JPH099656A - Ultrasonic vibrator and ultrasonic motor - Google Patents

Ultrasonic vibrator and ultrasonic motor

Info

Publication number
JPH099656A
JPH099656A JP7149942A JP14994295A JPH099656A JP H099656 A JPH099656 A JP H099656A JP 7149942 A JP7149942 A JP 7149942A JP 14994295 A JP14994295 A JP 14994295A JP H099656 A JPH099656 A JP H099656A
Authority
JP
Japan
Prior art keywords
ultrasonic
elastic body
vibration
friction element
sliding friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7149942A
Other languages
Japanese (ja)
Inventor
Tomoki Funakubo
朋樹 舟窪
Toshiharu Tsubata
敏晴 津幡
Kazuhiro Kumei
一裕 粂井
Yoshihisa Taniguchi
芳久 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP7149942A priority Critical patent/JPH099656A/en
Publication of JPH099656A publication Critical patent/JPH099656A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To provide an ultrasonic vibrator having a simple configuration, permitting low voltage drive and a node position for longitudinal vibration aligned with the node position of torsional vibration. CONSTITUTION: An ultrasonic vibrator is provided with a columnar elastic body 11 having a plurality of grooves 12 and 13 at predetermined positions on the outer periphery, a plurality of laminated type piezoelectric elements 14 arranged in a slanted state on at least two facing sides of the columnar elastic body 11, and a sliding friction element 18 bonded to the end face of the columnar elastic body 11; and by applying alternating voltages with different phases respectively to a plurality of laminated type piezoelectric elements 14, a resonant longitudinal vibration and a resonant torsional vibration can be excited at the same time, thereby generating an ultrasonic elliptical vibration on the surface of the sliding friction element 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気機械変換素子を駆
動源とした超音波振動子とそれを用いた超音波モータに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic vibrator using an electromechanical conversion element as a drive source and an ultrasonic motor using the ultrasonic vibrator.

【0002】[0002]

【従来の技術】近年、電磁型モータに代わる新しいモー
タとして超音波モータが注目されている。この超音波モ
ータは、従来の電磁型モータに比べ以下のような利点を
有している。 (1)ギヤなしで低回転高トルクが得られる。 (2)保持力が大きい。 (3)高分解能である。 (4)静粛性にとんでいる。 (5)磁気的ノイズを発生せず、また、ノイズの影響も
うけない。
2. Description of the Related Art In recent years, an ultrasonic motor has attracted attention as a new motor replacing an electromagnetic motor. This ultrasonic motor has the following advantages over a conventional electromagnetic motor. (1) Low rotation and high torque can be obtained without gears. (2) Large holding force. (3) High resolution. (4) It is extremely quiet. (5) Magnetic noise is not generated, and the influence of noise is not exerted.

【0003】従来の超音波モータの一つとして、「精密
制御用ニューアクチュエータ便覧p897(フジテクノ
システム)」に開示された縦捩り振動を利用した超音波
モータがある。この従来の超音波モータを、図14およ
び図15により説明する。図9は縦捩り超音波モータの
正面図、図10は超音波振動子に超音波楕円振動が励起
される原理の説明図である。
As one of conventional ultrasonic motors, there is an ultrasonic motor utilizing longitudinal torsional vibration disclosed in "New Actuator Handbook for Precision Control p897 (Fuji Techno System)". This conventional ultrasonic motor will be described with reference to FIGS. 14 and 15. FIG. 9 is a front view of a longitudinal torsion ultrasonic motor, and FIG. 10 is an explanatory view of the principle of exciting ultrasonic elliptical vibration in an ultrasonic vibrator.

【0004】図14において、縦捩り超音波モータは、
主に直径20mm、長さ43mmの円柱状の振動子10
1と、直径20mm、長さ12mmのロータ102と、
スプリングなどの押圧部材103とからなる。振動子1
01は、その外周の所定の位置に溝104aを設けた弾
性体104と、縦振動励起用の円環状の圧電セラミクス
105と、捩り振動励起用の圧電セラミクス106と、
それらを挟持する弾性体107とから構成されている。
縦振動励起用の圧電セラミクス105と捩り振動励起用
の圧電セラミクス106とに、それぞれ共振周波数の交
番電圧を位相差をもって印加することにより、振動子1
01のロータ102と接する部分に、ロータ102を時
計回りまたは反時計回りに回転させるための超音波楕円
振動を励起する。
In FIG. 14, the longitudinal torsion ultrasonic motor is
A cylindrical vibrator 10 mainly having a diameter of 20 mm and a length of 43 mm
1, and a rotor 102 having a diameter of 20 mm and a length of 12 mm,
It is composed of a pressing member 103 such as a spring. Vibrator 1
Reference numeral 01 denotes an elastic body 104 having a groove 104a provided at a predetermined position on the outer periphery thereof, an annular piezoelectric ceramics 105 for longitudinal vibration excitation, and a piezoelectric ceramics 106 for torsional vibration excitation.
It is composed of an elastic body 107 that holds them.
By applying an alternating voltage having a resonance frequency with a phase difference to the piezoelectric ceramics 105 for exciting longitudinal vibration and the piezoelectric ceramics 106 for exciting torsional vibration, the vibrator 1
The ultrasonic elliptical vibration for rotating the rotor 102 in the clockwise or counterclockwise direction is excited in the portion of No. 01 in contact with the rotor 102.

