WO2012134024A1 - 이중막 구조의 튜브형 다공성 스캐폴드와 줄기 세포를 이용한 인공 혈관의 제조 방법 및 이에 의하여 제조된 인공 혈관 - Google Patents

이중막 구조의 튜브형 다공성 스캐폴드와 줄기 세포를 이용한 인공 혈관의 제조 방법 및 이에 의하여 제조된 인공 혈관 Download PDF

Info

Publication number
WO2012134024A1
WO2012134024A1 PCT/KR2011/008816 KR2011008816W WO2012134024A1 WO 2012134024 A1 WO2012134024 A1 WO 2012134024A1 KR 2011008816 W KR2011008816 W KR 2011008816W WO 2012134024 A1 WO2012134024 A1 WO 2012134024A1
Authority
WO
WIPO (PCT)
Prior art keywords
stem cells
porous scaffold
tubular porous
membrane structure
artificial blood
Prior art date
Application number
PCT/KR2011/008816
Other languages
English (en)
French (fr)
Inventor
신정욱
김동화
Original Assignee
인제대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인제대학교 산학협력단 filed Critical 인제대학교 산학협력단
Priority to US13/299,748 priority Critical patent/US9683216B2/en
Publication of WO2012134024A1 publication Critical patent/WO2012134024A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3834Cells able to produce different cell types, e.g. hematopoietic stem cells, mesenchymal stem cells, marrow stromal cells, embryonic stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/507Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body

