JPH0993965A - Ultrasonic oscillator and ultrasonic motor using the ultrasonic oscillator - Google Patents

Ultrasonic oscillator and ultrasonic motor using the ultrasonic oscillator

Info

Publication number
JPH0993965A
JPH0993965A JP7245875A JP24587595A JPH0993965A JP H0993965 A JPH0993965 A JP H0993965A JP 7245875 A JP7245875 A JP 7245875A JP 24587595 A JP24587595 A JP 24587595A JP H0993965 A JPH0993965 A JP H0993965A
Authority
JP
Japan
Prior art keywords
piezoelectric elements
elastic body
ultrasonic
piezoelectric
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7245875A
Other languages
Japanese (ja)
Inventor
Toshiharu Tsubata
敏晴 津幡
Tomoki Funakubo
朋樹 舟窪
Yoshihisa Taniguchi
芳久 谷口
Kazuhiro Kumei
一裕 粂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP7245875A priority Critical patent/JPH0993965A/en
Publication of JPH0993965A publication Critical patent/JPH0993965A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic motor where the constitution can be simpli fied and also which can be driven at a low voltage. SOLUTION: Piezoelectric elements 3 and 6 consisting of a plurality of stacked piezoelectric elements are arranged at the two junction faces at least of the wall face in the longitudinal direction of an elastic body, and a circular driver 8 is arranged at the end face orthogonal to the longitudinal direction of the elliptic body, and a rotor 11 is retained rotatably by the elastic body while pressure-contacting with this driver 8. And, ultrasonic circular elliptic oscillation is excited in the position of the driver 8 by exciting the longitudinal oscillation and torsional oscillation at the same time, by applying AC voltage having phase difference each, to the plural piezoelectric elements 3 and 6, thus the rotor 11 is rotated by this ultrasonic elliptic oscillation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気機械変換素子
を駆動源とした超音波振動子及び該超音波振動子を用い
た超音波モータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic vibrator using an electromechanical transducer as a drive source and an ultrasonic motor using the ultrasonic vibrator.

【0002】[0002]

【従来の技術】近年、電磁型モータに代わる新しいモー
タとして超音波モータが注目されている。この超音波モ
ータは、従来の電磁型モータに比べ以下のような利点を
有している。
2. Description of the Related Art In recent years, an ultrasonic motor has attracted attention as a new motor replacing an electromagnetic motor. This ultrasonic motor has the following advantages over a conventional electromagnetic motor.

【0003】(1)ギヤなしで低回転高トルクが得られ
る。 (2)保持力が大きい。 (3)高分解能である。 (4)静粛性にとんでいる。 (5)磁気的ノイズを発生せず、また、ノイズの影響も
受けない。
(1) Low rotation and high torque can be obtained without gears. (2) Large holding force. (3) High resolution. (4) It is extremely quiet. (5) It does not generate magnetic noise and is not affected by noise.

【0004】従来の超音波モータとして、本出願人が提
案した特開昭62-203570 号公報記載の超音波モータがあ
る。以下特開昭62-203570 号公報に基づき従来の超音波
モータについて説明する。
As a conventional ultrasonic motor, there is an ultrasonic motor disclosed in Japanese Patent Laid-Open No. 62-203570 proposed by the present applicant. A conventional ultrasonic motor will be described below based on JP-A-62-203570.

【0005】同公報に開示した従来の超音波モータは、
図20に示すように、コの字状部材52の開口部に厚み
すべり圧電素子51を挟み込むとともに、コの字状部材
52の結合端外側面の両肩部に一対の厚み縦圧電素子5
3a、53bを取り付け超音波振動子を構成するととも
に、前記厚み縦圧電素子53a、53bに対し一側面が
接触可能なように軸54aを有する回転子54を押圧状
態で配置している。
The conventional ultrasonic motor disclosed in the publication is:
As shown in FIG. 20, the thickness-slip piezoelectric element 51 is sandwiched between the openings of the U-shaped member 52, and the pair of thickness-longitudinal piezoelectric elements 5 are formed on both shoulders of the outer surface of the coupling end of the U-shaped member 52.
3a and 53b are attached to form an ultrasonic oscillator, and a rotor 54 having a shaft 54a is arranged in a pressed state so that one side surface can contact the thickness longitudinal piezoelectric elements 53a and 53b.

【0006】次に、前記超音波振動子を用いた超音波モ
ータの動作について説明する。厚みすべり圧電素子51
にコの字状部材52の振り子運振動(捻れ振動)の固有
振動数と同一の周波数の交番電圧を印加し捻れ振動を励
起する。
Next, the operation of the ultrasonic motor using the ultrasonic vibrator will be described. Thickness sliding piezoelectric element 51
An alternating voltage having the same frequency as the natural frequency of the pendulum vibration (torsional vibration) of the U-shaped member 52 is applied to excite the torsional vibration.

【0007】同時に前記厚み縦振動子53a、53bに
も上述した場合と同一の周波数の交番電圧を印加し、縦
方向の振動を同時に励起する。これらの捻れ振動と縦振
動を励起すると、回転子54を一定の方向に回転させる
ことができる。また、捻れ振動と縦振動を逆位相で励起
すると、回転子54を反対方向に回転させることができ
る。
At the same time, an alternating voltage having the same frequency as that described above is applied to the thickness vertical oscillators 53a and 53b to simultaneously excite vertical vibrations. When these torsional vibration and longitudinal vibration are excited, the rotor 54 can be rotated in a fixed direction. When the torsional vibration and the longitudinal vibration are excited in opposite phases, the rotor 54 can be rotated in the opposite direction.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記従
来の超音波モータは以下のような問題点が存在する。 (1) 前記超音波振動子として、すべり圧電素子と厚
み縦圧電素子二種類の圧電素子を必要し、構造が複雑化
する。 (2) 前記超音波振動子を用いた超音波モータの場
合、すべり圧電素子51及び厚み縦圧電素子53a、5
3bとしていずれも一枚から二枚の板状の圧電素子を用
いているため、駆動電圧が数百Vp−pと高くなってし
まい低電圧駆動ができない。
However, the above-mentioned conventional ultrasonic motor has the following problems. (1) As the ultrasonic oscillator, two types of piezoelectric elements, a sliding piezoelectric element and a thickness longitudinal piezoelectric element, are required, which complicates the structure. (2) In the case of an ultrasonic motor using the ultrasonic vibrator, the sliding piezoelectric element 51 and the thickness longitudinal piezoelectric elements 53a, 5
Since one or two plate-shaped piezoelectric elements are used for all 3b, the driving voltage becomes as high as several hundreds Vp-p, and low voltage driving cannot be performed.

【0009】そこで、本発明は、二種類の圧電素子を必
要とせず構成の簡略化が図れる超音波振動子を提供す
る。また、本発明は、低電圧駆動可能な超音波モータを
提供する。
Therefore, the present invention provides an ultrasonic transducer which does not require two types of piezoelectric elements and can be simplified in construction. The present invention also provides an ultrasonic motor that can be driven at a low voltage.

【0010】[0010]

【課題を解決するための手段】請求項1記載の発明に係
る超音波振動子は、長手方向に沿った壁面の少なくとも
2面以上に接合面を形成した弾性体と、矩形上に形成さ
れるとともに、その一辺に対し変位方向が一定の斜め角
度を有し、この弾性体の壁面の少なくとも2面以上の接
合面に配置した複数の圧電素子と、前記弾性体の長手方
向と直交する端面に配置した円環状の駆動子とを有し、
前記複数の圧電素子に、各々位相差を有する交番電圧を
印加することにより、縦振動と捻れ共振振動とを同時に
励起して前記駆動子の位置に超音波楕円振動を励起させ
るようにしたことを特徴とするものである。
An ultrasonic transducer according to a first aspect of the present invention is formed in a rectangular shape with an elastic body having joint surfaces formed on at least two surfaces of a wall surface along the longitudinal direction. At the same time, a plurality of piezoelectric elements having a constant displacement angle with respect to one side thereof and arranged on at least two joint surfaces of the wall surface of the elastic body and an end surface orthogonal to the longitudinal direction of the elastic body. Having an annular driver arranged,
By applying an alternating voltage having a phase difference to each of the plurality of piezoelectric elements, longitudinal vibration and torsional resonance vibration are simultaneously excited to excite ultrasonic elliptical vibration at the position of the driver. It is a feature.