【0005】つぎに、振動子に超音波楕円振動が励起さ
れる原理について説明する。図15の(a)と(b)に
示すように、縦振動モードとねじり振動モードを縮退さ
せ、ほぼ同一周波数で両モードを励起させ、超音波楕円
振動を端面に発生させようとしている。そのためには、
単純な円柱状の振動子では縦振動モードとねじり振動モ
ードを縮退させることができないため、弾性体の外周の
所定の位置に溝を設けている。この溝を適当な深さと幅
で、適当な位置に設けることにより、縦振動モードとね
じり振動モードを縮退させることができる。
Next, the principle that ultrasonic elliptical vibration is excited in the vibrator will be described. As shown in FIGS. 15 (a) and 15 (b), the longitudinal vibration mode and the torsional vibration mode are degenerated, both modes are excited at substantially the same frequency, and ultrasonic elliptical vibration is to be generated on the end surface. for that purpose,
Since a simple cylindrical vibrator cannot degenerate the longitudinal vibration mode and the torsional vibration mode, a groove is provided at a predetermined position on the outer circumference of the elastic body. By providing this groove with an appropriate depth and width at an appropriate position, the longitudinal vibration mode and the torsional vibration mode can be degenerated.

【0006】[0006]

【発明が解決しようとする課題】しかるに、上記従来の
超音波モータには、以下に示す問題点がある。 (1)縦振動励起用の円環状の圧電セラミクスとねじり
振動用の円環状の圧電セラミクスとの2種類の圧電振動
子を必要とするので、構成が複雑化する。 (2)縦振動の節位置とねじり振動の節位置とが異なる
ため、縦振動励起用の円環状の圧電セラミクスとねじり
振動励起用の円環状の圧電セラミクスとを、それぞれの
節位置に配置しなければならない。
However, the above-mentioned conventional ultrasonic motor has the following problems. (1) Since two types of piezoelectric vibrators, that is, an annular piezoelectric ceramic for longitudinal vibration excitation and an annular piezoelectric ceramic for torsional vibration are required, the configuration becomes complicated. (2) Since the node position of longitudinal vibration and the node position of torsional vibration are different, the annular piezoelectric ceramics for longitudinal vibration excitation and the annular piezoelectric ceramics for torsional vibration excitation are arranged at the respective node positions. There must be.

【0007】本発明は、上記従来の問題点に鑑みてなさ
れたもので、請求項1または2に係る発明の目的は、構
成が単純で、低電圧駆動が可能であるとともに、縦振動
の節位置とねじれ振動の節位置とが同一となる超音波振
動子を提供することである。請求項3に係る発明の目的
は、構成が単純で、低電圧駆動が可能な超音波モータを
提供することである。請求項4または5に係る発明の目
的は、構成が単純で、縦振動の節位置とねじれ振動の節
位置とが同一となる超音波振動子を提供することであ
る。請求項6に係る発明の目的は、構成が単純な超音波
モータを提供することである。
The present invention has been made in view of the above-mentioned conventional problems, and an object of the invention according to claim 1 or 2 is that the structure is simple, low voltage driving is possible, and a node of longitudinal vibration is present. An object is to provide an ultrasonic transducer in which the position and the node position of torsional vibration are the same. An object of the invention according to claim 3 is to provide an ultrasonic motor having a simple structure and capable of being driven at a low voltage. An object of the invention according to claim 4 or 5 is to provide an ultrasonic transducer having a simple structure, in which the node position of longitudinal vibration and the node position of torsional vibration are the same. An object of the invention according to claim 6 is to provide an ultrasonic motor having a simple structure.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、請求項1または2に係る発明は、超音波振動子にお
いて、外周の所定の位置に複数の溝を設けた柱状弾性体
と、該柱状弾性体の少なくとも対向する2つの側面に傾
斜して設けた複数の積層型圧電素子と、前記柱状弾性体
の端面に接合した摺動用摩擦子とを備え、前記複数の積
層型圧電素子にそれぞれ位相の異なる交番電圧を印加す
ることにより、共振縦振動と共振捩れ振動とを同時に励
起し、前記摺動用摩擦子の表面に超音波楕円振動を発生
するように構成したことを特徴とする。請求項3に係る
発明は、超音波モータにおいて、請求項1または2記載
の超音波振動子の摺動用摩擦子の表面中央に軸を立設
し、該軸にロータを嵌装して、該ロータを前記摺動用摩
擦子に押圧保持したことを特徴とする。請求項4または
5に係る発明は、外周の所定の位置に複数の溝を設けた
柱状弾性体と、該柱状弾性体の少なくとも対向する2つ
の側面に傾斜して設けた複数の交差指電極圧電板と、前
記柱状弾性体の端面に接合した摺動用摩擦子とを備え、
前記複数の交差指電極圧電板にそれぞれ位相の異なる交
番電圧を印加することにより、共振縦振動と共振捩れ振
動とを同時に励起し、前記摺動用摩擦子の表面に超音波
楕円振動を発生するように構成したことを特徴とする。
請求項6に係る発明は、超音波モータにおいて、請求項
4または5記載の超音波振動子の摺動用摩擦子の表面中
央に軸を立設し、該軸にロータを嵌装して、該ロータを
前記摺動用摩擦子に押圧保持したことを特徴とする。
In order to solve the above-mentioned problems, the invention according to claim 1 or 2 is, in an ultrasonic transducer, a columnar elastic body having a plurality of grooves at predetermined positions on the outer periphery, A plurality of laminated piezoelectric elements provided inclined to at least two opposing side surfaces of the columnar elastic body, and a sliding friction element joined to an end surface of the columnar elastic body are provided. By applying alternating voltages having different phases, resonant longitudinal vibration and resonant torsional vibration are simultaneously excited, and ultrasonic elliptical vibration is generated on the surface of the sliding friction element. According to a third aspect of the present invention, in the ultrasonic motor, a shaft is provided upright in the center of the surface of the sliding friction element of the ultrasonic vibrator according to the first or second aspect, and a rotor is fitted on the shaft, The rotor is pressed and held by the sliding friction element. The invention according to claim 4 or 5 is characterized in that a columnar elastic body having a plurality of grooves at predetermined positions on the outer periphery thereof, and a plurality of interdigitated electrode piezoelectric elements provided obliquely on at least two opposing side surfaces of the columnar elastic body. A plate and a sliding friction member joined to the end face of the columnar elastic body,
By applying alternating voltages having different phases to the plurality of interdigital electrode piezoelectric plates, resonance longitudinal vibration and resonance torsional vibration are excited at the same time, and ultrasonic elliptical vibration is generated on the surface of the sliding friction element. It is characterized in that it is configured in.
According to a sixth aspect of the present invention, in an ultrasonic motor, a shaft is erected at the center of the surface of the sliding friction element of the ultrasonic vibrator according to the fourth or fifth aspect, and a rotor is fitted on the shaft, The rotor is pressed and held by the sliding friction element.

