WO2012133390A1 - Mold release treatment method, and antireflective film production method - Google Patents

Mold release treatment method, and antireflective film production method Download PDF

Info

Publication number
WO2012133390A1
WO2012133390A1 PCT/JP2012/057896 JP2012057896W WO2012133390A1 WO 2012133390 A1 WO2012133390 A1 WO 2012133390A1 JP 2012057896 W JP2012057896 W JP 2012057896W WO 2012133390 A1 WO2012133390 A1 WO 2012133390A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
mold release
fluorine
layer
release agent
Prior art date
Application number
PCT/JP2012/057896
Other languages
French (fr)
Japanese (ja)
Inventor
箕浦 潔
彰信 石動
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012133390A1 publication Critical patent/WO2012133390A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/60Releasing, lubricating or separating agents
    • B29C33/62Releasing, lubricating or separating agents based on polymers or oligomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0067Using separating agents during or after moulding; Applying separating agents on preforms or articles, e.g. to prevent sticking to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • B29C59/046Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts for layered or coated substantially flat surfaces

Definitions

  • the present invention relates to a mold release processing method and an antireflection film manufacturing method.
  • the “mold” here includes molds used in various processing methods (stamping and casting), and is sometimes referred to as a stamper. It can also be used for printing (including nanoprinting).
  • An optical element such as a display device or a camera lens used for a television or a mobile phone is usually provided with an antireflection technique in order to reduce surface reflection and increase light transmission.
  • an antireflection technique in order to reduce surface reflection and increase light transmission. For example, when light passes through the interface of a medium with a different refractive index, such as when light enters the interface between air and glass, the amount of transmitted light is reduced due to Fresnel reflection, etc., and visibility is reduced. is there.
  • This method utilizes the principle of a so-called moth-eye structure, and the refractive index for light incident on the substrate is determined from the refractive index of the incident medium along the depth direction of the irregularities, to the refractive index of the substrate.
  • the reflection in the wavelength region that is desired to be prevented from being reflected is suppressed by continuously changing the wavelength.
  • the moth-eye structure has an advantage that it can exhibit an antireflection effect with a small incident angle dependency over a wide wavelength range, can be applied to many materials, and can form an uneven pattern directly on a substrate. As a result, a low-cost and high-performance antireflection film (or antireflection surface) can be provided.
  • Patent Documents 2 to 4 As a method for producing a moth-eye structure, a method using an anodized porous alumina layer obtained by anodizing aluminum is attracting attention (Patent Documents 2 to 4).
  • anodized porous alumina layer obtained by anodizing aluminum will be briefly described.
  • a method for producing a porous structure using anodization has attracted attention as a simple method capable of forming regularly ordered nano-sized cylindrical pores (fine concave portions).
  • an acidic or alkaline electrolyte such as sulfuric acid, oxalic acid, or phosphoric acid
  • a voltage is applied using this as an anode
  • oxidation and dissolution proceed simultaneously on the surface of the substrate, and pores are formed on the surface.
  • An oxide film having the following can be formed. These cylindrical pores are oriented perpendicular to the oxide film and exhibit self-organized regularity under certain conditions (voltage, type of electrolyte, temperature, etc.). Is expected.
  • the porous alumina layer formed under specific conditions takes an array in which almost regular hexagonal cells are two-dimensionally filled with the highest density when viewed from the direction perpendicular to the film surface.
  • Each cell has a pore in the center, and the arrangement of the pores has periodicity.
  • the cell is formed as a result of local dissolution and growth of the film, and dissolution and growth of the film proceed simultaneously at the bottom of the pores called a barrier layer.
  • the distance between adjacent pores corresponds to approximately twice the thickness of the barrier layer and is approximately proportional to the voltage during anodization.
  • the diameter of the pore depends on the type, concentration, temperature, etc.
  • the pores of such porous alumina have an arrangement with high regularity (having periodicity) under a specific condition, an arrangement with irregularity to some extent or an irregularity (having no periodicity) depending on the conditions. ).
  • Patent Document 2 discloses a method of forming an antireflection film (antireflection surface) using a stamper having an anodized porous alumina film on the surface.
  • Patent Document 3 discloses a technique for forming a tapered concave portion in which the pore diameter continuously changes by repeating anodization of aluminum and pore diameter enlargement processing.
  • Patent Document 4 a technique for forming an antireflection film using an alumina layer in which fine concave portions have stepped side surfaces.
  • an antireflection film (antireflection surface) is provided by providing a concavo-convex structure (macro structure) larger than the moth eye structure in addition to the moth eye structure (micro structure). ) Can be given an anti-glare (anti-glare) function.
  • the two-dimensional size of the projections that form the projections and depressions that exhibit the antiglare function is 1 ⁇ m or more and less than 100 ⁇ m.
  • a mold for forming a moth-eye structure on the surface (hereinafter referred to as “moth-eye mold”) can be easily manufactured.
  • the surface of an anodized aluminum film is used as it is as a mold, the effect of reducing the manufacturing cost is great.
  • the surface structure of the moth-eye mold that can form the moth-eye structure is referred to as an “inverted moth-eye structure”.
  • a method using a photocurable resin is known. First, a photocurable resin is applied on the substrate. Subsequently, the uneven surface of the surface of the moth-eye mold is filled with the photocurable resin by pressing the uneven surface of the moth-eye mold subjected to the release treatment against the photocurable resin in a vacuum. Subsequently, the photocurable resin in the concavo-convex structure is irradiated with ultraviolet rays to cure the photocurable resin.
  • Patent Document 5 describes performing a mold release process by applying a fluorine-based mold release agent by a spray coating method. Has been.
  • Patent Document 6 when a lens is manufactured by a casting method, in order to uniformly apply a release agent to a mold, a release agent diluted with a solvent is applied only once, and then only a solvent is added. It is described that the thickness of the layer of the release agent can be made uniform throughout by providing the above.
  • the present applicant has developed a method for efficiently producing an antireflection film by a roll-to-roll method using a roll-shaped moth-eye mold (for example, Patent Document 7).
  • Fluorine-based release agents have better release properties than other release agents, such as silicone release agents, but the release properties are degraded in continuous production processes using the roll-to-roll method. However, it was found that it becomes a factor that hinders the improvement of mass production efficiency.
  • An object of the present invention is to improve the sustainability of mold releasability of a mold having a porous alumina layer on the surface.
  • a mold release treatment method includes (a) a step of preparing a mold release agent containing a fluorine compound having a mold release property and a solvent, and a mold having a porous alumina layer on the surface; ) Providing the mold release agent on the surface of the mold; (c) removing the solvent contained in the mold release agent on the surface of the mold; The step (b) and the step (c) are further included after the step (c).
  • the method further includes the step (b) and the step (c) after the step (d).
  • the step (b) and the step (c) From the viewpoint of sustainability of releasability, it is preferable to perform the step (b) and the step (c) three times or more in total. Even if the step (b) and the step (c) are performed 4 times or more in total, the number of times is not particularly different from the case of 3 times, so 3 times is most preferable from the viewpoint of throughput and / or material cost.
  • the concentration of the fluorine compound contained in the release agent does not exceed 0.002 mol / L.
  • the concentration of the fluorine compound is preferably 0.0004 mol / L or more. If the concentration of the fluorine compound is less than 0.0004 mol / L, sufficient releasability may not be obtained.
  • the fluorine compound having releasability is perfluoropolyether-modified silane.
  • the perfluoropolyether-modified silane is an alkoxysilane.
  • alkoxysilane is trimethoxysilane
  • the fluorine-based compound has one or two or more trimethoxysilane in one molecule.
  • the molecular weight of the fluorine-based compound is preferably 1000 or more and 10,000 or less.
  • the mold is in a roll shape and has the porous alumina layer on the outer peripheral surface of the mold.
  • An antireflection film manufacturing method includes a step of preparing a mold subjected to a release treatment by any one of the above methods, a step of preparing a workpiece, the mold, A step of curing the photocurable resin by irradiating the photocurable resin with light in a state where the photocurable resin is provided between the surface of the workpiece and the photocurable resin obtained by curing the mold. And a step of peeling from the formed antireflection film.
  • the workpiece is a roll film, and is performed in a roll-to-roll manner.
  • the film includes a base film and a hard coat layer formed on the base film, and the antireflection film is formed on the hard coat layer.
  • the embodiment of the present invention it is possible to improve the sustainability of mold releasability of a mold having a porous alumina layer on the surface.
  • mass production efficiency in manufacturing an antireflection film using a moth-eye mold can be increased.
  • (A)-(e) is a figure which shows the process of the manufacturing method of the type
  • (A)-(e) is a figure which shows the process of the manufacturing method of the roll type
  • FIG. 1 is a flowchart of steps in a mold release processing method according to an embodiment of the present invention.
  • the mold release processing method of embodiment by this invention is a process which prepares the mold release agent containing the fluorine-type compound and solvent which have mold release property, and the type
  • the method further includes a step (b) of applying a release agent on the surface of the mold and a step (c) of removing a solvent contained in the release agent on the surface of the mold.
  • ⁇ 1st is added to the first step (b) and step (c)
  • ⁇ st is added to the second step (b) and step (c) performed after the first step (c), respectively.
  • 2nd is typically performed under the same conditions as step (b) -1st, but the conditions may be changed.
  • step (c) -2nd is typically performed under the same conditions as step (c) -1st, but the conditions may be changed.
  • step (b) -3rd and step (c) -3rd may be performed after step (b) -2nd and step (c) -2nd.
  • Step (b) -3rd is typically the same step as step (b) -1st, similar to step (b) -2nd, but step (b) -1st and / or step (b) -2nd Different conditions may be used.
  • Step (c) -3rd is typically the same step as step (c) -1st, similar to step (c) -2nd, but step (c) -1st and / or step (c) -2nd Different conditions may be used.
  • step (b) and step (c) are performed three times or more (1st to 3rd) in total.
  • the step (b) and the step (c) are performed 4 times or more in total, the number of times is not particularly different from the case of 3 times, so 3 times is most preferable from the viewpoint of throughput and / or material cost.
  • a fluorine-based mold release agent refers to a mixture containing a releasable fluorine-based compound (fluorine-containing organic compound) and a solvent, and is generally a fluorine-based coating agent or a fluorine-based surface. Widely includes those marketed under names such as treatment agents.
  • a fluorine-based solvent is widely used, and the fluorine-based solvent is also a fluorine-based compound.
  • a fluorine-based compound used as a fluorine-based solvent has low chemical activity, a relatively low molecular weight, and high volatility.
  • a fluorine-based compound having releasability has a hydrolyzable group such as alkoxylane, and generates a silanol group (SiOH) by hydrolysis.
  • the silanol group has an affinity for the surface of the oxide and generates a bond such as a hydrogen bond.
  • Silanol groups form a cross-linked structure by dehydration condensation to form a resin film of a fluorine-based compound.
  • a fluorine-based release component In order to distinguish the fluorine-based compound having releasability contained in the fluorine-based release agent from the fluorine-based solvent, it may be referred to as a fluorine-based release component.
  • the fluorine-based releasable component perfluoropolyether-modified silane is preferable, and alkoxysilane is particularly preferable.
  • the alkoxysilane is trimethoxysilane
  • the fluorine-based releasable component has one or more trimethoxysilanes per molecule at the end of the molecule.
  • the molecular weight of the fluorine-based releasable component is preferably 1000 or more and 10,000 or less.
  • the sustainability of mold release can be greatly improved as will be shown later in an experimental example.
  • the mechanism is considered as follows. The following mechanism is a consideration by the present inventor and does not limit the present invention.
  • a monomolecular layer of a fluorine-based releasable component is formed on the surface of the mold by performing a mold release treatment on the surface of the mold.
  • numerator can form a crosslinked structure after forming a monomolecular layer.
  • the fluorine-based release component has the trimethoxylane end directed to the surface side of the mold, A monomolecular layer is formed with the polyether group facing the air side.