Definitions

  • the present invention relates to a method for manufacturing artificial blood vessels using a tubular porous scaffold and stem cells of a double-membrane structure, and to artificial blood vessels manufactured thereby. More specifically, the inner membrane and outer membrane of the biodegradable polymer nanofibers have different arrangements.
  • a method of manufacturing artificial blood vessels by inoculating stem cells and inducing differentiation of the inner and outer membranes of the tubular porous scaffold having a double membrane structure by using a continuously connected tubular porous scaffold having a bilayer structure, and the artificially manufactured by the same Relates to blood vessels.
  • vascular replacement materials have been developed to replace areas of arteries damaged by atherosclerotic or aneurysm diseases of the vascular system.
  • the initial study of the support for vascular regeneration using tissue engineering technology is to produce biodegradable polymers such as collagen, natural polymer or PGA in the form of tubes, and seed the smooth muscle cells or endothelial cells constituting the vascular tissue thereon for a certain period of time.
  • the study mainly focused on culturing outside to have some mechanical strength and then transplanting it in vivo.
  • SPEU segmentegmented polyetherurethane
  • tissue engineering techniques have been developed to make vascular endothelial cells similar to the vascular environment by culturing vascular endothelial cells.
  • biodegradable materials are manufactured by wrapping polyglycolic acid (PGA) nonwovens or poly-L-lactic acid (PLLA) woven fabrics in a cylindrical shaft and suturing them with sutures while retaining them in the form of tubes like the shape of living blood vessels, or PGA or PLLA.
  • Tubular scaffolds prepared by immersing the mesh in a solution in which a polymer such as poly-L-lactic acid-co-caprolactone (PLCL) is dissolved and taken out and then lyophilized are used.
  • PGA and PLLA have a significantly lower elastic force and a lower decomposition rate than PLCL. It has a problem such as difficult to control.
  • the structure of the scaffold such as the pore size also has a limitation in performing the role of artificial blood vessels without leakage of blood under conditions of high blood pressure.
  • the artificial scaffold for blood vessel regeneration should be small enough to prevent blood leakage through the pores present in the vessel wall when the blood is recirculated. This is because the pores should be large in size.
  • artificial blood vessels manufactured by PLCL alone are mainly manufactured by lyophilization, casting, extrusion, and the like.
  • Artificial blood vessels manufactured by such a manufacturing method have disadvantages of poor cell seeding efficiency and low mechanical strength. Have. Therefore, there is still a need for the development of porous scaffolds for histological artificial vessels having high elasticity and excellent mechanical strength.
  • the electrospinning process refers to a process of spinning the polymer in a low viscosity state by the high voltage electrostatic force in the form of fibers instantaneously by applying an electrostatic force greater than the surface tension in the polymer. Recently, it is used as a method for manufacturing nanometer-class fibers, and research on this is being actively conducted. Nanofibers provide various physical properties not available in conventional fibers, and the web composed of these nanofibers is a porous membrane-type material that can be very useful in various fields such as various filters, wound dressings, artificial supports, and the like. have.
  • the present invention is conventionally manufactured by the electrospinning method to solve the above problems, while excellent in mechanical properties such as elasticity and flexibility, improved cell suitability in a structure and form similar to living tissue, and can be used for tissue regeneration treatment. It is an object to provide a method for producing artificial blood vessels using scaffolds and stem cells.
  • Another object of the present invention is to provide an artificial blood vessel produced by the manufacturing method of the present invention.
  • the present invention to achieve the above object
  • the method provides a method of producing artificial blood vessels using the tubular porous scaffold of the double membrane structure and stem cells.
  • the tubular porous scaffold of the double membrane structure includes an inner film that forms a membrane structure in which biodegradable polymer nanofibers are randomly arranged, and an outer membrane in which the biodegradable polymer nanofibers are arranged in a circumferential manner. Characterized in that.
  • the structure of the inner membrane and outer membrane of the tubular porous scaffold of the double-membrane structure mimics the structure of biological tissue, and stem cells, other cells, drugs, and compounds are easily inoculated, regenerated, adhered to, and contained in the scaffold. In addition, it prevents blood vessel leakage or compliance mismatch, so that efficient and excellent cell regeneration effect and high patency effect can be obtained.
  • the tubular porous scaffold of the bilayer structure comprises the steps of electrospinning a solution containing a biodegradable polymer to a rotating mandrel rotating at a constant speed v1 to form an inner film; And changing the rotational speed of the rotating mandrel to v2 to form an outer film.
  • a biodegradable polymer for various artificial supports known in the art may be used, and preferably, poly (L) Lactic acid-co- ⁇ -caprolactone) (Poly (L-lactide-co- ⁇ -caprolactone)), polylactic acid (PLA), polyglycolic acid (PGA), poly (D, L-lactic acid-co-glycolic acid (poly (D, L-lactide-coglycolide); PLGA), poly (caprolactone), diol / diacid based aliphatic polyester, polyester-amide / polyester-urethane, polyethylene oxide, poly ( Valerolactone), poly (hydroxybutyrate) and at least one synthetic polymer selected from the group consisting of poly (hydroxy valerate) or chitosan, chitin, alginic acid, collagen, gelatin and hyaluronic acid One or more kinds of cloth Any one
  • the poly (L-lactic acid-co- ⁇ -caprolactone) has a uniform structure and excellent mechanical properties such as flexibility and elasticity and proper biodegradation period, it is more artificial than that of using a single polymer of polycaprolactone. It is suitable as a support for tissue.
  • Electrospinning is the process of atomizing conductive fluids using the interaction between the electrostatic field and the conductive fluid.
  • a conductive fluid eg, a semi-diluted polymer solution or polymer melt
  • suspended conical droplets are formed so that the surface tension of the droplet is in equilibrium with the electric field.
  • Electrostatic atomization occurs when the electrostatic field is strong enough to overcome the surface tension of the liquid.
  • the liquid droplets then become unstable and a very small jet flows off the surface of the droplets.
  • the material can be collected as an interconnected web comprising relatively fine, ie small diameter, fibers. Films (or membranes) produced from these small diameter fibers have a very large and small pore size ratio of surface area to volume.
  • the polymer solution 38 is contained in a syringe.
  • the flow rate will depend on the desired physical properties of the polymer scaffold, ie membrane thickness, fiber diameter, pore size, membrane density, and the like.
  • the syringe pump 32 supplies the polymer solution to the needle 42.
  • Needle 42 has a tip structure that allows the formation and delivery of jets without interference.
  • Charge in the range of about 10 to about 30 kV is applied to the needle by the high voltage power supply 48 via the wire 41A.
  • the mandrel 56A is positioned between the needles 42 such that an electric field is generated between the charged needles 42 and the mandrel 56A.
  • the electric field causes jets of polymer solution to be ejected from the spinneret and sprayed towards the mandrel 56A to form filaments or fibers 46 of micron or nanometer diameter.
  • a rotating mandrel is used in electrospinning.
  • the mandrel is mechanically attached to the motor via a drill chuck.
  • Rotating metal mandrel can cause the deposition of random biodegradable polymeric nanofibers on its surface, creating a conduit when the mandrel is removed.
  • Rotating the mandrel produces an ordered fiber having a layer to which the biodegradable polymeric nanofibers are evenly applied.
  • the circumferential alignment of the biodegradable polymeric nanofibers is controlled.
  • the biodegradable polymer nanofibers are aligned in the longitudinal direction, and as the rotation speed of the mandrel increases, the biodegradable polymer nanofibers are aligned in the circumferential direction.
  • Various mandrel and rotational speeds can be used to make a multilayer hollow conduit scaffold with each layer of a particular alignment.
  • the motor rotates the mandrel at a speed of about 1 rpm to about 500 rpm.
  • the rotational speed of the mandrel is preferably from 200 rpm to about 500 rpm. In another exemplary embodiment, the motor rotation speed is about 1 rpm to about 100 rpm.
  • the ratio of the rotational speed of the rotating mandrel in forming the inner film and the rotating mandrel in the forming the outer film is 1:10. It is preferable that it is from 1:11.
  • the rotational speed of the rotating mandrel when forming the inner film Is 0.2 to 0.4 m / s, and the rotational speed of the rotating mandrel when forming the outer film is preferably 3 to 4 m / s.
  • the polyethylene oxide upon forming the inner film, is first spun for 5 to 15 minutes, followed by poly (L-lactide-co- ⁇ -caprolactone). It is preferable to spin.
  • poly (L-lactide-co- ⁇ -caprolactone) In the application of artificial scaffolds to large diameter vessels, due to the high speed of blood, proteins and platelets in the blood are less adsorbed and adhered to the inner surface of artificial scaffolds. Various proteins and platelets are adsorbed and attached to the inner surface.
  • polyethylene oxide which is known as a polymer that minimizes adhesion between proteins and cells, is first radiated to make the innermost part of the inner membrane, thereby inhibiting adhesion of proteins and platelets, thereby increasing the patency of artificial scaffolds.
  • poly (L-lactic acid-co- ⁇ -caprolactone) can be easily separated from the mandrel when the polyethylene oxide is first spun in the manufacturing process.
  • Electrospinning for making other biodegradable polymer nanofibers is possible using a method known in the art.
  • the average fiber diameter tends to decrease as the distance between the needle and the mandrel increases.
  • Increasing the device voltage and increasing the polymer concentration also reduces the diameter of the scaffold.
  • the electrospinning distance is 200 to 220nm and the voltage between the spinning needle and the rotating mandrel is 12 to 20KV to perform the electrospinning, preferably 14 to 16KV to perform the electrospinning do.
  • stem cells are inoculated into the tubular porous scaffold of the bilayer structure thus prepared.
  • the stem cells that can be inoculated into the tubular porous scaffold of the bilayer structure are mesenchymal stem cells, hematopoietic stem cells, fetal stem cells (fetal cell-derived) , Adipose stem cells, umbilical cord blood stem cells, hemangioblasts, vascular endothelial cells, vascular smooth muscle cells, hematopoietic stem cells and embryonic stem cells It is preferably selected from the group consisting of.
  • Inoculating the stem cells into the tubular porous scaffold of the bilayer structure is specifically suspending the stem cells in the culture medium, and the culture medium containing the stem cells to the inner membrane portion of the tubular porous scaffold of the bilayer structure
  • a first step of inoculation The first step of the tubular porous scaffold structure of the double membrane structure in a carbon dioxide atmosphere by rotating for 1 hour to 6 hours at a rate of 0.5 to 5 rpm to fix the stem cells in the inner membrane of the tubular porous scaffold of the double membrane structure
  • Two steps A third step of suspending the stem cells into the culture medium, and inoculating the culture solution containing the stem cells into the outer membrane portion of the tubular porous scaffold of the double membrane structure of the second step; And rotating the tubular porous scaffold of the bilayer structure of the third step for 15 hours to 30 hours at a rate of 0.5 to 5 rpm in a carbon dioxide atmosphere to fix the stem cells to the outer membrane of the tubular porous scaffold of the double membrane structure.
  • a fourth step is included.
  • the stem cells are not only inoculated separately on the inner and outer surfaces of the tubular porous scaffold of the bilayer structure, but also the inoculated stems.
  • Cells are also cultured inside the tubular porous scaffold of the bilayer structure, characterized in that to rotate the tubular porous scaffold of the bilayer structure.
  • the method for rotating the tubular porous scaffold of the double membrane structure is not particularly limited and may be a method known to those skilled in the art.
  • Figure 2 briefly shows the method we used to rotate the tubular porous scaffold of the double membrane structure.
  • the tubular porous scaffold of the bilayer structure of the present invention is immersed to be fixed in a tube-type test tube including a culture medium, a medium containing cells is inserted, and the tube-type test tube is rotated to inoculate the inoculation. It is possible to allow the stem cells to be settled in the scaffold.
