WO2012133472A1 - Optical transmitter and wavelength multiplexing transmission device and optical transmission method - Google Patents

Optical transmitter and wavelength multiplexing transmission device and optical transmission method Download PDF

Info

Publication number
WO2012133472A1
WO2012133472A1 PCT/JP2012/058041 JP2012058041W WO2012133472A1 WO 2012133472 A1 WO2012133472 A1 WO 2012133472A1 JP 2012058041 W JP2012058041 W JP 2012058041W WO 2012133472 A1 WO2012133472 A1 WO 2012133472A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
modulation
unit
output
modulated
Prior art date
Application number
PCT/JP2012/058041
Other languages
French (fr)
Japanese (ja)
Inventor
裕太 五江渕
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2013507645A priority Critical patent/JPWO2012133472A1/en
Priority to US14/004,617 priority patent/US20140010530A1/en
Publication of WO2012133472A1 publication Critical patent/WO2012133472A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5057Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/58Arrangements comprising a monitoring photodetector
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/20Intrinsic phase difference, i.e. optical bias, of an optical modulator; Methods for the pre-set thereof
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/50Phase-only modulation

Definitions

  • the present invention relates to an optical transmitter, a wavelength division multiplexing transmission apparatus, and an optical transmission method.
  • a control method for monitoring the optical output intensity in the optical transmitter and feeding back the monitoring result to the optical output intensity of the light source there is a control method for monitoring the optical output intensity in the optical transmitter and feeding back the monitoring result to the optical output intensity of the light source.
  • an LD Laser Diode
  • an LD Laser Diode
  • DWDM high-density wavelength division multiplexing
  • FIG. 1 As a method for solving such a problem, as shown in FIG. 1, there is a method of attaching a VOA (Variable Optical Attenuator) outside the optical transmitter. Thereby, it is possible to control the light output fluctuation of the optical transmitter without changing the light output intensity of the light source.
  • VOA Very Optical Attenuator
  • WDM wavelength division multiplexing
  • the same number of VOAs as the number of transmission wavelengths is required. Therefore, enormous cost is required.
  • Other techniques relating to control of fluctuations in the optical output intensity of the optical transmitter are described in, for example, Patent Documents 1 to 3.
  • the optical transmitter described in Patent Document 1 performs synchronous detection using a low-frequency pilot signal.
  • the optical transmitter described in Patent Document 2 monitors fluctuations in drive amplitude and controls drive amplitude according to the result.
  • the external modulator described in Patent Document 3 has an automatic bias control circuit (ABC circuit: Automatic Bias Control Circuit).
  • the automatic bias control circuit is known as a circuit that suppresses fluctuations in optical output due to drift of the operating point of the modulation curve.
  • the drive signal amplitude or the bias voltage is adjusted so that the optical output intensity is maximized.
  • the operating point of the bias voltage is adjusted to a NULL point in the modulation curve.
  • the drive signal amplitude is adjusted to 2V ⁇ .
  • V ⁇ is the magnitude of a voltage that can change the phase of light by ⁇ in the modulation curve.
  • the present invention has an object to provide an optical transmitter capable of adjusting the light intensity of output light to a desired value in the optical transmitter.
  • the optical transmitter includes a modulator, an output light monitoring unit, and a control unit, and the modulator branches light input to the modulator into first branched light and second branched light.
  • a first modulating unit that performs phase modulation of the first branched light
  • a second modulating unit that performs phase modulation of the second branched light
  • a first modulated light output from the first modulating unit A second modulation light output from the two modulation units, a rotator that rotates one of the polarization planes, and a polarization combining unit that combines the first modulation light and the second modulation light
  • the output light monitoring unit monitors the light intensity of the combined light output from the polarization beam combining unit
  • the control unit is based on the monitoring result by the output light monitoring unit, and is at least one of the first modulation unit and the second modulation unit.
  • a wavelength division multiplexing transmission apparatus includes a plurality of optical transmitters and a wavelength multiplexing unit that multiplexes wavelengths output from the plurality of optical transmitters, and each of the plurality of optical transmitters includes the optical transmitter according to the present invention. It is a transmitter.
  • the optical transmission method of the present invention includes a branching step for branching light into a first branched light and a second branched light, a first modulation step for performing phase modulation of the first branched light, and a phase modulation of the second branched light.
  • the control step the light intensity of at least one of the first modulated light and the second modulated light is set.
  • a light intensity control step for making the light intensity smaller than the maximum value in the modulation curve. It is.
  • the program of the present invention includes a first modulated light generated by phase-modulating the first branched light, and a second modulated light generated by phase-modulating the second branched light, the first modulated light being different in polarization plane.
  • the control step includes a light intensity control step in which the light intensity of at least one of the first modulated light and the second modulated light is made smaller than the maximum value of the light intensity in the modulation curve.
  • optical transmitter and the control method thereof it is possible to adjust the light intensity of the output light to a desired value within the optical transmitter.
  • FIG. 1 shows a configuration of an optical transmitter related to the present invention.
  • FIG. 2 shows an example of the configuration of the optical transmitter according to the first embodiment of the present invention.
  • FIG. 3 shows an example of the operation of the optical transmitter according to the first embodiment of the present invention.
  • FIG. 4 shows an example of the configuration of an optical transmitter according to the second embodiment of the present invention.
  • FIG. 5 shows the relationship between the modulation curves in the I arm and the Q arm, the pilot signal waveform, and the amplitude of the drive signal.
  • FIG. 6 shows an example of the operation of the optical transmitter according to the second embodiment of the present invention.
  • FIG. 7 shows another example of the configuration of the optical transmitter according to the second embodiment of the present invention.
  • 8A and 8B show constellation maps of the I component and the Q component, respectively.
  • FIG. 9 shows experimental data regarding the relationship between the operating point of the bias voltage and the amplitude of the pilot signal.
  • FIG. 10A to FIG. 10E show experimental data relating to the waveform of the pilot signal and the output waveform when the operating point of the bias voltage is varied.
  • FIG. 11 shows an example of the configuration of an optical transmitter according to the third embodiment of the present invention.
  • FIG. 12 shows the relationship between the modulation curves in the I arm and Q arm, the pilot signal waveform, and the amplitude of the drive signal when the amplitude of the drive signal is varied.
  • FIG. 13 shows an example of the operation of the optical transmitter in the fourth embodiment of the present invention.
  • FIG. 14 shows the light intensities of a plurality of channels having different wavelengths in WDM communication.
  • FIG. 15 shows an example of the configuration of a wavelength division multiplexing transmission apparatus according to the fifth embodiment of the present invention.
  • FIG. 16 shows another example of the configuration of the wavelength division multiplexing apparatus according to the fifth embodiment of the present invention.
  • FIG. 2 shows a configuration of the optical transmitter 10 in the present embodiment.
  • the optical transmitter 10 includes a modulator 11, an output light monitoring unit 12, and a control unit 13.
  • the modulator 11 includes a branching unit 14, a first modulating unit 15, a second modulating unit 16, a rotator 17, and a polarization beam combining unit 18.
  • the branching unit 14 branches the light input to the modulator 11 into a first branched light and a second branched light.
  • the first modulation unit 15 performs phase modulation of the first branched light.
  • the second modulation unit 16 performs phase modulation of the second branched light.
  • the rotator 17 rotates one of the polarization planes of the first modulated light output from the first modulation unit 15 and the second modulated light output from the second modulation unit 16.
  • the polarization beam combiner 18 combines the first modulated light and the second modulated light.
  • the output light monitoring unit 12 monitors the light intensity of the combined light output from the polarization beam combining unit 18.
  • the control unit 13 controls at least one of the first modulation unit 15 and the second modulation unit 16 based on the monitoring result by the output light monitoring unit 12.
  • the control performed by the control unit 13 includes control for making the light intensity of at least one of the first modulated light and the second modulated light smaller than the maximum value of the light intensity in the modulation curve.
  • the light input to the modulator 11 of the optical transmitter 10 is branched into the first branched light and the second branched light by the branching unit 14 (step 1). Then, the first branched light is phase-modulated by the first modulation unit 15 and becomes the first modulated light. Further, the second branched light is phase-modulated by the second modulation unit 16 to become second modulated light (step 2). The first modulated light and the second modulated light are combined by the polarization beam combiner 18 (step 3). The combined light output from the polarization beam combiner 18 is output from the optical transmitter 10.
  • the output light monitoring unit 12 monitors the light intensity of the combined light output from the polarization beam combining unit 18 (step 4).
  • the output light monitoring unit 12 for example, as in a second embodiment described later, is based on the output from the photoelectric conversion element into which the output light from the polarization beam combining unit 18 is branched and input, and the combined light It is good also as monitoring intensity.
  • the light intensity of the synthesized light It is good also as monitoring intensity.
  • the output light monitoring unit 12 only needs to be able to monitor the light intensity of the combined light output from the polarization beam combining unit 18 by any method, and the specific configuration is not limited.
  • the control unit 13 controls at least one of the first modulation unit 15 and the second modulation unit 16 based on the monitoring result by the output light monitoring unit 12 (step 5).
  • the control by the control unit 13 includes control for making the light intensity of at least one of the first modulated light and the second modulated light smaller than the maximum value of the light intensity in the modulation curve. That is, the control unit 13 performs control to darely reduce the light intensity below the maximum value in the modulation curve depending on the monitoring result by the output light monitoring unit 12.
  • the control unit 13 controls the first modulation unit 15 to control the first modulation. It is also possible to reduce the light intensity. Alternatively, the control unit 13 may control the second modulation unit 16 to reduce the light intensity of the second modulated light. Alternatively, the control unit 13 may control both the first modulation unit 15 and the second modulation unit 16. Thus, the control unit 13 reduces the light intensity of the combined light by reducing the light intensity of at least one of the first modulated light and the second modulated light.
  • the optical transmitter 10 can attenuate the light intensity of the combined light output from the polarization beam combiner 18 inside the optical transmitter 10 according to the monitoring result by the output light monitoring unit 12. it can. Then, by repeating the steps from Step 1 to Step 5, the light intensity of the output light from the optical transmitter 10 can be converged to a desired value.
  • the optical transmitter 10 in the present embodiment can adjust the light intensity of the output light to a desired value by controlling at least one of the first modulation unit 15 and the second modulation unit 16. it can. Therefore, it is not necessary to add VOA outside the optical transmitter 10 in order to set the optical output intensity of the optical transmitter 10 to a desired value. Similarly, it is not necessary to provide a VOA inside the optical transmitter 10.
  • the optical transmitter 20 in the present embodiment includes a light source 21, a modulator 22, an output light monitoring unit 23, a control unit 24, a bias circuit 25, a drive circuit 26, and an external photoelectric element 27.
  • the modulator 22 includes a branching unit 28, a first modulating unit 29, a second modulating unit 30, a rotor 31, a polarization beam combining unit 32, a first internal photoelectric element 33, and a second internal photoelectric element 34. And having.
  • the optical transmitter 20 in the present embodiment performs optical transmission using a DP-QPSK (Dual Polarization-Differential Quadrature Phase Shift Keyin) method.
  • DP-QPSK Direct Polarization-Differential Quadrature Phase Shift Keyin
  • the DP-QPSK method is a method in which 2-bit data can be assigned to each of four modulated lights with respect to two orthogonal polarizations.
  • Each of the first modulation unit 29 and the second modulation unit 30 includes two Mach-Zehnder interferometers that constitute an I arm and a Q arm, and performs quaternary phase modulation (QPSK modulation).
  • QPSK modulation quaternary phase modulation
  • a phase shift unit 35 is provided on the output side of each arm. 1 ⁇ 35 4 Is placed. Phase shift unit 35 1 ⁇ 35 4 Respectively gives a relative phase difference to the light propagating through the I arm or the Q arm.
  • is an arbitrary phase.
  • the external photoelectric element 27 is disposed on the output side of the modulator 22 and receives a part of the combined light output from the polarization beam combiner 32.
  • the polarization beam combiner 32 is also called a polarization beam combiner (PBC), and is an optical coupler that combines a plurality of lights having polarization planes with different angles.
  • the first internal photoelectric element 33 is disposed on the output side of the first modulation unit 29 and receives a part of the first modulated light output from the first modulation unit 29.
  • the second photoelectric element 34 is disposed on the output side of the second modulation unit 30 and receives a part of the second modulated light output from the second modulation unit 30.
  • the external photoelectric element 27, the first internal photoelectric element 33, and the second internal photoelectric element 34 are photoelectric conversion elements such as PD (Photo Diode), for example.
  • the output light monitoring unit 23 monitors the light intensity of the combined light based on the output from the external photoelectric element 27. Further, based on the output from the first internal photoelectric element 33, the light intensity of the first modulated light is monitored.
  • the control unit 24 controls the light source 21, the bias circuit 25, and the drive circuit 26.
  • the control unit 24 in the present embodiment controls the bias circuit 25 based on the monitoring result by the output light monitoring unit 23, thereby applying a bias to be applied to each arm of the first modulation unit 29 and the second modulation unit 30.
  • the bias circuit 25 applies a bias voltage to the first modulation unit 29 and the second modulation unit 30.
  • the bias circuit 25 includes an I arm and a Q arm included in the first modulation unit 29 and the second modulation unit 30, and a phase shift unit 35. 1 ⁇ 35 4 For each, a bias voltage is applied.
  • the drive circuit 26 inputs drive signals to the first modulation unit 29 and the second modulation unit 30. Specifically, the drive circuit 26 inputs drive signals to the I arm and the Q arm included in the first modulation unit 29 and the second modulation unit 30, respectively.
  • the relationship among the modulation curves in the I and Q arms of the first modulation unit 29 and the second modulation unit 30, the pilot signal waveform, and the amplitude of the drive signal will be described with reference to FIG. First, a graph of a modulation curve in each arm of the modulator 22 will be described. The vertical axis in this graph indicates the light output intensity of the output light from each arm. The horizontal axis indicates the magnitude of the bias voltage applied to each arm of the modulator 22.
  • the input signal is generally modulated with a drive signal having an amplitude of 2V ⁇ in this modulation curve.
  • V ⁇ is a voltage that can change the phase of light by ⁇ in the modulation curve.
  • FIG. 5 also shows the relationship between the amplitude of the drive signal and the modulation curve. From this graph, it can be seen that the light intensity of the output light can be controlled by controlling the operating point of the bias voltage input to each arm of the modulator 22.
  • a pilot signal having a constant frequency and amplitude is superimposed on the bias voltage applied to each arm.
  • the output light monitoring unit 23 detects the demodulated pilot signal from the output of the first internal photoelectric element 33.
  • the output light monitoring unit 23 removes a DC (Direct Current) component from the electrical signal output from the first internal photoelectric element 33 and extracts only an AC (Alternate Current) component. As a result, the output light monitoring unit 23 detects the demodulated pilot signal. Similarly, the output light monitoring unit 23 detects the demodulated pilot signal from the output from the second internal photoelectric element 34.
  • FIG. 5 also shows the waveform of the pilot signal superimposed on the bias voltage and the waveform of the demodulated pilot signal. FIG. 5 shows that the amplitude of the demodulated pilot signal is minimized when the bias voltage and the drive signal amplitude are controlled so that the light output intensity is maximized (PEAK point).
  • the amplitude of the pilot signal is minimized and the light output intensity is maximized.
  • the light output intensity is maximized by controlling the bias voltage and the drive signal amplitude so that the amplitude of the pilot signal is minimized.
  • the bias voltage is controlled so that the optical output intensity is intermediate (QUADRATURE point) between the maximum (PEAK point) and minimum (NULL point)
  • the amplitude of the demodulated pilot signal is maximum.
  • the amplitude of the demodulated pilot signal becomes maximum.
  • the phase of the demodulated pilot signal differs depending on whether the operating point of the bias voltage is shifted to the left from the NULL point or to the right from the NULL point.
  • the fact that the operating point of the bias voltage is shifted leftward from the NULL point indicates that the bias voltage is shifted in the direction of decreasing.
  • the fact that the operating point of the bias voltage shifts to the right from the NULL point indicates that the bias voltage shifts in the direction in which the bias voltage increases.
  • the operation of the optical transmitter 20 will be described.
  • the light output from the light source 21 of the optical transmitter 20 is branched into the first branched light and the second branched light by the branching unit 28.
  • the first branched light is input to the first modulation unit 29.
  • the first branched light input to the first modulation unit 29 propagates through the I arm and the Q arm included in the first modulation unit 29 and is phase-modulated in each arm.
  • the bias voltage output from the bias circuit 25 and the drive signal output from the drive circuit 26 are input to the I arm and the Q arm of the first modulation unit 29, respectively.
  • the first branched light is phase-modulated by the first modulation unit 29 to become first modulated light, and is output from the first modulation unit 29.
  • a part of the first modulated light is input to the first internal photoelectric element 33.
  • the first internal photoelectric element 33 converts the input optical signal of the first modulated light into an electrical signal.
  • the output light monitoring unit 23 monitors the light intensity of the first modulated light based on the output of the first internal photoelectric element 33 and inputs the monitoring result to the control unit 24.
  • the output light monitoring unit 23 detects the amplitude and phase of the demodulated pilot signal by extracting the AC component of the electrical signal output from the first internal photoelectric element 33.
  • the output light monitoring unit 23 monitors the light intensity of the first modulated light by utilizing the correlation shown in FIG. 5 between the amplitude of the demodulated pilot signal and the light output intensity. Therefore, the output light monitoring unit 23 records information on the relationship between the modulation curve and the pilot signal of each arm included in the first modulation unit 29 and the second modulation unit 30.
  • the output light monitoring unit 23 records information on the relationship among the amplitude of the pilot signal, the phase of the pilot signal, the light intensity, and the bias voltage as shown in FIG.
  • the output light monitoring unit 23 can monitor the light intensity of the first modulated light based on the amplitude information of the demodulated pilot signal.
  • the control unit 24 controls the bias voltage applied to the first modulation unit 29 based on the monitoring result input from the output light monitoring unit 23. For example, when it is determined from the monitoring result of the output light monitoring unit 23 that the light intensity of the first modulated light is larger than a desired value, the light intensity attenuates the bias voltage applied to the first modulation unit 29. To control. At this time, the control unit 24 refers to the phase of the demodulated pilot signal to determine whether the bias voltage should be controlled to be increased or decreased.
  • the second branched light output from the branching unit 28 is input to the second modulation unit 30.
  • the second branched light input to the second modulation unit 30 propagates to the I arm and the Q arm included in the second modulation unit 30 and is phase-modulated in each arm.
  • the bias voltage output from the bias circuit 25 and the drive signal output from the drive circuit 26 are input to the I arm and the Q arm of the second modulation unit 30, respectively.
  • the second branched light is phase-modulated by the second modulation unit 30 to become second modulated light, and is output from the second modulation unit 30.
  • part of the second modulated light is input to the second internal photoelectric element 34.
  • the second internal photoelectric element 34 converts the input optical signal of the second modulated light into an electrical signal.
  • the output light monitoring unit 23 monitors the light intensity of the second modulated light based on the output from the second internal photoelectric element 34 and inputs the monitoring result to the control unit 24. Specifically, the output light monitoring unit 23 detects the amplitude and phase of the demodulated pilot signal by extracting the AC component of the electrical signal output from the second internal photoelectric element 34. Thereby, the output light monitoring unit 23 monitors the light intensity of the second modulated light, similarly to the case of the first modulated light.
  • the control unit 24 controls the bias voltage applied to the second modulation unit 30 based on the monitoring result input from the output light monitoring unit 23.
  • the control unit 24 refers to the phase of the demodulated pilot signal to determine whether the bias voltage should be controlled to be increased or decreased.
  • the rotor 31 rotates the polarization plane of the second modulated light. Specifically, the rotator 31 rotates the polarization plane of the second modulated light so that the polarization plane of the second modulated light and the polarization plane of the first modulated light are orthogonal to each other.
  • the first modulated light and the second modulated light are combined by the polarization beam combiner 32 and output from the polarization beam combiner 32.
  • Part of the combined light output from the polarization beam combiner 32 is input to the external photoelectric element 27.
  • the external photoelectric element 27 converts the input combined light into an electric signal.
  • the output light monitoring unit 23 monitors the light intensity of the combined light based on the output from the external photoelectric element 27 and inputs the monitoring result to the control unit 24.
  • the control unit 24 determines whether or not the light intensity of the combined light has a desired value based on the monitoring result of the light intensity of the combined light input from the output light monitoring unit 23.
  • the control unit 24 controls the bias circuit 25 to control the bias voltage input to the first modulation unit 29 and the second modulation unit 30. To do.
  • the control unit 24 controls the bias voltage so that the light intensity of the combined light becomes a desired value and the light intensity of the first modulated light and the light intensity of the second modulated light become the same value.
  • Whether or not the light intensity of the first modulated light and the light intensity of the second modulated light are the same is monitored for the light intensity of the first modulated light sequentially input from the output light monitoring unit 23. A determination is made based on the result and the monitoring result of the light intensity of the second modulated light.
  • a target value of light intensity is set.
  • 2X is set as the target value of the light intensity of the combined light output from the optical transmitter 20.
  • X (2X / 2) is set as the target value of the light intensity of the first modulated light and the second modulated light (step 10).
  • the amplitude value of the drive signal input to each arm is constant, and the value is 2V ⁇ .
  • the operating point of the bias voltage is set to a NULL point in the modulation curve as an initial value. It is assumed that light from the light source 21 is input to the modulator 22 having such settings.
  • the light output from the light source 21 is first branched into first branched light and second branched light by the branching unit 28. Then, the first branched light is modulated into the first modulated light by the first modulation unit 29. Part of the first modulated light output from the first modulation unit 29 is input to the first internal photoelectric element 33 and converted into an electrical signal.
  • the output light monitoring unit 23 extracts a pilot signal that is an AC component from the electrical signal output from the first internal photoelectric element 33. Then, the light intensity of the first modulated light is determined based on the information on the amplitude and phase of the extracted pilot signal and information on the relationship between the modulation curve and the pilot signal recorded in advance.
  • the output light monitoring unit 23 notifies the control unit 24 of information on the light intensity of the first modulated light.
  • the control unit 24 determines whether or not the notified light intensity of the first modulated light matches the target value X (step 11). If it is determined that the light intensity of the first modulated light is greater than the target value X, that is, if NO in step 11, the bias voltage is controlled (step 12).
  • the control of the bias voltage at this time is control for shifting the operating point of the bias voltage from the point at which the light intensity becomes maximum in the modulation curve, that is, from the NULL point. Whether the operating point of the bias voltage is changed in the direction in which the bias voltage increases or decreases is determined based on the phase of the demodulated pilot signal.
  • the light intensity of the first modulated light is adjusted to the target value X.
  • the process proceeds to step 13.
  • the control unit 24 determines whether or not the notified light intensity of the second modulated light matches the target value X (step 11). If it is determined that the light intensity of the second modulated light is greater than the target value X, that is, if NO in step 11, the bias voltage is controlled (step 12). In this way, the light intensity of the second modulated light is also adjusted to the target value X.
  • step 13 When the light intensity of the second modulated light matches the target value X, the process proceeds to step 13.
  • the polarization plane of the second modulated light is rotated by the rotor 31, the first modulated light and the second modulated light are combined by the polarization beam combining unit 32.
  • Part of the combined light output from the polarization beam combiner 32 is input to the external photoelectric element 27 and converted into an electrical signal.
  • the output light monitoring unit 23 monitors the light intensity of the combined light based on the electrical signal output from the external photoelectric element 27 and inputs the monitoring result to the control unit 24.
  • the control unit 24 determines from the input monitoring result whether the light intensity of the combined light matches the target value 2X (step 13).
  • the control unit 24 resets the target value of the first modulated light, and changes the target value of the first modulated light from X to X + ( ⁇ / 2) (step 14).
  • step 14 the target value of the second modulated light is reset, and the target value of the second modulated light is changed from X to X + ( ⁇ / 2) (step 14).
  • the control unit 24 controls the bias voltage so that the light intensities of the first modulated light and the second modulated light become the reset target values.
  • Steps 11 to 14 are repeated until it is determined in Step 13 that the light intensity of the combined light has reached the target value 2X. If it is determined in step 13 that the light intensity of the combined light has reached the target value 2X, the control is completed (step 15).
  • the control unit 24 resumes control of the bias voltage.
  • the cause of the deviation from the target value again includes, for example, a change in the use environment temperature of the optical transmitter 20.
  • the bias voltage is controlled by the control unit 24.
  • the light intensity of the output light can be adjusted to a desired value by controlling the bias voltage applied to the first modulation unit 29 or the second modulation unit 30. Therefore, it is not necessary to add a VOA inside and outside the optical transmitter 20, leading to cost reduction.
  • the optical transmitter 20 in the present embodiment when the optical transmitter 20 in the present embodiment is applied to an optical transmitter in a ROADM (Reconfigurable Optical Add / Drop Multiplexer) system or the like, the cost can be greatly reduced. Furthermore, as the other effects obtained by using the optical transmitter 20 of the present embodiment, there are the following two. First, when the optical transmitter 20 in the present embodiment is used as a coherent optical transmitter, the optical receiver characteristics in coherent communication can be stabilized.
  • the optical output fluctuation in a coherent optical transmitter that performs QPSK modulation which is generally available in the current market, is a specification of ⁇ 3 to 4 dB in consideration of output fluctuation in EOL (End of Life).
  • This value is considerably larger than the specification of optical output fluctuation in an IM-DD (Intensity Modulation-Direct Detection) modulator. Therefore, when a coherent optical transmitter that performs QPSK modulation is used, the magnitude of the output fluctuation causes the reception characteristics of the optical receiver to deteriorate.
  • the optical transmitter according to this embodiment when the optical transmitter according to this embodiment is used, the optical output intensity can be controlled to a desired value within the optical transmitter. Therefore, according to the optical transmitter 20 in the present embodiment, even when applied to coherent communication, it is possible to reduce the optical output fluctuation of the coherent transmitter without adding a VOA outside the optical transmitter. It becomes. Thereby, the receiving characteristic of the optical receiver can be stabilized.
  • the optical transmitter 20 in the present embodiment it is possible to suppress the difference in light intensity between the polarized waves.
  • the difference in light intensity between the polarized waves will be referred to as an inter-polarization deviation.
  • a deviation between polarizations is generated due to a difference in propagation loss of each polarization.
  • the difference between the actual light intensity of the first modulated light and the light intensity of the second modulated light in the case where the light intensity of the first modulated light and the second modulated light is controlled to be maximum is the difference between the polarizations. Deviation.
  • the first internal photoelectric element 33 and the second internal photoelectric element 34 monitor the light intensity of each of the first modulated light and the second modulated light. Therefore, by making the target value of the light intensity of each modulated light the same value, it is possible to suppress the deviation between polarizations.
  • the light intensity of the first modulated light and the second modulated light is monitored by detecting the amplitude of the pilot signal.
  • the present invention is not limited to this.
  • the light intensity of the output light may be monitored by extracting the DC component instead of the AC component of the electrical signal output from the first internal photoelectric element 33 and the second internal photoelectric element 34.
  • the target value of the light intensity of the first modulated light and the second modulated light is set to the same value, but the present invention is not limited to this. That is, a difference may be generated between the target values of the light intensity of the first modulated light and the second modulated light as long as the difference does not cause deterioration in reception sensitivity on the receiver side. For example, when the deviation between the light intensity of the combined light and the target value is very small in step 13, only the target value of either the first modulated light or the second modulated light is changed in step 14. It is also good.
  • one output light monitoring unit 23 uses the first modulated light, the second modulated light, and the second modulated light based on the outputs from the first internal photoelectric element 33, the second internal photoelectric element 34, and the external photoelectric element 27.
  • the light intensity of the modulated light and the combined light is monitored, the present invention is not limited to this.
  • the output light monitoring unit 23 records information on the relationship between the modulation curve of the modulator of each arm and the pilot signal, but the present invention is not limited to this.
  • the control unit 24 may record these information.
  • the first modulation unit 29 or the second modulation unit 30 it is preferable to match the light intensity of the output light from the I arm and the light intensity of the output light from the Q arm. That is, it is preferable to control the first modulation unit 29 or the second modulation unit 30 while maintaining a balance between the I component and the Q component as in the constellation map shown in FIG. 8A. If the light intensity of the output light from the I arm and the light intensity of the output light from the Q arm are significantly different, as shown in FIG.
  • the control unit 24 refers to the modulation curve of each arm, and the first modulation unit 29 or the second modulation.
  • the unit 30 may be controlled. In general, it is considered undesirable for the operating point of the bias voltage to deviate from the NULL point, that is, the point where the light output intensity is maximum, because this leads to signal degradation.
  • the control for setting the optical output intensity of the optical transmitter to a predetermined value includes the control for deliberately shifting the operating point of the bias voltage from the point at which the optical output intensity is maximized.
  • FIG. 9 shows the relationship between the bias voltage applied to the I arm and Q arm of the LN modulator used in the QPSK modulation method and the amplitude of the demodulated pilot signal.
  • the amplitude and frequency of the pilot signal superimposed on the bias voltage were 120 mVpp and 1 kHz, respectively.
  • the position (point C) at which the amplitude of the demodulated pilot signal becomes zero in FIG. 9 indicates the case where the operating point of the bias voltage is set to the NULL point in the modulation curve.
  • 10A to 10E show the waveform of the demodulated pilot signal and the signal waveform of the output light when the bias voltage is adjusted to a value corresponding to points A to E in FIG.
  • FIGS. 10A to 10E show the demodulated pilot signal waveforms
  • the lower diagrams in FIGS. 10A to 10E show the output light signal waveforms.
  • the bias voltages corresponding to points A to E in FIG. 9 are -2.569 V (point A), -1.142 V (point B), -0.428 V (point C), 0.142 V (point D), respectively. And 1.427 V (point E).
  • ⁇ V ⁇ / 2 point A
  • ⁇ V ⁇ / 4 point B
  • zero point C
  • Point E + V ⁇ / 2
  • V ⁇ is the magnitude of the voltage necessary for changing the phase of light by ⁇ in the modulation curve.
  • the point C is slightly deviated from the position where the amplitude of the pilot signal becomes zero, which is due to the accuracy of bias voltage control of the apparatus used in the experiment. That is, it is difficult to accurately match the operating point of the bias voltage to the NULL point in the modulation curve, and some errors will occur.
  • the width of the horizontal bar connecting the inverted triangular shapes appearing in the output waveforms of the output light shown in FIGS. 10A to 10E is defined as a width d. If the width d is longer than the width d when the operating point of the bias voltage is set to a NULL point in the modulation curve (FIG.
  • the control of the bias voltage of the optical transmitter 20 in the present embodiment includes the control for attenuating the light intensity by shifting the operating point of the bias voltage from the point where the light intensity is maximized.
  • the optical output intensity of a coherent optical transmitter that performs modulation using the QPSK modulation method usually varies by about ⁇ 3 dB. That is, when a plurality of wavelengths are multiplexed, the difference in light intensity of light having different wavelengths is usually about 6 dB at the maximum. In order to eliminate this difference in light intensity, the light intensities of the respective wavelengths may be aligned with the light intensities of the light having the smallest light intensity.
  • the light intensity may be attenuated by about 6 dB at the maximum.
  • each light is a combined light obtained by combining two polarized waves, it is only necessary to attenuate the light intensity by a maximum of about 3 dB per one polarized wave.
  • the maximum light output intensity of the modulator used in the QPSK modulation method is usually 20 dB or more.
  • Attenuation of about 1.5 dB for each arm can be sufficiently realized by changing the operating point of the bias voltage within a range of ⁇ V ⁇ / 4 from the NULL point in the modulation curve. That is, when the optical transmitter 20 according to the present embodiment is applied to a coherent optical transmitter, it is possible to correct a difference in light intensity between a plurality of wavelengths with almost no signal degradation.
  • the optical transmitter 20 in this embodiment performed the optical transmission by a DP-QPSK system, it is not restricted to this.
  • the present embodiment can also be applied to an optical transmitter that performs optical transmission using a QAM (Quadrature Amplitude Modulation) method or the like.
  • FIG. 11 shows a configuration of the optical transmitter 40 in the present embodiment.
  • the optical transmitter 40 in the present embodiment is different from the optical transmitter 20 in the second embodiment in that the external photoelectric element 27 is not included.
  • the optical transmitter 40 includes a recording unit 41 that records information about optical loss.
  • the recording unit 41 is a recording medium such as a ROM (Read Only Memory). Since other configurations are the same as those of the optical transmitter 20, description thereof is omitted.
  • the recording unit 41 records information on the amount of light loss of the first modulated light output from the first modulation unit 29 and information on the amount of light loss of the second modulated light output from the second modulation unit 30. Yes.
  • the information regarding the optical loss amount of the first modulated light is, for example, the propagation loss of the first modulated light from when the first modulated light is output from the first modulator 29 to when it is output from the polarization beam combiner 32. Or the quantum efficiency of the first internal photoelectric device.
  • the information regarding the optical loss amount of the second modulated light is, for example, the second modulated light from when the second modulated light is output from the second modulator 30 to when it is output from the polarization beam combiner 32. And the quantum efficiency of the second internal photoelectric device.
  • the information regarding the optical loss amount may further include the insertion loss amount of the rotor 31 or the polarization beam combiner 32.
  • the insertion loss amount of the rotor 31 and the polarization beam combiner 32 is the amount of light loss of the first modulated light and the second modulated light due to the insertion of the rotor 31 and the polarization beam combiner 32.
  • the output light monitoring unit 23 of the optical transmitter 40 receives the output from the first internal photoelectric element 33 and the second internal photoelectric element 34 and information on the amount of light loss recorded in the recording unit 41 from the polarization beam combining unit 32.
  • the light intensity of the output synthesized light is calculated. That is, the light intensity of the first modulated light is calculated from the output from the first internal photoelectric element 33, and the light intensity of the second modulated light is calculated from the output from the second internal photoelectric element 34.
  • the light intensity of the combined light is calculated by subtracting the amount of light loss recorded in the recording unit 41 from the sum of the light intensity of the first modulated light and the light intensity of the second modulated light.
  • the light intensity of the first modulated light is 10 dB and the light intensity of the second modulated light is 10 dB.
  • the information regarding the light loss amount recorded in the recording unit 41 is the light loss amount 0.5 dB of the first modulated light and the light loss amount 0.5 dB of the second modulated light.
  • the amount of light loss that occurs between the time when the first modulated light and the second modulated light are output from the first modulation unit 29 or the second modulation unit 30 until they are output from the polarization beam combining unit 32 is It is constant regardless of the light intensity of the light and the second modulated light. Therefore, by recording this amount of light loss in the recording unit 41, the light intensity of the synthesized light can be calculated without providing the external photoelectric element 27 as in the second embodiment.
  • the output light monitoring unit 23 calculates the light intensity of the combined light
  • the output light monitoring unit 23 sends the calculation result to the control unit 24.
  • the control unit 24 controls the first modulation unit 29 and the second modulation unit 30 based on the monitoring result of the light intensity of the combined light transmitted from the output light monitoring unit 23. Since the operation after the monitoring result of the light intensity of the combined light is sent is the same as steps 14 and 15 in the second embodiment, the description thereof is omitted. As described above, also in this embodiment, as in the second embodiment, it is not necessary to add a VOA inside and outside the optical transmitter, and the cost can be reduced. Further, when the optical transmitter 40 is used as the coherent optical transmitter, the optical receiver characteristics in the coherent communication can be stabilized. Further, it is possible to suppress the polarization deviation. Further, unlike the optical transmitter 20, the optical transmitter 40 can monitor the light intensity of the combined light without adding the external photoelectric element 27.
  • the optical transmitter 40 can further reduce cost and downsize the transmitter as compared with the optical transmitter 20. Furthermore, the optical transmitter 40 in the present embodiment records the amount of light loss of the first modulated light and the amount of light loss of the second modulated light. Therefore, the control unit 24 can set the target value of the light intensity of the first modulated light and the second modulated light according to the difference in the amount of light loss between the first modulated light and the second modulated light. For example, assume that the amount of light loss generated in the first modulated light is 1 dB and the amount of light loss generated in the second modulated light is 1.5 dB.
  • the control unit 24 considers that the amount of light loss between the two is 0.5 dB different, and the target value of the light intensity of the first modulated light and the target value of the light intensity of the second modulated light are also different by 0.5 dB. Set with. That is, the target value of the light intensity of the first modulated light is made smaller by 0.5 dB than the target value of the light intensity of the second modulated light.
  • the optical transmitter 40 in the present embodiment can further reduce the deviation between polarizations of the first modulated light and the second modulated light included in the combined light.
  • the recording unit 41 is provided in the present embodiment, the present invention is not limited to this.
  • the output light monitoring unit 23 may include a recording unit and record information regarding optical loss.
  • the control unit 24 may incorporate a recording unit and record information regarding optical loss. Also in this embodiment, as in the second embodiment, it is desirable to make the light intensity of the output light of the I arm and Q arm uniform.
  • An optical transmitter according to the fourth embodiment of the present invention will be described.
  • the optical transmitter 50 in the present embodiment is similar in configuration to the optical transmitter 20 in the second embodiment, but operates differently. That is, in the optical transmitter 20 of the second embodiment, the control unit 24 controls the bias voltage applied to the first modulation unit 29 and the second modulation unit 30, so that the first modulation light and the second modulation light are applied. It was decided to control the light intensity of light and synthetic light.
  • the control unit 24 controls the amplitudes of the drive signals input to the first modulation unit 29 and the second modulation unit 30, so that the first modulated light and the second modulation light are transmitted. Control the light intensity of the light and the combined light.
  • FIGS. 5 shows a graph of modulation curves in the I arm and Q arm of the modulator 22 as described above.
  • FIG. 5 also shows the amplitude of the drive signal, which is 2V ⁇ here.
  • FIG. 12 shows a case where the amplitude of the drive signal is set to a value ⁇ smaller than 2V ⁇ .
  • the operating point of the bias voltage is set to the NULL point of the modulation curve as in the case shown in FIG. From FIG. 12, it can be seen that by shifting the amplitude of the drive signal from 2V ⁇ by ⁇ , the light intensity of the output light decreases and the amplitude of the demodulated pilot signal increases. That is, it can be seen that the light intensity of the output light can be controlled by controlling the amplitude of the drive signal.
  • the optical transmitter 50 controls the amplitudes of the drive signals input to the first modulation unit 29 and the second modulation unit 30, so that the first modulated light, the second modulated light, and the combined light are mixed. Control light intensity.
  • step 16 which is an operation different from that of the optical transmitter 20 will be described. If it is determined in step 11 that the light intensity of the first modulated light does not match the target value, the control unit 24 controls the amplitude of the drive signal input to the first modulation unit 29 (step 16). For example, when it is determined that the light intensity of the first modulated light is greater than the target value, control is performed to shift the amplitude of the drive signal from 2V ⁇ .
  • the control unit 24 records the relationship between the amplitude of the drive signal and the amplitude and phase of the pilot signal as shown in FIGS.
  • the control unit 24 determines the amplitude of the drive signal for making the light intensity of the first modulated light coincide with the target value, and notifies the drive circuit 26 of the amplitude. Then, the drive circuit 26 inputs a drive signal having the amplitude notified from the control unit 24 to the first modulation unit 29. The amplitude of the drive signal output from the drive circuit 26 can be monitored by a peak detection function that the drive circuit 26 has. In this way, the control unit 24 controls the first modulation unit 29. Similarly, the control unit 24 controls the second modulation unit 30 so that the light intensity of the second modulated light matches the target value.
  • the optical transmitter 50 in the present embodiment controls the amplitude of the drive signal input to the first modulation unit 29 and the second modulation unit 30, so that the light intensity of the output light from the optical transmitter 50 is controlled. Can be set to a desired value. Therefore, also in this embodiment, the same effect as the second embodiment can be obtained. That is, it is not necessary to add a VOA inside and outside the optical transmitter 20, and the cost can be reduced. Moreover, when the optical transmitter 50 is used as a coherent optical transmitter, the optical receiver characteristics in coherent communication can be stabilized. Further, it is possible to suppress the polarization deviation.
  • the amplitude of the drive signal is 2V ⁇ , and in the NRZ system, V ⁇ , that is, deviating from the value at which the optical output intensity becomes maximum, is caused by signal deterioration.
  • the amplitude of the drive signal is controlled to be a value that maximizes the optical output intensity.
  • the control for setting the optical output intensity of the optical transmitter to a predetermined value includes the control for deliberately shifting the amplitude of the drive signal from the value at which the optical output intensity is maximized.
  • the range in which the amplitude of the drive signal is varied is within a predetermined range, the light intensity can be attenuated with little signal degradation.
  • the range in which the amplitude of the drive signal can be varied with almost no signal deterioration is within a range of ⁇ V ⁇ / 2 from the amplitude value of the drive signal at which the optical output intensity is maximum.
  • the second channel from the left has a higher light intensity than the other channels, and tilt occurs.
  • EDFAs Erbium Doped Fiber Amplifiers
  • the increase in tilt has a great influence on the system. In particular, it affects the transmission distance, transmission bandwidth, etc. in the WDM system. This is because in order to maintain transmission quality, the guarantee of optical signal to noise ratio (OSNR) is a key point, but the OSNR for each channel greatly changes due to the increase in tilt. It is.
  • ASE Amplified Spontaneous Emission
  • FIG. 15 shows the configuration of the wavelength division multiplex transmission apparatus 60 in the present embodiment.
  • the wavelength division multiplex transmission apparatus 60 includes a plurality of optical transmitters 10 according to the first embodiment.
  • the plurality of optical transmitters 10 included in the wavelength division multiplexing transmission device 60 are respectively optical transmitters 10. 1 ⁇ 10 M And Also, the optical transmitter 10 1 ⁇ 10 M Each output light of different wavelengths.
  • the wavelength multiplexing transmission device 60 further includes the optical transmitter 10. 1 ⁇ 10 M A wavelength multiplexing unit 61 that multiplexes the wavelengths output from the respective units is provided. Next, the operation of the wavelength division multiplexing transmission device 60 will be described.
  • the optical transmitter 10 1 ⁇ 10 M A target value of the light intensity of the combined light is set in each control unit. At this time, the target value to be set is the optical transmitter 10. 1 ⁇ 10 M All values are common. Next, the optical transmitter 10 1 ⁇ 10 M The control units respectively control the first modulation unit and the second modulation unit based on the monitoring result of the output light monitoring unit. Optical transmitter 10 at this time 1 ⁇ 10 M These operations are the same as steps 1 to 5 described in the first embodiment. Optical transmitter 10 1 ⁇ 10 M When all the light intensities of the output lights coincide with the target value, the control is completed.
  • the optical transmitter 10 1 ⁇ 10 M The light output from each is wavelength multiplexed by the wavelength multiplexing unit 61 and output from the wavelength multiplexing transmission device 60.
  • the plurality of optical transmitters 10 included in the wavelength division multiplexing transmission device 60. 1 ⁇ 10 M The light intensity of the output light output from can be made to a common target value. Therefore, according to the wavelength division multiplex transmission apparatus 60 in the present embodiment, it is possible to suppress an increase in tilt. Thereby, it becomes possible to suppress deterioration of communication characteristics.
  • the target value of the output light set for each may be an arbitrary value, but is not limited thereto. For example, it may be set as follows.
  • the optical transmitter 10 1 ⁇ 10 M Each is operated to maximize the light output intensity. That is, the optical transmitter 10 1 ⁇ 10 M When performing QPSK modulation, the operating point of the bias voltage applied to each arm is set to the NULL point of the modulation curve. Further, the amplitude of the drive signal input to each arm is set to 2V ⁇ . And the optical transmitter 10 1 ⁇ 10 M From the monitoring result of the output light monitoring unit that each has, the optical transmitter 10 1 ⁇ 10 M The light intensity of each output light is compared. Then, the lowest output light intensity is obtained from the optical transmitter 10. 1 ⁇ 10 M Is set as the target value of the output light intensity.
  • the comparison unit 62 includes an optical transmitter 10. 1 ⁇ 10 M
  • the monitoring results from the respective output light monitoring units 23 are input.
  • the comparison unit 62 compares the input monitoring results and determines the target value of the output light intensity.
  • the comparison unit 62 converts the determined target value into the optical transmitter 10. 1 ⁇ 10 M To each control unit. As described above, the target value of the output light intensity may be set.
  • the wavelength division multiplexing apparatus 60 of this embodiment decided to have two or more optical transmitters 10 in 1st Embodiment, it is not restricted to this.
  • a plurality of optical transmitters 20 in the second embodiment may be provided.
  • a plurality of optical transmitters 40 in the third embodiment and a plurality of optical transmitters 50 in the fourth embodiment may be provided.
  • the optical transmitter 10 1 ⁇ 10 M Although each has a light source, it is not restricted to this. That is, the wavelength division multiplex transmission device 60 may include a wavelength tunable laser assembly (ITLA: Integrable Tunable Laser Assembly) that can switch wavelengths at high speed. Then, light having different wavelengths output from the wavelength tunable laser assembly is transmitted to the optical transmitter 10.
  • ITLA Integrable Tunable Laser Assembly
  • the optical transmitter 10 1 ⁇ 10 M It is good also as inputting into.
  • the optical transmitter 10 1 ⁇ 10 M Although each has a control part, it is not restricted to this. That is, the wavelength division multiplexing transmission apparatus 60 includes one control unit, and the control unit is the optical transmitter 10. 1 ⁇ 10 M It is good also as controlling each 1st modulation
  • the control unit is the optical transmitter 10. 1 ⁇ 10 M It is good also as controlling each 1st modulation
  • a recording medium recording software program codes for realizing the functions of the embodiments is supplied to a communication terminal, and the computer of the communication terminal is stored in the recording medium. Needless to say, this can also be achieved by reading and executing the program code.
  • the recording medium for supplying the program for example, the above-mentioned program can be stored such as a CD-ROM (Compact Disc Read Only Memory), a DVD-R (Digital Versatile Disk Recordable), an optical disc, a magnetic disc, and a nonvolatile memory card. Anything is fine.
  • a part or all of the above-described embodiment can be described as in the following supplementary notes, but is not limited thereto.
  • a modulator, an output light monitoring unit, and a control unit are provided, and the modulator branches the light input to the modulator into a first branched light and a second branched light
  • a second rotating light output from the second modulating unit a rotator that rotates one of the polarization planes; a polarization combining unit that combines the first modulated light and the second modulated light
  • the output light monitoring unit monitors the light intensity of the combined light output from the polarization beam combining unit, and the control unit performs the first modulation based on a monitoring result by the output light monitoring unit.
  • the control includes at least one of the first modulated light and the second modulated light.
  • the light intensity of the square characterized in that includes a light intensity control to be smaller than the maximum value of the light intensity in the modulation curve, the optical transmitter.
  • the output light monitoring unit further monitors the light intensity of the first modulated light and the light intensity of the second modulated light.
  • the light intensity of each of the first modulated light, the second modulated light, and the combined light is monitored based on the output of the light and the information on the amount of light loss recorded in the recording unit
  • the optical transmitter according to appendix 2 wherein: (Supplementary Note 5)
  • Information on the amount of optical loss includes information on the quantum efficiency of the first photoelectric conversion element, the quantum efficiency of the second photoelectric conversion element, and the insertion loss of the polarization beam combiner.
  • the optical transmitter according to appendix 4 wherein at least the optical transmitter is included.
  • Appendix 6 A drive unit that inputs a drive signal to the first modulation unit and the second modulation unit; A bias circuit that applies a bias voltage to the first modulation unit and the second modulation unit, and the control unit controls the magnitude of the bias voltage output by the bias circuit, thereby
  • the optical transmitter according to any one of appendices 1 to 5, wherein the optical intensity is controlled.
  • the control unit sets the operating point of the bias voltage to ⁇ V ⁇ / 4 (V ⁇ : ⁇ change in the phase of light in the modulation curve) from the operating point of the bias voltage for maximizing the light intensity in the modulation curve.
  • a drive unit that inputs a drive signal to the first modulation unit and the second modulation unit, a bias circuit that applies a bias voltage to the first modulation unit and the second modulation unit,
  • the control unit performs the light intensity control by controlling the amplitude of the drive signal output from the drive unit, according to any one of appendices 1 to 5, Optical transmitter.
  • the control unit may change the amplitude of the drive signal from the amplitude for maximizing the light intensity in the modulation curve by ⁇ V ⁇ / 2 (V ⁇ : a voltage that can change the phase of the light in the modulation curve by ⁇ ).
  • the optical transmitter according to appendix 8 wherein the optical transmitter is controlled within a range of (Supplementary Note 10)
  • a pilot signal having a predetermined frequency is superimposed on the bias voltage, and the output light monitoring unit outputs the phase of the pilot signal output from the first modulation unit and the second modulation unit.
  • the output light monitoring unit monitors the light intensity of the first modulated light by detecting the amplitude of the pilot signal output from the first modulation unit, and from the second modulation unit.
  • the optical transmitter according to appendix 10 wherein the optical intensity of the second modulated light is monitored by detecting the amplitude of the pilot signal to be output.
  • a wavelength division multiplexing transmission apparatus characterized by being an optical transmitter according to claim 1.
  • the said output light monitoring result of each of these optical transmitters is input, and based on the said output light monitoring result, the target value of the optical intensity of the said synthesized light of these optical transmitters is determined.
  • a branching process for splitting light into a first branched light and a second branched light, a first modulation process for performing phase modulation of the first branched light, and a phase modulation of the second branched light A second modulation step, a first step of modulating the first modulated light modulated by the first modulation step, and a second step of rotating the polarization plane of the second modulated light modulated by the second modulation step; Based on a polarization combining step of combining the first modulated light and the second modulated light, a monitoring step of monitoring the light intensity of the combined light combined by the polarization combining step, and a monitoring result by the monitoring step And a control step for controlling at least one of the modulator for performing the first modulation step and the modulator for performing the second modulation step.
  • the control step includes the first modulated light and the second modulation step. At least one light intensity of the modulated light is changed to the light intensity in the modulation curve. Characterized to include a light intensity control step smaller than the maximum value, the light transmission method. (Supplementary note 15) The optical transmission method according to supplementary note 14, wherein in the monitoring step, the light intensity of the first modulated light and the light intensity of the second modulated light are further monitored.
  • a first photoelectric conversion step for performing photoelectric conversion of a part of the first modulated light, a second photoelectric conversion step for performing photoelectric conversion of a portion of the second modulated light, and the synthesized light A third photoelectric conversion step for performing a part of the photoelectric conversion, and in the monitoring step, the first modulated light based on the electrical signal converted by the first to third photoelectric conversion steps And the second modulated light and the combined light are monitored.
  • the optical transmission method according to appendix 15, wherein: (Supplementary Note 17) A first photoelectric conversion step for performing photoelectric conversion of a part of the first modulated light, a second photoelectric conversion step for performing photoelectric conversion of a portion of the second modulated light, and the first modulation A recording step of recording information on the amount of light loss of each of the light and the second modulated light, and in the monitoring step, the electrical signal converted by the first and second photoelectric conversion steps; Monitoring the light intensity of each of the first modulated light, the second modulated light, and the combined light based on the information on the amount of light loss recorded by the recording step.
  • the optical transmission method according to appendix 15.
  • the information on the amount of light loss includes the amount of light loss generated in the first photoelectric conversion step, the amount of light loss generated in the second photoelectric conversion step, and the amount of light loss generated in the polarization combining step. 18.
  • the control step by controlling the magnitude of the bias voltage applied to the first modulation unit that performs the first modulation step and the second modulation unit that performs the second modulation step, The optical transmission method according to any one of appendices 14 to 18, wherein the light intensity control is performed.
  • the operating point of the bias voltage is set to ⁇ V ⁇ / 4 (V ⁇ : ⁇ of the phase of light in the modulation curve) from the operating point of the bias voltage for maximizing the light intensity in the modulation curve.
  • the control step by controlling the amplitude of the drive signal input to the first modulation unit that performs the first modulation step and the second modulation unit that performs the second modulation step, The optical transmission method according to any one of appendices 14 to 18, wherein the optical intensity control is performed.
  • the amplitude of the drive signal can be changed by ⁇ V ⁇ / 2 (V ⁇ : ⁇ of the phase of light in the modulation curve) from the amplitude at which the light intensity is maximized in the modulation curve.
  • a pilot signal of a predetermined frequency is superimposed on a bias voltage applied to the first modulation unit that performs the first modulation step and the second modulation unit that performs the second modulation step, and the monitoring In the step, the phase of the pilot signal output from the first modulation unit and the phase of the pilot signal output from the second modulation unit are further monitored. 22.
  • the optical transmission method according to any one of 22.
  • the monitoring step the light intensity of the first modulated light is monitored by detecting the amplitude of the pilot signal output from the first modulation unit, and is output from the second modulation unit. 24.
  • the optical transmission method according to appendix 23 wherein the optical intensity of the second modulated light is monitored by detecting the amplitude of the pilot signal.
  • a wavelength multiplexing step of multiplexing light having different wavelengths is provided, and each of the light having different wavelengths is light transmitted by the optical transmission method according to any one of Supplementary Notes 14 to 24.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

