JP7060474B2 - Optical modulators, optical transmitters, optical demodulators, optical receivers and optical communication systems - Google Patents

Optical modulators, optical transmitters, optical demodulators, optical receivers and optical communication systems Download PDF

Info

Publication number
JP7060474B2
JP7060474B2 JP2018152914A JP2018152914A JP7060474B2 JP 7060474 B2 JP7060474 B2 JP 7060474B2 JP 2018152914 A JP2018152914 A JP 2018152914A JP 2018152914 A JP2018152914 A JP 2018152914A JP 7060474 B2 JP7060474 B2 JP 7060474B2
Authority
JP
Japan
Prior art keywords
phase
polarization
amount
modulated light
electric signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018152914A
Other languages
Japanese (ja)
Other versions
JP2020028065A (en
Inventor
昇太 石村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2018152914A priority Critical patent/JP7060474B2/en
Publication of JP2020028065A publication Critical patent/JP2020028065A/en
Application granted granted Critical
Publication of JP7060474B2 publication Critical patent/JP7060474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Description

本発明は、光変復調技術に関する。 The present invention relates to a photomodulation / demodulation technique.

非特許文献1及び2は、偏波多重QPSK信号を生成する光変調器を開示している。図1は、非特許文献1及び2が開示する偏波多重QPSK信号を生成する光変調器の構成図である。X偏波の連続光は、分岐部5で分岐され、それぞれ、図2に示すQPSK光変調部6に入力される。上側のQPSK光変調部6は、データ列Xで連続光をQPSK変調し、X偏波のQPSK信号を合波部8に出力する。下側のQPSK光変調部6は、データ列Yで連続光をQPSK変調し、X偏波のQPSK信号を偏波回転部7に出力する。偏波回転部7は、X偏波のQPSK信号の偏波を回転させ、X偏波と直交するY偏波のQPSK信号を合波部8に出力する。合波部8は、X偏波のQPSK信号とY偏波のQPSK信号を合波し、偏波多重QPSK信号を出力する。 Non-Patent Documents 1 and 2 disclose an optical modulator that produces a polarization-multiplexed QPSK signal. FIG. 1 is a configuration diagram of an optical modulator that generates a polarization-multiplexed QPSK signal disclosed in Non-Patent Documents 1 and 2. The X-polarized continuous light is branched at the branching section 5 and is input to the QPSK optical modulation section 6 shown in FIG. 2, respectively. The upper QPSK optical modulation unit 6 QPSK-modulates continuous light in the data string X, and outputs the X-polarized QPSK signal to the combine unit 8. The lower QPSK optical modulation unit 6 QPSK-modulates continuous light in the data string Y and outputs an X-polarized QPSK signal to the polarization rotating unit 7. The polarization rotating unit 7 rotates the polarization of the X-polarized QPSK signal, and outputs the Y-polarized QPSK signal orthogonal to the X-polarized wave to the combiner 8. The combined wave unit 8 combines the X-polarized QPSK signal and the Y-polarized QPSK signal, and outputs a polarized wave multiplex QPSK signal.

図2は、図1のQPSK変調部6の構成図である。分岐部60は、入力される連続光を2分岐して、それぞれ、分岐部61I及び61Qに出力する。分岐部61Iは、入力される連続光を2分岐して、光位相調整部62I及び63Iに出力する。光位相調整部62I及び63Iには、データ列に応じた電圧(以下、バイアス)が印加される。光位相調整部62I及び63Iが出力する光の位相は、それぞれ、印加されるバイアスに応じて調整される。合波部64Iは、光位相調整部62I及び63Iが出力する光を合波して出力する。ここで、QPSK変調部6は、光位相調整部62I及び63Iから出力される光の位相が、基準位相を中心に対称となる様に制御する。例えば、基準位相は、複素平面における実軸(I軸)の方向に対応する位相である。したがって、合波部64Iが出力する合波光は、印加されるバイアスに応じて複素平面の実軸上を移動(振幅が変動)する信号になる。 FIG. 2 is a block diagram of the QPSK modulation unit 6 of FIG. The branching unit 60 branches the input continuous light into two and outputs the input continuous light to the branching units 61I and 61Q, respectively. The branching unit 61I branches the input continuous light into two and outputs the input continuous light to the optical phase adjusting units 62I and 63I. A voltage (hereinafter, bias) corresponding to the data string is applied to the optical phase adjusting units 62I and 63I. The phases of the light output by the optical phase adjusting units 62I and 63I are adjusted according to the applied bias, respectively. The combined wave unit 64I combines and outputs the light output by the optical phase adjusting units 62I and 63I. Here, the QPSK modulation unit 6 controls so that the phases of the light output from the optical phase adjusting units 62I and 63I are symmetrical with respect to the reference phase. For example, the reference phase is a phase corresponding to the direction of the real axis (I axis) in the complex plane. Therefore, the combined wave light output by the combined wave unit 64I becomes a signal that moves (amplitude fluctuates) on the real axis of the complex plane according to the applied bias.