  • attachment means that the solvent contained in the release agent is removed and the releasable component remains on the surface of the mold.
  • the solvent contained in the release agent removes the excessively attached (aggregated) release component from the surface, and the exposed mold surface. A mold release component adheres to the surface.
  • the releasable component can be more precisely attached to the surface of the porous alumina layer.
  • the concentration of the releasable component is preferably not too high, and adjusted so as not to exceed 0.002 mol / L. Is preferred.
  • the concentration of the fluorine-based releasable component is preferably 0.0004 mol / L or more.
  • Patent Document 5 conventionally, a fluorine-based mold release agent has been widely used since it has excellent mold release properties and relatively high sustainability. Further, when the releasability is insufficient, the concentration of the fluorine-based releasable component in the release agent is increased. However, according to the study of the present inventor, as will be shown later in the experimental example, even if the concentration of the fluorine-based mold release component is increased, the effect of improving the sustainability of the mold release is scarce, rather, unevenness (non-uniformity) ) Occurs. Moreover, as described in Patent Document 6, even if only the solvent is applied after the release agent is applied, the sustainability of the release property is not improved.
  • a porous alumina layer having a large number of fine recesses is used as a mold, and as shown in an experimental example using a roll mold, when it is used repeatedly continuously, the separation is performed at a higher level than before. It is considered that the persistence of type is required.
  • the mold according to the embodiment of the present invention is suitably used for manufacturing an antireflection film (antireflection surface).
  • the cross-sectional shape of the fine recesses (pores) of the porous alumina layer used for manufacturing the antireflection film is generally conical. It is preferable that the two-dimensional size (opening portion diameter: D p ) of the fine recess is 10 nm or more and less than 500 nm and the depth (D depth ) is about 10 nm or more and less than 1000 nm (1 ⁇ m). Moreover, it is preferable that the bottom part of a fine recessed part is sharp (the bottom is a point).
  • the fine recesses are closely packed, and assuming that the shape of the fine recesses when viewed from the normal direction of the porous alumina layer is a circle, the adjacent circles overlap each other, and the adjacent fine It is preferable that a flange is formed between the concave portions.
  • the substantially conical minute recesses are adjacent so as to form a collar portion, the two-dimensional size D p of the minute recess is assumed to be equal to the average adjacent distance D int .
  • the mold according to the embodiment of the present invention can be formed by using an aluminum film deposited on a substrate, or can be formed by using an aluminum bulk material (for example, an aluminum substrate, an aluminum cylinder or a cylinder). it can.
  • the mold is, for example, a roll and has a porous alumina layer on the outer peripheral surface of the mold.
  • the roll-shaped mold has an advantage that the surface structure of the mold can be continuously transferred to a workpiece (an object having a surface on which an antireflection film is formed) by rotating the roll-shaped mold around an axis. is there.
  • An antireflection film manufacturing method includes a step of preparing a mold that has been subjected to a mold release treatment by any of the above methods, a step of preparing a workpiece, and a mold and a workpiece.
  • a mold is formed from a step of curing the photocurable resin by irradiating the photocurable resin with light in a state where the photocurable resin is applied between the surface and the antireflection film formed of the cured photocurable resin. And a peeling step.
  • an antireflection film can be produced by a roll-to-roll method.
  • the film preferably has a base film and a hard coat layer formed on the base film, and the antireflection film is preferably formed on the hard coat layer.
  • the base film for example, a TAC (triacetyl cellulose) film can be suitably used.
  • the hard coat layer for example, an acrylic hard coat material can be used.
  • the small plate type is a 5 cm ⁇ 5 cm square, and a substrate obtained by depositing an aluminum film having a thickness of about 1 ⁇ m by sputtering on a glass substrate (Corning Corporation 1737) having a thickness of 0.7 mm is used as a base material. As described above, it was produced by alternately repeating anodic oxidation and etching. An example of a method for manufacturing a mold having a porous alumina layer will be described with reference to FIGS.
  • a mold base 10 is prepared.
  • the mold base 10 has a support (not shown), an insulating layer 16 formed on the support, and an aluminum layer 18 deposited on the insulating layer 16.
  • An aluminum alloy layer may be used in place of the aluminum layer 18.
  • the porous alumina layer 14 having a plurality of pores 14p is formed by anodizing the surface of the substrate 10 (the surface 18s of the aluminum layer 18). To do.
  • the porous alumina layer 14 has a porous layer having pores 14p and a barrier layer.
  • the porous alumina layer 14 is formed, for example, by anodizing the surface 18s in an acidic electrolytic solution.
  • the electrolytic solution used in the step of forming the porous alumina layer 14 is an aqueous solution containing an acid selected from the group consisting of oxalic acid, tartaric acid, phosphoric acid, chromic acid, citric acid, and malic acid, for example.
  • the pore spacing, pore depth, pore shape, and the like can be adjusted.
  • the thickness of the porous alumina layer 14 can be changed as appropriate.
  • the aluminum layer 18 may be fully anodized.
  • the porous alumina layer 14 is brought into contact with an alumina etchant and etched by a predetermined amount to enlarge the pore diameter of the pores 14p.
  • an alumina etchant for example, an aqueous solution of 10% by mass of phosphoric acid, an organic acid such as formic acid, acetic acid or citric acid, or a mixed solution of chromium phosphoric acid can be used.
  • the aluminum layer 18 is partially anodized again to grow the pores 14p in the depth direction and to thicken the porous alumina layer 14.
  • the growth of the pores 14p starts from the bottom of the already formed pores 14p, so that the side surfaces of the pores 14p are stepped.
  • the porous alumina layer 14 is further etched by bringing it into contact with an alumina etchant to further expand the pore diameter of the pores 14p.
  • an alumina etchant it is preferable to use the above-described etchant, and in practice, the same etch bath may be used.
  • a moth-eye mold 100A having a porous alumina layer 14 having a desired concavo-convex shape is obtained as shown in FIG.
  • An aluminum layer (thickness: about 1 ⁇ m) deposited on a glass substrate was anodized for 60 seconds at a formation voltage of 80 V using 0.1 M oxalic acid aqueous solution (18 ° C.) as an electrolytic solution, and then 2 masses as an etching solution.
  • the anodic oxidation layer formed by the previous anodic oxidation process is removed by immersing in a phosphoric acid aqueous solution (30 ° C.) for 90 minutes. Since the fine concavo-convex structure of the initially formed porous alumina layer is often not constant, the porous alumina layer may be formed again after removing the initially formed porous alumina layer in order to improve reproducibility. preferable.
  • the anodizing step (5 times) and the etching step (4 times) are alternately repeated using the above electrolytic solution (the temperature is the same) and the etching solution (the same temperature).
  • the cycle in which anodization and etching are alternately performed ends with the anodization step.
  • the time of one anodic oxidation process is 25 seconds, and the time of one etching process is 19 minutes.
  • the roll mold was prepared by the method described in International Publication No. 2011/105206 by the applicant.
  • a stainless steel or nickel metal sleeve was used.
  • the metal sleeve refers to a metal cylinder having a thickness of 0.02 mm to 1.0 mm.
  • the entire disclosure of WO 2011/105206 is incorporated herein by reference.
  • a metal sleeve 72m and a curable resin (not shown) are prepared.
  • a curable resin layer 16 ' is formed by applying a curable resin on the outer peripheral surface of the metal sleeve 72m.
  • a curable resin for example, a resin containing polyamic acid can be used.
  • the curable resin layer 16 ′ is cured to form the insulating layer 16 on the outer peripheral surface of the metal sleeve 72 m as shown in FIG.
  • the insulating layer 16 made of polyimide resin is formed by heating to about 300 ° C.
  • the insulating layer 16 can also be formed by, for example, an electrodeposition method.
  • the electrodeposition method for example, a known electrodeposition coating method can be used. For example, first, the metal sleeve 72m is cleaned. Next, the metal sleeve 72m is immersed in an electrodeposition tank in which an electrodeposition liquid containing an electrodeposition resin is stored. Electrodes are installed in the electrodeposition tank. When the insulating resin layer is formed by cationic electrodeposition, the metal sleeve 72m is used as a cathode, the electrode installed in the electrodeposition tank is used as an anode, a current is passed between the metal sleeve 72m and the anode, and the metal sleeve 72m is used.
  • An insulating resin layer is formed by depositing an electrodeposition resin on the outer peripheral surface of the film.
  • the insulating resin layer is formed by anion electrodeposition, the insulating resin layer is formed by flowing an electric current with the metal sleeve 72m as an anode and the electrode installed in the electrodeposition tank as a cathode. Thereafter, the insulating layer 16 is formed by performing a cleaning process, a baking process, and the like.
  • the electrodeposition resin for example, a polyimide resin, an epoxy resin, an acrylic resin, a melamine resin, a urethane resin, or a mixture thereof can be used.
  • the insulating layer 16 can be formed by forming an insulating resin layer using various coating methods and curing as necessary.
  • the insulating layer 16 formed using an organic resin has a high effect of flattening the surface, and can suppress the surface scratches of the metal sleeve 72 m and the like from being reflected on the surface shape of the aluminum layer 18.
  • the insulating layer 16 having a surface having antiglare property can be formed by mixing a matting agent with the electrodeposition resin.
  • a matting agent for example, by mixing a matting agent with an acrylic melamine resin, for example, a two-dimensional spread (substantially circular) when viewed from the normal direction of the layer is approximately 20 ⁇ m, and a convex portion having a height of less than 1 ⁇ m is formed. A formed surface can be obtained.
  • an aluminum layer 18 is formed by depositing aluminum on the insulating layer 16 by a thin film deposition method.
  • the porous alumina layer 14 having a plurality of fine recesses is formed.
  • the mold 100a is obtained.
  • the metal sleeve 72m Since the metal sleeve 72m is easily deformed, it is difficult to use the mold 100a as it is. Therefore, as shown in FIG. 4, by inserting the core material 50 into the metal sleeve 72m of the mold 100a, a mold 100A that can be used in a roll-to-roll antireflection film manufacturing method is obtained.
  • the core material 50, the metal sleeve 72 m, and the insulating layer 16 function as the support 12.
  • FIG. 5 is a schematic cross-sectional view for explaining a method for producing an antireflection film by a roll-to-roll method.
  • the roll-shaped moth-eye mold 100A shown in FIG. 4 is prepared.
  • the ultraviolet curable resin 32 ′ is irradiated with ultraviolet rays (UV) in a state where the workpiece 42 having the ultraviolet curable resin 32 ′ applied to the surface thereof is pressed against the moth-eye mold 100 ⁇ / b> A.
  • the ultraviolet curable resin 32 ' is cured.
  • an acrylic resin can be used as the ultraviolet curable resin 32 ′.
  • the workpiece 42 is, for example, a TAC (triacetyl cellulose) film.
  • the workpiece 42 is unwound from an unillustrated unwinding roller, and then an ultraviolet curable resin 32 ′ is applied to the surface by, for example, a slit coater.
  • the workpiece 42 is supported by support rollers 62 and 64 as shown in FIG.
  • the support rollers 62 and 64 have a rotation mechanism and convey the workpiece 42.
  • the roll-shaped moth-eye mold 100A is rotated in the direction indicated by the arrow in FIG. 5 at a rotation speed corresponding to the conveyance speed of the workpiece 42.
  • a cured product layer 32 to which the uneven structure (inverted moth-eye structure) of the moth-eye mold 100A is transferred is formed on the surface of the workpiece 42.
  • the workpiece 42 having the cured product layer 32 formed on the surface is wound up by a winding roller (not shown).
  • the hard coat layer 42b is used.
  • the mold 100A may come into contact with each other.
  • the mold 100A is in contact with the hard coat layer (cured simultaneously with the ultraviolet curable resin 32 ′) 42b as well as the portion in contact with the ultraviolet curable resin 32 ′ for forming the antireflection layer. Even in the portion, there was a defect that the porous alumina layer 14 of the mold 100A was peeled off.
