JP7306652B2 - Optical transmitter and optical communication system - Google Patents

Optical transmitter and optical communication system Download PDF

Info

Publication number
JP7306652B2
JP7306652B2 JP2019184056A JP2019184056A JP7306652B2 JP 7306652 B2 JP7306652 B2 JP 7306652B2 JP 2019184056 A JP2019184056 A JP 2019184056A JP 2019184056 A JP2019184056 A JP 2019184056A JP 7306652 B2 JP7306652 B2 JP 7306652B2
Authority
JP
Japan
Prior art keywords
light
polarization
phase
signal
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019184056A
Other languages
Japanese (ja)
Other versions
JP2021061507A (en
Inventor
昇太 石村
拓夫 種村
太一郎 福井
亮汰 田之村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
University of Tokyo NUC
Original Assignee
KDDI Corp
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp, University of Tokyo NUC filed Critical KDDI Corp
Priority to JP2019184056A priority Critical patent/JP7306652B2/en
Publication of JP2021061507A publication Critical patent/JP2021061507A/en
Application granted granted Critical
Publication of JP7306652B2 publication Critical patent/JP7306652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、コヒーレント光検波を行う光通信システム及び当該光通信システムの光送信装置に関する。 The present invention relates to an optical communication system that performs coherent optical detection and an optical transmission device for the optical communication system.

通信容量の増大に対応するためにコヒーレント光検波技術及び偏波多重技術が利用されている。通常、偏波多重された信号光(以下、偏波多重光)のコヒーレント光検波には、4つのバランス型光検出器、つまり、8つのフォトダイオード(以下、PD)が使用される。非特許文献1は、偏波多重光のコヒーレント光検波に使用するPDを4つに削減するための構成を開示している。また、非特許文献2及び3は、信号光間のビートにより生じる雑音をデジタル処理で除去する構成を開示している。 Coherent optical detection technology and polarization multiplexing technology are used to cope with the increase in communication capacity. Normally, four balanced photodetectors, that is, eight photodiodes (PD) are used for coherent photodetection of polarization-multiplexed signal light (hereinafter, polarization-multiplexed light). Non-Patent Document 1 discloses a configuration for reducing the number of PDs used for coherent optical detection of polarization multiplexed light to four. Non-Patent Documents 2 and 3 disclose a configuration in which noise caused by beats between signal lights is removed by digital processing.

Seb J.Savory,"Digital filters for coherent optical receivers", Opt.Express 16,804-817,2008年SebJ. Savory, "Digital filters for coherent optical receivers", Opt. Express 16, 804-817, 2008 Wei-Ren Peng,et al.,"Spectrally Efficient Direct-Detected OFDM Transmission Incorporating a Tunable Frequency Gap and an Iterative Detection Techniques",J.Lightwave Technol.27,5723-5735,2009年Wei-Ren Peng, et al. , "Spectrally Efficient Direct-Detected OFDM Transmission Incorporating a Tunable Frequency Gap and an Iterative Detection Techniques", J. Am. Lightwave Technol. 27, 5723-5735, 2009 Zhe Li,et al.,"SSBI Mitigation and the Kramers-Kronig Scheme in Single-Sideband Direct-Detection Transmission With Receiver-Based Electronic Dispersion Compensation",J.Lightwave Technol.35,1887-1893,2017年Zhe Li, et al. , "SSBI Mitigation and the Kramers-Kronig Scheme in Single-Sideband Direct-Detection Transmission With Receiver-Based Electronic Dispersion Compensation", J. Am. Lightwave Technol. 35, 1887-1893, 2017

バランス型光検出器は、2つのPDにより信号光間のビートによる雑音を相殺して出力するが、非特許文献1の構成では、バランス型光検出器に代えて1つのPDを使用するため、信号光間のビートによる雑音が出力される。非特許文献1では、局所光の振幅(強度)を信号光の振幅よりも強くすることで、信号光間のビートによる雑音が相対的に無視できる様になるとしているが、局所光の振幅にも上限があり、かつ、信号光についても前置増幅によりその振幅を強くする場合があるため、信号光間のビートによる雑音が無視できない場合が生じ得る。 The balanced photodetector uses two PDs to cancel out the noise caused by the beat between the signal lights, and the configuration of Non-Patent Document 1 uses one PD instead of the balanced photodetector. Noise due to beats between signal lights is output. Non-Patent Document 1 states that by making the amplitude (intensity) of the local light stronger than the amplitude of the signal light, noise due to beats between signal lights can be relatively ignored. has an upper limit, and the amplitude of the signal light may be increased by pre-amplification, so there may be cases where noise due to beats between signal lights cannot be ignored.