分岐部61Q、光位相調整部62Q及び63Q並びに合波部64Qでの処理も、分岐部61I、光位相調整部62I及び63I並びに合波部64Iでの上述した処理と同様である。したがって、合波部64Qが出力する合波光は、印加されるバイアスに応じて複素平面の実軸上を移動する信号になる。合波部64Qが出力する合波光は、位相調整部65において、その位相が90度回転される。したがって、位相調整部65が出力する合波光は、印加されるバイアスに応じて複素平面の虚軸(Q軸)上を移動する信号になる。合波部66は、合波部64Iが出力する合波光と、位相調整部65が出力する合波光を合波する。したがって、光位相調整部62I及び63Iと、光位相調整部62Q及び63Qに印加するバイアスをデータ列に応じて調整することで、合波部66が出力する合波光は、QPSK信号になる。 The processing in the branch portion 61Q, the optical phase adjustment units 62Q and 63Q, and the combine unit 64Q is the same as the above-mentioned processing in the branch unit 61I, the optical phase adjustment units 62I and 63I, and the combine unit 64I. Therefore, the combined wave light output by the combined wave unit 64Q becomes a signal that moves on the real axis of the complex plane according to the applied bias. The phase of the combined wave light output by the combined wave unit 64Q is rotated by 90 degrees in the phase adjusting unit 65. Therefore, the combined wave light output by the phase adjusting unit 65 becomes a signal that moves on the imaginary axis (Q axis) of the complex plane according to the applied bias. The combine unit 66 combines the combined light output by the combined unit 64I and the combined light output by the phase adjusting unit 65. Therefore, by adjusting the bias applied to the optical phase adjusting units 62I and 63I and the optical phase adjusting units 62Q and 63Q according to the data string, the combined light output by the combined unit 66 becomes a QPSK signal.

P.Dong,et al.,"112-Gb/s monolithic PDM-QPSK modulator in silicon",Opt.Express 20,B624-B629,2012年P. Dong, et al. , "112-Gb / s monolithic PDM-QPSK modulator in silicon", Opt. Express 20, B624-B629, 2012 E.Yamada et al.,"112-Gb/s InP DP-QPSK Modulator Integrated with a Silica-PLC Polarization Multiplexing Circuit",in National Fiber Optic Engineers Conference,OSA Technical Digest(Optical Society of America),paper PDP5A.9,2012年E. Yamada et al. , "112-Gb / s InP DP-QPSK Modulator Integrated with a Silica-PLC Multiplexing Circuit", in National Fiber Optica Engine 9, 2012

しかしながら、非特許文献1及び2の構成は複雑であり、また、複数回の光の分岐や合波による損失が大きくなる。 However, the configurations of Non-Patent Documents 1 and 2 are complicated, and the loss due to a plurality of light branches and combined waves becomes large.

本発明は、簡易な構成で、偏波多重変調信号を処理する技術を提供するものである。 The present invention provides a technique for processing a polarization multiplex modulation signal with a simple configuration.

本発明の一態様によると、光変調器は、直線偏波である第1偏波の連続光の位相を第1データに基づく第1位相操作量だけ変動させる様に変調して第1変調光を出力する第1変調手段と、前記第1変調光を円偏波の第2変調光に変換する変換手段と、前記第2変調光の前記第1偏波の成分と前記第1偏波とは直交する第2偏波の成分の位相を第2データに基づく第2位相操作量だけ互いに逆向きに変動させる様に変調して第3変調光を出力する第2変調手段と、を備えていることを特徴とする。 According to one aspect of the present invention, the optical modulator modulates the phase of the continuous light of the first polarization, which is linear polarization, by the first phase manipulation amount based on the first data, and the first modulated light. The first modulation means for outputting the above, the conversion means for converting the first modulation light into the second modulation light of circular polarization, the component of the first polarization of the second modulation light, and the first polarization. Is a second modulation means that modulates the phases of the components of the second polarization orthogonal to each other so as to fluctuate in opposite directions by the amount of the second phase manipulation based on the second data, and outputs the third modulated light. It is characterized by having.

本発明によると、簡易な構成で、偏波多重変調信号を処理することができる。 According to the present invention, it is possible to process a polarization multiplex modulation signal with a simple configuration.

非特許文献に記載の光変調器の構成図。The block diagram of the optical modulator described in a non-patent document. 図1のQPSK変調部の構成図。The block diagram of the QPSK modulation part of FIG. 一実施形態による光変調器の構成図。The block diagram of the optical modulator according to one Embodiment. 一実施形態による光変調器の各部が出力する変調信号の説明図。Explanatory drawing of the modulation signal output by each part of the optical modulator according to one Embodiment. 一実施形態による光復調器の構成図。The block diagram of the optical demodulator according to one Embodiment. 一実施形態による光変調器の構成図。The block diagram of the optical modulator according to one Embodiment.

以下、本発明の例示的な実施形態について図面を参照して説明する。なお、以下の実施形態は例示であり、本発明を実施形態の内容に限定するものではない。また、以下の各図においては、実施形態の説明に必要ではない構成要素については図から省略する。 Hereinafter, exemplary embodiments of the present invention will be described with reference to the drawings. The following embodiments are examples, and the present invention is not limited to the contents of the embodiments. Further, in each of the following figures, components not necessary for the description of the embodiment will be omitted from the drawings.