【0009】[0009]

【作用】請求項1または2に係る発明の作用では、一対
の積層型圧電素子に同位相の電圧を印加すると、共振縦
振動が励起できる。また、一対の積層型圧電素子に逆位
相の電圧を印加すると、共振捩れ振動が励起できる。さ
らに、一対の積層型圧電素子に位相がπ/2異なる電圧
を印加すると、共振縦振動と共振捩れ振動が同時に励起
され、摺動用摩擦子の位置において、超音波楕円振動が
合成される。請求項3に係る発明の作用では、請求項1
または2に係る発明の作用により、超音波楕円振動が励
起された部分に、ロータを押圧すると、超音波楕円振動
の振動の向きに従って、ロータは時計回りまたは反時計
回りに回転駆動される。
In the operation of the invention according to claim 1 or 2, resonance longitudinal vibration can be excited by applying voltages of the same phase to the pair of laminated piezoelectric elements. Further, when a voltage of opposite phase is applied to the pair of laminated piezoelectric elements, resonance torsional vibration can be excited. Further, when voltages having a phase difference of π / 2 are applied to the pair of laminated piezoelectric elements, resonance longitudinal vibration and resonance torsional vibration are simultaneously excited, and ultrasonic elliptical vibration is synthesized at the position of the sliding friction element. In the operation of the invention according to claim 3,
Alternatively, when the rotor is pressed against the portion where the ultrasonic elliptical vibration is excited by the action of the invention according to the second aspect, the rotor is rotationally driven clockwise or counterclockwise according to the vibration direction of the ultrasonic elliptical vibration.

【0010】請求項4または5に係る発明の作用では、
一対の交差指電極圧電板に同位相の電圧を印加すると、
共振縦振動が励起できる。また、一対の交差指電極圧電
板に逆位相の電圧を印加すると、共振捩れ振動が励起で
きる。さらに、一対の交差指電極圧電板に位相がπ/2
異なる電圧を印加すると、共振縦振動と共振捩れ振動が
同時に励起され、摺動用摩擦子の位置において、超音波
楕円振動が合成される。請求項6に係る発明の作用で
は、請求項4または5に係る発明の作用により、超音波
楕円振動が励起された部分に、ロータを押圧すると、超
音波楕円振動の振動の向きに従って、ロータは時計回り
または反時計回りに回転駆動される。
In the operation of the invention according to claim 4 or 5,
When the same phase voltage is applied to the pair of cross finger electrode piezoelectric plates,
Resonant longitudinal vibration can be excited. In addition, when a voltage of opposite phase is applied to the pair of interdigital transducer piezoelectric plates, resonance torsional vibration can be excited. Furthermore, the phase is π / 2 on the pair of interdigitated electrode piezoelectric plates.
When different voltages are applied, resonance longitudinal vibration and resonance torsional vibration are simultaneously excited, and ultrasonic elliptical vibration is synthesized at the position of the sliding friction element. In the operation of the invention according to claim 6, when the rotor is pressed against the portion where the ultrasonic elliptical vibration is excited by the operation of the invention according to claim 4 or 5, the rotor is moved in accordance with the vibration direction of the ultrasonic elliptical vibration. It is driven to rotate clockwise or counterclockwise.

【0011】[0011]

【実施例1】図1〜図8は実施例1を示し、図1は超音
波振動子の正面図、図2は超音波振動子の裏面図、図3
は超音波振動子の左側面図、図4は超音波振動子の右側
面図、図5は超音波振動子の上面図、図6は共振縦振動
と共振捩れ振動との変位を示す説明図、図7は超音波モ
ータの正面図、図8は超音波モータの分解図である。
Embodiment 1 FIGS. 1 to 8 show Embodiment 1, FIG. 1 is a front view of an ultrasonic vibrator, FIG. 2 is a rear view of the ultrasonic vibrator, and FIG.
Is a left side view of the ultrasonic oscillator, FIG. 4 is a right side view of the ultrasonic oscillator, FIG. 5 is a top view of the ultrasonic oscillator, and FIG. 6 is an explanatory diagram showing displacement between resonant longitudinal vibration and resonant torsional vibration. 7 is a front view of the ultrasonic motor, and FIG. 8 is an exploded view of the ultrasonic motor.

【0012】図1〜図5において、10は超音波振動子
を示す。基本弾性体11は、黄銅材(C2801PのO
材)からなる角柱形状をなし、ほぼ9mm×9mm×4
0mmの寸法に形成され、その両端面からほぼ等位置2
個所に、深さ約2mmの溝12、13が全周に亘り凹設
されている。基本弾性体11の正面と裏面とに、積層型
圧電素子14が一定の傾斜角度をもって挟持され、基本
弾性体と一体に形成された傾斜面を有する突起部15
に、保持用弾性体16により約100Nの圧縮力が作用
した状態で保持固定されている。保持用弾性体16は、
基本弾性体11にビス17により螺着されている。ま
た、積層型圧電素子14および保持用弾性体16はエポ
キシ系の接着剤を用いてさらに強固に基本弾性体11に
固着されている。
1 to 5, reference numeral 10 denotes an ultrasonic transducer. The basic elastic body 11 is a brass material (O of C2801P).
Material) in the shape of a prism, almost 9 mm x 9 mm x 4
It has a size of 0 mm, and is located at almost the same position 2 from both end faces.
Grooves 12 and 13 each having a depth of about 2 mm are recessed at the points along the entire circumference. The laminated piezoelectric element 14 is sandwiched between the front surface and the back surface of the basic elastic body 11 at a constant inclination angle, and a projection portion 15 having an inclined surface formed integrally with the basic elastic body 15 is formed.
In addition, the elastic body 16 for holding is held and fixed while a compressive force of about 100 N is applied. The elastic body 16 for holding is
It is screwed onto the basic elastic body 11 with screws 17. Further, the laminated piezoelectric element 14 and the holding elastic body 16 are more firmly fixed to the basic elastic body 11 by using an epoxy adhesive.