【0011】請求項2記載の発明に係る超音波モータ
は、長手方向に沿った壁面の少なくとも2面以上に接合
面を形成した弾性体と、矩形上に形成されるとともに、
その一辺に対し変位方向が一定の斜め角度を有し、この
弾性体の壁面の少なくとも2面以上の接合面に配置した
複数の圧電素子と、前記弾性体の長手方向と直交する端
面に配置した円環状の駆動子とにより超音波振動子を構
成するとともに、前記駆動子に押圧接触しつつ前記弾性
体により回転可能に保持されたロータを備え、前記複数
の圧電素子に、各々位相差を有する交番電圧を印加する
ことにより、縦振動と捻れ共振振動とを同時に励起して
前記駆動子の位置に超音波楕円振動を励起させ、この超
音波楕円振動により前記ロータを回転駆動するようにし
たことを特徴とするものである。
An ultrasonic motor according to a second aspect of the present invention is formed into a rectangular shape with an elastic body having a joint surface formed on at least two surfaces of a wall surface along the longitudinal direction, and
A plurality of piezoelectric elements arranged on at least two joint surfaces of the wall surface of the elastic body and having a displacement direction having a constant oblique angle with respect to one side, and arranged on an end surface orthogonal to the longitudinal direction of the elastic body. The ultrasonic transducer is formed by the annular driving element, and the rotor is rotatably held by the elastic body while being in pressure contact with the driving element, and each of the plurality of piezoelectric elements has a phase difference. By applying an alternating voltage, longitudinal vibration and torsional resonance vibration are simultaneously excited to excite ultrasonic elliptical vibration at the position of the driver, and the ultrasonic elliptical vibration drives the rotor to rotate. It is characterized by.

【0012】請求項3記載の発明は、請求項2記載の発
明に係る超音波モータにおける前記複数の圧電素子は、
各々位置を段階的にずらして全体として対角線状の配置
を呈するとともに、交互に裏面側、表面側に端部が露出
する配置の内部電極を備えた多数の圧電素子単体の積層
構造からなる積層型圧電素子を用いることを特徴とする
ものである。
According to a third aspect of the present invention, the plurality of piezoelectric elements in the ultrasonic motor according to the second aspect are
A laminated type consisting of a laminated structure of a large number of piezoelectric elements, each of which has a diagonal arrangement as a whole by shifting the position stepwise, and which alternately has internal electrodes in which the ends are exposed on the back surface side and the front surface side. It is characterized by using a piezoelectric element.

【0013】請求項4記載の発明は、請求項2記載の発
明に係る超音波モータにおける前記複数の圧電素子は、
交互に裏面側、表面側に端部が露出する配置の内部電極
を備えた多数の圧電素子単体の積層構造からなり、圧電
素子単体の積層方向に対して所定の角度で切り出した積
層型圧電素子を用いることを特徴とするものである。
According to a fourth aspect of the present invention, the plurality of piezoelectric elements in the ultrasonic motor according to the second aspect are
A laminated piezoelectric element having a laminated structure of a large number of piezoelectric elements alone, which are provided with internal electrodes whose ends are exposed alternately on the back surface side and the front surface side, and cut out at a predetermined angle with respect to the lamination direction of the piezoelectric element single bodies. It is characterized by using.

【0014】請求項5記載の発明は、請求項2記載の発
明に係る超音波モータにおける前記複数の圧電素子は、
各層における列設配置の多数の内部電極の各端部が交互
に裏面側、表面側に露出するとともに、列設配置の多数
の内部電極を各層交互に位置ずれさせた多数の圧電素子
単体の積層構造からなる積層型圧電素子を用いることを
特徴とするものである。
According to a fifth aspect of the invention, in the ultrasonic motor according to the second aspect of the invention, the plurality of piezoelectric elements are
Ends of a large number of internal electrodes arranged in rows in each layer are alternately exposed on the back surface side and the front surface side, and a large number of piezoelectric element single layers in which a large number of internal electrodes arranged in rows are alternately displaced It is characterized by using a laminated piezoelectric element having a structure.

【0015】請求項1記載の発明に係る超音波振動子に
おいて、前記弾性体の長手方向に沿った壁面の少なくと
も2面以上に接合面に配置した矩形上に形成され、その
一辺に対し変位方向が一定の斜め角度を有する複数の圧
電素子に、各々位相差を有する交番電圧を印加すること
により、縦振動と捻れ共振振動とを同時に励起させ、こ
れにより、前記弾性体の長手方向と直交する端面に配置
した円環状の駆動子の位置に超音波楕円振動を励起させ
ることができる。
In the ultrasonic vibrator according to the invention as defined in claim 1, it is formed in a rectangular shape in which at least two surfaces of a wall surface along the longitudinal direction of the elastic body are arranged in a joint surface, and a displacement direction with respect to one side thereof. By applying an alternating voltage having a phase difference to a plurality of piezoelectric elements having a constant oblique angle, longitudinal vibration and torsional resonance vibration are excited at the same time, thereby orthogonal to the longitudinal direction of the elastic body. The ultrasonic elliptical vibration can be excited at the position of the annular driver arranged on the end face.

【0016】この結果、従来例の如き厚みすべり圧電振
動子と厚み縦圧電振動子のような2種類の圧電素子を用
いる必要がなく、1種類の圧電素子を用いた構成の簡略
な超音波振動子を提供することができる。
As a result, it is not necessary to use two types of piezoelectric elements such as the thickness-sliding piezoelectric oscillator and the thickness-longitudinal piezoelectric oscillator as in the conventional example, and a simple ultrasonic vibration having a configuration using one type of piezoelectric element is used. Child can be provided.

【0017】請求項2記載の発明に係る超音波モータに
おいて、前記弾性体の長手方向に沿った壁面の少なくと
も2面以上に接合面に配置した矩形上に形成され、その
一辺に対し変位方向が一定の斜め角度を有する複数の圧
電素子に、各々位相差を有する交番電圧を印加すること
により、縦振動と捻れ共振振動とを同時に励起させ、こ
れにより、前記弾性体の長手方向と直交する端面に配置
した円環状の駆動子の位置に超音波楕円振動を励起させ
る。これにより、前記駆動子に押圧接触しつつ前記弾性
体により回転可能に保持した前記ロータをを回転駆動す
ることができる。
In the ultrasonic motor according to the second aspect of the present invention, the elastic body is formed in a rectangular shape which is arranged on at least two surfaces of the wall surface along the longitudinal direction of the elastic body, and the displacement direction is on one side thereof. By applying an alternating voltage having a phase difference to a plurality of piezoelectric elements having a constant oblique angle, longitudinal vibration and torsional resonance vibration are excited at the same time, whereby an end surface orthogonal to the longitudinal direction of the elastic body. The ultrasonic elliptical vibration is excited at the position of the annular driving element arranged at. Thus, the rotor rotatably held by the elastic body can be rotationally driven while being in pressure contact with the driver.

【0018】このような請求項2記載の発明によれば、
1種類の圧電素子を用いた構成の簡略な超音波振動子を
駆動源とする超音波モータを提供することができる。
According to the second aspect of the invention,
It is possible to provide an ultrasonic motor that uses an ultrasonic vibrator having a simple configuration using one type of piezoelectric element as a drive source.

【0019】請求項3記載の発明によれば、請求項2記
載の発明に係る超音波モータにおける前記複数の圧電素
子は、各々位置を段階的にずらして全体として対角線状
の配置を呈するとともに、交互に裏面側、表面側に端部
が露出する配置の内部電極を備えた多数の圧電素子単体
の積層構造からなる積層型圧電素子を用いて構成されて
いるものであるから、従来例のような厚みすべり圧電振
動子と厚み縦圧電振動子のような2種類の板状の圧電素
子を用いる場合に比べ、圧電素子の振動出力が大きくな
り、逆に同一の回転駆動力を得る場合の駆動電圧を低減
できる。
According to the third aspect of the invention, the plurality of piezoelectric elements in the ultrasonic motor according to the second aspect of the invention are arranged in a diagonal manner as a whole by shifting their positions stepwise. Since it is constructed by using a laminated piezoelectric element composed of a laminated structure of a large number of piezoelectric element units, which are alternately provided with internal electrodes whose ends are exposed on the back surface side and the front surface side, Compared to the case of using two types of plate-shaped piezoelectric elements such as a thickness-sliding piezoelectric vibrator and a thickness-longitudinal piezoelectric vibrator, the vibration output of the piezoelectric element becomes large, and conversely driving when the same rotational driving force is obtained. The voltage can be reduced.

