WO2012133650A1 - Ultrasonic motor - Google Patents

Ultrasonic motor Download PDF

Info

Publication number
WO2012133650A1
WO2012133650A1 PCT/JP2012/058356 JP2012058356W WO2012133650A1 WO 2012133650 A1 WO2012133650 A1 WO 2012133650A1 JP 2012058356 W JP2012058356 W JP 2012058356W WO 2012133650 A1 WO2012133650 A1 WO 2012133650A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
drive electrode
torsional
piezoelectric element
vibrator
Prior art date
Application number
PCT/JP2012/058356
Other languages
French (fr)
Japanese (ja)
Inventor
瀧澤宏行
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2012133650A1 publication Critical patent/WO2012133650A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/103Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors by pressing one or more vibrators against the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/0045Driving devices, e.g. vibrators using longitudinal or radial modes combined with torsion or shear modes

Definitions

  • the present invention relates to an ultrasonic motor.
  • Patent Document 1 listed below proposes an ultrasonic motor that generates elliptical vibration by synthesizing longitudinal vibration and torsional vibration of a vibrator and rotates a rotor.
  • FIG. 1 of Patent Document 1 below shows an exploded perspective view of the vibrator, in which a plurality of piezoelectric elements are inserted between elastic bodies cut obliquely with respect to the vibrator axis direction. It has become.
  • the positive electrode of the piezoelectric element is divided into two parts, which are referred to herein as A phase and B phase, respectively.
  • alternating voltage having the same phase to the A phase and the B phase
  • torsional vibration can be generated in the rod-shaped vibrator by applying alternating voltages having opposite phases to the A phase and the B phase.
  • the groove position of the vibrator is adjusted so that the resonance frequency of the longitudinal vibration and the resonance frequency of the torsional vibration are substantially matched.
  • alternating voltages having different ⁇ / 2 phases are applied to the A phase and the B phase
  • longitudinal vibration and torsional vibration are generated simultaneously, and elliptical vibration can be generated on the upper surface of the rod-shaped elastic body.
  • the rotor By pressing the rotor against the upper surface of the rod-shaped elastic body, the rotor can be rotated clockwise (CW direction) or counterclockwise (CCW direction).
  • the ultrasonic motor described in Patent Document 1 requires a piezoelectric element and an elastic body, the elastic body must be cut obliquely, longitudinal vibration and torsional vibration.
  • the frequency there are problems such as providing a groove in a part of the elastic body, a complicated structure, and difficulty in assembling. Therefore, the configuration of the vibrator as a whole becomes very complicated, and there is a problem that the generation efficiency of torsional resonance vibration is low.
  • an object of the present invention is to provide an ultrasonic motor capable of efficiently generating torsional resonance vibration by actively using bending vibration of a piezoelectric element.
  • the present invention comprises a single member, has a simple structure, does not require a groove, etc., can easily excite longitudinal vibration and torsional vibration, and synthesizes longitudinal vibration and torsional vibration.
  • An object of the present invention is to provide an ultrasonic motor that forms elliptical vibration and rotates a rotor by elliptical vibration.
  • an ultrasonic motor includes a vibrator having a rectangular length ratio in a cross section perpendicular to the central axis, and an elliptic vibration generation surface of the vibrator.
  • An ultrasonic motor comprising at least a rotor that is in contact with and is driven to rotate about a central axis that is orthogonal to the elliptical vibration generation surface of the vibrator as a rotational axis, and longitudinal longitudinal resonance vibration that expands and contracts in the direction of the rotational axis of the vibrator.
  • a torsional secondary resonance vibration or a torsional tertiary resonance vibration having a rotation axis as a torsion axis to form an elliptical vibration, and a longitudinal primary resonance vibration that expands and contracts in the direction of the rotation axis of the vibrator.
  • the rectangular length ratio of the vibrator is set so that the resonance frequency of the torsional secondary resonance vibration or torsional tertiary resonance vibration with the rotation axis as the torsion axis is substantially the same.
  • Two polarizations, each with an acute angle to Is characterized in that in comprises two polarization axes along respectively.
  • the ultrasonic motor it is preferable to set the relationship between the two polarization directions and the drive electrodes so that the vibrator expands and contracts in opposite directions along the two polarization directions.
  • the vibrator is preferably made of, for example, a single plate or a laminate of single plates.
  • the elliptical vibration is formed by combining the longitudinal primary resonance vibration and the torsional tertiary resonance vibration, and the drive electrode is arranged so as to correspond to the antinode position of the torsional tertiary resonance vibration. It is preferable.
  • the elliptical vibration is formed by combining the longitudinal primary resonance vibration and the torsional secondary resonance vibration, and the drive electrode is arranged so as to correspond to the antinode position of the torsional secondary resonance vibration. It is preferable.
  • the ultrasonic motor according to the present invention has an effect that the torsional resonance vibration can be efficiently generated by positively using the bending vibration of the piezoelectric element.
  • the ultrasonic motor of the present invention is composed of a single member, has a simple structure, does not require a groove, and can easily excite longitudinal vibration and torsional vibration. Are combined to produce elliptical vibration, and the rotor can be rotated by elliptical vibration.
  • FIG. 1 A perspective view showing a vibration state in the secondary vibration mode by a broken line
  • (d) is a perspective view showing a vibration state in the torsional secondary vibration mode by a broken line
  • e is a broken line showing a vibration state in the torsional tertiary vibration mode.
  • FIG. 5 It is the perspective view shown by. It is a graph showing the resonance frequency of each mode when the height of the vibrator is constant and the horizontal axis is the length of the short side / the length of the long side. It is a figure which shows the structure of the piezoelectric element for longitudinal vibration, Comprising: (a) is a perspective view, (b) is the side view seen from the VB direction of (a). (A) is a perspective view showing a state in which the longitudinal vibration piezoelectric element is extended when a drive signal is applied to the longitudinal vibration piezoelectric element of FIG. 5, and (b) is a side view seen from the VIB direction of (a). is there.
  • 5A is a perspective view showing a state in which the longitudinal vibration piezoelectric element is contracted when a drive signal is applied to the longitudinal vibration piezoelectric element in FIG. 5, and FIG. 5B is a side view seen from the VIIB direction of FIG. is there.
  • 5A is a perspective view showing a state in which the longitudinal vibration piezoelectric element expands and contracts when a drive signal is applied to the longitudinal vibration piezoelectric element in FIG. 5, and FIG. 5B is a side view seen from the VIIIB direction in FIG. is there. It is a figure which shows the structure of the piezoelectric element for diagonal vibration, Comprising: (a) is a perspective view, (b) is the side view seen from the IXB direction of (a).
  • 9A is a perspective view showing a state in which the oblique vibration piezoelectric element is extended when a drive signal is applied to the oblique vibration piezoelectric element in FIG. 9, and FIG. 9B is a front view seen from the XB direction of FIG. is there.
  • 9A is a perspective view showing a state in which the oblique vibration piezoelectric element is contracted when a drive signal is applied to the oblique vibration piezoelectric element of FIG. 9, and FIG. 9B is a front view seen from the XIB direction of FIG. is there.
  • FIG. 9A is a perspective view showing a state in which the oblique vibration piezoelectric element is expanded and contracted when a drive signal is applied to the oblique vibration piezoelectric element in FIG. 9, and FIG. 9B is a front view seen from the XIIB direction in FIG. is there.
  • (A) is a perspective view showing the configuration of a single plate type piezoelectric element for oblique torsional vibration
  • (b) is a side view seen from the XIIIB direction of (a)
  • (c) is seen from the XIIIC direction of (a). It is a side view.
  • FIG. 13A is a perspective view showing an oblique torsion state when a drive signal is applied to the oblique torsional vibration piezoelectric element of FIG. 13
  • (b) is a side view seen from the XIVB direction of (a)
  • (c) is ( It is the side view seen from the XIVC direction of a).
  • 13A is a perspective view showing oblique torsional vibration when a drive signal is applied to the oblique torsional vibration piezoelectric element of FIG. 13 in the direction opposite to that of FIG. 14, and
  • FIG. 13B is a side view of FIG. 13A viewed from the XVB direction.
  • FIG. 4C is a side view as seen from the XVC direction of FIG.
  • (A) is a perspective view showing a configuration of a single plate type oblique torsional vibration piezoelectric element
  • (b) is a side view seen from the XVIB direction of (a)
  • (c) is seen from the XVIC direction of (a). It is a side view.
  • (A) is a perspective view showing an oblique torsion state when a drive signal is applied to the oblique torsional vibration piezoelectric element of FIG. 16
  • (b) is a side view seen from the XVIIB direction of (a)
  • (c) is ( It is the side view seen from the XVIIC direction of a).
  • FIG. 16A is a perspective view showing an oblique twist state when a drive signal is applied to the oblique torsional vibration piezoelectric element of FIG. 16 in the direction opposite to that of FIG. 17, and FIG. 16B is a side view seen from the XVIIIB direction of FIG.
  • FIG. 4C is a side view as seen from the XVIIIC direction of FIG.
  • (A) is a perspective view showing the structure of a bonded type oblique torsional vibration piezoelectric element
  • (b) is a side view seen from the XIXB direction of (a)
  • (c) is seen from the XIXC direction of (a). It is a side view.
  • FIG. 19A is a perspective view showing an oblique torsion state when a drive signal is applied to the oblique torsional vibration piezoelectric element of FIG. 19
  • (b) is a side view seen from the XXB direction of (a)
  • (c) is ( It is the side view seen from the XXC direction of a).
  • 19A is a perspective view showing an oblique torsion state when a drive signal is applied to the oblique torsional vibration piezoelectric element of FIG. 19 in the direction opposite to that of FIG. 20, and
  • FIG. 19B is a side view of the piezoelectric element shown in FIG. (C) is a side view seen from the XXIC direction of (a).
  • FIG. 23 is a diagram illustrating a side view seen from the direction XXIII in FIG. 22 and a view seen from the side of the vibration state in the torsional tertiary resonance vibration shown in FIG. It is the front view seen from the XXIV direction of FIG. It is a perspective view which shows the structure of the vibrator
  • FIG. 26 is a diagram showing a side view seen from the XXVI direction in FIG. 25 and a view seen from the side of the vibration state in the torsional secondary resonance vibration shown in FIG. It is the front view seen from the XXVII direction of FIG.
  • An ultrasonic motor 100 according to an embodiment of the present invention generates elliptical vibration by synthesizing longitudinal primary resonance vibration and torsional secondary resonance vibration. As shown in FIGS. A rotor 102 is provided.
  • the vibrator 101 is a substantially rectangular parallelepiped piezoelectric element whose cross section perpendicular to the central axis 100c (rotation axis) has a rectangular length ratio.
  • two drive electrodes are provided on two short sides 101s facing each other. 1 and 2, only the two drive electrodes 121 and 122 formed on one side of the two short sides 101s facing each other are illustrated.
  • the rotor 102 has a substantially disk shape, and its lower surface is in contact with the frictional contact members 103a and 103b provided on the elliptical vibration generating surface 101a of the vibrator 101, and a central axis 100c orthogonal to the elliptical vibration generating surface 101a of the vibrator 101. Is driven to rotate about the rotation axis.
  • a structure for attaching the rotor 102 to the vibrator 101 will be described.
  • a holder 110 is fixed in the vicinity of a node of the vibrator 101 (piezoelectric element). Between the elliptical vibration generating surface 101a of the vibrator 101 and the holder 110, a shaft 105, a rotor 102, a bearing 107, a pressing spring 108, and a spring pressing ring 109 are arranged in this order. This arrangement is performed concentrically with respect to the central axis 100c.
  • a bearing 107 is coupled to the central recess 102a of the rotor 102, and a shaft 105 is inserted into the rotor 102 and the bearing 107 along the central axis 100c.
  • the lower part of the shaft 105 is disposed in contact with the elliptical vibration generating surface 101 a of the vibrator 101.
  • the upper end of the shaft 105 inserted through the rotor 102 and the bearing 107 is inserted through the pressing spring 108 and the spring holding ring 109 in this order, and is further disposed above the holder 110 through the through hole 110a in the upper part of the holder 110.
  • the shaft fixing ring 111 is screwed. Thereby, the shaft 105 is fixed to the holder 110.
  • the spring retainer ring 109 and the shaft 105 are screwed together by a thread groove, and by rotating the spring retainer ring 109 and changing its position relative to the shaft 105, the force of the pressing spring 108 is adjusted and the frictional contact of the rotor 102 is achieved.
  • the amount of pressing force applied to the members 103a and 103b can be adjusted.
  • FIG. 4 shows the change of the resonance frequency with respect to “the length of the short side / the length of the long side (a / b)”.
  • the curve A1 shows the case of the torsional primary vibration
  • the curve A2 shows the torsional secondary vibration
  • the curve A3 shows the case of torsional tertiary vibration
  • the straight line B shows the case of longitudinal primary vibration.
  • the vibrator 101 has a substantially rectangular parallelepiped shape.
  • the length of the short side 101s of the rectangular cross section orthogonal to the central axis 100c is a
  • the length of the long side 101f is b
  • the height along the central axis 100c is c.
  • the height direction is the direction of vibration in the primary vibration mode and the axial direction of torsion of torsional vibration.
  • the magnitude relationship between a, b, and c is a ⁇ b ⁇ c.
  • the resonance frequency of the longitudinal primary vibration mode and the resonance frequency of the torsional secondary vibration mode or the torsional tertiary vibration mode are approximately set. Match.
  • FIGS. 3B to 3E show the torsional vibration directions p1 and p2, the longitudinal vibration direction q, and the vibration node N.
  • FIG. One node N exists at the center position in the height direction in the torsional primary vibration (FIG. 3B) and the longitudinal primary vibration (FIG. 3C), and the torsional secondary vibration (FIG. 3D).
  • FIG. 3 (e) At two positions in the height direction, and at three positions in the height direction in the torsional tertiary vibration (FIG. 3 (e)).
  • the solid line indicates the shape of the vibrator 101 before vibration
  • the broken line indicates the shape of the vibrator 101 after vibration.
  • the resonance frequency of the longitudinal primary vibration mode does not depend on a / b and takes a substantially constant value, but the resonance frequency of torsional vibration is It increases as the a / b value increases.
  • the resonance frequency of the torsional primary vibration mode is not matched with the resonance frequency of the longitudinal primary vibration mode regardless of the value of a / b.
  • the resonance frequency of the torsional secondary vibration mode coincides with the resonance frequency of the longitudinal primary vibration mode in the vicinity where the a / b value is 0.6.
  • the resonance frequency of the torsional tertiary vibration mode coincides with the resonance frequency of the longitudinal primary vibration mode where the a / b value is in the vicinity of 0.3. Therefore, in the vibrator 101, a / b is 0.25 to 0.35 in the longitudinal primary torsional tertiary vibration, and a / b is 0.5 to 0.6 in the longitudinal primary torsional secondary vibration.
  • the lengths a and b are set as follows.
  • a longitudinal primary resonance vibration that expands and contracts along the direction of the central axis 100c (rotation axis) of the vibrator 101 and a torsional secondary resonance vibration or a torsional tertiary resonance vibration having the center axis 100c as a torsion axis. are combined to form an elliptical vibration.
  • the ratio (ratio) of the lengths a and b is the longitudinal primary resonance vibration that expands and contracts in the direction of the central axis 100c of the vibrator 101 and the torsional secondary resonance vibration or the torsional tertiary resonance vibration that uses the central axis 100c as the torsion axis.
  • the resonance frequencies of and are set so as to substantially match.
  • FIGS. 5A and 5B are diagrams showing a configuration of the longitudinal vibration piezoelectric element, in which FIG. 5A is a perspective view, and FIG. 5B is a side view seen from the VB direction of FIG. 6A is a perspective view showing a state in which the longitudinal vibration piezoelectric element is extended when a drive signal is applied to the longitudinal vibration piezoelectric element of FIG. 5, and FIG.
  • FIG. 6B is a VIB direction of FIG. 6A. It is the side view seen from. 7A is a perspective view showing a state in which the longitudinal vibration piezoelectric element is contracted when a drive signal is applied to the longitudinal vibration piezoelectric element of FIG. 5, and FIG. 7B is a VIIB direction of FIG. 7A. It is the side view seen from. 8A is a perspective view showing a state in which the longitudinal vibration piezoelectric element expands and contracts when a drive signal is applied to the longitudinal vibration piezoelectric element of FIG. 5, and FIG. 8B is a VIIIB direction of FIG. 8A. It is the side view seen from.
  • the longitudinal vibration piezoelectric element 150 is a substantially rectangular parallelepiped piezoelectric body.
  • the longitudinal vibration piezoelectric element 150 is provided with a first drive electrode 150a on the top surface and a second drive electrode 150b on the bottom surface.
  • the first drive electrode 150a and the second drive electrode 150b are each connected to an external power source (not shown).
  • FPC is used, and one end of the FPC is fixed to each electrode. Accordingly, a drive signal is applied to the longitudinal vibration piezoelectric element 150 via the first drive electrode 150a and the second drive electrode 150b. Therefore, the direction in which the drive signal is applied to the drive electrode is a direction from the first drive electrode 150a to the second drive electrode 150b or from the second drive electrode 150b to the first drive electrode 150a depending on the electrical polarity of the signal. It becomes.
  • the polarization direction P1 of the longitudinal vibration piezoelectric element 150 shown in FIGS. 5 to 8 is a direction from the second drive electrode 150b toward the first drive electrode 150a, and is along the direction in which the drive signal is applied.
  • the longitudinal vibration piezoelectric element 150 having such a configuration vertically vibrates in the vertical direction as shown in FIGS. 6 to 8 when a drive signal is applied. Specifically, when one of the positive and negative electrodes of the external power source is connected to the first drive electrode 150a and the other is connected to the second drive electrode 150b, the longitudinal vibration piezoelectric element 150 extends in the vertical direction (see FIG.
  • the longitudinal vibration piezoelectric element 150 contracts in the vertical direction (FIG. 7). Further, when alternating current is applied between the first drive electrode 150a and the second drive electrode 150b, 150 expands and contracts along the vertical direction, that is, the polarization direction P1 (FIG. 8). Therefore, the longitudinal vibration piezoelectric element 150 can be vibrated longitudinally in accordance with signals applied to the first drive electrode 150a and the second drive electrode 150b.
  • FIGS. 9A and 9B are diagrams showing the configuration of the piezoelectric element for oblique vibration, where FIG. 9A is a perspective view and FIG. 9B is a side view as seen from the IXB direction of FIG. 10A is a perspective view showing a state in which the oblique vibration piezoelectric element is extended when a drive signal is applied to the oblique vibration piezoelectric element in FIG. 9, and FIG. 10B is an XB direction of FIG. 10A. It is the front view seen from.
  • FIG. 11A is a perspective view showing a state where the oblique vibration piezoelectric element is contracted when a drive signal is applied to the oblique vibration piezoelectric element of FIG. 9, and FIG. 11B is a XIB direction of FIG. 11A.
  • FIG. 12A is a perspective view showing a state in which the oblique vibration piezoelectric element expands and contracts when a drive signal is applied to the oblique vibration piezoelectric element of FIG. 9, and FIG. 12B is a XIIB direction of FIG. 12A. It is the front view seen from.
  • the oblique vibration piezoelectric element 160 is a substantially rectangular parallelepiped piezoelectric element similar to the longitudinal vibration piezoelectric element 150.
  • the oblique vibration piezoelectric element 160 is provided with a first drive electrode 160 a on the upper side of the side surface 161 and a second drive electrode 160 b on the lower side of the side surface 162 facing the side surface 161.
  • the first drive electrode 160a and the second drive electrode 160b are each connected to an external power source (not shown).
  • FPC is used, and one end of the FPC is fixed to each electrode.
  • the direction in which the drive signal is applied to the drive electrode is a direction from the first drive electrode 160a to the second drive electrode 160b or from the second drive electrode 160b to the first drive electrode 160a depending on the electrical polarity of the signal. It becomes.
  • the polarization direction P2 of the oblique vibration piezoelectric element 160 shown in FIG. 9 to FIG. 12 is a direction from the second drive electrode 160b toward the first drive electrode 160a, along the direction in which the drive signal is applied.
  • the oblique vibration piezoelectric element 160 having such a configuration has an upper left corner when the oblique vibration piezoelectric element 160 is viewed from the front as shown in FIGS. 10 to 12 by applying a drive signal. It vibrates in an oblique direction substantially along a diagonal line connecting the lower right corner.
  • the oblique vibration piezoelectric element 160 extends in an oblique direction (see FIG. 10)
  • the oblique vibration piezoelectric element 160 contracts in an oblique direction (FIG. 11).
  • the 160 expands and contracts in an oblique direction, that is, a polarization direction (FIG. 12). Therefore, the piezoelectric element for oblique vibration 160 can be vibrated obliquely in accordance with signals applied to the first drive electrode 160a and the second drive electrode 160b.