  • the culture medium contains one or more selected from the group consisting of vascular endothelial growth factor, fibroblast growth factor, neural tissue growth factor, platelet derived growth factor, heparin, thrombin, laminin, fibronectin and collagen. It is desirable to.
  • the inoculated stem cells are differentiated into vascular endothelial cells inside the tubular porous scaffold of the double membrane structure, and the tubular porous scaffold of the double membrane structure in order to differentiate into smooth muscle cells outside. It is possible to use different internal and external media. That is, it is preferable to use a culture medium added with vascular endothelial growth factor inside the tubular porous scaffold having a double membrane structure, and to use a culture medium added to smooth muscle cell growth factor outside.
  • the tubular porous scaffold of the double-membrane structure in which the stem cells are inoculated is applied with shear stress and tensile force as a mechanical stimulus, and specifically, applying the mechanical stimulus is a double-membrane structure inoculated with the stem cells. Applying a shear stress to the tubular porous scaffold of the; And applying a tensile force to the tubular porous scaffold of the double membrane structure inoculated with the stem cells.
  • the method of applying the shear stress and the tensile force to the tubular porous scaffold of the double membrane structure in which the stem cells are inoculated is not particularly limited, and it is possible to use a method generally known to those skilled in the art.
  • the tubular porous scaffold of the double membrane structure in which the stem cells are inoculated is immersed in the endothelial cell culture medium, and the tubular of the double membrane structure in which the stem cells are inoculated by the flow of the endothelial cell culture medium It is preferable to apply a shear stress of 2 dyne / cm 2 to 5 dyne / cm 2 per unit area of the porous scaffold for 20 to 30 hours.
  • the step of applying the tensile force after applying the first tensile force, it is preferable to apply two different tensile forces of different sizes by applying a second tensile force whose size is larger than the first tensile force, 3% to 5% It is preferable to apply a tensile force of.
  • the present invention also provides an artificial blood vessel produced by the manufacturing method of the present invention.
  • Artificial blood vessel of the present invention is characterized in that the diameter of 2 mm to 5 mm.
  • Artificial blood vessels produced by the production method of the present invention is characterized in that the inner membrane contains vascular endothelial cells differentiated from mesenchymal stem cells, and the outer membrane contains smooth muscle cells differentiated from mesenchymal stem cells.
  • the present invention utilizes a bilayer tubular porous scaffold comprising an inner film that forms a membrane structure in which biodegradable polymer nanofibers are randomly arranged, and an outer membrane in which the biodegradable polymer nanofibers are circumferentially arranged.
  • it is useful for regenerating damaged tissues because of its ability to easily attach and promote growth and to be naturally biodegraded and absorbed into the body later.
  • the stem cells are stably fixed and differentiated, as well as the inner membrane of the tubular porous scaffold of the bilayer tubular structure by shear stress and tensile force.
  • Vascular endothelial cells are differentiated into the outer membrane, and smooth muscle cells are differentiated into the outer membrane, respectively, to prevent blood leakage through pores present in the walls of blood vessels when the blood is circulated inside. And easy proliferation.
  • FIG. 1 shows a schematic diagram of an electrospinning apparatus according to the present invention.
  • Figure 3 is a photograph showing the size of the tubular porous scaffold of the double membrane structure
  • FIG. 4 shows an SEM image of a tubular porous scaffold having a double membrane structure.
  • Figure 5 shows the results of measuring the rate of increase in diameter while increasing the pressure inside the tubular porous scaffold of the double membrane structure prepared in one embodiment of the present invention.
  • Figure 6 shows a photograph of the cultured mesenchymal stem cells.
  • FIG. 7 schematically illustrates a system for applying shear stress to a tubular porous scaffold having a double membrane structure according to an embodiment of the present invention.
  • Figure 8 shows the results of measuring the differentiation of stem cells by the application of shear stress by RT-PCR.
  • Electrospinning system as high-voltage power supply (SHV200RD-40K, ConverTesh Co ,. Ltd.), syringe pump (KDS100, KD Scientific), syringe, 18G needle, CAM to operate needle up and down, and five It consists of a rotating mandel.
  • the rotating mandrel was operated using a servo-motor system.
  • Electrospinning conditions for forming any arrangement of the inner film are as follows.
  • the distance of electrospinning is 220nm
  • the rotational speed of rotating mandrel is 0.3m / s
  • the voltage of electrospinning needle is 14KV during polyethylene oxide spinning
  • poly (L-lactic acid-co- ⁇ -caprolactone) The voltage of the electrospinning needle during spinning was adjusted to 16KV.
  • the concentration of polyethylene oxide in the needle was 30% (w / v)
  • the feed rate was 2 ml / h
  • the concentration of poly (L-lactic acid-co- ⁇ -caprolactone) was 13% (w / v)
  • the feed rate was 1.7. ml / h.
  • polyethylene oxide (PEO, MW: 100,000) was dissolved in distilled water to prepare a 30% (w / v) polyethylene oxide solution, and the polyethylene oxide solution was added to an electrospinning needle. It was spun for 10 minutes under the above conditions on the mandrel rotating at 0.3 m / s.
  • poly (L-lactide-co- ⁇ -caprolactone) Poly (L-lactide-co- ⁇ -caprolactone, 50:50, MW: 125 kDa)
  • Poly (L-lactide-co- ⁇ -caprolactone, 50:50, MW: 125 kDa) was dissolved in distilled water to obtain 13% (w / v) of A poly (L-lactic acid-co- ⁇ -caprolactone) solution was prepared and placed in an electrospinning needle.
  • An inner film was prepared by spinning a poly (L-lactic acid-co- ⁇ -caprolactone) solution injected into the needle on the spun polyethylene oxide rotating at 0.3 m / s for 2 hours. Thereafter, the rotational speed of the rotating mandrel was increased to 3.14 m / s to radiate for 1 hour to prepare an outer film continuously connected to the inner film.
  • FIG. 3 The photograph showing the size of the tubular porous scaffold of the double membrane structure is shown in FIG. 3, and the SEM photograph of the tubular porous scaffold of the double membrane structure is shown in FIG.
  • the length of the scaffold manufactured in FIG. 3 is 5 cm, and in FIG. 4, it can be seen that the arrangement of the PLCL is different inside and outside of the tubular porous scaffold having a double membrane structure.
  • the diameter of the tubular porous scaffold having a double-membrane structure increased in proportion to the pressure until a pressure of 122 mmHg was applied, indicating high elasticity.
  • the tubular porous scaffold of the double membrane structure prepared in Example 1 was sterilized while diluting the concentration of alcohol. Then, pre-warmed for 4 hours in culture. The surface was then coated with fibronectin at a concentration of 8 ⁇ g / cm 2.
  • EGM-2 endothelial cell growth medium
  • SmGM-2 smooth muscle cell growth medium
  • EMM-2 endothelial cell growth medium
  • SmGM-2 smooth muscle cell growth medium
  • BBE Bovine Brain Extract
  • hEGF Hegf insulin Hydrocortisone hFGF-B GA-1000 Gentamicin, Amphotericin-B
  • FBS Fetal Bovine Serum
  • Example 2 in order to apply a mechanical stimulus to the tubular porous scaffold of the double membrane structure inoculated with mesenchymal stem cells, it was configured as in the system shown in FIG.
  • the tubular porous scaffold of the double membrane structure inoculated with mesenchymal stem cells in Example 2 was immersed in the culture medium of the chamber, and the pulsatile pump was pumped to the culture medium. ) for connection to, inducing flow of the culture liquid in the chamber, and this reason the second embodiment dual-layer structure tubular porous scaffold mesenchymal stem cell 2.5 dyne / cm 2, 10dyne / cm 2 two size inoculated into the Shear stress was applied.
  • mesenchymal stem cells were cultured in a medium not subjected to shear stress.
  • CD31 a vascular endothelial cell-specific marker
  • MHC a smooth muscle cell specific marker
  • vascular endothelial cells and smooth muscle cells at the protein level In order to confirm the differentiation into vascular endothelial cells and smooth muscle cells at the protein level, the expression of vascular endothelial cells and smooth muscle cell specific markers was examined by immunofluorescence staining.
  • Example 2 To stain mesenchymal stem cells differentiated into vascular endothelial cells and smooth muscle cells with vascular endothelial cells and smooth muscle cell specific markers, the cells cultured in Example 2 were first fixed with 4% paraformaldehyde at room temperature for 20 minutes. After that, the cells were treated with permeabilized in 0.2% triton X-100 for 10 minutes and washed three times for 5 minutes with PBST solution (0.1% Tween-20 added to PBS).
  • a permeate solution (addition of 0.1% Triton X-100 to PBS) was placed in a culture dish and left at room temperature for 15 minutes. After 15 minutes, the permeate solution was removed, 4% FBS (Fetal Bovine Serum) was added thereto, and blocking was performed at room temperature for 1 hour. The blocking solution was then added to ⁇ -smooth muscle actin ( ⁇ -SMA), Calponin (Sigma-Aldrich), von Willebrand Factor (vWF), Flk-1 / KDR (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) The antibody was diluted and placed in a culture dish, and then placed at 4 ° C.
  • ⁇ -SMA smooth muscle actin
  • Calponin Sigma-Aldrich
  • vWF von Willebrand Factor
  • Flk-1 / KDR Flk-1 / KDR
  • vascular endothelial cell specific markers vWF, CD31, VE-cadherin, E-selectin and smooth muscle cell specific markers a-SMA, Calponin The expression level of Caldesmon was measured, and the results are shown in FIGS. 10 and 11, respectively.
  • Example 3 the expression level of vascular endothelial cells and smooth muscle cells was measured while applying periodic tensile force to the mesenchymal stem cells cultured in the state where shear stress was applied.
  • the tensile force was applied in a state in which both ends of the tubular porous scaffold of the double membrane structure were fixed in the system shown in FIG. 7. After applying 3% tensile force periodically for 3 days, 5% tensile force is periodically applied for 1 day as an example, the state was not applied to the tensile force as a comparative example.
  • Endothelial mesenchymal stem cells vWF, CD31, VE-cadherin, and E-selectin, which are vascular endothelial cell-specific markers when additional 5% tensile force was increased in addition to 3% tensile force only in FIG. 12. It can be seen that the amount of expression rapidly increases.
  • a-SMA, Calponin, and Caldesmon which are smooth muscle cell-specific markers, were further applied to the mesenchymal stem cells of the outer membrane when an additional 5% tensile force was increased in size than when only 3% tensile force was applied in FIG. 13. It can be seen that the amount is greatly increased.
  • FIGS. 14 and 15 The results of measuring the expression levels of the vascular endothelial cell specific marker and the smooth muscle cell specific marker of the outer membrane cells of the tubular porous scaffold having a double membrane structure are shown in FIGS. 14 and 15.
  • a-SMA, Calponin, and Caldesmon which are smooth muscle cell-specific markers, was further applied to the mesenchymal stem cells of the outer membrane when an additional 5% tensile force was increased in size than when only 3% tensile force was applied in FIG. 15. It can be seen that the amount is greatly increased.
  • smooth muscle cell-specific markers a-SMA, Calponin, Caldesmon can be seen that the maximum amount of expression in the outer membrane cells when the additional 5% tensile force is applied.
  • the present invention utilizes a bilayer tubular porous scaffold comprising an inner film that forms a membrane structure in which biodegradable polymer nanofibers are randomly arranged, and an outer membrane in which the biodegradable polymer nanofibers are circumferentially arranged.
  • it is useful for regenerating damaged tissues because of its ability to easily attach and promote growth and to be naturally biodegraded and absorbed into the body later.
  • the stem cells are stably fixed and differentiated, as well as the inner membrane of the tubular porous scaffold of the bilayer tubular structure by shear stress and tensile force.
  • Vascular endothelial cells are differentiated into the outer membrane, and smooth muscle cells are differentiated into the outer membrane, respectively, to prevent blood leakage through pores present in the walls of blood vessels when the blood is circulated inside. And easy proliferation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Dispersion Chemistry (AREA)
  • Vascular Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Developmental Biology & Embryology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