【0020】請求項4記載の発明によれば、請求項2記
載の発明に係る超音波モータにおける前記複数の圧電素
子は、交互に裏面側、表面側に端部が露出する配置の内
部電極を備えた多数の圧電素子単体の積層構造からな
り、圧電素子単体の積層方向に対して所定の角度で切り
出した積層型圧電素子を用いるものであるから、この積
層型圧電素子の変形の活性力が請求項3記載の発明の場
合より大きくなり、より高いトルクを得ることができ
る。
According to a fourth aspect of the present invention, in the plurality of piezoelectric elements in the ultrasonic motor according to the second aspect of the present invention, the internal electrodes are arranged such that the ends are alternately exposed on the back surface side and the front surface side. The laminated piezoelectric element is composed of a laminated structure of a large number of piezoelectric elements alone, and the laminated piezoelectric element cut out at a predetermined angle with respect to the lamination direction of the piezoelectric element is used. It becomes larger than in the case of the invention according to claim 3, and a higher torque can be obtained.

【0021】請求項5記載の発明によれば、請求項2記
載の発明に係る超音波モータにおける前記複数の圧電素
子は、各層における列設配置の多数の内部電極の各端部
が交互に裏面側、表面側に露出するとともに、列設配置
の多数の内部電極を各層交互に位置ずれさせた多数の圧
電素子単体の積層構造からなる積層型圧電素子を用いる
ものであるから、多数の圧電素子単体の列設配置の多数
の内部電極を各層交互に繰り返す2つの電極パターンで
形成でき、また、切り出しにより捨て去る部分もなく、
これにより、圧電素子の簡略化、低価格化を図れ、超音
波モータの価格低減が可能になる。
According to the fifth aspect of the invention, in the plurality of piezoelectric elements in the ultrasonic motor according to the second aspect of the invention, the ends of the plurality of internal electrodes arranged in a row in each layer are alternately arranged on the back surface. Side and front surface side, a large number of piezoelectric elements are used because they use a laminated piezoelectric element having a laminated structure of a large number of single piezoelectric elements in which a large number of internal electrodes arranged in rows are alternately displaced. A large number of internal electrodes arranged in a row can be formed by two electrode patterns in which each layer is alternately repeated, and there is no portion to be discarded by cutting out.
As a result, the piezoelectric element can be simplified and the cost can be reduced, and the price of the ultrasonic motor can be reduced.

【0022】[0022]

【実施の形態】以下に本発明の実施の形態を詳細に説明
する。
Embodiments of the present invention will be described in detail below.

【0023】[実施の形態1]まず、図1を参照して本
発明の実施の形態1の超音波振動子について説明する。
[First Embodiment] First, an ultrasonic transducer according to a first embodiment of the present invention will be described with reference to FIG.

【0024】図1に示す超音波振動子は、略円柱状で、
長手方向に沿った壁面の略中央部における少なくとも2
面以上、即ち、4面に長方形状で各々の交差角が直角の
4つ接合面1aを設けた真鍮製の弾性体1を具備し、前
記各接合面1aに対して各々圧電素子3乃至6を接着剤
を用いて接合している。
The ultrasonic transducer shown in FIG. 1 has a substantially cylindrical shape,
At least 2 at approximately the center of the wall surface along the longitudinal direction
The elastic body 1 made of brass is provided on four or more surfaces, that is, four bonding surfaces 1a each having a rectangular shape and intersecting angles of right angles are provided on each of the four surfaces, and the piezoelectric elements 3 to 6 are provided for the respective bonding surfaces 1a. Are bonded using an adhesive.

【0025】また、前記弾性体1の上部円柱部1bに対
し、円筒状の保持部材2を前記圧電素子3乃至6の上縁
を圧接する状態で嵌着し、この保持部材2をビス7を用
いて上部円柱部1bに固着している。さらに、前記弾性
体1の長手方向と直交する端面1cに円環状の駆動子8
を接着固定している。
A cylindrical holding member 2 is fitted to the upper cylindrical portion 1b of the elastic body 1 in a state where the upper edges of the piezoelectric elements 3 to 6 are in pressure contact with each other, and the holding member 2 is fixed with a screw 7. It is used and fixed to the upper cylindrical portion 1b. Further, an annular driving element 8 is provided on the end face 1c orthogonal to the longitudinal direction of the elastic body 1.
Are fixed by adhesion.

【0026】次に、実施の形態1の超音波振動子の製造
工程を図2、図3を参照して説明する。
Next, a manufacturing process of the ultrasonic transducer of the first embodiment will be described with reference to FIGS.

【0027】図2に示すように、前記真鍮製の弾性体1
の各接合面1aに圧電素子3乃至6を接着剤を塗布して
配置し、円筒状の保持部材2により弾性体1の長手方向
に沿ってかつ圧電素子3乃至6の上縁を予圧するように
嵌め込み、この保持部材2をビス7を用いて上部円柱部
1bに固着する。この時、保持部材2と弾性体1との結
合を強固にするため、ビス7の他に接着剤を併用するよ
うにしても良い。
As shown in FIG. 2, the elastic body 1 made of brass is used.
The piezoelectric elements 3 to 6 are arranged by applying an adhesive to each joint surface 1a of the above, and the cylindrical holding member 2 preloads the upper edges of the piezoelectric elements 3 to 6 along the longitudinal direction of the elastic body 1. Then, the holding member 2 is fixed to the upper cylindrical portion 1b by using the screw 7. At this time, in order to strengthen the bond between the holding member 2 and the elastic body 1, an adhesive may be used together with the screw 7.

【0028】さらに、前記弾性体1の長手方向と直交す
る端面1cに円環状の駆動子8を接着固定して図1に示
す超音波振動子を得る。
Further, an annular driving element 8 is adhered and fixed to the end face 1c of the elastic body 1 which is orthogonal to the longitudinal direction to obtain the ultrasonic transducer shown in FIG.

【0029】次に、前記超音波振動子を用いた超音波モ
ータ及びその製造方法について、図4乃至図6を参照し
て説明する。
Next, an ultrasonic motor using the ultrasonic vibrator and a method for manufacturing the ultrasonic motor will be described with reference to FIGS.

【0030】図4に示す超音波モータは、前記超音波振
動子の圧電素子3乃至6のうち、圧電素子3、4の正極
に電力印加用の電線を取り付けてこれらをB相とし、圧
電素子5、6の正極に電力印加用の電線を取り付けてこ
れらをA相とし、また、圧電素子3乃至6の負極は前記
弾性体1及びこの弾性体1に装着する保持用ビス10を
介してGND極とする。
In the ultrasonic motor shown in FIG. 4, of the piezoelectric elements 3 to 6 of the ultrasonic oscillator, electric wires for applying electric power are attached to the positive electrodes of the piezoelectric elements 3 and 4, and these are set to the B phase. Electric wires for applying electric power are attached to the positive electrodes of 5 and 6 to make them the A phase, and the negative electrodes of the piezoelectric elements 3 to 6 are GND through the elastic body 1 and the holding screw 10 attached to the elastic body 1. To be a pole.

【0031】また、前記超音波モータは、前記超音波振
動子の円環状の駆動子8に接する状態で、かつ、弾性体
1により回転可能に支持されたロータ11を具備してい
る。
Further, the ultrasonic motor comprises a rotor 11 which is rotatably supported by the elastic body 1 while being in contact with the annular driving element 8 of the ultrasonic oscillator.

【0032】このロータ11は、弾性体1に装着するロ
ータ固定用ビス9に取り付けた軸受12に嵌め着けられ
ている。また、ロータ固定用ビス9の回りに配置したバ
ネ13を、ロータ固定用ビス9に螺合するナット14に
より軸受12側に押さえ付けることで、前記ロータ11
を円環状の駆動子8の上面に圧接するようにしている。
The rotor 11 is fitted on a bearing 12 mounted on a rotor fixing screw 9 mounted on the elastic body 1. Further, the spring 13 arranged around the rotor fixing screw 9 is pressed to the bearing 12 side by the nut 14 screwed to the rotor fixing screw 9, whereby the rotor 11 is rotated.
Is pressed against the upper surface of the annular drive element 8.