【0013】積層型圧電素子14は、寸法が2mm×
3.1mm×9mmのもので、正面(図1)と裏面(図
2)とでは、正対して見て逆方向の鋭角をなし、傾斜し
て取着されている。従って、図3および図4に示すよう
に、積層型圧電素子13の側面が、表裏面ともに上下方
向で同位置に投影されている。また、それぞれの積層型
圧電素子14から出されている電気端子は、それぞれA
端子、GND端子およびB端子、GND端子である。
The laminated piezoelectric element 14 has a size of 2 mm ×
It has a size of 3.1 mm × 9 mm, and the front surface (FIG. 1) and the back surface (FIG. 2) form an acute angle in the opposite direction when facing each other, and are attached so as to be inclined. Therefore, as shown in FIGS. 3 and 4, the side surface of the laminated piezoelectric element 13 is projected at the same position in the vertical direction on both the front and back surfaces. Further, the electric terminals output from the respective laminated piezoelectric elements 14 are respectively A
A terminal, a GND terminal, a B terminal, and a GND terminal.

【0014】基本弾性体11の先端部には、円環状のフ
ェノール樹脂にアルミナセラミックの砥粒を分散させた
砥石からなる摺動用摩擦子18が接合されている。基本
弾性体11の中心軸上には貫通孔19が穿設され、その
中心軸上のほぼ中央にはメネジ(図示省略)が螺刻され
ている。
At the tip of the basic elastic body 11, there is joined a sliding friction element 18 made of a grindstone in which abrasive grains of alumina ceramic are dispersed in an annular phenol resin. A through hole 19 is bored on the central axis of the basic elastic body 11, and a female screw (not shown) is screwed at approximately the center of the central axis.

【0015】つぎに、超音波振動子10の動作について
説明する。超音波振動子10は、その寸法が、1個所に
節部を有する共振縦振動(図6(a)に振動変位を示
す)および共振捩れ振動(図2(b)に振動変位を示
す)がほぼ同一周波数Fr(40kHz)で励起できる
ものとなっている。但し、共振捩振動では、基本弾性体
11の長手方向の中心軸部分は全て不動点つまり節であ
る。
Next, the operation of the ultrasonic transducer 10 will be described. The ultrasonic transducer 10 has dimensions such that resonance longitudinal vibration (a vibration displacement is shown in FIG. 6A) and resonance torsional vibration (a vibration displacement is shown in FIG. 2B) having a node portion at one place. It can be excited at almost the same frequency Fr (40 kHz). However, in the resonance torsional vibration, the central axis portion in the longitudinal direction of the basic elastic body 11 is all fixed points or nodes.

【0016】まず、A端子に周波数Frで振幅30Vp
−pの交番電圧を印加し、B端子に同一周波数、同振幅
で同位相の交番電圧を印加すると共振縦振動が励起され
た。つぎに、A端子に周波数Frで振幅30Vp−pの
交番電圧を印加し、B端子に同一周波数、同振幅で逆位
相の交番電圧を印加すると共振捩れ振動が励起された。
さらに、A端子に周波数Frで振幅30Vp−pの交番
電圧を印加し、B端子に同一周波数、同振幅で位相が9
0度異なった交番電圧を印加すると、共振縦振動と共振
捩れ振動とが合成されて、摺動用摩擦子16の位置に楕
円振動が励起された。
First, the terminal A has an amplitude of 30 Vp at a frequency Fr.
When an alternating voltage of −p was applied and an alternating voltage of the same frequency, the same amplitude and the same phase was applied to the B terminal, resonance longitudinal vibration was excited. Next, when an alternating voltage with an amplitude of 30 Vp-p with a frequency Fr is applied to the A terminal and an alternating voltage with the same frequency and the same amplitude and an opposite phase is applied to the B terminal, resonance torsional vibration is excited.
Further, an alternating voltage having an amplitude of 30 Vp-p with a frequency Fr is applied to the A terminal, and the same frequency with the same amplitude and a phase of 9 is applied to the B terminal.
When alternating voltages different from each other by 0 degree were applied, the resonance longitudinal vibration and the resonance torsional vibration were combined, and the elliptical vibration was excited at the position of the sliding friction element 16.

【0017】つぎに、図7〜図8を用いて、超音波振動
子10を用いた本実施例の超音波モータ50について説
明する。図7および図8において、超音波振動子10の
貫通孔19(図5参照)には軸51が嵌装されている。
軸51は図8に示すように、中央部および両端部にオネ
ジ58が螺刻されており、中央部のオネジ58は、超音
波振動子10のメネジ(図示省略)に螺合した後に接着
固定されている。超音波振動子10の上端部には、ロー
タ53がスラストベアリング54およびバネ保持部材5
5を介して、バネ56により押圧固定されている。押圧
力はナット57により調節される。円環状のロータ53
の下面には、円環状のジルコニアセラミックスからなる
摺動板52が貼付されている。超音波モータ50を固定
する場合には、その下部に突出した軸51のオネジ58
を、図示を省略した基台に螺着して固定する。
Next, the ultrasonic motor 50 of this embodiment using the ultrasonic vibrator 10 will be described with reference to FIGS. In FIGS. 7 and 8, a shaft 51 is fitted in the through hole 19 (see FIG. 5) of the ultrasonic transducer 10.
As shown in FIG. 8, the shaft 51 has a male thread 58 threaded on the central portion and both end portions thereof. The male thread 58 at the central portion is screwed onto a female thread (not shown) of the ultrasonic transducer 10 and then adhesively fixed. Has been done. At the upper end of the ultrasonic transducer 10, the rotor 53 is provided with the thrust bearing 54 and the spring holding member 5.
It is pressed and fixed by a spring 56 through 5. The pressing force is adjusted by the nut 57. Annular rotor 53
A sliding plate 52 made of an annular zirconia ceramic is attached to the lower surface of the. When fixing the ultrasonic motor 50, the male screw 58 of the shaft 51 protruding below the ultrasonic motor 50 is fixed.
Is screwed and fixed to a base (not shown).