본 발명은 이중막 구조의 튜브형 다공성 스캐폴드 및 줄기 세포를 이용한 인공 혈관의 제조 방법 및 이에 의하여 제조된 인공 혈관에 관한 것으로, 더욱 상세하게는 생분해성 고분자 나노 파이버의 배열이 서로 다른 내막과 외막이 연속적으로 연결된 이중막 구조의 튜브형 다공성 스캐폴드의 내막과 외막에 각각 줄기 세포를 접종하고 분화를 유도하여 인공 혈관을 제조하는 방법 및 이의 의하여 제조된 인공 혈관에 관한 것이다.

Description

이중막 구조의 튜브형 다공성 스캐폴드와 줄기 세포를 이용한 인공 혈관의 제조 방법 및 이에 의하여 제조된 인공 혈관
본 발명은 이중막 구조의 튜브형 다공성 스캐폴드 및 줄기 세포를 이용한 인공 혈관의 제조 방법 및 이에 의하여 제조된 인공 혈관에 관한 것으로, 더욱 상세하게는 생분해성 고분자 나노 파이버의 배열이 서로 다른 내막과 외막이 연속적으로 연결된 이중막 구조의 튜브형 다공성 스캐폴드를 이용하여 상기 이중막 구조의 튜브형 다공성 스캐폴드의 내막과 외막에 각각 줄기 세포를 접종하고 분화를 유도하여 인공 혈관을 제조하는 방법 및 이의 의하여 제조된 인공 혈관에 관한 것이다.
혈관계의 아테로마성 동맥 경화증 또는 동맥류 질병에 의해 손상된 동맥 부위를 대체하기 위해 혈관 대체 물질이 개발되어 왔다. 조직 공학 기술을 이용한 혈관 재생용 지지체의 초기 연구는 콜라겐이나 천연고분자 또는 PGA와 같은 생분해성 고분자를 튜브 형태로 제작하고 그 위에 혈관 조직을 구성하는 평활근 세포 혹은 내피세포를 파종한 후 일정기간 동안 생체 외에서 배양하여 어느 정도의 기계적 강도를 가지게 한 다음에 생체 내에 이식하는 연구가 주를 이루었다.
그러나, 이러한 생분해성 고분자로 만들어진 대체 물질들은 다공성 직물 제조법으로 제작되어 생체 내에 이식되었을 때 초기 혈액 누출이 심하였다. 이러한 단점을 보완하고자 혈관 표면에서 미리 혈액 응고를 시키거나, 콜라젠 코팅을 하는 등 표면 처리 연구가 행해졌으나 만족스러운 결과를 얻지 못하고 있다. 또한, 혈관 대체물들은 인공 혈과 폐색 및 파단에 큰 원인으로 작용하는 compliance mismatch(탄성도의 차이)가 심하다. 보통 동맥의 10분의 1 정도의 compliance 를 가지는 것으로 알려져 있다.
이후 생체적합성 및 항혈전성을 동시에 나타내는 블록공중합체(block copolymer)로서 SPEU(segmented polyetherurethane)가 사용되었으나, 생체내에 이식했을 때 석회화 현상이 발생하여 장기가 사용이 불가능하였다.
이러한 문제점을 해결하기 위하여 인공 혈관 내부에 혈관 내피 세포를 배양함으로써 혈관 내 환경과 유사하게 만들려는 조직공학 기법이 발달하였다.
종래 생분해성 재료로서 폴리글리콜산(PGA) 부직포 또는 폴리-L-락트산(PLLA) 직포를 원통형 샤프트에 감아서 생체 혈관의 모양과 같이 튜브 형태로 유지한 채 봉합사로 봉합하여 제조되거나, PGA 혹은 PLLA 메쉬를 이들과는 전혀 다른 용해성질을 나타내는 폴리-L-락트산-co-카프로락톤(PLCL)과 같은 고분자를 녹인 용액에 담갔다가 꺼낸 후 동결건조하여 제조된 튜브형 스캐폴드가 사용되고 있다.
이와 같이 튜브형 스캐폴드의 경우 폴리-L-락트산-co-카프로락톤(PLCL)을 이용한 동결건조에 의해 기공을 형성하는 방법이 이용되고는 있지만, PGA나 PLLA는 탄성력이 PLCL에 비해 현저히 낮고 분해 속도를 조절하는 것이 어렵다는 등의 문제점을 가지고 있다.
또한, 기공의 크기 등 스캐폴드의 구조가 고혈압의 조건 하에서 혈액의 누출 없이 인공 혈관의 역할을 수행하는 데에도 한계가 있다. 혈관 재생용 인공 지지체는 내부는 혈액을 재순환시켰을 때 혈관 벽에 존재하는 기공을 통한 혈액 누수를 막을 수 있을 만큼 기공의 크기가 적은 것이 좋고, 또한 외부는 혈관 치유 과정에서는 세포의 부착과 증식이 용이하도록 기공의 크기가 큰 것이 좋기 때문이다.
그 외 PLCL 단독으로 제조된 인공혈관은 주로 동결건조, 캐스팅, 압출 등의 방법에 의해 제조되는데, 이와 같은 제조 방법으로 제조된 인공혈관들은 세포의 파종 효율이 저조하고, 기계적 강도가 약하다는 단점을 가지고 있다. 따라서, 고탄성의 우수한 기계적 강도를 가진 조직공학적 인공혈관용 다공성 스캐폴드의 개발이 여전히 요구되고 있었다.
한편, 전기방사공정은 고전압의 정전기력(electrostatic force)에 의해 낮은 점도 상태의 고분자를 고분자 내의 표면 장력보다 큰 정전기력을 가함으로써 순간적으로 파이버 형태로 방사(spinning)하는 공정을 말한다. 최근에는 나노미터급 섬유를 제조하기 위한 방법으로 이용되어 이에 대한 연구가 활발히 진행되고 있는 추세에 있다. 나노 섬유는 기존의 섬유에서는 얻을 수 없는 다양한 물성을 제공하게 되며, 이러한 나노 섬유로 구성된 웹은 다공성을 갖는 분리막형 소재로서 각종 필터류, 상처치료용 드레싱, 인공지지체 등 다양한 분야에 매우 유용하게 사용될 수 있다.
본 발명은 종래 상기와 같은 문제점을 해결하기 위하여 전기 방사법에 의하여 제조되고 탄성 및 유연성과 같은 기계적 물성이 우수하면서, 생체조직과 유사한 구조와 형태로 세포 적합성이 향상되어 조직재생 치료에 이용 가능한 튜브형 다공성 스캐폴드와 줄기 세포를 이용한 인공 혈관의 제조 방법을 제공하는 것을 목적으로 한다.
본 발명은 또한, 본 발명의 제조방법에 의하여 제조된 인공 혈관을 제공하는 것을 목적으로 한다.
본 발명은 상기와 같은 목적을 달성하기 위하여
이중막 구조의 튜브형 다공성 스캐폴드를 준비하는 단계;
상기 이중막 구조의 튜브형 다공성 스캐폴드에 줄기 세포를 접종하는 단계; 및 상기 줄기 세포가 접종된 이중막 구조의 튜브형 다공성 스캐폴드에 기계적 자극을 인가하는 단계;로 구성되는 이중막 구조의 튜브형 다공성 스캐폴드와 줄기 세포를 이용한 인공 혈관의 제조 방법을 제공한다.
이하, 본 발명의 이중막 구조의 튜브형 다공성 스캐폴드와 줄기 세포를 이용한 인공 혈관의 제조 방법을 상세히 설명한다.
먼저, 이중막 구조의 튜브형 다공성 스캐폴드를 준비한다. 본 발명에 있어서, 상기 이중막 구조의 튜브형 다공성 스캐폴드는 생분해성 고분자 나노 파이버가 무작위로 배열된 막 구조를 형성하는 내막과, 생분해성 고분자 나노 파이버가 원주형(circumferential)으로 배열된 외막을 포함하는 것을 특징으로 한다.
본 발명에 있어서, 상기 이중막 구조의 튜브형 다공성 스캐폴드의 내막과 외막의 구조는 생체 조직 구조를 모방한 것으로서 줄기 세포 기타 세포나 약물, 화합물이 스캐폴드 내부에 접종, 재생, 접착, 포함되기 용이하도록 하면서도 혈관의 누수나 compliance mismatch 를 막아, 효율적이고 우수한 세포 재생효과와 높은 개통율 효과를 얻을 수 있도록 한다.
본 발명에 있어서, 상기 이중막 구조의 튜브형 다공성 스캐폴드는 생분해성 고분자를 포함하는 용액을 일정 속도 v1 으로 회전하는 회전 맨드렐에 전기 방사하여 내막을 형성하는 단계; 및 상기 회전 맨드렐의 회전속도를 v2로 변화시켜 외막을 형성하는 단계;를 포함하는, 전기 방사법에 의하여 제조되는 것을 특징으로 한다.
본 발명에 있어서, 상기 이중막 구조의 튜브형 다공성 스캐폴드를 제조하기 위해 사용되는 상기 생분해성 고분자로는 당업계에 공지된 다양한 인공 지지체용도의 생분해성 고분자를 사용할 수 있고, 바람직하게는 폴리(L-락트산-co-ε-카프로락톤)(Poly(L-lactide-co-ε-caprolactone)), 폴리락트산(PLA), 폴리글리콜산(PGA), 폴리(D,L-락트산-co-글리콜산)(poly(D,L-lactide-coglycolide);PLGA), 폴리(카프로락톤), 디올/디애시드계 지방족 폴리에스테르, 폴리에스테르-아미드/폴리에스테르-우레탄, 폴리에틸렌옥사이드(Polyethylene oxide), 폴리(발레로락톤), 폴리(하이드록시부티레이트) 및 폴리(하이드록시 발러레이트)로 이루어진 군으로부터 선택되는 1종 이상의 합성 고분자, 또는 키토산, 키틴, 알긴산, 콜라겐, 젤라틴 및 히알루론산으로 이루어진 군으로부터 선택되는 1종 이상의 천연 고분자 중 어느 하나 이상의 고분자를 사용할 수 있다.
상기 폴리(L-락트산-co-ε-카프로락톤)는 배열이 일정한 구조를 지니고 있어 유연성 및 탄성 등의 기계적 성질이 우수하고 생분해 기간이 적절하기 때문에 폴리카프로락톤의 단일 중합체를 사용하는 것보다 인공 조직의 지지체로서 적합하다.
전기방사는 정전기장과 도전성 유체 사이의 상호작용을 이용하여 도전성 유체를 미립자화하는 공정이다. 외부 정전기장이 도전성 유체 (예: 세미-희석 중합체 용액 또는 중합체 용융물)에 인가되는 경우, 현수식 원뿔형 소적(suspended conical droplet)이 형성되어 소적의 표면 장력이 전기장과 평형을 이룬다. 정전기적 미립자화는, 정전기장이 액체의 표면 장력을 극복할 정도로 충분히 강한 경우에 발생한다. 이어서, 액체 소적은 불안정하게 되고 소적의 표면으로부터 아주 작은 제트류가 분출된다. 분출물이 접지된 표적물에 도달될 때, 물질은 비교적 미세한, 즉 소직경의 섬유를 포함하는 상호연결된 웹(web)으로서 수집될 수 있다. 이들 소직경 섬유로부터 생성된 필름 (또는 막)은 표면적 대 부피의 비율이 매우 크고 작은 세공 크기를 갖는다.
도 1에 본 발명에 따른 전기 방사 장치의 개략도를 나타내었다. 용매에 용해된 생분해성 고분자를 중합체 용액 (38)이 시린지에 수용된다. 유속은 중합체 스캐폴드의 원하는 물리적 특성, 즉 막 두께, 섬유 직경, 세공 크기, 막 밀도 등에 따라 달라질 것이다. 시린지 펌프(32)는 니들(42)에 중합체 용액을 공급한다. 니들(42)은 간섭 (interference) 없이 제트류의 형성 및 전달을 가능하게 하는 팁 구조를 갖는다. 약 10 내지 약 30 kV 범위의 전하가 와이어(41A)를 통해 고전압 전원 (48)에 의해 니들에 인가된다. 맨드렐(56A)은 하전된 니들(42)과 맨드렐 (56A) 사이에 전기장이 발생되도록 니들(42) 사이에 위치된다. 전기장은 중합체 용액의 제트류가 방적 돌기로부터 분출되고 맨드렐 (56A)을 향해 분무되도록 하여 마이크론 또는 나노미터 직경의 필라멘트 또는 섬유 (46)을 형성한다. 접지선 (41B) 및 (41C)를 사용하여 드릴 척을 접지시킨다.
본 발명의 경우 전기방사에 있어서 회전 맨드렐을 사용한다. 맨드렐은 드릴 척을 통해 모터에 기계적으로 부착된다. 회전 금속 맨드렐은 그 표면에 무작위 생분해성 고분자 나노 파이버의 침착을 일으켜 맨드렐이 제거되는 경우 도관을 생성할 수 있다. 맨드렐을 회전시킴으로써 생분해성 고분자 나노 파이버가 균등하게 적용된 층을 갖는 정렬된 섬유가 제조된다.
맨드렐이 회전하는 속도를 변화시킴으로써 생분해성 고분자 나노 파이버의 원주 방향 정렬이 조절된다. 맨드렐이 느리게 회전할 경우 생분해성 고분자 나노 파이버는 길이 방향으로 정렬되게 되며, 맨드렐의 회전 속도가 증가되면 생분해성 고분자 나노 파이버를 원주 방향으로 정렬되게 된다. 특정 정렬의 각각의 층을 갖는 다층 중공형 도관 스캐폴드를 제조하기 위해, 다양한 맨드렐 및 회전 속도가 이용될 수 있다.
본 발명에 있어서 모터는 약 1 rpm 내지 약 500 rpm의 속도로 맨드렐을 회전시킨다. 맨드렐의 회전 속도는 바람직하게는 200 rpm 내지 약 500 rpm이다. 또 다른 예시적 구현 예에서, 모터 회전 속도는 약 1 rpm 내지 약 100 rpm이다.
본 발명에 있어서 내막의 임의적 배열과 외막의 원주형 배열을 이루기 위해서는 내막을 형성하는 단계에서의 회전 맨드렐의 회전속도와 외막을 형성하는 단계에서의 회전 맨드렐의 회전속도의 비율이 1 : 10 내지 1 : 11인 것이 바람직하다.