  • This oblique torsional vibration piezoelectric element is provided with two polarization axes along two polarization directions, respectively, and by setting these two polarization directions and drive electrodes in a predetermined relationship, oblique torsional vibration is generated. .
  • FIGS. 13A is a perspective view showing a configuration of a single-plate type oblique torsional vibration piezoelectric element
  • FIG. 13B is a side view seen from the XIIIB direction of FIG. 13A
  • FIG. 13C is a XIIIC direction of FIG. It is the side view seen from. 14A is a perspective view showing an oblique twisted state when a drive signal is applied to the oblique torsional vibration piezoelectric element of FIG. 13, FIG.
  • 14B is a side view seen from the XIVB direction of FIG. ) Is a side view seen from the XIVC direction of (a).
  • 15A is a perspective view showing an oblique twist state when a drive signal is applied to the oblique torsional vibration piezoelectric element of FIG. 13 in the direction opposite to that of FIG. 14, and
  • FIG. 15B is an XVB direction of FIG.
  • the side view seen, (c) is the side view seen from the XVC direction of (a).
  • the oblique torsional vibration piezoelectric element 200 is a substantially rectangular parallelepiped piezoelectric body.
  • the first drive electrode 201 and the second drive electrode 202 are arranged along the thickness direction of the oblique torsional vibration piezoelectric element 200 on the upper side of the side surface 221, and face the side surface 221.
  • a third drive electrode 211 and a fourth drive electrode 212 are provided below the side surface 222 along the thickness direction of the oblique torsional vibration piezoelectric element 200.
  • the first drive electrode 201 and the third drive electrode 211 are provided on the back surface 223 side, and the second drive electrode 202 and the fourth drive electrode 212 are provided on the front surface 224 side.
  • the first drive electrode 201, the second drive electrode 202, the third drive electrode 211, and the fourth drive electrode 212 are each connected to an external power source (not shown).
  • an external power source for example, FPC is used, and one end of the FPC is fixed to each electrode. Accordingly, a drive signal is applied to the oblique torsional vibration piezoelectric element 200 via the first drive electrode 201, the second drive electrode 202, the third drive electrode 211, and the fourth drive electrode 212.
  • the application of the drive signal is performed between the first drive electrode 201 and the third drive electrode 211 and between the second drive electrode 202 and the fourth drive electrode 212, respectively.
  • the direction in which the drive signal is applied between the first drive electrode 201 and the third drive electrode 211 is changed from the first drive electrode 201 to the third drive electrode 211 or from the third drive electrode 211 depending on the electric polarity of the signal.
  • the direction is toward the first drive electrode 201.
  • the direction in which the drive signal is applied between the second drive electrode 202 and the fourth drive electrode 212 is changed from the second drive electrode 202 to the fourth drive electrode 212 or from the fourth drive electrode 212 depending on the electrical polarity of the signal.
  • the direction is toward the second drive electrode 202.
  • the oblique torsional vibration piezoelectric element 200 has a polarization direction P3 from the first drive electrode 201 to the third drive electrode 211 on the back surface 223 side, and a polarization direction from the fourth drive electrode 212 to the second drive electrode 202 on the front surface 224 side. P4 and two polarization directions.
  • the polarization direction P3 and the polarization direction P4 are opposite to each other, and are directions along the direction in which the drive signal is applied.
  • the oblique torsional vibration piezoelectric element 200 having such a configuration undergoes oblique torsional vibration as shown in FIGS. 14 and 15 when a drive signal is applied.
  • the specific oblique torsional vibration is as follows.
  • the energization direction between the first drive electrode 201 and the third drive electrode 211 and the energization direction between the second drive electrode 202 and the fourth drive electrode 212 are the same.
  • the twist direction can be changed by controlling the application of power. For example, when applied so as to extend along the polarization direction P4 as shown in FIG. 14A and contract along the polarization direction P3, these movements are combined and as shown by the broken line in FIG. Twist while stretching.
  • the energization direction between the first drive electrode 201 and the third drive electrode 211 and the energization direction between the second drive electrode 202 and the fourth drive electrode 212 are respectively shown.
  • FIG. 16A is a perspective view showing the configuration of a single-plate type piezoelectric element for oblique torsional vibration
  • FIG. 16B is a side view seen from the XVIB direction of FIG. 16A
  • FIG. 16C is the XVIC direction of FIG. It is the side view seen from.
  • FIG. 17A is a perspective view showing an oblique twist state when a drive signal is applied to the oblique torsional vibration piezoelectric element of FIG. 16, FIG.
  • 17B is a side view seen from the XVIIB direction of FIG. ) Is a side view seen from the XVIIC direction of (a).
  • 18A is a perspective view showing an oblique twist state when a drive signal is applied to the oblique torsional vibration piezoelectric element of FIG. 16 in the opposite direction to FIG. 17, and
  • FIG. 18B is a perspective view from the XVIIIB direction of FIG.
  • the side view seen, (c) is the side view seen from the XVIIIC direction of (a).
  • the application of the drive signal is performed between the first drive electrode 201 and the third drive electrode 211 and between the second drive electrode 202 and the fourth drive electrode 212, respectively.
  • the application direction of the drive signal between the second drive electrode 202 and the fourth drive electrode 212 is opposite to the drive signal application direction between the first drive electrode 201 and the third drive electrode 211.
  • the oblique torsional vibration piezoelectric element 200 has a polarization direction P5 from the first drive electrode 201 to the third drive electrode 211 on the back surface 223 side, and a fourth to fourth drive electrode 202 on the front surface 224 side. There are two polarization directions, ie, a polarization direction P6 toward the drive electrode 212. The polarization direction P5 and the polarization direction P6 are in the same direction.
  • the oblique torsional vibration piezoelectric element 200 having such a configuration is subjected to oblique torsional vibration as shown in FIGS. 17 and 18 when a drive signal is applied.
  • the specific oblique torsional vibration is as follows.
  • the energization direction between the first drive electrode 201 and the third drive electrode 211 and the energization direction between the second drive electrode 202 and the fourth drive electrode 212 are opposite to each other. It is energized to be in the direction of.
  • these movements are combined and shown by a broken line in FIG. 17. Twist while stretching.
  • the energization direction between the first drive electrode 201 and the third drive electrode 211 and the energization direction between the second drive electrode 202 and the fourth drive electrode 212 are respectively shown.
  • the application is performed so as to shrink along the polarization direction P6 and to extend along the polarization direction P5, and these movements are combined to create a broken line in FIG. It twists while stretching as shown by.
  • the oblique torsional vibration piezoelectric element 200 can be caused to obliquely vibrate according to signals applied to the first drive electrode 201, the second drive electrode 202, the third drive electrode 211, and the fourth drive electrode 212.
  • FIG. 19A is a perspective view showing the configuration of a bonded-type oblique torsional vibration piezoelectric element
  • FIG. 19B is a side view seen from the XIXB direction of FIG. 19A
  • FIG. 19C is the XIXC direction of FIG. It is the side view seen from. 20A is a perspective view showing an oblique twisted state when a drive signal is applied to the oblique torsional vibration piezoelectric element of FIG. 19,
  • FIG. 20B is a side view seen from the XXB direction of FIG.
  • 21A is a perspective view showing an oblique twist state when a drive signal is applied to the oblique torsional vibration piezoelectric element of FIG. 19 in the direction opposite to that of FIG. 20, and FIG. 21B is a perspective view from the XXIB direction of FIG.
  • the side view seen, (c) is the side view seen from the XXIC direction of (a).
  • the oblique torsional vibration piezoelectric element 300 has a substantially rectangular parallelepiped shape by bonding the first piezoelectric element 300a and the second piezoelectric element 300b having the same shape to each other.
  • the first drive electrode 301 is provided on the upper side surface 321a of the first piezoelectric element 300a, and the oblique torsional vibration piezoelectric element 300 is disposed on the upper side surface 321b of the second piezoelectric element 300b.
  • a second drive electrode 302 is provided so as to be aligned with the first drive electrode 301 along the thickness direction.
  • a third drive electrode 311 is provided below the side surface 322a facing the side surface 321a of the first piezoelectric element 300a, and an oblique torsional vibration is disposed below the side surface 322b facing the side surface 321b of the second piezoelectric element 300b.
  • a fourth drive electrode 312 is provided so as to be aligned with the third drive electrode 311 along the thickness direction of the piezoelectric element 300.
  • the first drive electrode 301, the second drive electrode 302, the third drive electrode 311, and the fourth drive electrode 312 are each connected to an external power source (not shown).
  • an external power source not shown.
  • FPC is used, and one end of the FPC is fixed to each electrode.
  • a drive signal is applied to the oblique torsional vibration piezoelectric element 300 via the first drive electrode 301, the second drive electrode 302, the third drive electrode 311, and the fourth drive electrode 312.
  • the direction in which the drive signal is applied between the first drive electrode 301 and the third drive electrode 311 is changed from the first drive electrode 301 to the third drive electrode 311 or from the third drive electrode 311 depending on the electric polarity of the signal.
  • the direction is toward the first drive electrode 301.
  • the direction in which the drive signal is applied between the second drive electrode 302 and the fourth drive electrode 312 is changed from the second drive electrode 302 to the fourth drive electrode 312 or from the fourth drive electrode 312 depending on the electrical polarity of the signal.
  • the direction is toward the second drive electrode 302.
  • the oblique torsional vibration piezoelectric element 300 has a polarization direction P7 from the first drive electrode 301 to the third drive electrode 311 on the back surface 323 side, and a polarization direction from the fourth drive electrode 312 to the second drive electrode 302 on the front surface 324 side. P8 and two polarization directions.
  • the polarization direction P7 and the polarization direction P8 are opposite to each other, and are directions along the drive signal application direction.
  • the oblique torsional vibration piezoelectric element 300 having such a configuration is subjected to oblique torsional vibration as shown in FIGS. 20 and 21 when a drive signal is applied.
  • the specific oblique torsional vibration is as follows.
  • the external power supply supplies the energization direction between the first drive electrode 301 and the third drive electrode 311, the second drive electrode 302 and the fourth drive electrode 312.
  • Energization is performed so that the energization direction is in the same direction.
  • the application is performed so as to extend along the polarization direction P8 and contract along the polarization direction P7. Twists while stretching as shown.
  • the energization direction between the first drive electrode 301 and the third drive electrode 311 and the energization direction between the second drive electrode 312 and the fourth drive electrode 312 are respectively shown.
  • the application is performed so as to shrink along the polarization direction P8 and to extend along the polarization direction P7. Twists while stretching as shown.
  • the oblique torsional vibration piezoelectric element 300 can be subjected to oblique torsional vibration in accordance with signals applied to the first drive electrode 301, the second drive electrode 302, the third drive electrode 311, and the fourth drive electrode 312.
  • the two polarization directions P7 and P8 may be opposite to each other as shown in FIGS. it can.
  • the two polarization directions of the bonded-type oblique torsional vibration piezoelectric element are the same as each other, the same oblique twist is applied by applying a drive signal similar to that of the single plate type shown in FIGS. Since the vibration can occur, detailed description thereof is omitted.
  • FIG. 22 is a perspective view showing the configuration of the vibrator 400 according to the first embodiment.
  • 23 is a diagram showing a side view seen from the direction XXIII in FIG. 22 and a view seen from the side of the vibration state in the torsional tertiary resonance vibration shown in FIG. 3E.
  • 24 is a front view seen from the direction XXIV of FIG.
  • the vibrator 400 has a substantially rectangular parallelepiped shape in which the first piezoelectric element 400a and the second piezoelectric element 400b having the same shape are bonded to each other.
  • the first drive electrode 401 is provided on the side surface 421a of the first piezoelectric element 400a, and the first drive electrode 401 and the side surface 421b of the second piezoelectric element 400b are arranged along the thickness direction of the vibrator 400.
  • Second drive electrodes 402 are provided so as to be aligned.
  • the third drive electrode 411 is provided on the side surface 422a facing the side surface 421a of the first piezoelectric element 400a, and the side surface 422b facing the side surface 421b of the second piezoelectric element 400b is along the thickness direction of the vibrator 400.
  • the fourth drive electrode 412 is provided so as to be aligned with the third drive electrode 411.
  • the first drive electrode 401 and the second drive electrode 402 correspond to the two drive electrodes 121 and 122 of the vibrator 101, respectively.
  • the short side and the long side of the cross section perpendicular to the central axis 100c are configured so as to satisfy the condition for generating the torsional tertiary resonance vibration shown in FIG.
  • the torsional tertiary resonance vibration having the nodes N41, N42 and N43 shown on the right side of FIG. 23 is generated.
  • the vibration state of the torsional tertiary resonance vibration is indicated by a wavy line 450 on the right side of FIG.
  • the first drive electrode 401, the second drive electrode 402, the third drive electrode 411, and the fourth drive electrode 412 are arranged so as to correspond to the positions of the nodes and antinodes in the vibration state indicated by the wavy line 450. Specifically, as shown in FIG. 23, the first drive electrode 401, the second drive electrode 402, the third drive electrode 411, and the first drive electrode 401 correspond to the antinode position of the torsional tertiary resonance vibration indicated by the wavy line 450.
  • the four drive electrodes 412 are arranged, and the upper ends of the first drive electrode 401 and the second drive electrode 402 are arranged so as to correspond to the node N41, and the third drive electrode 411 and the fourth drive are arranged so as to correspond to the node N42.
  • the lower end of the electrode 412 is disposed.
  • the vibrator 400 has a polarization direction P9 from the first drive electrode 401 toward the third drive electrode 411 on the back surface 423 side, and a polarization direction P10 from the fourth drive electrode 412 toward the second drive electrode 402 on the front surface 424 side. It has two polarization directions.
  • the polarization direction P9 and the polarization direction P10 are opposite to each other, and are directions along the drive signal application direction.
  • the external power supply is such that the energization direction between the first drive electrode 401 and the third drive electrode 411 and the energization direction between the second drive electrode 402 and the fourth drive electrode 412 are in the same direction. It is energized to become.
  • a torsional tertiary resonance vibration (FIG. 3E) having the center axis 100c as a torsion axis and a longitudinal primary resonance vibration expanding and contracting in the direction of the center axis 100c are generated.
  • Oval vibration that occurs at the same time and is synthesized occurs. Therefore, elliptical vibration is generated on both end surfaces of the vibrator 400 as the vibrator 101 in the height direction, and thus the elliptical vibration is transmitted to the rotor 102 via the frictional contact members 103a and 103b.
  • the angle ⁇ 4 formed by the polarization axis P40 along the polarization direction P10 and the central axis 100c is an acute angle.
  • the polarization direction P9 is parallel to the polarization direction P10
  • the angle between the polarization axis along the polarization direction P9 and the central axis 100c is ⁇ 4, which is an acute angle.
  • elliptical vibration can be easily excited with the simple configuration as described above, so that the vibrator 101 that does not require a groove or the like can be obtained, the number of parts is reduced, and manufacturing is easy. Therefore, an ultrasonic motor with a low cost can be supplied.
  • the torsional tertiary resonance vibration and the longitudinal primary resonance vibration can be controlled independently.
  • the electrode used for polarization can be used as a drive electrode as it is.
  • FIG. 25 is a perspective view showing the configuration of the vibrator 500 according to the second embodiment.
  • 26 is a diagram showing a side view seen from the XXVI direction in FIG. 25 and a view seen from the side of the vibration state in the torsional secondary resonance vibration shown in FIG. 3D.
  • 27 is a front view seen from the direction XXVII in FIG.
  • the vibrator 500 has a substantially rectangular parallelepiped shape in which the first piezoelectric element 500a and the second piezoelectric element 500b having the same shape are bonded to each other.
  • the first drive electrode 501 is provided on the side surface 521a of the first piezoelectric element 500a, and the first drive electrode 501 is provided on the side face 521b of the second piezoelectric element 500b along the thickness direction of the vibrator 500.
  • a second drive electrode 502 is provided so as to be aligned.
  • the third drive electrode 511 is provided on the side surface 522a facing the side surface 521a of the first piezoelectric element 500a, and the side surface 522b facing the side surface 521b of the second piezoelectric element 500b is along the thickness direction of the vibrator 500.
  • a fourth drive electrode 512 is provided so as to be aligned with the third drive electrode 511.
  • the first drive electrode 501 and the second drive electrode 502 correspond to the two drive electrodes 121 and 122 of the vibrator 101, respectively.
  • the short side and the long side of the cross section perpendicular to the central axis 100c are configured so as to satisfy the condition for generating the torsional secondary resonance vibration shown in FIG. Thereby, the torsional secondary resonance vibration having the nodes N51 and N52 shown on the right side of FIG. 26 is generated.
  • the vibration state of the torsional secondary resonance vibration is indicated by a broken line 550 on the right side of FIG.
  • the first drive electrode 501, the second drive electrode 502, the third drive electrode 511, and the fourth drive electrode 512 are arranged so as to correspond to the nodes and antinodes of the vibration state indicated by the wavy line 550.
  • the first drive electrode 501, the second drive electrode 502, the third drive electrode 511, and the first drive electrode 501 correspond to the antinode position of the torsional secondary resonance vibration indicated by the broken line 550.
  • the four drive electrodes 512 are arranged, and the upper ends of the first drive electrode 501 and the second drive electrode 502 are arranged so as to correspond to the node N51, and the third drive electrode 511 and the fourth drive are arranged so as to correspond to the node N52.
  • the lower end of the electrode 512 is disposed. With such a configuration, the position where the torsional stress becomes maximum becomes a torsion node, and the torsional secondary resonance vibration is efficiently excited.
  • the vibrator 500 has a polarization direction P11 from the first drive electrode 501 to the third drive electrode 511 on the back surface 523 side, and a polarization direction P12 from the fourth drive electrode 512 to the second drive electrode 502 on the front surface 524 side. It has two polarization directions.
  • the polarization direction P11 and the polarization direction P12 are opposite to each other, and are directions along the direction in which the drive signal is applied.
  • the external power supply has the same energization direction between the first drive electrode 501 and the third drive electrode 511 and the energization direction between the second drive electrode 502 and the fourth drive electrode 512. It is energized to become.
  • a torsional secondary resonance vibration (FIG. 3D) having the center axis 100c as a torsion axis and a longitudinal primary resonance vibration expanding and contracting in the direction of the center axis 100c are generated.
  • Oval vibration that occurs at the same time and is synthesized occurs. Therefore, elliptical vibration is generated on both end surfaces of the vibrator 500 as the vibrator 101 in the height direction, and thus the elliptical vibration is transmitted to the rotor 102 via the frictional contact members 103a and 103b.
  • the angle ⁇ 5 formed by the polarization axis P50 along the polarization direction P12 and the central axis 100c is an acute angle.
  • the polarization direction P11 is parallel to the polarization direction P12
  • the angle formed between the polarization axis along the polarization direction P11 and the central axis 100c is ⁇ 5, which is an acute angle.
  • elliptical vibration can be easily excited with the simple configuration as described above, so that the vibrator 101 that does not require a groove or the like can be obtained, the number of parts is reduced, and manufacturing is easy. Therefore, an ultrasonic motor with a low cost can be supplied.
  • the torsional secondary resonance vibration and the longitudinal primary resonance vibration can be controlled independently.
  • the electrode used for polarization can be used as a drive electrode as it is.
  • the two polarization directions are opposite to each other.
  • the short side and the long side of the cross section perpendicular to the central axis 100c satisfy the conditions shown in FIG.
  • the two piezoelectric elements are bonded to each other.
  • the piezoelectric elements may be formed of a single plate. Also, more than two piezoelectric elements, for example, four, eight,. . . You may comprise by this piezoelectric element.
  • the ultrasonic motor according to the present invention is suitable for an ultrasonic motor that forms elliptical vibration by combining vibration and oblique torsional vibration and rotates the rotor by elliptical vibration.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