【0018】先に示したように、超音波振動子10のA
端子とB端子とに、周波数40kHz,振幅30Vp−
p、位相差+90度または−90度の交番電圧を印加す
る。すると、ロータ53が時計回りまたは半時計回りに
回転する。
As indicated above, the A of the ultrasonic transducer 10
A frequency of 40 kHz and an amplitude of 30 Vp-
Alternating voltage of p, phase difference +90 degrees or -90 degrees is applied. Then, the rotor 53 rotates clockwise or counterclockwise.

【0019】本実施例によれば、基本弾性体のほぼ中央
部に縦振動と捩れ振動の共通の節を形成でき、その位置
に積層型圧電素子を配設したので、縦振動および捩れ振
動を効率良く励起することができる。また、駆動源とし
て積層型圧電素子を用いたので、駆動電圧を下げること
ができる。さらに、積層型圧電素子に圧縮力を加えた状
態で組み立ててあるため、圧電素子内部での破壊がなく
なり、寿命を大幅に延ばすことができる。さらに、1種
類の圧電素子を用いて縦振動と捩れ振動とを励起させる
ことができ、構造が単純であるので安価に作製すること
ができる。また、この超音波振動子を用いた超音波モー
タは、縦振動と捩れ振動との共通の節位置で保持してい
るので、振動漏れが少なく、効率が高い。
According to this embodiment, a common node for longitudinal vibration and torsional vibration can be formed in the substantially central portion of the basic elastic body, and since the laminated piezoelectric element is arranged at that position, longitudinal vibration and torsional vibration are eliminated. It can be excited efficiently. Further, since the laminated piezoelectric element is used as the drive source, the drive voltage can be lowered. Further, since the laminated piezoelectric element is assembled in a state in which a compressive force is applied, the piezoelectric element is not broken and the life can be greatly extended. Further, one type of piezoelectric element can be used to excite longitudinal vibration and torsional vibration, and the structure is simple, so that it can be manufactured at low cost. Further, since the ultrasonic motor using this ultrasonic oscillator holds the vibration at a common node position for longitudinal vibration and torsional vibration, there is little vibration leakage and high efficiency.

【0020】本実施例では、基本弾性体として角柱状の
ものを用いたが、円柱状のものを一部カットして積層型
圧電素子を固着してもよい。また、本実施例では、積層
型圧電素子を2個用いているが、4側面にそれぞれ固着
し、4個用いる構造にしてもよい。さらに、本実施例で
は、全周に亘る溝が2箇所に設けられているが、本発明
の要旨を逸脱しない限りにおいて、3箇所以上に設けて
も良い。
In this embodiment, a prismatic columnar body is used as the basic elastic body, but a cylindrical columnar body may be partially cut to fix the laminated piezoelectric element. Further, in this embodiment, two laminated piezoelectric elements are used, but a structure in which four piezoelectric elements are fixed to each of the four side surfaces may be used. Furthermore, in the present embodiment, the groove is provided at two places over the entire circumference, but it may be provided at three or more places without departing from the gist of the present invention.

【0021】[0021]

【実施例2】図9〜図13は実施例2を示し、図9は超
音波振動子の正面図、図10は超音波振動子の裏面図、
図11は超音波振動子の右側面図、図12は超音波振動
子の左側面図、図13は超音波振動子の上面図である。
本実施例は、超音波振動子の構成のみ実施例1と異な
り、超音波モータの構成は実施例1と同様のため、図と
説明を省略する。
Second Embodiment FIGS. 9 to 13 show a second embodiment, FIG. 9 is a front view of an ultrasonic vibrator, FIG. 10 is a rear view of the ultrasonic vibrator,
11 is a right side view of the ultrasonic transducer, FIG. 12 is a left side view of the ultrasonic transducer, and FIG. 13 is a top view of the ultrasonic transducer.
The present embodiment is different from the first embodiment only in the configuration of the ultrasonic transducer, and the configuration of the ultrasonic motor is the same as that of the first embodiment, and therefore, illustration and description thereof are omitted.

【0022】図9〜図13において、超音波振動子70
は、実施例1における駆動源としての積層型圧電素子に
替えて、交差指電極圧電板72を用いている。交差指電
極圧電板72は、その板の厚み方向とほぼ垂直な方向に
分極されていて圧電縦効果で動作する。交差指電極圧電
板72は交差指パターンが基本弾性体72の長手方向に
対して、一定の鋭角な傾斜をして接着固定されている。
交差指電極圧電板72は、寸法が8mm(幅)×12m
m(長さ)×1mm(厚み)のもので、正面(図9)と
裏面(図10)とでは、正対して見て逆方向に取付けら
れている。従って、図11および図12に示すように、
交差指電極圧電板72の側面は、表裏面ともに上下方向
で同位置に投影されている。また、それぞれの交差指電
極圧電板72から出されている電気端子は、それぞれA
端子、GND端子およびB端子、GND端子である。基
本弾性体71の形状寸法、溝12、13の位置・大き
さ、摺動用摩擦子18などは実施例1と同様である。
9 to 13, an ultrasonic transducer 70
Uses a cross finger electrode piezoelectric plate 72 instead of the laminated piezoelectric element as the drive source in the first embodiment. The interdigital electrode piezoelectric plate 72 is polarized in a direction substantially perpendicular to the thickness direction of the plate, and operates by the piezoelectric vertical effect. The interdigital electrode piezoelectric plate 72 has an interdigital pattern bonded and fixed with a certain acute angle with respect to the longitudinal direction of the basic elastic body 72.
The cross finger electrode piezoelectric plate 72 has a size of 8 mm (width) x 12 m.
m (length) × 1 mm (thickness), and the front surface (FIG. 9) and the back surface (FIG. 10) are mounted in the opposite directions when facing each other. Therefore, as shown in FIG. 11 and FIG.
The side surface of the interdigital electrode piezoelectric plate 72 is projected at the same position in the vertical direction on both the front and back surfaces. Further, the electric terminals output from the respective cross finger electrode piezoelectric plates 72 are respectively A
A terminal, a GND terminal, a B terminal, and a GND terminal. The shape and dimensions of the basic elastic body 71, the positions and sizes of the grooves 12 and 13, the sliding friction element 18 and the like are the same as in the first embodiment.