また、信号光間のビートによる雑音を抑制するために非特許文献2及び3に記載の技術を適用することも考えられるが、デジタル信号処理の処理負荷が重く、高速伝送においては現実的ではない。また、信号光間のビートによる雑音を抑制するためのデジタル信号処理回路が追加で必要となる。 It is also conceivable to apply the techniques described in Non-Patent Documents 2 and 3 in order to suppress noise due to beats between signal lights, but the processing load of digital signal processing is heavy, and it is not realistic for high-speed transmission. . In addition, a digital signal processing circuit is additionally required to suppress noise due to beats between signal lights.

本発明は、光受信装置において信号光間のビートを除去できる様にする光送信装置及光通信システムを提供するものである。 SUMMARY OF THE INVENTION The present invention provides an optical transmitter and an optical communication system that can eliminate beats between signal lights in an optical receiver.

本発明の一態様によると、光送信装置は、第1連続光を第1電気信号で位相変調することで第1変調光を出力する第1位相変調手段と、第2連続光を第2電気信号で位相変調することで第2変調光を出力する第2位相変調手段と、前記第1変調光と前記第2変調光とが偏波多重された偏波多重光を出力する出力手段と、を備え、前記第1位相変調手段は、前記第1電気信号の振幅に応じて、前記第1連続光の位相のみを変化させて前記第1変調光を出力するマッハツェンダ変調器であり、前記第2位相変調手段は、前記第2電気信号の振幅に応じて、前記第2連続光の位相のみを変化させて前記第2変調光を出力するマッハツェンダ変調器であり、前記第1変調光及び第2変調光の振幅は、シンボル間の遷移時においても一定であることを特徴とする。 According to one aspect of the present invention, an optical transmission device includes: first phase modulation means for phase-modulating first continuous light with a first electrical signal to output first modulated light; second phase modulation means for outputting a second modulated light by phase-modulating with a signal; output means for outputting polarization multiplexed light in which the first modulated light and the second modulated light are polarization multiplexed; wherein the first phase modulation means is a Mach-Zehnder modulator that outputs the first modulated light by changing only the phase of the first continuous light according to the amplitude of the first electrical signal; The two-phase modulation means is a Mach-Zehnder modulator that changes only the phase of the second continuous light according to the amplitude of the second electrical signal and outputs the second modulated light, and the first modulated light and the second modulated light are output. The amplitude of the 2-modulated light is characterized by being constant even during transitions between symbols.

本発明によると、光受信装置において光信号間のビートを除去できる様にすることができる。 According to the present invention, it is possible to remove beats between optical signals in an optical receiver.

光受信装置の構成図。FIG. 2 is a configuration diagram of an optical receiving device; 一実施形態による光送信装置の構成図。1 is a configuration diagram of an optical transmission device according to an embodiment; FIG. 一実施形態による光位相変調の説明図。FIG. 4 is an explanatory diagram of optical phase modulation according to one embodiment;

以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものでなく、また実施形態で説明されている特徴の組み合わせの全てが発明に必須のものとは限らない。実施形態で説明されている複数の特徴うち二つ以上の特徴が任意に組み合わされてもよい。また、同一若しくは同様の構成には同一の参照番号を付し、重複した説明は省略する。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. It should be noted that the following embodiments do not limit the invention according to the claims, and not all combinations of features described in the embodiments are essential to the invention. Two or more of the features described in the embodiments may be combined arbitrarily. Also, the same or similar configurations are denoted by the same reference numerals, and redundant explanations are omitted.