Provided is an ultrasonic motor capable of efficiently producing a torsional resonant vibration by actively using the bending vibration of a piezoelectric element. An ultrasonic motor provided with at least an oscillator having a length ratio set in a manner such that a cross section perpendicular to the center axis is rectangular, and a rotor that is in contact with an elliptical-vibration-generating surface of the oscillator, and is rotationally driven with a center axis perpendicular to the elliptical-vibration-generating surface of the oscillator as the rotational axis, wherein: elliptical vibrations are formed by synthesizing a vertical primary resonant vibration that expands/contracts in the direction of the rotational axis of the oscillator, and a torsional secondary resonant vibration or torsional tertiary resonant vibration in which the rotational axis is set as the torsional axis thereof; and the length ratio of the rectangular shape of the oscillator is set in a manner such that the resonant frequencies of the vertical primary resonant vibration that expands/contracts in the direction of the rotational axis of the oscillator, and the torsional secondary resonant vibration or torsional tertiary resonant vibration in which the rotational axis is set as the torsional axis thereof almost match one another. Therein, the oscillator is provided with two polarization axes positioned along each of the two polarization directions, and each forming an acute angle in relation to the rotational axis.

Description

超音波モータUltrasonic motor
 本発明は、超音波モータに関するものである。 The present invention relates to an ultrasonic motor.
 例えば、下記特許文献1には、振動子の縦振動とねじれ振動を合成して楕円振動を発生させ、ロータを回転させる超音波モータが提案されている。そして、下記特許文献1の図1には、振動子の分解斜視図が描かれており、振動子軸方向に対し斜めにカッティングされた弾性体の間に複数枚の圧電素子が挿入された構成となっている。また、圧電素子の正電極は2分割されており、ここでは、それぞれA相、B相と称するものとする。 For example, Patent Document 1 listed below proposes an ultrasonic motor that generates elliptical vibration by synthesizing longitudinal vibration and torsional vibration of a vibrator and rotates a rotor. FIG. 1 of Patent Document 1 below shows an exploded perspective view of the vibrator, in which a plurality of piezoelectric elements are inserted between elastic bodies cut obliquely with respect to the vibrator axis direction. It has become. In addition, the positive electrode of the piezoelectric element is divided into two parts, which are referred to herein as A phase and B phase, respectively.
 ここで、A相とB相に同位相の交番電圧を印加することで、棒状振動子に縦振動を発生させることができる。また、A相とB相に逆位相の交番電圧を印加することで、棒状振動子にねじれ振動を発生させることができる。尚、振動子の溝位置を調整して縦振動の共振周波数と、ねじれ振動の共振周波数を、ほぼ一致するようにしておく。そして、A相とB相にπ/2位相の異なる交番電圧を印加すると、縦振動とねじれ振動が同時に発生し、棒状弾性体上面に楕円振動を発生させることができる。棒状弾性体上面にロータを押圧することにより、ロータを時計方向(CW方向)若しくは反時計方向(CCW方向)に回転させることができる。 Here, by applying an alternating voltage having the same phase to the A phase and the B phase, longitudinal vibration can be generated in the rod-shaped vibrator. Further, torsional vibration can be generated in the rod-shaped vibrator by applying alternating voltages having opposite phases to the A phase and the B phase. The groove position of the vibrator is adjusted so that the resonance frequency of the longitudinal vibration and the resonance frequency of the torsional vibration are substantially matched. When alternating voltages having different π / 2 phases are applied to the A phase and the B phase, longitudinal vibration and torsional vibration are generated simultaneously, and elliptical vibration can be generated on the upper surface of the rod-shaped elastic body. By pressing the rotor against the upper surface of the rod-shaped elastic body, the rotor can be rotated clockwise (CW direction) or counterclockwise (CCW direction).
特開平9-117168号公報JP-A-9-117168
 しかしながら、特許文献1に記載された超音波モータは、その図1に示されるように、圧電素子と弾性体が必要になる、弾性体を斜めにカットしなければならない、縦振動とねじれ振動の周波数を合わせるために弾性体の一部に溝部を設けなければならない、構造が複雑であり組立性に難点がある等の課題があった。それ故、全体として振動子の構成が非常に複雑になり、ねじれ共振振動の発生効率が低いという課題を有していた。 However, as shown in FIG. 1, the ultrasonic motor described in Patent Document 1 requires a piezoelectric element and an elastic body, the elastic body must be cut obliquely, longitudinal vibration and torsional vibration. In order to adjust the frequency, there are problems such as providing a groove in a part of the elastic body, a complicated structure, and difficulty in assembling. Therefore, the configuration of the vibrator as a whole becomes very complicated, and there is a problem that the generation efficiency of torsional resonance vibration is low.
 したがって本発明は、上記課題に鑑みてなされたものであり、その目的は、圧電素子の屈曲振動を積極的に使用することによりねじれ共振振動を効率よく発生させることのできる超音波モータを提供することにある。また、本発明は、単一の部材からなり、構造が単純であり、溝部等が不要であり、縦振動とねじれ振動を容易に励起することができ、縦振動とねじれ振動を合成することにより楕円振動を形成し、楕円振動によりロータを回転させる超音波モータを提供することを目的とする。 Accordingly, the present invention has been made in view of the above problems, and an object of the present invention is to provide an ultrasonic motor capable of efficiently generating torsional resonance vibration by actively using bending vibration of a piezoelectric element. There is. In addition, the present invention comprises a single member, has a simple structure, does not require a groove, etc., can easily excite longitudinal vibration and torsional vibration, and synthesizes longitudinal vibration and torsional vibration. An object of the present invention is to provide an ultrasonic motor that forms elliptical vibration and rotates a rotor by elliptical vibration.
 上述した課題を解決し、目的を達成するために、本発明に係る超音波モータは、中心軸に垂直な断面が矩形状の長さ比率を有する振動子と、振動子の楕円振動発生面に接して振動子の楕円振動発生面と直交する中心軸を回転軸として回転駆動されるロータと、を少なくとも備えた超音波モータであって、振動子の回転軸方向に伸縮する縦1次共振振動と、回転軸をねじれ軸とするねじれ2次共振振動又はねじれ3次共振振動とを合成することにより、楕円振動を形成してなり、振動子の回転軸方向に伸縮する縦1次共振振動と、回転軸をねじれ軸とするねじれ2次共振振動又はねじれ3次共振振動と、の共振周波数がほぼ一致するように、振動子の矩形状の長さ比率を設定し、振動子は、回転軸に対してそれぞれ鋭角をなす、2つの分極方向にそれぞれ沿った2つの分極軸を備えることを特徴としている。 In order to solve the above-described problems and achieve the object, an ultrasonic motor according to the present invention includes a vibrator having a rectangular length ratio in a cross section perpendicular to the central axis, and an elliptic vibration generation surface of the vibrator. An ultrasonic motor comprising at least a rotor that is in contact with and is driven to rotate about a central axis that is orthogonal to the elliptical vibration generation surface of the vibrator as a rotational axis, and longitudinal longitudinal resonance vibration that expands and contracts in the direction of the rotational axis of the vibrator. And a torsional secondary resonance vibration or a torsional tertiary resonance vibration having a rotation axis as a torsion axis to form an elliptical vibration, and a longitudinal primary resonance vibration that expands and contracts in the direction of the rotation axis of the vibrator. The rectangular length ratio of the vibrator is set so that the resonance frequency of the torsional secondary resonance vibration or torsional tertiary resonance vibration with the rotation axis as the torsion axis is substantially the same. Two polarizations, each with an acute angle to Is characterized in that in comprises two polarization axes along respectively.
 本発明に係る超音波モータでは、振動子において、2つの分極方向に沿って互いに逆方向に伸縮するように、2つの分極方向と駆動電極の関係を設定することが好ましい。 In the ultrasonic motor according to the present invention, it is preferable to set the relationship between the two polarization directions and the drive electrodes so that the vibrator expands and contracts in opposite directions along the two polarization directions.
 本発明に係る超音波モータにおいて、振動子は、例えば単板又は単板を貼り合わせたものからなることが好ましい。 In the ultrasonic motor according to the present invention, the vibrator is preferably made of, for example, a single plate or a laminate of single plates.
 本発明に係る超音波モータにおいて、楕円振動は、縦1次共振振動とねじれ3次共振振動とを合成することにより形成され、ねじれ3次共振振動の腹位置に対応するように駆動電極を配置していることが好ましい。 In the ultrasonic motor according to the present invention, the elliptical vibration is formed by combining the longitudinal primary resonance vibration and the torsional tertiary resonance vibration, and the drive electrode is arranged so as to correspond to the antinode position of the torsional tertiary resonance vibration. It is preferable.
 本発明に係る超音波モータにおいて、楕円振動は、縦1次共振振動とねじれ2次共振振動とを合成することにより形成され、ねじれ2次共振振動の腹位置に対応するように駆動電極を配置していることが好ましい。 In the ultrasonic motor according to the present invention, the elliptical vibration is formed by combining the longitudinal primary resonance vibration and the torsional secondary resonance vibration, and the drive electrode is arranged so as to correspond to the antinode position of the torsional secondary resonance vibration. It is preferable.
 本発明に係る超音波モータは、圧電素子の屈曲振動を積極的に使用することによりねじれ共振振動を効率よく発生させることができるという効果を奏する。また、本発明の超音波モータにおいては、単一の部材からなり、構造が単純であり、溝部等が不要であり、縦振動とねじれ振動を容易に励起することができ、縦振動とねじれ振動を合成することにより楕円振動を形成し、楕円振動によりロータを回転させることができる、という効果を奏する。 The ultrasonic motor according to the present invention has an effect that the torsional resonance vibration can be efficiently generated by positively using the bending vibration of the piezoelectric element. In addition, the ultrasonic motor of the present invention is composed of a single member, has a simple structure, does not require a groove, and can easily excite longitudinal vibration and torsional vibration. Are combined to produce elliptical vibration, and the rotor can be rotated by elliptical vibration.
本発明の実施形態に係る超音波モータの構成を示す斜視図である。It is a perspective view showing the composition of the ultrasonic motor concerning the embodiment of the present invention. 本発明の実施形態に係る超音波モータの構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the ultrasonic motor which concerns on embodiment of this invention. (a)は、本発明の実施形態に係る振動子の概略構成を示す斜視図、(b)は、ねじれ1次振動モードにおける振動状態を破線で示した斜視図、(c)は、縦1次振動モードにおける振動状態を破線で示した斜視図、(d)は、ねじれ2次振動モードにおける振動状態を破線で示した斜視図、(e)は、ねじれ3次振動モードにおける振動状態を破線で示した斜視図である。(A) is a perspective view showing a schematic configuration of a vibrator according to an embodiment of the present invention, (b) is a perspective view showing a vibration state in a torsional primary vibration mode by a broken line, and (c) is a longitudinal 1 A perspective view showing a vibration state in the secondary vibration mode by a broken line, (d) is a perspective view showing a vibration state in the torsional secondary vibration mode by a broken line, and (e) is a broken line showing a vibration state in the torsional tertiary vibration mode. It is the perspective view shown by. 振動子の高さを一定として、横軸を短辺の長さ/長辺の長さとしたときの各モードの共振周波数を表したグラフである。It is a graph showing the resonance frequency of each mode when the height of the vibrator is constant and the horizontal axis is the length of the short side / the length of the long side. 縦振動用圧電素子の構成を示す図であって、(a)は斜視図、(b)は(a)のVB方向から見た側面図である。It is a figure which shows the structure of the piezoelectric element for longitudinal vibration, Comprising: (a) is a perspective view, (b) is the side view seen from the VB direction of (a). (a)は図5の縦振動用圧電素子に駆動信号を印加したときに縦振動用圧電素子が伸びた状態を示す斜視図、(b)は(a)のVIB方向から見た側面図である。(A) is a perspective view showing a state in which the longitudinal vibration piezoelectric element is extended when a drive signal is applied to the longitudinal vibration piezoelectric element of FIG. 5, and (b) is a side view seen from the VIB direction of (a). is there. (a)は図5の縦振動用圧電素子に駆動信号を印加したときに縦振動用圧電素子が縮んだ状態を示す斜視図、(b)は(a)のVIIB方向から見た側面図である。5A is a perspective view showing a state in which the longitudinal vibration piezoelectric element is contracted when a drive signal is applied to the longitudinal vibration piezoelectric element in FIG. 5, and FIG. 5B is a side view seen from the VIIB direction of FIG. is there. (a)は図5の縦振動用圧電素子に駆動信号を印加したときに縦振動用圧電素子が伸縮した状態を示す斜視図、(b)は(a)のVIIIB方向から見た側面図である。5A is a perspective view showing a state in which the longitudinal vibration piezoelectric element expands and contracts when a drive signal is applied to the longitudinal vibration piezoelectric element in FIG. 5, and FIG. 5B is a side view seen from the VIIIB direction in FIG. is there. 斜め振動用圧電素子の構成を示す図であって、(a)は斜視図、(b)は(a)のIXB方向から見た側面図である。It is a figure which shows the structure of the piezoelectric element for diagonal vibration, Comprising: (a) is a perspective view, (b) is the side view seen from the IXB direction of (a). (a)は図9の斜め振動用圧電素子に駆動信号を印加したときに斜め振動用圧電素子が伸びた状態を示す斜視図、(b)は(a)のXB方向から見た正面図である。9A is a perspective view showing a state in which the oblique vibration piezoelectric element is extended when a drive signal is applied to the oblique vibration piezoelectric element in FIG. 9, and FIG. 9B is a front view seen from the XB direction of FIG. is there. (a)は図9の斜め振動用圧電素子に駆動信号を印加したときに斜め振動用圧電素子が縮んだ状態を示す斜視図、(b)は(a)のXIB方向から見た正面図である。9A is a perspective view showing a state in which the oblique vibration piezoelectric element is contracted when a drive signal is applied to the oblique vibration piezoelectric element of FIG. 9, and FIG. 9B is a front view seen from the XIB direction of FIG. is there. (a)は図9の斜め振動用圧電素子に駆動信号を印加したときに斜め振動用圧電素子が伸縮した状態を示す斜視図、(b)は(a)のXIIB方向から見た正面図である。9A is a perspective view showing a state in which the oblique vibration piezoelectric element is expanded and contracted when a drive signal is applied to the oblique vibration piezoelectric element in FIG. 9, and FIG. 9B is a front view seen from the XIIB direction in FIG. is there. (a)は単板タイプの斜めねじれ振動用圧電素子の構成を示す斜視図、(b)は(a)のXIIIB方向から見た側面図、(c)は(a)のXIIIC方向から見た側面図である。(A) is a perspective view showing the configuration of a single plate type piezoelectric element for oblique torsional vibration, (b) is a side view seen from the XIIIB direction of (a), and (c) is seen from the XIIIC direction of (a). It is a side view. (a)は図13の斜めねじれ振動用圧電素子に駆動信号を印加したときの斜めねじれ状態を示す斜視図、(b)は(a)のXIVB方向から見た側面図、(c)は(a)のXIVC方向から見た側面図である。(A) is a perspective view showing an oblique torsion state when a drive signal is applied to the oblique torsional vibration piezoelectric element of FIG. 13, (b) is a side view seen from the XIVB direction of (a), and (c) is ( It is the side view seen from the XIVC direction of a). (a)は図13の斜めねじれ振動用圧電素子に図14とは逆方向に駆動信号を印加したときの斜めねじれ振動を示す斜視図、(b)は(a)のXVB方向から見た側面図、(c)は(a)のXVC方向から見た側面図である。13A is a perspective view showing oblique torsional vibration when a drive signal is applied to the oblique torsional vibration piezoelectric element of FIG. 13 in the direction opposite to that of FIG. 14, and FIG. 13B is a side view of FIG. 13A viewed from the XVB direction. FIG. 4C is a side view as seen from the XVC direction of FIG. (a)は単板タイプの斜めねじれ振動用圧電素子の構成を示す斜視図、(b)は(a)のXVIB方向から見た側面図、(c)は(a)のXVIC方向から見た側面図である。(A) is a perspective view showing a configuration of a single plate type oblique torsional vibration piezoelectric element, (b) is a side view seen from the XVIB direction of (a), and (c) is seen from the XVIC direction of (a). It is a side view. (a)は図16の斜めねじれ振動用圧電素子に駆動信号を印加したときの斜めねじれ状態を示す斜視図、(b)は(a)のXVIIB方向から見た側面図、(c)は(a)のXVIIC方向から見た側面図である。(A) is a perspective view showing an oblique torsion state when a drive signal is applied to the oblique torsional vibration piezoelectric element of FIG. 16, (b) is a side view seen from the XVIIB direction of (a), and (c) is ( It is the side view seen from the XVIIC direction of a). (a)は図16の斜めねじれ振動用圧電素子に図17とは逆方向に駆動信号を印加したときの斜めねじれ状態を示す斜視図、(b)は(a)のXVIIIB方向から見た側面図、(c)は(a)のXVIIIC方向から見た側面図である。