【0023】超音波振動子70の動作、および交差指電
極圧電板70を用いた超音波モータの構成動作について
は、実施例1と同様なので説明を省略する。
The operation of the ultrasonic transducer 70 and the operation of the ultrasonic motor using the interdigital transducer piezoelectric plate 70 are the same as those in the first embodiment, and the description thereof will be omitted.

【0024】本実施例によれば、基本弾性体のほぼ中央
部に縦振動と捩れ振動の共通の節を形成でき、その位置
に交差指電極圧電板を配設したので、縦振動および捩れ
振動を効率良く励起することができる。さらに、1種類
の圧電素子を用いて縦振動と捩れ振動とを励起させるこ
とができ、構造が単純であるので安価に作製することが
できる。また、この超音波振動子を用いた超音波モータ
は、縦振動と捩れ振動との共通の節位置で保持している
ので、振動漏れが少なく、効率が高い。
According to the present embodiment, a common node for longitudinal vibration and torsional vibration can be formed in the substantially central portion of the basic elastic body, and since the cross finger electrode piezoelectric plate is arranged at that position, longitudinal vibration and torsional vibration are formed. Can be efficiently excited. Further, one type of piezoelectric element can be used to excite longitudinal vibration and torsional vibration, and the structure is simple, so that it can be manufactured at low cost. Further, since the ultrasonic motor using this ultrasonic oscillator holds the vibration at a common node position for longitudinal vibration and torsional vibration, there is little vibration leakage and high efficiency.

【0025】本実施例では、基本弾性体として角柱状の
ものを用いたが、円柱状のものを一部カットして交差指
電極圧電板を固着してもよい。また、本実施例では、交
差指電極圧電板を2個用いているが、4側面にそれぞれ
固着し、4個用いる構造にしてもよい。さらに、本実施
例では、全周に亘る溝が2箇所に設けられているが、本
発明の要旨を逸脱しない限りにおいて、3箇所以上に設
けても良い。
In the present embodiment, a prismatic columnar body is used as the basic elastic body, but a cylindrical columnar body may be partially cut to fix the cross finger electrode piezoelectric plates. Further, in the present embodiment, two piezoelectric finger plates for the interdigital electrodes are used, but a structure may be used in which four piezoelectric plates are fixed to each of the four side surfaces. Furthermore, in the present embodiment, the groove is provided at two places over the entire circumference, but it may be provided at three or more places without departing from the gist of the present invention.

【0026】[0026]

【発明の効果】請求項1または2に係る発明によれば、
構成が単純で、低電圧駆動が可能であるとともに、縦振
動の節位置とねじれ振動の節位置とが同一となるので、
効率のよい振動が励起される超音波振動子を得ることが
できる。請求項3に係る発明によれば、請求項1または
2に係る発明の超音波振動子を用いたので、単純な構成
で、低電圧駆動が可能な、高効率の超音波モータを得る
ことができる。請求項4または5に係る発明によれば、
構成が単純であるとともに、縦振動の節位置とねじれ振
動の節位置とが同一となるので、効率のよい振動が励起
される超音波振動子を得ることができる。請求項6に係
る発明によれば、請求項4または5に係る発明の超音波
振動子を用いたので、単純な構成で、高効率の超音波モ
ータを得ることができる。
According to the first or second aspect of the present invention,
Since the structure is simple and low voltage driving is possible, the node position of longitudinal vibration and the node position of torsional vibration are the same,
It is possible to obtain an ultrasonic transducer in which efficient vibration is excited. According to the invention of claim 3, since the ultrasonic oscillator of the invention of claim 1 or 2 is used, it is possible to obtain a highly efficient ultrasonic motor which can be driven at a low voltage with a simple configuration. it can. According to the invention of claim 4 or 5,
Since the structure is simple and the node position of the longitudinal vibration is the same as the node position of the torsional vibration, it is possible to obtain an ultrasonic transducer in which efficient vibration is excited. According to the invention of claim 6, since the ultrasonic oscillator of the invention of claim 4 or 5 is used, a highly efficient ultrasonic motor can be obtained with a simple configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の超音波振動子の正面図である。FIG. 1 is a front view of an ultrasonic transducer of Example 1.

【図2】実施例1の超音波振動子の裏面図である。FIG. 2 is a back view of the ultrasonic transducer of the first embodiment.

【図3】実施例1の超音波振動子の左側面図である。FIG. 3 is a left side view of the ultrasonic transducer of the first embodiment.

【図4】実施例1の超音波振動子の右側面図である。FIG. 4 is a right side view of the ultrasonic transducer according to the first embodiment.

【図5】実施例1の超音波振動子の上面図である。FIG. 5 is a top view of the ultrasonic transducer of the first embodiment.

【図6】実施例1の共振縦振動と共振捩れ振動との変位
を示す説明図である。
FIG. 6 is an explanatory diagram showing the displacement between the resonant longitudinal vibration and the resonant torsional vibration of the first embodiment.

【図7】実施例1の超音波モータの正面図である。FIG. 7 is a front view of the ultrasonic motor according to the first embodiment.