図1は、非特許文献1に記載された光受信装置の構成図である。光受信装置は、送信側において第1偏波の信号光と、第1偏波とは直交する第2偏波の信号光とを偏波多重して生成された偏波多重光を受信する。偏波ビームスプリッタ(PBS)20は、受信する偏波多重光のX偏波成分とY偏波成分とを分離し、それぞれ、X偏波の信号光(以下、信号光X)と、X偏波と直交するY偏波の信号光(以下、信号光Y)とを出力する。なお、受信側におけるX偏波及びY偏波の方向は、送信側における第1偏波及び第2偏波の方向とは独立している。つまり、信号光X及びYは、それぞれ、第1偏波の信号光と第2偏波の信号光の両方の成分を含み得る。 FIG. 1 is a configuration diagram of an optical receiver described in Non-Patent Document 1. As shown in FIG. The optical receiver receives polarization multiplexed light generated by polarization multiplexing signal light of a first polarization and signal light of a second polarization orthogonal to the first polarization on the transmission side. A polarization beam splitter (PBS) 20 separates the X-polarized component and the Y-polarized component of the received polarization multiplexed light into X-polarized signal light (hereinafter referred to as signal light X) and X-polarized light, respectively. Y-polarized signal light (hereinafter referred to as signal light Y) orthogonal to the wave is output. The directions of the X-polarized wave and the Y-polarized wave on the receiving side are independent of the directions of the first polarized wave and the second polarized wave on the transmitting side. That is, each of the signal lights X and Y can contain both components of the signal light of the first polarization and the signal light of the second polarization.

分岐部21は、信号光Xを2分岐し、信号光Xを合波部23及び24に出力する。分岐部22は、信号光Yを2分岐し、信号光Yを合波部25及び26に出力する。光源40は、連続光(局所光)を生成して分岐部41に出力する。なお、局所光の偏波面は、X偏波及びY偏波とは異なる様に調整される。つまり、局所光が、X偏波の成分とY偏波の成分の両方を有する様に局所光の偏波面は調整される。例えば、局所光のX偏波の成分とY偏波の成分の振幅を等しくするため、局所光の偏波面は、X偏波及びY偏波それぞれに対して45度となるように調整される。分岐部41は、局所光を4分岐し、その内の2つを、位相器42及び43に出力する。位相器42及び43は、それぞれ、局所光の位相をπ/2だけシフトさせ、位相シフト後の局所光を出力する。 The splitter 21 splits the signal light X into two and outputs the signal light X to the multiplexers 23 and 24 . The splitter 22 splits the signal light Y into two and outputs the signal light Y to the multiplexers 25 and 26 . The light source 40 generates continuous light (local light) and outputs it to the splitter 41 . Note that the plane of polarization of the local light is adjusted to be different from that of the X-polarized wave and the Y-polarized wave. That is, the plane of polarization of the local light is adjusted so that the local light has both an X-polarized component and a Y-polarized component. For example, in order to equalize the amplitudes of the X-polarized component and the Y-polarized component of the local light, the plane of polarization of the local light is adjusted to 45 degrees with respect to each of the X-polarized wave and the Y-polarized wave. . The splitter 41 splits the local light into four and outputs two of them to the phase shifters 42 and 43 . Phase shifters 42 and 43 each shift the phase of the local light by π/2 and output the phase-shifted local light.

合波部23は、局所光と信号光Xを干渉させ、干渉光をPD27に出力する。合波部24は、位相シフト後の局所光と信号光Xを干渉させ、干渉光をPD28に出力する。合波部25は、局所光と信号光Yを干渉させ、干渉光をPD29に出力する。合波部26は、位相シフト後の局所光と信号光Yを干渉させ、干渉光をPD30に出力する。 The multiplexer 23 causes the local light and the signal light X to interfere with each other, and outputs the interference light to the PD 27 . The multiplexer 24 causes the phase-shifted local light and the signal light X to interfere with each other, and outputs the interference light to the PD 28 . The multiplexer 25 causes the local light and the signal light Y to interfere with each other, and outputs the interference light to the PD 29 . The multiplexer 26 causes the phase-shifted local light and the signal light Y to interfere with each other, and outputs the interference light to the PD 30 .