  • an ultraviolet curable acrylic resin containing (1% by mass) a fluorine-based lubricant having a perfluoro group having 6 or less carbon atoms was used. Further, as a resin for forming the hard coat layer, an ultraviolet curable acrylic resin for hard coat was used.
  • fluorine-based mold release agent a product containing a trade name Fluorosurf FG-5010 (fluorine-based mold release component) manufactured by Fluoro Technology and ZV (also referred to as a solvent or diluent) manufactured by Fluoro Technology was used. .
  • the concentration of the fluorine-based mold release agent was appropriately adjusted from 0.1% by mass to 1.0% by mass.
  • the number average molecular weight of the fluoro-type releasable component of Fluorosurf FG-5010 used here was about 4000 to about 5000. When the specific gravity of the solution is 1.5 and the molecular weight of the fluorine number releasable component is 4000 g, 0.1% by mass corresponds to 0.0004 mol / L.
  • the mold release process was performed as follows.
  • the mold 100a to which the release agent is applied is dried from the end by air blow while rotating around the axis of the cylinder.
  • the surface of the mold 100a is about 50 ° C. to about 60 ° C. at the maximum.
  • the mold 100a has an insulating layer 16 formed by electrodeposition using a material obtained by adding a matting agent to an acrylic melamine resin, and the surface of the porous alumina layer is viewed from the normal direction of the layer.
  • a mold having a convex portion with a two-dimensional spread of about 20 ⁇ m and a height of less than 1 ⁇ m was used. When this mold is used, an antireflection film having antiglare properties can be formed.
  • the contact angle of the mold surface with water was measured using a contact angle meter DropMaster 500 manufactured by Kyowa Interface Chemical Co., Ltd.
  • the amount of water dropped was 3.0 microliters. With 3.0 microliters of water droplet held on the needle tip of the microsyringe, the water droplet was brought into contact with the surface of the mold, and then the needle was retracted, so that the water droplet adhered and remained on the surface of the mold.
  • the contact angle of water droplets remaining on the surface of the mold was measured with the above contact angle meter.
  • an antireflection film was continuously formed by a roll-to-roll method, and the sustainability of the mold release property was evaluated.
  • the change in contact angle of the mold surface with water relative to the number of times of transfer (the number of rotations of the roll-shaped mold) was determined.
  • Table 1 and FIG. 7 show the results when an ultraviolet curable acrylic resin for forming an antireflection film is used as the photocurable resin.
  • the concentration of the releasable component is 0.1% by mass.
  • both the two-time coating type, the three-time coating type, and the five-time coating type have a small decrease in the contact angle with an increase in the number of transfer times. It can be seen that the durability of releasability can be improved by coating more than once.
  • Table 2 shows the evaluation results of the ultraviolet curable acrylic resin for hard coat.
  • Table 3 shows the results of evaluating the amount (area) of the adhesive remaining on the surface of the mold after the scotch tape (trade name 313) was attached to the surface of the mold and peeled off.
  • FIG. 8 a fluorine-based mold release agent containing 0.1% by mass of an optool made by Daikin Industries, Ltd. is prepared. The result of having evaluated sex is shown.
  • the mold release process was performed as follows.
  • a mold release agent is applied with a spoid while the small plate type is held almost vertically.
  • the small plate type is placed on a hot plate and heated at 100 ° C. for 15 minutes.
  • the three-time coating type has higher releasability than the one-time coating type.
  • the concentration of the releasable component of the release agent used in the above experimental example was 0.1% by mass (0.0004 mol / L).
  • a mold release agent having a concentration of the release agent component (Fluorosurf FG-5010) of 0.1% by mass, 0.5% by mass, 0.7% by mass, and 1.0% by mass is used with respect to the above-described small plate type. Then, the mold release treatment was performed in the same manner as described above, and the surface state of the mold and the sample of the antireflection film produced using each mold was visually evaluated.
  • a sample of the antireflection film was prepared by applying an ultraviolet curable acrylic resin for the antireflection film to the surface of the mold, then extending the acrylic resin using a roller with a PET film placed on top, and then fusion D Using a lamp, ultraviolet rays of 100 mW / cm 2 (wavelength 365 nm) were irradiated for 15 seconds.
  • FIGS. 9 (a) to 9 (c) show SEM images of the surface of a mold coated three times with a mold release agent containing 1.0% by mass of a mold release component.
  • the unevenness seen in FIGS. 9 (a) to 9 (c) seems to be due to the aggregation and uneven distribution of the releasable components.
  • the concentration of the releasable component in the release agent is preferably not more than 0.5% by mass (0.002 mol / L).
  • the lower limit is appropriately set, but it is considered that the concentration of the releasable component is preferably 0.1% by mass (0.0004 mol / L) or more.
  • the present invention is suitably used for producing a mold having a porous alumina layer and an antireflection film using the same.
  • Support 14 Porous Alumina Layer 14p Pore (Fine Concave) 16 Insulating layer 18 Aluminum layer or aluminum alloy layer 18s Surface of aluminum layer 32 'UV curable resin 32 Cured material layer 42 Work piece 42a Base film 42b Hard coat layer 50 Core material 100a, 100A Moss eye mold

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

A mold release treatment method which can be employed suitably for a mold having a porous alumina layer on the surface thereof. The mold release treatment method comprises the steps of: (a) preparing a mold release agent comprising a fluorine-containing compound having a mold release property and a solvent and a mold (100A) having a porous alumina layer (14) on the surface thereof; (b) applying the mold release agent onto the surface of the mold (100A); (c) removing the solvent contained in the mold release agent on the surface of the mold (100A); and (d), subsequent to the step (c), performing the steps (b) and (c).

Description

離型処理方法および反射防止膜の製造方法Mold release processing method and manufacturing method of antireflection film
 本発明は、離型処理方法および反射防止膜の製造方法に関する。ここでいう「型」は、種々の加工方法(スタンピングやキャスティング)に用いられる型を包含し、スタンパということもある。また、印刷(ナノプリントを含む)にも用いられ得る。 The present invention relates to a mold release processing method and an antireflection film manufacturing method. The “mold” here includes molds used in various processing methods (stamping and casting), and is sometimes referred to as a stamper. It can also be used for printing (including nanoprinting).
 テレビや携帯電話などに用いられる表示装置やカメラレンズなどの光学素子には、通常、表面反射を低減して光の透過量を高めるために反射防止技術が施されている。例えば、空気とガラスとの界面に光が入射する場合のように屈折率が異なる媒体の界面を光が通過する場合、フレネル反射などによって光の透過量が低減し、視認性が低下するからである。 2. Description of the Related Art An optical element such as a display device or a camera lens used for a television or a mobile phone is usually provided with an antireflection technique in order to reduce surface reflection and increase light transmission. For example, when light passes through the interface of a medium with a different refractive index, such as when light enters the interface between air and glass, the amount of transmitted light is reduced due to Fresnel reflection, etc., and visibility is reduced. is there.
 近年、反射防止技術として、凹凸の周期が可視光(λ=380nm~780nm)の波長以下に制御された微細な凹凸パターンを基板表面に形成する方法が注目されている(特許文献1から4を参照)。反射防止機能を発現する凹凸パターンを構成する凸部の2次元的な大きさは10nm以上500nm未満である。 In recent years, attention has been paid to a method for forming a fine uneven pattern on a substrate surface, in which the period of unevenness is controlled to a wavelength of visible light (λ = 380 nm to 780 nm) or less as an antireflection technique (see Patent Documents 1 to 4). reference). The two-dimensional size of the convex portions constituting the concavo-convex pattern exhibiting the antireflection function is 10 nm or more and less than 500 nm.
 この方法は、いわゆるモスアイ(Motheye、蛾の目)構造の原理を利用したものであり、基板に入射した光に対する屈折率を凹凸の深さ方向に沿って入射媒体の屈折率から基板の屈折率まで連続的に変化させることによって反射防止したい波長域の反射を抑えている。 This method utilizes the principle of a so-called moth-eye structure, and the refractive index for light incident on the substrate is determined from the refractive index of the incident medium along the depth direction of the irregularities, to the refractive index of the substrate. The reflection in the wavelength region that is desired to be prevented from being reflected is suppressed by continuously changing the wavelength.
 モスアイ構造は、広い波長域にわたって入射角依存性の小さい反射防止作用を発揮できるほか、多くの材料に適用でき、凹凸パターンを基板に直接形成できるなどの利点を有している。その結果、低コストで高性能の反射防止膜(または反射防止表面)を提供できる。 The moth-eye structure has an advantage that it can exhibit an antireflection effect with a small incident angle dependency over a wide wavelength range, can be applied to many materials, and can form an uneven pattern directly on a substrate. As a result, a low-cost and high-performance antireflection film (or antireflection surface) can be provided.
 モスアイ構造の製造方法として、アルミニウムを陽極酸化することによって得られる陽極酸化ポーラスアルミナ層を用いる方法が注目されている(特許文献2から4)。 As a method for producing a moth-eye structure, a method using an anodized porous alumina layer obtained by anodizing aluminum is attracting attention (Patent Documents 2 to 4).
 ここで、アルミニウムを陽極酸化することによって得られる陽極酸化ポーラスアルミナ層について簡単に説明する。従来から、陽極酸化を利用した多孔質構造体の製造方法は、規則正しく配列されたナノオーダーの円柱状の細孔(微細な凹部)を形成できる簡易な方法として注目されてきた。硫酸、蓚酸、または燐酸等の酸性電解液またはアルカリ性電解液中に基材を浸漬し、これを陽極として電圧を印加すると、基材の表面で酸化と溶解が同時に進行し、その表面に細孔を有する酸化膜を形成することができる。この円柱状の細孔は、酸化膜に対して垂直に配向し、一定の条件下(電圧、電解液の種類、温度等)では自己組織的な規則性を示すため、各種機能材料への応用が期待されている。 Here, the anodized porous alumina layer obtained by anodizing aluminum will be briefly described. Conventionally, a method for producing a porous structure using anodization has attracted attention as a simple method capable of forming regularly ordered nano-sized cylindrical pores (fine concave portions). When a substrate is immersed in an acidic or alkaline electrolyte such as sulfuric acid, oxalic acid, or phosphoric acid, and a voltage is applied using this as an anode, oxidation and dissolution proceed simultaneously on the surface of the substrate, and pores are formed on the surface. An oxide film having the following can be formed. These cylindrical pores are oriented perpendicular to the oxide film and exhibit self-organized regularity under certain conditions (voltage, type of electrolyte, temperature, etc.). Is expected.
 特定の条件下で形成されたポーラスアルミナ層は、膜面に垂直な方向から見たときに、ほぼ正六角形のセルが二次元的に最も高密度で充填された配列をとっている。それぞれのセルはその中央に細孔を有しており、細孔の配列は周期性を有している。セルは局所的な皮膜の溶解および成長の結果形成されるものであり、バリア層と呼ばれる細孔底部で、皮膜の溶解と成長とが同時に進行する。このとき、隣接する細孔間の距離(中心間距離)は、バリア層の厚さのほぼ2倍に相当し、陽極酸化時の電圧にほぼ比例することが知られている。また、細孔の直径は、電解液の種類、濃度、温度等に依存するものの、通常、セルのサイズ(膜面に垂直な方向から見たときのセルの最長対角線の長さ)の1/3程度であることが知られている。このようなポーラスアルミナの細孔は、特定の条件下では高い規則性を有する(周期性を有する)配列、また、条件によってはある程度規則性の乱れた配列、あるいは不規則(周期性を有しない)な配列を形成する。 The porous alumina layer formed under specific conditions takes an array in which almost regular hexagonal cells are two-dimensionally filled with the highest density when viewed from the direction perpendicular to the film surface. Each cell has a pore in the center, and the arrangement of the pores has periodicity. The cell is formed as a result of local dissolution and growth of the film, and dissolution and growth of the film proceed simultaneously at the bottom of the pores called a barrier layer. At this time, it is known that the distance between adjacent pores (center-to-center distance) corresponds to approximately twice the thickness of the barrier layer and is approximately proportional to the voltage during anodization. In addition, although the diameter of the pore depends on the type, concentration, temperature, etc. of the electrolyte, it is usually 1 / th of the cell size (the length of the longest diagonal of the cell when viewed from the direction perpendicular to the film surface). It is known to be about 3. The pores of such porous alumina have an arrangement with high regularity (having periodicity) under a specific condition, an arrangement with irregularity to some extent or an irregularity (having no periodicity) depending on the conditions. ).