<第一実施形態>
図3は、本実施形態による光変調器の構成図である。なお、本実施形態では、X偏波とY偏波それぞれの変調方式をQPSKとする。つまり、X偏波とY偏波それぞれにおいて1シンボルで2ビットのデータを搬送するものとする。しかしながら、本発明は、PSK、8PSK等、他の多値度の変調方式に対しても同様に適用できる。光位相調整部10には、X偏波の連続光が入力される。また、変換部13には、データ列Xが入力される。変換部13は、データ列Xの連続する2ビットの値に応じた位相操作量Vを出力する。光位相調整部10は、X偏波の連続光の位相を、位相操作量Vだけ変化させ、X偏波の変調光31を出力する。光位相調整部10は、電気光学効果などを利用した位相変調器であり、例えば、図2の光位相調整部62I等と同じ構成を使用することができる。例えば、位相操作量Vが0の場合、X偏波の変調光31が、図4(A)の座標41で示す信号になるものとする。この場合、位相操作量Vを増加させると、X偏波の変調光31の位相は、図4の点線で示す様な経路で変化する。なお、図4の黒丸は、データ列Xの連続する2ビットの値に対応するQPSK信号のシンボルの位相を示している。X偏波の変調光31の位相が、データ列の連続する2ビットの値に応じた図4(A)の黒丸で示す位相となる様に、変換部31が位相操作量Vを決定することで、光位相調整部10はQPSK変調を行う。X偏波の変調光31は、以下のジョーンズベクトルで表される。
<First Embodiment>
FIG. 3 is a configuration diagram of an optical modulator according to the present embodiment. In this embodiment, the modulation method for each of the X polarization and the Y polarization is QPSK. That is, it is assumed that two bits of data are carried by one symbol in each of the X polarization and the Y polarization. However, the present invention can be similarly applied to other multi-value modulation schemes such as PSK and 8PSK. Continuous light of X polarization is input to the optical phase adjusting unit 10. Further, the data string X is input to the conversion unit 13. The conversion unit 13 outputs a phase manipulated variable V X corresponding to the value of two consecutive bits of the data string X. The optical phase adjusting unit 10 changes the phase of the continuous light of X polarization by the phase manipulation amount VX, and outputs the modulated light 31 of X polarization. The optical phase adjusting unit 10 is a phase modulator using an electro-optical effect or the like, and for example, the same configuration as the optical phase adjusting unit 62I in FIG. 2 can be used. For example, when the phase manipulated variable V X is 0, it is assumed that the modulated light 31 of the X polarization becomes the signal shown by the coordinates 41 in FIG. 4 (A). In this case, when the phase manipulation amount V X is increased, the phase of the X-polarized modulation light 31 changes in the path as shown by the dotted line in FIG. The black circle in FIG. 4 indicates the phase of the symbol of the QPSK signal corresponding to the continuous 2-bit value of the data string X. The conversion unit 31 determines the phase manipulation amount V X so that the phase of the X-polarized modulation light 31 becomes the phase indicated by the black circle in FIG. 4A corresponding to the value of two consecutive bits of the data string. As a result, the optical phase adjustment unit 10 performs QPSK modulation. The X-polarized modulated light 31 is represented by the following Jones vector.

Figure 0007060474000001
Figure 0007060474000001

1/4波長板(QWP)11は、X偏波の変調光31を円偏波の変調光32に変換する。図4(B)及び(C)は、それぞれ、円偏波の変調光32のX偏波成分と、Y偏波成分とを示している。X偏波の変調光31の座標41は、図4(B)に示す様に、円偏波の変調光22のX偏波成分においては同じ座標位置になるが、図4(C)に示す様に、円偏波の変調光32のY偏波成分においては位相が90度だけ回転する。円偏波の変調光32は、以下のジョーンズベクトルで表される。 The 1/4 wave plate (QWP) 11 converts the X-polarized modulation light 31 into the circularly polarized modulated light 32. 4 (B) and 4 (C) show the X-polarized component and the Y-polarized component of the circularly polarized modulated light 32, respectively. As shown in FIG. 4B, the coordinates 41 of the X-polarized modulated light 31 have the same coordinate positions in the X-polarized component of the circularly polarized modulated light 22, but are shown in FIG. 4C. As described above, the phase of the Y polarization component of the circularly polarized light 32 is rotated by 90 degrees. The circularly polarized modulated light 32 is represented by the following Jones vector.

Figure 0007060474000002
なお、X偏波成分及びY偏波成分の振幅は、変調光31の(1/√2)になるが、説明を簡略化するため、以下の総ての説明において、振幅の倍率については省略する。
Figure 0007060474000002
The amplitude of the X-polarization component and the Y-polarization component is (1 / √2) of the modulated light 31, but for the sake of simplicity, the amplitude magnification is omitted in all the following explanations. do.