PD27~30は、それぞれ、入力される干渉光の光電変換を行って電気信号を出力する。PD27に入力される干渉光に含まれる局所光と、PD28に入力される干渉光に含まれる局所光の位相はπ/2だけ異なるため、PD27が出力する電気信号を信号光Xの実数成分(XI)とすると、PD28が出力する電気信号は信号光Xの虚数成分(XQ)になる。同様に、PD29が出力する電気信号を信号光Yの実数成分(YI)とすると、PD30が出力する電気信号は信号光Yの虚数成分(YQ)になる。PD27~PD30それぞれが出力する電気信号を、後段のMIMO処理部で処理することで、光受信装置は、第1偏波の信号光と第2偏波の信号光それぞれで搬送された情報の復調を行うことができる。 Each of the PDs 27 to 30 photoelectrically converts the input interference light and outputs an electric signal. Since the phases of the local light contained in the interference light input to the PD 27 and the local light contained in the interference light input to the PD 28 differ by π/2, the electric signal output from the PD 27 is the real component of the signal light X ( XI), the electrical signal output from the PD 28 is the imaginary number component (XQ) of the signal light X. Similarly, if the electrical signal output by the PD 29 is the real component (YI) of the signal light Y, the electrical signal output by the PD 30 is the imaginary component (YQ) of the signal light Y. By processing the electrical signals output from each of the PD27 to PD30 in the subsequent MIMO processing unit, the optical receiver demodulates the information carried by the signal light of the first polarization and the signal light of the second polarization. It can be performed.

従来の様なバランス型光検出器を使用する光受信装置においては、図1のPD27~30が、それぞれ、2つのPDを有するバランス型光検出器に置き換えられる。バランス型光検出器の各PDは、それぞれ、信号光の二乗成分(信号光間のビート成分)と、局所光の二乗成分(局所光間のビート成分)と、信号光と局所光の積成分(局所光と信号光のビート成分)と、を含む電気信号を出力するが、2つのPDが出力する電気信号の差をとるため、信号光間のビート成分及び局所光間のビート成分は相殺され、復調に必要な信号光と局所光のビート成分のみが出力される。しかしながら、図1の光受信装置においては、バランス型光検出器を1つのPDに置換するため、PD27~30が出力する電気信号は、復調に必要な信号光と局所光のビート成分に加えて、雑音となる信号光間のビート成分及び局所光間のビート成分を含むことになる。 In an optical receiver using a conventional balanced photodetector, the PDs 27 to 30 in FIG. 1 are each replaced with a balanced photodetector having two PDs. Each PD of the balanced photodetector has a square component of the signal light (a beat component between the signal lights), a square component of the local light (a beat component between the local lights), and a product component of the signal light and the local light. (Beat component of local light and signal light) and is output, but since the difference between the electrical signals output by the two PDs is taken, the beat component between signal light and the beat component between local light are canceled. Only beat components of signal light and local light necessary for demodulation are output. However, in the optical receiver shown in FIG. 1, the balanced photodetector is replaced with one PD, so the electrical signals output from the PDs 27 to 30 are the signal light and the beat component of the local light necessary for demodulation. , contain beat components between signal lights and beat components between local lights that become noise.

ここで、局所光の強度は、光受信装置において一定に制御でき、この場合、局所光間のビート成分は直流成分となり、光受信装置は、局所光間のビート成分を容易に除去できる。しかしながら、信号光の振幅が時間により変化する場合、信号光間のビート成分は直流成分にはならず復調に影響を及ぼし得る。このため、本実施形態では、光送信装置において信号光の振幅を一定とすることで、信号光間のビート成分を直流成分として、これにより、光受信装置において信号光間のビート成分を除去可能にする。 Here, the intensity of the local light can be controlled to be constant in the optical receiver. In this case, the beat component between the local lights becomes a DC component, and the optical receiver can easily remove the beat component between the local lights. However, when the amplitude of the signal light changes with time, the beat component between the signal lights does not become a DC component and may affect demodulation. For this reason, in this embodiment, the amplitude of the signal light is kept constant in the optical transmitter, so that the beat component between the signal lights is converted to a DC component, so that the beat component between the signal lights can be removed in the optical receiver. to