An optical transmitter comprises a modulator, an output light monitoring unit and a control unit. The modulator comprises: a branch unit that branches light input to the modulator into first branched light and second branched light; a first modulation unit that performs phase modulation of the first branched light; a second modulation unit that performs phase modulation of the second branched light; a rotor that rotates the plane of polarisation of either first modulated light output from the first modulation unit or the second modulated light output from the second modulation unit; and a polarisation combination unit that combines the first modulated light and the second modulated light. The output light monitoring unit monitors the optical intensity of the combined light that is output from the polarisation combination unit. The control unit controls the first modulation unit and/or second modulation unit in accordance with the monitoring results of the output light monitoring unit. This control includes optical intensity control to make the optical intensity of the first modulated light and/or the second modulated light smaller than the maximum value of the optical intensity on the modulation curve.

Description

光送信機及び波長多重伝送装置及び光送信方法Optical transmitter, wavelength division multiplexing transmission apparatus, and optical transmission method
 本発明は、光送信機及び波長多重伝送装置及び光送信方法に関するものである。 The present invention relates to an optical transmitter, a wavelength division multiplexing transmission apparatus, and an optical transmission method.
 光送信機の光出力強度の変動を制御する方法として、光送信機内で光出力強度をモニタし、そのモニタ結果を光源の光出力強度にフィードバックする制御方法が挙げられる。しかしながら、光源として一般的に用いられるLD(Laser Diode)は、その光出力強度が変化すると、出力光の波長も変化してしまうという性質を有する。そのため、出力光の波長精度に対する要求が厳しい光送信機、例えば、コヒーレント送信機においては、光源の光出力強度を変動させることは好ましくない。
 一方で、高密度波長分割多重方式(DWDM:Dense Wavelength Division Multiplexing)での光通信を行う場合などにおいては、光源の波長制御を優先すると、光出力強度が所望値からずれてしまう。
 このような課題を解決する方法として、図1に示すように、光送信機の外部にVOA(Variable Optical Attenuator)を付ける方法が挙げられる。これにより、光源の光出力強度を変動させることなく、光送信機の光出力変動を制御することができる。しかしながら、この方法を用いる場合、波長分割多重方式(WDM:Wavelength Division Multiplexing)での光通信を行う場合には、送信波長の数と同じ数量のVOAが必要となる。そのため、膨大なコストがかかる。
 光送信機の光出力強度の変動の制御に関するその他の技術が、例えば特許文献1乃至3に記載されている。
 特許文献1に記載の光送信機は、低周波パイロット信号を用いた同期検波を行う。そして、同期検波の結果に応じて、バイアス電極に印加されるバイアス電圧を制御する。
 特許文献2に記載の光送信機は、駆動振幅の変動をモニタし、その結果に応じて駆動振幅を制御する。
 特許文献3に記載の外部変調器は、自動バイアス制御回路(ABC回路:Automatic Bias Control Circuit)を有する。自動バイアス制御回路は、変調曲線の動作点がドリフトすることによる光出力変動を抑制する回路として知られている。
As a method for controlling the fluctuation of the optical output intensity of the optical transmitter, there is a control method for monitoring the optical output intensity in the optical transmitter and feeding back the monitoring result to the optical output intensity of the light source. However, an LD (Laser Diode) generally used as a light source has a property that the wavelength of output light also changes when the light output intensity changes. For this reason, it is not preferable to vary the light output intensity of the light source in an optical transmitter, for example, a coherent transmitter, which has strict requirements for wavelength accuracy of output light.
On the other hand, in the case of performing optical communication using a high-density wavelength division multiplexing (DWDM) method, if the wavelength control of the light source is prioritized, the light output intensity deviates from a desired value.
As a method for solving such a problem, as shown in FIG. 1, there is a method of attaching a VOA (Variable Optical Attenuator) outside the optical transmitter. Thereby, it is possible to control the light output fluctuation of the optical transmitter without changing the light output intensity of the light source. However, in the case of using this method, when performing optical communication by wavelength division multiplexing (WDM), the same number of VOAs as the number of transmission wavelengths is required. Therefore, enormous cost is required.
Other techniques relating to control of fluctuations in the optical output intensity of the optical transmitter are described in, for example, Patent Documents 1 to 3.
The optical transmitter described in Patent Document 1 performs synchronous detection using a low-frequency pilot signal. Then, the bias voltage applied to the bias electrode is controlled according to the result of the synchronous detection.
The optical transmitter described in Patent Document 2 monitors fluctuations in drive amplitude and controls drive amplitude according to the result.
The external modulator described in Patent Document 3 has an automatic bias control circuit (ABC circuit: Automatic Bias Control Circuit). The automatic bias control circuit is known as a circuit that suppresses fluctuations in optical output due to drift of the operating point of the modulation curve.
特開2008−197639号公報JP 2008-197639 A 特開2008−092172号公報JP 2008-092172 A 特開平3−251815号公報JP-A-3-251815
 特許文献1乃至3に記載の光送信機及び変調器においては、駆動信号振幅あるいはバイアス電圧を、光出力強度が最大となるように調整している。例えば、QPSK(Quadrature Phase Shift Keying)変調方式で変調を行う変調器においては、バイアス電圧の動作点は、変調曲線におけるNULL点に調整される。また、駆動信号振幅は2Vπに調整される。ここで、Vπは変調曲線において光の位相をπ変化させることができる電圧の大きさである。
 しかしながら、互いに異なる複数の波長の光を多重する場合、光出力強度が最大となるように調整するだけでは、光送信機ごとに生じる光伝播損失量等の違いにより、波長間で光強度に差が生じてしまう。そして、この差をなくすためには、それぞれの光送信機の外部にVOAを追加して光強度を調整する必要が生じる。すなわち、出力光の光強度を、最大値よりも低い所望の値に調整するためには、VOAを追加する必要が生じる。そのため、膨大なコストがかかる。
 本発明はこのような課題に鑑み、光送信機内で、出力光の光強度を所望の値に調整することを可能とする光送信機を提供することを目的とする。
In the optical transmitters and modulators described in Patent Documents 1 to 3, the drive signal amplitude or the bias voltage is adjusted so that the optical output intensity is maximized. For example, in a modulator that performs modulation using a QPSK (Quadrature Phase Shift Keying) modulation method, the operating point of the bias voltage is adjusted to a NULL point in the modulation curve. The drive signal amplitude is adjusted to 2Vπ. Here, Vπ is the magnitude of a voltage that can change the phase of light by π in the modulation curve.
However, when multiplexing light of multiple wavelengths that are different from each other, simply adjusting the light output intensity to the maximum will result in differences in the light intensity between wavelengths due to differences in the amount of light propagation loss that occurs for each optical transmitter. Will occur. In order to eliminate this difference, it is necessary to adjust the light intensity by adding a VOA to the outside of each optical transmitter. That is, in order to adjust the light intensity of the output light to a desired value lower than the maximum value, it is necessary to add a VOA. Therefore, enormous cost is required.
In view of such problems, the present invention has an object to provide an optical transmitter capable of adjusting the light intensity of output light to a desired value in the optical transmitter.
 本発明の光送信機は、変調器と、出力光監視部と、制御部と、を備え、変調器は、変調器に入力した光を、第一分岐光と、第二分岐光とに分岐する分岐部と、第一分岐光の位相変調を行う第一変調部と、第二分岐光の位相変調を行う第二変調部と、第一変調部から出力される第一変調光と、第二変調部から出力される第二変調光と、のいずれか一方の偏波面を回転させる回転子と、第一変調光と第二変調光とを合成する偏波合成部と、を有し、出力光監視部は、偏波合成部から出力される合成光の光強度を監視し、制御部は、出力光監視部による監視結果に基づいて、第一変調部及び第二変調部の少なくとも一方の制御を行い、制御には、第一変調光と第二変調光の少なくとも一方の光強度を、変調曲線における光強度の最大値よりも小さくする光強度制御が含まれる。
 本発明の波長多重伝送装置は、複数の光送信機と、複数の光送信機それぞれから出力される波長を多重する波長多重部と、を備え、複数の光送信機はそれぞれ、本発明の光送信機である。
 本発明の光送信方法は、光を第一分岐光と、第二分岐光とに分岐する分岐工程と、第一分岐光の位相変調を行う第一変調工程と、第二分岐光の位相変調を行う第二変調工程と、第一変調工程により変調された第一変調光と、第二変調工程により変調された第二変調光と、のいずれか一方の偏波面を回転させる回転工程と、第一変調光と第二変調光とを合成する偏波合成工程と、偏波合成工程により合成された合成光の光強度を監視する監視工程と、監視工程による監視結果に基づいて、第一変調工程を行う変調器及び第二変調工程を行う変調器のうち少なくとも一方を制御する制御工程と、を備え、制御工程には、第一変調光と第二変調光の少なくとも一方の光強度を、変調曲線における光強度の最大値よりも小さくする光強度制御工程が含まれる。
 本発明のプログラムは、第一分岐光が位相変調されることで生じる第一変調光と、第一変調光と偏波面が異なり、第二分岐光が位相変調されることで生じる第二変調光と、の合成光の光強度を監視する監視工程と、監視工程による監視結果に基づいて、第一分岐光の位相変調及び第二分岐光の位相変調のうち少なくとも一方を制御する制御工程と、をコンピュータに実行させ、制御工程には、第一変調光と第二変調光の少なくとも一方の光強度を、変調曲線における光強度の最大値よりも小さくする光強度制御工程が含まれる。
The optical transmitter according to the present invention includes a modulator, an output light monitoring unit, and a control unit, and the modulator branches light input to the modulator into first branched light and second branched light. A first modulating unit that performs phase modulation of the first branched light, a second modulating unit that performs phase modulation of the second branched light, a first modulated light output from the first modulating unit, A second modulation light output from the two modulation units, a rotator that rotates one of the polarization planes, and a polarization combining unit that combines the first modulation light and the second modulation light, The output light monitoring unit monitors the light intensity of the combined light output from the polarization beam combining unit, and the control unit is based on the monitoring result by the output light monitoring unit, and is at least one of the first modulation unit and the second modulation unit. In the control, the light intensity of at least one of the first modulated light and the second modulated light is made smaller than the maximum value of the light intensity in the modulation curve. That includes a light intensity control.
A wavelength division multiplexing transmission apparatus according to the present invention includes a plurality of optical transmitters and a wavelength multiplexing unit that multiplexes wavelengths output from the plurality of optical transmitters, and each of the plurality of optical transmitters includes the optical transmitter according to the present invention. It is a transmitter.
The optical transmission method of the present invention includes a branching step for branching light into a first branched light and a second branched light, a first modulation step for performing phase modulation of the first branched light, and a phase modulation of the second branched light. A rotation step of rotating any one of the polarization planes of the second modulation step, the first modulated light modulated by the first modulation step, and the second modulated light modulated by the second modulation step; Based on the polarization combining step of combining the first modulated light and the second modulated light, the monitoring step of monitoring the light intensity of the combined light combined by the polarization combining step, and the monitoring result of the monitoring step, And a control step for controlling at least one of the modulator for performing the modulation step and the modulator for performing the second modulation step. In the control step, the light intensity of at least one of the first modulated light and the second modulated light is set. And a light intensity control step for making the light intensity smaller than the maximum value in the modulation curve. It is.
The program of the present invention includes a first modulated light generated by phase-modulating the first branched light, and a second modulated light generated by phase-modulating the second branched light, the first modulated light being different in polarization plane. A monitoring step for monitoring the light intensity of the combined light, and a control step for controlling at least one of the phase modulation of the first branch light and the phase modulation of the second branch light based on the monitoring result by the monitoring step; The control step includes a light intensity control step in which the light intensity of at least one of the first modulated light and the second modulated light is made smaller than the maximum value of the light intensity in the modulation curve.
 本発明における光送信機及びその制御方法により、光送信機内で、出力光の光強度を所望の値に調整することが可能となる。 With the optical transmitter and the control method thereof according to the present invention, it is possible to adjust the light intensity of the output light to a desired value within the optical transmitter.
図1は、本発明に関連する光送信機の構成を示す。FIG. 1 shows a configuration of an optical transmitter related to the present invention. 図2は、本発明の第1の実施形態における光送信機の構成の一例を示す。FIG. 2 shows an example of the configuration of the optical transmitter according to the first embodiment of the present invention. 図3は、本発明の第1の実施形態における光送信機の動作の一例を示す。FIG. 3 shows an example of the operation of the optical transmitter according to the first embodiment of the present invention. 図4は、本発明の第2の実施形態における光送信機の構成の一例を示す。FIG. 4 shows an example of the configuration of an optical transmitter according to the second embodiment of the present invention. 図5は、Iアーム及びQアームにおける変調曲線と、パイロット信号波形と、駆動信号の振幅と、の関係を示す。FIG. 5 shows the relationship between the modulation curves in the I arm and the Q arm, the pilot signal waveform, and the amplitude of the drive signal. 図6は、本発明の第2の実施形態における光送信機の動作の一例を示す。FIG. 6 shows an example of the operation of the optical transmitter according to the second embodiment of the present invention. 図7は、本発明の第2の実施形態における光送信機の構成の他の例を示す。FIG. 7 shows another example of the configuration of the optical transmitter according to the second embodiment of the present invention. 図8A及び図8Bはそれぞれ、I成分とQ成分とのコンスタレーションマップを示す。8A and 8B show constellation maps of the I component and the Q component, respectively. 図9は、バイアス電圧の動作点と、パイロット信号の振幅との関係に関する実験データを示す。FIG. 9 shows experimental data regarding the relationship between the operating point of the bias voltage and the amplitude of the pilot signal. 図10A乃至図10Eはそれぞれ、バイアス電圧の動作点を変動させた場合における、パイロット信号の波形及び出力波形に関する実験データを示す。FIG. 10A to FIG. 10E show experimental data relating to the waveform of the pilot signal and the output waveform when the operating point of the bias voltage is varied. 図11は、本発明の第3の実施形態における光送信機の構成の一例を示す。FIG. 11 shows an example of the configuration of an optical transmitter according to the third embodiment of the present invention. 図12は、駆動信号の振幅を変動させた場合における、Iアーム及びQアームにおける変調曲線と、パイロット信号波形と、駆動信号の振幅の関係を示す。FIG. 12 shows the relationship between the modulation curves in the I arm and Q arm, the pilot signal waveform, and the amplitude of the drive signal when the amplitude of the drive signal is varied. 図13は、本発明の第4の実施形態における光送信機の動作の一例を示す。FIG. 13 shows an example of the operation of the optical transmitter in the fourth embodiment of the present invention. 図14は、WDM通信において、互いに異なる波長を有する複数のチャネルの光強度を示す。FIG. 14 shows the light intensities of a plurality of channels having different wavelengths in WDM communication. 図15は、本発明の第5の実施形態における波長多重伝送装置の構成の一例を示す。FIG. 15 shows an example of the configuration of a wavelength division multiplexing transmission apparatus according to the fifth embodiment of the present invention. 図16は、本発明の第5の実施形態における波長多重伝送装置の構成の他の例を示す。FIG. 16 shows another example of the configuration of the wavelength division multiplexing apparatus according to the fifth embodiment of the present invention.
 本発明の実施の形態について図面を参照しながら説明する。しかしながら、係る形態は本発明の技術的範囲を限定するものではない。
 [第1の実施形態]
 本発明の第1の実施形態における光送信機について、図2を用いて説明する。図2は、本実施形態における光送信機10の構成を示す。
 光送信機10は、変調器11と、出力光監視部12と、制御部13と、を備える。変調器11は、分岐部14と、第一変調部15と、第二変調部16と、回転子17と、偏波合成部18と、を有する。分岐部14は、変調器11に入力した光を、第一分岐光と、第二分岐光とに分岐する。第一変調部15は、第一分岐光の位相変調を行う。第二変調部16は、第二分岐光の位相変調を行う。回転子17は、第一変調部15から出力される第一変調光と、第二変調部16から出力される第二変調光と、のいずれか一方の偏波面を回転させる。偏波合成部18は、第一変調光と、第二変調光とを合成する。
 出力光監視部12は、偏波合成部18から出力される合成光の光強度を監視する。
 制御部13は、出力光監視部12による監視結果に基づいて、第一変調部15及び第二変調部16の少なくとも一方の制御を行う。そして、制御部13が行う制御には、第一変調光と第二変調光の少なくとも一方の光強度を、変調曲線における光強度の最大値よりも小さくする制御が含まれる。
 次に、光送信機10の動作について、図3を用いて説明する。
 初めに、光送信機10の変調器11に入力された光は、分岐部14によって、第一分岐光と第二分岐光とに分岐される(ステップ1)。そして、第一分岐光は第一変調部15によって位相変調され、第一変調光となる。また、第二分岐光は第二変調部16によって位相変調され、第二変調光となる(ステップ2)。第一変調光と第二変調光とは、偏波合成部18によって合成される(ステップ3)。そして、偏波合成部18から出力される合成光は、光送信機10から出力される。
 ここで、出力光監視部12は、偏波合成部18から出力される合成光の光強度を監視する(ステップ4)。出力光監視部12は、例えば、後述する第2の実施形態のように、偏波合成部18からの出力光が分岐して入力される光電変換素子からの出力に基づいて、合成光の光強度を監視することとしても良い。あるいは、後述する第3の実施形態のように、第一変調光の光強度と第二変調光の光強度と、記録部に記録された光損失に関する情報と、に基づいて、合成光の光強度を監視することとしても良い。このように、出力光監視部12は、偏波合成部18から出力される合成光の光強度を何らかの方法で監視することができれば良く、その具体的な構成は限定されない。
 制御部13は、出力光監視部12による監視結果に基づいて、第一変調部15及び第二変調部16の少なくとも一方の制御を行う(ステップ5)。
 ここで、制御部13による制御には、第一変調光と第二変調光の少なくとも一方の光強度を、変調曲線における光強度の最大値よりも小さくする制御が含まれる。すなわち、制御部13は、出力光監視部12による監視結果によっては、光強度を、敢えて変調曲線における最大値よりも小さくする制御を行う。例えば、出力光監視部12による監視結果から、合成光の光強度が所望の値よりも高いことが判明した場合には、制御部13は、第一変調部15を制御して、第一変調光の光強度を下げることとしても良い。あるいは、制御部13は、第二変調部16を制御して、第二変調光の光強度を下げることとしても良い。あるいは、制御部13は、第一変調部15及び第二変調部16の両方を制御することとしても良い。このように、制御部13は、第一変調光及び第二変調光の少なくとも一方の光強度を下げることにより、合成光の光強度を下げる。
 このようにして、光送信機10は、出力光監視部12による監視結果に応じて、光送信機10の内部で、偏波合成部18から出力される合成光の光強度を減衰させることができる。
 そして、ステップ1からステップ5までの工程を繰り返すことにより、光送信機10からの出力光の光強度を、所望の値に収束させることができる。
 以上のようにして、本実施形態における光送信機10は、第一変調部15及び第二変調部16の少なくとも一方を制御することで、出力光の光強度を所望の値に調整することができる。そのため、光送信機10の光出力強度を所望の値とするために、光送信機10の外部にVOAを付加する必要がない。同様に、光送信機10の内部にVOAを設ける必要もない。そのため、本実施形態によれば、光送信機の内部あるいは外部にVOAを付加する場合と比較して、部品コストを削減することが可能となる。
 また、特許文献1乃至特許文献3においては、一つの偏波の光強度に基づいた制御についてしか述べられていない。そのため、2つの偏波の合成時に発生する光損失等については何ら考慮されていない。一方、本実施形態においては、2つの偏波を合成した合成光の光強度を監視することとした。そのため、光送信機内で偏波合成を行う場合においても、光出力強度を精度よく制御することが可能となる。
 [第2の実施形態]
 本発明の第2の実施形態における光送信機について、図4を用いて説明する。図4は、本実施形態における光送信機20の構成を示す。
 本実施形態における光送信機20は、光源21と、変調器22と、出力光監視部23と、制御部24と、バイアス回路25と、駆動回路26と、外部光電素子27と、を備える。変調器22は、分岐部28と、第一変調部29と、第二変調部30と、回転子31と、偏波合成部32と、第一内部光電素子33と、第二内部光電素子34と、を有する。
 本実施形態における光送信機20は、DP−QPSK(Dual Polarization−Differential Quadrature Phase Shift Keyin)方式での光送信を行う。DP−QPSK方式とは、直交する2つの偏波に対し、変調された4つの位相の光に、それぞれ2ビットのデータを割り当てることのできる方式である。
 第一変調部29及び第二変調部30はそれぞれ、IアームとQアームを構成する2つのマッハツェンダ型干渉計を有し、4値の位相変調(QPSK変調)を行う。また、各アームの出力側にはそれぞれ、位相シフト部35~35が配置される。位相シフト部35~35はそれぞれ、IアームあるいはQアームを伝播する光に、相対的な位相差を付与する。なお、QPSK変調では、2ビットのデータから構成される各シンボル[00]、[10]、[11]、[01]に対してそれぞれ、[θ]、[θ+π/2]、[θ+π]、[θ+3π/2]が割り当てられる。ここで、θは任意の位相である。
 外部光電素子27は、変調器22の出力側に配置され、偏波合成部32から出力される合成光の一部が入力される。なお、偏波合成部32は、偏波ビームコンバイナ(PBC:Polarization Beam Combiner)とも呼ばれ、それぞれ角度が異なる偏波面をもつ複数の光を合波させる光カプラである。
 第一内部光電素子33は、第一変調部29の出力側に配置され、第一変調部29から出力される第一変調光の一部が入力される。第二光電素子34は、第二変調部30の出力側に配置され、第二変調部30から出力される第二変調光の一部が入力される。なお、外部光電素子27、第一内部光電素子33及び第二内部光電素子34は、例えばPD(Photo Diode)などの光電変換素子である。
 出力光監視部23は、外部光電素子27からの出力に基づいて、合成光の光強度を監視する。また、第一内部光電素子33からの出力に基づいて、第一変調光の光強度を監視する。更に、第二内部光電素子34からの出力に基づいて、第二変調光の光強度を監視する。
 制御部24は、光源21、バイアス回路25、及び駆動回路26の制御を行う。なお、本実施形態における制御部24は、出力光監視部23による監視結果に基づいて、バイアス回路25を制御することにより、第一変調部29及び第二変調部30の各アームに印加するバイアス電圧の制御を行う。
 バイアス回路25は、第一変調部29及び第二変調部30に対して、バイアス電圧を印加する。具体的には、バイアス回路25は、第一変調部29及び第二変調部30に含まれるIアームとQアーム、及び位相シフト部35~35に対して、それぞれバイアス電圧を印加する。
 駆動回路26は、第一変調部29及び第二変調部30に対して、駆動信号を入力する。具体的には、駆動回路26は、第一変調部29及び第二変調部30に含まれるIアームとQアームに対して、それぞれ駆動信号を入力する。
 第一変調部29及び第二変調部30のIアーム及びQアームにおける変調曲線と、パイロット信号波形と、駆動信号の振幅の関係について、図5を用いて説明する。
 初めに、変調器22の各アームにおける変調曲線のグラフについて説明する。このグラフにおける縦軸は、各アームからの出力光の光出力強度を示す。横軸は、変調器22の各アームに印加するバイアス電圧の大きさを示す。QPSK変調方式においては、一般的に、この変調曲線における2Vπの振幅を有する駆動信号で入力信号の変調を行う。ここで、Vπは変調曲線において光の位相をπ変化させることができる電圧の大きさとする。図5には、駆動信号の振幅と変調曲線との関係についても示した。このグラフから、変調器22の各アームに入力するバイアス電圧の動作点を制御することで、出力光の光強度を制御することができることが分かる。
 また、本実施形態においては、各アームに印加するバイアス電圧に、一定の周波数及び振幅を有するパイロット信号が重畳される。そして、出力光監視部23は、第一内部光電素子33の出力から、復調されたパイロット信号を検出する。具体的には、出力光監視部23は、第一内部光電素子33から出力される電気信号からDC(Direct Current)成分を除去し、AC(Alternate Current)成分のみを抽出する。これにより、出力光監視部23は、復調されたパイロット信号を検出する。同様に、出力光監視部23は、第二内部光電素子34からの出力から、復調されたパイロット信号を検出する。図5には、バイアス電圧に重畳されるパイロット信号の波形と、復調されたパイロット信号の波形についても示した。
 図5から、光出力強度が最大(PEAK点)となるようにバイアス電圧及び駆動信号振幅を制御した場合、復調されたパイロット信号の振幅は最小となることが分かる。すなわち、バイアス電圧の動作点を、変調曲線におけるNULL点に調整し、駆動信号の振幅を2Vπとした場合、パイロット信号の振幅は最小となり、光出力強度は最大となる。言い換えれば、パイロット信号の振幅が最小となるように、バイアス電圧及び駆動信号振幅を制御することで、光出力強度は最大となる。また、光出力強度が最大(PEAK点)と最小(NULL点)との中間(QUADRATURE点)となるように、バイアス電圧を制御した場合、復調されたパイロット信号の振幅は最大となることが分かる。例えば、駆動信号の振幅は2Vπから変動させず、バイアス電圧の動作点をNULL点からVπ/2ずらすと、復調されたパイロット信号の振幅は最大となる。なお、バイアス電圧の動作点が、NULL点から左方向にずれているのか、NULL点から右方向にずれているのかによって、復調されたパイロット信号の位相が異なる。ここで、バイアス電圧の動作点がNULL点から左方向にずれるとは、バイアス電圧が小さくなる方向にずれることを指す。ここで、バイアス電圧の動作点がNULL点から右方向にずれるとは、バイアス電圧が大きくなる方向にずれることを指す。すなわち、復調されたパイロット信号の振幅及び位相を検出することで、バイアス電圧の動作点が、NULL点からどちらの方向にどの程度ずれているのかを判定することができる。
 次に、光送信機20の動作について説明する。
 初めに、光送信機20の光源21から出力された光は、分岐部28によって、第一分岐光と第二分岐光とに分岐される。
 第一分岐光は、第一変調部29に入力される。そして、第一変調部29に入力された第一分岐光は、第一変調部29に含まれるIアームとQアームとをそれぞれ伝播し、各アームにおいて位相変調される。ここで、第一変調部29のIアームとQアームにはそれぞれ、バイアス回路25から出力されるバイアス電圧と、駆動回路26から出力される駆動信号とが入力される。
 第一分岐光は、第一変調部29によって位相変調されることで第一変調光となり、第一変調部29から出力される。この時、第一変調光の一部は、第一内部光電素子33に入力される。第一内部光電素子33は、入力された第一変調光の光信号を電気信号に変換する。
 出力光監視部23は、第一内部光電素子33の出力に基づいて、第一変調光の光強度を監視し、その監視結果を制御部24に入力する。具体的には、出力光監視部23は、第一内部光電素子33から出力される電気信号のAC成分を抽出することで、復調されたパイロット信号の振幅及び位相を検出する。ここで、出力光監視部23は、復調されたパイロット信号の振幅と光出力強度とに、図5に示した相関関係があることを利用して、第一変調光の光強度を監視する。そのために、出力光監視部23は、第一変調部29及び第二変調部30が有する各アームの、変調曲線とパイロット信号との関係の情報を記録している。具体的には、出力光監視部23は、図5に示すような、パイロット信号の振幅と、パイロット信号の位相と、光強度と、バイアス電圧と、の関係に関する情報を記録する。これにより、出力光監視部23は、復調されたパイロット信号の振幅の情報に基づいて、第一変調光の光強度を監視することが可能となる。
 制御部24は、出力光監視部23から入力された監視結果に基づいて、第一変調部29に印加するバイアス電圧を制御する。例えば、出力光監視部23の監視結果により、第一変調光の光強度が所望の値よりも大きいと判定した場合には、第一変調部29に印加するバイアス電圧を、光強度が減衰するように制御する。この時、制御部24は、復調されたパイロット信号の位相を参照することで、バイアス電圧を大きくする方向と小さくする方向とのどちらに制御すべきかを判断する。
 一方、分岐部28から出力された第二分岐光は、第二変調部30に入力される。そして、第二変調部30に入力した第二分岐光は、第二変調部30に含まれるIアームとQアームとにそれぞれ伝播し、各アームにおいて位相変調される。ここで、第二変調部30のIアームとQアームにはそれぞれ、バイアス回路25から出力されるバイアス電圧と、駆動回路26から出力される駆動信号とが入力される。
 第二分岐光は、第二変調部30によって位相変調されることで第二変調光となり、第二変調部30から出力される。この時、第二変調光の一部は、第二内部光電素子34に入力される。第二内部光電素子34は、入力された第二変調光の光信号を電気信号に変換する。
 出力光監視部23は、第二内部光電素子34からの出力に基づいて、第二変調光の光強度を監視し、その監視結果を制御部24に入力する。具体的には、出力光監視部23は、第二内部光電素子34から出力される電気信号のAC成分を抽出することで、復調されたパイロット信号の振幅及び位相を検出する。これにより、出力光監視部23は、第一変調光の場合と同様に、第二変調光の光強度を監視する。
 制御部24は、出力光監視部23から入力された監視結果に基づいて、第二変調部30に印加するバイアス電圧を制御する。例えば、出力光監視部23の監視結果により、第二変調光の光強度が所望の値よりも大きいと判定した場合には、第二変調部30に印加するバイアス電圧を、光強度が減衰するように制御する。この時、制御部24は、復調されたパイロット信号の位相参照することで、バイアス電圧を大きくする方向と小さくする方向とどちらに制御すべきかを判断する。
 回転子31は、第二変調光の偏波面を回転させる。具体的には、回転子31は、第二変調光の偏波面と第一変調光の偏波面とが直交するよう、第二変調光の偏波面を回転させる。
 第一変調光と第二変調光とは、偏波合成部32によって合成され、偏波合成部32から出力される。偏波合成部32から出力された合成光の一部は、外部光電素子27に入力される。外部光電素子27は、入力された合成光を、電気信号に変換する。
 出力光監視部23は、外部光電素子27からの出力に基づいて、合成光の光強度を監視し、監視結果を制御部24に入力する。
 ここで、制御部24は、出力光監視部23から入力された、合成光の光強度の監視結果に基づき、合成光の光強度が所望の値となっているか否かを判定する。
 制御部24は、合成光の光強度が所望の値となっていないと判定した場合、バイアス回路25を制御することで、第一変調部29及び第二変調部30に入力するバイアス電圧を制御する。ここで、制御部24は、合成光の光強度が所望の値となり、且つ、第一変調光の光強度と第二変調光の光強度とが同一の値となるように、バイアス電圧を制御する。なお、第一変調光の光強度と第二変調光の光強度とが、同一になっているか否かについては、出力光監視部23から順次入力される、第一変調光の光強度の監視結果と、第二変調光の光強度の監視結果と、に基づいて判断する。
 次に、光送信機20の動作の、より具体的な流れについて、図6を用いて説明する。
 初めに、ステップ10で光強度の目標値を設定する。すなわち、光送信機20から出力される合成光の光強度の目標値として、2Xが設定されていることとする。また、第一変調光及び第二変調光の光強度の目標値として、それぞれX(2X÷2)が設定されていることとする(ステップ10)。なお、各アームに入力される駆動信号の振幅の値は一定とし、その値は2Vπとする。また、バイアス電圧の動作点は、初期値として、変調曲線におけるNULL点に設定されている。このような設定がなされた変調器22に、光源21からの光が入力されるとする。
 光源21から出力された光は、初めに、分岐部28によって、第一分岐光と第二分岐光とに分岐される。
 そして、第一分岐光は、第一変調部29によって、第一変調光に変調される。第一変調部29から出力した第一変調光の一部は、第一内部光電素子33に入力され、電気信号に変換される。出力光監視部23は、第一内部光電素子33から出力された電気信号から、AC成分であるパイロット信号を取り出す。そして、取り出したパイロット信号の振幅及び位相の情報と、予め記録されている変調曲線とパイロット信号との関係の情報とに基づいて、第一変調光の光強度を判定する。出力光監視部23は、第一変調光の光強度の情報を、制御部24に通知する。制御部24は、通知された第一変調光の光強度が、目標値Xと一致するか否かを判定する(ステップ11)。
 そして、第一変調光の光強度が、目標値Xよりも大きいと判定された場合、すなわちステップ11においてNOの場合、バイアス電圧を制御する(ステップ12)。この時のバイアス電圧の制御とは、バイアス電圧の動作点を、変調曲線において光強度が最大となるための点、すなわちNULL点からずらす制御である。なお、バイアス電圧の動作点を、バイアス電圧が大きくなる方向に変化させるのか、小さくなる方向に変化させるのかは、復調したパイロット信号の位相に基づいて判断する。
 このようにして、第一変調光の光強度は、目標値Xになるよう調整される。第一変調光の光強度が、目標値Xと一致した場合、ステップ13に進む。
 同様に、第二変調部30に印加するバイアス電圧を制御することで(ステップ11、12)、第二変調光の光強度も目標値Xとなるよう調整される。すなわち、制御部24は、通知された第二変調光の光強度が、目標値Xと一致するか否かを判定する(ステップ11)。そして、第二変調光の光強度が、目標値Xよりも大きいと判定された場合、すなわちステップ11においてNOの場合、バイアス電圧を制御する(ステップ12)。このようにして、第二変調光の光強度も、目標値Xになるよう調整される。第二変調光の光強度が、目標値Xと一致した場合、ステップ13に進む。
 第二変調光の偏波面が回転子31によって回転させられた後、第一変調光と第二変調光とは、偏波合成部32によって合成される。偏波合成部32から出力された合成光の一部は、外部光電素子27に入力され、電気信号に変換される。出力光監視部23は、外部光電素子27から出力された電気信号に基づいて、合成光の光強度を監視し、監視結果を制御部24に入力する。
 制御部24は、入力された監視結果から、合成光の光強度が、目標値である2Xと一致するか判定する(ステップ13)。ここで、合成光の光強度が、2X−αであり、目標値2Xと異なっており、合成光の光強度が目標値と一致しない場合、すなわちステップ13においてNOの場合、を想定する。第一変調光及び第二変調光の光強度をXとしたのにも関わらず、合成光の光強度が2Xとならない理由としては、変調偏波が伝送路を伝播する際の伝播損失や、回転子31や偏波合成部32の挿入損失などの光損失が生じるためである。
 この場合、制御部24は、第一変調光の目標値を再設定し、第一変調光の目標値をXからX+(α/2)に変更する(ステップ14)。同様に、第二変調光の目標値についても再設定し、第二変調光の目標値をXからX+(α/2)に変更する(ステップ14)。