【0033】この結果、前記ロータ11は駆動子8の上
面に圧接しつつ弾性体1により回転可能に支持されるよ
うになっている。
As a result, the rotor 11 is rotatably supported by the elastic body 1 while being pressed against the upper surface of the driver element 8.

【0034】次に、前記超音波モータの製造工程につい
て説明する。図5に示すように、前記弾性体1には、そ
の長手方向中心部を貫通する孔15が穿設してあり、こ
の孔15の略中央部にはネジ16を設けている。
Next, the manufacturing process of the ultrasonic motor will be described. As shown in FIG. 5, the elastic body 1 is provided with a hole 15 penetrating the central portion in the longitudinal direction thereof, and a screw 16 is provided at a substantially central portion of the hole 15.

【0035】前記孔15に対して図5において上側から
ロータ固定用ビス9を挿入してネジ16に螺合し、ま
た、下側から保持用ビス10を挿入してネジ16に螺合
する。この保持用ビス10は、前記超音波モータ全体を
支持するものである。
In FIG. 5, the rotor fixing screw 9 is inserted into the hole 15 from the upper side and screwed into the screw 16, and the holding screw 10 is inserted from the lower side and screwed into the screw 16. The holding screw 10 supports the entire ultrasonic motor.

【0036】次に、図6に示すように、弾性体1の上部
円柱部1bから上方に突出するロータ固定用ビス9が中
央部に嵌着した軸受12を貫くようにして、前記ロータ
11を円環状の駆動子8の上面に配置するとともに、バ
ネ13をロータ固定用ビス9の回りに嵌め、ナット14
をロータ固定用ビス9に螺合してねじ込むことで、前記
ロータ11を前記駆動子8の上面に圧接しつつ弾性体1
により回転可能に支持する。これにより、図4に示す超
音波モータを得ることができる。
Next, as shown in FIG. 6, the rotor fixing screw 9 protruding upward from the upper cylindrical portion 1b of the elastic body 1 penetrates through the bearing 12 fitted in the central portion of the rotor 11, and the rotor 11 is fixed. The spring 13 is arranged on the upper surface of the annular driving element 8 and the spring 13 is fitted around the rotor fixing screw 9 so that the nut 14
Is screwed into the rotor fixing screw 9 so that the rotor 11 is pressed against the upper surface of the driver 8 and the elastic body 1 is pressed.
It is rotatably supported by. Thereby, the ultrasonic motor shown in FIG. 4 can be obtained.

【0037】ここで、前記圧電素子3乃至6の構造につ
いて、図7乃至図9を参照して説明する。
Here, the structure of the piezoelectric elements 3 to 6 will be described with reference to FIGS. 7 to 9.

【0038】図7は前記圧電素子3、4における内部電
極17の配置を、図8は前記圧電素子5、6における内
部電極17の配置を各々示すものである。また、図9
は、前記圧電素子3乃至6を構成する多数の圧電素子単
体18からなる積層型圧電素子の積層構造を示すもので
ある。
FIG. 7 shows the arrangement of the internal electrodes 17 in the piezoelectric elements 3 and 4, and FIG. 8 shows the arrangement of the internal electrodes 17 in the piezoelectric elements 5 and 6. In addition, FIG.
Shows a laminated structure of a laminated piezoelectric element composed of a large number of single piezoelectric elements 18 constituting the piezoelectric elements 3 to 6.

【0039】図9に示すように、各圧電素子3乃至6は
多数の圧電素子単体18からなる積層型圧電素子から構
成されており、個々の圧電素子単体18には、その一部
に四角形状の内部電極17が積層順に従って少しずつ位
置をずらせた状態で、かつ、交互に図7又は図8におい
て紙面の裏面と表面とに各圧電素子17の端部が露出す
るように形成されている。
As shown in FIG. 9, each piezoelectric element 3 to 6 is composed of a laminated piezoelectric element composed of a large number of single piezoelectric elements 18, and each individual single piezoelectric element 18 has a quadrangular shape. 7 are formed such that the internal electrodes 17 are slightly displaced according to the stacking order, and the ends of the piezoelectric elements 17 are alternately exposed on the back surface and the front surface of the paper in FIG. 7 or 8. .

【0040】即ち、前記圧電素子3、4を構成する積層
型圧電素子の場合には、多数の圧電素子単体18の各内
部電極17が図7に示すように右上隅から左下隅に至る
対角線状に列設され、また、前記圧電素子5、6を構成
する積層型圧電素子の場合には、多数の圧電素子単体1
8の各内部電極17が図8に示すように左上隅から右下
隅に至る対角線状に列設されるようになっている。
That is, in the case of the laminated piezoelectric element which constitutes the piezoelectric elements 3 and 4, each internal electrode 17 of a large number of single piezoelectric elements 18 has a diagonal line shape extending from the upper right corner to the lower left corner as shown in FIG. In the case of a laminated piezoelectric element that is arranged in a row and constitutes the piezoelectric elements 5 and 6, a large number of piezoelectric element single units 1
As shown in FIG. 8, the internal electrodes 17 of No. 8 are arranged in a diagonal line from the upper left corner to the lower right corner.

【0041】このような構造の各圧電素子3乃至6にお
いて、図7又は図8における紙面の表面側の各内部電極
17を正極とし、紙面の裏面側の各内部電極17を負極
として分極する。
In each of the piezoelectric elements 3 to 6 having such a structure, each internal electrode 17 on the front surface side of the paper in FIG. 7 or 8 is used as a positive electrode, and each internal electrode 17 on the back surface side of the paper is polarized as a negative electrode.

【0042】そして、各圧電素子3乃至6の各内部電極
17をそれぞれ導電性接着剤等により導通をとり、圧電
素子3、4の正極に電力印加用の電線を取り付けてこれ
らをB相とし、圧電素子5、6の正極に電力印加用の電
線を取り付けてこれらをA相とする。
Then, the internal electrodes 17 of the piezoelectric elements 3 to 6 are made conductive by a conductive adhesive or the like, and electric wires for applying electric power are attached to the positive electrodes of the piezoelectric elements 3 and 4 to make them B phase, Electric wires for applying electric power are attached to the positive electrodes of the piezoelectric elements 5 and 6 to make them the A phase.

【0043】また、圧電素子3乃至6を各々弾性体1の
各接合面1aに取り付けたとき、圧電素子3乃至6の負
極に相当する内部電極17が真鍮製の弾性体1とが導通
することになり、前記弾性体1及びこの弾性体1に挿通
する保持用ビス10を介してGND極を構成できる。
When the piezoelectric elements 3 to 6 are attached to the joint surfaces 1a of the elastic body 1, the internal electrode 17 corresponding to the negative electrode of the piezoelectric elements 3 to 6 is electrically connected to the brass elastic body 1. Thus, the GND pole can be configured via the elastic body 1 and the holding screw 10 inserted through the elastic body 1.

【0044】次に、上述した超音波振動子を用いた超音
波モータの動作を図10、図11をも参照して説明す
る。
Next, the operation of the ultrasonic motor using the above-mentioned ultrasonic oscillator will be described with reference to FIGS.

【0045】前記超音波モータの圧電素子3、4に正の
電圧を印加すると、これら圧電素子3、4は各々図10
に実線で示す対角線方向に振動し、また、負の電圧を印
加すると、これら圧電素子3、4は各々図10に一点鎖
線で示す対角線方向に振動する。
When a positive voltage is applied to the piezoelectric elements 3 and 4 of the ultrasonic motor, the piezoelectric elements 3 and 4 are respectively moved as shown in FIG.
When the piezoelectric elements 3 and 4 vibrate in a diagonal direction indicated by a solid line and a negative voltage is applied, the piezoelectric elements 3 and 4 vibrate in a diagonal direction indicated by a chain line in FIG.