変換部14には、データ列Yが入力される。変換部14は、データ列Yの連続する2ビットの値に応じた位相操作量Vを出力する。光位相調整部12のハードウェア構成は、光位相調整部10と同様である。しかしながら、光位相調整部12には円偏波の変調光32が入力されるため、光位相調整部12は、位相操作量Vに基づきX偏波成分とY偏波成分の相対位相を制御することになる。光位相調整部12が出力する円偏波の変調光33は、以下のジョーンズベクトルで表される。 The data string Y is input to the conversion unit 14. The conversion unit 14 outputs a phase manipulated variable V Y corresponding to the value of two consecutive bits of the data string Y. The hardware configuration of the optical phase adjusting unit 12 is the same as that of the optical phase adjusting unit 10. However, since the circularly polarized wave modulated light 32 is input to the optical phase adjusting unit 12, the optical phase adjusting unit 12 controls the relative phase of the X polarization component and the Y polarization component based on the phase manipulation amount V Y. Will be done. The circularly polarized wave modulated light 33 output by the optical phase adjusting unit 12 is represented by the following Jones vector.

Figure 0007060474000003
Figure 0007060474000003

本実施形態による光送信機は、図3に示す光変調器を有し、円偏波の変調光33を光伝送路に出力する。 The optical transmitter according to the present embodiment has the optical modulator shown in FIG. 3, and outputs the circularly polarized modulated light 33 to the optical transmission line.

図5は、本実施形態による光受信機が有する光復調器の構成図である。受信部20には、光送信機が送信した円偏波の変調光33が入力される。受信部20は、通常のコヒーレント光受信機と同様に、円偏波の変調光33のX偏波成分とY偏波成分それぞれを検出し、円偏波の変調光33のX偏波成分とY偏波成分を示す電気信号34及び35を出力する。電気信号34が示す複素平面上の座標をRxとし、電気信号35が示す複素平面上の座標をRyとすると、 FIG. 5 is a configuration diagram of an optical demodulator included in the optical receiver according to the present embodiment. The circularly polarized wave modulated light 33 transmitted by the optical transmitter is input to the receiving unit 20. The receiver 20 detects each of the X-polarized component and the Y-polarized component of the circularly polarized light 33, and sets the X-polarized component of the circularly polarized light 33 as the X-polarized component of the circularly polarized light 33, as in the case of a normal coherent optical receiver. The electric signals 34 and 35 indicating the Y polarization component are output. Let Rx be the coordinates on the complex plane indicated by the electric signal 34, and Ry be the coordinates on the complex plane indicated by the electric signal 35.

Figure 0007060474000004
である。
Figure 0007060474000004
Is.

復調部21は、以下の式(1)で示す演算を行って電気信号36を出力し、以下の式(2)で示す演算を行って電気信号37を出力する。 The demodulation unit 21 performs an operation represented by the following equation (1) to output an electric signal 36, and performs an operation represented by the following equation (2) to output an electric signal 37.

Figure 0007060474000005
Figure 0007060474000005

式(1)から明らかな様に、電気信号36は、位相操作量Vを示し、よって、データ列Xの連続する2ビットの値に対応する。同様に、式(2)から明らかな様に、電気信号37は、位相操作量Vを示し、よって、データ列Yの連続する2ビットの値に対応する。判定部22は、電気信号36に基づきデータ列Xの連続する2ビットの値を判定し、判定部23は、電気信号36に基づきデータ列Yの連続する2ビットの値を判定する。 As is clear from equation (1), the electrical signal 36 indicates a phase manipulated variable V X and thus corresponds to a continuous 2-bit value of the data sequence X. Similarly, as is clear from equation (2), the electrical signal 37 indicates a phase manipulated variable V Y and thus corresponds to a continuous 2-bit value of the data sequence Y. The determination unit 22 determines the continuous 2-bit value of the data string X based on the electric signal 36, and the determination unit 23 determines the continuous 2-bit value of the data string Y based on the electric signal 36.

以上、本実施形態の光変調器は、図1の分岐部5や合波部6を必要とせず、簡易な構成で、偏波多重された変調信号を生成することができる。また、本実施形態の光復調器は、上記光変調器が生成した偏波多重変調信号を復調することができる。なお、光位相調整部10及び光位相調整部12は、上述した構成に限定されず、光信号の位相を調整する任意の構成を光位相調整部10及び光位相調整部12として使用することができる。なお、光位相調整部12としては、X偏波成分とY偏波成分の位相を等価的に互いに逆方向に同じ値だけ変化させるものを使用する。 As described above, the light modulator of the present embodiment does not require the branching portion 5 and the combining portion 6 of FIG. 1, and can generate a modulated signal with polarization multiplexing with a simple configuration. Further, the optical demodulator of the present embodiment can demodulate the polarization multiplex modulation signal generated by the optical modulator. The optical phase adjusting unit 10 and the optical phase adjusting unit 12 are not limited to the above-mentioned configurations, and any configuration for adjusting the phase of the optical signal can be used as the optical phase adjusting unit 10 and the optical phase adjusting unit 12. can. As the optical phase adjusting unit 12, a unit that changes the phases of the X polarization component and the Y polarization component equivalently in opposite directions by the same value is used.