 ステップ14で光強度の目標値の再設定が完了すると、ステップ11、12に戻る。すなわち、制御部24は、第一変調光及び第二変調光の光強度が再設定された目標値となるよう、バイアス電圧を制御する。
 そして、ステップ13において、合成光の光強度が目標値2Xとなったと判定されるまで、ステップ11~14を繰り返す。ステップ13において、合成光の光強度が目標値2Xとなったと判定されると、制御は完了する(ステップ15)。
 しかしながら、制御が完了したとしても(ステップ15)、時間が経過するにつれて、第一変調光、第二変調光あるいは合成光の光強度が再び目標値からずれる場合がある。この場合、制御部24はバイアス電圧の制御を再開する。光強度が目標値に調整された後、再び目標値からずれる原因としては、例えば、光送信機20の使用環境温度の変化が挙げられる。
 以上のようにして、制御部24によるバイアス電圧の制御が行われる。
 このように、本実施形態においては、第一変調部29あるいは第二変調部30に印加するバイアス電圧を制御することで、出力光の光強度を所望の値に調整することができる。そのため、光送信機20の内部及び外部にVOAを付加する必要がなくなり、コスト削減につながる。特に、本実施形態における光送信機20をROADM(Reconfigurable Optical Add/Drop Multiplexer)システム等における光送信機に適用した場合には、コストを大幅に削減することができる。
 更に、本実施形態の光送信機20を用いることで得られるその他の効果として、次の2つが挙げられる。
 第一に、コヒーレント光送信機として本実施形態における光送信機20を用いた場合、コヒーレント通信における光受信機特性を安定させることができる。
 現状の市場で一般的に入手可能な、QPSK変調を行うコヒーレント光送信機における光出力変動は、EOL(End of Life)における出力変動も考慮すると、±3~4dBというスペックである。この値は、IM−DD(Intensity Modulation−Direct Detection)方式の変調器における光出力変動のスペックと比較してかなり大きい。そのため、QPSK変調を行うコヒーレント光送信機を用いた場合、その出力変動の大きさが、光受信機の受信特性を悪化させる原因となる。一方、本実施形態における光送信機を用いると、光送信機内で、光出力強度を所望の値に制御することが可能となる。そのため、本実施形態における光送信機20によれば、コヒーレント通信に適用した場合であっても、光送信機外部にVOAを付加することなく、コヒーレント送信機の光出力変動を小さくすることが可能となる。これにより、光受信機の受信特性を安定させることができる。
 第二に、本実施形態における光送信機20を用いることにより、偏波間の光強度の差を抑制することが可能となる。以下では、この偏波間の光強度の差を、偏波間偏差と呼ぶことにする。
 一般的に、光を分岐して変調した後に偏波合成をすると、それぞれの偏波の伝播損失の違い等によって、偏波間偏差が発生する。例えば、第一変調光及び第二変調光の光強度がそれぞれ最大となるように制御した場合における、実際の第一変調光の光強度と第二変調光の光強度との差分が、偏波間偏差である。
 この偏波間偏差が大きいと、送信された出力光を光受信機で受信する際の、受信感度を劣化させる原因となる。そのため、偏波間偏差は小さい方が望ましい。ここで、本実施形態においては、第一内部光電素子33及び第二内部光電素子34によって、第一変調光及び第二変調光それぞれの光強度を監視している。そのため、それぞれの変調光の光強度の目標値を同じ値にすることで、偏波間偏差を抑制することができる。
 なお、本実施形態においては、第一変調光及び第二変調光の光強度を、パイロット信号の振幅を検出することで監視することとしたが、これに限らない。すなわち、第一内部光電素子33及び第二内部光電素子34から出力された電気信号のAC成分ではなく、DC成分を抽出することで、出力光の光強度を監視することとしても良い。
 更に、本実施形態においては、第一変調光と第二変調光の光強度の目標値を同じ値に設定することとしたが、これに限らない。すなわち、受信機側の受信感度の劣化を生じさせない程度の差であれば、第一変調光と第二変調光との光強度の目標値には差が生じても良い。例えば、ステップ13において、合成光の光強度と目標値とのズレが微量である場合には、ステップ14において、第一変調光あるいは第二変調光のいずれか一方の目標値のみを変更することとしても良い。
 また、本実施形態においては、1つの出力光監視部23が、第一内部光電素子33、第二内部光電素子34、及び外部光電素子27からの出力に基づいて、第一変調光、第二変調光、及び合成光の光強度を監視することとしたが、これに限らない。例えば、図7に示すように、第一内部光電素子33と第二内部光電素子34からの出力が入力される内部出力光監視部36と、外部光電素子27からの出力が入力される外部出力光監視部37と、で分けることとしても良い。
 更に、本実施形態においては、各アームの変調器の変調曲線とパイロット信号との関係の情報を、出力光監視部23に記録させることとしたが、これに限らない。例えば、制御部24が、これらの情報を記録することとしても良い。
 なお、第一変調部29あるいは第二変調部30を制御する際には、Iアームからの出力光の光強度とQアームからの出力光の光強度を揃えることが好ましい。すなわち、図8Aに示すコンスタレーションマップのように、I成分とQ成分とのバランスを保ったまま、第一変調部29あるいは第二変調部30を制御することが好ましい。Iアームからの出力光の光強度と、Qアームからの出力光の光強度とが大きく異なると、図8Bに示すように、I成分とQ成分とのバランスが崩れてしまい、光信号の直交性が低下してしまうためである。
 なお、Iアームからの出力光とQアームからの出力光の光強度を揃えるためには、例えば、制御部24が、各アームの変調曲線を参照しながら、第一変調部29あるいは第二変調部30を制御すれば良い。
 なお、一般的には、バイアス電圧の動作点がNULL点、すなわち光出力強度が最大となる点からずれることは、信号劣化につながるため好ましくないとされている。NRZ(Non−Return−to−Zero)方式の場合には、バイアス電圧の動作点がQUADRATURE点、すなわち光出力強度が最大となる点からずれることは、信号劣化につながるため好ましくないとされている。そのため、特許文献1乃至3に記載の光送信機や変調器においては、バイアス電圧の大きさを、光出力強度が最大となる値になるよう制御している。しかしながら、本実施形態においては、光送信機の光出力強度を所定の値とするための制御に、バイアス電圧の動作点を、敢えて光出力強度が最大となる点からずらす制御を含めることとした。以下、その理由について、図9及び図10に示す実験データに基づいて説明する。
 図9には、QPSK変調方式に用いるLN変調器のIアーム及びQアームに印加するバイアス電圧と、復調されたパイロット信号の振幅との関係を示す。バイアス電圧に重畳するパイロット信号の振幅及び周波数はそれぞれ、120mVpp、1kHzとした。ここで、図9における、復調されたパイロット信号の振幅がゼロとなる位置(点C)は、バイアス電圧の動作点が、変調曲線におけるNULL点に設定された場合を示す。
 図10A~図10Eには、バイアス電圧を、図9の点A~Eに対応する値に調整した場合における、復調されたパイロット信号の波形と、出力光の信号波形をそれぞれ示す。図10A~図10Eの上方の図が復調されたパイロット信号の波形を示し、図10A~図10Eの下方の図が出力光の信号波形を示す。図9の点A~Eに対応するバイアス電圧はそれぞれ、−2.569V(点A)、−1.142V(点B)、−0.428V(点C)、0.142V(点D)、及び1.427V(点E)である。また、それぞれのバイアス電圧の動作点を、変調曲線のNULL点からのズレで示すと、−Vπ/2(点A)、−Vπ/4(点B)、ゼロ(点C)、+Vπ/4(点D)、及び+Vπ/2(点E)となる。ここで、Vπは変調曲線において光の位相をπ変化させるために必要な電圧の大きさである。なお、点Cにおいて、パイロット信号の振幅がゼロとなる位置から多少ずれているが、これは、実験に使用した装置のバイアス電圧制御の精度に起因している。すなわち、バイアス電圧の動作点を変調曲線におけるNULL点に精度よく合わせることは困難であり、多少の誤差が生じてしまうためである。
 ここで、図10A~図10Eに示す出力光の出力波形に現れる逆三角形の形状を結ぶ横棒形状の棒幅を、幅dとする。そして、この幅dが、バイアス電圧の動作点を変調曲線におけるNULL点に設定した場合(図10C)における幅dよりも長くなると、信号劣化が生じていることになる。
 図10B及び図10Dより、バイアス電圧の動作点を図10Cから±Vπ/4変動させた場合の出力波形における幅dは、図10Cにおける幅dとほとんど変わらないことが分かる。すなわち、バイアス電圧の動作点を、変調曲線におけるNULL点から±Vπ/4変動させたとしても、信号劣化はほとんど生じないことが分かる。
 一方、図10A及び図10Eより、バイアス電圧の動作点を図10Cから±Vπ/2変動させた場合の出力波形における幅dは、図10Cにおける幅dと比較してかなり大きいことが分かる。すなわち、バイアス電圧の動作点を、変調曲線におけるNULL点から±Vπ/2変動させてしまうと、信号劣化が生じることが分かる。
 以上の結果から、バイアス電圧を、変調曲線におけるNULL点から±Vπ/4の範囲で変動させるのであれば、信号劣化はそれほど生じないことが分かった。すなわち、バイアス電圧の動作点を、変調曲線におけるNULL点からずらしたとしても、そのズレが±Vπ/4の範囲であれば、信号劣化をほとんど生じさせることなく、光強度を減衰させることができることが分かった。
 そのため、本実施形態における光送信機20のバイアス電圧の制御には、バイアス電圧の動作点を、敢えて光強度が最大となる点からずらすことで、光強度を減衰させる制御を含めることとした。
 ところで、QPSK変調方式で変調を行うコヒーレント光送信機の光出力強度は、通常±3dB程度で変動する。すなわち、複数の波長を多重させる場合、互いに波長が異なる光の光強度の差は通常、最大で6dB程度となる。この光強度の差をなくすためには、それぞれの波長の光の光強度を、光強度が最も小さい波長の光の光強度に揃えれば良い。この場合、他の波長の光については、光強度を最大で6dB程度減衰させれば良いことになる。この時、それぞれの光が、2つの偏波を合成した合成光である場合には、1つの偏波につき最大3dB程度だけ光強度を減衰させれば良いことになる。更に、Iアーム及びQアームにおいては、それぞれ最大1.5dB程度だけ光強度を減衰させれば良いことになる。ここで、QPSK変調方式で用いる変調器の最大光出力強度は通常20dB以上である。そのため、各アームにつき1.5dB程度減衰させることは、バイアス電圧の動作点を、変調曲線におけるNULL点から±Vπ/4の範囲で変動させることで十分実現可能である。すなわち、本実施形態における光送信機20を、コヒーレント光送信機に適用した場合、信号劣化をほとんど生じさせることなく、複数の波長間の光強度の差を補正することが可能となる。
 なお、本実施形態における光送信機20は、DP−QPSK方式での光送信を行うこととしたが、これに限らない。例えば、本実施形態は、QAM(Quadrature Amplitude Modulation)方式などで光送信を行う光送信機にも適用することができる。なお、QAM方式とは、多値のASK(Amplitude−shift keying)を直角位相変調するという、位相変化と振幅変化を組み合わせた変調方式である。
 [第3の実施形態]
 本発明の第3の実施形態における光送信機について、図11を用いて説明する。図11は、本実施形態における光送信機40の構成を示す。
 本実施形態における光送信機40は、第2の実施形態における光送信機20と比較すると、外部光電素子27を含まない点で異なる。また、光送信機40は、光損失に関する情報を記録する記録部41を有する。記録部41は、例えばROM(Read Only Memory)などの記録媒体である。その他の構成については、光送信機20と同様であるため、説明は省略する。
 記録部41は、第一変調部29から出力される第一変調光の光損失量に関する情報と、第二変調部30から出力される第二変調光の光損失量に関する情報とが記録されている。第一変調光の光損失量に関する情報とは、例えば、第一変調光が、第一変調部29から出力されてから偏波合成部32から出力されるまでの、第一変調光の伝播損失や、第一内部光電素子における量子効率である。同様に、第二変調光の光損失量に関する情報とは、例えば、第二変調光が、第二変調部30から出力されてから偏波合成部32から出力されるまでの、第二変調光の伝播損失や、第二内部光電素子における量子効率である。光損失量に関する情報としては、更に、回転子31や偏波合成部32の挿入損失量も含めることとしても良い。回転子31や偏波合成部32の挿入損失量とは、回転子31や偏波合成部32が挿入されることによる、第一変調光及び第二変調光の光損失量である。
 次に、光送信機40の動作について述べる。
 制御部24が、第一変調光の一部及び第二変調光の光強度の監視結果に基づいて、第一変調部29及び第二変調部30に印加するバイアス電圧を制御する工程までは、第2の実施形態におけるステップ10~12と同様であるため、説明は省略する。以下、光送信機40が、偏波合成部32から出力される合成光の光強度の監視する工程について述べる。
 光送信機40の出力光監視部23は、第一内部光電素子33及び第二内部光電素子34からの出力と、記録部41に記録された光損失量に関する情報から、偏波合成部32から出力される合成光の光強度を算出する。すなわち、第一内部光電素子33からの出力から、第一変調光の光強度を算出し、第二内部光電素子34からの出力から、第二変調光の光強度を算出する。そして、第一変調光の光強度と、第二変調光の光強度との和から、記録部41に記録された光損失量を差し引くことで、合成光の光強度を算出する。例えば、第一変調光の光強度が10dBで、第二変調光の光強度が10dBであったとする。そして、記録部41に記録された光損失量に関する情報が、第一変調光の光損失量0.5dBと、第二変調光の光損失量0.5dBであったとする。この場合、出力光監視部23は、合成光の光強度を、10+10−(0.5+0.5)=19dBと算出する。
 通常、第一変調光及び第二変調光が、第一変調部29あるいは第二変調部30から出力されてから、偏波合成部32から出力されるまでに生じる光損失量は、第一変調光及び第二変調光の光強度の関わらず一定である。そのため、この光損失量を記録部41に記録させておくことで、第2の実施形態のように外部光電素子27を設けなくとも、合成光の光強度を算出することができるのである。
 出力光監視部23は、合成光の光強度を算出すると、その算出結果を制御部24に送出する。そして、制御部24は、出力光監視部23から送出された、合成光の光強度の監視結果に基づいて、第一変調部29及び第二変調部30を制御する。なお、合成光の光強度の監視結果が送出された後の動作については、第2の実施形態におけるステップ14、15と同様なので、説明は省略する。
 以上のように、本実施形態においても、第2の実施形態と同様に、光送信機の内部及び外部にVOAを付加する必要がなくなり、コストを削減することができる。また、コヒーレント光送信機として光送信機40を用いた場合、コヒーレント通信における光受信機特性を安定させることができる。更に、偏波間偏差を抑制することが可能となる。
 また、光送信機40においては、光送信機20と異なり、外部光電素子27を付加することなく、合成光の光強度を監視することが可能である。そのため、光送信機40は、光送信機20と比較して、更なるコスト削減及び送信機の小型化が可能となる。
 更に、本実施形態における光送信機40は、第一変調光の光損失量と、第二変調光の光損失量とを記録している。そのため、制御部24は、第一変調光及び第二変調光の光損失量の違いに応じて、第一変調光及び第二変調光の光強度の目標値を設定することができる。例えば、第一変調光に発生する光損失量が1dBであり、第二変調光に発生する光損失量が1.5dBであったとする。この場合、制御部24は、両者の光損失量が0.5dB違うことに鑑みて、第一変調光の光強度の目標値と第二変調光の光強度の目標値も0.5dBだけ差をつけて設定する。すなわち、第一変調光の光強度の目標値を、第二変調光の光強度の目標値よりも0.5dBだけ小さくする。これにより、本実施形態における光送信機40は、合成光に含まれる第一変調光と第二変調光との偏波間偏差を、より小さくすることが可能となる。
 なお、本実施形態においては、記録部41を備えることとしたが、これに限らない。例えば、出力光監視部23が記録部を内蔵し、光損失に関する情報を記録することとしても良い。あるいは、制御部24が記録部を内蔵し、光損失に関する情報を記録することとしても良い。
 また、本実施形態においても、第2の実施形態と同様、Iアーム及びQアームの出力光の光強度を揃えることが望ましい。
 [第4の実施形態]
 本発明の第4の実施形態における光送信機について説明する。なお、本実施形態における光送信機50は、第2の実施形態における光送信機20と比較すると、構成は同様であるものの、動作が異なる。
 すなわち、第2の実施形態の光送信機20においては、制御部24が、第一変調部29及び第二変調部30に印加するバイアス電圧を制御することによって、第一変調光、第二変調光及び合成光の光強度を制御することとした。一方、本実施形態の光送信機50においては、制御部24は、第一変調部29及び第二変調部30に入力する駆動信号の振幅を制御することによって、第一変調光、第二変調光、及び合成光の光強度を制御する。
 駆動信号の振幅を制御することによって、出力光の光強度を制御することができることについて、図5及び図12を用いて説明する。
 図5には、上述したように、変調器22の、Iアーム及びQアームにおける変調曲線のグラフを示す。図5には、駆動信号の振幅についても記載しており、ここでは2Vπとしている。一方、図12には、駆動信号の振幅を2Vπよりもα小さい値とした場合を示す。なお、バイアス電圧の動作点は、図5に示す場合と同様に、変調曲線のNULL点に設定されていることとする。
 図12より、駆動信号の振幅を2Vπからαだけずらすことによって、出力光の光強度が小さくなり、復調されたパイロット信号の振幅は大きくなることが分かる。すなわち、駆動信号の振幅を制御することで、出力光の光強度を制御できることが分かる。
 光送信機50は、この原理を利用し、第一変調部29及び第二変調部30に入力する駆動信号の振幅を制御することで、第一変調光、第二変調光、及び合成光の光強度を制御する。
 次に、光送信機50の動作について、図13を用いて詳細に述べる。なお、図13のステップ10、11、13~15については光送信機20の動作と同様であるため、説明は省略する。以下、光送信機20と異なる動作である、ステップ16について述べる。
 ステップ11において、第一変調光の光強度が目標値と一致しないと判定された場合、制御部24は、第一変調部29に入力する駆動信号の振幅を制御する(ステップ16)。例えば、第一変調光の光強度が、目標値よりも大きいと判定された場合、駆動信号の振幅を、2Vπからずらす制御を行う。ここで、制御部24は、図5及び図12に示すような、駆動信号の振幅と、パイロット信号の振幅及び位相との関係性を記録している。これより、制御部24は、第一変調光の光強度を目標値と一致させるための駆動信号の振幅を判定し、駆動回路26に通知する。そして、駆動回路26は、制御部24から通知された振幅を有する駆動信号を第一変調部29に入力する。なお、駆動回路26から出力される駆動信号の振幅は、駆動回路26が有するピーク検出機能によってモニタすることができる。
 このようにして、制御部24は、第一変調部29の制御を行う。同様に、制御部24は、第二変調光の光強度が目標値と一致するよう、第二変調部30を制御する。
 以上のように、本実施形態における光送信機50は、第一変調部29及び第二変調部30に入力する駆動信号の振幅を制御することで、光送信機50からの出力光の光強度を所望の値とすることができる。
 そのため、本実施形態においても、第2の実施形態と同様の効果が得られる。すなわち、光送信機20の内部及び外部にVOAを付加する必要がなくなり、コストを削減することができる。また、コヒーレント光送信機として光送信機50を用いた場合、コヒーレント通信における光受信機特性を安定させることができる。更に、偏波間偏差を抑制することが可能となる。
 なお、一般的には、駆動信号の振幅が2Vπ、NRZ方式においてはVπ、すなわち光出力強度が最大となる値からずれることは、信号劣化につながるため好ましくないとされている。そのため、特許文献1乃至3に記載の光送信機や変調器においては、駆動信号の振幅の大きさが、光出力強度が最大となる値になるよう制御している。しかしながら、本実施形態においては、光送信機の光出力強度を所定の値とするための制御に、駆動信号の振幅を、敢えて光出力強度が最大となる値からずらす制御を含めることとした。
 これは、駆動信号の振幅を変動させる範囲が所定の範囲内であれば、信号劣化をほとんど生じさせることなく、光強度を減衰させることができるためである。
 信号劣化をほとんど生じさせることなく、駆動信号の振幅を変動させることができる範囲としては、光出力強度が最大となる駆動信号の振幅値から±Vπ/2の範囲である。
 [第5の実施形態]
 ところで、コヒーレント光送信機をWDMシステムに適用する場合、コヒーレント光送信機の光出力強度が変動すると、WDM信号のチャネル間のレベル偏差、すなわちチルト、が増加する。図14には、互いに異なる波長を有する複数のチャネルの光強度を示す。図14においては、左から2番目のチャネルが、他のチャネルと比較して光強度が大きく、チルトが発生している。
 更に、一般的な長距離WDMシステムでは、複数のEDFA(Erbium Doped Fiber Amplifier)を用いて、光増幅を多段で行う。そのため、チルトの増加はシステムに多大な影響を及ぼす。特に、WDMシステムにおける伝送距離、伝送帯域幅などに影響を及ぼす。これは、伝送品質を維持するためには光信号雑音比(OSNR:Optical Signal to Noise Ratio)の保証がキーポイントとなるのだが、チルトの増加によって、チャネル毎のOSNRが大きく変化してしまうためである。
 なお、WDM信号の光源としては、例えばASE(Amplified Spontaneous Emission)光が用いられる。
 そこで、本発明の第5の実施形態においては、チルトの増加を抑制することが可能な、波長多重伝送装置について述べる。
 図15には、本実施形態における波長多重伝送装置60の構成を示す。波長多重伝送装置60は、第1の実施形態における光送信機10を複数有する。波長多重伝送装置60が有する複数の光送信機10は、それぞれ、光送信機10~10とする。また、光送信機10~10はそれぞれ、互いに異なる波長の光を出力する。波長多重伝送装置60は、更に、光送信機10~10それぞれから出力される波長を多重する、波長多重部61を備える。
 次に、波長多重伝送装置60の動作について説明する。
 初めに、光送信機10~10それぞれが有する制御部に、合成光の光強度の目標値を設定する。この時、設定する目標値は、光送信機10~10すべて共通の値とする。
 次に、光送信機10~10の制御部はそれぞれ、出力光監視部の監視結果に基づいて、第一変調部及び第二変調部の制御を行う。この時の光送信機10~10の動作はそれぞれ、第1の実施形態で述べたステップ1~5と同様である。光送信機10~10の出力光の光強度が全て目標値と一致すると、制御は完了する。
 そして、光送信機10~10それぞれから出力された光は、波長多重部61によって波長多重され、波長多重伝送装置60から出力される。
 以上のように本実施形態においては、波長多重伝送装置60に含まれる複数の光送信機10~10から出力される出力光の光強度を、共通の目標値に揃えることができる。
 そのため、本実施形態における波長多重伝送装置60によれば、チルトの増加を抑制することが可能となる。これにより、通信特性の劣化を抑制することが可能となる。
 なお、本実施形態における光送信機10~10それぞれに設定する、出力光の目標値は、任意の値としても良いが、これに限らない。例えば、以下のように設定することとしても良い。
 初めに、光送信機10~10それぞれを、光出力強度が最大となるように動作させる。すなわち、光送信機10~10がそれぞれQPSK変調を行う場合には、各アームに印加するバイアス電圧の動作点を、変調曲線のNULL点に設定する。また、各アームに入力する駆動信号の振幅を、2Vπに設定する。
 そして、光送信機10~10それぞれが有する、出力光監視部の監視結果から、光送信機10~10それぞれの出力光の光強度を比較する。そして、最も低い出力光強度を、光送信機10~10の出力光強度の目標値として設定する。すなわち、出力光の光強度が最も低い光送信機以外の光送信機は、自身の出力光の光強度を減衰させる制御を行うことになる。なお、このような方法で目標値を設定する場合、図16に示すように、比較部62を設ける必要がある。比較部62には、光送信機10~10のそれぞれの出力光監視部23からの監視結果が入力される。比較部62は、入力されたそれぞれの監視結果を比較して、出力光強度の目標値を決定する。そして、比較部62は、決定した目標値を、光送信機10~10のそれぞれの制御部に通知する。以上のようにして、出力光強度の目標値を設定することとしても良い。
 なお、本実施形態の波長多重伝送装置60は、第1の実施形態における光送信機10を複数有することとしたが、これに限らない。例えば、第2の実施形態における光送信機20を複数有することとしても良い。あるいは、第3の実施形態における光送信機40や、第4の実施形態における光送信機50を複数有することとしても良い。
 また、本実施形態においては、光送信機10~10それぞれが光源を有することとしたが、これに限らない。すなわち、波長多重伝送装置60は、高速で波長を切り替えることが可能な波長可変レーザアセンブリ(ITLA:Integrable Tunable Laser Assembly)を備えることとしても良い。そして、波長可変レーザアセンブリから出力される、それぞれ異なる波長の光を、光送信機10~10に入力することとしても良い。同様に、本実施形態においては、光送信機10~10それぞれが制御部を有することとしたが、これに限らない。すなわち、波長多重伝送装置60が一つの制御部を備え、該制御部が光送信機10~10それぞれの第一変調部及び第二変調部を制御することとしても良い。
 以上、図面を参照しながら本発明に係る実施形態について説明したが、本発明は係る実施形態に限定されないことは言うまでもない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 なお、第1の実施形態乃至第5の実施形態は、各実施形態の機能を実現するソフトウェアのプログラムコードを記録した記録媒体を通信端末に供給し、その通信端末のコンピュータが記録媒体に格納されたプログラムコードを読み出し実行することによっても、達成されることは言うまでもない。
 なお、プログラムを供給する記録媒体としては、例えば、CD−ROM(Compact Disc Read Only Memory)、DVD−R(Digital Versatile Disk Recordable)、光ディスク、磁気ディスク、不揮発性メモリカードなど、上記プログラムを記憶できるものであれば良い。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)変調器と、出力光監視部と、制御部と、を備え、前記変調器は、前記変調器に入力した光を、第一分岐光と、第二分岐光とに分岐する分岐部と、前記第一分岐光の位相変調を行う第一変調部と、前記第二分岐光の位相変調を行う第二変調部と、前記第一変調部から出力される第一変調光と、前記第二変調部から出力される第二変調光と、のいずれか一方の偏波面を回転させる回転子と、前記第一変調光と前記第二変調光とを合成する偏波合成部と、を有し、前記出力光監視部は、前記偏波合成部から出力される合成光の光強度を監視し、前記制御部は、前記出力光監視部による監視結果に基づいて、前記第一変調部及び前記第二変調部の少なくとも一方の制御を行い、前記制御には、前記第一変調光と前記第二変調光の少なくとも一方の光強度を、変調曲線における光強度の最大値よりも小さくする光強度制御が含まれることを特徴とする、光送信機。
 (付記2)前記出力光監視部は、前記第一変調光の光強度と、前記第二変調光の光強度とを更に監視することを特徴とする、付記1に記載の光送信機。
 (付記3)前記第一変調部からの出力光が分岐されて入力される第一の光電変換素子と、前記第二変調部からの出力光が分岐されて入力される第二の光電変換素子と、前記偏波合成部からの出力光が分岐されて入力される第三の光電変換素子と、を更に備え、前記出力光監視部は、前記第一乃至第三の光電変換素子からの出力に基づいて、前記第一変調光と、前記第二変調光と、前記合成光と、のそれぞれの光強度を監視することを特徴とする、付記2に記載の光送信機。
 (付記4)前記第一変調部からの出力光が分岐されて入力される第一の光電変換素子と、前記第二変調部からの出力光が分岐されて入力される第二の光電変換素子と、前記第一変調光及び前記第二変調光のそれぞれの光損失量に関する情報を記録する記録部と、を更に備え、前記出力光監視部は、前記第一及び第二の光電変換素子からの出力と、前記記録部に記録された前記光損失量に関する情報と、に基づいて、前記第一変調光と、前記第二変調光と、前記合成光と、のそれぞれの光強度を監視することを特徴とする、付記2に記載の光送信機。
 (付記5)前記光損失量に関する情報には、前記第一の光電変換素子の量子効率と、前記第二の光電変換素子の量子効率と、前記偏波合成部の挿入損失と、に関する情報が少なくとも含まれることを特徴とする、付記4に記載の光送信機。
 (付記6)前記第一変調部及び前記第二変調部に対して駆動信号を入力する駆動部と、
 前記第一変調部及び前記第二変調部に対してバイアス電圧を印加するバイアス回路と、を更に備え、前記制御部は、前記バイアス回路が出力するバイアス電圧の大きさを制御することによって、前記光強度制御を行うことを特徴とする、付記1乃至5のいずれか一つに記載の光送信機。
 (付記7)前記制御部は、前記バイアス電圧の動作点を、変調曲線において光強度が最大となるためのバイアス電圧の動作点から±Vπ/4(Vπ:変調曲線において光の位相をπ変化させることができる電圧の大きさ)の範囲内で制御することを特徴とする、付記6に記載の光送信機。
 (付記8)前記第一変調部及び前記第二変調部に対して駆動信号を入力する駆動部と、前記第一変調部及び前記第二変調部に対してバイアス電圧を印加するバイアス回路と、を更に備え、前記制御部は、前記駆動部が出力する前記駆動信号の振幅を制御することによって、前記光強度制御を行うことを特徴とする、付記1乃至5のいずれか一つに記載の光送信機。
 (付記9)前記制御部は、前記駆動信号の振幅を、変調曲線において光強度が最大となるための振幅から±Vπ/2(Vπ:変調曲線において光の位相をπ変化させることができる電圧の大きさ)の範囲内で制御することを特徴とする、付記8に記載の光送信機。
 (付記10)前記バイアス電圧には、所定の周波数のパイロット信号が重畳され、前記出力光監視部は、前記第一変調部から出力される前記パイロット信号の位相と、前記第二変調部から出力される前記パイロット信号の位相と、を更に監視することを特徴とする、付記6乃至9のいずれか一つに記載の光送信機。
 (付記11)前記出力光監視部は、前記第一変調部から出力される前記パイロット信号の振幅を検出することで、前記第一変調光の光強度を監視し、前記第二の変調部から出力される前記パイロット信号の振幅を検出することで、前記第二変調光の光強度を監視することを特徴とする、付記10に記載の光送信機。
 (付記12)複数の光送信機と、前記複数の光送信機それぞれから出力される波長を多重する波長多重部と、を備え、前記複数の光送信機はそれぞれ、付記1乃至11のいずれか一つに記載の光送信機であることを特徴とする、波長多重伝送装置。
 (付記13)前記複数の光送信機のそれぞれの前記出力光監視結果が入力され、前記出力光監視結果に基づいて、前記複数の光送信機の前記合成光の光強度の目標値を決定する、比較部を更に備えることを特徴とする、付記12に記載の波長多重伝送装置。
 (付記14)光を第一分岐光と、第二分岐光とに分岐する分岐工程と、前記第一分岐光の位相変調を行う第一変調工程と、前記第二分岐光の位相変調を行う第二変調工程と、前記第一変調工程により変調された第一変調光と、前記第二変調工程により変調された第二変調光と、のいずれか一方の偏波面を回転させる回転工程と、前記第一変調光と前記第二変調光とを合成する偏波合成工程と、前記偏波合成工程により合成された合成光の光強度を監視する監視工程と、前記監視工程による監視結果に基づいて、前記第一変調工程を行う変調器及び前記第二変調工程を行う変調器のうち少なくとも一方を制御する制御工程と、を備え、前記制御工程には、前記第一変調光と前記第二変調光の少なくとも一方の光強度を、変調曲線における光強度の最大値よりも小さくする光強度制御工程が含まれることを特徴とする、光送信方法。
 (付記15)前記監視工程において、前記第一変調光の光強度と、前記第二変調光の光強度とを更に監視することを特徴とする、付記14に記載の光送信方法。
 (付記16)前記第一変調光の一部の光電変換を行う第一の光電変換工程と、前記第二変調光の一部の光電変換を行う第二の光電変換工程と、前記合成光の一部の光電変換を行う第三の光電変換工程と、を更に備え、前記監視工程においては、前記第一乃至第三の光電変換工程によって変換された電気信号に基づいて、前記第一変調光と、前記第二変調光と、前記合成光と、のそれぞれの光強度を監視することを特徴とする、付記15に記載の光送信方法。
 (付記17)前記第一変調光の一部の光電変換を行う第一の光電変換工程と、前記第二変調光の一部の光電変換を行う第二の光電変換工程と、前記第一変調光及び前記第二変調光のそれぞれの光損失量に関する情報を記録する記録工程と、を更に備え、前記監視工程においては、前記第一及び第二の光電変換工程によって変換された電気信号と、前記記録工程により記録された前記光損失量に関する情報と、に基づいて、前記第一変調光と、前記第二変調光と、前記合成光と、のそれぞれの光強度を監視することを特徴とする、付記15に記載の光送信方法。
 (付記18)前記光損失量に関する情報には、前記第一の光電変換工程において発生する光損失量と、前記第二に光電変換工程において発生する光損失量と、前記偏波合成工程において発生する光損失量と、に関する情報が少なくとも含まれることを特徴とする、付記17に記載の光送信方法。
 (付記19)前記制御工程においては、前記第一変調工程を行う第一変調部と、前記第二変調工程を行う第二変調部と、に印加するバイアス電圧の大きさを制御することによって、前記光強度制御を行うことを特徴とする、付記14乃至18のいずれか一つに記載の光送信方法。
 (付記20)前記制御工程においては、前記バイアス電圧の動作点を、変調曲線において光強度が最大となるためのバイアス電圧の動作点から±Vπ/4(Vπ:変調曲線において光の位相をπ変化させることができる電圧の大きさ)の範囲内で制御することを特徴とする、付記19に記載の光送信方法。
 (付記21)前記制御工程においては、前記第一変調工程を行う第一変調部と、前記第二変調工程を行う第二変調部と、に入力する駆動信号の振幅を制御することによって、前記光強度制御を行うことを特徴とする、付記14乃至18のいずれか一つに記載の光送信方法。
 (付記22)前記制御工程においては、前記駆動信号の振幅を、変調曲線において光強度が最大となるための振幅から±Vπ/2(Vπ:変調曲線において光の位相をπ変化させることができる電圧の大きさ)の範囲内で制御することを特徴とする、付記21に記載の光送信方法。
 (付記23)前記第一変調工程を行う第一変調部と、前記第二変調工程を行う第二変調部と、に印加するバイアス電圧には、所定の周波数のパイロット信号が重畳され、前記監視工程において、前記第一の変調部から出力される前記パイロット信号の位相と、前記第二の変調部から出力される前記パイロット信号の位相と、を更に監視することを特徴とする、付記19乃至22のいずれか一つに記載の光送信方法。
 (付記24)前記監視工程において、前記第一変調部から出力される前記パイロット信号の振幅を検出することで、前記第一変調光の光強度を監視し、前記第二の変調部から出力される前記パイロット信号の振幅を検出することで、前記第二変調光の光強度を監視することを特徴とする、付記23に記載の光送信方法。
 (付記25)互いに異なる波長を有する光を多重する波長多重工程を備え、前記互いに異なる波長を有する光はそれぞれ、付記14乃至24のいずれか一つに記載の光送信方法によって送信される光であることを特徴とする、波長多重伝送方法。
 (付記26)第一分岐光が位相変調されることで生じる第一変調光と、前記第一変調光と偏波面が異なり、第二分岐光が位相変調されることで生じる第二変調光と、の合成光の光強度を監視する監視工程と、前記監視工程による監視結果に基づいて、前記第一分岐光の位相変調及び前記第二分岐光の位相変調のうち少なくとも一方を制御する制御工程と、をコンピュータに実行させ、前記制御工程には、前記第一変調光と前記第二変調光の少なくとも一方の光強度を、変調曲線における光強度の最大値よりも小さくする光強度制御工程が含まれることを特徴とする、プログラム。
 (付記27)コンピュータに読み取り可能な情報記憶媒体であって、付記26に記載のプログラムを記録することを特徴とする記録媒体。
 以上、好ましい実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2011年3月25日に出願された日本出願特願2011−67700号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
Embodiments of the present invention will be described with reference to the drawings. However, such a form does not limit the technical scope of the present invention.
[First Embodiment]
The optical transmitter according to the first embodiment of the present invention will be described with reference to FIG. FIG. 2 shows a configuration of the optical transmitter 10 in the present embodiment.
The optical transmitter 10 includes a modulator 11, an output light monitoring unit 12, and a control unit 13. The modulator 11 includes a branching unit 14, a first modulating unit 15, a second modulating unit 16, a rotator 17, and a polarization beam combining unit 18. The branching unit 14 branches the light input to the modulator 11 into a first branched light and a second branched light. The first modulation unit 15 performs phase modulation of the first branched light. The second modulation unit 16 performs phase modulation of the second branched light. The rotator 17 rotates one of the polarization planes of the first modulated light output from the first modulation unit 15 and the second modulated light output from the second modulation unit 16. The polarization beam combiner 18 combines the first modulated light and the second modulated light.
The output light monitoring unit 12 monitors the light intensity of the combined light output from the polarization beam combining unit 18.
The control unit 13 controls at least one of the first modulation unit 15 and the second modulation unit 16 based on the monitoring result by the output light monitoring unit 12. The control performed by the control unit 13 includes control for making the light intensity of at least one of the first modulated light and the second modulated light smaller than the maximum value of the light intensity in the modulation curve.
Next, the operation of the optical transmitter 10 will be described with reference to FIG.
First, the light input to the modulator 11 of the optical transmitter 10 is branched into the first branched light and the second branched light by the branching unit 14 (step 1). Then, the first branched light is phase-modulated by the first modulation unit 15 and becomes the first modulated light. Further, the second branched light is phase-modulated by the second modulation unit 16 to become second modulated light (step 2). The first modulated light and the second modulated light are combined by the polarization beam combiner 18 (step 3). The combined light output from the polarization beam combiner 18 is output from the optical transmitter 10.
Here, the output light monitoring unit 12 monitors the light intensity of the combined light output from the polarization beam combining unit 18 (step 4). The output light monitoring unit 12, for example, as in a second embodiment described later, is based on the output from the photoelectric conversion element into which the output light from the polarization beam combining unit 18 is branched and input, and the combined light It is good also as monitoring intensity. Alternatively, as in a third embodiment to be described later, based on the light intensity of the first modulated light, the light intensity of the second modulated light, and information on the light loss recorded in the recording unit, the light of the synthesized light It is good also as monitoring intensity. Thus, the output light monitoring unit 12 only needs to be able to monitor the light intensity of the combined light output from the polarization beam combining unit 18 by any method, and the specific configuration is not limited.
The control unit 13 controls at least one of the first modulation unit 15 and the second modulation unit 16 based on the monitoring result by the output light monitoring unit 12 (step 5).
Here, the control by the control unit 13 includes control for making the light intensity of at least one of the first modulated light and the second modulated light smaller than the maximum value of the light intensity in the modulation curve. That is, the control unit 13 performs control to darely reduce the light intensity below the maximum value in the modulation curve depending on the monitoring result by the output light monitoring unit 12. For example, when it is found from the monitoring result by the output light monitoring unit 12 that the light intensity of the combined light is higher than a desired value, the control unit 13 controls the first modulation unit 15 to control the first modulation. It is also possible to reduce the light intensity. Alternatively, the control unit 13 may control the second modulation unit 16 to reduce the light intensity of the second modulated light. Alternatively, the control unit 13 may control both the first modulation unit 15 and the second modulation unit 16. Thus, the control unit 13 reduces the light intensity of the combined light by reducing the light intensity of at least one of the first modulated light and the second modulated light.
In this way, the optical transmitter 10 can attenuate the light intensity of the combined light output from the polarization beam combiner 18 inside the optical transmitter 10 according to the monitoring result by the output light monitoring unit 12. it can.
Then, by repeating the steps from Step 1 to Step 5, the light intensity of the output light from the optical transmitter 10 can be converged to a desired value.
As described above, the optical transmitter 10 in the present embodiment can adjust the light intensity of the output light to a desired value by controlling at least one of the first modulation unit 15 and the second modulation unit 16. it can. Therefore, it is not necessary to add VOA outside the optical transmitter 10 in order to set the optical output intensity of the optical transmitter 10 to a desired value. Similarly, it is not necessary to provide a VOA inside the optical transmitter 10. Therefore, according to the present embodiment, it is possible to reduce the component cost as compared with the case where the VOA is added inside or outside the optical transmitter.
In Patent Documents 1 to 3, only control based on the light intensity of one polarized wave is described. For this reason, no consideration is given to optical loss or the like that occurs when two polarizations are combined. On the other hand, in the present embodiment, the light intensity of the combined light obtained by combining the two polarized waves is monitored. Therefore, even when polarization combining is performed in the optical transmitter, the optical output intensity can be accurately controlled.
[Second Embodiment]
An optical transmitter according to the second embodiment of the present invention will be described with reference to FIG. FIG. 4 shows a configuration of the optical transmitter 20 in the present embodiment.