 特許文献2は、陽極酸化ポーラスアルミナ膜を表面に有するスタンパを用いて、反射防止膜(反射防止表面)を形成する方法を開示している。 Patent Document 2 discloses a method of forming an antireflection film (antireflection surface) using a stamper having an anodized porous alumina film on the surface.
 また、特許文献3に、アルミニウムの陽極酸化と孔径拡大処理を繰り返すことによって、連続的に細孔径が変化するテーパー形状の凹部を形成する技術が開示されている。 Further, Patent Document 3 discloses a technique for forming a tapered concave portion in which the pore diameter continuously changes by repeating anodization of aluminum and pore diameter enlargement processing.
 本出願人は、特許文献4に、微細な凹部が階段状の側面を有するアルミナ層を用いて反射防止膜を形成する技術を開示している。 The present applicant discloses, in Patent Document 4, a technique for forming an antireflection film using an alumina layer in which fine concave portions have stepped side surfaces.
 また、特許文献1、2および4に記載されているように、モスアイ構造(ミクロ構造)に加えて、モスアイ構造よりも大きな凹凸構造(マクロ構造)を設けることによって、反射防止膜(反射防止表面)にアンチグレア(防眩)機能を付与することができる。アンチグレア機能を発揮する凹凸を構成する凸部の2次元的な大きさは1μm以上100μm未満である。特許文献1、2および4の開示内容の全てを参考のために本明細書に援用する。 Further, as described in Patent Documents 1, 2, and 4, an antireflection film (antireflection surface) is provided by providing a concavo-convex structure (macro structure) larger than the moth eye structure in addition to the moth eye structure (micro structure). ) Can be given an anti-glare (anti-glare) function. The two-dimensional size of the projections that form the projections and depressions that exhibit the antiglare function is 1 μm or more and less than 100 μm. The entire disclosures of Patent Documents 1, 2, and 4 are incorporated herein by reference.
 陽極酸化ポーラスアルミナ膜を利用することによって、モスアイ構造を表面に形成するための型(以下、「モスアイ用型」という。)を容易に製造することができる。特に、特許文献2および4に記載されているように、アルミニウムの陽極酸化膜の表面をそのまま型として利用すると、製造コストを低減する効果が大きい。モスアイ構造を形成することができるモスアイ用型の表面の構造を「反転されたモスアイ構造」ということにする。 By using the anodized porous alumina film, a mold for forming a moth-eye structure on the surface (hereinafter referred to as “moth-eye mold”) can be easily manufactured. In particular, as described in Patent Documents 2 and 4, when the surface of an anodized aluminum film is used as it is as a mold, the effect of reducing the manufacturing cost is great. The surface structure of the moth-eye mold that can form the moth-eye structure is referred to as an “inverted moth-eye structure”.
 モスアイ用型を用いた反射防止膜の製造方法としては、光硬化性樹脂を用いる方法が知られている。まず、基板上に光硬化性樹脂を付与する。続いて、離型処理を施したモスアイ用型の凹凸表面を真空中で光硬化性樹脂に押圧することにより、モスアイ用型の表面の凹凸構造中に光硬化性樹脂が充填される。続いて、凹凸構造中の光硬化性樹脂に紫外線を照射し、光硬化性樹脂を硬化する。その後、基板からモスアイ用型を分離することによって、モスアイ用型の凹凸構造が転写された光硬化性樹脂の硬化物層が基板の表面に形成される。光硬化性樹脂を用いた反射防止膜の製造方法は、例えば特許文献4に記載されている。 As a method for producing an antireflection film using a moth-eye mold, a method using a photocurable resin is known. First, a photocurable resin is applied on the substrate. Subsequently, the uneven surface of the surface of the moth-eye mold is filled with the photocurable resin by pressing the uneven surface of the moth-eye mold subjected to the release treatment against the photocurable resin in a vacuum. Subsequently, the photocurable resin in the concavo-convex structure is irradiated with ultraviolet rays to cure the photocurable resin. Thereafter, by separating the moth-eye mold from the substrate, a cured product layer of a photocurable resin to which the concavo-convex structure of the moth-eye mold is transferred is formed on the surface of the substrate. A method for producing an antireflection film using a photocurable resin is described in Patent Document 4, for example.
 反射防止膜の製造に用いられるポーラスアルミナ層を有する型の離型処理として、例えば、特許文献5には、スプレーコート法によりフッ素系離型剤を付与することにより離型処理を行うことが記載されている。 As a mold release process having a porous alumina layer used for manufacturing an antireflection film, for example, Patent Document 5 describes performing a mold release process by applying a fluorine-based mold release agent by a spray coating method. Has been.
 また、特許文献6には、レンズを注型成形法によって製造する際に、離型剤を型に均一に付与するために、溶剤で希釈した離型剤を1回だけ付与した後、溶剤のみを付与することによって、離型剤の層の厚さを全体にわたって均一にできると記載されている。 In addition, in Patent Document 6, when a lens is manufactured by a casting method, in order to uniformly apply a release agent to a mold, a release agent diluted with a solvent is applied only once, and then only a solvent is added. It is described that the thickness of the layer of the release agent can be made uniform throughout by providing the above.
特表2001-517319号公報JP-T-2001-517319 特表2003-531962号公報Special Table 2003-531962 特開2005-156695号公報JP 2005-156695 A 国際公開第2006/059686号International Publication No. 2006/059686 国際公開第2008/001847号International Publication No. 2008/001847 特開2005-270801号公報JP 2005-270801 A 国際公開第2011/111669号International Publication No. 2011-111669
 本出願人は、ロール状のモスアイ用型を用いて、ロール・ツー・ロール方式により反射防止膜を効率良く製造する方法を開発している(例えば、特許文献7)。フッ素系の離型剤は、シリコーン系離型剤などの他の離型剤よりも優れた離型性を有するものの、ロール・ツー・ロール方式による連続的な製造プロセスにおいては離型性の低下が早く、量産効率の向上を阻害する要因となることが分かった。 The present applicant has developed a method for efficiently producing an antireflection film by a roll-to-roll method using a roll-shaped moth-eye mold (for example, Patent Document 7). Fluorine-based release agents have better release properties than other release agents, such as silicone release agents, but the release properties are degraded in continuous production processes using the roll-to-roll method. However, it was found that it becomes a factor that hinders the improvement of mass production efficiency.
 ここでは、反射防止膜用のロール状のモスアイ用型を例示して従来技術の問題点を説明したが、離型性の持続性が低いという問題は、サブミクロンオーダーの微細な凹部を有するポーラスアルミナ層を表面に有する型に共通の問題である。 Here, the problem of the prior art has been described by exemplifying a roll-shaped moth-eye mold for an antireflection film, but the problem of low sustainability of mold release is a porous having a fine concave portion of submicron order. This is a problem common to molds having an alumina layer on the surface.
 本発明の目的は、表面にポーラスアルミナ層を有する型の離型性の持続性を改善することにある。 An object of the present invention is to improve the sustainability of mold releasability of a mold having a porous alumina layer on the surface.
 本発明による実施形態の離型処理方法は、(a)離型性を有するフッ素系化合物と溶剤とを含む離型剤と、表面にポーラスアルミナ層を有する型とを用意する工程と、(b)前記型の前記表面の上に、前記離型剤を付与する工程と、(c)前記型の前記表面の上の前記離型剤に含まれる前記溶剤を除去する工程と、(d)前記工程(c)の後に、前記工程(b)と前記工程(c)とをさらに包含する。 A mold release treatment method according to an embodiment of the present invention includes (a) a step of preparing a mold release agent containing a fluorine compound having a mold release property and a solvent, and a mold having a porous alumina layer on the surface; ) Providing the mold release agent on the surface of the mold; (c) removing the solvent contained in the mold release agent on the surface of the mold; The step (b) and the step (c) are further included after the step (c).
 ある実施形態において、前記工程(d)の後に、前記工程(b)と前記工程(c)とをさらに包含する。離型性の持続性の観点からは、前記工程(b)と前記工程(c)とを合計で3回以上行うことが好ましい。前記工程(b)と前記工程(c)とを合計で4回以上行っても、3回の場合と特に変らないので、スループットおよび/または材料コストの観点から、3回が最も好ましい。また、最後に、50℃以上の温度で10分間以上、加熱する工程を包含することが好ましい。 In one embodiment, the method further includes the step (b) and the step (c) after the step (d). From the viewpoint of sustainability of releasability, it is preferable to perform the step (b) and the step (c) three times or more in total. Even if the step (b) and the step (c) are performed 4 times or more in total, the number of times is not particularly different from the case of 3 times, so 3 times is most preferable from the viewpoint of throughput and / or material cost. Finally, it is preferable to include a step of heating at a temperature of 50 ° C. or higher for 10 minutes or longer.
 ある実施形態において、前記離型剤に含まれる前記フッ素系化合物の濃度は、0.002モル/Lを超えない。前記フッ素系化合物の濃度が0.002モル/Lを超えると、むらになりやすく、離型性を向上する効果も増大しない。一方、前記フッ素系化合物の濃度は、0.0004モル/L以上が好ましい。前記フッ素系化合物の濃度が0.0004モル/L未満であると、十分な離型性が得られないことがある。 In one embodiment, the concentration of the fluorine compound contained in the release agent does not exceed 0.002 mol / L. When the concentration of the fluorine compound exceeds 0.002 mol / L, unevenness is likely to occur, and the effect of improving the releasability does not increase. On the other hand, the concentration of the fluorine compound is preferably 0.0004 mol / L or more. If the concentration of the fluorine compound is less than 0.0004 mol / L, sufficient releasability may not be obtained.
 ある実施形態において、離型性を有する前記フッ素系化合物は、パーフルオロポリエーテル変性シランである。 In one embodiment, the fluorine compound having releasability is perfluoropolyether-modified silane.
 ある実施形態において、前記パーフルオロポリエーテル変性シランは、アルコキシシランである。例えば、アルコキシシランは、トリメトキシシランであり、前記フッ素系化合物は、1分子に1または2以上のトリメトキシシランを有する。前記フッ素系化合物の分子量は1000以上10000以下であることが好ましい。 In one embodiment, the perfluoropolyether-modified silane is an alkoxysilane. For example, alkoxysilane is trimethoxysilane, and the fluorine-based compound has one or two or more trimethoxysilane in one molecule. The molecular weight of the fluorine-based compound is preferably 1000 or more and 10,000 or less.
 ある実施形態において、前記型はロール状あって、前記型の外周面に前記ポーラスアルミナ層を有する。 In one embodiment, the mold is in a roll shape and has the porous alumina layer on the outer peripheral surface of the mold.
 本発明によるある実施形態の反射防止膜の製造方法は、上記のいずれかの方法によって離型処理が施された型を用意する工程と、被加工物とを用意する工程と、前記型と前記被加工物の表面との間に光硬化樹脂を付与した状態で、前記光硬化樹脂に光を照射することによって前記光硬化樹脂を硬化させる工程と、前記型を硬化させられた光硬化樹脂で形成された反射防止膜から剥離する工程とを包含する。 An antireflection film manufacturing method according to an embodiment of the present invention includes a step of preparing a mold subjected to a release treatment by any one of the above methods, a step of preparing a workpiece, the mold, A step of curing the photocurable resin by irradiating the photocurable resin with light in a state where the photocurable resin is provided between the surface of the workpiece and the photocurable resin obtained by curing the mold. And a step of peeling from the formed antireflection film.