図2は、本実施形態による光送信装置の構成図である。光源10は、連続光を生成してPBS11に出力する。PBS11は、連続光を偏波分離し、X偏波の連続光を光位相変調器12に入力し、X偏波とは直交するY偏波の連続光を光位相変調器13に入力する。なお、X偏波の連続光とY偏波の連続光の振幅を等しくするため、光源10が生成する連続光の偏波面は、X偏波及びY偏波それぞれに対して45度となる様に調整される。 FIG. 2 is a configuration diagram of the optical transmission device according to this embodiment. The light source 10 generates continuous light and outputs it to the PBS 11 . The PBS 11 depolarizes the continuous light, inputs X-polarized continuous light to the optical phase modulator 12 , and inputs Y-polarized continuous light orthogonal to the X-polarized wave to the optical phase modulator 13 . In order to equalize the amplitude of the X-polarized continuous light and the Y-polarized continuous light, the plane of polarization of the continuous light generated by the light source 10 is set at 45 degrees with respect to each of the X-polarized wave and the Y-polarized wave. adjusted to

光位相変調器12は、X偏波の連続光を送信する情報に対応する電気信号で位相変調してX偏波の変調光を出力する。同様に、光位相変調器13は、Y偏波の連続光を送信する情報に対応する電気信号で位相変調してY偏波の変調光を出力する。偏波ビームコンバイナ(PBC)14は、X偏波の変調光とY偏波の変調光とを偏波多重し、偏波多重光を光伝送路に出力する。 The optical phase modulator 12 phase-modulates X-polarized continuous light with an electrical signal corresponding to information to be transmitted, and outputs X-polarized modulated light. Similarly, the optical phase modulator 13 phase-modulates Y-polarized continuous light with an electrical signal corresponding to information to be transmitted, and outputs Y-polarized modulated light. A polarization beam combiner (PBC) 14 polarization-multiplexes the X-polarized modulated light and the Y-polarized modulated light, and outputs the polarization-multiplexed light to an optical transmission line.

光位相変調器12及び13は、例えば、マッハツェンダ変調器であり、通過する連続光の位相を電気信号の振幅に応じて調整する。図3は、光位相変調器12及び13による位相変調の説明図である。図3に示す様に、光位相変調器12及び13は、連続光50の振幅を一定としたまま、その位相のみを変化させる。つまり、光位相変調器12及び13が出力する変調光を複素平面で表示すると、図3の点線の円上のみを移動する。従来の様に、IQ変調器を使用して位相変調を行う場合、シンボル間の遷移時、振幅は変化するが、本実施形態による光位相変調器12及び13は、シンボル間の遷移時においても変調光の振幅を一定にするため、光受信装置のPD27~30が出力する電気信号に含まれる信号光間のビート成分は直流成分となり、光受信装置は、局所光間及び信号光間のビート成分を容易に除去して偏波多重光の復調を行うことができる。 The optical phase modulators 12 and 13 are, for example, Mach-Zehnder modulators, and adjust the phase of passing continuous light according to the amplitude of the electrical signal. FIG. 3 is an explanatory diagram of phase modulation by the optical phase modulators 12 and 13. FIG. As shown in FIG. 3, the optical phase modulators 12 and 13 change only the phase of the continuous light 50 while keeping the amplitude constant. That is, when the modulated light output from the optical phase modulators 12 and 13 is displayed on the complex plane, it moves only on the dotted circle in FIG. When phase modulation is performed using an IQ modulator as in the conventional art, the amplitude changes at the transition between symbols. In order to keep the amplitude of the modulated light constant, the beat component between the signal lights contained in the electrical signals output from the PDs 27 to 30 of the optical receiver becomes a DC component, and the optical receiver adjusts the beat between the local lights and between the signal lights. Components can be easily removed to demodulate polarization multiplexed light.