The optical transmitter 20 in the present embodiment includes a light source 21, a modulator 22, an output light monitoring unit 23, a control unit 24, a bias circuit 25, a drive circuit 26, and an external photoelectric element 27. The modulator 22 includes a branching unit 28, a first modulating unit 29, a second modulating unit 30, a rotor 31, a polarization beam combining unit 32, a first internal photoelectric element 33, and a second internal photoelectric element 34. And having.
The optical transmitter 20 in the present embodiment performs optical transmission using a DP-QPSK (Dual Polarization-Differential Quadrature Phase Shift Keyin) method. The DP-QPSK method is a method in which 2-bit data can be assigned to each of four modulated lights with respect to two orthogonal polarizations.
Each of the first modulation unit 29 and the second modulation unit 30 includes two Mach-Zehnder interferometers that constitute an I arm and a Q arm, and performs quaternary phase modulation (QPSK modulation). Further, a phase shift unit 35 is provided on the output side of each arm. 1 ~ 35 4 Is placed. Phase shift unit 35 1 ~ 35 4 Respectively gives a relative phase difference to the light propagating through the I arm or the Q arm. In QPSK modulation, [θ], [θ + π / 2], [θ + π], [θ] for each symbol [00], [10], [11], [01] composed of 2-bit data, respectively. [Θ + 3π / 2] is assigned. Here, θ is an arbitrary phase.
The external photoelectric element 27 is disposed on the output side of the modulator 22 and receives a part of the combined light output from the polarization beam combiner 32. The polarization beam combiner 32 is also called a polarization beam combiner (PBC), and is an optical coupler that combines a plurality of lights having polarization planes with different angles.
The first internal photoelectric element 33 is disposed on the output side of the first modulation unit 29 and receives a part of the first modulated light output from the first modulation unit 29. The second photoelectric element 34 is disposed on the output side of the second modulation unit 30 and receives a part of the second modulated light output from the second modulation unit 30. The external photoelectric element 27, the first internal photoelectric element 33, and the second internal photoelectric element 34 are photoelectric conversion elements such as PD (Photo Diode), for example.
The output light monitoring unit 23 monitors the light intensity of the combined light based on the output from the external photoelectric element 27. Further, based on the output from the first internal photoelectric element 33, the light intensity of the first modulated light is monitored. Further, the light intensity of the second modulated light is monitored based on the output from the second internal photoelectric element 34.
The control unit 24 controls the light source 21, the bias circuit 25, and the drive circuit 26. Note that the control unit 24 in the present embodiment controls the bias circuit 25 based on the monitoring result by the output light monitoring unit 23, thereby applying a bias to be applied to each arm of the first modulation unit 29 and the second modulation unit 30. Control the voltage.
The bias circuit 25 applies a bias voltage to the first modulation unit 29 and the second modulation unit 30. Specifically, the bias circuit 25 includes an I arm and a Q arm included in the first modulation unit 29 and the second modulation unit 30, and a phase shift unit 35. 1 ~ 35 4 For each, a bias voltage is applied.
The drive circuit 26 inputs drive signals to the first modulation unit 29 and the second modulation unit 30. Specifically, the drive circuit 26 inputs drive signals to the I arm and the Q arm included in the first modulation unit 29 and the second modulation unit 30, respectively.
The relationship among the modulation curves in the I and Q arms of the first modulation unit 29 and the second modulation unit 30, the pilot signal waveform, and the amplitude of the drive signal will be described with reference to FIG.
First, a graph of a modulation curve in each arm of the modulator 22 will be described. The vertical axis in this graph indicates the light output intensity of the output light from each arm. The horizontal axis indicates the magnitude of the bias voltage applied to each arm of the modulator 22. In the QPSK modulation method, the input signal is generally modulated with a drive signal having an amplitude of 2Vπ in this modulation curve. Here, Vπ is a voltage that can change the phase of light by π in the modulation curve. FIG. 5 also shows the relationship between the amplitude of the drive signal and the modulation curve. From this graph, it can be seen that the light intensity of the output light can be controlled by controlling the operating point of the bias voltage input to each arm of the modulator 22.
In the present embodiment, a pilot signal having a constant frequency and amplitude is superimposed on the bias voltage applied to each arm. The output light monitoring unit 23 detects the demodulated pilot signal from the output of the first internal photoelectric element 33. Specifically, the output light monitoring unit 23 removes a DC (Direct Current) component from the electrical signal output from the first internal photoelectric element 33 and extracts only an AC (Alternate Current) component. As a result, the output light monitoring unit 23 detects the demodulated pilot signal. Similarly, the output light monitoring unit 23 detects the demodulated pilot signal from the output from the second internal photoelectric element 34. FIG. 5 also shows the waveform of the pilot signal superimposed on the bias voltage and the waveform of the demodulated pilot signal.
FIG. 5 shows that the amplitude of the demodulated pilot signal is minimized when the bias voltage and the drive signal amplitude are controlled so that the light output intensity is maximized (PEAK point). That is, when the operating point of the bias voltage is adjusted to the NULL point in the modulation curve and the amplitude of the drive signal is 2Vπ, the amplitude of the pilot signal is minimized and the light output intensity is maximized. In other words, the light output intensity is maximized by controlling the bias voltage and the drive signal amplitude so that the amplitude of the pilot signal is minimized. It can also be seen that when the bias voltage is controlled so that the optical output intensity is intermediate (QUADRATURE point) between the maximum (PEAK point) and minimum (NULL point), the amplitude of the demodulated pilot signal is maximum. . For example, if the amplitude of the drive signal is not changed from 2Vπ and the operating point of the bias voltage is shifted by Vπ / 2 from the NULL point, the amplitude of the demodulated pilot signal becomes maximum. Note that the phase of the demodulated pilot signal differs depending on whether the operating point of the bias voltage is shifted to the left from the NULL point or to the right from the NULL point. Here, the fact that the operating point of the bias voltage is shifted leftward from the NULL point indicates that the bias voltage is shifted in the direction of decreasing. Here, the fact that the operating point of the bias voltage shifts to the right from the NULL point indicates that the bias voltage shifts in the direction in which the bias voltage increases. That is, by detecting the amplitude and phase of the demodulated pilot signal, it is possible to determine how much the operating point of the bias voltage is shifted from the NULL point in which direction.
Next, the operation of the optical transmitter 20 will be described.
First, the light output from the light source 21 of the optical transmitter 20 is branched into the first branched light and the second branched light by the branching unit 28.
The first branched light is input to the first modulation unit 29. The first branched light input to the first modulation unit 29 propagates through the I arm and the Q arm included in the first modulation unit 29 and is phase-modulated in each arm. Here, the bias voltage output from the bias circuit 25 and the drive signal output from the drive circuit 26 are input to the I arm and the Q arm of the first modulation unit 29, respectively.
The first branched light is phase-modulated by the first modulation unit 29 to become first modulated light, and is output from the first modulation unit 29. At this time, a part of the first modulated light is input to the first internal photoelectric element 33. The first internal photoelectric element 33 converts the input optical signal of the first modulated light into an electrical signal.
The output light monitoring unit 23 monitors the light intensity of the first modulated light based on the output of the first internal photoelectric element 33 and inputs the monitoring result to the control unit 24. Specifically, the output light monitoring unit 23 detects the amplitude and phase of the demodulated pilot signal by extracting the AC component of the electrical signal output from the first internal photoelectric element 33. Here, the output light monitoring unit 23 monitors the light intensity of the first modulated light by utilizing the correlation shown in FIG. 5 between the amplitude of the demodulated pilot signal and the light output intensity. Therefore, the output light monitoring unit 23 records information on the relationship between the modulation curve and the pilot signal of each arm included in the first modulation unit 29 and the second modulation unit 30. Specifically, the output light monitoring unit 23 records information on the relationship among the amplitude of the pilot signal, the phase of the pilot signal, the light intensity, and the bias voltage as shown in FIG. Accordingly, the output light monitoring unit 23 can monitor the light intensity of the first modulated light based on the amplitude information of the demodulated pilot signal.
The control unit 24 controls the bias voltage applied to the first modulation unit 29 based on the monitoring result input from the output light monitoring unit 23. For example, when it is determined from the monitoring result of the output light monitoring unit 23 that the light intensity of the first modulated light is larger than a desired value, the light intensity attenuates the bias voltage applied to the first modulation unit 29. To control. At this time, the control unit 24 refers to the phase of the demodulated pilot signal to determine whether the bias voltage should be controlled to be increased or decreased.
On the other hand, the second branched light output from the branching unit 28 is input to the second modulation unit 30. The second branched light input to the second modulation unit 30 propagates to the I arm and the Q arm included in the second modulation unit 30 and is phase-modulated in each arm. Here, the bias voltage output from the bias circuit 25 and the drive signal output from the drive circuit 26 are input to the I arm and the Q arm of the second modulation unit 30, respectively.
The second branched light is phase-modulated by the second modulation unit 30 to become second modulated light, and is output from the second modulation unit 30. At this time, part of the second modulated light is input to the second internal photoelectric element 34. The second internal photoelectric element 34 converts the input optical signal of the second modulated light into an electrical signal.
The output light monitoring unit 23 monitors the light intensity of the second modulated light based on the output from the second internal photoelectric element 34 and inputs the monitoring result to the control unit 24. Specifically, the output light monitoring unit 23 detects the amplitude and phase of the demodulated pilot signal by extracting the AC component of the electrical signal output from the second internal photoelectric element 34. Thereby, the output light monitoring unit 23 monitors the light intensity of the second modulated light, similarly to the case of the first modulated light.
The control unit 24 controls the bias voltage applied to the second modulation unit 30 based on the monitoring result input from the output light monitoring unit 23. For example, when it is determined from the monitoring result of the output light monitoring unit 23 that the light intensity of the second modulated light is larger than a desired value, the light intensity attenuates the bias voltage applied to the second modulation unit 30. To control. At this time, the control unit 24 refers to the phase of the demodulated pilot signal to determine whether the bias voltage should be controlled to be increased or decreased.
The rotor 31 rotates the polarization plane of the second modulated light. Specifically, the rotator 31 rotates the polarization plane of the second modulated light so that the polarization plane of the second modulated light and the polarization plane of the first modulated light are orthogonal to each other.
The first modulated light and the second modulated light are combined by the polarization beam combiner 32 and output from the polarization beam combiner 32. Part of the combined light output from the polarization beam combiner 32 is input to the external photoelectric element 27. The external photoelectric element 27 converts the input combined light into an electric signal.
The output light monitoring unit 23 monitors the light intensity of the combined light based on the output from the external photoelectric element 27 and inputs the monitoring result to the control unit 24.
Here, the control unit 24 determines whether or not the light intensity of the combined light has a desired value based on the monitoring result of the light intensity of the combined light input from the output light monitoring unit 23.
When it is determined that the light intensity of the combined light does not have a desired value, the control unit 24 controls the bias circuit 25 to control the bias voltage input to the first modulation unit 29 and the second modulation unit 30. To do. Here, the control unit 24 controls the bias voltage so that the light intensity of the combined light becomes a desired value and the light intensity of the first modulated light and the light intensity of the second modulated light become the same value. To do. Whether or not the light intensity of the first modulated light and the light intensity of the second modulated light are the same is monitored for the light intensity of the first modulated light sequentially input from the output light monitoring unit 23. A determination is made based on the result and the monitoring result of the light intensity of the second modulated light.
Next, a more specific flow of the operation of the optical transmitter 20 will be described with reference to FIG.
First, at step 10, a target value of light intensity is set. In other words, 2X is set as the target value of the light intensity of the combined light output from the optical transmitter 20. Further, it is assumed that X (2X / 2) is set as the target value of the light intensity of the first modulated light and the second modulated light (step 10). The amplitude value of the drive signal input to each arm is constant, and the value is 2Vπ. The operating point of the bias voltage is set to a NULL point in the modulation curve as an initial value. It is assumed that light from the light source 21 is input to the modulator 22 having such settings.
The light output from the light source 21 is first branched into first branched light and second branched light by the branching unit 28.
Then, the first branched light is modulated into the first modulated light by the first modulation unit 29. Part of the first modulated light output from the first modulation unit 29 is input to the first internal photoelectric element 33 and converted into an electrical signal. The output light monitoring unit 23 extracts a pilot signal that is an AC component from the electrical signal output from the first internal photoelectric element 33. Then, the light intensity of the first modulated light is determined based on the information on the amplitude and phase of the extracted pilot signal and information on the relationship between the modulation curve and the pilot signal recorded in advance. The output light monitoring unit 23 notifies the control unit 24 of information on the light intensity of the first modulated light. The control unit 24 determines whether or not the notified light intensity of the first modulated light matches the target value X (step 11).
If it is determined that the light intensity of the first modulated light is greater than the target value X, that is, if NO in step 11, the bias voltage is controlled (step 12). The control of the bias voltage at this time is control for shifting the operating point of the bias voltage from the point at which the light intensity becomes maximum in the modulation curve, that is, from the NULL point. Whether the operating point of the bias voltage is changed in the direction in which the bias voltage increases or decreases is determined based on the phase of the demodulated pilot signal.
In this way, the light intensity of the first modulated light is adjusted to the target value X. When the light intensity of the first modulated light matches the target value X, the process proceeds to step 13.
Similarly, by controlling the bias voltage applied to the second modulation unit 30 (steps 11 and 12), the light intensity of the second modulated light is also adjusted to the target value X. That is, the control unit 24 determines whether or not the notified light intensity of the second modulated light matches the target value X (step 11). If it is determined that the light intensity of the second modulated light is greater than the target value X, that is, if NO in step 11, the bias voltage is controlled (step 12). In this way, the light intensity of the second modulated light is also adjusted to the target value X. When the light intensity of the second modulated light matches the target value X, the process proceeds to step 13.
After the polarization plane of the second modulated light is rotated by the rotor 31, the first modulated light and the second modulated light are combined by the polarization beam combining unit 32. Part of the combined light output from the polarization beam combiner 32 is input to the external photoelectric element 27 and converted into an electrical signal. The output light monitoring unit 23 monitors the light intensity of the combined light based on the electrical signal output from the external photoelectric element 27 and inputs the monitoring result to the control unit 24.
The control unit 24 determines from the input monitoring result whether the light intensity of the combined light matches the target value 2X (step 13). Here, it is assumed that the light intensity of the combined light is 2X−α, which is different from the target value 2X, and the light intensity of the combined light does not match the target value, that is, NO in step 13. Although the light intensity of the first modulated light and the second modulated light is set to X, the reason why the light intensity of the combined light does not become 2X is that the propagation loss when the modulated polarized wave propagates through the transmission path, This is because optical loss such as insertion loss of the rotor 31 and the polarization beam combiner 32 occurs.
In this case, the control unit 24 resets the target value of the first modulated light, and changes the target value of the first modulated light from X to X + (α / 2) (step 14). Similarly, the target value of the second modulated light is reset, and the target value of the second modulated light is changed from X to X + (α / 2) (step 14).
When the resetting of the light intensity target value is completed in step 14, the process returns to steps 11 and 12. That is, the control unit 24 controls the bias voltage so that the light intensities of the first modulated light and the second modulated light become the reset target values.
Then, Steps 11 to 14 are repeated until it is determined in Step 13 that the light intensity of the combined light has reached the target value 2X. If it is determined in step 13 that the light intensity of the combined light has reached the target value 2X, the control is completed (step 15).
However, even if the control is completed (step 15), the light intensity of the first modulated light, the second modulated light, or the combined light may deviate from the target value again as time elapses. In this case, the control unit 24 resumes control of the bias voltage. After the light intensity is adjusted to the target value, the cause of the deviation from the target value again includes, for example, a change in the use environment temperature of the optical transmitter 20.
As described above, the bias voltage is controlled by the control unit 24.
Thus, in this embodiment, the light intensity of the output light can be adjusted to a desired value by controlling the bias voltage applied to the first modulation unit 29 or the second modulation unit 30. Therefore, it is not necessary to add a VOA inside and outside the optical transmitter 20, leading to cost reduction. In particular, when the optical transmitter 20 in the present embodiment is applied to an optical transmitter in a ROADM (Reconfigurable Optical Add / Drop Multiplexer) system or the like, the cost can be greatly reduced.
Furthermore, as the other effects obtained by using the optical transmitter 20 of the present embodiment, there are the following two.
First, when the optical transmitter 20 in the present embodiment is used as a coherent optical transmitter, the optical receiver characteristics in coherent communication can be stabilized.
The optical output fluctuation in a coherent optical transmitter that performs QPSK modulation, which is generally available in the current market, is a specification of ± 3 to 4 dB in consideration of output fluctuation in EOL (End of Life). This value is considerably larger than the specification of optical output fluctuation in an IM-DD (Intensity Modulation-Direct Detection) modulator. Therefore, when a coherent optical transmitter that performs QPSK modulation is used, the magnitude of the output fluctuation causes the reception characteristics of the optical receiver to deteriorate. On the other hand, when the optical transmitter according to this embodiment is used, the optical output intensity can be controlled to a desired value within the optical transmitter. Therefore, according to the optical transmitter 20 in the present embodiment, even when applied to coherent communication, it is possible to reduce the optical output fluctuation of the coherent transmitter without adding a VOA outside the optical transmitter. It becomes. Thereby, the receiving characteristic of the optical receiver can be stabilized.
Second, by using the optical transmitter 20 in the present embodiment, it is possible to suppress the difference in light intensity between the polarized waves. Hereinafter, the difference in light intensity between the polarized waves will be referred to as an inter-polarization deviation.
Generally, when polarization synthesis is performed after the light is split and modulated, a deviation between polarizations is generated due to a difference in propagation loss of each polarization. For example, the difference between the actual light intensity of the first modulated light and the light intensity of the second modulated light in the case where the light intensity of the first modulated light and the second modulated light is controlled to be maximum is the difference between the polarizations. Deviation.