【0046】同様に、前記超音波モータの圧電素子5、
6に正の電圧を印加すると、これら圧電素子5、6は各
々図11に実線で示す対角線方向に振動し、また、負の
電圧を印加すると、これら圧電素子5、6は各々図11
に一点鎖線で示す対角線方向に振動する。
Similarly, the piezoelectric element 5 of the ultrasonic motor,
When a positive voltage is applied to the piezoelectric elements 6, the piezoelectric elements 5 and 6 vibrate in a diagonal direction indicated by solid lines in FIG. 11, and when a negative voltage is applied, the piezoelectric elements 5 and 6 are respectively moved to the direction shown in FIG.
It vibrates in the diagonal direction indicated by the alternate long and short dash line.

【0047】また、前記超音波モータのA相とB相と
に、同一位相の交流電圧を印加すると、弾性体1に固定
した圧電素子3、4、圧電素子5、6は各々図10、図
11で示すような変形振動を繰り返しながら同相で振動
する。この結果、前記弾性体1は、縦振動又は屈曲振動
を行うことになる。
When AC voltages of the same phase are applied to the A-phase and B-phase of the ultrasonic motor, the piezoelectric elements 3 and 4 and the piezoelectric elements 5 and 6 fixed to the elastic body 1 are shown in FIGS. It vibrates in the same phase while repeating the deformation vibration as shown by 11. As a result, the elastic body 1 performs longitudinal vibration or bending vibration.

【0048】そして、前記A相とB相とに印加する交流
電圧の周波数を、弾性体1の縦振動の共振周波数と一致
させ、屈曲振動の共振周波数と不一致とすると、縦振動
のみを発生させることができる。
When the frequency of the AC voltage applied to the A phase and the B phase is made to match the resonance frequency of the longitudinal vibration of the elastic body 1 and does not match the resonance frequency of the bending vibration, only the longitudinal vibration is generated. be able to.

【0049】次に、前記超音波モータのA相とB相とに
印加する交流電圧の位相を180度異ならせると、圧電
素子3、4、圧電素子5、6は各々図10、図11で示
すような変形振動を繰り返しながら逆相で振動する。こ
の結果、前記弾性体1は、捻れ振動を行うことになる。
Next, when the phases of the AC voltage applied to the A phase and the B phase of the ultrasonic motor are made to differ by 180 degrees, the piezoelectric elements 3 and 4 and the piezoelectric elements 5 and 6 are respectively shown in FIGS. 10 and 11. While repeating the deformation vibration as shown, it vibrates in the opposite phase. As a result, the elastic body 1 causes torsional vibration.

【0050】そして、前記A相とB相とに印加する交流
電圧の周波数を、捻れ振動の共振周波数と一致させるこ
とにより、前記弾性体1に捻れ共振振動を発生させるこ
とができる。
Then, by making the frequency of the AC voltage applied to the A phase and the B phase match the resonance frequency of the torsional vibration, the torsional resonance vibration can be generated in the elastic body 1.

【0051】以上の考察から、前記弾性体1の形状を調
節して縦1次共振振動と捻れ1次共振振動とを一致さ
せ、前記A相とB相とに互いに90度位相が異なる交流
電圧を印加することにより、縦1次共振振動と捻れ1次
共振振動とが同時に発生し、この結果、前記弾性体1の
端面に固着した駆動子8の位置に超音波楕円振動が生成
する。
From the above consideration, the shape of the elastic body 1 is adjusted to make the longitudinal primary resonance vibration and the torsion primary resonance vibration coincide with each other, and the A phase and the B phase are AC voltages different in phase from each other by 90 degrees. By applying, the longitudinal primary resonance vibration and the torsion primary resonance vibration are generated at the same time, and as a result, ultrasonic elliptical vibration is generated at the position of the driver element 8 fixed to the end surface of the elastic body 1.

【0052】この超音波楕円振動の回転方向は、前記A
相に印加する交流電圧に対して、B相に印加する交流電
圧の位相が+90度か又は−90度かによって互いに逆
方向になる。そして、超音波楕円振動を行う駆動子8に
圧接する前記ロータ11は、超音波楕円振動の回転方向
に従った回転を行う。
The direction of rotation of this ultrasonic elliptical vibration is the above A
The directions of the AC voltage applied to the B phase are opposite to each other depending on whether the phase of the AC voltage applied to the B phase is +90 degrees or −90 degrees with respect to the AC voltage applied to the phase. The rotor 11, which is in pressure contact with the driver element 8 that performs ultrasonic elliptical vibration, rotates according to the rotation direction of the ultrasonic elliptical vibration.

【0053】上述した実施の形態1の超音波振動子によ
れば、従来例の如き厚みすべり圧電振動子と厚み縦圧電
振動子のような2種類の圧電素子を用いる必要がなく、
1種類の圧電素子3乃至6を用いて構成できるため、構
成の簡略化を図ることができ、コストダウンが可能とな
る。
According to the ultrasonic vibrator of the first embodiment described above, it is not necessary to use two types of piezoelectric elements such as the thickness sliding piezoelectric vibrator and the thickness longitudinal piezoelectric vibrator as in the conventional example,
Since the piezoelectric elements 3 to 6 of one type can be used, the structure can be simplified and the cost can be reduced.

【0054】また、実施の形態1の超音波モータによれ
ば、前記超音波振動子を駆動源とする低コストの超音波
モータを提供することができる
Further, according to the ultrasonic motor of the first embodiment, it is possible to provide a low-cost ultrasonic motor which uses the ultrasonic vibrator as a drive source.

【0055】さらに、実施の形態1の超音波モータによ
れば、圧電素子3乃至6として積層型圧電素子を用いて
いるため、従来例のような厚みすべり圧電振動子と厚み
縦圧電振動子のような2種類の板状の圧電素子を用いる
場合に比べ、各圧電素子3乃至6の振動出力が大きくな
り、逆に同一の回転駆動力を得る場合の駆動電圧を低減
できる。
Further, according to the ultrasonic motor of the first embodiment, since the laminated piezoelectric elements are used as the piezoelectric elements 3 to 6, the thickness sliding piezoelectric vibrator and the thickness longitudinal piezoelectric vibrator as in the conventional example are used. Compared with the case where two types of plate-shaped piezoelectric elements are used, the vibration output of each piezoelectric element 3 to 6 is large, and conversely, the drive voltage when the same rotational drive force is obtained can be reduced.

【0056】さらに、各圧電素子3乃至6は、それぞれ
予圧を加えた状態で弾性体1に取り付けているので、各
圧電素子3乃至6の内部での破壊が無くなり、その寿命
を大幅に延ばすことができる。
Furthermore, since each piezoelectric element 3 to 6 is attached to the elastic body 1 in a pre-loaded state, destruction inside each piezoelectric element 3 to 6 is eliminated, and its life is greatly extended. You can

【0057】尚、実施の形態1においては、4つの圧電
素子3乃至6を弾性体1に取り付ける構造であるが、例
えば、圧電素子3と圧電素子5とを弾性体1に対抗配置
に取り付け構造としても実施の形態1の場合と同様な縦
振動と捻れ振動を発生させてロータ11を回転させるこ
とが可能である。
Although the four piezoelectric elements 3 to 6 are attached to the elastic body 1 in the first embodiment, for example, the piezoelectric element 3 and the piezoelectric element 5 are attached to the elastic body 1 so as to oppose each other. Even in this case, it is possible to rotate the rotor 11 by generating vertical vibration and torsional vibration similar to those in the first embodiment.

【0058】[実施の形態2]次に、図12乃至図15
を参照して本発明の実施の形態2について説明する。
[Second Embodiment] Next, FIG. 12 to FIG.
Embodiment 2 of the present invention will be described with reference to FIG.

【0059】実施の形態2においては、実施の形態1の
場合と同様な構造の超音波振動子及び超音波モータを採
用するものであるが、実施の形態1の場合の圧電素子3
乃至6に替えて、図12、図13に示す圧電素子23、
24及び圧電素子25、26を用いることが特徴であ
る。
In the second embodiment, an ultrasonic vibrator and an ultrasonic motor having the same structure as in the first embodiment are adopted, but the piezoelectric element 3 in the first embodiment is used.
To 6 instead of the piezoelectric element 23 shown in FIGS.
24 and the piezoelectric elements 25 and 26 are used.