16A is a perspective view showing an oblique twist state when a drive signal is applied to the oblique torsional vibration piezoelectric element of FIG. 16 in the direction opposite to that of FIG. 17, and FIG. 16B is a side view seen from the XVIIIB direction of FIG. FIG. 4C is a side view as seen from the XVIIIC direction of FIG. (a)は貼り合わせタイプの斜めねじれ振動用圧電素子の構成を示す斜視図、(b)は(a)のXIXB方向から見た側面図、(c)は(a)のXIXC方向から見た側面図である。(A) is a perspective view showing the structure of a bonded type oblique torsional vibration piezoelectric element, (b) is a side view seen from the XIXB direction of (a), and (c) is seen from the XIXC direction of (a). It is a side view. (a)は図19の斜めねじれ振動用圧電素子に駆動信号を印加したときの斜めねじれ状態を示す斜視図、(b)は(a)のXXB方向から見た側面図、(c)は(a)のXXC方向から見た側面図である。(A) is a perspective view showing an oblique torsion state when a drive signal is applied to the oblique torsional vibration piezoelectric element of FIG. 19, (b) is a side view seen from the XXB direction of (a), and (c) is ( It is the side view seen from the XXC direction of a). (a)は図19の斜めねじれ振動用圧電素子に図20とは逆方向に駆動信号を印加したときの斜めねじれ状態を示す斜視図、(b)は(a)のXXIB方向から見た側面図、(c)は(a)のXXIC方向から見た側面図である。19A is a perspective view showing an oblique torsion state when a drive signal is applied to the oblique torsional vibration piezoelectric element of FIG. 19 in the direction opposite to that of FIG. 20, and FIG. 19B is a side view of the piezoelectric element shown in FIG. (C) is a side view seen from the XXIC direction of (a). 第1実施例に係る振動子の構成を示す斜視図である。It is a perspective view which shows the structure of the vibrator | oscillator based on 1st Example. 図22のXXIII方向から見た側面図と、図3(e)に示すねじれ3次共振振動における振動状態を側面から見た図を対応させて示す図である。FIG. 23 is a diagram illustrating a side view seen from the direction XXIII in FIG. 22 and a view seen from the side of the vibration state in the torsional tertiary resonance vibration shown in FIG. 図22のXXIV方向から見た正面図である。It is the front view seen from the XXIV direction of FIG. 第2実施例に係る振動子の構成を示す斜視図である。It is a perspective view which shows the structure of the vibrator | oscillator based on 2nd Example. 図25のXXVI方向から見た側面図と、図3(d)に示すねじれ2次共振振動における振動状態を側面から見た図を対応させて示す図である。FIG. 26 is a diagram showing a side view seen from the XXVI direction in FIG. 25 and a view seen from the side of the vibration state in the torsional secondary resonance vibration shown in FIG. 図25のXXVII方向から見た正面図である。It is the front view seen from the XXVII direction of FIG.
 以下に、本発明に係る超音波モータの実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態によりこの発明が限定されるものではない。
 本発明の実施形態に係る超音波モータ100は、縦1次共振振動とねじれ2次共振振動の合成により楕円振動を発生させるものであり、図1、図2に示すように、振動子101及びロータ102を備える。
Embodiments of an ultrasonic motor according to the present invention will be described below in detail with reference to the drawings. In addition, this invention is not limited by the following embodiment.
An ultrasonic motor 100 according to an embodiment of the present invention generates elliptical vibration by synthesizing longitudinal primary resonance vibration and torsional secondary resonance vibration. As shown in FIGS. A rotor 102 is provided.
 振動子101は、中心軸100c(回転軸)に垂直な断面が矩形状の長さ比率を有する、略直方体形状の圧電素子である。振動子101の矩形状の断面のうち、互いに対向する2つの短辺101sには、2つの駆動電極がそれぞれ設けられている。図1及び図2においては、互いに対向する2つの短辺101sの一方の辺に形成された2つの駆動電極121、122のみを図示している。 The vibrator 101 is a substantially rectangular parallelepiped piezoelectric element whose cross section perpendicular to the central axis 100c (rotation axis) has a rectangular length ratio. Of the rectangular cross section of the vibrator 101, two drive electrodes are provided on two short sides 101s facing each other. 1 and 2, only the two drive electrodes 121 and 122 formed on one side of the two short sides 101s facing each other are illustrated.
 ロータ102は、略円板状をなし、その下面が振動子101の楕円振動発生面101aに設けた摩擦接触部材103a、103bに接し、振動子101の楕円振動発生面101aと直交する中心軸100cを回転軸として回転駆動される。 The rotor 102 has a substantially disk shape, and its lower surface is in contact with the frictional contact members 103a and 103b provided on the elliptical vibration generating surface 101a of the vibrator 101, and a central axis 100c orthogonal to the elliptical vibration generating surface 101a of the vibrator 101. Is driven to rotate about the rotation axis.
 振動子101へのロータ102の取り付け構造について説明する。
 振動子101(圧電素子)の節近傍にはホルダ110が固着される。振動子101の楕円振動発生面101aとホルダ110との間には、シャフト105、ロータ102、ベアリング107、押圧バネ108、バネ押さえリング109が順に配置される。この配置は、中心軸100cに対して同心状に行われる。
A structure for attaching the rotor 102 to the vibrator 101 will be described.
A holder 110 is fixed in the vicinity of a node of the vibrator 101 (piezoelectric element). Between the elliptical vibration generating surface 101a of the vibrator 101 and the holder 110, a shaft 105, a rotor 102, a bearing 107, a pressing spring 108, and a spring pressing ring 109 are arranged in this order. This arrangement is performed concentrically with respect to the central axis 100c.
 ロータ102の中央の凹部102aにはベアリング107が結合され、ロータ102とベアリング107には中心軸100cに沿うようにシャフト105が挿通される。シャフト105の下部は振動子101の楕円振動発生面101a上に接触配置される。 A bearing 107 is coupled to the central recess 102a of the rotor 102, and a shaft 105 is inserted into the rotor 102 and the bearing 107 along the central axis 100c. The lower part of the shaft 105 is disposed in contact with the elliptical vibration generating surface 101 a of the vibrator 101.
 ロータ102及びベアリング107に挿通されたシャフト105の上部先端は、押圧バネ108とバネ押さえリング109に順に挿通され、さらに、ホルダ110の上部の貫通穴110aを通って、ホルダ110の上方に配置されたシャフト固定リング111に螺合される。これにより、シャフト105はホルダ110に固定される。 The upper end of the shaft 105 inserted through the rotor 102 and the bearing 107 is inserted through the pressing spring 108 and the spring holding ring 109 in this order, and is further disposed above the holder 110 through the through hole 110a in the upper part of the holder 110. The shaft fixing ring 111 is screwed. Thereby, the shaft 105 is fixed to the holder 110.
 バネ押さえリング109とシャフト105はネジ溝によって互いに螺合されており、バネ押さえリング109を回転させてシャフト105に対する位置を変更することにより、押圧バネ108の力量を調節してロータ102の摩擦接触部材103a、103bへの押圧力量を調節することができる。 The spring retainer ring 109 and the shaft 105 are screwed together by a thread groove, and by rotating the spring retainer ring 109 and changing its position relative to the shaft 105, the force of the pressing spring 108 is adjusted and the frictional contact of the rotor 102 is achieved. The amount of pressing force applied to the members 103a and 103b can be adjusted.
 次に、図3及び図4を参照して、超音波モータ10に使用される振動子101(圧電素子)の共振周波数の一致に関して説明する。図4は、「短辺の長さ/長辺の長さ(a/b)」に対する共振周波数の変化を示しており、曲線A1はねじれ1次振動の場合を、曲線A2はねじれ2次振動の場合を、曲線A3はねじれ3次振動の場合を、直線Bは縦1次振動の場合を、それぞれ示している。 Next, with reference to FIG. 3 and FIG. 4, the coincidence of the resonance frequencies of the vibrator 101 (piezoelectric element) used in the ultrasonic motor 10 will be described. FIG. 4 shows the change of the resonance frequency with respect to “the length of the short side / the length of the long side (a / b)”. The curve A1 shows the case of the torsional primary vibration, and the curve A2 shows the torsional secondary vibration. The curve A3 shows the case of torsional tertiary vibration, and the straight line B shows the case of longitudinal primary vibration.
 図3(a)に示されるように、振動子101は略直方体形状であり、中心軸100cに直交する矩形状の断面の短辺101sの長さをa、長辺101fの長さをb、中心軸100cに沿った高さをcとしている。以下の説明では、高さ方向を、1次振動モードの振動の方向、かつ、ねじれ振動のねじれの軸方向とする。また、a、b、cの大小関係はa<b<cとする。 As shown in FIG. 3A, the vibrator 101 has a substantially rectangular parallelepiped shape. The length of the short side 101s of the rectangular cross section orthogonal to the central axis 100c is a, the length of the long side 101f is b, The height along the central axis 100c is c. In the following description, the height direction is the direction of vibration in the primary vibration mode and the axial direction of torsion of torsional vibration. The magnitude relationship between a, b, and c is a <b <c.
 振動子101においては、a、b、cの各寸法を適切な値とすることで、縦1次振動モードの共振周波数とねじれ2次振動モード、若しくはねじれ3次振動モードの、共振周波数をほぼ一致させている。 In the vibrator 101, by setting the dimensions a, b, and c to appropriate values, the resonance frequency of the longitudinal primary vibration mode and the resonance frequency of the torsional secondary vibration mode or the torsional tertiary vibration mode are approximately set. Match.
 ここで、図3(b)~(e)には、ねじれ振動の方向p1、p2、縦振動の方向q、及び振動の節Nを示している。節Nは、ねじれ1次振動(図3(b))及び縦1次振動(図3(c))では高さ方向の中心位置に1つ存在し、ねじれ2次振動(図3(d))では高さ方向の2つの位置に存在し、ねじれ3次振動(図3(e))では高さ方向の3つの位置に存在する。 Here, FIGS. 3B to 3E show the torsional vibration directions p1 and p2, the longitudinal vibration direction q, and the vibration node N. FIG. One node N exists at the center position in the height direction in the torsional primary vibration (FIG. 3B) and the longitudinal primary vibration (FIG. 3C), and the torsional secondary vibration (FIG. 3D). ) At two positions in the height direction, and at three positions in the height direction in the torsional tertiary vibration (FIG. 3 (e)).
 また、図3(b)~(e)において、実線は振動前の振動子101の形状を示しており、破線は振動後の振動子101の形状を示している。 Further, in FIGS. 3B to 3E, the solid line indicates the shape of the vibrator 101 before vibration, and the broken line indicates the shape of the vibrator 101 after vibration.
 図4からわかるように、a/bを変化させた場合には、縦1次振動モードの共振周波数はa/bに依存せず、ほぼ一定の値をとるが、ねじれ振動の共振周波数は、a/b値の増加とともに大きくなっていく。 As can be seen from FIG. 4, when a / b is changed, the resonance frequency of the longitudinal primary vibration mode does not depend on a / b and takes a substantially constant value, but the resonance frequency of torsional vibration is It increases as the a / b value increases.
 また、ねじれ1次振動モードの共振周波数は、a/bがどのような値をとっても、縦1次振動モードの共振周波数と一致する条件はない。これに対して、ねじれ2次振動モードの共振周波数は、a/b値が0.6となる近傍で、縦1次振動モードの共振周波数と一致する。また、ねじれ3次振動モードの共振周波数は、a/b値が0.3の近傍となるところで、縦1次振動モードの共振周波数と一致する。したがって、振動子101においては、縦1次ねじれ3次振動ではa/bが0.25~0.35、縦1次ねじれ2次振動ではa/bが0.5~0.6、となるように長さa、bをそれぞれ設定する。 Also, the resonance frequency of the torsional primary vibration mode is not matched with the resonance frequency of the longitudinal primary vibration mode regardless of the value of a / b. In contrast, the resonance frequency of the torsional secondary vibration mode coincides with the resonance frequency of the longitudinal primary vibration mode in the vicinity where the a / b value is 0.6. The resonance frequency of the torsional tertiary vibration mode coincides with the resonance frequency of the longitudinal primary vibration mode where the a / b value is in the vicinity of 0.3. Therefore, in the vibrator 101, a / b is 0.25 to 0.35 in the longitudinal primary torsional tertiary vibration, and a / b is 0.5 to 0.6 in the longitudinal primary torsional secondary vibration. The lengths a and b are set as follows.
 超音波モータ100においては、振動子101の中心軸100c(回転軸)方向に沿って伸縮する縦1次共振振動と、中心軸100cをねじれ軸とするねじれ2次共振振動又はねじれ3次共振振動と、を合成することにより、楕円振動を形成する。長さa、bの比(比率)は、振動子101の中心軸100c方向に伸縮する縦1次共振振動と、中心軸100cをねじれ軸とするねじれ2次共振振動又はねじれ3次共振振動と、の共振周波数がほぼ一致するように設定する。 In the ultrasonic motor 100, a longitudinal primary resonance vibration that expands and contracts along the direction of the central axis 100c (rotation axis) of the vibrator 101 and a torsional secondary resonance vibration or a torsional tertiary resonance vibration having the center axis 100c as a torsion axis. Are combined to form an elliptical vibration. The ratio (ratio) of the lengths a and b is the longitudinal primary resonance vibration that expands and contracts in the direction of the central axis 100c of the vibrator 101 and the torsional secondary resonance vibration or the torsional tertiary resonance vibration that uses the central axis 100c as the torsion axis. The resonance frequencies of and are set so as to substantially match.
 次に、図5~図21を参照しつつ、上記実施形態の振動子101に用いる圧電素子の基礎となる、縦振動用圧電素子、斜め振動用圧電素子、及びねじれ振動用圧電素子について順に説明する。
 まず、縦振動用圧電素子について、図5から図8を参照して説明する。図5は、縦振動用圧電素子の構成を示す図であって、(a)は斜視図、(b)は(a)のVB方向から見た側面図である。図6(a)は図5の縦振動用圧電素子に駆動信号を印加したときに縦振動用圧電素子が伸びた状態を示す斜視図、図6(b)は図6(a)のVIB方向から見た側面図である。図7(a)は図5の縦振動用圧電素子に駆動信号を印加したときに縦振動用圧電素子が縮んだ状態を示す斜視図、図7(b)は図7(a)のVIIB方向から見た側面図である。図8(a)は図5の縦振動用圧電素子に駆動信号を印加したときに縦振動用圧電素子が伸縮した状態を示す斜視図、図8(b)は図8(a)のVIIIB方向から見た側面図である。
Next, a longitudinal vibration piezoelectric element, an oblique vibration piezoelectric element, and a torsional vibration piezoelectric element, which are the basis of the piezoelectric element used in the vibrator 101 of the above embodiment, will be described in order with reference to FIGS. To do.
First, the longitudinal vibration piezoelectric element will be described with reference to FIGS. 5A and 5B are diagrams showing a configuration of the longitudinal vibration piezoelectric element, in which FIG. 5A is a perspective view, and FIG. 5B is a side view seen from the VB direction of FIG. 6A is a perspective view showing a state in which the longitudinal vibration piezoelectric element is extended when a drive signal is applied to the longitudinal vibration piezoelectric element of FIG. 5, and FIG. 6B is a VIB direction of FIG. 6A. It is the side view seen from. 7A is a perspective view showing a state in which the longitudinal vibration piezoelectric element is contracted when a drive signal is applied to the longitudinal vibration piezoelectric element of FIG. 5, and FIG. 7B is a VIIB direction of FIG. 7A. It is the side view seen from. 8A is a perspective view showing a state in which the longitudinal vibration piezoelectric element expands and contracts when a drive signal is applied to the longitudinal vibration piezoelectric element of FIG. 5, and FIG. 8B is a VIIIB direction of FIG. 8A. It is the side view seen from.
 図5(a)、(b)に示すように、縦振動用圧電素子150は、略直方体形状の圧電体である。縦振動用圧電素子150には、その上面に第1駆動電極150aが設けられ、底面に第2駆動電極150bが設けられている。第1駆動電極150aと第2駆動電極150bは、外部の電源(不図示)にそれぞれ接続される。接続には、例えばFPCを用い、各電極にFPCの一端を固着する。これにより、第1駆動電極150aと第2駆動電極150bを介して縦振動用圧電素子150に対して駆動信号が印加される。したがって、駆動電極への駆動信号の印加方向は、信号の電気極性に応じて、第1駆動電極150aから第2駆動電極150bへ、又は、第2駆動電極150bから第1駆動電極150aへ向かう方向となる。 As shown in FIGS. 5A and 5B, the longitudinal vibration piezoelectric element 150 is a substantially rectangular parallelepiped piezoelectric body. The longitudinal vibration piezoelectric element 150 is provided with a first drive electrode 150a on the top surface and a second drive electrode 150b on the bottom surface. The first drive electrode 150a and the second drive electrode 150b are each connected to an external power source (not shown). For connection, for example, FPC is used, and one end of the FPC is fixed to each electrode. Accordingly, a drive signal is applied to the longitudinal vibration piezoelectric element 150 via the first drive electrode 150a and the second drive electrode 150b. Therefore, the direction in which the drive signal is applied to the drive electrode is a direction from the first drive electrode 150a to the second drive electrode 150b or from the second drive electrode 150b to the first drive electrode 150a depending on the electrical polarity of the signal. It becomes.
 図5から図8に示す縦振動用圧電素子150の分極方向P1は、第2駆動電極150bから第1駆動電極150aへ向かう方向であって、駆動信号の印加方向に沿った方向である。
 このような構成を備えた縦振動用圧電素子150は、駆動信号を印加することにより、図6~図8に示すように上下方向に縦振動する。具体的には、外部の電源の+と-の電極の一方を第1駆動電極150aに、他方を第2駆動電極150bに、それぞれ接続すると、縦振動用圧電素子150は上下方向に伸び(図6)、第1駆動電極150aと第2駆動電極150bへの接続を入れ替えると、縦振動用圧電素子150は上下方向に縮む(図7)。さらに、第1駆動電極150aと第2駆動電極150bの間に交流を印加すると、150は上下方向、すなわち分極方向P1に沿って伸縮する(図8)。
 したがって、第1駆動電極150aと第2駆動電極150bへ印加する信号に応じて縦振動用圧電素子150を縦振動させることができる。