When this deviation between polarizations is large, it causes deterioration in reception sensitivity when the transmitted output light is received by the optical receiver. Therefore, it is desirable that the deviation between polarizations is small. Here, in the present embodiment, the first internal photoelectric element 33 and the second internal photoelectric element 34 monitor the light intensity of each of the first modulated light and the second modulated light. Therefore, by making the target value of the light intensity of each modulated light the same value, it is possible to suppress the deviation between polarizations.
In the present embodiment, the light intensity of the first modulated light and the second modulated light is monitored by detecting the amplitude of the pilot signal. However, the present invention is not limited to this. That is, the light intensity of the output light may be monitored by extracting the DC component instead of the AC component of the electrical signal output from the first internal photoelectric element 33 and the second internal photoelectric element 34.
Furthermore, in the present embodiment, the target value of the light intensity of the first modulated light and the second modulated light is set to the same value, but the present invention is not limited to this. That is, a difference may be generated between the target values of the light intensity of the first modulated light and the second modulated light as long as the difference does not cause deterioration in reception sensitivity on the receiver side. For example, when the deviation between the light intensity of the combined light and the target value is very small in step 13, only the target value of either the first modulated light or the second modulated light is changed in step 14. It is also good.
Further, in the present embodiment, one output light monitoring unit 23 uses the first modulated light, the second modulated light, and the second modulated light based on the outputs from the first internal photoelectric element 33, the second internal photoelectric element 34, and the external photoelectric element 27. Although the light intensity of the modulated light and the combined light is monitored, the present invention is not limited to this. For example, as shown in FIG. 7, an internal output light monitoring unit 36 to which outputs from the first internal photoelectric element 33 and the second internal photoelectric element 34 are input, and an external output to which output from the external photoelectric element 27 is input. It is good also as dividing with the optical monitoring part 37. FIG.
Furthermore, in the present embodiment, the output light monitoring unit 23 records information on the relationship between the modulation curve of the modulator of each arm and the pilot signal, but the present invention is not limited to this. For example, the control unit 24 may record these information.
When controlling the first modulation unit 29 or the second modulation unit 30, it is preferable to match the light intensity of the output light from the I arm and the light intensity of the output light from the Q arm. That is, it is preferable to control the first modulation unit 29 or the second modulation unit 30 while maintaining a balance between the I component and the Q component as in the constellation map shown in FIG. 8A. If the light intensity of the output light from the I arm and the light intensity of the output light from the Q arm are significantly different, as shown in FIG. 8B, the balance between the I component and the Q component is lost, and the orthogonality of the optical signal This is because the property is lowered.
In order to align the light intensity of the output light from the I arm and the output light from the Q arm, for example, the control unit 24 refers to the modulation curve of each arm, and the first modulation unit 29 or the second modulation. The unit 30 may be controlled.
In general, it is considered undesirable for the operating point of the bias voltage to deviate from the NULL point, that is, the point where the light output intensity is maximum, because this leads to signal degradation. In the case of the NRZ (Non-Return-to-Zero) system, it is considered undesirable that the operating point of the bias voltage deviates from the QUADRATURE point, that is, the point where the optical output intensity is maximum, because this leads to signal degradation. . Therefore, in the optical transmitters and modulators described in Patent Documents 1 to 3, the magnitude of the bias voltage is controlled so that the optical output intensity becomes a maximum value. However, in the present embodiment, the control for setting the optical output intensity of the optical transmitter to a predetermined value includes the control for deliberately shifting the operating point of the bias voltage from the point at which the optical output intensity is maximized. . Hereinafter, the reason will be described based on the experimental data shown in FIGS.
FIG. 9 shows the relationship between the bias voltage applied to the I arm and Q arm of the LN modulator used in the QPSK modulation method and the amplitude of the demodulated pilot signal. The amplitude and frequency of the pilot signal superimposed on the bias voltage were 120 mVpp and 1 kHz, respectively. Here, the position (point C) at which the amplitude of the demodulated pilot signal becomes zero in FIG. 9 indicates the case where the operating point of the bias voltage is set to the NULL point in the modulation curve.
10A to 10E show the waveform of the demodulated pilot signal and the signal waveform of the output light when the bias voltage is adjusted to a value corresponding to points A to E in FIG. The upper diagrams in FIGS. 10A to 10E show the demodulated pilot signal waveforms, and the lower diagrams in FIGS. 10A to 10E show the output light signal waveforms. The bias voltages corresponding to points A to E in FIG. 9 are -2.569 V (point A), -1.142 V (point B), -0.428 V (point C), 0.142 V (point D), respectively. And 1.427 V (point E). Further, when the operating point of each bias voltage is indicated by a deviation from the NULL point of the modulation curve, −Vπ / 2 (point A), −Vπ / 4 (point B), zero (point C), + Vπ / 4. (Point D) and + Vπ / 2 (Point E). Here, Vπ is the magnitude of the voltage necessary for changing the phase of light by π in the modulation curve. It should be noted that the point C is slightly deviated from the position where the amplitude of the pilot signal becomes zero, which is due to the accuracy of bias voltage control of the apparatus used in the experiment. That is, it is difficult to accurately match the operating point of the bias voltage to the NULL point in the modulation curve, and some errors will occur.
Here, the width of the horizontal bar connecting the inverted triangular shapes appearing in the output waveforms of the output light shown in FIGS. 10A to 10E is defined as a width d. If the width d is longer than the width d when the operating point of the bias voltage is set to a NULL point in the modulation curve (FIG. 10C), signal degradation has occurred.
10B and 10D, it can be seen that the width d in the output waveform when the operating point of the bias voltage is changed ± Vπ / 4 from FIG. 10C is almost the same as the width d in FIG. 10C. That is, it can be seen that even if the operating point of the bias voltage is changed by ± Vπ / 4 from the NULL point in the modulation curve, signal degradation hardly occurs.
On the other hand, it can be seen from FIGS. 10A and 10E that the width d in the output waveform when the operating point of the bias voltage is changed ± Vπ / 2 from FIG. 10C is considerably larger than the width d in FIG. 10C. That is, it can be seen that signal deterioration occurs when the operating point of the bias voltage is changed ± Vπ / 2 from the NULL point in the modulation curve.
From the above results, it was found that if the bias voltage is varied in the range of ± Vπ / 4 from the NULL point in the modulation curve, the signal deterioration does not occur so much. That is, even if the operating point of the bias voltage is shifted from the NULL point in the modulation curve, the light intensity can be attenuated with almost no signal deterioration if the deviation is in the range of ± Vπ / 4. I understood.
For this reason, the control of the bias voltage of the optical transmitter 20 in the present embodiment includes the control for attenuating the light intensity by shifting the operating point of the bias voltage from the point where the light intensity is maximized.
By the way, the optical output intensity of a coherent optical transmitter that performs modulation using the QPSK modulation method usually varies by about ± 3 dB. That is, when a plurality of wavelengths are multiplexed, the difference in light intensity of light having different wavelengths is usually about 6 dB at the maximum. In order to eliminate this difference in light intensity, the light intensities of the respective wavelengths may be aligned with the light intensities of the light having the smallest light intensity. In this case, for light of other wavelengths, the light intensity may be attenuated by about 6 dB at the maximum. At this time, when each light is a combined light obtained by combining two polarized waves, it is only necessary to attenuate the light intensity by a maximum of about 3 dB per one polarized wave. Further, in the I arm and the Q arm, it is only necessary to attenuate the light intensity by about 1.5 dB at the maximum. Here, the maximum light output intensity of the modulator used in the QPSK modulation method is usually 20 dB or more. Therefore, attenuation of about 1.5 dB for each arm can be sufficiently realized by changing the operating point of the bias voltage within a range of ± Vπ / 4 from the NULL point in the modulation curve. That is, when the optical transmitter 20 according to the present embodiment is applied to a coherent optical transmitter, it is possible to correct a difference in light intensity between a plurality of wavelengths with almost no signal degradation.
In addition, although the optical transmitter 20 in this embodiment performed the optical transmission by a DP-QPSK system, it is not restricted to this. For example, the present embodiment can also be applied to an optical transmitter that performs optical transmission using a QAM (Quadrature Amplitude Modulation) method or the like. Note that the QAM method is a modulation method combining phase change and amplitude change, in which multi-level ASK (Amplitude-shift keying) is quadrature modulated.
[Third Embodiment]
An optical transmitter according to the third embodiment of the present invention will be described with reference to FIG. FIG. 11 shows a configuration of the optical transmitter 40 in the present embodiment.
The optical transmitter 40 in the present embodiment is different from the optical transmitter 20 in the second embodiment in that the external photoelectric element 27 is not included. In addition, the optical transmitter 40 includes a recording unit 41 that records information about optical loss. The recording unit 41 is a recording medium such as a ROM (Read Only Memory). Since other configurations are the same as those of the optical transmitter 20, description thereof is omitted.
The recording unit 41 records information on the amount of light loss of the first modulated light output from the first modulation unit 29 and information on the amount of light loss of the second modulated light output from the second modulation unit 30. Yes. The information regarding the optical loss amount of the first modulated light is, for example, the propagation loss of the first modulated light from when the first modulated light is output from the first modulator 29 to when it is output from the polarization beam combiner 32. Or the quantum efficiency of the first internal photoelectric device. Similarly, the information regarding the optical loss amount of the second modulated light is, for example, the second modulated light from when the second modulated light is output from the second modulator 30 to when it is output from the polarization beam combiner 32. And the quantum efficiency of the second internal photoelectric device. The information regarding the optical loss amount may further include the insertion loss amount of the rotor 31 or the polarization beam combiner 32. The insertion loss amount of the rotor 31 and the polarization beam combiner 32 is the amount of light loss of the first modulated light and the second modulated light due to the insertion of the rotor 31 and the polarization beam combiner 32.
Next, the operation of the optical transmitter 40 will be described.
Until the control unit 24 controls the bias voltage applied to the first modulation unit 29 and the second modulation unit 30 based on the monitoring result of the light intensity of a part of the first modulation light and the second modulation light, Since this is the same as steps 10 to 12 in the second embodiment, description thereof is omitted. Hereinafter, a process in which the optical transmitter 40 monitors the light intensity of the combined light output from the polarization beam combiner 32 will be described.
The output light monitoring unit 23 of the optical transmitter 40 receives the output from the first internal photoelectric element 33 and the second internal photoelectric element 34 and information on the amount of light loss recorded in the recording unit 41 from the polarization beam combining unit 32. The light intensity of the output synthesized light is calculated. That is, the light intensity of the first modulated light is calculated from the output from the first internal photoelectric element 33, and the light intensity of the second modulated light is calculated from the output from the second internal photoelectric element 34. Then, the light intensity of the combined light is calculated by subtracting the amount of light loss recorded in the recording unit 41 from the sum of the light intensity of the first modulated light and the light intensity of the second modulated light. For example, it is assumed that the light intensity of the first modulated light is 10 dB and the light intensity of the second modulated light is 10 dB. Then, it is assumed that the information regarding the light loss amount recorded in the recording unit 41 is the light loss amount 0.5 dB of the first modulated light and the light loss amount 0.5 dB of the second modulated light. In this case, the output light monitoring unit 23 calculates the light intensity of the combined light as 10 + 10− (0.5 + 0.5) = 19 dB.
Usually, the amount of light loss that occurs between the time when the first modulated light and the second modulated light are output from the first modulation unit 29 or the second modulation unit 30 until they are output from the polarization beam combining unit 32 is It is constant regardless of the light intensity of the light and the second modulated light. Therefore, by recording this amount of light loss in the recording unit 41, the light intensity of the synthesized light can be calculated without providing the external photoelectric element 27 as in the second embodiment.
When the output light monitoring unit 23 calculates the light intensity of the combined light, the output light monitoring unit 23 sends the calculation result to the control unit 24. Then, the control unit 24 controls the first modulation unit 29 and the second modulation unit 30 based on the monitoring result of the light intensity of the combined light transmitted from the output light monitoring unit 23. Since the operation after the monitoring result of the light intensity of the combined light is sent is the same as steps 14 and 15 in the second embodiment, the description thereof is omitted.
As described above, also in this embodiment, as in the second embodiment, it is not necessary to add a VOA inside and outside the optical transmitter, and the cost can be reduced. Further, when the optical transmitter 40 is used as the coherent optical transmitter, the optical receiver characteristics in the coherent communication can be stabilized. Further, it is possible to suppress the polarization deviation.
Further, unlike the optical transmitter 20, the optical transmitter 40 can monitor the light intensity of the combined light without adding the external photoelectric element 27. Therefore, the optical transmitter 40 can further reduce cost and downsize the transmitter as compared with the optical transmitter 20.
Furthermore, the optical transmitter 40 in the present embodiment records the amount of light loss of the first modulated light and the amount of light loss of the second modulated light. Therefore, the control unit 24 can set the target value of the light intensity of the first modulated light and the second modulated light according to the difference in the amount of light loss between the first modulated light and the second modulated light. For example, assume that the amount of light loss generated in the first modulated light is 1 dB and the amount of light loss generated in the second modulated light is 1.5 dB. In this case, the control unit 24 considers that the amount of light loss between the two is 0.5 dB different, and the target value of the light intensity of the first modulated light and the target value of the light intensity of the second modulated light are also different by 0.5 dB. Set with. That is, the target value of the light intensity of the first modulated light is made smaller by 0.5 dB than the target value of the light intensity of the second modulated light. Thereby, the optical transmitter 40 in the present embodiment can further reduce the deviation between polarizations of the first modulated light and the second modulated light included in the combined light.
Although the recording unit 41 is provided in the present embodiment, the present invention is not limited to this. For example, the output light monitoring unit 23 may include a recording unit and record information regarding optical loss. Alternatively, the control unit 24 may incorporate a recording unit and record information regarding optical loss.
Also in this embodiment, as in the second embodiment, it is desirable to make the light intensity of the output light of the I arm and Q arm uniform.
[Fourth Embodiment]
An optical transmitter according to the fourth embodiment of the present invention will be described. The optical transmitter 50 in the present embodiment is similar in configuration to the optical transmitter 20 in the second embodiment, but operates differently.
That is, in the optical transmitter 20 of the second embodiment, the control unit 24 controls the bias voltage applied to the first modulation unit 29 and the second modulation unit 30, so that the first modulation light and the second modulation light are applied. It was decided to control the light intensity of light and synthetic light. On the other hand, in the optical transmitter 50 of the present embodiment, the control unit 24 controls the amplitudes of the drive signals input to the first modulation unit 29 and the second modulation unit 30, so that the first modulated light and the second modulation light are transmitted. Control the light intensity of the light and the combined light.
The fact that the light intensity of the output light can be controlled by controlling the amplitude of the drive signal will be described with reference to FIGS.
FIG. 5 shows a graph of modulation curves in the I arm and Q arm of the modulator 22 as described above. FIG. 5 also shows the amplitude of the drive signal, which is 2Vπ here. On the other hand, FIG. 12 shows a case where the amplitude of the drive signal is set to a value α smaller than 2Vπ. It is assumed that the operating point of the bias voltage is set to the NULL point of the modulation curve as in the case shown in FIG.
From FIG. 12, it can be seen that by shifting the amplitude of the drive signal from 2Vπ by α, the light intensity of the output light decreases and the amplitude of the demodulated pilot signal increases. That is, it can be seen that the light intensity of the output light can be controlled by controlling the amplitude of the drive signal.
Using this principle, the optical transmitter 50 controls the amplitudes of the drive signals input to the first modulation unit 29 and the second modulation unit 30, so that the first modulated light, the second modulated light, and the combined light are mixed. Control light intensity.
Next, the operation of the optical transmitter 50 will be described in detail with reference to FIG. Note that steps 10, 11, and 13 to 15 in FIG. 13 are the same as the operation of the optical transmitter 20, and thus the description thereof is omitted. Hereinafter, step 16 which is an operation different from that of the optical transmitter 20 will be described.
If it is determined in step 11 that the light intensity of the first modulated light does not match the target value, the control unit 24 controls the amplitude of the drive signal input to the first modulation unit 29 (step 16). For example, when it is determined that the light intensity of the first modulated light is greater than the target value, control is performed to shift the amplitude of the drive signal from 2Vπ. Here, the control unit 24 records the relationship between the amplitude of the drive signal and the amplitude and phase of the pilot signal as shown in FIGS. Thus, the control unit 24 determines the amplitude of the drive signal for making the light intensity of the first modulated light coincide with the target value, and notifies the drive circuit 26 of the amplitude. Then, the drive circuit 26 inputs a drive signal having the amplitude notified from the control unit 24 to the first modulation unit 29. The amplitude of the drive signal output from the drive circuit 26 can be monitored by a peak detection function that the drive circuit 26 has.
In this way, the control unit 24 controls the first modulation unit 29. Similarly, the control unit 24 controls the second modulation unit 30 so that the light intensity of the second modulated light matches the target value.
As described above, the optical transmitter 50 in the present embodiment controls the amplitude of the drive signal input to the first modulation unit 29 and the second modulation unit 30, so that the light intensity of the output light from the optical transmitter 50 is controlled. Can be set to a desired value.
Therefore, also in this embodiment, the same effect as the second embodiment can be obtained. That is, it is not necessary to add a VOA inside and outside the optical transmitter 20, and the cost can be reduced. Moreover, when the optical transmitter 50 is used as a coherent optical transmitter, the optical receiver characteristics in coherent communication can be stabilized. Further, it is possible to suppress the polarization deviation.