【0060】圧電素子23、24及び圧電素子25、2
6は、それぞれ多数の圧電素子単体28の積層構造から
なる積層型圧電素子を用いるものである。即ち、図14
に示すように、交互に図12、図13で見て紙面の裏面
側、表面側に端部が露出する配置の内部電極27を形成
した多数の圧電素子単体30を積層し、さらに、裏面側
を負極、表面側を正極として分極する。そして、多数の
圧電素子板30の積層体に対し、図15に示すように、
この圧電素子単体30の積層方向に対して対称配置とな
る2種類の所定の角度を持たせて切り出し、圧電素子2
3、24及び圧電素子25、26とするものである。
Piezoelectric elements 23, 24 and piezoelectric elements 25, 2
6 uses a laminated piezoelectric element having a laminated structure of a large number of single piezoelectric elements 28. That is, in FIG.
As shown in FIG. 12, a large number of piezoelectric element units 30 each having the internal electrodes 27 arranged so that the end portions are exposed on the back surface side and the front surface side of the paper sheet alternately seen in FIGS. Is polarized as a negative electrode and the surface side as a positive electrode. Then, as shown in FIG. 15, for a laminated body of a large number of piezoelectric element plates 30,
The piezoelectric element 30 is cut out with two kinds of predetermined angles symmetrically arranged with respect to the stacking direction of the piezoelectric element 30.
3 and 24 and piezoelectric elements 25 and 26.

【0061】さらに、圧電素子23、24及び圧電素子
25、26のそれぞれの端面には絶縁用セラミックス板
31を接着し、端面に内部電極27が露出しないように
している。
Further, an insulating ceramic plate 31 is adhered to the end faces of the piezoelectric elements 23 and 24 and the piezoelectric elements 25 and 26 so that the internal electrodes 27 are not exposed at the end faces.

【0062】このような圧電素子23、24及び圧電素
子25、26を用いた超音波振動子及び超音波モータの
場合においても、圧電素子23、24及び圧電素子2
5、26はそれぞれ前記圧電素子3、4及び圧電素子
5、6の場合と同様に交流電圧の印加により図10、図
11に示す場合と同様に変形振動する。この結果、縦1
次共振振動と捻れ1次共振振動とが同時に発生し、前記
弾性体1の端面に固着した駆動子8の位置に超音波楕円
振動が生成し、ロータ11を回転駆動することができ
る。
Also in the case of the ultrasonic vibrator and ultrasonic motor using the piezoelectric elements 23 and 24 and the piezoelectric elements 25 and 26, the piezoelectric elements 23 and 24 and the piezoelectric element 2 are used.
Similarly to the piezoelectric elements 3 and 4 and the piezoelectric elements 5 and 6, the piezoelectric elements 5 and 26 are deformed and vibrated in the same manner as shown in FIGS. As a result, vertical 1
The secondary resonance vibration and the torsional primary resonance vibration are generated at the same time, ultrasonic elliptical vibration is generated at the position of the driver element 8 fixed to the end surface of the elastic body 1, and the rotor 11 can be rotationally driven.

【0063】また、実施の形態2の超音波振動子及び超
音波モータの場合、内部電極27を有する各圧電素子単
体30の積層構造の変形の活性力が実施の形態1の場合
よりも大きくなり、より高いトルクを得ることができ
る。
Further, in the case of the ultrasonic transducer and the ultrasonic motor of the second embodiment, the activation force of the deformation of the laminated structure of each piezoelectric element unit 30 having the internal electrode 27 becomes larger than that in the first embodiment. , Higher torque can be obtained.

【0064】[実施の形態3]次に、図16乃至図19
を参照して本発明の実施の形態3について説明する。
[Third Embodiment] Next, FIG. 16 to FIG.
The third embodiment of the present invention will be described with reference to FIG.

【0065】実施の形態3においては、実施の形態1の
場合と同様な構造の超音波振動子及び超音波モータを採
用するものであるが、実施の形態1の場合の圧電素子3
乃至6に替えて、図16、図17に示す圧電素子43、
44及び圧電素子45、46を用いることが特徴であ
る。
In the third embodiment, an ultrasonic transducer and an ultrasonic motor having the same structure as in the first embodiment are adopted, but the piezoelectric element 3 in the first embodiment is used.
Instead of 6 to 6, the piezoelectric element 43 shown in FIGS.
The feature is that 44 and piezoelectric elements 45 and 46 are used.

【0066】前記圧電素子43、44及び圧電素子4
5、46は、それぞれ多数の圧電素子単体28の積層構
造からなる積層型圧電素子を用いるものである。即ち、
図18に示すように、実施の形態3における積層型圧電
素子の場合、各層における列設配置の多数の内部電極4
7の各端部が交互に図16、図17で見て裏面側、表面
側に露出するとともに、列設配置の多数の内部電極47
を各層交互に位置ずれさせた多数の圧電素子単体50の
積層構造を採用している。この場合、1層目、3層目、
…の圧電素子単体50の電極パターンをそれぞれ同一と
し、2層目、4層目、…の圧電素子単体50の電極パタ
ーンをそれぞれ同一としている。さらに、裏面側を負
極、表面側を正極として分極している。
The piezoelectric elements 43 and 44 and the piezoelectric element 4
Reference numerals 5 and 46 each use a laminated piezoelectric element having a laminated structure of a large number of single piezoelectric elements 28. That is,
As shown in FIG. 18, in the case of the laminated piezoelectric element according to the third embodiment, a large number of internal electrodes 4 arranged in rows in each layer.
Each end of 7 is alternately exposed on the back surface side and the front surface side as seen in FIGS. 16 and 17, and a large number of internal electrodes 47 arranged in rows are arranged.
A laminated structure of a large number of single piezoelectric elements 50 in which the respective layers are alternately displaced is adopted. In this case, the first layer, the third layer,
The electrode patterns of the single piezoelectric element 50 are the same, and the electrode patterns of the second and fourth piezoelectric elements 50 are the same. Further, the back side is a negative electrode and the front side is a positive electrode.

【0067】この結果、前記積層型圧電素子の各層の内
部電極47は図19に矢印を付して示すように分極され
ることになる。
As a result, the internal electrodes 47 of each layer of the laminated piezoelectric element are polarized as shown by the arrows in FIG.

【0068】また、前記圧電素子43、44及び圧電素
子45、46の各一面には図16、図17に示すように
対角線方向に外部電極51を設けている。
Further, as shown in FIGS. 16 and 17, an external electrode 51 is provided in a diagonal direction on each surface of the piezoelectric elements 43 and 44 and the piezoelectric elements 45 and 46.

【0069】このような圧電素子43、44及び圧電素
子45、46を用いた超音波振動子及び超音波モータの
場合、各内部電極47に交流電圧を印加すると、部分的
に見ると図19の矢印を付して示す分極方向に変形す
る。また、各圧電素子43、44及び圧電素子45、4
6全体で見ると、対角線方向に外部電極51を設けた部
分のみが図19の矢印を付して示す分極方向に変形し、
その他の部分には変形が生じない。
In the case of an ultrasonic transducer and an ultrasonic motor using such piezoelectric elements 43 and 44 and piezoelectric elements 45 and 46, when an AC voltage is applied to each internal electrode 47, a partial view of FIG. It deforms in the polarization direction indicated by the arrow. In addition, the piezoelectric elements 43 and 44 and the piezoelectric elements 45 and 4
When viewed as a whole, only the portion where the external electrode 51 is provided in the diagonal direction is deformed in the polarization direction shown by the arrow in FIG.
No deformation occurs in other parts.

【0070】この結果、圧電素子43、44は図10に
示す場合と同様に略対角線方向に変形し、圧電素子4
5、46は図11に示す場合と同様に略対角線方向に変
形することになる。このような圧電素子43、44及び
圧電素子45、46の変形を利用して、縦1次共振振動
と捻れ1次共振振動とが同時に発生し、前記弾性体1の
端面に固着した駆動子8の位置に超音波楕円振動が生成
し、ロータ11を回転駆動することができる。
As a result, the piezoelectric elements 43 and 44 are deformed in a substantially diagonal direction as in the case shown in FIG.
5 and 46 are deformed in a substantially diagonal direction as in the case shown in FIG. By utilizing such deformation of the piezoelectric elements 43, 44 and the piezoelectric elements 45, 46, longitudinal primary resonance vibration and torsional primary resonance vibration are simultaneously generated, and the driver element 8 fixed to the end surface of the elastic body 1 is produced. The ultrasonic elliptical vibration is generated at the position of, and the rotor 11 can be rotationally driven.