<第二実施形態>
第一実施形態では、光受信機において、通常のコヒーレント検出を行った後、式(1)及び式(2)で示す演算を行うことで、光送信機が送信したデータ列Xと、データ列Yの復調・判定を行っていた。本実施形態では、式(1)及び式(2)の演算を送信側で行うことにより、光受信機においては、図5の復調部21を不要にし、受信部20が出力する電気信号34及び35に基づき、判定部22及び23が、データ列X及びデータ列Yの値を判定する。つまり、本実施形態では、従来の復調器を使用することができる。
<Second embodiment>
In the first embodiment, in the optical receiver, after performing normal coherent detection, the data string X transmitted by the optical transmitter and the data string are performed by performing the operations represented by the equations (1) and (2). The demodulation / judgment of Y was performed. In the present embodiment, by performing the operations of the equations (1) and (2) on the transmitting side, the demodulation unit 21 of FIG. 5 becomes unnecessary in the optical receiver, and the electric signal 34 and the electric signal 34 output by the receiving unit 20 Based on 35, the determination units 22 and 23 determine the values of the data column X and the data column Y. That is, in this embodiment, a conventional demodulator can be used.

図6は、本実施形態による光送信機の構成図である。本実施形態において、変換部13及び変換部14には、共に、データ列X及びデータ列Yが入力される。変換部13は、位相操作量V´を、V+Vで求め、変換部14は、位相操作量V´を、V-Vで求める。なお、V及びVは第一実施形態と同様である。したがって、受信部20が出力する電気信号34が示す複素平面上の座標Rxと、電気信号35が示す複素平面上の座標Ryは以下の様になる。 FIG. 6 is a configuration diagram of an optical transmitter according to the present embodiment. In the present embodiment, the data string X and the data string Y are input to both the conversion unit 13 and the conversion unit 14. The conversion unit 13 obtains the phase manipulated variable V'X by V X + V Y , and the conversion unit 14 obtains the phase manipulated variable V'Y by V X - V Y. Note that V X and V Y are the same as those in the first embodiment. Therefore, the coordinates Rx on the complex plane indicated by the electric signal 34 output by the receiving unit 20 and the coordinates Ry on the complex plane indicated by the electric signal 35 are as follows.

Figure 0007060474000006
Figure 0007060474000006

したがって、判定部22及び23は、受信部20が出力する電気信号34及び35に基づき、データ列X及びデータ列Yの値を判定することができる。なお、本実施形態において、変換部13は、位相操作量V´を、VとVの和で求め、変換部14は、位相操作量V´を、VとVの差で求めた。しかしながら、変換部13が、位相操作量V´を、VとVの差で求め、変換部14が、位相操作量V´を、VとVの和で求める構成とすることもできる。 Therefore, the determination units 22 and 23 can determine the values of the data string X and the data column Y based on the electric signals 34 and 35 output by the reception unit 20. In the present embodiment, the conversion unit 13 obtains the phase manipulated variable V'X by the sum of V X and V Y , and the conversion unit 14 determines the phase manipulated variable V'Y as the difference between V X and V Y. I asked for it. However, the conversion unit 13 obtains the phase manipulated variable V'X by the difference between V X and V Y , and the conversion unit 14 obtains the phase manipulated variable V'Y by the sum of V X and V Y. You can also do it.

10、12:光位相調整部、11:1/4波長板 10, 12: Optical phase adjuster, 11: 1/4 wave plate

Claims (8)