The polarization direction P1 of the longitudinal vibration piezoelectric element 150 shown in FIGS. 5 to 8 is a direction from the second drive electrode 150b toward the first drive electrode 150a, and is along the direction in which the drive signal is applied.
The longitudinal vibration piezoelectric element 150 having such a configuration vertically vibrates in the vertical direction as shown in FIGS. 6 to 8 when a drive signal is applied. Specifically, when one of the positive and negative electrodes of the external power source is connected to the first drive electrode 150a and the other is connected to the second drive electrode 150b, the longitudinal vibration piezoelectric element 150 extends in the vertical direction (see FIG. 6) When the connection to the first drive electrode 150a and the second drive electrode 150b is exchanged, the longitudinal vibration piezoelectric element 150 contracts in the vertical direction (FIG. 7). Further, when alternating current is applied between the first drive electrode 150a and the second drive electrode 150b, 150 expands and contracts along the vertical direction, that is, the polarization direction P1 (FIG. 8).
Therefore, the longitudinal vibration piezoelectric element 150 can be vibrated longitudinally in accordance with signals applied to the first drive electrode 150a and the second drive electrode 150b.
 つづいて、斜め振動用圧電素子について、図9から図12を参照して説明する。図9は、斜め振動用圧電素子の構成を示す図であって、(a)は斜視図、(b)は(a)のIXB方向から見た側面図である。図10(a)は図9の斜め振動用圧電素子に駆動信号を印加したときに斜め振動用圧電素子が伸びた状態を示す斜視図、図10(b)は図10(a)のXB方向から見た正面図である。図11(a)は図9の斜め振動用圧電素子に駆動信号を印加したときに斜め振動用圧電素子が縮んだ状態を示す斜視図、図11(b)は図11(a)のXIB方向から見た正面図である。図12(a)は図9の斜め振動用圧電素子に駆動信号を印加したときに斜め振動用圧電素子が伸縮した状態を示す斜視図、図12(b)は図12(a)のXIIB方向から見た正面図である。 Next, the piezoelectric element for oblique vibration will be described with reference to FIGS. FIGS. 9A and 9B are diagrams showing the configuration of the piezoelectric element for oblique vibration, where FIG. 9A is a perspective view and FIG. 9B is a side view as seen from the IXB direction of FIG. 10A is a perspective view showing a state in which the oblique vibration piezoelectric element is extended when a drive signal is applied to the oblique vibration piezoelectric element in FIG. 9, and FIG. 10B is an XB direction of FIG. 10A. It is the front view seen from. 11A is a perspective view showing a state where the oblique vibration piezoelectric element is contracted when a drive signal is applied to the oblique vibration piezoelectric element of FIG. 9, and FIG. 11B is a XIB direction of FIG. 11A. It is the front view seen from. 12A is a perspective view showing a state in which the oblique vibration piezoelectric element expands and contracts when a drive signal is applied to the oblique vibration piezoelectric element of FIG. 9, and FIG. 12B is a XIIB direction of FIG. 12A. It is the front view seen from.
 図9(a)、(b)に示すように、斜め振動用圧電素子160は、縦振動用圧電素子150と同様の略直方体形状の圧電体である。斜め振動用圧電素子160には、その側面161の上部に第1駆動電極160aが設けられ、側面161に対向する側面162の下部に第2駆動電極160bが設けられている。第1駆動電極160aと第2駆動電極160bは、外部の電源(不図示)にそれぞれ接続される。接続には、例えばFPCを用い、各電極にFPCの一端を固着する。これにより、第1駆動電極160aと第2駆動電極160bを介して斜め振動用圧電素子160に対して駆動信号が印加される。したがって、駆動電極への駆動信号の印加方向は、信号の電気極性に応じて、第1駆動電極160aから第2駆動電極160bへ、又は、第2駆動電極160bから第1駆動電極160aへ向かう方向となる。 As shown in FIGS. 9A and 9B, the oblique vibration piezoelectric element 160 is a substantially rectangular parallelepiped piezoelectric element similar to the longitudinal vibration piezoelectric element 150. The oblique vibration piezoelectric element 160 is provided with a first drive electrode 160 a on the upper side of the side surface 161 and a second drive electrode 160 b on the lower side of the side surface 162 facing the side surface 161. The first drive electrode 160a and the second drive electrode 160b are each connected to an external power source (not shown). For connection, for example, FPC is used, and one end of the FPC is fixed to each electrode. As a result, a drive signal is applied to the oblique vibration piezoelectric element 160 via the first drive electrode 160a and the second drive electrode 160b. Therefore, the direction in which the drive signal is applied to the drive electrode is a direction from the first drive electrode 160a to the second drive electrode 160b or from the second drive electrode 160b to the first drive electrode 160a depending on the electrical polarity of the signal. It becomes.
 図9から図12に示す斜め振動用圧電素子160の分極方向P2は、第2駆動電極160bから第1駆動電極160aへ向かう方向であって、駆動信号の印加方向に沿った方向である。
 このような構成を備えた斜め振動用圧電素子160は、駆動信号を印加することにより、図10~図12に示すように、斜め振動用圧電素子160を正面から見たときの左上の角と右下の角を結ぶ対角線に略沿った斜め方向に振動する。具体的には、外部の電源の+と-の電極の一方を第1駆動電極160aに、他方を第2駆動電極160bに、それぞれ接続すると、斜め振動用圧電素子160は斜め方向に伸び(図10)、第1駆動電極160aと第2駆動電極160bへの接続を入れ替えると、斜め振動用圧電素子160は斜め方向に縮む(図11)。さらに、第1駆動電極160aと第2駆動電極160bの間に交流を印加すると、160は斜め方向、すなわち分極方向に伸縮する(図12)。
 したがって、第1駆動電極160aと第2駆動電極160bへ印加する信号に応じて斜め振動用圧電素子160を斜め振動させることができる。
The polarization direction P2 of the oblique vibration piezoelectric element 160 shown in FIG. 9 to FIG. 12 is a direction from the second drive electrode 160b toward the first drive electrode 160a, along the direction in which the drive signal is applied.
The oblique vibration piezoelectric element 160 having such a configuration has an upper left corner when the oblique vibration piezoelectric element 160 is viewed from the front as shown in FIGS. 10 to 12 by applying a drive signal. It vibrates in an oblique direction substantially along a diagonal line connecting the lower right corner. Specifically, when one of the positive and negative electrodes of the external power source is connected to the first drive electrode 160a and the other is connected to the second drive electrode 160b, the oblique vibration piezoelectric element 160 extends in an oblique direction (see FIG. 10) When the connection to the first drive electrode 160a and the second drive electrode 160b is switched, the oblique vibration piezoelectric element 160 contracts in an oblique direction (FIG. 11). Furthermore, when alternating current is applied between the first drive electrode 160a and the second drive electrode 160b, the 160 expands and contracts in an oblique direction, that is, a polarization direction (FIG. 12).
Therefore, the piezoelectric element for oblique vibration 160 can be vibrated obliquely in accordance with signals applied to the first drive electrode 160a and the second drive electrode 160b.
 次に、斜めねじれ振動用圧電素子について、図13から図21を参照して説明する。この斜めねじれ振動用圧電素子においては、2つの分極方向にそれぞれ沿った2つの分極軸を備え、これらの2つの分極方向と駆動電極を所定の関係に設定することによって、斜めねじれ振動を生じさせる。 Next, the oblique torsional vibration piezoelectric element will be described with reference to FIGS. This oblique torsional vibration piezoelectric element is provided with two polarization axes along two polarization directions, respectively, and by setting these two polarization directions and drive electrodes in a predetermined relationship, oblique torsional vibration is generated. .
 まず、図13から図15を参照して、斜めねじれ振動用圧電素子を1枚の圧電素子で構成した単板タイプにおいて、2つの分極方向が互いに逆方向である場合について説明する。
 図13の(a)は単板タイプの斜めねじれ振動用圧電素子の構成を示す斜視図、(b)は(a)のXIIIB方向から見た側面図、(c)は(a)のXIIIC方向から見た側面図である。図14の(a)は図13の斜めねじれ振動用圧電素子に駆動信号を印加したときの斜めねじれ状態を示す斜視図、(b)は(a)のXIVB方向から見た側面図、(c)は(a)のXIVC方向から見た側面図である。図15の(a)は図13の斜めねじれ振動用圧電素子に図14とは逆方向に駆動信号を印加したときの斜めねじれ状態を示す斜視図、(b)は(a)のXVB方向から見た側面図、(c)は(a)のXVC方向から見た側面図である。
First, a case where two polarization directions are opposite to each other in a single plate type in which a piezoelectric element for oblique torsional vibration is constituted by one piezoelectric element will be described with reference to FIGS.
13A is a perspective view showing a configuration of a single-plate type oblique torsional vibration piezoelectric element, FIG. 13B is a side view seen from the XIIIB direction of FIG. 13A, and FIG. 13C is a XIIIC direction of FIG. It is the side view seen from. 14A is a perspective view showing an oblique twisted state when a drive signal is applied to the oblique torsional vibration piezoelectric element of FIG. 13, FIG. 14B is a side view seen from the XIVB direction of FIG. ) Is a side view seen from the XIVC direction of (a). 15A is a perspective view showing an oblique twist state when a drive signal is applied to the oblique torsional vibration piezoelectric element of FIG. 13 in the direction opposite to that of FIG. 14, and FIG. 15B is an XVB direction of FIG. The side view seen, (c) is the side view seen from the XVC direction of (a).
 図13から図15に示すように、斜めねじれ振動用圧電素子200は、略直方体形状の圧電体である。斜めねじれ振動用圧電素子200には、その側面221の上部に第1駆動電極201及び第2駆動電極202が斜めねじれ振動用圧電素子200の厚み方向に沿って並べて設けられ、側面221に対向する側面222の下部に第3駆動電極211及び第4駆動電極212が斜めねじれ振動用圧電素子200の厚み方向に沿って並べて設けられている。第1駆動電極201、第3駆動電極211は背面223側に設けられ、第2駆動電極202及び第4駆動電極212は正面224側に設けられている。 13 to 15, the oblique torsional vibration piezoelectric element 200 is a substantially rectangular parallelepiped piezoelectric body. In the oblique torsional vibration piezoelectric element 200, the first drive electrode 201 and the second drive electrode 202 are arranged along the thickness direction of the oblique torsional vibration piezoelectric element 200 on the upper side of the side surface 221, and face the side surface 221. A third drive electrode 211 and a fourth drive electrode 212 are provided below the side surface 222 along the thickness direction of the oblique torsional vibration piezoelectric element 200. The first drive electrode 201 and the third drive electrode 211 are provided on the back surface 223 side, and the second drive electrode 202 and the fourth drive electrode 212 are provided on the front surface 224 side.
 第1駆動電極201、第2駆動電極202、第3駆動電極211、及び第4駆動電極212は、外部の電源(不図示)にそれぞれ接続される。接続には、例えばFPCを用い、各電極にFPCの一端を固着する。これにより、第1駆動電極201、第2駆動電極202、第3駆動電極211、及び第4駆動電極212を介して斜めねじれ振動用圧電素子200に対して駆動信号が印加される。 The first drive electrode 201, the second drive electrode 202, the third drive electrode 211, and the fourth drive electrode 212 are each connected to an external power source (not shown). For connection, for example, FPC is used, and one end of the FPC is fixed to each electrode. Accordingly, a drive signal is applied to the oblique torsional vibration piezoelectric element 200 via the first drive electrode 201, the second drive electrode 202, the third drive electrode 211, and the fourth drive electrode 212.
 駆動信号の印加は、第1駆動電極201と第3駆動電極211の間と、第2駆動電極202と第4駆動電極212の間と、でそれぞれ行われる。第1駆動電極201と第3駆動電極211の間における駆動信号の印加方向は、信号の電気極性に応じて、第1駆動電極201から第3駆動電極211へ、又は、第3駆動電極211から第1駆動電極201へ向かう方向となる。第2駆動電極202と第4駆動電極212の間における駆動信号の印加方向は、信号の電気極性に応じて、第2駆動電極202から第4駆動電極212へ、又は、第4駆動電極212から第2駆動電極202へ向かう方向となる。 The application of the drive signal is performed between the first drive electrode 201 and the third drive electrode 211 and between the second drive electrode 202 and the fourth drive electrode 212, respectively. The direction in which the drive signal is applied between the first drive electrode 201 and the third drive electrode 211 is changed from the first drive electrode 201 to the third drive electrode 211 or from the third drive electrode 211 depending on the electric polarity of the signal. The direction is toward the first drive electrode 201. The direction in which the drive signal is applied between the second drive electrode 202 and the fourth drive electrode 212 is changed from the second drive electrode 202 to the fourth drive electrode 212 or from the fourth drive electrode 212 depending on the electrical polarity of the signal. The direction is toward the second drive electrode 202.
 斜めねじれ振動用圧電素子200は、背面223側において第1駆動電極201から第3駆動電極211へ向かう分極方向P3と、正面224側において第4駆動電極212から第2駆動電極202へ向かう分極方向P4と、の2つの分極方向を有する。分極方向P3と分極方向P4は互いに逆向きであって、駆動信号の印加方向に沿った方向である。
 このような構成を備えた斜めねじれ振動用圧電素子200は、駆動信号を印加することにより、図14及び図15に示すように斜めねじれ振動する。
The oblique torsional vibration piezoelectric element 200 has a polarization direction P3 from the first drive electrode 201 to the third drive electrode 211 on the back surface 223 side, and a polarization direction from the fourth drive electrode 212 to the second drive electrode 202 on the front surface 224 side. P4 and two polarization directions. The polarization direction P3 and the polarization direction P4 are opposite to each other, and are directions along the direction in which the drive signal is applied.
The oblique torsional vibration piezoelectric element 200 having such a configuration undergoes oblique torsional vibration as shown in FIGS. 14 and 15 when a drive signal is applied.
 具体的な斜めねじれ振動は次のとおりである。
 図14に示す場合では、外部電源は、第1駆動電極201と第3駆動電極211の間の通電方向と、第2駆動電極202と第4駆動電極212の間の通電方向と、が互いに同じ方向になるように通電している。そして電源の印加を制御することによって、ねじれ方向を変えることができる。例えば、図14(a)に示すように分極方向P4に沿って伸びるように、かつ、分極方向P3に沿って縮むように印加すれば、これらの動きが合成されて、図14の破線で示すように伸びながらねじれる。
The specific oblique torsional vibration is as follows.
In the case shown in FIG. 14, in the external power supply, the energization direction between the first drive electrode 201 and the third drive electrode 211 and the energization direction between the second drive electrode 202 and the fourth drive electrode 212 are the same. Energized in the direction. The twist direction can be changed by controlling the application of power. For example, when applied so as to extend along the polarization direction P4 as shown in FIG. 14A and contract along the polarization direction P3, these movements are combined and as shown by the broken line in FIG. Twist while stretching.
 これに対して、図15に示す場合では、第1駆動電極201と第3駆動電極211の間の通電方向と、第2駆動電極202と第4駆動電極212の間の通電方向と、をそれぞれ図14に示す場合と逆にしている。この場合は、分極方向P4に沿って縮むように、かつ、分極方向P3に沿って伸びるように印加しており、これらの動きが合成されて、図15の破線で示すように伸びながらねじれる。
 したがって、第1駆動電極201、第2駆動電極202、第3駆動電極211、及び第4駆動電極212へ印加する信号に応じて、斜めねじれ振動用圧電素子200を斜めねじれ振動させることができる。
On the other hand, in the case shown in FIG. 15, the energization direction between the first drive electrode 201 and the third drive electrode 211 and the energization direction between the second drive electrode 202 and the fourth drive electrode 212 are respectively shown. This is the reverse of the case shown in FIG. In this case, it is applied so as to shrink along the polarization direction P4 and to extend along the polarization direction P3, and these movements are combined and twisted while extending as shown by a broken line in FIG.
Accordingly, the oblique torsional vibration piezoelectric element 200 can be caused to obliquely vibrate according to signals applied to the first drive electrode 201, the second drive electrode 202, the third drive electrode 211, and the fourth drive electrode 212.
 つづいて、図16から図18を参照して、図13から図15に示した単板タイプの斜めねじれ振動用圧電素子200において、2つの分極方向を互いに同じ方向にした場合について説明する。
 図16の(a)は単板タイプの斜めねじれ振動用圧電素子の構成を示す斜視図、(b)は(a)のXVIB方向から見た側面図、(c)は(a)のXVIC方向から見た側面図である。図17の(a)は図16の斜めねじれ振動用圧電素子に駆動信号を印加したときの斜めねじれ状態を示す斜視図、(b)は(a)のXVIIB方向から見た側面図、(c)は(a)のXVIIC方向から見た側面図である。図18の(a)は図16の斜めねじれ振動用圧電素子に図17とは逆方向に駆動信号を印加したときの斜めねじれ状態を示す斜視図、(b)は(a)のXVIIIB方向から見た側面図、(c)は(a)のXVIIIC方向から見た側面図である。
Next, with reference to FIGS. 16 to 18, a case where the two polarization directions are the same in the single plate type oblique torsional vibration piezoelectric element 200 shown in FIGS. 13 to 15 will be described.