In general, it is not preferable that the amplitude of the drive signal is 2Vπ, and in the NRZ system, Vπ, that is, deviating from the value at which the optical output intensity becomes maximum, is caused by signal deterioration. For this reason, in the optical transmitters and modulators described in Patent Documents 1 to 3, the amplitude of the drive signal is controlled to be a value that maximizes the optical output intensity. However, in the present embodiment, the control for setting the optical output intensity of the optical transmitter to a predetermined value includes the control for deliberately shifting the amplitude of the drive signal from the value at which the optical output intensity is maximized.
This is because if the range in which the amplitude of the drive signal is varied is within a predetermined range, the light intensity can be attenuated with little signal degradation.
The range in which the amplitude of the drive signal can be varied with almost no signal deterioration is within a range of ± Vπ / 2 from the amplitude value of the drive signal at which the optical output intensity is maximum.
[Fifth Embodiment]
By the way, when the coherent optical transmitter is applied to a WDM system, when the optical output intensity of the coherent optical transmitter fluctuates, the level deviation between channels of the WDM signal, that is, the tilt increases. FIG. 14 shows the light intensities of a plurality of channels having different wavelengths. In FIG. 14, the second channel from the left has a higher light intensity than the other channels, and tilt occurs.
Furthermore, in a general long-distance WDM system, a plurality of EDFAs (Erbium Doped Fiber Amplifiers) are used to perform optical amplification in multiple stages. Therefore, the increase in tilt has a great influence on the system. In particular, it affects the transmission distance, transmission bandwidth, etc. in the WDM system. This is because in order to maintain transmission quality, the guarantee of optical signal to noise ratio (OSNR) is a key point, but the OSNR for each channel greatly changes due to the increase in tilt. It is.
For example, ASE (Amplified Spontaneous Emission) light is used as the light source of the WDM signal.
Therefore, in the fifth embodiment of the present invention, a wavelength multiplexing transmission apparatus capable of suppressing an increase in tilt will be described.
FIG. 15 shows the configuration of the wavelength division multiplex transmission apparatus 60 in the present embodiment. The wavelength division multiplex transmission apparatus 60 includes a plurality of optical transmitters 10 according to the first embodiment. The plurality of optical transmitters 10 included in the wavelength division multiplexing transmission device 60 are respectively optical transmitters 10. 1 ~ 10 M And Also, the optical transmitter 10 1 ~ 10 M Each output light of different wavelengths. The wavelength multiplexing transmission device 60 further includes the optical transmitter 10. 1 ~ 10 M A wavelength multiplexing unit 61 that multiplexes the wavelengths output from the respective units is provided.
Next, the operation of the wavelength division multiplexing transmission device 60 will be described.
First, the optical transmitter 10 1 ~ 10 M A target value of the light intensity of the combined light is set in each control unit. At this time, the target value to be set is the optical transmitter 10. 1 ~ 10 M All values are common.
Next, the optical transmitter 10 1 ~ 10 M The control units respectively control the first modulation unit and the second modulation unit based on the monitoring result of the output light monitoring unit. Optical transmitter 10 at this time 1 ~ 10 M These operations are the same as steps 1 to 5 described in the first embodiment. Optical transmitter 10 1 ~ 10 M When all the light intensities of the output lights coincide with the target value, the control is completed.
And the optical transmitter 10 1 ~ 10 M The light output from each is wavelength multiplexed by the wavelength multiplexing unit 61 and output from the wavelength multiplexing transmission device 60.
As described above, in the present embodiment, the plurality of optical transmitters 10 included in the wavelength division multiplexing transmission device 60. 1 ~ 10 M The light intensity of the output light output from can be made to a common target value.
Therefore, according to the wavelength division multiplex transmission apparatus 60 in the present embodiment, it is possible to suppress an increase in tilt. Thereby, it becomes possible to suppress deterioration of communication characteristics.
Note that the optical transmitter 10 in the present embodiment. 1 ~ 10 M The target value of the output light set for each may be an arbitrary value, but is not limited thereto. For example, it may be set as follows.
First, the optical transmitter 10 1 ~ 10 M Each is operated to maximize the light output intensity. That is, the optical transmitter 10 1 ~ 10 M When performing QPSK modulation, the operating point of the bias voltage applied to each arm is set to the NULL point of the modulation curve. Further, the amplitude of the drive signal input to each arm is set to 2Vπ.
And the optical transmitter 10 1 ~ 10 M From the monitoring result of the output light monitoring unit that each has, the optical transmitter 10 1 ~ 10 M The light intensity of each output light is compared. Then, the lowest output light intensity is obtained from the optical transmitter 10. 1 ~ 10 M Is set as the target value of the output light intensity. That is, the optical transmitters other than the optical transmitter with the lowest light intensity of the output light perform control to attenuate the light intensity of its own output light. In addition, when setting a target value by such a method, it is necessary to provide the comparison part 62 as shown in FIG. The comparison unit 62 includes an optical transmitter 10. 1 ~ 10 M The monitoring results from the respective output light monitoring units 23 are input. The comparison unit 62 compares the input monitoring results and determines the target value of the output light intensity. Then, the comparison unit 62 converts the determined target value into the optical transmitter 10. 1 ~ 10 M To each control unit. As described above, the target value of the output light intensity may be set.
In addition, although the wavelength division multiplexing apparatus 60 of this embodiment decided to have two or more optical transmitters 10 in 1st Embodiment, it is not restricted to this. For example, a plurality of optical transmitters 20 in the second embodiment may be provided. Alternatively, a plurality of optical transmitters 40 in the third embodiment and a plurality of optical transmitters 50 in the fourth embodiment may be provided.
In the present embodiment, the optical transmitter 10 1 ~ 10 M Although each has a light source, it is not restricted to this. That is, the wavelength division multiplex transmission device 60 may include a wavelength tunable laser assembly (ITLA: Integrable Tunable Laser Assembly) that can switch wavelengths at high speed. Then, light having different wavelengths output from the wavelength tunable laser assembly is transmitted to the optical transmitter 10. 1 ~ 10 M It is good also as inputting into. Similarly, in this embodiment, the optical transmitter 10 1 ~ 10 M Although each has a control part, it is not restricted to this. That is, the wavelength division multiplexing transmission apparatus 60 includes one control unit, and the control unit is the optical transmitter 10. 1 ~ 10 M It is good also as controlling each 1st modulation | alteration part and 2nd modulation | alteration part.
As mentioned above, although embodiment which concerns on this invention was described referring drawings, it cannot be overemphasized that this invention is not limited to this embodiment. Various shapes, combinations, and the like of the constituent members shown in the above-described embodiments are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
In the first to fifth embodiments, a recording medium recording software program codes for realizing the functions of the embodiments is supplied to a communication terminal, and the computer of the communication terminal is stored in the recording medium. Needless to say, this can also be achieved by reading and executing the program code.
As the recording medium for supplying the program, for example, the above-mentioned program can be stored such as a CD-ROM (Compact Disc Read Only Memory), a DVD-R (Digital Versatile Disk Recordable), an optical disc, a magnetic disc, and a nonvolatile memory card. Anything is fine.
A part or all of the above-described embodiment can be described as in the following supplementary notes, but is not limited thereto.
(Supplementary Note 1) A modulator, an output light monitoring unit, and a control unit are provided, and the modulator branches the light input to the modulator into a first branched light and a second branched light A first modulation unit that performs phase modulation of the first branched light, a second modulation unit that performs phase modulation of the second branched light, and first modulated light output from the first modulation unit, A second rotating light output from the second modulating unit; a rotator that rotates one of the polarization planes; a polarization combining unit that combines the first modulated light and the second modulated light; The output light monitoring unit monitors the light intensity of the combined light output from the polarization beam combining unit, and the control unit performs the first modulation based on a monitoring result by the output light monitoring unit. And at least one of the second modulation unit, and the control includes at least one of the first modulated light and the second modulated light. The light intensity of the square, characterized in that includes a light intensity control to be smaller than the maximum value of the light intensity in the modulation curve, the optical transmitter.
(Supplementary note 2) The optical transmitter according to supplementary note 1, wherein the output light monitoring unit further monitors the light intensity of the first modulated light and the light intensity of the second modulated light.
(Additional remark 3) The 1st photoelectric conversion element into which the output light from said 1st modulation part is branched and input, and the 2nd photoelectric conversion element into which the output light from said 2nd modulation part is branched and input And a third photoelectric conversion element to which the output light from the polarization beam combiner is branched and input, and the output light monitoring unit outputs from the first to third photoelectric conversion elements The optical transmitter according to appendix 2, wherein the optical intensity of each of the first modulated light, the second modulated light, and the combined light is monitored based on
(Additional remark 4) The 1st photoelectric conversion element into which the output light from said 1st modulation part is branched and input, and the 2nd photoelectric conversion element into which the output light from said 2nd modulation part is branched and input And a recording unit that records information on the amount of optical loss of each of the first modulated light and the second modulated light, and the output light monitoring unit includes the first and second photoelectric conversion elements. The light intensity of each of the first modulated light, the second modulated light, and the combined light is monitored based on the output of the light and the information on the amount of light loss recorded in the recording unit The optical transmitter according to appendix 2, wherein:
(Supplementary Note 5) Information on the amount of optical loss includes information on the quantum efficiency of the first photoelectric conversion element, the quantum efficiency of the second photoelectric conversion element, and the insertion loss of the polarization beam combiner. The optical transmitter according to appendix 4, wherein at least the optical transmitter is included.
(Appendix 6) A drive unit that inputs a drive signal to the first modulation unit and the second modulation unit;
A bias circuit that applies a bias voltage to the first modulation unit and the second modulation unit, and the control unit controls the magnitude of the bias voltage output by the bias circuit, thereby The optical transmitter according to any one of appendices 1 to 5, wherein the optical intensity is controlled.
(Supplementary Note 7) The control unit sets the operating point of the bias voltage to ± Vπ / 4 (Vπ: π change in the phase of light in the modulation curve) from the operating point of the bias voltage for maximizing the light intensity in the modulation curve. The optical transmitter according to appendix 6, wherein the optical transmitter is controlled within a range of a magnitude of a voltage that can be generated).
(Supplementary Note 8) A drive unit that inputs a drive signal to the first modulation unit and the second modulation unit, a bias circuit that applies a bias voltage to the first modulation unit and the second modulation unit, The control unit performs the light intensity control by controlling the amplitude of the drive signal output from the drive unit, according to any one of appendices 1 to 5, Optical transmitter.
(Supplementary Note 9) The control unit may change the amplitude of the drive signal from the amplitude for maximizing the light intensity in the modulation curve by ± Vπ / 2 (Vπ: a voltage that can change the phase of the light in the modulation curve by π). 9. The optical transmitter according to appendix 8, wherein the optical transmitter is controlled within a range of
(Supplementary Note 10) A pilot signal having a predetermined frequency is superimposed on the bias voltage, and the output light monitoring unit outputs the phase of the pilot signal output from the first modulation unit and the second modulation unit. The optical transmitter according to any one of appendices 6 to 9, further monitoring the phase of the pilot signal to be transmitted.
(Supplementary Note 11) The output light monitoring unit monitors the light intensity of the first modulated light by detecting the amplitude of the pilot signal output from the first modulation unit, and from the second modulation unit. The optical transmitter according to appendix 10, wherein the optical intensity of the second modulated light is monitored by detecting the amplitude of the pilot signal to be output.
(Supplementary Note 12) A plurality of optical transmitters and a wavelength multiplexing unit that multiplexes wavelengths output from each of the plurality of optical transmitters, wherein each of the plurality of optical transmitters is any one of Supplementary Notes 1 to 11. A wavelength division multiplexing transmission apparatus, characterized by being an optical transmitter according to claim 1.
(Additional remark 13) The said output light monitoring result of each of these optical transmitters is input, and based on the said output light monitoring result, the target value of the optical intensity of the said synthesized light of these optical transmitters is determined. The wavelength division multiplex transmission apparatus according to appendix 12, further comprising a comparison unit.
(Supplementary Note 14) A branching process for splitting light into a first branched light and a second branched light, a first modulation process for performing phase modulation of the first branched light, and a phase modulation of the second branched light A second modulation step, a first step of modulating the first modulated light modulated by the first modulation step, and a second step of rotating the polarization plane of the second modulated light modulated by the second modulation step; Based on a polarization combining step of combining the first modulated light and the second modulated light, a monitoring step of monitoring the light intensity of the combined light combined by the polarization combining step, and a monitoring result by the monitoring step And a control step for controlling at least one of the modulator for performing the first modulation step and the modulator for performing the second modulation step. The control step includes the first modulated light and the second modulation step. At least one light intensity of the modulated light is changed to the light intensity in the modulation curve. Characterized to include a light intensity control step smaller than the maximum value, the light transmission method.
(Supplementary note 15) The optical transmission method according to supplementary note 14, wherein in the monitoring step, the light intensity of the first modulated light and the light intensity of the second modulated light are further monitored.
(Supplementary Note 16) A first photoelectric conversion step for performing photoelectric conversion of a part of the first modulated light, a second photoelectric conversion step for performing photoelectric conversion of a portion of the second modulated light, and the synthesized light A third photoelectric conversion step for performing a part of the photoelectric conversion, and in the monitoring step, the first modulated light based on the electrical signal converted by the first to third photoelectric conversion steps And the second modulated light and the combined light are monitored. The optical transmission method according to appendix 15, wherein:
(Supplementary Note 17) A first photoelectric conversion step for performing photoelectric conversion of a part of the first modulated light, a second photoelectric conversion step for performing photoelectric conversion of a portion of the second modulated light, and the first modulation A recording step of recording information on the amount of light loss of each of the light and the second modulated light, and in the monitoring step, the electrical signal converted by the first and second photoelectric conversion steps; Monitoring the light intensity of each of the first modulated light, the second modulated light, and the combined light based on the information on the amount of light loss recorded by the recording step. The optical transmission method according to appendix 15.
(Supplementary note 18) The information on the amount of light loss includes the amount of light loss generated in the first photoelectric conversion step, the amount of light loss generated in the second photoelectric conversion step, and the amount of light loss generated in the polarization combining step. 18. The optical transmission method according to appendix 17, wherein at least information on the amount of optical loss to be included is included.
(Supplementary Note 19) In the control step, by controlling the magnitude of the bias voltage applied to the first modulation unit that performs the first modulation step and the second modulation unit that performs the second modulation step, The optical transmission method according to any one of appendices 14 to 18, wherein the light intensity control is performed.
(Supplementary Note 20) In the control step, the operating point of the bias voltage is set to ± Vπ / 4 (Vπ: π of the phase of light in the modulation curve) from the operating point of the bias voltage for maximizing the light intensity in the modulation curve. 20. The optical transmission method according to appendix 19, wherein the control is performed within a range of the magnitude of the voltage that can be changed.
(Supplementary note 21) In the control step, by controlling the amplitude of the drive signal input to the first modulation unit that performs the first modulation step and the second modulation unit that performs the second modulation step, The optical transmission method according to any one of appendices 14 to 18, wherein the optical intensity control is performed.
(Supplementary Note 22) In the control step, the amplitude of the drive signal can be changed by ± Vπ / 2 (Vπ: π of the phase of light in the modulation curve) from the amplitude at which the light intensity is maximized in the modulation curve. The optical transmission method according to appendix 21, wherein control is performed within a range of voltage magnitude).
(Supplementary Note 23) A pilot signal of a predetermined frequency is superimposed on a bias voltage applied to the first modulation unit that performs the first modulation step and the second modulation unit that performs the second modulation step, and the monitoring In the step, the phase of the pilot signal output from the first modulation unit and the phase of the pilot signal output from the second modulation unit are further monitored. 22. The optical transmission method according to any one of 22.
(Supplementary Note 24) In the monitoring step, the light intensity of the first modulated light is monitored by detecting the amplitude of the pilot signal output from the first modulation unit, and is output from the second modulation unit. 24. The optical transmission method according to appendix 23, wherein the optical intensity of the second modulated light is monitored by detecting the amplitude of the pilot signal.
(Supplementary Note 25) A wavelength multiplexing step of multiplexing light having different wavelengths is provided, and each of the light having different wavelengths is light transmitted by the optical transmission method according to any one of Supplementary Notes 14 to 24. A wavelength division multiplexing transmission method characterized in that there is.
(Supplementary Note 26) First modulated light generated by phase-modulating the first branched light, second modulated light generated by phase-modulating the second branched light, which has a polarization plane different from that of the first modulated light, and A monitoring step of monitoring the light intensity of the combined light, and a control step of controlling at least one of the phase modulation of the first branched light and the phase modulation of the second branched light based on the monitoring result of the monitoring step And the control step includes a light intensity control step of reducing the light intensity of at least one of the first modulated light and the second modulated light to be smaller than the maximum value of the light intensity in the modulation curve. A program characterized by being included.
(Supplementary note 27) A computer-readable information storage medium that records the program according to supplementary note 26.
While the present invention has been described with reference to the preferred embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2011-67700 for which it applied on March 25, 2011, and takes in those the indications of all here.
 10、10~10、20、40  光送信機
 11、22  変調器
 12、23  出力光監視部
 13、24  制御部
 14、28  分岐部
 15、29  第一変調部
 16、30  第二変調部
 17、31  回転子
 18、32  偏波合成部
 21  光源
 25  バイアス回路
 26  駆動回路
 27  外部光電素子
 33  第一内部光電素子
 34  第二内部光電素子
 35~35  位相シフト部
 36  内部出力光監視部
 37  外部出力光監視部
 41  記録部
 60  波長多重伝送装置
 61  波長多重部
 62  比較部
10, 10 1 to 10 M , 20, 40 Optical transmitter 11, 22 Modulator 12, 23 Output light monitoring unit 13, 24 Control unit 14, 28 Branch unit 15, 29 First modulation unit 16, 30 Second modulation unit 17, 31 Rotor 18, 32 Polarization combining unit 21 Light source 25 Bias circuit 26 Drive circuit 27 External photoelectric element 33 First internal photoelectric element 34 Second internal photoelectric element 35 1 to 35 4 Phase shift unit 36 Internal output light monitoring unit 37 External Output Light Monitoring Unit 41 Recording Unit 60 Wavelength Multiplexing Transmission Device 61 Wavelength Multiplexing Unit 62 Comparison Unit