【図8】実施例1の超音波モータの分解図である。FIG. 8 is an exploded view of the ultrasonic motor according to the first embodiment.

【図9】実施例2の超音波振動子の正面図である。FIG. 9 is a front view of the ultrasonic transducer of the second embodiment.

【図10】実施例2の超音波振動子の裏面図である。FIG. 10 is a back view of the ultrasonic transducer of the second embodiment.

【図11】実施例2の超音波振動子の右側面図である。FIG. 11 is a right side view of the ultrasonic transducer according to the second embodiment.

【図12】実施例2の超音波振動子の左側面図である。FIG. 12 is a left side view of the ultrasonic transducer of the second embodiment.

【図13】実施例2の超音波振動子の上面図である。FIG. 13 is a top view of the ultrasonic transducer of the second embodiment.

【図14】従来技術の縦捩超音波モータの正面図であ
る。
FIG. 14 is a front view of a conventional vertical-screw ultrasonic motor.

【図15】従来技術の超音波振動子に超音波楕円振動が
励起される原理の説明図である。
FIG. 15 is an explanatory diagram of a principle in which ultrasonic elliptical vibration is excited in a conventional ultrasonic transducer.

【符号の説明】[Explanation of symbols]

11 基本弾性体 12 溝 13 溝 14 積層型圧電素子 16 保持用弾性体 18 摺動用摩擦子 11 Basic Elastic Body 12 Groove 13 Groove 14 Multilayer Piezoelectric Element 16 Holding Elastic Body 18 Sliding Friction Element

フロントページの続き (72)発明者 谷口 芳久 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内Front page continued (72) Inventor Yoshihisa Taniguchi 2-43-2 Hatagaya, Shibuya-ku, Tokyo Inside Olympus Optical Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】外周の所定の位置に複数の溝を設けた柱状
弾性体と、該柱状弾性体の少なくとも対向する2つの側
面に傾斜して設けた複数の積層型圧電素子と、前記柱状
弾性体の端面に接合した摺動用摩擦子とを備え、前記複
数の積層型圧電素子にそれぞれ位相の異なる交番電圧を
印加することにより、共振縦振動と共振捩れ振動とを同
時に励起し、前記摺動用摩擦子の表面に超音波楕円振動
を発生するように構成したことを特徴とする超音波振動
子。
1. A columnar elastic body having a plurality of grooves at predetermined positions on the outer periphery thereof, a plurality of laminated piezoelectric elements obliquely provided on at least two opposing side surfaces of the columnar elastic body, and the columnar elastic body. A sliding friction element bonded to the end face of the body, and by applying alternating voltages of different phases to the plurality of laminated piezoelectric elements, resonant longitudinal vibration and resonant torsional vibration are excited at the same time, and An ultrasonic transducer, characterized in that it is configured to generate ultrasonic elliptical vibrations on the surface of a friction element.
【請求項2】前記複数の溝は、前記柱状弾性体の長手方
向における前記複数の積層型圧電素子を設けた部位の両
側に、それぞれ一つずつ設けたことを特徴とする請求項
1記載の超音波振動子。
2. The plurality of grooves are provided one by one on both sides of the portion where the plurality of laminated piezoelectric elements are provided in the longitudinal direction of the columnar elastic body. Ultrasonic transducer.
【請求項3】請求項1または2記載の超音波振動子の摺
動用摩擦子の表面中央に軸を立設し、該軸にロータを嵌
装して、該ロータを前記摺動用摩擦子に押圧保持したこ
とを特徴とする超音波モータ。
3. An ultrasonic vibrator according to claim 1, wherein a shaft is provided upright in the center of the surface of the sliding friction element, and a rotor is fitted on the shaft, and the rotor is used as the sliding friction element. An ultrasonic motor characterized by being pressed and held.
【請求項4】外周の所定の位置に複数の溝を設けた柱状
弾性体と、該柱状弾性体の少なくとも対向する2つの側
面に傾斜して設けた複数の交差指電極圧電板と、前記柱
状弾性体の端面に接合した摺動用摩擦子とを備え、前記
複数の交差指電極圧電板にそれぞれ位相の異なる交番電
圧を印加することにより、共振縦振動と共振捩れ振動と
を同時に励起し、前記摺動用摩擦子の表面に超音波楕円
振動を発生するように構成したことを特徴とする超音波
振動子。
4. A columnar elastic body having a plurality of grooves at predetermined positions on the outer periphery, a plurality of interdigitated electrode piezoelectric plates obliquely provided on at least two opposing side surfaces of the columnar elastic body, and the columnar body. A sliding friction element joined to the end surface of the elastic body, by applying alternating voltages having different phases to the plurality of interdigital electrode piezoelectric plates, the resonant longitudinal vibration and the resonant torsional vibration are excited at the same time, An ultrasonic transducer characterized in that it is configured to generate ultrasonic elliptical vibration on the surface of a sliding friction element.
【請求項5】前記複数の溝は、前記柱状弾性体の長手方
向における前記複数の交差指電極圧電板を設けた部位の
両側に、それぞれ一つずつ設けたことを特徴とする請求
項4記載の超音波振動子。
5. The plurality of grooves are provided one by one on both sides of a portion of the columnar elastic body where the plurality of piezoelectric finger plates are provided in the longitudinal direction. Ultrasonic transducer.
【請求項6】請求項4または5記載の超音波振動子の摺
動用摩擦子の表面中央に軸を立設し、該軸にロータを嵌
装して、該ロータを前記摺動用摩擦子に押圧保持したこ
とを特徴とする超音波モータ。
6. An ultrasonic vibrator according to claim 4, wherein a shaft is provided upright in the center of the surface of the sliding friction element, a rotor is fitted on the shaft, and the rotor is used as the sliding friction element. An ultrasonic motor characterized by being pressed and held.
JP7149942A 1995-06-16 1995-06-16 Ultrasonic vibrator and ultrasonic motor Withdrawn JPH099656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7149942A JPH099656A (en) 1995-06-16 1995-06-16 Ultrasonic vibrator and ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7149942A JPH099656A (en) 1995-06-16 1995-06-16 Ultrasonic vibrator and ultrasonic motor