또한, 폴리(L-락트산-co-ε-카프로락톤)으로 내막을 형성하고 폴리(L-락트산-co-ε-카프로락톤)로 외막을 형성하는 경우에는 내막 형성시의 회전 맨드렐의 회전속도를 0.2 내지 0.4 m/s 로 하고, 외막을 형성시는 회전 맨드렐의 회전속도를 3 내지 4 m/s로 하는 것이 바람직하다.
본 발명에 있어서, 상기 내막 형성시에, 폴리에틸렌옥사이드를 5 내지 15분간 먼저 방사하고 그 뒤에 폴리(L-락트산-co-ε-카프로락톤)(Poly(L-lactide-co-ε-caprolactone)) 방사하는 것이 바람직하다. 인공 지지체를 대구경 혈관으로 적용함에 있어서는 혈액의 빠른 속도로 인하여 혈액 내 단백질과 혈소판들이 인공 지지체 내부표면에 흡착, 부착하는 정도가 적게 발생하지만, 소구경 혈관에 적용함에 있어서는 혈액 순환 속도가 낮아 인공 지지체 내부표면에 다양한 단백질, 혈소판이 흡착, 부착하게 된다. 이를 개선하기 위하여 단백질과 세포의 부착을 최소화하는 고분자로 알려진 폴리에틸렌옥사이드를 내막의 가장 안쪽 부분으로 하기 위해 먼저 방사함으로서 단백질과 혈소판의 부착을 억제하여 인공 지지체의 개통율을 증대시킬 수 있다. 또한 제조과정에서 폴리에틸렌옥사이드를 먼저 방사할 경우 폴리(L-락트산-co-ε-카프로락톤)을 맨드렐으로부터 쉽게 분리할 수 있다.
기타 생분해성 고분자 나노 파이버를 만들기 위한 전기 방사는 공지된 바의 장치를 이용한 방법이 가능하다. 생분해성 고분자 용액을 제조하기 위해 보다 극성인 용매를 사용하는 경우, 니들과 맨드렐 사이의 거리가 증가함에 따라 평균 섬유 직경이 감소되는 경향이 있다. 장치 전압을 증가시고 중합체 농도를 증가시킬 경우에도 스캐폴드의 직경을 감소시키게 된다.
본 발명에서의 전기방사는 방사거리가 200 내지 220nm 이고 방사용 바늘과 회전하는 맨드렐 사이의 전압이 12 내지 20KV로 작용하여 전기방사를 수행하며 바람직하기로는 14 내지 16KV로 작용하여 전기방사를 수행한다.
다음으로, 이와 같이 제조된 상기 이중막 구조의 튜브형 다공성 스캐폴드에 줄기 세포를 접종한다.
본 발명에 있어서, 상기 이중막 구조의 튜브형 다공성 스캐폴드 내에 접종될 수 있는 줄기 세포는 중간엽줄기세포(mesenchymal stem cells), 조혈줄기세포(hematopoietic stem cells), 태아줄기세포(fetal cell-derived), 지방줄기세포, 제대혈줄기세포, 혈관모세포(hemangioblast), 혈관내피세포(vascular endothelial cell), 혈관평활근세포(vascular smooth muscle cell) 조혈줄기세포(hematopoietic stem cell) 및 배아줄기세포 (embryonic stem cells)로 구성된 군에서 선택되는 것이 바람직하다.
상기 이중막 구조의 튜브형 다공성 스캐폴드에 줄기 세포를 접종하는 단계는 구체적으로 줄기 세포를 배양액 내에 서스펜딩시키고, 상기 줄기 세포를 포함하는 배양액을 상기 이중막 구조의 튜브형 다공성 스캐폴드의 내막 부분에 접종하는 제 1 단계; 상기 제 1 단계의 이중막 구조의 튜브형 다공성 스캐폴드를 이산화탄소 분위기에서 0.5 내지 5 rpm 의 속도로 1 시간 내지 6시간 동안 회전시켜서 줄기 세포를 상기 이중막 구조의 튜브형 다공성 스캐폴드의 내막에 정착시키는 제 2 단계; 줄기 세포를 배양액 내에 서스펜딩시키고, 상기 줄기 세포를 포함하는 배양액을 상기 제 2 단계의 이중막 구조의 튜브형 다공성 스캐폴드의 외막 부분에 접종하는 제 3 단계; 및 상기 제 3 단계의 이중막 구조의 튜브형 다공성 스캐폴드를 이산화탄소 분위기에서 0.5 내지 5 rpm 의 속도로 15 시간 내지 30시간 동안 회전시켜서 줄기 세포를 상기 이중막 구조의 튜브형 다공성 스캐폴드의 외막에 정착시키는 제 4 단계를 포함한다.
본 발명에 있어서, 상기 이중막 구조의 튜브형 다공성 스캐폴드에 줄기 세포를 접종하는 단계에서는 줄기 세포를 상기 이중막 구조의 튜브형 다공성 스캐폴드의 내면과 외면에 각각 별도로 접종시킬 뿐만 아니라, 상기 접종된 줄기 세포가 상기 이중막 구조의 튜브형 다공성 스캐폴드의 내부에서도 배양되고, 스캐폴드에 정착되도록 하기 위해 상기 이중막 구조의 튜브형 다공성 스캐폴드를 회전시키는 것을 특징으로 한다.
상기 이중막 구조의 튜브형 다공성 스캐폴드를 회전시키는 방법은 특별히 한정되지 않으며 당업자에게 알려진 방법을 사용할 수 있다. 도 2에 본 발명자가 상기 이중막 구조의 튜브형 다공성 스캐폴드를 회전시키기 위해 사용한 방법을 간략히 나타내었다. 도 2에서 보는 바와 같이 상기 본 발명의 이중막 구조의 튜브형 다공성 스캐폴드를 배양액을 포함하는 튜브 타입 시험관안에 고정되도록 침지시키고, 세포가 포함된 배지를 넣고, 상기 튜브 타입 시험관을 회전시킴으로써, 상기 접종된 줄기 세포가 스캐폴드 내에 정착되도록 하는 것이 가능하다.
또한, 본 발명에 있어서, 상기 배양액은 혈관 내피세포 성장인자, 섬유아세포 성장인자, 신경조직 성장인자, 혈소판 유래 성장 인자, 헤파린, 트롬빈, 라미닌, 피브로넥틴 및 콜라겐으로 이루어지는 군으로부터 선택되는 하나 이상을 포함하는 것이 바람직하다.
또한, 본 발명에 있어서, 상기 접종된 줄기 세포가 이중막 구조의 튜브형 다공성 스캐폴드의 내부에서는 혈관 내피 세포로 분화되고, 외부에서는 평활근세포로 분화되도록 하기 위해 상기 이중막 구조의 튜브형 다공성 스캐폴드의 내부와 외부의 배양액을 다르게 사용하는 것이 가능하다. 즉, 이중막 구조의 튜브형 다공성 스캐폴드의 내부에는 혈관 내피세포 성장 인자를 추가한 배양액을 사용하고, 외부에는 평활근 세포 성장 인자를 추가한 배양액을 사용하는 것이 바람직하다.
본 발명의 이중막 구조의 튜브형 다공성 스캐폴드와 줄기 세포를 이용한 인공 혈관의 제조 방법에 있어서, 다음으로, 상기와 같이 줄기 세포가 접종된 상기 이중막 구조의 튜브형 다공성 스캐폴드에 기계적 자극을 인가하여 줄기 세포의 분화를 촉진시킨다.
본 발명에 있어서, 상기 줄기 세포가 접종된 이중막 구조의 튜브형 다공성 스캐폴드에는 기계적 자극으로서 전단 응력과 인장력을 인가하게 되며, 구체적으로 기계적 자극을 인가하는 단계는 상기 줄기 세포가 접종된 이중막 구조의 튜브형 다공성 스캐폴드에 전단 응력을 인가하는 단계; 및 상기 줄기 세포가 접종된 이중막 구조의 튜브형 다공성 스캐폴드에 인장력을 인가하는 단계를 포함하는 것을 특징으로 한다.
본 발명에 있어서, 상기 줄기 세포가 접종된 이중막 구조의 튜브형 다공성 스캐폴드에 전단 응력과 인장력을 인가하는 방법은 특별히 제한되지 않으며, 당업자들에게 일반적으로 알려진 방법을 사용하는 것이 가능하다.
구체적으로 상기 전단 응력을 인가하기 위해서는 상기 줄기 세포가 접종된 이중막 구조의 튜브형 다공성 스캐폴드를 내피 세포 배양액에 침지시키고, 상기 내피 세포 배양액의 흐름에 의하여 상기 줄기 세포가 접종된 이중막 구조의 튜브형 다공성 스캐폴드의 단위 면적당 2 dyne/cm2내지 5 dyne/cm2의 전단 응력을 20시간 내지 30시간 동안 인가하는 것이 바람직하다.
또한, 상기 인장력을 인가하는 단계에서는 제 1 인장력 인가 후, 상기 제 1 인장력보다 크기가 증가된 제 2 인장력을 인가하는 방법으로 크기가 다른 2가지 인장력을 인가하는 것이 바람직하며, 3 % 내지 5 % 의 인장력을 인가하는 것이 바람직하다.
본 발명은 또한, 본 발명의 제조 방법에 의하여 제조된 인공 혈관을 제공한다. 본 발명의 인공 혈관은 지름이 2 mm 내지 5 mm 인 것을 특징으로 한다.
본 발명의 제조 방법에 의하여 제조된 인공 혈관은 내막에는 중간엽 줄기 세포로부터 분화된 혈관 내피 세포, 외막에는 중간엽 줄기 세포로부터 분화된 평활 근육 세포가 포함되어 있는 것을 특징으로 한다.
본 발명은 생분해성 고분자 나노 파이버가 무작위로 배열된 막 구조를 형성하는 내막과, 생분해성 고분자 나노 파이버가 원주형(circumferential)으로 배열된 외막을 포함하는 이중막 구조의 튜브형 다공성 스캐폴드를 이용하여, 세포가 쉽게 부착하고 성장 촉진이 가능할 뿐만 아니라 후에 자연적으로 생분해되어 인체에 흡수되는 특성이 있으므로 손상된 조직 재생에 유용하다.
또한, 이중막 구조의 튜브형 다공성 스캐폴드의 내막과 외막에 각각 줄기 세포 접종 후 회전시켜서 줄기 세포가 안정적으로 고정 분화하도록 할 뿐만 아니라, 전단 응력과 인장력에 의하여 이중막 구조의 튜브형 다공성 스캐폴드의 내막에는 혈관 내피 세포가 분화되고, 외막에는 평활근 세포로 각각 분화되어, 내부는 혈액을 순환시켰을 때 혈관 벽에 존재하는 기공을 통한 혈액 누수를 막을 수 있을 뿐만 아니라, 외부는 혈관 치유 과정에서는 세포의 부착과 증식이 용이한 효과를 나타낸다.
도 1에 본 발명에 따른 전기 방사 장치의 개략도를 나타내었다.
도 2에 본 발명자가 상기 이중막 구조의 튜브형 다공성 스캐폴드를 회전시키기 위해 사용한 방법을 나타내었다.
도 3은 이중막 구조의 튜브형 다공성 스캐폴드의 크기를 나타내는 사진이고,
도 4는 이중막 구조의 튜브형 다공성 스캐폴드의 SEM 사진을 나타내었다.
도 5는 본 발명의 일 실시예에서 제조된 이중막 구조의 튜브형 다공성 스캐폴드 내부에 압력을 증가시키면서 지름의 증가율을 측정한 결과를 나타내었다.
도 6은 배양된 중간엽 줄기세포의 사진을 나타내었다.
도 7은 본 발명의 일 실시예에 의하여 이중막 구조의 튜브형 다공성 스캐폴드에 전단 응력을 인가하는 시스템을 모식적으로 나타내었다.
도 8은 전단 응력 인가에 따른 줄기 세포의 분화 정도를 RT-PCR 에 의하여 측정한 결과를 나타낸다.
도 9는 전단 응력 인가 시간에 따른 줄기 세포의 분화 정도를 면역형광염색법에 의하여 측정한 결과를 나타낸다.
도 10, 도 11 은 전단 응력 인가 시간에 따른 줄기 세포의 분화 정도를 RT-PCR 에 의하여 측정한 결과를 나타낸다.
도 12, 도 13은 인장력 인가에 따른 이중막 구조의 튜브형 다공성 스캐폴드의 내막 줄기 세포의 분화 정도를 RT-PCR 에 의하여 측정한 결과를 나타낸다.
도 14, 도 15는 인장력 인가에 따른 이중막 구조의 튜브형 다공성 스캐폴드의 내막 줄기 세포의 분화 정도를 RT-PCR 에 의하여 측정한 결과를 나타낸다.
이하에서는 본 발명을 실시예에 의하여 상세히 설명한다.
<실시예 1> 이중막 구조의 튜브형 다공성 스캐폴드 제조
전기방사 시스템으로서 high-voltage power supply(SHV200RD-40K, ConverTesh Co,. Ltd.), 실린지 펌프(KDS100, KD Scientific), 실린지, 18G 니들, 니들을 위 아래로 동작시키는 CAM, 그리고 5개의 회전 맨드렐(mandel)로 구성되어져 있다. 회전 맨드렐은 servo-motor system을 사용하여 동작시켰다.
내막의 임의의 배열을 형성하기 위한 전기방사 조건은 하기와 같다. 전기방사하는 거리는 220nm, 회전하는 맨드렐의 회전속도는 0.3m/s, 폴리에틸렌옥사이드 방사시 전기 방사하는 니들(needle)의 전압은 14KV로 하고, 폴리(L-락트산-co-ε-카프로락톤) 방사시 전기 방사하는 니들(needle)의 전압은 16KV로 조절하였다. 니들에 투입되는 폴리에틸렌옥사이드의 농도는 30%(w/v), 공급율은 2ml/h, 폴리(L-락트산-co-ε-카프로락톤)의 농도는 13%(w/v), 공급율은 1.7ml/h이다.
먼저 폴리에틸렌옥사이드(PEO, MW:100,000)를 증류수에 녹여 30%(w/v)의 폴리에틸렌옥사이드 용액을 제조하고 상기 폴리에틸렌옥사이드 용액을 전기방사용 니들(needle)에 투입하였다. 0.3m/s로 회전하는 맨드렐에 상기 조건으로 10분간 방사하였다.
이후, 폴리(L-락트산-co-ε-카프로락톤)(Poly(L-lactide-co-ε-caprolactone, 50:50, MW: 125 kDa))을 증류수에 녹여 13%(w/v)의 폴리(L-락트산-co-ε-카프로락톤) 용액을 제조하고 전기방사용 니들(needle)에 투입하였다. 0.3 m/s로 회전하는 상기 방사된 폴리에틸렌옥사이드 위에 상기 니들에 투입된 폴리(L-락트산-co-ε-카프로락톤)용액을 2시간 동안 방사하여 내막을 제조하였다. 이후, 회전하는 맨드렐의 회전속도를 3.14 m/s로 증가시켜 1시간 동안 방사하여 상기 내막과 연속적으로 연결된 외막을 제조하였다.