Claims (10)

  1.  変調器と、出力光監視部と、制御部と、を備え、
     前記変調器は、
     前記変調器に入力した光を、第一分岐光と、第二分岐光とに分岐する分岐部と、
     前記第一分岐光の位相変調を行う第一変調部と、
     前記第二分岐光の位相変調を行う第二変調部と、
     前記第一変調部から出力される第一変調光と、前記第二変調部から出力される第二変調光と、のいずれか一方の偏波面を回転させる回転子と、
     前記第一変調光と前記第二変調光とを合成する偏波合成部と、を有し、
     前記出力光監視部は、前記偏波合成部から出力される合成光の光強度を監視し、
     前記制御部は、前記出力光監視部による監視結果に基づいて、前記第一変調部及び前記第二変調部の少なくとも一方の制御を行い、
     前記制御には、前記第一変調光と前記第二変調光の少なくとも一方の光強度を、変調曲線における光強度の最大値よりも小さくする光強度制御が含まれることを特徴とする、光送信機。
    A modulator, an output light monitoring unit, and a control unit;
    The modulator is
    A light branching unit that splits the light input to the modulator into a first branched light and a second branched light;
    A first modulator that performs phase modulation of the first branched light;
    A second modulation unit for performing phase modulation of the second branched light;
    A rotor that rotates the polarization plane of any one of the first modulated light output from the first modulator and the second modulated light output from the second modulator;
    A polarization beam combiner that combines the first modulated light and the second modulated light;
    The output light monitoring unit monitors the light intensity of the combined light output from the polarization beam combining unit,
    The control unit performs control of at least one of the first modulation unit and the second modulation unit based on a monitoring result by the output light monitoring unit,
    The optical transmission is characterized in that the control includes light intensity control for making the light intensity of at least one of the first modulated light and the second modulated light smaller than the maximum value of the light intensity in the modulation curve. Machine.
  2.  前記出力光監視部は、前記第一変調光の光強度と、前記第二変調光の光強度とを更に監視することを特徴とする、請求項1に記載の光送信機。 The optical transmitter according to claim 1, wherein the output light monitoring unit further monitors the light intensity of the first modulated light and the light intensity of the second modulated light.
  3.  前記第一変調部からの出力光が分岐されて入力される第一の光電変換素子と、
     前記第二変調部からの出力光が分岐されて入力される第二の光電変換素子と、
     前記偏波合成部からの出力光が分岐されて入力される第三の光電変換素子と、を更に備え、
     前記出力光監視部は、前記第一乃至第三の光電変換素子からの出力に基づいて、前記第一変調光と、前記第二変調光と、前記合成光と、のそれぞれの光強度を監視することを特徴とする、請求項2に記載の光送信機。
    A first photoelectric conversion element into which the output light from the first modulation unit is branched and input;
    A second photoelectric conversion element into which the output light from the second modulation section is branched and input;
    A third photoelectric conversion element to which the output light from the polarization beam combiner is branched and input; and
    The output light monitoring unit monitors the light intensity of each of the first modulated light, the second modulated light, and the combined light based on outputs from the first to third photoelectric conversion elements. The optical transmitter according to claim 2, wherein:
  4.  前記第一変調部からの出力光が分岐されて入力される第一の光電変換素子と、
     前記第二変調部からの出力光が分岐されて入力される第二の光電変換素子と、
     前記第一変調光及び前記第二変調光のそれぞれの光損失量に関する情報を記録する記録部と、を更に備え、
     前記出力光監視部は、前記第一及び第二の光電変換素子からの出力と、前記記録部に記録された前記光損失量に関する情報と、に基づいて、前記第一変調光と、前記第二変調光と、前記合成光と、のそれぞれの光強度を監視することを特徴とする、請求項2に記載の光送信機。
    A first photoelectric conversion element into which the output light from the first modulation unit is branched and input;
    A second photoelectric conversion element into which the output light from the second modulation section is branched and input;
    A recording unit that records information on the amount of optical loss of each of the first modulated light and the second modulated light; and
    The output light monitoring unit, based on outputs from the first and second photoelectric conversion elements and information on the amount of light loss recorded in the recording unit, the first modulated light, and the first The optical transmitter according to claim 2, wherein the optical intensity of each of the two modulated light and the combined light is monitored.
  5.  前記第一変調部及び前記第二変調部に対して駆動信号を入力する駆動部と、
     前記第一変調部及び前記第二変調部に対してバイアス電圧を印加するバイアス回路と、を更に備え、
     前記制御部は、前記バイアス回路が出力するバイアス電圧の大きさを制御することによって、前記光強度制御を行うことを特徴とする、請求項1乃至4のいずれか一項に記載の光送信機。
    A drive unit that inputs a drive signal to the first modulation unit and the second modulation unit;
    A bias circuit that applies a bias voltage to the first modulation unit and the second modulation unit, and
    5. The optical transmitter according to claim 1, wherein the control unit performs the light intensity control by controlling a magnitude of a bias voltage output from the bias circuit. 6. .
  6.  前記制御部は、前記バイアス電圧の動作点を、変調曲線において光強度が最大となるためのバイアス電圧の動作点から±Vπ/4(Vπ:変調曲線において光の位相をπ変化させることができる電圧の大きさ)の範囲内で制御することを特徴とする、請求項5に記載の光送信機。 The control unit can change the operating point of the bias voltage by ± Vπ / 4 (Vπ: the phase of light in the modulation curve by π from the operating point of the bias voltage for maximizing the light intensity in the modulation curve. The optical transmitter according to claim 5, wherein the optical transmitter is controlled within a range of voltage magnitude).
  7.  前記第一変調部及び前記第二変調部に対して駆動信号を入力する駆動部と、
     前記第一変調部及び前記第二変調部に対してバイアス電圧を印加するバイアス回路と、を更に備え、
     前記制御部は、前記駆動部が出力する前記駆動信号の振幅を制御することによって、前記光強度制御を行うことを特徴とする、請求項1乃至4のいずれか一項に記載の光送信機。
    A drive unit that inputs a drive signal to the first modulation unit and the second modulation unit;
    A bias circuit that applies a bias voltage to the first modulation unit and the second modulation unit, and
    5. The optical transmitter according to claim 1, wherein the control unit performs the light intensity control by controlling an amplitude of the drive signal output from the drive unit. 6. .
  8.  複数の光送信機と、
     前記複数の光送信機それぞれから出力される波長を多重する波長多重部と、を備え、
     前記複数の光送信機はそれぞれ、請求項1乃至7のいずれか一項に記載の光送信機であることを特徴とする、波長多重伝送装置。
    Multiple optical transmitters;
    A wavelength multiplexing unit that multiplexes wavelengths output from each of the plurality of optical transmitters,
    The wavelength division multiplexing transmission apparatus according to claim 1, wherein each of the plurality of optical transmitters is the optical transmitter according to claim 1.
  9.  光を第一分岐光と、第二分岐光とに分岐する分岐工程と、
     前記第一分岐光の位相変調を行う第一変調工程と、
     前記第二分岐光の位相変調を行う第二変調工程と、
     前記第一変調工程により変調された第一変調光と、前記第二変調工程により変調された第二変調光と、のいずれか一方の偏波面を回転させる回転工程と、
     前記第一変調光と前記第二変調光とを合成する偏波合成工程と、
     前記偏波合成工程により合成された合成光の光強度を監視する監視工程と、
     前記監視工程による監視結果に基づいて、前記第一変調工程を行う変調器及び前記第二変調工程を行う変調器のうち少なくとも一方を制御する制御工程と、を備え、
     前記制御工程には、前記第一変調光と前記第二変調光の少なくとも一方の光強度を、変調曲線における光強度の最大値よりも小さくする光強度制御工程が含まれることを特徴とする、光送信方法。
    A branching step of branching light into a first branched light and a second branched light;
    A first modulation step for performing phase modulation of the first branched light;
    A second modulation step for performing phase modulation of the second branched light;
    A rotation step of rotating any one of the polarization planes of the first modulated light modulated by the first modulation step and the second modulated light modulated by the second modulation step;
    A polarization combining step of combining the first modulated light and the second modulated light;
    A monitoring step of monitoring the light intensity of the combined light combined by the polarization combining step;
    A control step of controlling at least one of a modulator that performs the first modulation step and a modulator that performs the second modulation step based on a monitoring result by the monitoring step;
    The control step includes a light intensity control step of making the light intensity of at least one of the first modulated light and the second modulated light smaller than the maximum value of light intensity in a modulation curve, Optical transmission method.
  10.  第一分岐光が位相変調されることで生じる第一変調光と、前記第一変調光と偏波面が異なり、第二分岐光が位相変調されることで生じる第二変調光と、の合成光の光強度を監視する監視工程と、
     前記監視工程による監視結果に基づいて、前記第一分岐光の位相変調及び前記第二分岐光の位相変調のうち少なくとも一方を制御する制御工程と、をコンピュータに実行させ、
     前記制御工程には、前記第一変調光と前記第二変調光の少なくとも一方の光強度を、変調曲線における光強度の最大値よりも小さくする光強度制御工程が含まれることを特徴とする、プログラム。
    Combined light of first modulated light generated by phase modulation of the first branched light and second modulated light generated by phase modulation of the second branched light, which has a polarization plane different from that of the first modulated light. A monitoring process for monitoring the light intensity of
    Based on the monitoring result of the monitoring step, causing the computer to execute a control step of controlling at least one of the phase modulation of the first branch light and the phase modulation of the second branch light,
    The control step includes a light intensity control step of making the light intensity of at least one of the first modulated light and the second modulated light smaller than the maximum value of light intensity in a modulation curve, program.
PCT/JP2012/058041 2011-03-25 2012-03-21 Optical transmitter and wavelength multiplexing transmission device and optical transmission method WO2012133472A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013507645A JPWO2012133472A1 (en) 2011-03-25 2012-03-21 Optical transmitter, wavelength division multiplexing transmission apparatus, and optical transmission method
US14/004,617 US20140010530A1 (en) 2011-03-25 2012-03-21 Optical transmitter, wavelength multiplexing transmission device and optical transmission method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011067700 2011-03-25
JP2011-067700 2011-03-25