16A is a perspective view showing the configuration of a single-plate type piezoelectric element for oblique torsional vibration, FIG. 16B is a side view seen from the XVIB direction of FIG. 16A, and FIG. 16C is the XVIC direction of FIG. It is the side view seen from. FIG. 17A is a perspective view showing an oblique twist state when a drive signal is applied to the oblique torsional vibration piezoelectric element of FIG. 16, FIG. 17B is a side view seen from the XVIIB direction of FIG. ) Is a side view seen from the XVIIC direction of (a). 18A is a perspective view showing an oblique twist state when a drive signal is applied to the oblique torsional vibration piezoelectric element of FIG. 16 in the opposite direction to FIG. 17, and FIG. 18B is a perspective view from the XVIIIB direction of FIG. The side view seen, (c) is the side view seen from the XVIIIC direction of (a).
 駆動信号の印加は、第1駆動電極201と第3駆動電極211の間と、第2駆動電極202と第4駆動電極212の間と、でそれぞれ行われる。第2駆動電極202と第4駆動電極212の間における駆動信号の印加方向は、第1駆動電極201と第3駆動電極211の間における駆動信号の印加方向と逆向きの方向となる。 The application of the drive signal is performed between the first drive electrode 201 and the third drive electrode 211 and between the second drive electrode 202 and the fourth drive electrode 212, respectively. The application direction of the drive signal between the second drive electrode 202 and the fourth drive electrode 212 is opposite to the drive signal application direction between the first drive electrode 201 and the third drive electrode 211.
 図16から図18に示す斜めねじれ振動用圧電素子200は、背面223側において第1駆動電極201から第3駆動電極211へ向かう分極方向P5と、正面224側において第2駆動電極202から第4駆動電極212へ向かう分極方向P6と、の2つの分極方向を有する。分極方向P5と分極方向P6は互いに同じ向きである。
 このような構成を備えた斜めねじれ振動用圧電素子200は、駆動信号を印加することにより、図17及び図18に示すように斜めねじれ振動する。
16 to 18, the oblique torsional vibration piezoelectric element 200 has a polarization direction P5 from the first drive electrode 201 to the third drive electrode 211 on the back surface 223 side, and a fourth to fourth drive electrode 202 on the front surface 224 side. There are two polarization directions, ie, a polarization direction P6 toward the drive electrode 212. The polarization direction P5 and the polarization direction P6 are in the same direction.
The oblique torsional vibration piezoelectric element 200 having such a configuration is subjected to oblique torsional vibration as shown in FIGS. 17 and 18 when a drive signal is applied.
 具体的な斜めねじれ振動は次のとおりである。
 図17に示す場合では、外部電源は、第1駆動電極201と第3駆動電極211の間の通電方向と、第2駆動電極202と第4駆動電極212の間の通電方向と、が互いに逆の方向になるように通電している。このとき、図14に示す場合と同様に、分極方向P6に沿って伸びるように、かつ、分極方向P5に沿って縮むように印加すれば、これらの動きが合成されて、図17の破線で示すように伸びながらねじれる。
The specific oblique torsional vibration is as follows.
In the case shown in FIG. 17, in the external power supply, the energization direction between the first drive electrode 201 and the third drive electrode 211 and the energization direction between the second drive electrode 202 and the fourth drive electrode 212 are opposite to each other. It is energized to be in the direction of. At this time, similar to the case shown in FIG. 14, if applied so as to extend along the polarization direction P <b> 6 and contract along the polarization direction P <b> 5, these movements are combined and shown by a broken line in FIG. 17. Twist while stretching.
 これに対して、図18に示す場合では、第1駆動電極201と第3駆動電極211の間の通電方向と、第2駆動電極202と第4駆動電極212の間の通電方向と、をそれぞれ図17に示す場合と逆にしている。この場合は、図15に示す場合と同様に、分極方向P6に沿って縮むように、かつ、分極方向P5に沿って伸びるように印加しており、これらの動きが合成されて、図18の破線で示すように伸びながらねじれる。
 したがって、第1駆動電極201、第2駆動電極202、第3駆動電極211、及び第4駆動電極212へ印加する信号に応じて、斜めねじれ振動用圧電素子200を斜めねじれ振動させることができる。
On the other hand, in the case shown in FIG. 18, the energization direction between the first drive electrode 201 and the third drive electrode 211 and the energization direction between the second drive electrode 202 and the fourth drive electrode 212 are respectively shown. This is the reverse of the case shown in FIG. In this case, as in the case shown in FIG. 15, the application is performed so as to shrink along the polarization direction P6 and to extend along the polarization direction P5, and these movements are combined to create a broken line in FIG. It twists while stretching as shown by.
Accordingly, the oblique torsional vibration piezoelectric element 200 can be caused to obliquely vibrate according to signals applied to the first drive electrode 201, the second drive electrode 202, the third drive electrode 211, and the fourth drive electrode 212.
 次に、図19から図21を参照して、2枚の圧電素子を貼り合わせた、貼り合わせタイプの斜めねじれ振動用圧電素子の場合について説明する。
 図19の(a)は貼り合わせタイプの斜めねじれ振動用圧電素子の構成を示す斜視図、(b)は(a)のXIXB方向から見た側面図、(c)は(a)のXIXC方向から見た側面図である。図20の(a)は図19の斜めねじれ振動用圧電素子に駆動信号を印加したときの斜めねじれ状態を示す斜視図、(b)は(a)のXXB方向から見た側面図、(c)は(a)のXXC方向から見た側面図である。図21の(a)は図19の斜めねじれ振動用圧電素子に図20とは逆方向に駆動信号を印加したときの斜めねじれ状態を示す斜視図、(b)は(a)のXXIB方向から見た側面図、(c)は(a)のXXIC方向から見た側面図である。
Next, with reference to FIG. 19 to FIG. 21, the case of a bonded type oblique torsional vibration piezoelectric element in which two piezoelectric elements are bonded together will be described.
FIG. 19A is a perspective view showing the configuration of a bonded-type oblique torsional vibration piezoelectric element, FIG. 19B is a side view seen from the XIXB direction of FIG. 19A, and FIG. 19C is the XIXC direction of FIG. It is the side view seen from. 20A is a perspective view showing an oblique twisted state when a drive signal is applied to the oblique torsional vibration piezoelectric element of FIG. 19, FIG. 20B is a side view seen from the XXB direction of FIG. ) Is a side view seen from the XXC direction of (a). 21A is a perspective view showing an oblique twist state when a drive signal is applied to the oblique torsional vibration piezoelectric element of FIG. 19 in the direction opposite to that of FIG. 20, and FIG. 21B is a perspective view from the XXIB direction of FIG. The side view seen, (c) is the side view seen from the XXIC direction of (a).
 図19から図21に示すように、斜めねじれ振動用圧電素子300は、同一形状の第1圧電素子300a及び第2圧電素子300bを互いに貼り合わせて略直方体形状としている。
 斜めねじれ振動用圧電素子300において、第1圧電素子300aの側面321aの上部には第1駆動電極301が設けられ、第2圧電素子300bの側面321bの上部には、斜めねじれ振動用圧電素子300の厚み方向に沿って第1駆動電極301と並ぶように第2駆動電極302が設けられている。また、第1圧電素子300aの側面321aに対向する側面322aの下部には第3駆動電極311が設けられ、第2圧電素子300bの側面321bに対向する側面322bの下部には、斜めねじれ振動用圧電素子300の厚み方向に沿って第3駆動電極311と並ぶように第4駆動電極312が設けられている。
As shown in FIGS. 19 to 21, the oblique torsional vibration piezoelectric element 300 has a substantially rectangular parallelepiped shape by bonding the first piezoelectric element 300a and the second piezoelectric element 300b having the same shape to each other.
In the oblique torsional vibration piezoelectric element 300, the first drive electrode 301 is provided on the upper side surface 321a of the first piezoelectric element 300a, and the oblique torsional vibration piezoelectric element 300 is disposed on the upper side surface 321b of the second piezoelectric element 300b. A second drive electrode 302 is provided so as to be aligned with the first drive electrode 301 along the thickness direction. A third drive electrode 311 is provided below the side surface 322a facing the side surface 321a of the first piezoelectric element 300a, and an oblique torsional vibration is disposed below the side surface 322b facing the side surface 321b of the second piezoelectric element 300b. A fourth drive electrode 312 is provided so as to be aligned with the third drive electrode 311 along the thickness direction of the piezoelectric element 300.
 第1駆動電極301、第2駆動電極302、第3駆動電極311、及び第4駆動電極312は、外部の電源(不図示)にそれぞれ接続される。接続には、例えばFPCを用い、各電極にFPCの一端を固着する。これにより、第1駆動電極301、第2駆動電極302、第3駆動電極311、及び第4駆動電極312を介して斜めねじれ振動用圧電素子300に対して駆動信号が印加される。 The first drive electrode 301, the second drive electrode 302, the third drive electrode 311, and the fourth drive electrode 312 are each connected to an external power source (not shown). For connection, for example, FPC is used, and one end of the FPC is fixed to each electrode. As a result, a drive signal is applied to the oblique torsional vibration piezoelectric element 300 via the first drive electrode 301, the second drive electrode 302, the third drive electrode 311, and the fourth drive electrode 312.
 駆動信号の印加は、第1駆動電極301と第3駆動電極311の間と、第2駆動電極302と第4駆動電極312の間と、でそれぞれ行われる。第1駆動電極301と第3駆動電極311の間における駆動信号の印加方向は、信号の電気極性に応じて、第1駆動電極301から第3駆動電極311へ、又は、第3駆動電極311から第1駆動電極301へ向かう方向となる。第2駆動電極302と第4駆動電極312の間における駆動信号の印加方向は、信号の電気極性に応じて、第2駆動電極302から第4駆動電極312へ、又は、第4駆動電極312から第2駆動電極302へ向かう方向となる。 Application of the drive signal is performed between the first drive electrode 301 and the third drive electrode 311 and between the second drive electrode 302 and the fourth drive electrode 312, respectively. The direction in which the drive signal is applied between the first drive electrode 301 and the third drive electrode 311 is changed from the first drive electrode 301 to the third drive electrode 311 or from the third drive electrode 311 depending on the electric polarity of the signal. The direction is toward the first drive electrode 301. The direction in which the drive signal is applied between the second drive electrode 302 and the fourth drive electrode 312 is changed from the second drive electrode 302 to the fourth drive electrode 312 or from the fourth drive electrode 312 depending on the electrical polarity of the signal. The direction is toward the second drive electrode 302.
 斜めねじれ振動用圧電素子300は、背面323側において第1駆動電極301から第3駆動電極311へ向かう分極方向P7と、正面324側において第4駆動電極312から第2駆動電極302へ向かう分極方向P8と、の2つの分極方向を有する。分極方向P7と分極方向P8は互いに逆向きであって、駆動信号の印加方向に沿った方向である。
 このような構成を備えた斜めねじれ振動用圧電素子300は、駆動信号を印加することにより、図20及び図21に示すように斜めねじれ振動する。
The oblique torsional vibration piezoelectric element 300 has a polarization direction P7 from the first drive electrode 301 to the third drive electrode 311 on the back surface 323 side, and a polarization direction from the fourth drive electrode 312 to the second drive electrode 302 on the front surface 324 side. P8 and two polarization directions. The polarization direction P7 and the polarization direction P8 are opposite to each other, and are directions along the drive signal application direction.
The oblique torsional vibration piezoelectric element 300 having such a configuration is subjected to oblique torsional vibration as shown in FIGS. 20 and 21 when a drive signal is applied.
 具体的な斜めねじれ振動は次のとおりである。
 図20に示す場合では、図14に示す場合と同様に、外部電源は、第1駆動電極301と第3駆動電極311の間の通電方向と、第2駆動電極302と第4駆動電極312の間の通電方向と、が互いに同じ方向になるように通電している。このとき、図14に示す場合と同様に、分極方向P8に沿って伸びるように、かつ、分極方向P7に沿って縮むように印加しており、これらの動きが合成されて、図20の破線で示すように伸びながらねじれる。
The specific oblique torsional vibration is as follows.
In the case shown in FIG. 20, as in the case shown in FIG. 14, the external power supply supplies the energization direction between the first drive electrode 301 and the third drive electrode 311, the second drive electrode 302 and the fourth drive electrode 312. Energization is performed so that the energization direction is in the same direction. At this time, as in the case shown in FIG. 14, the application is performed so as to extend along the polarization direction P8 and contract along the polarization direction P7. Twists while stretching as shown.
 これに対して、図21に示す場合では、第1駆動電極301と第3駆動電極311の間の通電方向と、第2駆動電極312と第4駆動電極312の間の通電方向と、をそれぞれ図20に示す場合と逆にしている。このとき、図15に示す場合と同様に、分極方向P8に沿って縮むように、かつ、分極方向P7に沿って伸びるように印加しており、これらの動きが合成されて、図21の破線で示すように伸びながらねじれる。
 したがって、第1駆動電極301、第2駆動電極302、第3駆動電極311、及び第4駆動電極312へ印加する信号に応じて、斜めねじれ振動用圧電素子300を斜めねじれ振動させることができる。
On the other hand, in the case shown in FIG. 21, the energization direction between the first drive electrode 301 and the third drive electrode 311 and the energization direction between the second drive electrode 312 and the fourth drive electrode 312 are respectively shown. This is the reverse of the case shown in FIG. At this time, as in the case shown in FIG. 15, the application is performed so as to shrink along the polarization direction P8 and to extend along the polarization direction P7. Twists while stretching as shown.
Accordingly, the oblique torsional vibration piezoelectric element 300 can be subjected to oblique torsional vibration in accordance with signals applied to the first drive electrode 301, the second drive electrode 302, the third drive electrode 311, and the fourth drive electrode 312.
 2枚の圧電素子を貼り合わせたタイプは、図19から図21に示すように2つの分極方向P7、P8が互いに逆向きである場合のほかに、2つの分極方向を同じ向きにすることもできる。貼り合わせタイプの斜めねじれ振動用圧電素子の2つの分極方向が互いに同じ向きである場合は、図16から図18に示す単板タイプの場合と同様の駆動信号を印加することにより同様の斜めねじれ振動を起こすことができるため、その詳細な説明は省略する。 In the type in which two piezoelectric elements are bonded together, the two polarization directions P7 and P8 may be opposite to each other as shown in FIGS. it can. When the two polarization directions of the bonded-type oblique torsional vibration piezoelectric element are the same as each other, the same oblique twist is applied by applying a drive signal similar to that of the single plate type shown in FIGS. Since the vibration can occur, detailed description thereof is omitted.
 以下、上記実施形態に係る超音波モータ100における振動子101として用いる振動子の実施例について説明する。
(実施例1)
 図22は、第1実施例に係る振動子400の構成を示す斜視図である。図23は、図22のXXIII方向から見た側面図と、図3(e)に示すねじれ3次共振振動における振動状態を側面から見た図を対応させて示す図である。図24は、図22のXXIV方向から見た正面図である。
 図22及び図23に示すように、振動子400は、同一形状の第1圧電素子400a及び第2圧電素子400bを互いに貼り合わせて略直方体形状としている。
 振動子400において、第1圧電素子400aの側面421aには第1駆動電極401が設けられ、第2圧電素子400bの側面421bには、振動子400の厚み方向に沿って第1駆動電極401と並ぶように第2駆動電極402が設けられている。また、第1圧電素子400aの側面421aに対向する側面422aには第3駆動電極411が設けられ、第2圧電素子400bの側面421bに対向する側面422bには、振動子400の厚み方向に沿って第3駆動電極411と並ぶように第4駆動電極412が設けられている。第1駆動電極401及び第2駆動電極402は、振動子101の2つの駆動電極121、122にそれぞれ対応する。
Hereinafter, an example of a vibrator used as the vibrator 101 in the ultrasonic motor 100 according to the embodiment will be described.
Example 1
FIG. 22 is a perspective view showing the configuration of the vibrator 400 according to the first embodiment. 23 is a diagram showing a side view seen from the direction XXIII in FIG. 22 and a view seen from the side of the vibration state in the torsional tertiary resonance vibration shown in FIG. 3E. 24 is a front view seen from the direction XXIV of FIG.
As shown in FIGS. 22 and 23, the vibrator 400 has a substantially rectangular parallelepiped shape in which the first piezoelectric element 400a and the second piezoelectric element 400b having the same shape are bonded to each other.
In the vibrator 400, the first drive electrode 401 is provided on the side surface 421a of the first piezoelectric element 400a, and the first drive electrode 401 and the side surface 421b of the second piezoelectric element 400b are arranged along the thickness direction of the vibrator 400. Second drive electrodes 402 are provided so as to be aligned. The third drive electrode 411 is provided on the side surface 422a facing the side surface 421a of the first piezoelectric element 400a, and the side surface 422b facing the side surface 421b of the second piezoelectric element 400b is along the thickness direction of the vibrator 400. The fourth drive electrode 412 is provided so as to be aligned with the third drive electrode 411. The first drive electrode 401 and the second drive electrode 402 correspond to the two drive electrodes 121 and 122 of the vibrator 101, respectively.
 振動子400においては、図4に示す、ねじれ3次共振振動が生じるような条件を満たすように、中心軸100cに垂直な断面の短辺と長辺が構成されている。これにより、図23の右側に示す、節N41、N42、N43を有するねじれ3次共振振動が生じることになる。このねじれ3次共振振動の振動状態は、図23の右側において、波線450で示している。 In the vibrator 400, the short side and the long side of the cross section perpendicular to the central axis 100c are configured so as to satisfy the condition for generating the torsional tertiary resonance vibration shown in FIG. Thereby, the torsional tertiary resonance vibration having the nodes N41, N42 and N43 shown on the right side of FIG. 23 is generated. The vibration state of the torsional tertiary resonance vibration is indicated by a wavy line 450 on the right side of FIG.