이중막 구조의 튜브형 다공성 스캐폴드의 크기를 나타내는 사진을 도 3으로, 이중막 구조의 튜브형 다공성 스캐폴드의 SEM 사진을 도 4로 나타내었다. 도 3에서 제조된 스캐폴드의 길이가 5 cm 이고, 도 4에서 이중막 구조의 튜브형 다공성 스캐폴드의 내부와 외부에서 PLCL 의 배열이 다르다는 것을 확인할 수 있다.
<실험예 1> 이중막 구조의 튜브형 다공성 스캐폴드의 탄성도 측정
본 발명의 이중막 구조의 튜브형 다공성 스캐폴드가 혈관 내에서 받는 압력에 의한 탄성도를 시험하기 위하여 상기 실시예 1에서 제조된 이중막 구조의 튜브형 다공성 스캐폴드 내부에 압력을 증가시키면서 인가하여 지름의 증가율을 측정하고, 그 결과를 도 5에 나타내었다.
도 5에서 보는 바와 같이 122 mmHg 의 압력을 인가할 때까지 이중막 구조의 튜브형 다공성 스캐폴드의 지름이 압력에 비례하여 증가하여 높은 탄성도를 나타냄을 알 수 있다.
<실시예 2> 이중막 구조의 튜브형 다공성 스캐폴드에 중간엽 줄기 세포 접종
Lonza Walersville 에서 구입한 중간엽 줄기 세포를 MSC growth medium BulletKit (PT-3001, Lonza) 에서 배양하였으며, 배양된 중간엽 줄기세포의 사진을 도 6에 나타내었다.
상기 실시예 1에서 제조된 이중막 구조의 튜브형 다공성 스캐폴드를 알코올의 농도를 희석시키면서 멸균하였다. 이후, 배양액에서 4시간 동안 pre-warmed 시켰다. 이후, 피브로 넥틴을 8 ㎍/㎠ 의 농도로 표면을 코팅하였다.
5 계대(passage 5) 중간엽 줄기 세포를 EGM-2 미디엄(Lonza)에 서스펜딩 시킨 후, 상기 실시예 1에서 제조된 이중막 구조의 튜브형 다공성 스캐폴드의 내강에 접종시켰다.
5 계대(passage 5) 중간엽 줄기 세포를 SGM-2 미디엄(Invitrogen, Carlsbad, CA) 에 서스펜딩 시킨 후, 상기 실시예 1에서 제조된 이중막 구조의 튜브형 다공성 스캐폴드의 외막에 5*105 cells/cm2 접종시켰다. endothelial cell growth medium (EGM-2)과 smooth muscle cell growth medium (SmGM-2) 은 구체적으로 다음과 같이 구성된다.
표 1
endothelial cell growth medium (EGM-2) smooth muscle cell growthmedium(SmGM-2)
No BBE (Bovine Brain Extract) hEGF
Hegf insulin
Hydrocortisone hFGF-B
GA-1000 (Gentamicin, Amphotericin-B) FBS
FBS (Fetal Bovine Serum) 10 ml gentamicin/amphotericin-B
VEGF
hFGF-B
R3-IGF-1
Ascorbic Acid
Heparin
이후, 도 2에 나타낸 시스템으로 1 rpm 에서 24시간 동안 회전시켰다.
<실시예 3> 전단 응력 인가
상기 실시예 2에서 중간엽 줄기 세포가 접종된 이중막 구조의 튜브형 다공성 스캐폴드에 기계적 자극을 인가하기 위하여 도 7에 모식적으로 나타낸 시스템과 같이 구성하였다.
먼저, 전단 응력을 인가하기 위해 도 7에서 보는 바와 같이, 상기 실시예 2에서 중간엽 줄기 세포가 접종된 이중막 구조의 튜브형 다공성 스캐폴드를 챔버의 배양액에 침지시키고, 상기 배양액에 펌프(pulsatile pump)를 연결하여, 챔버 내부에서 배양액의 흐름을 유도하고, 이로 인하여 상기 실시예 2의 이중막 구조의 튜브형 다공성 스캐폴드에 접종된 중간엽 줄기 세포에 2.5 dyne/cm2,10dyne/cm2 두가지 크기의 전단 응력을 인가하였다. 비교예로서 전단 응력이 인가되지 않는 배지에서 중간엽 줄기 세포를 배양하였다.
<실험예 2> 줄기 세포 분화 정도 측정
2-1. RT-PCR에 의한 확인
실시예 2에서 2.5 dyne/cm2,10dyne/cm2 크기의 전단 응력을 인가하면서 배양한 중간엽 줄기 세포 및 비교예에서 전단 응력을 인가하지 않고 배양한 중간엽줄기 세포가 EC 및 SMC 로 분화되었는지 확인하기 위하여 혈관 내피 세포 및 평활근 세포 특이적인 마커 유전자(marker genes)들의 발현을 RT-PCR을 통해 알아보았다.
유전자 발현 분석은 총 RNA를 세포에서 분리한 후, 역전사 효소를 이용하여 cDNA를 합성하여 각각의 유전자에 특이적인 프라이머를 이용하여 PCR (polymerase-chain reaction)법으로 분석하였다.
그 결과, 도 8에 나타난 바와 같이, 2.5 dyne/cm2 크기의 전단 응력을 인가한 경우 혈관내피 세포 특이적 마커인 CD31 의 발현이 증가하였으며, 10 dyne/cm2 크기의 전단 응력을 인가한 경우 평활근 세포 특이적인 마커인 myocardin, MHC 의 발현이 증가하였다.
2-2.면역형광염색법에 의한 확인
혈관 내피 세포 및 평활근 세포로의 분화 여부를 단백질 수준에서 확인하기 위하여, 혈관 내피 세포 및 평활근 세포 특이적 마커의 발현 여부를 면역형광염색으로 알아보았다.
혈관 내피 세포 및 평활근 세포로로 분화된 중간엽줄기세포를 혈관 내피 세포 및 평활근 세포 특이적 마커로 염색하기 위해, 먼저, 상기 실시예 2에서 배양된 세포를 4% paraformaldehyde로 20 분간 실온에서 고정시킨 후, 세포막 투과를 위해 permeabilized in 0.2% triton X-100 에서 10분간 처리하고, PBST 용액(PBS에 0.1% Tween-20 첨가)으로 5분간 3번 세척한다.
그리고, 항체가 핵까지 세포를 투과(permeabilization)될 수 있게 하기 위해서 투과용액(PBS에 0.1% Triton X-100 첨가)을 배양 접시에 넣고, 15분간 실온에서 두었다. 15분 후, 투과용액을 제거하고, 4% FBS(Fetal Bovine Serum)를 넣어 주어, 1시간 동안 실온에서 블록킹(blocking)을 실시하였다. 그리고 나서, 블록킹 용액에 α-smooth muscle actin (α-SMA), Calponin (Sigma-Aldrich), von Willebrand Factor (vWF), Flk-1/KDR (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) 항체를 희석하여 배양접시에 넣어준 후, 4℃에서 하루동안 넣어두었다. 다음날, 위의 표시인자들의 발현여부를 형광현미경을 이용하여, 육안으로 확인하기 위해, 이들 표시인자들의 항체에 대한 2차 항체들(FITC(1:50) 또는 TRITC(1:200) 가 결합된 항체)를 붙인 후, 1시간 동안 실온에 방치한다. 1시간 후, PBST 용액으로 10분간 5번 세척한 후, 형광현미경을 통해 표시인자들의 발현 여부를 확인하였다.
그 결과, 도 9에 나타난 바와 같이, 2.5 dyne/cm2 크기의 전단 응력을 인가한 경우 혈관 내피 세포 특이적 마커인 vWF 는 발현양이 증가하였다.
2-3. 전단 응력 인가 시간에 따른 발현양 확인
2.5 dyne/cm2 크기의 전단 응력을 인가한 경우 인가하는 시간에 따른 혈관내피 세포 특이적 마커인 vWF, CD31, VE-cadherin, E-selectin 와 평활 근육 세포 특이적 마커인 a-SMA, Calponin, Caldesmon의 발현양을 측정하였으며, 그 결과를 각각 도 10, 도 11 에 나타내었다.
도 10, 도 11 에서 혈관 내피 세포 특이적 마커, 평활근 세포 특이적 마커의 경우 24시간 동안 전단 응력을 인가하는 경우 발현양이 가장 크게 나타남을 확인할 수 있다.
<실시예 4> 인장력 인가
다음으로 상기 실시예 3에서 전단 응력이 인가된 상태에서 배양된 중간엽 줄기 세포에 대해 주기적인 인장력을 인가하면서 혈관 내피 세포 및 평활 근육 세포로의 발현 정도를 측정하였다.
인장력을 인가하기 위해 상기 도 7에 나타낸 시스템에서 상기 이중막 구조의 튜브형 다공성 스캐폴드의 양단을 고정시킨 상태에서 인장력을 인가하였다. 3% 인장력을 주기적으로 3일간 인가한 후 5% 인장력을 주기적으로 1일간 인가하는 경우를 실시예로, 인장력을 인가하지 않은 상태를 비교예로 하였다.
<실험예 3> 줄기 세포 분화 정도 측정
3-1. RT-PCR에 의한 확인
3% 인장력을 주기적으로 3일간 인가한 후 5% 인장력을 주기적으로 1일간 인가하면서 세포, 인장력을 인가하지 않고 배양한 중간엽 줄기 세포가 각각 EC 및 SMC 로 분화되었는지 확인하기 위하여 혈관 내피 세포 및 평활근 세포 특이적인 마커 유전자(marker genes)들의 발현을 상기 실험예 2와 동일한 방법으로 RT-PCR을 통해 알아보았다.
이중막 구조의 튜브형 다공성 스캐폴드의 내막 세포에 대해 혈관 내피 세포 특이적 마커인 vWF, CD31, VE-cadherin, E-selectin 의 발현양을 측정한 결과를 도 12, 평활근 세포 특이적 마커인 a-SMA, Calponin, Caldesmon의 발현양을 측정한 결과를 도 13에 나타내었다.
내막의 중간엽 줄기 세포의 경우 도 12에서 3% 인장력만을 인가한 경우보다 크기가 증가된 5% 인장력을 추가로 인가한 경우 혈관 내피 세포 특이적 마커인 vWF, CD31, VE-cadherin, E-selectin 의 발현양이 급격히 증가하는 것을 확인할 수 있다.
또한, 외막의 중간엽 줄기 세포의 경우 도 13에서 3% 인장력만을 인가한 경우보다 크기가 증가된 5% 인장력을 추가로 인가한 경우 평활 근육 세포 특이적 마커인 a-SMA, Calponin, Caldesmon의 발현양이 크게 증가하는 것을 확인할 수 있다.
이중막 구조의 튜브형 다공성 스캐폴드의 외막 세포에 대해 혈관 내피 세포 특이적 마커, 평활 근육 세포 특이적 마커의 발현양을 측정한 결과를 도 14, 도 15에 나타내었다.
외막의 중간엽 줄기 세포의 경우에도 도 14에서 3% 인장력만을 인가한 경우보다 크기가 증가된 5% 인장력을 추가로 인가한 경우 혈관 내피 세포 특이적 마커인 vWF, CD31, VE-cadherin, E-selectin 의 발현양이 급격히 증가하는 것을 확인할 수 있다.
또한, 외막의 중간엽 줄기 세포의 경우 도 15에서 3% 인장력만을 인가한 경우보다 크기가 증가된 5% 인장력을 추가로 인가한 경우 평활 근육 세포 특이적 마커인 a-SMA, Calponin, Caldesmon의 발현양이 크게 증가하는 것을 확인할 수 있다.
특히 평활 근육 세포 특이적 마커인 a-SMA, Calponin, Caldesmon의 경우 5% 인장력을 추가로 인가한 경우의 외막 세포에서 발현양이 가장 크게 증가하는 것을 확인할 수 있다.
본 발명은 생분해성 고분자 나노 파이버가 무작위로 배열된 막 구조를 형성하는 내막과, 생분해성 고분자 나노 파이버가 원주형(circumferential)으로 배열된 외막을 포함하는 이중막 구조의 튜브형 다공성 스캐폴드를 이용하여, 세포가 쉽게 부착하고 성장 촉진이 가능할 뿐만 아니라 후에 자연적으로 생분해되어 인체에 흡수되는 특성이 있으므로 손상된 조직 재생에 유용하다.
또한, 이중막 구조의 튜브형 다공성 스캐폴드의 내막과 외막에 각각 줄기 세포 접종 후 회전시켜서 줄기 세포가 안정적으로 고정 분화하도록 할 뿐만 아니라, 전단 응력과 인장력에 의하여 이중막 구조의 튜브형 다공성 스캐폴드의 내막에는 혈관 내피 세포가 분화되고, 외막에는 평활근 세포로 각각 분화되어, 내부는 혈액을 순환시켰을 때 혈관 벽에 존재하는 기공을 통한 혈액 누수를 막을 수 있을 뿐만 아니라, 외부는 혈관 치유 과정에서는 세포의 부착과 증식이 용이한 효과를 나타낸다.