【0071】このような圧電素子43、44及び圧電素
子45、46を用いた超音波振動子及び超音波モータの
場合、実施の形態1の場合と同様な効果を発揮させるこ
とができる。
In the case of the ultrasonic vibrator and ultrasonic motor using the piezoelectric elements 43 and 44 and the piezoelectric elements 45 and 46, the same effect as in the case of the first embodiment can be exhibited.

【0072】また、多数の圧電素子単体50の列設配置
の多数の内部電極47を各層交互に繰り返す2つの電極
パターンで形成でき、また、切り出しにより捨て去る部
分もなく、これにより、圧電素子43乃至46の簡略
化、低価格化を図れ、超音波モータの価格低減が可能に
なる。
Further, a large number of internal electrodes 47 arranged in a row of a large number of single piezoelectric elements 50 can be formed by two electrode patterns in which each layer is alternately repeated, and there is no portion to be discarded by cutting out, whereby the piezoelectric elements 43 to 43 can be formed. 46, simplification and cost reduction can be achieved, and the price of the ultrasonic motor can be reduced.

【0073】[0073]

【発明の効果】請求項1記載の発明によれば、従来例の
如き厚みすべり圧電振動子と厚み縦圧電振動子のような
2種類の圧電素子を用いる必要がなく、1種類の圧電素
子を用いた構成の簡略な超音波振動子を提供することが
できる。
According to the first aspect of the present invention, it is not necessary to use two types of piezoelectric elements such as the thickness sliding piezoelectric vibrator and the thickness longitudinal piezoelectric vibrator as in the conventional example, and one type of piezoelectric element is used. It is possible to provide an ultrasonic transducer having a simple configuration used.

【0074】請求項2記載の発明によれば、1種類の圧
電素子を用いた構成が簡略で低価格化を実現できる超音
波振動子を駆動源とする超音波モータを提供することが
できる。
According to the second aspect of the invention, it is possible to provide an ultrasonic motor using an ultrasonic vibrator as a drive source, which has a simple structure using one type of piezoelectric element and can realize a low cost.

【0075】請求項3記載の発明によれば、請求項2記
載の発明と同様な効果を奏するとともに、圧電素子の駆
動電圧を低減できる超音波モータを提供することができ
る。
According to the third aspect of the present invention, it is possible to provide an ultrasonic motor which has the same effects as the second aspect of the invention and which can reduce the driving voltage of the piezoelectric element.

【0076】請求項4記載の発明によれば、請求項2記
載の発明と同様な効果を奏するとともに、より高いトル
クを得ることができる超音波モータを提供することがで
きる。
According to the invention described in claim 4, it is possible to provide an ultrasonic motor capable of obtaining the same effect as that of the invention described in claim 2 and obtaining a higher torque.

【0077】請求項5記載の発明によれば、請求項2記
載の発明と同様な効果を奏するとともに、圧電素子の簡
略化、低価格化を図れ、価格低減が可能な超音波モータ
を提供することができる。
According to the invention described in claim 5, there is provided an ultrasonic motor having the same effect as that of the invention described in claim 2, simplification and price reduction of the piezoelectric element, and cost reduction. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の形態1の超音波振動子を示す
斜視図である。
FIG. 1 is a perspective view showing an ultrasonic transducer according to a first embodiment of the present invention.

【図2】本発明の実施の形態1の超音波振動子の製造工
程を示す分解斜視図である。
FIG. 2 is an exploded perspective view showing a manufacturing process of the ultrasonic transducer according to the first embodiment of the present invention.

【図3】本発明の実施の形態1の超音波振動子の製造工
程を示す分解斜視図である。
FIG. 3 is an exploded perspective view showing a manufacturing process of the ultrasonic transducer according to the first embodiment of the present invention.

【図4】本発明の実施の形態1の超音波モータを示す斜
視図である。
FIG. 4 is a perspective view showing the ultrasonic motor according to the first embodiment of the present invention.

【図5】本発明の実施の形態1の超音波モータの製造工
程を示す端面図である。
FIG. 5 is an end view showing a manufacturing process of the ultrasonic motor according to the first embodiment of the present invention.

【図6】本発明の実施の形態1の超音波モータ製造工程
を示す斜視図である。
FIG. 6 is a perspective view showing an ultrasonic motor manufacturing process according to the first embodiment of the present invention.

【図7】本発明の実施の形態1における圧電素子の内部
電極の配置を示す説明図である。
FIG. 7 is an explanatory diagram showing an arrangement of internal electrodes of the piezoelectric element according to the first embodiment of the present invention.

【図8】本発明の実施の形態1における圧電素子の内部
電極の配置を示す説明図である。
FIG. 8 is an explanatory diagram showing an arrangement of internal electrodes of the piezoelectric element according to the first embodiment of the present invention.

【図9】本発明の実施の形態1における圧電素子の積層
構造を示す斜視図である。
FIG. 9 is a perspective view showing a laminated structure of the piezoelectric element according to the first embodiment of the present invention.

【図10】本発明の実施の形態1における圧電素子の変
形状態を示す説明図である。
FIG. 10 is an explanatory diagram showing a deformed state of the piezoelectric element according to the first embodiment of the present invention.

【図11】本発明の実施の形態1における圧電素子の変
形状態を示す説明図である。
FIG. 11 is an explanatory diagram showing a deformed state of the piezoelectric element according to the first embodiment of the present invention.

【図12】本発明の実施の形態2における圧電素子の積
層構造を示す側面図である。
FIG. 12 is a side view showing a laminated structure of the piezoelectric element according to the second embodiment of the present invention.

【図13】本発明の実施の形態2における圧電素子の積
層構造を示す側面図である。
FIG. 13 is a side view showing a laminated structure of the piezoelectric element according to the second embodiment of the present invention.

【図14】本発明の実施の形態2における圧電素子の積
層構造を示す説明図である。
FIG. 14 is an explanatory diagram showing a laminated structure of the piezoelectric element according to the second embodiment of the present invention.

【図15】本発明の実施の形態2における圧電素子の切
り出し状態を示す説明図である。
FIG. 15 is an explanatory diagram showing a cutout state of the piezoelectric element according to the second embodiment of the present invention.

【図16】本発明の実施の形態3における圧電素子の平
面図である。
FIG. 16 is a plan view of a piezoelectric element according to a third embodiment of the present invention.

【図17】本発明の実施の形態3における圧電素子の平
面図である。
FIG. 17 is a plan view of a piezoelectric element according to a third embodiment of the present invention.

【図18】本発明の実施の形態3における圧電素子の積
層構造を示す説明図である。
FIG. 18 is an explanatory diagram showing a laminated structure of the piezoelectric element according to the third embodiment of the present invention.

【図19】本発明の実施の形態3における圧電素子の分
極状態を示す説明図である。
FIG. 19 is an explanatory diagram showing a polarized state of the piezoelectric element according to the third embodiment of the present invention.

【図20】従来の超音波振動子を示す斜視図である。FIG. 20 is a perspective view showing a conventional ultrasonic transducer.