 ある実施形態において、前記被加工物はロール状のフィルムであって、ロール・ツー・ロール方式で行われる。 In one embodiment, the workpiece is a roll film, and is performed in a roll-to-roll manner.
 ある実施形態において、前記フィルムは、ベースフィルムと、前記ベースフィルム上に形成されたハードコート層とを有し、前記反射防止膜は、前記ハードコート層の上に形成される。 In one embodiment, the film includes a base film and a hard coat layer formed on the base film, and the antireflection film is formed on the hard coat layer.
 本発明の実施形態によると、表面にポーラスアルミナ層を有する型の離型性の持続性を改善することができる。また、例えば、モスアイ用型を用いた反射防止膜の製造における量産効率を高めることができる。 According to the embodiment of the present invention, it is possible to improve the sustainability of mold releasability of a mold having a porous alumina layer on the surface. In addition, for example, mass production efficiency in manufacturing an antireflection film using a moth-eye mold can be increased.
本発明による実施形態の離型処理方法における工程のフローチャートである。It is a flowchart of the process in the mold release processing method of embodiment by this invention. (a)~(e)は、ポーラスアルミナ層を有する型の製造方法の工程を示す図である。(A)-(e) is a figure which shows the process of the manufacturing method of the type | mold which has a porous alumina layer. (a)~(e)は、メタルスリーブを用いたロール型の作製方法の工程を示す図である。(A)-(e) is a figure which shows the process of the manufacturing method of the roll type | mold using a metal sleeve. メタルスリーブ72mを有する型100Aの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the type | mold 100A which has the metal sleeve 72m. 本発明による実施形態の反射防止膜の製造方法を説明するための模式図である。It is a schematic diagram for demonstrating the manufacturing method of the antireflection film of embodiment by this invention. ベースフィルム42aとハードコート層42bとを有するフィルムに反射防止膜を形成する工程を模式的に示す図である。It is a figure which shows typically the process of forming an anti-reflective film in the film which has the base film 42a and the hard-coat layer 42b. 離型処理の回数(コート数)の異なる型について、転写回数と接触角との関係を示すグラフである。It is a graph which shows the relationship between the frequency | count of transcription | transfer, and a contact angle about the type | mold from which the frequency | count of a mold release process (coat number) differs. 離型処理の回数(コート数)および離型剤の種類の異なる型について、転写回数と接触角との関係を示すグラフである。It is a graph which shows the relationship between the frequency | count of transcription | transfer and a contact angle about the type | mold from which the frequency | count of a mold release process (coat number) and the type of mold release agent differ. (a)~(c)は離型処理を施した型の表面のSEM像を示す。(A) to (c) show SEM images of the surface of the mold subjected to the mold release treatment.
 図面を参照して、本発明による実施形態の離型処理方法を説明する。以下では、反射防止膜を製造するためのモスアイ用型を例に説明する。 The mold release processing method according to the embodiment of the present invention will be described with reference to the drawings. Hereinafter, a moth-eye mold for producing an antireflection film will be described as an example.
 図1は、本発明による実施形態の離型処理方法における工程のフローチャートである。図1に示すように、本発明による実施形態の離型処理方法は、離型性を有するフッ素系化合物と溶剤とを含む離型剤と、表面にポーラスアルミナ層を有する型とを用意する工程(a)と、型の表面の上に離型剤を付与する工程(b)と、型の表面の上の離型剤に含まれる溶剤を除去する工程(c)と、工程(c)の後に、型の表面の上に離型剤を付与する工程(b)と、型の表面の上の離型剤に含まれる溶剤を除去する工程(c)とをさらに包含する。図1では、最初の工程(b)および工程(c)に「-1st」を付し、最初の工程(c)の後に行われる2回目の工程(b)および工程(c)にそれぞれ「-2nd」を付している。工程(b)-2ndは、典型的には工程(b)-1stと同じ条件で行われるが、条件を変えてもよい。同様に、工程(c)-2ndは、典型的には工程(c)-1stと同じ条件で行われるが、条件を変えてもよい。 FIG. 1 is a flowchart of steps in a mold release processing method according to an embodiment of the present invention. As shown in FIG. 1, the mold release processing method of embodiment by this invention is a process which prepares the mold release agent containing the fluorine-type compound and solvent which have mold release property, and the type | mold which has a porous alumina layer on the surface. (A), a step (b) of applying a release agent on the surface of the mold, a step (c) of removing a solvent contained in the release agent on the surface of the mold, and a step (c) Thereafter, the method further includes a step (b) of applying a release agent on the surface of the mold and a step (c) of removing a solvent contained in the release agent on the surface of the mold. In FIG. 1, “−1st” is added to the first step (b) and step (c), and “−−st” is added to the second step (b) and step (c) performed after the first step (c), respectively. 2nd ". Step (b) -2nd is typically performed under the same conditions as step (b) -1st, but the conditions may be changed. Similarly, step (c) -2nd is typically performed under the same conditions as step (c) -1st, but the conditions may be changed.
 さらに、後述するように、工程(b)-2ndおよび工程(c)-2ndの後に、工程(b)-3rdと工程(c)-3rdとを行ってもよい。工程(b)-3rdは、工程(b)-2ndと同様に、典型的には工程(b)-1stと同じ工程であるが、工程(b)-1stおよび/または工程(b)-2ndと異なる条件であってもよい。工程(c)-3rdは、工程(c)-2ndと同様に、典型的には工程(c)-1stと同じ工程であるが、工程(c)-1stおよび/または工程(c)-2ndと異なる条件であってもよい。離型性の持続性の観点からは、工程(b)と工程(c)とを合計で3回以上(1st~3rd)行うことが好ましい。ただし、工程(b)と工程(c)とを合計で4回以上行っても、3回の場合と特に変らないので、スループットおよび/または材料コストの観点から、3回が最も好ましい。 Further, as described later, step (b) -3rd and step (c) -3rd may be performed after step (b) -2nd and step (c) -2nd. Step (b) -3rd is typically the same step as step (b) -1st, similar to step (b) -2nd, but step (b) -1st and / or step (b) -2nd Different conditions may be used. Step (c) -3rd is typically the same step as step (c) -1st, similar to step (c) -2nd, but step (c) -1st and / or step (c) -2nd Different conditions may be used. From the viewpoint of sustainability of releasability, it is preferable to perform step (b) and step (c) three times or more (1st to 3rd) in total. However, even if the step (b) and the step (c) are performed 4 times or more in total, the number of times is not particularly different from the case of 3 times, so 3 times is most preferable from the viewpoint of throughput and / or material cost.
 なお、本明細書において、フッ素系離型剤とは、離型性を有するフッ素系化合物(フッ素含有有機化合物)と溶剤とを含む混合物を指すものとし、一般に、フッ素系コーティング剤またはフッ素系表面処理剤などの名称で市販されているものを広く含む。フッ素系離型剤の溶剤としてはフッ素系溶剤が広く用いられており、フッ素系溶剤もフッ素系化合物である。フッ素系溶剤として用いられるフッ素系化合物は、化学的な活性が低く、また、分子量が比較的小さく、揮発性が高い。これに対し、離型性を有するフッ素系化合物は、アルコキシランのような加水分解性基を有し、加水分解によってシラノール基(SiOH)を生成する。シラノール基は、酸化物の表面に対して親和性を有し、水素結合等の結合を生じる。また、シラノール基同士は、脱水縮合することによって架橋構造を形成し、フッ素系化合物の樹脂膜を形成する。フッ素系離型剤に含まれる離型性を有するフッ素系化合物をフッ素系溶剤と区別するために、フッ素系離型性成分と呼ぶことがある。 In this specification, a fluorine-based mold release agent refers to a mixture containing a releasable fluorine-based compound (fluorine-containing organic compound) and a solvent, and is generally a fluorine-based coating agent or a fluorine-based surface. Widely includes those marketed under names such as treatment agents. As the solvent for the fluorine-based mold release agent, a fluorine-based solvent is widely used, and the fluorine-based solvent is also a fluorine-based compound. A fluorine-based compound used as a fluorine-based solvent has low chemical activity, a relatively low molecular weight, and high volatility. In contrast, a fluorine-based compound having releasability has a hydrolyzable group such as alkoxylane, and generates a silanol group (SiOH) by hydrolysis. The silanol group has an affinity for the surface of the oxide and generates a bond such as a hydrogen bond. Silanol groups form a cross-linked structure by dehydration condensation to form a resin film of a fluorine-based compound. In order to distinguish the fluorine-based compound having releasability contained in the fluorine-based release agent from the fluorine-based solvent, it may be referred to as a fluorine-based release component.
 フッ素系離型性成分としては、パーフルオロポリエーテル変性シランが好ましく、そのなかでも、アルコキシシランが特に好ましい。例えば、アルコキシシランは、トリメトキシシランであり、フッ素系離型性成分は、分子の末端に1分子に1または2以上のトリメトキシシランを有することが好ましい。フッ素系離型性成分の分子量は1000以上10000以下であることが好ましい。 As the fluorine-based releasable component, perfluoropolyether-modified silane is preferable, and alkoxysilane is particularly preferable. For example, it is preferable that the alkoxysilane is trimethoxysilane, and the fluorine-based releasable component has one or more trimethoxysilanes per molecule at the end of the molecule. The molecular weight of the fluorine-based releasable component is preferably 1000 or more and 10,000 or less.
 本実施形態の離型処理方法によると、後に実験例を示すように、離型性の持続性を大幅に向上させることができる。そのメカニズムは以下のように考えられる。なお、以下のメカニズムは本発明者による考察であり、本発明を限定するものではない。 According to the mold release processing method of the present embodiment, the sustainability of mold release can be greatly improved as will be shown later in an experimental example. The mechanism is considered as follows. The following mechanism is a consideration by the present inventor and does not limit the present invention.
 型の表面に離型処理を施すことによって、型の表面上にフッ素系離型性成分の単分子層を形成することが理想的である。なお、分子の末端にトリメトキシシランを有するフッ素系離型性成分は、単分子層を形成した後、架橋構造を形成し得る。例えば、フッ素系離型性成分として、パーフルオロポリエーテル変性トリメトキシシランを用いた場合、理想的には、フッ素系離型性成分は、トリメトキシラン末端を型の表面側に向け、パーフルオロポリエーテル基を空気側に向けた単分子層を形成する。しかしながら、実際には、種々の方向を向いた離型性成分が凝集し、塊として、型の表面に付着する。なお、ここで、「付着」は、離型剤に含まれていた溶剤が除去され、離型性成分が型の表面上に残存していることをいう。離型性成分が凝集すると、ポーラスアルミナ層の表面に形成されている微細な凹部(または凸部)に緻密に付着できない。2回目以降の離型剤の付与工程においては、離型剤に含まれる溶剤が、過剰に付着した(凝集状態にある)離型性成分を表面から除去しつつ、露出されている型の表面に離型性成分が付着する。このようにして、離型剤を付与する工程を2回以上行うことによって、ポーラスアルミナ層の表面に、離型性成分をより緻密に付着させることができる。離型性成分の濃度を上げると、離型性成分が凝集しやすくなるので、離型性成分の濃度は高すぎないことが好ましく、0.002モル/Lを超えないように調整されることが好ましい。なお、十分な離型性を得るためには、フッ素系離型性成分の濃度は、0.0004モル/L以上であることが好ましい。 Ideally, a monomolecular layer of a fluorine-based releasable component is formed on the surface of the mold by performing a mold release treatment on the surface of the mold. In addition, the fluorine-type mold release component which has trimethoxysilane at the terminal of a molecule | numerator can form a crosslinked structure after forming a monomolecular layer. For example, when perfluoropolyether-modified trimethoxysilane is used as the fluorine-based release component, ideally, the fluorine-based release component has the trimethoxylane end directed to the surface side of the mold, A monomolecular layer is formed with the polyether group facing the air side. However, in reality, the releasable components facing various directions aggregate and adhere to the surface of the mold as a lump. Here, “attachment” means that the solvent contained in the release agent is removed and the releasable component remains on the surface of the mold. When the releasable component aggregates, it cannot be densely attached to the fine recesses (or protrusions) formed on the surface of the porous alumina layer. In the second and subsequent release agent application steps, the solvent contained in the release agent removes the excessively attached (aggregated) release component from the surface, and the exposed mold surface. A mold release component adheres to the surface. In this way, by performing the step of applying the release agent twice or more, the releasable component can be more precisely attached to the surface of the porous alumina layer. When the concentration of the releasable component is increased, the releasable component easily aggregates. Therefore, the concentration of the releasable component is preferably not too high, and adjusted so as not to exceed 0.002 mol / L. Is preferred. In order to obtain sufficient releasability, the concentration of the fluorine-based releasable component is preferably 0.0004 mol / L or more.