Claims (15)

  1. 이중막 구조의 튜브형 다공성 스캐폴드를 준비하는 단계;
    상기 이중막 구조의 튜브형 다공성 스캐폴드에 줄기 세포를 접종하는 단계; 및
    상기 줄기 세포가 접종된 이중막 구조의 튜브형 다공성 스캐폴드에 기계적 자극을 인가하는 단계;로 구성되는 이중막 구조의 튜브형 다공성 스캐폴드와 줄기 세포를 이용한 인공 혈관의 제조 방법.
  2. 제 1 항에 있어서,
    상기 이중막 구조의 튜브형 다공성 스캐폴드는 생분해성 고분자 나노 파이버가 무작위로 배열된 막 구조를 형성하는 내막과, 생분해성 고분자 나노 파이버가 원주형(circumferential)으로 배열된 외막을 포함하는 것을 특징으로 하는 방법.
  3. 제 2 항에 있어서,
    상기 이중막 구조의 튜브형 다공성 스캐폴드는
    생분해성 고분자를 포함하는 용액을 일정 속도 v1 으로 회전하는 회전 맨드렐에 전기 방사하여 내막을 형성하는 단계; 및
    상기 회전 맨드렐의 회전속도를 v2로 변화시켜 외막을 형성하는 단계;를 포함하는, 전기 방사법에 의하여 제조되는 것을 특징으로 하는 방법.
  4. 제 3 항에 있어서,
    상기 이중막 구조의 튜브형 다공성 스캐폴드의 상기 내막 형성시 회전 맨드렐의 회전속도 v1과 상기 외막 형성시 회전 맨드렐의 회전속도 v2 의 비율이 1 : 10 내지 1 : 11 인 것을 특징으로 하는 방법.
  5. 제 2 항에 있어서,
    상기 생분해성 고분자는, 폴리(L-락트산-co-ε-카프로락톤)(Poly(L-lactide-co-ε-caprolactone)), 폴리락트산(PLA), 폴리글리콜산(PGA), 폴리(D,L-락트산-co-글리콜산)(poly(D,L-lactide-coglycolide);PLGA), 폴리(카프로락톤), 디올/디애시드계 지방족 폴리에스테르, 폴리에스테르-아미드/폴리에스테르-우레탄, 폴리에틸렌옥사이드(Polyethylene oxide), 폴리(발레로락톤), 폴리(하이드록시부티레이트) 및 폴리(하이드록시 발러레이트)로 이루어진 군으로부터 선택되는 1종 이상의 합성 고분자 또는 키토산, 키틴, 알긴산, 콜라겐, 젤라틴 및 히알루론산으로 이루어진 군으로부터 선택되는 1종 이상의 천연 고분자인 것을 특징으로 하는 방법.
  6. 제 1 항에 있어서,
    상기 줄기 세포는 중간엽줄기세포(mesenchymal stem cells), 조혈줄기세포(hematopoietic stem cells), 태아줄기세포(fetal cell-derived), 지방줄기세포, 제대혈줄기세포, 혈관모세포(hemangioblast), 혈관내피세포(vascular endothelial cell), 혈관평활근세포(vascular smooth muscle cell) 조혈줄기세포(hematopoietic stem cell) 및 배아줄기세포 (embryonic stem cells)로 구성된 군에서 선택되는 것을 특징으로 하는 방법.
  7. 제 1 항에 있어서,
    상기 이중막 구조의 튜브형 다공성 스캐폴드에 줄기 세포를 접종하는 단계에서는
    줄기 세포를 내피 세포 배양액 내에 서스펜딩시키고, 상기 줄기 세포를 포함하는 세포 배양액을 상기 이중막 구조의 튜브형 다공성 스캐폴드의 내막 부분에 접종하는 제 1 단계;
    상기 제 1 단계의 이중막 구조의 튜브형 다공성 스캐폴드를 0.5 내지 5 rpm 의 속도로 1 시간 내지 6시간 동안 회전시켜서 줄기 세포를 상기 이중막 구조의 튜브형 다공성 스캐폴드의 내막에 정착시키는 제 2 단계;
    줄기 세포를 배양액 내에 서스펜딩시키고, 상기 줄기 세포를 포함하는 배양액을 상기 제 2 단계의 이중막 구조의 튜브형 다공성 스캐폴드의 외막 부분에 접종하는 제 3 단계; 및
    상기 제 3 단계의 이중막 구조의 튜브형 다공성 스캐폴드를 0.5 내지 5 rpm 의 속도로 15 시간 내지 30시간 동안 회전시켜서 줄기 세포를 상기 이중막 구조의 튜브형 다공성 스캐폴드의 외막에 정착시키는 제 4 단계를 포함하는 것을 특징으로 하는 방법.
  8. 제 7 항에 있어서,
    상기 배양액은 혈관 내피세포 성장인자, 섬유아세포 성장인자, 신경조직 성장인자, 혈소판 유래 성장 인자, 헤파린, 트롬빈, 라미닌, 피브로넥틴 및 콜라겐으로 이루어지는 군으로부터 선택되는 하나 이상을 포함하는 것을 특징으로 하는 방법.
  9. 제 1 항에 있어서,
    상기 줄기 세포가 접종된 이중막 구조의 튜브형 다공성 스캐폴드에 기계적 자극을 인가하는 단계는
    상기 줄기 세포가 접종된 이중막 구조의 튜브형 다공성 스캐폴드에 전단 응력을 인가하는 단계; 및
    상기 줄기 세포가 접종된 이중막 구조의 튜브형 다공성 스캐폴드에 인장력을 인가하는 단계를 포함하는 것을 특징으로 하는 방법.
  10. 제 9 항에 있어서,
    상기 전단 응력을 인가하는 단계에서는 상기 줄기 세포가 접종된 이중막 구조의 튜브형 다공성 스캐폴드를 내피 세포 배양액에 침지시키고, 상기 내피 세포 배양액의 흐름에 의하여 상기 줄기 세포가 접종된 이중막 구조의 튜브형 다공성 스캐폴드의 단위 면적당 2 dyne/cm2내지 5 dyne/cm2의 전단 응력을 20시간 내지 30시간 동안 인가하는 것을 특징으로 하는 방법.
  11. 제 9 항에 있어서,
    상기 인장력을 인가하는 단계에서는 3 % 내지 5 % 의 인장력을 인가하는 것을 특징으로 하는 방법.
  12. 제 11 항에 있어서,
    상기 인장력을 인가하는 단계에서는 제 1 인장력 인가 후, 상기 제 1 인장력보다 크기가 증가된 제 2 인장력을 인가하는 것을 특징으로 하는 방법.
  13. 제 1 항 내지 제 12 항 중 어느 하나의 제조 방법에 의하여 제조된 인공 혈관
  14. 제 13 항에 있어서,
    상기 인공 혈관은 지름이 2 mm 내지 5 mm 인 것을 특징으로 하는 인공 혈관
  15. 제 13 항에 있어서
    상기 인공 혈관은 내막에는 중간엽 줄기 세포로부터 분화된 혈관 내피 세포, 외막에는 중간엽 줄기 세포로부터 분화된 평활 근육 세포가 포함되어 있는 것을 특징으로 하는 인공 혈관
PCT/KR2011/008816 2011-03-31 2011-11-17 이중막 구조의 튜브형 다공성 스캐폴드와 줄기 세포를 이용한 인공 혈관의 제조 방법 및 이에 의하여 제조된 인공 혈관 WO2012134024A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/299,748 US9683216B2 (en) 2011-03-31 2011-11-18 Method for preparation of artificial blood vessel using tube-type porous biodegradable scaffold having a double-layered structure and stem cell, and artificial blood vessel made by the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110029816A KR101816286B1 (ko) 2011-03-31 2011-03-31 생분해성 고분자 나노 파이버의 배열이 서로 다른 내막과 외막이 연속적으로 연결된 다중막 구조의 튜브형 다공성 스캐폴드 및 이의 제조방법.
KR10-2011-0029816 2011-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/299,748 Continuation US9683216B2 (en) 2011-03-31 2011-11-18 Method for preparation of artificial blood vessel using tube-type porous biodegradable scaffold having a double-layered structure and stem cell, and artificial blood vessel made by the same