 第1駆動電極401、第2駆動電極402、第3駆動電極411、及び第4駆動電極412は、波線450で示した振動状態の節及び腹の位置に対応するように配置されている。具体的には、図23に示すように、波線450で示すねじれ3次共振振動の腹位置に対応するように、第1駆動電極401、第2駆動電極402、第3駆動電極411、及び第4駆動電極412を配置し、さらに、節N41に対応するように第1駆動電極401と第2駆動電極402の上端を配置し、節N42に対応するように第3駆動電極411と第4駆動電極412の下端を配置している。
 このような構成により、ねじれの応力が最大になる位置がねじれの節になり、ねじれ3次共振振動が効率よく励起される。
The first drive electrode 401, the second drive electrode 402, the third drive electrode 411, and the fourth drive electrode 412 are arranged so as to correspond to the positions of the nodes and antinodes in the vibration state indicated by the wavy line 450. Specifically, as shown in FIG. 23, the first drive electrode 401, the second drive electrode 402, the third drive electrode 411, and the first drive electrode 401 correspond to the antinode position of the torsional tertiary resonance vibration indicated by the wavy line 450. The four drive electrodes 412 are arranged, and the upper ends of the first drive electrode 401 and the second drive electrode 402 are arranged so as to correspond to the node N41, and the third drive electrode 411 and the fourth drive are arranged so as to correspond to the node N42. The lower end of the electrode 412 is disposed.
With such a configuration, the position where the torsional stress becomes maximum becomes a torsion node, and the torsional tertiary resonance vibration is efficiently excited.
 振動子400は、背面423側において第1駆動電極401から第3駆動電極411へ向かう分極方向P9と、正面424側において第4駆動電極412から第2駆動電極402へ向かう分極方向P10と、の2つの分極方向を有する。分極方向P9と分極方向P10は互いに逆向きであって、駆動信号の印加方向に沿った方向である。
 振動子400において、外部電源は、第1駆動電極401と第3駆動電極411の間の通電方向と、第2駆動電極402と第4駆動電極412の間の通電方向と、が互いに同じ方向になるように通電している。これらの駆動電極に駆動信号を印加することにより、中心軸100cをねじれ軸とするねじれ3次共振振動(図3(e))と、中心軸100c方向に伸縮する縦1次共振振動と、が同時に発生し、これらが合成された楕円振動が生じる。したがって、振動子101としての振動子400の高さ方向の両端面に楕円振動が発生するため、摩擦接触部材103a、103bを介してロータ102に楕円振動が伝達される。
The vibrator 400 has a polarization direction P9 from the first drive electrode 401 toward the third drive electrode 411 on the back surface 423 side, and a polarization direction P10 from the fourth drive electrode 412 toward the second drive electrode 402 on the front surface 424 side. It has two polarization directions. The polarization direction P9 and the polarization direction P10 are opposite to each other, and are directions along the drive signal application direction.
In the vibrator 400, the external power supply is such that the energization direction between the first drive electrode 401 and the third drive electrode 411 and the energization direction between the second drive electrode 402 and the fourth drive electrode 412 are in the same direction. It is energized to become. By applying a drive signal to these drive electrodes, a torsional tertiary resonance vibration (FIG. 3E) having the center axis 100c as a torsion axis and a longitudinal primary resonance vibration expanding and contracting in the direction of the center axis 100c are generated. Oval vibration that occurs at the same time and is synthesized occurs. Therefore, elliptical vibration is generated on both end surfaces of the vibrator 400 as the vibrator 101 in the height direction, and thus the elliptical vibration is transmitted to the rotor 102 via the frictional contact members 103a and 103b.
 さらに、図24に示すように、分極方向P10に沿った分極軸P40と、中心軸100cと、のなす角度θ4は鋭角となっている。ここで、分極方向P9は、分極方向P10に平行であるため、分極方向P9に沿った分極軸と中心軸100cとのなす角度もθ4であり、鋭角である。
 振動子400においては、以上のような簡単な構成によって容易に楕円振動を励起させることができるため、溝部等が不要な振動子101を得ることができ、部品点数が少なくなり、製造が容易となることから、コストの安い超音波モータを供給することができる。さらに、ねじれ3次共振振動と縦1次共振振動を独立に制御することができる。また、分極に用いた電極をそのまま駆動用電極に使える。
Furthermore, as shown in FIG. 24, the angle θ4 formed by the polarization axis P40 along the polarization direction P10 and the central axis 100c is an acute angle. Here, since the polarization direction P9 is parallel to the polarization direction P10, the angle between the polarization axis along the polarization direction P9 and the central axis 100c is θ4, which is an acute angle.
In the vibrator 400, elliptical vibration can be easily excited with the simple configuration as described above, so that the vibrator 101 that does not require a groove or the like can be obtained, the number of parts is reduced, and manufacturing is easy. Therefore, an ultrasonic motor with a low cost can be supplied. Furthermore, the torsional tertiary resonance vibration and the longitudinal primary resonance vibration can be controlled independently. Further, the electrode used for polarization can be used as a drive electrode as it is.
(実施例2)
 図25は、第2実施例に係る振動子500の構成を示す斜視図である。図26は、図25のXXVI方向から見た側面図と、図3(d)に示すねじれ2次共振振動における振動状態を側面から見た図を対応させて示す図である。図27は、図25のXXVII方向から見た正面図である。
 図25及び図26に示すように、振動子500は、同一形状の第1圧電素子500a及び第2圧電素子500bを互いに貼り合わせて略直方体形状としている。
 振動子500において、第1圧電素子500aの側面521aには第1駆動電極501が設けられ、第2圧電素子500bの側面521bには、振動子500の厚み方向に沿って第1駆動電極501と並ぶように第2駆動電極502が設けられている。また、第1圧電素子500aの側面521aに対向する側面522aには第3駆動電極511が設けられ、第2圧電素子500bの側面521bに対向する側面522bには、振動子500の厚み方向に沿って第3駆動電極511と並ぶように第4駆動電極512が設けられている。第1駆動電極501及び第2駆動電極502は、振動子101の2つの駆動電極121、122にそれぞれ対応する。
(Example 2)
FIG. 25 is a perspective view showing the configuration of the vibrator 500 according to the second embodiment. 26 is a diagram showing a side view seen from the XXVI direction in FIG. 25 and a view seen from the side of the vibration state in the torsional secondary resonance vibration shown in FIG. 3D. 27 is a front view seen from the direction XXVII in FIG.
As shown in FIGS. 25 and 26, the vibrator 500 has a substantially rectangular parallelepiped shape in which the first piezoelectric element 500a and the second piezoelectric element 500b having the same shape are bonded to each other.
In the vibrator 500, the first drive electrode 501 is provided on the side surface 521a of the first piezoelectric element 500a, and the first drive electrode 501 is provided on the side face 521b of the second piezoelectric element 500b along the thickness direction of the vibrator 500. A second drive electrode 502 is provided so as to be aligned. The third drive electrode 511 is provided on the side surface 522a facing the side surface 521a of the first piezoelectric element 500a, and the side surface 522b facing the side surface 521b of the second piezoelectric element 500b is along the thickness direction of the vibrator 500. A fourth drive electrode 512 is provided so as to be aligned with the third drive electrode 511. The first drive electrode 501 and the second drive electrode 502 correspond to the two drive electrodes 121 and 122 of the vibrator 101, respectively.
 振動子500においては、図4に示す、ねじれ2次共振振動が生じるような条件を満たすように、中心軸100cに垂直な断面の短辺と長辺が構成されている。これにより、図26の右側に示す、節N51、N52を有するねじれ2次共振振動が生じることになる。このねじれ2次共振振動の振動状態は、図26の右側において、波線550で示している。 In the vibrator 500, the short side and the long side of the cross section perpendicular to the central axis 100c are configured so as to satisfy the condition for generating the torsional secondary resonance vibration shown in FIG. Thereby, the torsional secondary resonance vibration having the nodes N51 and N52 shown on the right side of FIG. 26 is generated. The vibration state of the torsional secondary resonance vibration is indicated by a broken line 550 on the right side of FIG.
 第1駆動電極501、第2駆動電極502、第3駆動電極511、及び第4駆動電極512は、波線550で示した振動状態の節及び腹の位置に対応するように配置されている。具体的には、図26に示すように、波線550で示すねじれ2次共振振動の腹位置に対応するように、第1駆動電極501、第2駆動電極502、第3駆動電極511、及び第4駆動電極512を配置し、さらに、節N51に対応するように第1駆動電極501と第2駆動電極502の上端を配置し、節N52に対応するように第3駆動電極511と第4駆動電極512の下端を配置している。
 このような構成により、ねじれの応力が最大になる位置がねじれの節になり、ねじれ2次共振振動が効率よく励起される。
The first drive electrode 501, the second drive electrode 502, the third drive electrode 511, and the fourth drive electrode 512 are arranged so as to correspond to the nodes and antinodes of the vibration state indicated by the wavy line 550. Specifically, as shown in FIG. 26, the first drive electrode 501, the second drive electrode 502, the third drive electrode 511, and the first drive electrode 501 correspond to the antinode position of the torsional secondary resonance vibration indicated by the broken line 550. The four drive electrodes 512 are arranged, and the upper ends of the first drive electrode 501 and the second drive electrode 502 are arranged so as to correspond to the node N51, and the third drive electrode 511 and the fourth drive are arranged so as to correspond to the node N52. The lower end of the electrode 512 is disposed.
With such a configuration, the position where the torsional stress becomes maximum becomes a torsion node, and the torsional secondary resonance vibration is efficiently excited.
 振動子500は、背面523側において第1駆動電極501から第3駆動電極511へ向かう分極方向P11と、正面524側において第4駆動電極512から第2駆動電極502へ向かう分極方向P12と、の2つの分極方向を有する。分極方向P11と分極方向P12は互いに逆向きであって、駆動信号の印加方向に沿った方向である。
 振動子500においては、外部電源は、第1駆動電極501と第3駆動電極511の間の通電方向と、第2駆動電極502と第4駆動電極512の間の通電方向と、が互いに同じ方向になるように通電している。これらの駆動電極に駆動信号を印加することにより、中心軸100cをねじれ軸とするねじれ2次共振振動(図3(d))と、中心軸100c方向に伸縮する縦1次共振振動と、が同時に発生し、これらが合成された楕円振動が生じる。したがって、振動子101としての振動子500の高さ方向の両端面に楕円振動が発生するため、摩擦接触部材103a、103bを介してロータ102に楕円振動が伝達される。
The vibrator 500 has a polarization direction P11 from the first drive electrode 501 to the third drive electrode 511 on the back surface 523 side, and a polarization direction P12 from the fourth drive electrode 512 to the second drive electrode 502 on the front surface 524 side. It has two polarization directions. The polarization direction P11 and the polarization direction P12 are opposite to each other, and are directions along the direction in which the drive signal is applied.
In the vibrator 500, the external power supply has the same energization direction between the first drive electrode 501 and the third drive electrode 511 and the energization direction between the second drive electrode 502 and the fourth drive electrode 512. It is energized to become. By applying a drive signal to these drive electrodes, a torsional secondary resonance vibration (FIG. 3D) having the center axis 100c as a torsion axis and a longitudinal primary resonance vibration expanding and contracting in the direction of the center axis 100c are generated. Oval vibration that occurs at the same time and is synthesized occurs. Therefore, elliptical vibration is generated on both end surfaces of the vibrator 500 as the vibrator 101 in the height direction, and thus the elliptical vibration is transmitted to the rotor 102 via the frictional contact members 103a and 103b.
 さらに、図27に示すように、分極方向P12に沿った分極軸P50と、中心軸100cと、のなす角度θ5は鋭角となっている。ここで、分極方向P11は、分極方向P12に平行であるため、分極方向P11に沿った分極軸と中心軸100cとのなす角度もθ5であり、鋭角である。
 振動子500においては、以上のような簡単な構成によって容易に楕円振動を励起させることができるため、溝部等が不要な振動子101を得ることができ、部品点数が少なくなり、製造が容易となることから、コストの安い超音波モータを供給することができる。さらに、ねじれ2次共振振動と縦1次共振振動を独立に制御することができる。また、分極に用いた電極をそのまま駆動用電極に使える。
Further, as shown in FIG. 27, the angle θ5 formed by the polarization axis P50 along the polarization direction P12 and the central axis 100c is an acute angle. Here, since the polarization direction P11 is parallel to the polarization direction P12, the angle formed between the polarization axis along the polarization direction P11 and the central axis 100c is θ5, which is an acute angle.
In the vibrator 500, elliptical vibration can be easily excited with the simple configuration as described above, so that the vibrator 101 that does not require a groove or the like can be obtained, the number of parts is reduced, and manufacturing is easy. Therefore, an ultrasonic motor with a low cost can be supplied. Furthermore, the torsional secondary resonance vibration and the longitudinal primary resonance vibration can be controlled independently. Further, the electrode used for polarization can be used as a drive electrode as it is.
 実施例1及び実施例2においては2つの分極方向を逆向きにしていたが、同じ向きにした場合においても、図4に示す条件を満たすように中心軸100cに垂直な断面の短辺と長辺を構成することにより、ねじれ3次共振振動又はねじれ2次共振振動を発生させることができる。
 また、実施例1及び実施例2では、2枚の圧電素子を貼り合わせて構成したが、単板で構成することもできる。また、2枚を超える枚数の圧電素子、例えば、4枚、8枚、...の圧電素子で構成してもよい。
In the first and second embodiments, the two polarization directions are opposite to each other. However, even when the two directions are the same, the short side and the long side of the cross section perpendicular to the central axis 100c satisfy the conditions shown in FIG. By configuring the sides, torsional tertiary resonance vibration or torsional secondary resonance vibration can be generated.
In the first and second embodiments, the two piezoelectric elements are bonded to each other. However, the piezoelectric elements may be formed of a single plate. Also, more than two piezoelectric elements, for example, four, eight,. . . You may comprise by this piezoelectric element.
 以上のように、本発明に係る超音波モータは、振動と斜めねじれ振動を合成することにより楕円振動を形成し、楕円振動によりロータを回転させる超音波モータに適している。 As described above, the ultrasonic motor according to the present invention is suitable for an ultrasonic motor that forms elliptical vibration by combining vibration and oblique torsional vibration and rotates the rotor by elliptical vibration.
 100  超音波モータ
 100c 中心軸
 101  振動子
 101a 楕円振動発生面
 101f 長辺
 101s 短辺
 102  ロータ
 103a、103b 摩擦接触部材
 105  シャフト
 107  ベアリング
 108  押圧バネ
 109  バネ押さえリング
 110  ホルダ
 111  シャフト固定リング
 121、122 駆動電極
 150  縦振動用圧電素子
 150a 第1駆動電極
 150b 第2駆動電極
 160  斜め振動用圧電素子
 160a 第1駆動電極
 160b 第2駆動電極
 200  斜めねじれ振動用圧電素子
 201  第1駆動電極
 202  第2駆動電極
 211  第3駆動電極
 212  第4駆動電極
 300  斜めねじれ振動用圧電素子
 300a 第1圧電素子
 300b 第2圧電素子
 301  第1駆動電極
 302  第2駆動電極
 311  第3駆動電極
 312  第4駆動電極
 400  振動子
 400a 第1圧電素子
 400b 第2圧電素子
 401  第1駆動電極
 402  第2駆動電極
 411  第3駆動電極
 412  第4駆動電極
 500  振動子
 500a 第1圧電素子
 500b 第2圧電素子
 501  第1駆動電極
 502  第2駆動電極
 511  第3駆動電極
 512  第4駆動電極
 P1、P2、P3、P4、P5、P6、P7、P8、P9、P10、P11、P12 分極方向
 P40、P50 分極軸
DESCRIPTION OF SYMBOLS 100 Ultrasonic motor 100c Center axis 101 Vibrator 101a Elliptical vibration generating surface 101f Long side 101s Short side 102 Rotor 103a, 103b Friction contact member 105 Shaft 107 Bearing 108 Pressing spring 109 Spring pressing ring 110 Holder 111 Shaft fixing ring 121, 122 Drive Electrode 150 Piezoelectric element for longitudinal vibration 150a First drive electrode 150b Second drive electrode 160 Piezoelectric element for oblique vibration 160a First drive electrode 160b Second drive electrode 200 Piezoelectric element for oblique torsional vibration 201 First drive electrode 202 Second drive electrode 211 Third driving electrode 212 Fourth driving electrode 300 Piezoelectric element for oblique torsional vibration 300a First piezoelectric element 300b Second piezoelectric element 301 First driving electrode 302 Second driving electrode 311 Third driving electrode 3 2 4th drive electrode 400 Vibrator 400a 1st piezoelectric element 400b 2nd piezoelectric element 401 1st drive electrode 402 2nd drive electrode 411 3rd drive electrode 412 4th drive electrode 500 Vibrator 500a 1st piezoelectric element 500b 2nd piezoelectric Element 501 First drive electrode 502 Second drive electrode 511 Third drive electrode 512 Fourth drive electrode P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12 Polarization direction P40, P50 Polarization axis