なお、本実施形態の光送信装置は、光源10が生成する局所光を偏波分離してX偏波とY偏波の連続光を生成していたが偏波多重する方法はこれに限定されない。例えば、光源10が生成する局所光を等振幅に2分岐して、それぞれ、光位相変調器により位相変調し、2つの位相変調器の一方の位相変調器が出力する変調光を、半波長板等でその偏波面を90度回転させて合波する構成であっても良い。また、光源10が生成する局所光を等振幅に2分岐して、半波長板等で一方の局所光の偏波面を90度回転させることにより、偏波面が互いに直交する2つの局所光を生成する構成であっても良い。 In the optical transmission device of this embodiment, the local light generated by the light source 10 is polarization-separated to generate X-polarized and Y-polarized continuous light, but the method of polarization multiplexing is not limited to this. . For example, the local light generated by the light source 10 is split into two with equal amplitude, each of which is phase-modulated by an optical phase modulator, and the modulated light output from one of the two phase modulators is a half-wave plate. For example, the plane of polarization may be rotated by 90 degrees and combined. Further, by splitting the local light generated by the light source 10 into two with equal amplitude and rotating the plane of polarization of one of the local lights by 90 degrees with a half-wave plate or the like, two local lights whose planes of polarization are orthogonal to each other are generated. The configuration may be such that

また、本発明によると、図2に示す光送信装置と、図1に示す光受信装置と、を含む光通信システムが提供される。上述した様に、光送信装置は、信号光の振幅を一定にするため、図1に示す、コヒーレント光検波のために4つのPDのみを使用する光受信装置を使用しても、信号光間のビート成分による雑音を容易に除去して精度良く復調することができる。 Further, according to the present invention, an optical communication system including the optical transmitter shown in FIG. 2 and the optical receiver shown in FIG. 1 is provided. As described above, in order to keep the amplitude of the signal light constant, the optical transmitter uses the optical receiver that uses only four PDs for coherent optical detection, as shown in FIG. can be easily removed and demodulated with high accuracy.

発明は上記の実施形態に制限されるものではなく、発明の要旨の範囲内で、種々の変形・変更が可能である。 The invention is not limited to the above embodiments, and various modifications and changes are possible within the scope of the invention.

10:光源、11:光ビームスプリッタ、12、13:光位相変調器、14:光ビームコンバイナ 10: light source, 11: optical beam splitter, 12, 13: optical phase modulator, 14: optical beam combiner

Claims (3)