直線偏波である第1偏波の連続光の位相を第1データに基づく第1位相操作量だけ変動させる様に変調して第1変調光を出力する第1変調手段と、
前記第1変調光を円偏波の第2変調光に変換する変換手段と、
前記第2変調光の前記第1偏波の成分と前記第1偏波とは直交する第2偏波の成分の位相を第2データに基づく第2位相操作量だけ互いに逆向きに変動させる様に変調して第3変調光を出力する第2変調手段と、
を備えていることを特徴とする光変調器。
A first modulation means that modulates the phase of continuous light of the first polarization, which is linearly polarized, so as to fluctuate by the amount of the first phase manipulation based on the first data, and outputs the first modulated light.
A conversion means for converting the first modulated light into a second modulated light having circular polarization,
The phase of the first polarization component of the second modulated light and the second polarization component orthogonal to the first polarization fluctuate in opposite directions by the second phase manipulation amount based on the second data. A second modulation means that modulates the light so as to output the third modulated light, and
An optical modulator characterized by being equipped with.
第1データに基づく第1位相操作量及び第2データに基づく第2位相操作量から第3位相操作量を判定し、直線偏波である第1偏波の連続光の位相を前記第3位相操作量だけ変動させる様に変調して第1変調光を出力する第1変調手段と、
前記第1変調光を円偏波の第2変調光に変換する変換手段と、
前記第1位相操作量及び前記第2位相操作量から第4位相操作量を判定し、前記第2変調光の前記第1偏波の成分と前記第1偏波とは直交する第2偏波の成分の位相を前記第4位相操作量だけ互いに逆向きに変動させる様に変調して第3変調光を出力する第2変調手段と、
を備え、
前記第3位相操作量は、前記第1位相操作量と前記第2位相操作量との和又は差であり、前記第3位相操作量が前記第1位相操作量と前記第2位相操作量との和である場合、前記第4位相操作量は、前記第1位相操作量と前記第2位相操作量との差であり、前記第3位相操作量が前記第1位相操作量と前記第2位相操作量との差である場合、前記第4位相操作量は、前記第1位相操作量と前記第2位相操作量との和であることを特徴とする光変調器
The third phase manipulation amount is determined from the first phase manipulation amount based on the first data and the second phase manipulation amount based on the second data, and the phase of the continuous light of the first polarization which is linear polarization is the phase of the third phase. The first modulation means that is modulated so as to fluctuate by the amount of operation and outputs the first modulated light,
A conversion means for converting the first modulated light into a second modulated light having circular polarization,
The fourth phase manipulated amount is determined from the first phase manipulated amount and the second phase manipulated amount, and the component of the first polarization of the second modulated light and the first polarization are orthogonal to each other in the second polarization. A second modulation means that modulates the phase of the components of the above components in opposite directions by the amount of the fourth phase manipulation and outputs the third modulated light.
Equipped with
The third phase manipulated amount is the sum or difference between the first phase manipulated amount and the second phase manipulated amount, and the third phase manipulated amount is the first phase manipulated amount and the second phase manipulated amount. In the case of the sum of, the fourth phase manipulated amount is the difference between the first phase manipulated amount and the second phase manipulated amount, and the third phase manipulated amount is the first phase manipulated amount and the second phase manipulated amount. When the difference from the phase manipulated amount, the fourth phase manipulated amount is the sum of the first phase manipulated amount and the second phase manipulated amount .
請求項1又は2に記載の光変調器を有することを特徴とする光送信機。 An optical transmitter comprising the light modulator according to claim 1 or 2 . 円偏波である変調光の第1偏波の成分及び前記第1偏波とは直交する第2偏波の成分それぞれコヒーレント検出して第1電気信号及び第2電気信号を出力する出力手段と、
前記第1電気信号と前記第2電気信号を乗ずることで第3電気信号を生成し、前記第1電気信号を前記第2電気信号で除することで第4電気信号を生成する生成手段と、
前記第3電気信号の位相に基づき第1データを判定し、前記第4電気信号の位相に基づき第2データを判定する判定手段と、
を備え
前記変調光は、前記第1偏波の連続光の位相を前記第1データに基づく第1位相操作量だけ変動させる様に変調して第1変調光を出力し、前記第1変調光を円偏波の第2変調光に変換し、前記第2変調光の前記第1偏波の成分と前記第2偏波の成分の位相を前記第2データに基づく第2位相操作量だけ互いに逆向きに変動させる様に変調することで生成されたものであることを特徴とする光復調器。
Coherent detection is performed for each of the first polarization component of the modulated light having circular polarization and the second polarization component orthogonal to the first polarization, and the first electric signal and the second electric signal are obtained. Output means to output and
A generation means for generating a third electric signal by multiplying the first electric signal and the second electric signal, and generating a fourth electric signal by dividing the first electric signal by the second electric signal.
A determination means for determining the first data based on the phase of the third electric signal and determining the second data based on the phase of the fourth electric signal.
Equipped with
The modulated light is modulated so that the phase of the continuous light of the first polarization is changed by the amount of the first phase operation based on the first data, the first modulated light is output, and the first modulated light is circular. It is converted into the second modulated light of polarization, and the phases of the first polarization component and the second polarization component of the second modulated light are opposite to each other by the second phase manipulation amount based on the second data. An optical demodulator characterized by being generated by modulation so as to fluctuate to .
請求項に記載の光復調器を有することを特徴とする光受信機。 An optical receiver comprising the optical demodulator according to claim 4 . 光送信機と光受信機と、を含む光通信システムであって、
前記光送信機は、
直線偏波である第1偏波の連続光の位相を第1データに基づく第1位相操作量だけ変動させる様に変調して第1変調光を出力する第1変調手段と、
前記第1変調光を円偏波の第2変調光に変換する変換手段と、
前記第2変調光の前記第1偏波の成分と前記第1偏波とは直交する第2偏波の成分の位相を第2データに基づく第2位相操作量だけ互いに逆向きに変動させる様に変調して第3変調光を出力する第2変調手段と、
を備え、
前記光受信機は、
前記第3変調光を受信し、前記第3変調光の前記第1偏波の成分及び前記第2偏波の成分それぞれコヒーレント検出して第1電気信号及び第2電気信号を出力する出力手段と、
前記第1電気信号と前記第2電気信号を乗ずることで第3電気信号を生成し、前記第1電気信号を前記第2電気信号で除することで第4電気信号を生成する生成手段と、
前記第3電気信号の位相に基づき前記第1データを判定し、前記第4電気信号の位相に基づき前記第2データを判定する判定手段と、
を備えていることを特徴とする光通信システム。
An optical communication system including an optical transmitter and an optical receiver.
The optical transmitter is
A first modulation means that modulates the phase of continuous light of the first polarization, which is linearly polarized, so as to fluctuate by the amount of the first phase manipulation based on the first data, and outputs the first modulated light.
A conversion means for converting the first modulated light into a second modulated light having circular polarization,
The phase of the first polarization component of the second modulated light and the second polarization component orthogonal to the first polarization fluctuate in opposite directions by the second phase manipulation amount based on the second data. A second modulation means that modulates the light so as to output the third modulated light, and