Publications (1)

Publication Number Publication Date
JPH099656A true JPH099656A (en) 1997-01-10

Family

ID=15485947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7149942A Withdrawn JPH099656A (en) 1995-06-16 1995-06-16 Ultrasonic vibrator and ultrasonic motor

Country Status (1)

Country Link
JP (1) JPH099656A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6262514B1 (en) * 1996-08-14 2001-07-17 Intelligent Manufacturing Systems Limited Bearings and supports
EP1625836A1 (en) * 2004-08-12 2006-02-15 Alcon Inc. Ultrasonic handpiece
US7586642B2 (en) 2003-07-25 2009-09-08 Hoya Corporation Color-space transformation-matrix calculating system and calculating method
US7645256B2 (en) 2004-08-12 2010-01-12 Alcon, Inc. Ultrasound handpiece
JP2010022181A (en) * 2008-07-14 2010-01-28 Olympus Corp Ultrasonic motor
JP2010136503A (en) * 2008-12-03 2010-06-17 Olympus Corp Ultrasonic motor
JP2010166673A (en) * 2009-01-14 2010-07-29 Olympus Corp Ultrasonic motor
JP2010166674A (en) * 2009-01-14 2010-07-29 Olympus Corp Ultrasonic motor
JP2010220410A (en) * 2009-03-17 2010-09-30 Olympus Corp Ultrasonic motor
JP2010226802A (en) * 2009-03-19 2010-10-07 Olympus Corp Ultrasonic motor
JP2011061894A (en) * 2009-09-07 2011-03-24 Olympus Corp Ultrasonic motor
US8172786B2 (en) 2004-03-22 2012-05-08 Alcon Research, Ltd. Method of operating an ultrasound handpiece
US10258505B2 (en) 2010-09-17 2019-04-16 Alcon Research, Ltd. Balanced phacoemulsification tip

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6262514B1 (en) * 1996-08-14 2001-07-17 Intelligent Manufacturing Systems Limited Bearings and supports
US7586642B2 (en) 2003-07-25 2009-09-08 Hoya Corporation Color-space transformation-matrix calculating system and calculating method
US8172786B2 (en) 2004-03-22 2012-05-08 Alcon Research, Ltd. Method of operating an ultrasound handpiece
EP2243449A1 (en) * 2004-08-12 2010-10-27 Alcon, Inc. Ultrasonic handpiece
EP1625836A1 (en) * 2004-08-12 2006-02-15 Alcon Inc. Ultrasonic handpiece
US7651490B2 (en) 2004-08-12 2010-01-26 Alcon, Inc. Ultrasonic handpiece
US7645256B2 (en) 2004-08-12 2010-01-12 Alcon, Inc. Ultrasound handpiece
US8814894B2 (en) 2004-08-12 2014-08-26 Novartis Ag Ultrasound handpiece
JP2006051354A (en) * 2004-08-12 2006-02-23 Alcon Inc Ultrasonic handpiece
US8771301B2 (en) 2004-08-12 2014-07-08 Alcon Research, Ltd. Ultrasonic handpiece
JP2010022181A (en) * 2008-07-14 2010-01-28 Olympus Corp Ultrasonic motor
JP2010136503A (en) * 2008-12-03 2010-06-17 Olympus Corp Ultrasonic motor
JP2010166673A (en) * 2009-01-14 2010-07-29 Olympus Corp Ultrasonic motor
JP2010166674A (en) * 2009-01-14 2010-07-29 Olympus Corp Ultrasonic motor
JP2010220410A (en) * 2009-03-17 2010-09-30 Olympus Corp Ultrasonic motor
JP2010226802A (en) * 2009-03-19 2010-10-07 Olympus Corp Ultrasonic motor
JP2011061894A (en) * 2009-09-07 2011-03-24 Olympus Corp Ultrasonic motor
US10258505B2 (en) 2010-09-17 2019-04-16 Alcon Research, Ltd. Balanced phacoemulsification tip

Similar Documents

Publication Publication Date Title
JP4201407B2 (en) Drive device having a piezoelectric drive element
JPH099656A (en) Ultrasonic vibrator and ultrasonic motor
JP2009254190A (en) Ultrasonic motor
US8304962B2 (en) Ultrasonic motor
JPH0985172A (en) Ultrasonic vibrator transducer and ultrasonic motor using same
JPH09117168A (en) Supersonic motor
JP3353998B2 (en) Ultrasonic transducer
JPH08317669A (en) Ultrasonic vibrator and ultrasonic motor
JP3297211B2 (en) Ultrasonic motor
JPH08163879A (en) Ultrasonic oscillator and ultrasonic motor
JPH09121573A (en) Ultrasonic vibrator and ultrasonic motor using it
JPH0993965A (en) Ultrasonic oscillator and ultrasonic motor using the ultrasonic oscillator
JPH072229B2 (en) Piezoelectric elliptical motion oscillator
JPH0773428B2 (en) Piezoelectric drive
JPH07337044A (en) Ultrasonic actuator
JP2759805B2 (en) Vibrator type actuator
JPH07178370A (en) Vibrator and vibrating actuator
JPH09121571A (en) Ultrasonic vibrator and ultrasonic linear motor or ultrasonic motor using it
Koc et al. Design of a piezoelectric ultrasonic motor for micro-robotic application
JPH08154385A (en) Ultrasonic vibrator and ultrasonic motor using this ultrasonic vibrator
JPH0681523B2 (en) Vibration wave motor
JP2001095269A (en) Vibrating actuator
JPH0628952Y2 (en) Ultrasonic motor
JPH0522966A (en) Ultrasonic motor
JPH06210244A (en) Ultrasonic vibrator and ultrasonic actuator

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020903