第1連続光を第1電気信号で位相変調することで第1変調光を出力する第1位相変調手段と、
第2連続光を第2電気信号で位相変調することで第2変調光を出力する第2位相変調手段と、
前記第1変調光と前記第2変調光とが偏波多重された偏波多重光を出力する出力手段と、を備え、
前記第1位相変調手段は、前記第1電気信号の振幅に応じて、前記第1連続光の位相のみを変化させて前記第1変調光を出力するマッハツェンダ変調器であり、
前記第2位相変調手段は、前記第2電気信号の振幅に応じて、前記第2連続光の位相のみを変化させて前記第2変調光を出力するマッハツェンダ変調器であり、
前記第1変調光及び第2変調光の振幅は、シンボル間の遷移時においても一定であることを特徴とする光送信装置。
a first phase modulation means for outputting a first modulated light by phase-modulating the first continuous light with a first electrical signal;
a second phase modulation means for outputting a second modulated light by phase-modulating the second continuous light with a second electrical signal;
output means for outputting polarization multiplexed light obtained by polarization multiplexing the first modulated light and the second modulated light,
The first phase modulating means is a Mach-Zehnder modulator that changes only the phase of the first continuous light according to the amplitude of the first electrical signal and outputs the first modulated light,
The second phase modulating means is a Mach-Zehnder modulator that changes only the phase of the second continuous light according to the amplitude of the second electrical signal and outputs the second modulated light,
An optical transmission apparatus, wherein the amplitudes of the first modulated light and the second modulated light are constant even during transitions between symbols.
前記第1連続光及び前記第2連続光の偏波面は、互いに直交することを特徴とする請求項1に記載の光送信装置。 2. The optical transmitter according to claim 1, wherein the planes of polarization of said first continuous light and said second continuous light are orthogonal to each other. 請求項1又は2に記載の光送信装置と、光受信装置と、を含む光通信システムであって、
前記光受信装置は、
前記光送信装置からの前記偏波多重光を第1偏波の第1信号光と前記第1偏波と直交する第2偏波の第2信号光に偏波分離する分離手段と、
前記第1偏波の成分を有する第1局所光及び前記第2偏波の成分を有する第2局所光を生成する生成手段と、
前記第1信号光と、前記第1局所光とを干渉させた第1干渉光を出力する第1干渉手段と、
前記第1信号光と、前記第1局所光の位相をπ/2だけシフトさせた光とを干渉させた第2干渉光を出力する第2干渉手段と、
前記第2信号光と、前記第2局所光とを干渉させた第3干渉光を出力する第3干渉手段と、
前記第2信号光と、前記第2局所光の位相をπ/2だけシフトさせた光とを干渉させた第4干渉光を出力する第4干渉手段と、
前記第1干渉光の光電変換を行う第1光電変換手段と、
前記第2干渉光の光電変換を行う第2光電変換手段と、
前記第3干渉光の光電変換を行う第3光電変換手段と、
前記第4干渉光の光電変換を行う第4光電変換手段と、
を備えていることを特徴とする光通信システム。
An optical communication system comprising the optical transmitting device according to claim 1 or 2 and an optical receiving device,
The optical receiver is
demultiplexing means for polarization demultiplexing the polarization multiplexed light from the optical transmission device into a first signal light of a first polarization and a second signal light of a second polarization orthogonal to the first polarization;
generating means for generating a first local light having a component of the first polarization and a second local light having a component of the second polarization;
a first interfering means for outputting a first interference light resulting from interference between the first signal light and the first local light;
a second interfering means for outputting a second interference light resulting from interference between the first signal light and light obtained by shifting the phase of the first local light by π/2;
a third interference means for outputting a third interference light obtained by causing the second signal light and the second local light to interfere with each other;
a fourth interfering means for outputting fourth interference light obtained by interfering the second signal light with the light obtained by shifting the phase of the second local light by π/2;
a first photoelectric conversion means for performing photoelectric conversion of the first interference light;
a second photoelectric conversion means for performing photoelectric conversion of the second interference light;
a third photoelectric conversion means for performing photoelectric conversion of the third interference light;
a fourth photoelectric conversion means for photoelectrically converting the fourth interference light;
An optical communication system comprising :
JP2019184056A 2019-10-04 2019-10-04 Optical transmitter and optical communication system Active JP7306652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019184056A JP7306652B2 (en) 2019-10-04 2019-10-04 Optical transmitter and optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019184056A JP7306652B2 (en) 2019-10-04 2019-10-04 Optical transmitter and optical communication system

Publications (2)

Publication Number Publication Date
JP2021061507A JP2021061507A (en) 2021-04-15
JP7306652B2 true JP7306652B2 (en) 2023-07-11

Family

ID=75380490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019184056A Active JP7306652B2 (en) 2019-10-04 2019-10-04 Optical transmitter and optical communication system

Country Status (1)