Equipped with
The optical receiver is
Upon receiving the third modulated light, the first polarized wave component and the second polarized wave component of the third modulated light are coherently detected, and the first electric signal and the second electric signal are obtained. Output means to output and
A generation means for generating a third electric signal by multiplying the first electric signal and the second electric signal, and generating a fourth electric signal by dividing the first electric signal by the second electric signal.
A determination means for determining the first data based on the phase of the third electric signal and determining the second data based on the phase of the fourth electric signal.
An optical communication system characterized by being equipped with.
光送信機と光受信機と、を含む光通信システムであって、
前記光送信機は、
第1データに基づく第1位相操作量及び第2データに基づく第2位相操作量から第3位相操作量を判定し、直線偏波である第1偏波の連続光の位相を前記第3位相操作量だけ変動させる様に変調して第1変調光を出力する第1変調手段と、
前記第1変調光を円偏波の第2変調光に変換する変換手段と、
前記第1位相操作量及び前記第2位相操作量から第4位相操作量を判定し、前記第2変調光の前記第1偏波の成分と前記第1偏波とは直交する第2偏波の成分の位相を前記第4位相操作量だけ互いに逆向きに変動させる様に変調して第3変調光を出力する第2変調手段と、
を備え、
前記光受信機は、
前記第3変調光を受信し、前記第3変調光の前記第1偏波の成分及び前記第2偏波の成分それぞれをコヒーレント検出して第1電気信号及び第2電気信号を出力する出力手段と、
前記第1電気信号の位相に基づき前記第1データを判定し、前記第2電気信号の位相に基づき前記第2データを判定する判定手段と、
を備え、
前記第3位相操作量は、前記第1位相操作量と前記第2位相操作量との和であり、前前記第4位相操作量は、前記第1位相操作量と前記第2位相操作量との差であることを特徴とする光通信システム
An optical communication system including an optical transmitter and an optical receiver.
The optical transmitter is
The third phase manipulation amount is determined from the first phase manipulation amount based on the first data and the second phase manipulation amount based on the second data, and the phase of the continuous light of the first polarization which is linear polarization is the phase of the third phase. The first modulation means that is modulated so as to fluctuate by the amount of operation and outputs the first modulated light,
A conversion means for converting the first modulated light into a second modulated light having circular polarization,
The fourth phase manipulated amount is determined from the first phase manipulated amount and the second phase manipulated amount, and the component of the first polarization of the second modulated light and the first polarization are orthogonal to each other in the second polarization. A second modulation means that modulates the phase of the components of the above components in opposite directions by the amount of the fourth phase manipulation and outputs the third modulated light.
Equipped with
The optical receiver is
An output means that receives the third modulated light, coherently detects each of the first polarized wave component and the second polarized wave component of the third modulated light, and outputs a first electric signal and a second electric signal. When,
A determination means for determining the first data based on the phase of the first electric signal and determining the second data based on the phase of the second electric signal.
Equipped with
The third phase manipulated variable is the sum of the first phase manipulated variable and the second phase manipulated variable, and the fourth phase manipulated variable is the first phase manipulated variable and the second phase manipulated variable. An optical communication system characterized by the difference between the two .
光送信機と光受信機と、を含む光通信システムであって、
前記光送信機は、
第1データに基づく第1位相操作量及び第2データに基づく第2位相操作量から第3位相操作量を判定し、直線偏波である第1偏波の連続光の位相を前記第3位相操作量だけ変動させる様に変調して第1変調光を出力する第1変調手段と、
前記第1変調光を円偏波の第2変調光に変換する変換手段と、
前記第1位相操作量及び前記第2位相操作量から第4位相操作量を判定し、前記第2変調光の前記第1偏波の成分と前記第1偏波とは直交する第2偏波の成分の位相を前記第4位相操作量だけ互いに逆向きに変動させる様に変調して第3変調光を出力する第2変調手段と、
を備え、
前記光受信機は、
前記第3変調光を受信し、前記第3変調光の前記第1偏波の成分及び前記第2偏波の成分それぞれをコヒーレント検出して第1電気信号及び第2電気信号を出力する出力手段と、
前記第1電気信号の位相に基づき前記第2データを判定し、前記第2電気信号の位相に基づき前記第1データを判定する判定手段と、
を備え、
前記第3位相操作量は、前記第1位相操作量と前記第2位相操作量との差であり、前前記第4位相操作量は、前記第1位相操作量と前記第2位相操作量との和であることを特徴とする光通信システム
An optical communication system including an optical transmitter and an optical receiver.
The optical transmitter is
The third phase manipulation amount is determined from the first phase manipulation amount based on the first data and the second phase manipulation amount based on the second data, and the phase of the continuous light of the first polarization which is linear polarization is the phase of the third phase. The first modulation means that is modulated so as to fluctuate by the amount of operation and outputs the first modulated light,
A conversion means for converting the first modulated light into a second modulated light having circular polarization,
The fourth phase manipulated amount is determined from the first phase manipulated amount and the second phase manipulated amount, and the component of the first polarization of the second modulated light and the first polarization are orthogonal to each other in the second polarization. A second modulation means that modulates the phase of the components of the above components in opposite directions by the amount of the fourth phase manipulation and outputs the third modulated light.
Equipped with
The optical receiver is
An output means that receives the third modulated light, coherently detects each of the first polarized wave component and the second polarized wave component of the third modulated light, and outputs a first electric signal and a second electric signal. When,
A determination means for determining the second data based on the phase of the first electric signal and determining the first data based on the phase of the second electric signal.
Equipped with
The third phase manipulated variable is the difference between the first phase manipulated variable and the second phase manipulated variable, and the fourth phase manipulated variable is the first phase manipulated variable and the second phase manipulated variable. An optical communication system characterized by being the sum of .
JP2018152914A 2018-08-15 2018-08-15 Optical modulators, optical transmitters, optical demodulators, optical receivers and optical communication systems Active JP7060474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018152914A JP7060474B2 (en) 2018-08-15 2018-08-15 Optical modulators, optical transmitters, optical demodulators, optical receivers and optical communication systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018152914A JP7060474B2 (en) 2018-08-15 2018-08-15 Optical modulators, optical transmitters, optical demodulators, optical receivers and optical communication systems