 特許文献5に記載されているように、従来から、フッ素系離型剤は、優れた離型性し、離型性の持続性も比較的高いので、広く利用されている。また、離型性が不足する場合には、離型剤中のフッ素系離型性成分の濃度を高めることが行われている。しかしながら、本発明者の検討によると、後に実験例を示すように、フッ素系離型性成分の濃度を高めても、離型性の持続性を改善する効果は乏しく、むしろ、むら(不均一性)が発生する。また、特許文献6に記載されているように、離型剤を付与した後に、溶剤だけを付与しても、離型性の持続性は改善されない。本実施形態のように、多数の微細な凹部を有するポーラスアルミナ層を型として用い、ロール型を用いた実験例で示すように、連続的に繰り返して使用すると、従来よりも高いレベルで、離型性の持続性が要求されると考えられる。 As described in Patent Document 5, conventionally, a fluorine-based mold release agent has been widely used since it has excellent mold release properties and relatively high sustainability. Further, when the releasability is insufficient, the concentration of the fluorine-based releasable component in the release agent is increased. However, according to the study of the present inventor, as will be shown later in the experimental example, even if the concentration of the fluorine-based mold release component is increased, the effect of improving the sustainability of the mold release is scarce, rather, unevenness (non-uniformity) ) Occurs. Moreover, as described in Patent Document 6, even if only the solvent is applied after the release agent is applied, the sustainability of the release property is not improved. As in this embodiment, a porous alumina layer having a large number of fine recesses is used as a mold, and as shown in an experimental example using a roll mold, when it is used repeatedly continuously, the separation is performed at a higher level than before. It is considered that the persistence of type is required.
 本発明による実施形態の型は、反射防止膜(反射防止表面)の製造に好適に用いられる。反射防止膜の製造に用いられるポーラスアルミナ層の微細な凹部(細孔)の断面形状は概ね円錐状である。微細な凹部の二次元的な大きさ(開口部径:Dp)が10nm以上500nm未満で、深さ(Ddepth)は10nm以上1000nm(1μm)未満程度であることが好ましい。また、微細な凹部の底部は尖っている(最底部は点になっている)ことが好ましい。さらに、微細な凹部は密に充填されていることが好ましく、ポーラスアルミナ層の法線方向から見たときの微細な凹部の形状を円と仮定とすると、隣接する円は互いに重なり合い、隣接する微細な凹部の間に鞍部が形成されることが好ましい。なお、略円錐状の微細な凹部が鞍部を形成するように隣接しているときは、微細な凹部の二次元的な大きさDpは平均隣接間距離Dintと等しいとする。したがって、反射防止膜を製造するためのモスアイ用型のポーラスアルミナ層は、Dp=Dintが10nm以上500nm未満で、Ddepthが10nm以上1000nm(1μm)未満程度の微細な凹部が密に不規則に配列した構造を有していることが好ましい。なお、微細な凹部の開口部の形状は厳密には円ではないので、Dpは表面のSEM像から求めることが好ましい。ポーラスアルミナ層の厚さtpは約1μm以下である。 The mold according to the embodiment of the present invention is suitably used for manufacturing an antireflection film (antireflection surface). The cross-sectional shape of the fine recesses (pores) of the porous alumina layer used for manufacturing the antireflection film is generally conical. It is preferable that the two-dimensional size (opening portion diameter: D p ) of the fine recess is 10 nm or more and less than 500 nm and the depth (D depth ) is about 10 nm or more and less than 1000 nm (1 μm). Moreover, it is preferable that the bottom part of a fine recessed part is sharp (the bottom is a point). Furthermore, it is preferable that the fine recesses are closely packed, and assuming that the shape of the fine recesses when viewed from the normal direction of the porous alumina layer is a circle, the adjacent circles overlap each other, and the adjacent fine It is preferable that a flange is formed between the concave portions. When the substantially conical minute recesses are adjacent so as to form a collar portion, the two-dimensional size D p of the minute recess is assumed to be equal to the average adjacent distance D int . Therefore, the moth-eye type porous alumina layer for producing the antireflection film has a dense concave portion with D p = D int of 10 nm or more and less than 500 nm and D depth of 10 nm or more and less than 1000 nm (1 μm). It is preferable to have a regularly arranged structure. Since the shape of the opening of the fine recesses is not a circle strictly, D p is preferably determined from the SEM image of the surface. The thickness t p of the porous alumina layer is about 1 μm or less.
 本発明による実施形態の型は、基板上に堆積されたアルミニウム膜を用いて形成することもできるし、アルミニウムのバルク材(例えば、アルミニウム基板、アルミニウムの円筒や円柱)を用いて形成することもできる。型は、例えば、ロール状であって、型の外周面にポーラスアルミナ層を有する。ロール状の型は、軸を中心にロール状の型を回転させることによって、型の表面構造を被加工物(反射防止膜が形成される表面を有する物)に連続的に転写できるという利点がある。 The mold according to the embodiment of the present invention can be formed by using an aluminum film deposited on a substrate, or can be formed by using an aluminum bulk material (for example, an aluminum substrate, an aluminum cylinder or a cylinder). it can. The mold is, for example, a roll and has a porous alumina layer on the outer peripheral surface of the mold. The roll-shaped mold has an advantage that the surface structure of the mold can be continuously transferred to a workpiece (an object having a surface on which an antireflection film is formed) by rotating the roll-shaped mold around an axis. is there.
 本発明によるある実施形態の反射防止膜の製造方法は、上記のいずれかの方法によって離型処理が施された型を用意する工程と、被加工物を用意する工程と、型と被加工物の表面との間に光硬化樹脂を付与した状態で、光硬化樹脂に光を照射することによって光硬化樹脂を硬化させる工程と、硬化させた光硬化樹脂で形成された反射防止膜から型を剥離する工程とを包含する。 An antireflection film manufacturing method according to an embodiment of the present invention includes a step of preparing a mold that has been subjected to a mold release treatment by any of the above methods, a step of preparing a workpiece, and a mold and a workpiece. A mold is formed from a step of curing the photocurable resin by irradiating the photocurable resin with light in a state where the photocurable resin is applied between the surface and the antireflection film formed of the cured photocurable resin. And a peeling step.
 被加工物として、ロール状のフィルムを用いると、ロール・ツー・ロール方式で、反射防止膜を製造することができる。フィルムは、ベースフィルムと、ベースフィルム上に形成されたハードコート層とを有し、反射防止膜は、ハードコート層の上に形成されていることが好ましい。ベースフィルムとしては、例えば、TAC(トリアセチルセルロース)フィルムを好適に用いることができる。ハードコート層としては、例えば、アクリル系のハードコート材料を用いることができる。 When a roll-shaped film is used as a workpiece, an antireflection film can be produced by a roll-to-roll method. The film preferably has a base film and a hard coat layer formed on the base film, and the antireflection film is preferably formed on the hard coat layer. As the base film, for example, a TAC (triacetyl cellulose) film can be suitably used. As the hard coat layer, for example, an acrylic hard coat material can be used.
 以下に、実験例を示す。 The following is an experimental example.
 実験には、小片平板型と、ロール状型とを用意した。 For the experiment, a small plate type and a roll type were prepared.
 小片平板型は、5cm×5cmの正方形で、厚さが0.7mmのガラス基板(コーニング社製1737)上に、厚さが約1μmのアルミニウム膜をスパッタリングで堆積したものを基材として用い、上述したように、陽極酸化とエッチングとを交互に繰り返すことによって作製した。図2(a)~(e)を参照して、ポーラスアルミナ層を有する型の製造方法の例を説明する。 The small plate type is a 5 cm × 5 cm square, and a substrate obtained by depositing an aluminum film having a thickness of about 1 μm by sputtering on a glass substrate (Corning Corporation 1737) having a thickness of 0.7 mm is used as a base material. As described above, it was produced by alternately repeating anodic oxidation and etching. An example of a method for manufacturing a mold having a porous alumina layer will be described with reference to FIGS.
 まず、図2(a)に示すように、型基材10を用意する。型基材10は、支持体(不図示)と、支持体上に形成された絶縁層16と、絶縁層16上に堆積されたアルミニウム層18とを有する。アルミニウム層18に代えてアルミニウム合金層を用いてもよい。 First, as shown in FIG. 2A, a mold base 10 is prepared. The mold base 10 has a support (not shown), an insulating layer 16 formed on the support, and an aluminum layer 18 deposited on the insulating layer 16. An aluminum alloy layer may be used in place of the aluminum layer 18.
 次に、図2(b)に示すように、基材10の表面(アルミニウム層18の表面18s)を陽極酸化することによって複数の細孔14p(微細な凹部)を有するポーラスアルミナ層14を形成する。ポーラスアルミナ層14は、細孔14pを有するポーラス層と、バリア層とを有している。ポーラスアルミナ層14は、例えば、酸性の電解液中で表面18sを陽極酸化することによって形成される。ポーラスアルミナ層14を形成する工程で用いられる電解液は、例えば、蓚酸、酒石酸、燐酸、クロム酸、クエン酸、リンゴ酸からなる群から選択される酸を含む水溶液である。陽極酸化条件(例えば、電解液の種類、印加電圧)を調整することにより、細孔間隔、細孔の深さ、細孔の形状等を調節できる。なお、ポーラスアルミナ層14の厚さは適宜変更され得る。アルミニウム層18を完全に陽極酸化してもよい。 Next, as shown in FIG. 2B, the porous alumina layer 14 having a plurality of pores 14p (fine concave portions) is formed by anodizing the surface of the substrate 10 (the surface 18s of the aluminum layer 18). To do. The porous alumina layer 14 has a porous layer having pores 14p and a barrier layer. The porous alumina layer 14 is formed, for example, by anodizing the surface 18s in an acidic electrolytic solution. The electrolytic solution used in the step of forming the porous alumina layer 14 is an aqueous solution containing an acid selected from the group consisting of oxalic acid, tartaric acid, phosphoric acid, chromic acid, citric acid, and malic acid, for example. By adjusting the anodic oxidation conditions (for example, the type of electrolytic solution and the applied voltage), the pore spacing, pore depth, pore shape, and the like can be adjusted. The thickness of the porous alumina layer 14 can be changed as appropriate. The aluminum layer 18 may be fully anodized.