Country Link
JP (1) JP7306652B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148306A (en) 2006-12-05 2008-06-26 Nec Lab America Inc Wavelength division multiplexing passive optical network architecture with light source-free optical network units
JP2010004245A (en) 2008-06-19 2010-01-07 Fujitsu Ltd Optical receiving apparatus and digital receiving circuit
JP2010521896A (en) 2007-03-14 2010-06-24 ストレータライト コミュニケーションズ,インコーポレーテッド Optical receiver for optical communication
WO2012133472A1 (en) 2011-03-25 2012-10-04 日本電気株式会社 Optical transmitter and wavelength multiplexing transmission device and optical transmission method
WO2013031786A1 (en) 2011-09-01 2013-03-07 日本電気株式会社 Phase adjustment circuit, optical transmission device, and phase adjustment method
JP2013145942A (en) 2012-01-13 2013-07-25 Mitsubishi Electric Corp Optical transmitting/receiving apparatus
WO2014020804A1 (en) 2012-08-01 2014-02-06 日本電気株式会社 Polarization multiplexing optical transmitter and method for controlling operation
WO2016038654A1 (en) 2014-09-08 2016-03-17 三菱電機株式会社 Optical transmission method and optical transmission system
JP2018098780A (en) 2016-12-08 2018-06-21 富士通株式会社 Multichannel optical cross-phase modulation compensator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148306A (en) 2006-12-05 2008-06-26 Nec Lab America Inc Wavelength division multiplexing passive optical network architecture with light source-free optical network units
JP2010521896A (en) 2007-03-14 2010-06-24 ストレータライト コミュニケーションズ,インコーポレーテッド Optical receiver for optical communication
JP2010004245A (en) 2008-06-19 2010-01-07 Fujitsu Ltd Optical receiving apparatus and digital receiving circuit
WO2012133472A1 (en) 2011-03-25 2012-10-04 日本電気株式会社 Optical transmitter and wavelength multiplexing transmission device and optical transmission method
WO2013031786A1 (en) 2011-09-01 2013-03-07 日本電気株式会社 Phase adjustment circuit, optical transmission device, and phase adjustment method
JP2013145942A (en) 2012-01-13 2013-07-25 Mitsubishi Electric Corp Optical transmitting/receiving apparatus
WO2014020804A1 (en) 2012-08-01 2014-02-06 日本電気株式会社 Polarization multiplexing optical transmitter and method for controlling operation
WO2016038654A1 (en) 2014-09-08 2016-03-17 三菱電機株式会社 Optical transmission method and optical transmission system
JP2018098780A (en) 2016-12-08 2018-06-21 富士通株式会社 Multichannel optical cross-phase modulation compensator

Also Published As

Publication number Publication date
JP2021061507A (en) 2021-04-15

Similar Documents

Publication Publication Date Title
JP6357742B2 (en) In-band management data modulation using complementary power modulation
US9553674B2 (en) Optical transmitter and method of optical transmission
JP5034770B2 (en) Coherent optical receiver and optical communication system
US8437638B2 (en) Optical modulation circuit and optical transmission system
JP6263915B2 (en) In-band management data modulation
US9853739B2 (en) Optical transmitter and method for controlling bias of optical modulator
US9954615B2 (en) Optical up/down conversion-type optical phase conjugate pair signal transmission/reception circuit
JP5585190B2 (en) Optical transmission system, optical transmitter, optical receiver, and optical transmission method
EP2731279A1 (en) Optical transmission system, optical transmitter, optical receiver, and optical transmission method
US10567077B2 (en) Imbalance compensation device, transmission device, and imbalance compensation method
US10554325B2 (en) Receiver and receiving method
JP4730560B2 (en) Optical transmission system, optical transmission method, and optical transmitter
JP7306652B2 (en) Optical transmitter and optical communication system
WO2002080429A2 (en) Method and apparatus for optical data transmission at high data rates with enhanced capacity using polarization multiplexing
CN114268374B (en) Asymmetric double single sideband modulated polarization multiplexing photogenerated millimeter wave method and system
JP4802270B2 (en) Optical phase synchronization method and optical phase synchronization apparatus in optical phase modulation system
JP6344378B2 (en) Optical transmission system, optical receiver, and optical transmission method
CN105871469A (en) Realization method of 100-G CFP optical module
WO2022249326A1 (en) Reception device, transmission device, transmission system, reception method, and transmission method
JP5750177B1 (en) Optical receiver, optical communication system, and polarization crosstalk compensation method
JP7318886B2 (en) Optical receiver
JP7273382B2 (en) Optical transmitter and optical transmission method
JP7060474B2 (en) Optical modulators, optical transmitters, optical demodulators, optical receivers and optical communication systems
JP2009296623A (en) Coherent optical transceiver
JP5182154B2 (en) Optical communication system

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230621

R150 Certificate of patent or registration of utility model

Ref document number: 7306652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150