Claims (6)

  1.  中心軸に垂直な断面が矩形状の長さ比率を有する振動子と、前記振動子の楕円振動発生面に接して前記振動子の前記楕円振動発生面と直交する前記中心軸を回転軸として回転駆動されるロータと、を少なくとも備えた超音波モータであって、
     前記振動子の前記回転軸方向に伸縮する縦1次共振振動と、前記回転軸をねじれ軸とするねじれ2次共振振動又はねじれ3次共振振動とを合成することにより、楕円振動を形成してなり、
     前記振動子の前記回転軸方向に伸縮する縦1次共振振動と、前記回転軸をねじれ軸とするねじれ2次共振振動又はねじれ3次共振振動と、の共振周波数がほぼ一致するように、前記振動子の前記矩形状の長さ比率を設定し、
     前記振動子は、前記回転軸に対してそれぞれ鋭角をなす、2つの分極方向にそれぞれ沿った2つの分極軸を備えることを特徴とする超音波モータ。
    A vibrator having a rectangular length ratio in a cross section perpendicular to the central axis, and rotating about the central axis in contact with the elliptical vibration generating surface of the vibrator and orthogonal to the elliptical vibration generating surface of the vibrator An ultrasonic motor comprising at least a rotor to be driven,
    By combining the longitudinal primary resonance vibration of the vibrator extending and contracting in the direction of the rotation axis and the torsional secondary resonance vibration or the torsional tertiary resonance vibration having the rotation axis as the torsion axis, an elliptical vibration is formed. Become
    The longitudinal primary resonance vibration that expands and contracts in the direction of the rotation axis of the vibrator and the resonance frequency of the torsional secondary resonance vibration or the torsional tertiary resonance vibration that uses the rotation axis as a torsion axis are substantially the same. Set the rectangular length ratio of the vibrator,
    2. The ultrasonic motor according to claim 1, wherein the vibrator includes two polarization axes respectively along two polarization directions that form acute angles with respect to the rotation axis.
  2.  前記振動子において、前記2つの分極方向に沿って互いに逆方向に伸縮するように、前記2つの分極方向と駆動電極の関係を設定したことを特徴とする請求項1に記載の超音波モータ。 2. The ultrasonic motor according to claim 1, wherein the relationship between the two polarization directions and the drive electrode is set so that the vibrator expands and contracts in opposite directions along the two polarization directions.
  3.  前記振動子は単板からなることを特徴とする請求項2に記載の超音波モータ。 The ultrasonic motor according to claim 2, wherein the vibrator is made of a single plate.
  4.  前記振動子は2枚の板からなることを特徴とする請求項2に記載の超音波モータ。 The ultrasonic motor according to claim 2, wherein the vibrator is composed of two plates.
  5.  前記楕円振動は、前記縦1次共振振動と前記ねじれ3次共振振動とを合成することにより形成され、
     前記ねじれ3次共振振動の腹位置に対応するように前記駆動電極を配置していることを特徴とする請求項2に記載の超音波モータ。
    The elliptical vibration is formed by combining the longitudinal primary resonance vibration and the torsional tertiary resonance vibration,
    The ultrasonic motor according to claim 2, wherein the drive electrode is disposed so as to correspond to an antinode position of the torsional tertiary resonance vibration.
  6.  前記楕円振動は、前記縦1次共振振動と前記ねじれ2次共振振動とを合成することにより形成され、
     前記ねじれ2次共振振動の腹位置に対応するように前記駆動電極を配置していることを特徴とする請求項2に記載の超音波モータ。
    The elliptical vibration is formed by combining the longitudinal primary resonance vibration and the torsional secondary resonance vibration,
    The ultrasonic motor according to claim 2, wherein the drive electrode is arranged so as to correspond to an antinode position of the torsional secondary resonance vibration.
PCT/JP2012/058356 2011-03-31 2012-03-29 Ultrasonic motor WO2012133650A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011079481A JP2012217237A (en) 2011-03-31 2011-03-31 Ultrasonic motor
JP2011-079481 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012133650A1 true WO2012133650A1 (en) 2012-10-04

Family

ID=46931352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058356 WO2012133650A1 (en) 2011-03-31 2012-03-29 Ultrasonic motor

Country Status (2)

Country Link
JP (1) JP2012217237A (en)
WO (1) WO2012133650A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106849738A (en) * 2015-12-04 2017-06-13 佳能株式会社 Drive method, oscillation drive and the plant equipment of oscillation actuator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104539189B (en) * 2015-01-09 2017-01-11 哈尔滨工业大学 Cross-shaped section beam type paster double-foot ultrasonic motor vibrator
CN107552368A (en) * 2017-10-31 2018-01-09 哈尔滨工业大学 A kind of sandwich elliptical ultrasonic vibration system based on symmetrical structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010226802A (en) * 2009-03-19 2010-10-07 Olympus Corp Ultrasonic motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010226802A (en) * 2009-03-19 2010-10-07 Olympus Corp Ultrasonic motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106849738A (en) * 2015-12-04 2017-06-13 佳能株式会社 Drive method, oscillation drive and the plant equipment of oscillation actuator
CN106849738B (en) * 2015-12-04 2019-08-06 佳能株式会社 Drive method, oscillation drive and the mechanical equipment of oscillation actuator
US10516349B2 (en) 2015-12-04 2019-12-24 Canon Kabushiki Kaisha Method of driving vibration actuator with enhanced sliding efficiency, vibration drive device, and mechanical apparatus

Also Published As

Publication number Publication date
JP2012217237A (en) 2012-11-08

Similar Documents

Publication Publication Date Title
JP5545825B2 (en) Ultrasonic motor
US8058773B2 (en) Ultrasonic motor and ultrasonic vibrator
US20100019621A1 (en) Ultrasonic motor and ultrasonic motor apparatus retaining the same
WO2012133650A1 (en) Ultrasonic motor
JP4119903B2 (en) Flat plate piezoelectric ultrasonic motor
JP5185716B2 (en) Ultrasonic motor
US8294334B2 (en) Ultrasonic motor
US8304962B2 (en) Ultrasonic motor
US8294335B2 (en) Ultrasonic motor
KR101053805B1 (en) Vibrating actuator
JPH099656A (en) Ultrasonic vibrator and ultrasonic motor
US8299683B2 (en) Ultrasonic motor
JP4981427B2 (en) Vibration drive device
JPH09117168A (en) Supersonic motor
JP3297211B2 (en) Ultrasonic motor
JP2012039690A (en) Ultrasonic motor
WO2021200417A1 (en) Actuator and optical reflective element
US20110187229A1 (en) Ultrasonic motor
JP5129184B2 (en) Ultrasonic motor
JPH0993965A (en) Ultrasonic oscillator and ultrasonic motor using the ultrasonic oscillator
WO2012029925A1 (en) Ultrasonic motor
JP2007202340A (en) Driving apparatus and control method of driving apparatus
JPH08163879A (en) Ultrasonic oscillator and ultrasonic motor
US8446067B2 (en) Ultrasonic motor
JP2004289894A (en) Ultrasonic motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763432

Country of ref document: EP

Kind code of ref document: A1