Publications (1)

Publication Number Publication Date
WO2012134024A1 true WO2012134024A1 (ko) 2012-10-04

Family

ID=46931673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008816 WO2012134024A1 (ko) 2011-03-31 2011-11-17 이중막 구조의 튜브형 다공성 스캐폴드와 줄기 세포를 이용한 인공 혈관의 제조 방법 및 이에 의하여 제조된 인공 혈관

Country Status (2)

Country Link
KR (1) KR101816286B1 (ko)
WO (1) WO2012134024A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008877A1 (ko) * 2013-07-16 2015-01-22 영남대학교 산학협력단 단일공정에 의한 이중층 스캐폴드의 제조방법 및 상기 제조방법에 의해 얻어진 이중층 스캐폴드를 이용한 조직 재생방법
CN116617460A (zh) * 2023-05-29 2023-08-22 中国人民解放军陆军军医大学 一种体外内皮化血管植入物及其制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101960598B1 (ko) * 2017-07-12 2019-03-20 서울대학교병원 3d 프린팅 인공기관 지지체 및 이의 제조방법
KR102241492B1 (ko) * 2019-03-29 2021-04-16 서울대학교 산학협력단 배열 방식을 달리한 나노 섬유로 형성된 이중층 구조의 인공혈관 및 이의 제조방법
KR102504479B1 (ko) * 2020-10-12 2023-03-03 한양대학교 산학협력단 삼차원 인공 튜브형 스캐폴드 및 이의 제조 방법
KR20230140034A (ko) * 2022-03-29 2023-10-06 주식회사 에이알씨코리아 보철용 고분자 스캐폴드 및 이의 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09512184A (ja) * 1994-04-29 1997-12-09 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド 内皮下細胞外基質上の内皮を利用する改善された血液接触表面
US20060240061A1 (en) * 2005-03-11 2006-10-26 Wake Forest University Health Services Tissue engineered blood vessels
KR100932688B1 (ko) * 2007-07-06 2009-12-21 한국과학기술연구원 인공혈관용 이중막 구조의 튜브형 다공성 스캐폴드 및 그의제조방법
US20110064810A1 (en) * 2010-11-18 2011-03-17 Jalaledin Ghanavi Tissue engineering method for organ reconstruction using injectable matrix

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09512184A (ja) * 1994-04-29 1997-12-09 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド 内皮下細胞外基質上の内皮を利用する改善された血液接触表面
US20060240061A1 (en) * 2005-03-11 2006-10-26 Wake Forest University Health Services Tissue engineered blood vessels
KR100932688B1 (ko) * 2007-07-06 2009-12-21 한국과학기술연구원 인공혈관용 이중막 구조의 튜브형 다공성 스캐폴드 및 그의제조방법
US20110064810A1 (en) * 2010-11-18 2011-03-17 Jalaledin Ghanavi Tissue engineering method for organ reconstruction using injectable matrix

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. VENUGOPAL ET AL.: "Interaction of Cells and Nanofiber Scaffolds in Tissue Engineering", JOURNAL OF BIOMEDICAL MATERIAL RESEARCH PART B: APPLIED BIOMATERIALS, vol. 84B, no. 1, 2008, pages 34 - 48 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008877A1 (ko) * 2013-07-16 2015-01-22 영남대학교 산학협력단 단일공정에 의한 이중층 스캐폴드의 제조방법 및 상기 제조방법에 의해 얻어진 이중층 스캐폴드를 이용한 조직 재생방법
CN105611952A (zh) * 2013-07-16 2016-05-25 岭南大学校产学协力团 通过单步过程制备双层支架的方法以及利用由该制备方法获得的双层支架进行组织再生的方法
CN105611952B (zh) * 2013-07-16 2018-05-29 岭南大学校产学协力团 通过单步过程制备双层支架的方法以及利用由该制备方法获得的双层支架进行组织再生的方法
US10864300B2 (en) 2013-07-16 2020-12-15 Research Cooperation Foundation Of Yeungnam University Method for preparing bilayer scaffold through single process and method for regenerating tissue using bilayer scaffold obtained by preparing method
CN116617460A (zh) * 2023-05-29 2023-08-22 中国人民解放军陆军军医大学 一种体外内皮化血管植入物及其制备方法和应用
CN116617460B (zh) * 2023-05-29 2024-06-11 中国人民解放军陆军军医大学 一种体外内皮化血管植入物及其制备方法和应用

Also Published As

Publication number Publication date
KR20120111381A (ko) 2012-10-10
KR101816286B1 (ko) 2018-01-09

Similar Documents

Publication Publication Date Title
US11737990B2 (en) Nanofiber scaffolds for biological structures
US20230061170A1 (en) Fiber scaffolds for use creating implantable structures
US11246959B2 (en) Biocompatible fiber textiles for implantation
Sun et al. Electrospun anisotropic architectures and porous structures for tissue engineering
US9107739B2 (en) Small diameter vascular graft produced by a hybrid method
WO2012134024A1 (ko) 이중막 구조의 튜브형 다공성 스캐폴드와 줄기 세포를 이용한 인공 혈관의 제조 방법 및 이에 의하여 제조된 인공 혈관
US20060085063A1 (en) Nano- and micro-scale engineering of polymeric scaffolds for vascular tissue engineering
US9683216B2 (en) Method for preparation of artificial blood vessel using tube-type porous biodegradable scaffold having a double-layered structure and stem cell, and artificial blood vessel made by the same
CN111714706B (zh) 可促进血管细胞增殖和分泌细胞外基质的血管支架、血管支架的制备方法及活性人工血管
US20100190254A1 (en) Three-dimensional porous hybrid scaffold and manufacture thereof
CN106540327A (zh) 一种仿自然血管的三层人造血管支架及其制备方法
JP2004321484A (ja) 医療用高分子ナノ・マイクロファイバー
WO2011026323A1 (zh) 静电纺丝制备的人工神经移植物及其制备方法和专用装置
WO2016192733A1 (en) Conduit for regeneration of biological material
CN110755684A (zh) 负载外泌体和生长因子的微球/纳米纱复合支架及其制备方法
Wang et al. Hemocompatible polyurethane/gelatin-heparin nanofibrous scaffolds formed by a bi-layer electrospinning technique as potential artificial blood vessels
CN110124109B (zh) 人工血管支架及其制备方法和应用
US20190365953A1 (en) Wavy multi-component vascular grafts with biomimetic mechanical properties, antithrombogenicity, and endothelial cell affinity
Jang et al. Fibroblast culture on poly (L-lactide-co-ɛ-caprolactone) an electrospun nanofiber sheet
Kuppan et al. Fabrication and investigation of nanofibrous matrices as esophageal tissue scaffolds using human non-keratinized, stratified, squamous epithelial cells
Liao et al. Melt electrospun bilayered scaffolds for tissue integration of a suture‐less inflow cannula for rotary blood pumps
CN111850818A (zh) 一种共轭电纺纳米纤维人工小口径血管支架的制备方法及产品
JPWO2019221172A1 (ja) 細胞足場材料
CN116808294A (zh) 一种仿生多通道神经导管的制备方法及仿生多通道神经导管
CN118320187A (zh) 一种具有双面取向结构的纤维膜及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861944

Country of ref document: EP

Kind code of ref document: A1