 인터내셔널 리미티드 Metal dispersions having increased stability
CN108905914B (en) * 2018-06-25 2020-10-27 浙江大学 One-step method for preparing biocompatible oil-core microcapsule and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990060694A (en) * 1997-12-31 1999-07-26 김충세 Core / shell microgel containing alkylene monoisocyanate / poly (ethylene oxide) monoalcohol monomer and coating composition containing same
EP1693429A1 (en) * 2005-02-22 2006-08-23 Kansai Paint Co., Ltd. Aqueous intermediate coating composition and method for forming multilayer coating film
JP2007056077A (en) * 2005-08-22 2007-03-08 Nof Corp Method for producing core-shell type polymer particle
KR100827464B1 (en) * 2001-12-29 2008-05-06 주식회사 케이씨씨 Method for preparing reverse-phased core/shell type microgel and water-soluble coating composition containing core/shell type microgel prepared thereby

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3320698B2 (en) * 1999-12-09 2002-09-03 大日本塗料株式会社 Aqueous paint composition
JP2004059622A (en) * 2002-07-25 2004-02-26 Kansai Paint Co Ltd Water-based coating composition
CN1282677C (en) * 2004-09-21 2006-11-01 华南理工大学 Hydroxyl acrylic acid emulsion with microgel nuclear structure and preparation process and application thereof
DE102009012455A1 (en) * 2009-03-12 2010-09-23 Follmann & Co. Gesellschaft Für Chemie-Werkstoffe Und -Verfahrenstechnik Mbh & Co. Kg Improved microcapsules and their preparation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990060694A (en) * 1997-12-31 1999-07-26 김충세 Core / shell microgel containing alkylene monoisocyanate / poly (ethylene oxide) monoalcohol monomer and coating composition containing same
KR100827464B1 (en) * 2001-12-29 2008-05-06 주식회사 케이씨씨 Method for preparing reverse-phased core/shell type microgel and water-soluble coating composition containing core/shell type microgel prepared thereby
EP1693429A1 (en) * 2005-02-22 2006-08-23 Kansai Paint Co., Ltd. Aqueous intermediate coating composition and method for forming multilayer coating film
JP2007056077A (en) * 2005-08-22 2007-03-08 Nof Corp Method for producing core-shell type polymer particle

Also Published As

Publication number Publication date
CN103562275A (en) 2014-02-05
KR20120111083A (en) 2012-10-10
KR101828605B1 (en) 2018-02-13
WO2012134211A3 (en) 2012-12-27
CN103562275B (en) 2016-01-27

Similar Documents

Publication Publication Date Title
TWI465538B (en) Adhesive composition and surface-protective adhesive film
TWI704202B (en) Adhesive composition and surface-protective film
KR100237105B1 (en) Thermosetting composition, method of finish coating, and coated articles
CN112375519A (en) Adhesive composition and surface protective film
CN109776710B (en) Styrene-maleic anhydride structure-containing graft-modified water-based pigment dispersant and preparation method thereof
GB2322863A (en) Water soluble acrylic resin, and compositions and method using it
TW201348357A (en) Coating composition and anti-reflection film
EP0997484A1 (en) Cold curable resin composition and base material coated with the same
EP2931768A1 (en) Nitrofunctional acrylate copolymers for binder compositions
JP2006249183A (en) Aqueous resin dispersion
WO2012134211A2 (en) Microgel and method for preparing same, and water-soluble paint composition
CN114085330A (en) Modified acrylic emulsion and preparation method thereof
WO2017195927A1 (en) Novel 2,4,6-triaminotriazine-based urethane acrylate compound and preparation method therefor
US11345828B2 (en) Siloxane-modified binders and compositions thereof
TW201819439A (en) Active energy ray-curable resin composition and laminated film
KR20020003289A (en) Water-based curable resin composition
KR20210039207A (en) Paint Composition
WO2018169309A2 (en) Emulsion, production method therefor, and method for forming coating layer using same
WO2019088551A1 (en) Coating composition
JP5996488B2 (en) Anionic white matte electrodeposition coating composition
JP7193925B2 (en) WATER-BASED RESIN DISPERSION, TOPCOAT, PRODUCTION THEREOF, AND COATING FILM
WO2018143623A1 (en) Emulsion and preparing method therefor
WO2019066439A1 (en) Clear coat composition
JP2001106975A (en) Coating composition
US20040087713A1 (en) Water-based coating composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764278

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764278

Country of ref document: EP

Kind code of ref document: A2