【符号の説明】[Explanation of symbols]

1 弾性体 1a 接合面 1b 上部円柱部 2 保持部材 3 圧電素子 4 圧電素子 5 圧電素子 6 圧電素子 7 ビス 8 駆動子 9 ロータ固定用ビス 10 保持用ビス 11 ロータ 12 軸受 13 バネ 14 ナット 17 内部電極 18 圧電素子単体 1 Elastic Body 1a Bonding Surface 1b Upper Cylindrical Part 2 Holding Member 3 Piezoelectric Element 4 Piezoelectric Element 5 Piezoelectric Element 6 Piezoelectric Element 7 Screw 8 Driver 9 Rotor Fixing Screw 10 Holding Screw 11 Rotor 12 Bearing 13 Spring 14 Nut 17 Internal Electrode 18 Piezoelectric element alone

───────────────────────────────────────────────────── フロントページの続き (72)発明者 粂井 一裕 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhiro Awai 2-43-2 Hatagaya, Shibuya-ku, Tokyo Inside Olympus Optical Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 長手方向に沿った壁面の少なくとも2面
以上に接合面を形成した弾性体と、 矩形上に形成されるとともに、その一辺に対し変位方向
が一定の斜め角度を有し、この弾性体の壁面の少なくと
も2面以上の接合面に配置した複数の圧電素子と、 前記弾性体の長手方向と直交する端面に配置した円環状
の駆動子とを有し、 前記複数の圧電素子に、各々位相差を有する交番電圧を
印加することにより、縦振動と捻れ共振振動とを同時に
励起して前記駆動子の位置に超音波楕円振動を励起させ
るようにしたこと、 を特徴とする超音波振動子。
1. An elastic body in which a joint surface is formed on at least two surfaces of a wall surface along the longitudinal direction, and the elastic body is formed in a rectangular shape, and a displacement direction has a constant oblique angle with respect to one side thereof. A plurality of piezoelectric elements arranged on at least two joint surfaces of the wall surface of the elastic body, and an annular driving element arranged on an end surface orthogonal to the longitudinal direction of the elastic body, And applying an alternating voltage having a phase difference to each other to excite longitudinal vibration and torsional resonance vibration at the same time to excite ultrasonic elliptical vibration at the position of the driver element. Oscillator.
【請求項2】 長手方向に沿った壁面の少なくとも2面
以上に接合面を形成した弾性体と、 矩形上に形成されるとともに、その一辺に対し変位方向
が一定の斜め角度を有し、この弾性体の壁面の少なくと
も2面以上の接合面に配置した複数の圧電素子と、 前記弾性体の長手方向と直交する端面に配置した円環状
の駆動子と、 により超音波振動子を構成するとともに、 前記駆動子に押圧接触しつつ前記弾性体により回転可能
に保持されたロータを備え、 前記複数の圧電素子に、各々位相差を有する交番電圧を
印加することにより、縦振動と捻れ共振振動とを同時に
励起して前記駆動子の位置に超音波楕円振動を励起さ
せ、この超音波楕円振動により前記ロータを回転駆動す
るようにしたこと、 を特徴とする超音波モータ。
2. An elastic body in which a joint surface is formed on at least two surfaces of a wall surface along the longitudinal direction, and the elastic body is formed in a rectangular shape, and a displacement direction has a constant oblique angle with respect to one side thereof. An ultrasonic transducer is constituted by a plurality of piezoelectric elements arranged on at least two bonding surfaces of the wall surface of the elastic body, and an annular driving element arranged on an end surface orthogonal to the longitudinal direction of the elastic body. A rotor rotatably held by the elastic body while being in pressure contact with the driver, and applying an alternating voltage having a phase difference to each of the plurality of piezoelectric elements to cause longitudinal vibration and torsional resonance vibration. Are simultaneously excited to excite ultrasonic elliptical vibration at the position of the driver, and the rotor is rotationally driven by the ultrasonic elliptical vibration.
【請求項3】 前記複数の圧電素子は、各々位置を段階
的にずらして全体として対角線状の配置を呈するととも
に、交互に裏面側、表面側に端部が露出する配置の内部
電極を備えた多数の圧電素子単体の積層構造からなる積
層型圧電素子を用いることを特徴とする請求項2記載の
超音波モータ。
3. The plurality of piezoelectric elements are arranged in a diagonal shape as a whole by shifting their positions stepwise, and are provided with internal electrodes arranged so that their ends are alternately exposed on the back surface side and the front surface side. 3. The ultrasonic motor according to claim 2, wherein a laminated piezoelectric element having a laminated structure of a large number of piezoelectric elements alone is used.
【請求項4】 前記複数の圧電素子は、交互に裏面側、
表面側に端部が露出する配置の内部電極を備えた多数の
圧電素子単体の積層構造からなり、圧電素子単体の積層
方向に対して所定の角度で切り出した積層型圧電素子を
用いることを特徴とする請求項2記載の超音波モータ。
4. The plurality of piezoelectric elements are alternately arranged on the back surface side,
It is composed of a laminated structure of a large number of piezoelectric elements including internal electrodes whose ends are exposed on the front surface side, and uses a laminated piezoelectric element cut out at a predetermined angle with respect to the lamination direction of the piezoelectric elements. The ultrasonic motor according to claim 2.
【請求項5】 前記複数の圧電素子は、各層における列
設配置の多数の内部電極の各端部が交互に裏面側、表面
側に露出するとともに、列設配置の多数の内部電極を各
層交互に位置ずれさせた多数の圧電素子単体の積層構造
からなる積層型圧電素子を用いることを特徴とする請求
項2記載の超音波モータ。
5. In the plurality of piezoelectric elements, each end of a large number of internal electrodes arranged in a row in each layer is alternately exposed on the back surface side and the front surface side, and a large number of internal electrodes arranged in a row are alternately arranged in each layer. 3. The ultrasonic motor according to claim 2, wherein a laminated piezoelectric element having a laminated structure of a large number of piezoelectric elements that are misaligned with each other is used.
JP7245875A 1995-09-25 1995-09-25 Ultrasonic oscillator and ultrasonic motor using the ultrasonic oscillator Withdrawn JPH0993965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7245875A JPH0993965A (en) 1995-09-25 1995-09-25 Ultrasonic oscillator and ultrasonic motor using the ultrasonic oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7245875A JPH0993965A (en) 1995-09-25 1995-09-25 Ultrasonic oscillator and ultrasonic motor using the ultrasonic oscillator

Publications (1)

Publication Number Publication Date
JPH0993965A true JPH0993965A (en) 1997-04-04

Family

ID=17140112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7245875A Withdrawn JPH0993965A (en) 1995-09-25 1995-09-25 Ultrasonic oscillator and ultrasonic motor using the ultrasonic oscillator

Country Status (1)

Country Link
JP (1) JPH0993965A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004242493A (en) * 2003-01-14 2004-08-26 Seiko Instruments Inc Piezoelectric actuator and electronic device using the same
JP2011160580A (en) * 2010-02-02 2011-08-18 Olympus Corp Ultrasonic motor
JP2011160579A (en) * 2010-02-02 2011-08-18 Olympus Corp Ultrasonic motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004242493A (en) * 2003-01-14 2004-08-26 Seiko Instruments Inc Piezoelectric actuator and electronic device using the same
JP4578799B2 (en) * 2003-01-14 2010-11-10 セイコーインスツル株式会社 Piezoelectric actuator and electronic device using the same
JP2011160580A (en) * 2010-02-02 2011-08-18 Olympus Corp Ultrasonic motor
JP2011160579A (en) * 2010-02-02 2011-08-18 Olympus Corp Ultrasonic motor

Similar Documents

Publication Publication Date Title
JP3118251B2 (en) Ultrasonic driving device and method
JP4201407B2 (en) Drive device having a piezoelectric drive element
JPH07163162A (en) Ultrasonic oscillator
JP2001352768A (en) Multilayer electromechanical energy conversion element and oscillation wave driver
US8299682B2 (en) Ultrasonic motor
JP2004282841A (en) Ultrasonic oscillator and ultrasonic motor
JP4119903B2 (en) Flat plate piezoelectric ultrasonic motor
JPH099656A (en) Ultrasonic vibrator and ultrasonic motor
US8304962B2 (en) Ultrasonic motor
JPH0993965A (en) Ultrasonic oscillator and ultrasonic motor using the ultrasonic oscillator
JP2569545B2 (en) Piezoelectric vibration motor
JPH074074B2 (en) Ultrasonic motor
JPH09117168A (en) Supersonic motor
JP3297211B2 (en) Ultrasonic motor
JP3353998B2 (en) Ultrasonic transducer
JPH08163879A (en) Ultrasonic oscillator and ultrasonic motor
JPH0937576A (en) Ultrasonic motor and driving method therefor
JPH072229B2 (en) Piezoelectric elliptical motion oscillator
JPH03270679A (en) Ultrasonic oscillator and ultrasonic motor
JP5129184B2 (en) Ultrasonic motor
WO2012029925A1 (en) Ultrasonic motor
JPH09121573A (en) Ultrasonic vibrator and ultrasonic motor using it
JP4388273B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP3432056B2 (en) Laminated piezoelectric element, method of manufacturing laminated piezoelectric element, vibration device using laminated piezoelectric element, and driving device using the same
JPH08154385A (en) Ultrasonic vibrator and ultrasonic motor using this ultrasonic vibrator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021203