Publications (1)

Publication Number Publication Date
WO2012133472A1 true WO2012133472A1 (en) 2012-10-04

Family

ID=46931183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058041 WO2012133472A1 (en) 2011-03-25 2012-03-21 Optical transmitter and wavelength multiplexing transmission device and optical transmission method

Country Status (3)

Country Link
US (1) US20140010530A1 (en)
JP (1) JPWO2012133472A1 (en)
WO (1) WO2012133472A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014217004A (en) * 2013-04-30 2014-11-17 住友電気工業株式会社 Optical transmitter and output light control method of optical transmitter
JP2014240889A (en) * 2013-06-11 2014-12-25 住友電気工業株式会社 Optical transmitter and control method of optical transmitter
JP2015019272A (en) * 2013-07-11 2015-01-29 三菱電機株式会社 Quantum encryption device and transmission signal optical processing method used for quantum encryption device
US20150341121A1 (en) * 2012-12-28 2015-11-26 Juniper Networks, Inc. Detection and alignment of xy skew
JPWO2014041839A1 (en) * 2012-09-14 2016-08-18 日本電気株式会社 Optical wavefront compensation apparatus and optical wavefront compensation method
JP2017040740A (en) * 2015-08-19 2017-02-23 大井電気株式会社 Optical modulator and optical modulation device
US9998232B2 (en) 2016-09-13 2018-06-12 Juniper Networks, Inc. Detection and compensation of power imbalances for a transmitter
WO2018180616A1 (en) * 2017-03-30 2018-10-04 日本電気株式会社 Optical transmitter and optical modulation method
JP2021061507A (en) * 2019-10-04 2021-04-15 Kddi株式会社 Optical transmitter and optical communication system

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9184834B1 (en) * 2012-12-28 2015-11-10 Juniper Networks, Inc. Method and apparatus for detection and correction of time skew in an optical transmitter
JP6435764B2 (en) * 2014-10-09 2018-12-12 富士通株式会社 OPTICAL TRANSMITTER, OPTICAL MODULATOR CONTROL METHOD, AND OPTICAL MODULATOR CONTROL DEVICE
EP3265870B1 (en) 2015-05-27 2021-10-06 Hewlett Packard Enterprise Development LP Bias-based mach-zehnder modulation (mzm) systems
JP6627640B2 (en) * 2016-05-16 2020-01-08 富士通株式会社 Optical transmitter
US10177854B2 (en) * 2017-03-20 2019-01-08 Emcore Corporation Modulated optical source and methods of its operation
CN108809431B (en) * 2017-04-26 2020-12-01 富士通株式会社 Bias control device and method for optical transmitter modulator and optical transmitter
GB2566314B (en) * 2017-09-08 2020-07-29 Exalos Ag Depolarisers
CN112888984B (en) * 2018-09-06 2022-10-14 Ii-Vi特拉华有限公司 Method for modulating optical Mach-Zehnder superstructure modulator
US10790910B2 (en) * 2018-12-22 2020-09-29 Intel Corporation Optical modulator-based transmission control
JP2021076651A (en) * 2019-11-06 2021-05-20 富士通オプティカルコンポーネンツ株式会社 Optical transmission device and bias control method
US11747133B2 (en) * 2020-04-28 2023-09-05 Board Of Trustees Of Michigan State University Demodulation of fiber optic interferometric sensors
US11209675B1 (en) * 2020-07-02 2021-12-28 The United States Of America As Represented By The Secretary Of The Navy Isolated photonic transmitter and detector
JP2022107112A (en) * 2021-01-08 2022-07-21 富士通オプティカルコンポーネンツ株式会社 Optical transmitter and control method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249897A (en) * 2002-01-18 2003-09-05 Fujitsu Ltd Phase modulation communication system and method
JP2011028087A (en) * 2009-07-28 2011-02-10 Fujitsu Ltd Optical signal transmitter and method for controlling polarization multiplexed optical signal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4108254B2 (en) * 2000-07-11 2008-06-25 富士通株式会社 Optical transmitter and optical transmission system
US7266306B1 (en) * 2003-10-03 2007-09-04 Nortel Networks Limited Method for optical carrier suppression and quadrature control
JP5446586B2 (en) * 2009-08-21 2014-03-19 富士通株式会社 Polarization multiplexed optical transmitter and polarization multiplexed optical signal control method
US8543010B2 (en) * 2010-02-24 2013-09-24 Jds Uniphase Corporation Bias control in an optical modulator and transmitter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249897A (en) * 2002-01-18 2003-09-05 Fujitsu Ltd Phase modulation communication system and method
JP2011028087A (en) * 2009-07-28 2011-02-10 Fujitsu Ltd Optical signal transmitter and method for controlling polarization multiplexed optical signal

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014041839A1 (en) * 2012-09-14 2016-08-18 日本電気株式会社 Optical wavefront compensation apparatus and optical wavefront compensation method
US20150341121A1 (en) * 2012-12-28 2015-11-26 Juniper Networks, Inc. Detection and alignment of xy skew
US9749057B2 (en) * 2012-12-28 2017-08-29 Juniper Networks, Inc. Detection and alignment of XY skew
JP2014217004A (en) * 2013-04-30 2014-11-17 住友電気工業株式会社 Optical transmitter and output light control method of optical transmitter
JP2014240889A (en) * 2013-06-11 2014-12-25 住友電気工業株式会社 Optical transmitter and control method of optical transmitter
JP2015019272A (en) * 2013-07-11 2015-01-29 三菱電機株式会社 Quantum encryption device and transmission signal optical processing method used for quantum encryption device
JP2017040740A (en) * 2015-08-19 2017-02-23 大井電気株式会社 Optical modulator and optical modulation device
US9998232B2 (en) 2016-09-13 2018-06-12 Juniper Networks, Inc. Detection and compensation of power imbalances for a transmitter
WO2018180616A1 (en) * 2017-03-30 2018-10-04 日本電気株式会社 Optical transmitter and optical modulation method
JP2021061507A (en) * 2019-10-04 2021-04-15 Kddi株式会社 Optical transmitter and optical communication system
JP7306652B2 (en) 2019-10-04 2023-07-11 Kddi株式会社 Optical transmitter and optical communication system

Also Published As

Publication number Publication date
JPWO2012133472A1 (en) 2014-07-28
US20140010530A1 (en) 2014-01-09

Similar Documents

Publication Publication Date Title
WO2012133472A1 (en) Optical transmitter and wavelength multiplexing transmission device and optical transmission method
US9419720B2 (en) Optical signal transmitter
US10298322B2 (en) Methods and apparatus for detecting and compensating power imbalance and modulation imperfection for a coherent optical transmitter
EP2107418B1 (en) Optical qam system including an optical modulator and a controlling apparatus and method of controlling the optical modulator
EP1760520B1 (en) Differential quadrature phase-shift modulator and method for setting driving voltage thereof
JP4934557B2 (en) 4-level phase modulator
JP5585190B2 (en) Optical transmission system, optical transmitter, optical receiver, and optical transmission method
JP5724792B2 (en) Optical transmitter, optical communication system, and optical transmission method
US8072669B2 (en) Methods and apparatus for generating 16-QAM-modulated optical signal
JP5223703B2 (en) Polarization multiplexed optical receiver, polarization multiplexed optical receiver circuit, and polarization multiplexed optical transmission system
WO2012051049A1 (en) Correlation -control qpsk transmitter
US8077375B2 (en) Method and apparatus for generating 8-QAM-modulated optical signal
US20140294402A1 (en) Optical transmission apparatus, optical transmission method and program for optical transmission
EP2959614A1 (en) Level spacing for m-pam optical systems with coherent detection
US9246597B2 (en) Dual rate QPSK/TCM-QPSK optical modulation
JP2011069924A (en) Quadrature phase shift keying (qpsk) modulator
US8805204B2 (en) Generating higher-level quadrature amplitude modulation (QAM) using a delay line interferometer and systems and methods incorporating same
Renaudier et al. Experimental comparison of 28Gbaud polarization switched-and polarization division multiplexed-QPSK in WDM long-haul transmission system
WO2012072534A1 (en) Optical communication system and method
US20120287949A1 (en) Polarization multiplexed signaling using time shifting in return-to-zero format
JP4893776B2 (en) Light modulator
US8582983B2 (en) Method and system for generation of coherent subcarriers
Tipsuwannakul et al. Transmission of 240 Gb/s PM-RZ-D8PSK over 320 km in 10 Gb/s NRZ-OOK WDM System
US11822161B2 (en) Bias voltage adjustment apparatus and IQ optical modulation system
JP2014183369A (en) Optical transmitter, optical communication system, polarization modulation method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763743

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14004617

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013507645

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763743

Country of ref document: EP

Kind code of ref document: A1