Publications (2)

Publication Number Publication Date
JP2020028065A JP2020028065A (en) 2020-02-20
JP7060474B2 true JP7060474B2 (en) 2022-04-26

Family

ID=69620419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018152914A Active JP7060474B2 (en) 2018-08-15 2018-08-15 Optical modulators, optical transmitters, optical demodulators, optical receivers and optical communication systems

Country Status (1)

Country Link
JP (1) JP7060474B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004320386A (en) 2003-04-16 2004-11-11 National Institute Of Information & Communication Technology Optical transmission device and method
JP2005167474A (en) 2003-12-01 2005-06-23 National Institute Of Information & Communication Technology Method and system for optical transmission
JP2011146795A (en) 2010-01-12 2011-07-28 Hitachi Ltd Polarization multiplexing transmitter and transmission system
JP2017073729A (en) 2015-10-09 2017-04-13 富士通株式会社 Optical remodulation device and optical remodulation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004320386A (en) 2003-04-16 2004-11-11 National Institute Of Information & Communication Technology Optical transmission device and method
JP2005167474A (en) 2003-12-01 2005-06-23 National Institute Of Information & Communication Technology Method and system for optical transmission
JP2011146795A (en) 2010-01-12 2011-07-28 Hitachi Ltd Polarization multiplexing transmitter and transmission system
JP2017073729A (en) 2015-10-09 2017-04-13 富士通株式会社 Optical remodulation device and optical remodulation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TSUKAMOTO S. et al.,Coherent Demodulation of Optical Multilevel Phase-Shift-Keying Signals Using Homodyne Detection and Digital Signal Processing,IEEE PHOTONICS TECHNOLOGY LETTERS,VOL. 18, NO. 10,米国,IEEE,2006年05月15日,pages 1131-1133

Also Published As

Publication number Publication date
JP2020028065A (en) 2020-02-20

Similar Documents

Publication Publication Date Title
US8989571B2 (en) In-band supervisory data modulation using complementary power modulation
JP6263915B2 (en) In-band management data modulation
JP6303691B2 (en) Polarization state detection apparatus and method, and optical communication system, optical transmitter and optical receiver
US7509054B2 (en) Method for the transmission of optical polarization multiplex signals
CN108768540B (en) Optical signal receiving device, method and coherent optical transmission system with the device
CN107005310B (en) Spectrum inversion detection for polarization division multiplexed optical transmission
JP2012070051A (en) Coherent optical receiver and method for controlling the same
US10554325B2 (en) Receiver and receiving method
CN102714553B (en) Method for processing signals, optical receiver and optical network system
WO2017079871A1 (en) Modulator, modulation system and method for realizing high-order modulation
US9240858B2 (en) Optical communication system, optical communication method, optical communication device, and method and program for controlling the same
US9608732B2 (en) Optical transmitter, optical communication system, and optical communication method
US9143265B2 (en) Optical polarization multilevel signal receiving apparatus, optical polarization multilevel signal transmitting apparatus, and optical polarization multilevel signal transmission apparatus
JPWO2017056440A1 (en) Optical modulator, optical transmitter, and optical modulation method
JP4621881B2 (en) Coherent optical transmission method
JP7385386B2 (en) Power receiving device and optical fiber power supply system
JP7060474B2 (en) Optical modulators, optical transmitters, optical demodulators, optical receivers and optical communication systems
JP2014154926A (en) Reception signal processing apparatus and reception signal processing method
JP7041038B2 (en) Optical modulators, optical transmitters, optical demodulators and optical receivers
JP6061514B2 (en) Optical transmission / reception system and optical transmission method
JP4247784B2 (en) Optical communication method, optical transmitter, and optical communication system
WO2013031786A1 (en) Phase adjustment circuit, optical transmission device, and phase adjustment method
JP7306652B2 (en) Optical transmitter and optical communication system
WO2022249326A1 (en) Reception device, transmission device, transmission system, reception method, and transmission method
JP5969661B1 (en) Optical transmitter and optical transmission / reception system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200528

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220414

R150 Certificate of patent or registration of utility model

Ref document number: 7060474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150