 次に、図2(c)に示すように、ポーラスアルミナ層14をアルミナのエッチャントに接触させることによって所定の量だけエッチングすることにより細孔14pの孔径を拡大する。ここで、ウェットエッチングを採用することによって、細孔壁およびバリア層をほぼ等方的にエッチングすることができる。エッチング液の種類・濃度、およびエッチング時間を調整することによって、エッチング量(すなわち、細孔14pの大きさおよび深さ)を制御することができる。エッチング液としては、例えば10質量%の燐酸や、蟻酸、酢酸、クエン酸などの有機酸の水溶液やクロム燐酸混合水溶液を用いることができる。 Next, as shown in FIG. 2 (c), the porous alumina layer 14 is brought into contact with an alumina etchant and etched by a predetermined amount to enlarge the pore diameter of the pores 14p. Here, by employing wet etching, the pore walls and the barrier layer can be etched almost isotropically. The amount of etching (that is, the size and depth of the pores 14p) can be controlled by adjusting the type / concentration of the etching solution and the etching time. As the etching solution, for example, an aqueous solution of 10% by mass of phosphoric acid, an organic acid such as formic acid, acetic acid or citric acid, or a mixed solution of chromium phosphoric acid can be used.
 次に、図2(d)に示すように、再び、アルミニウム層18を部分的に陽極酸化することにより、細孔14pを深さ方向に成長させるとともにポーラスアルミナ層14を厚くする。ここで細孔14pの成長は、既に形成されている細孔14pの底部から始まるので、細孔14pの側面は階段状になる。 Next, as shown in FIG. 2D, the aluminum layer 18 is partially anodized again to grow the pores 14p in the depth direction and to thicken the porous alumina layer 14. Here, the growth of the pores 14p starts from the bottom of the already formed pores 14p, so that the side surfaces of the pores 14p are stepped.
 さらにこの後、必要に応じて、ポーラスアルミナ層14をアルミナのエッチャントに接触させることによってさらにエッチングすることにより細孔14pの孔径をさらに拡大する。エッチング液としては、ここでも上述したエッチング液を用いることが好ましく、現実的には、同じエッチング浴を用いればよい。 Thereafter, if necessary, the porous alumina layer 14 is further etched by bringing it into contact with an alumina etchant to further expand the pore diameter of the pores 14p. As the etchant, it is preferable to use the above-described etchant, and in practice, the same etch bath may be used.
 このように、上述した陽極酸化工程およびエッチング工程を繰り返すことによって、図2(e)に示すように、所望の凹凸形状を有するポーラスアルミナ層14を有するモスアイ用型100Aが得られる。 As described above, by repeating the above-described anodizing step and etching step, a moth-eye mold 100A having a porous alumina layer 14 having a desired concavo-convex shape is obtained as shown in FIG.
 例えば、Dint=Dp=180nm、Ddepth=300nm、tp=400nmで、バリア層の厚さtbが約100nmのポーラスアルミナ層は、以下のようにして形成することができる。 For example, a porous alumina layer having D int = D p = 180 nm, D depth = 300 nm, t p = 400 nm, and a barrier layer thickness t b of about 100 nm can be formed as follows.
 ガラス基板上に堆積したアルミニウム層(厚さ約1μm)を、電解液として0.1Mの蓚酸水溶液(18℃)を用いて、化成電圧80Vで60秒間陽極酸化した後、エッチング液としての2質量%燐酸水溶液(30℃)に90分間浸漬することによって、先の陽極酸化工程によって形成された陽極酸化層を除去する。最初に形成されるポーラスアルミナ層の微細な凹凸構造は一定しないことが多いので、再現性を高めるために、最初に形成されたポーラスアルミナ層を除去した後、改めてポーラスアルミナ層を形成することが好ましい。 An aluminum layer (thickness: about 1 μm) deposited on a glass substrate was anodized for 60 seconds at a formation voltage of 80 V using 0.1 M oxalic acid aqueous solution (18 ° C.) as an electrolytic solution, and then 2 masses as an etching solution. The anodic oxidation layer formed by the previous anodic oxidation process is removed by immersing in a phosphoric acid aqueous solution (30 ° C.) for 90 minutes. Since the fine concavo-convex structure of the initially formed porous alumina layer is often not constant, the porous alumina layer may be formed again after removing the initially formed porous alumina layer in order to improve reproducibility. preferable.
 その後、上記の電解液(温度も同じ)およびエッチング液(温度も同じ)を用いて、陽極酸化工程(5回)とエッチング工程(4回)とを交互に繰り返す。ここでは、陽極酸化とエッチングとを交互に行うサイクルは、陽極酸化工程で終わる。1回の陽極酸化工程の時間は25秒、1回のエッチング工程の時間は19分である。 Thereafter, the anodizing step (5 times) and the etching step (4 times) are alternately repeated using the above electrolytic solution (the temperature is the same) and the etching solution (the same temperature). Here, the cycle in which anodization and etching are alternately performed ends with the anodization step. The time of one anodic oxidation process is 25 seconds, and the time of one etching process is 19 minutes.
 ロール状型は、本出願人による国際公開第2011/105206号に記載されている方法で作製した。ここでは、ステンレス鋼またはニッケルのメタルスリーブを用いた。なお、メタルスリーブとは、厚さが0.02mm以上1.0mm以下である金属製の円筒をいう。国際公開第2011/105206号の開示内容の全てを参考のために本明細書に援用する。 The roll mold was prepared by the method described in International Publication No. 2011/105206 by the applicant. Here, a stainless steel or nickel metal sleeve was used. The metal sleeve refers to a metal cylinder having a thickness of 0.02 mm to 1.0 mm. The entire disclosure of WO 2011/105206 is incorporated herein by reference.
 実験に用いたメタルスリーブを用いたロール型の作製方法を、図3を参照して簡単に説明する。 A roll type manufacturing method using a metal sleeve used in the experiment will be briefly described with reference to FIG.
 まず、図3(a)に示すように、メタルスリーブ72mと、硬化性樹脂(不図示)とを用意する。 First, as shown in FIG. 3A, a metal sleeve 72m and a curable resin (not shown) are prepared.
 次に、図3(b)に示すように、メタルスリーブ72mの外周面上に硬化性樹脂を付与することにより硬化性樹脂層16’を形成する。硬化性樹脂としては、例えば、ポリアミック酸を含む樹脂を用いることができる。 Next, as shown in FIG. 3B, a curable resin layer 16 'is formed by applying a curable resin on the outer peripheral surface of the metal sleeve 72m. As the curable resin, for example, a resin containing polyamic acid can be used.
 次に、硬化性樹脂層16’を硬化させることにより、図3(c)に示すように、メタルスリーブ72mの外周面上に絶縁層16を形成する。例えば、硬化性樹脂として、熱硬化性のポリアミック酸を用いたときは、300℃程度に加熱することにより、ポリイミド樹脂からなる絶縁層16が形成される。 Next, the curable resin layer 16 ′ is cured to form the insulating layer 16 on the outer peripheral surface of the metal sleeve 72 m as shown in FIG. For example, when thermosetting polyamic acid is used as the curable resin, the insulating layer 16 made of polyimide resin is formed by heating to about 300 ° C.
 絶縁層16は、例えば、電着法によって形成することもできる。電着法としては、例えば、公知の電着塗装方法を用いることができる。例えば、まず、メタルスリーブ72mを洗浄する。次に、メタルスリーブ72mを、電着樹脂を含む電着液が貯留された電着槽に浸漬する。電着槽には、電極が設置されている。カチオン電着により絶縁性樹脂層を形成するときは、メタルスリーブ72mを陰極とし、電着槽内に設置された電極を陽極として、メタルスリーブ72mと陽極との間に電流を流し、メタルスリーブ72mの外周面上に電着樹脂を析出させることによって、絶縁性樹脂層を形成する。アニオン電着により絶縁性樹脂層を形成するときは、メタルスリーブ72mを陽極とし、電着槽内に設置された電極を陰極として電流を流すことにより絶縁性樹脂層を形成する。その後、洗浄工程、焼付工程等を行うことにより、絶縁層16が形成される。電着樹脂としては、例えば、ポリイミド樹脂、エポキシ樹脂、アクリル樹脂、メラミン樹脂、ウレタン樹脂、またはこれらの混合物を用いることができる。 The insulating layer 16 can also be formed by, for example, an electrodeposition method. As the electrodeposition method, for example, a known electrodeposition coating method can be used. For example, first, the metal sleeve 72m is cleaned. Next, the metal sleeve 72m is immersed in an electrodeposition tank in which an electrodeposition liquid containing an electrodeposition resin is stored. Electrodes are installed in the electrodeposition tank. When the insulating resin layer is formed by cationic electrodeposition, the metal sleeve 72m is used as a cathode, the electrode installed in the electrodeposition tank is used as an anode, a current is passed between the metal sleeve 72m and the anode, and the metal sleeve 72m is used. An insulating resin layer is formed by depositing an electrodeposition resin on the outer peripheral surface of the film. When the insulating resin layer is formed by anion electrodeposition, the insulating resin layer is formed by flowing an electric current with the metal sleeve 72m as an anode and the electrode installed in the electrodeposition tank as a cathode. Thereafter, the insulating layer 16 is formed by performing a cleaning process, a baking process, and the like. As the electrodeposition resin, for example, a polyimide resin, an epoxy resin, an acrylic resin, a melamine resin, a urethane resin, or a mixture thereof can be used.
 電着法のほか、種々のコーティング法を用いて絶縁性樹脂層を形成し、必要に応じて、硬化させることによって、絶縁層16を形成することができる。有機樹脂を用いて形成した絶縁層16は、表面を平坦化する効果が高く、メタルスリーブ72mなどの表面の傷等がアルミニウム層18の表面形状に反映するのを抑制することができる。 In addition to the electrodeposition method, the insulating layer 16 can be formed by forming an insulating resin layer using various coating methods and curing as necessary. The insulating layer 16 formed using an organic resin has a high effect of flattening the surface, and can suppress the surface scratches of the metal sleeve 72 m and the like from being reflected on the surface shape of the aluminum layer 18.
 また、例えば、電着樹脂に艶消し剤を混合することによって、アンチグレア性を有する表面を有する絶縁層16を形成することができる。例えば、アクリルメラミン樹脂に艶消し剤を混合することによって、例えば、層の法線方向から見たときの2次元的な広がり(略円形)が約20μmで、高さが1μm弱の凸部が形成された表面を得ることができる。 Further, for example, the insulating layer 16 having a surface having antiglare property can be formed by mixing a matting agent with the electrodeposition resin. For example, by mixing a matting agent with an acrylic melamine resin, for example, a two-dimensional spread (substantially circular) when viewed from the normal direction of the layer is approximately 20 μm, and a convex portion having a height of less than 1 μm is formed. A formed surface can be obtained.
 次に、図3(d)に示すように、絶縁層16の上にアルミニウムを薄膜堆積法で堆積することにより、アルミニウム層18を形成する。 Next, as shown in FIG. 3D, an aluminum layer 18 is formed by depositing aluminum on the insulating layer 16 by a thin film deposition method.
 続いて、図3(e)に示すように、アルミニウム層18の表面に対して、陽極酸化とエッチングとを交互に繰り返すことによって、複数の微細な凹部を有するポーラスアルミナ層14を形成することにより、型100aが得られる。 Subsequently, as shown in FIG. 3 (e), by alternately repeating anodic oxidation and etching on the surface of the aluminum layer 18, the porous alumina layer 14 having a plurality of fine recesses is formed. The mold 100a is obtained.
 メタルスリーブ72mは、容易に変形するので、型100aをそのまま用いることは難しい。そこで、図4に示すように、型100aのメタルスリーブ72mの内部にコア材50を挿入することによって、ロール・ツー・ロール方式による反射防止膜の製造方法に用いることができる型100Aを得る。型100Aにおいて、コア材50と、メタルスリーブ72mと、絶縁層16とが、支持体12として機能する。 Since the metal sleeve 72m is easily deformed, it is difficult to use the mold 100a as it is. Therefore, as shown in FIG. 4, by inserting the core material 50 into the metal sleeve 72m of the mold 100a, a mold 100A that can be used in a roll-to-roll antireflection film manufacturing method is obtained. In the mold 100 </ b> A, the core material 50, the metal sleeve 72 m, and the insulating layer 16 function as the support 12.
 次に、図5を参照して、本発明による実施形態の反射防止膜の製造方法を説明する。図5は、ロール・ツー・ロール方式により反射防止膜を製造する方法を説明するための模式的な断面図である。 Next, with reference to FIG. 5, a method of manufacturing the antireflection film according to the embodiment of the present invention will be described. FIG. 5 is a schematic cross-sectional view for explaining a method for producing an antireflection film by a roll-to-roll method.
 まず、図4に示したロール状のモスアイ用型100Aを用意する。 First, the roll-shaped moth-eye mold 100A shown in FIG. 4 is prepared.
 次に、図5に示すように、紫外線硬化樹脂32’が表面に付与された被加工物42を、モスアイ用型100Aに押し付けた状態で、紫外線硬化樹脂32’に紫外線(UV)を照射することによって紫外線硬化樹脂32’を硬化する。紫外線硬化樹脂32’としては、例えばアクリル系樹脂を用いることができる。被加工物42は、例えば、TAC(トリアセチルセルロース)フィルムである。被加工物42は、図示しない巻き出しローラから巻き出され、その後、表面に、例えばスリットコータ等により紫外線硬化樹脂32’が付与される。被加工物42は、図5に示すように、支持ローラ62および64によって支持されている。支持ローラ62および64は、回転機構を有し、被加工物42を搬送する。また、ロール状のモスアイ用型100Aは、被加工物42の搬送速度に対応する回転速度で、図5に矢印で示す方向に回転される。 Next, as illustrated in FIG. 5, the ultraviolet curable resin 32 ′ is irradiated with ultraviolet rays (UV) in a state where the workpiece 42 having the ultraviolet curable resin 32 ′ applied to the surface thereof is pressed against the moth-eye mold 100 </ b> A. As a result, the ultraviolet curable resin 32 'is cured. As the ultraviolet curable resin 32 ′, for example, an acrylic resin can be used. The workpiece 42 is, for example, a TAC (triacetyl cellulose) film. The workpiece 42 is unwound from an unillustrated unwinding roller, and then an ultraviolet curable resin 32 ′ is applied to the surface by, for example, a slit coater. The workpiece 42 is supported by support rollers 62 and 64 as shown in FIG. The support rollers 62 and 64 have a rotation mechanism and convey the workpiece 42. The roll-shaped moth-eye mold 100A is rotated in the direction indicated by the arrow in FIG. 5 at a rotation speed corresponding to the conveyance speed of the workpiece 42.
 その後、被加工物42からモスアイ用型100Aを分離することによって、モスアイ用型100Aの凹凸構造(反転されたモスアイ構造)が転写された硬化物層32が被加工物42の表面に形成される。表面に硬化物層32が形成された被加工物42は、図示しない巻き取りローラにより巻き取られる。 Thereafter, by separating the moth-eye mold 100A from the workpiece 42, a cured product layer 32 to which the uneven structure (inverted moth-eye structure) of the moth-eye mold 100A is transferred is formed on the surface of the workpiece 42. . The workpiece 42 having the cured product layer 32 formed on the surface is wound up by a winding roller (not shown).
 ここで、図6に示すように、被加工物42として、TACフィルムからなるベースフィルム42aと、TACフィルム42aの上に形成されたハードコート層42bとを有するフィルムを用いると、ハードコート層42bと型100Aとが接触することがある。実験によると、型100Aが反射防止層を形成するための紫外線硬化樹脂32’と接触する部分だけでなく、型100Aがハードコート層(紫外線硬化樹脂32’と同時に硬化される)42bと接触する部分においても、型100Aのポーラスアルミナ層14が剥離するという不良が発生した。 Here, as shown in FIG. 6, when a film having a base film 42a made of a TAC film and a hard coat layer 42b formed on the TAC film 42a is used as the workpiece 42, the hard coat layer 42b is used. And the mold 100A may come into contact with each other. According to experiments, the mold 100A is in contact with the hard coat layer (cured simultaneously with the ultraviolet curable resin 32 ′) 42b as well as the portion in contact with the ultraviolet curable resin 32 ′ for forming the antireflection layer. Even in the portion, there was a defect that the porous alumina layer 14 of the mold 100A was peeled off.
 そこで、以下の実験では、反射防止膜用の紫外線硬化性樹脂に対する離型性だけでなく、ハードコート用の紫外線硬化性樹脂に対する離型性も併せて評価した。 Therefore, in the following experiment, not only the releasability with respect to the ultraviolet curable resin for the antireflection film but also the releasability with respect to the ultraviolet curable resin for the hard coat were evaluated together.
 反射防止膜を形成するための光硬化性樹脂としては、炭素数が6以下のパーフルオロ基を有するフッ素系潤滑剤を(1質量%)含む紫外線硬化型アクリル樹脂を用いた。また、ハードコート層を形成するための樹脂としては、ハードコート用紫外線硬化型アクリル樹脂を用いた。 As the photocurable resin for forming the antireflection film, an ultraviolet curable acrylic resin containing (1% by mass) a fluorine-based lubricant having a perfluoro group having 6 or less carbon atoms was used. Further, as a resin for forming the hard coat layer, an ultraviolet curable acrylic resin for hard coat was used.
 フッ素系離型剤としては、フロロテクノロジー社製の商品名フロロサーフFG-5010(フッ素系離型性成分)と、フロロテクノロジー社製ZV(溶剤、希釈剤ともいう。)とを含むものを用いた。フッ素系離型剤の濃度は、0.1質量%~1.0質量%まで、適宜調節した。ここで用いたフロロサーフFG-5010のフッ素系離型性成分の数平均分子量は約4000~約5000であった。溶液の比重を1.5、フッ素数離型性成分の分子量を4000gとすると、0.1質量%は0.0004モル/Lに相当する。 As the fluorine-based mold release agent, a product containing a trade name Fluorosurf FG-5010 (fluorine-based mold release component) manufactured by Fluoro Technology and ZV (also referred to as a solvent or diluent) manufactured by Fluoro Technology was used. . The concentration of the fluorine-based mold release agent was appropriately adjusted from 0.1% by mass to 1.0% by mass. The number average molecular weight of the fluoro-type releasable component of Fluorosurf FG-5010 used here was about 4000 to about 5000. When the specific gravity of the solution is 1.5 and the molecular weight of the fluorine number releasable component is 4000 g, 0.1% by mass corresponds to 0.0004 mol / L.
 離型処理は、以下のようにして行った。 The mold release process was performed as follows.
 (1)図3(e)に示した型100a(円筒の直径300mm、円筒の軸方向の長さ100cmまたは150cm)を垂直に保持した状態で、離型剤を洗瓶を用いて付ける。型100aの表面がぬれた状態を5分間保つよう、随時離型剤を吹き付ける。 (1) With the mold 100a shown in FIG. 3 (e) (cylinder diameter 300 mm, cylindrical axial length 100 cm or 150 cm) held vertically, a mold release agent is applied using a washing bottle. A mold release agent is sprayed as needed to keep the surface of the mold 100a wet for 5 minutes.
 (2)次に、溶剤を除去する。離型剤が付与された型100aを円筒の軸を中心に回転させながら、エアブローで端から乾かす。 (2) Next, the solvent is removed. The mold 100a to which the release agent is applied is dried from the end by air blow while rotating around the axis of the cylinder.
 この後、必要に応じて、上記(1)および(2)を1回、2回または4回繰り返す。 After this, repeat the above (1) and (2) once, twice or four times as necessary.
 最後に、工業用ドライヤーで30分間かけて全面に熱風を吹き付ける。このとき、型100aの表面は最高で約50℃~約60℃になる。 Finally, blow hot air over the entire surface with an industrial dryer for 30 minutes. At this time, the surface of the mold 100a is about 50 ° C. to about 60 ° C. at the maximum.
 このようにして、離型剤を1回、2回、3回、および5回コートした型を作製した。なお、ここでは型100aとして、アクリルメラミン樹脂に艶消し剤を添加した材料を用いて電着法で形成された絶縁層16を有し、ポーラスアルミナ層の表面は、層の法線方向から見たときの2次元的な広がりが約20μmで、高さが1μm弱の凸部を有している型を用いた。この型を用いると、アンチグレア性を有する反射防止膜を形成することができる。 In this way, molds coated with the release agent once, twice, three times and five times were prepared. Here, the mold 100a has an insulating layer 16 formed by electrodeposition using a material obtained by adding a matting agent to an acrylic melamine resin, and the surface of the porous alumina layer is viewed from the normal direction of the layer. A mold having a convex portion with a two-dimensional spread of about 20 μm and a height of less than 1 μm was used. When this mold is used, an antireflection film having antiglare properties can be formed.
 型の離型性の評価は以下のようにして行った。 Evaluation of mold releasability was performed as follows.
 型の表面の水に対する接触角を協和界面化学社製の接触角計DropMaster500を用いて測定した。水の滴下量は3.0マイクロリットルとした。マイクロシリンジの針先に3.0マイクロリットルの水滴を保持した状態で、水滴を型の表面に接触させ、その後、針を後退させることによって、水滴を型の表面に付着、残存させた。型の表面に残存した水滴の接触角を上記接触角計で測定した。 The contact angle of the mold surface with water was measured using a contact angle meter DropMaster 500 manufactured by Kyowa Interface Chemical Co., Ltd. The amount of water dropped was 3.0 microliters. With 3.0 microliters of water droplet held on the needle tip of the microsyringe, the water droplet was brought into contact with the surface of the mold, and then the needle was retracted, so that the water droplet adhered and remained on the surface of the mold. The contact angle of water droplets remaining on the surface of the mold was measured with the above contact angle meter.
 上述した離型処理を施した型100aを備える型100Aを用いて、ロール・ツー・ロール方式で、反射防止膜を連続的に形成し、型に対する離型性の持続性を評価した。転写回数(ロール状型の回転回数)に対する、型の表面の水に対する接触角の変化を求めた。光硬化性樹脂として、反射防止膜を形成するための紫外線硬化型アクリル樹脂を用いた場合の結果を表1および図7に示す。離型性成分の濃度は0.1質量%である。 Using the mold 100A including the mold 100a subjected to the above-described mold release treatment, an antireflection film was continuously formed by a roll-to-roll method, and the sustainability of the mold release property was evaluated. The change in contact angle of the mold surface with water relative to the number of times of transfer (the number of rotations of the roll-shaped mold) was determined. Table 1 and FIG. 7 show the results when an ultraviolet curable acrylic resin for forming an antireflection film is used as the photocurable resin. The concentration of the releasable component is 0.1% by mass.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1および図7から明らかなように、1回コート型に比べ、2回コート型、3回コート型および5回コート型のいずれも、転写回数の増加に伴う接触角の低下が小さく、2回以上コートすることによって、離型性の持続性が向上させることができることが分かる。 As apparent from Table 1 and FIG. 7, compared to the one-time coating type, both the two-time coating type, the three-time coating type, and the five-time coating type have a small decrease in the contact angle with an increase in the number of transfer times. It can be seen that the durability of releasability can be improved by coating more than once.
 同様に、ハードコート用の紫外線硬化型アクリル樹脂についての評価結果を下記の表2に示す。また、スコッチテープ(商品名313)を型の表面に貼り付け、引き剥がした後の、型の表面に残存する粘着剤の量(面積)を評価した結果を表3に示す。 Similarly, the evaluation results of the ultraviolet curable acrylic resin for hard coat are shown in Table 2 below. Table 3 shows the results of evaluating the amount (area) of the adhesive remaining on the surface of the mold after the scotch tape (trade name 313) was attached to the surface of the mold and peeled off.
 表2を見ると、転写回数が10回程度では、1回コート型と、2回コート型および3回コート型では離型性に差は認められない。しかしながら、表3から分かるように、10回転写後の粘着剤の残り量は、1回コート型と、2回コート型と、3回コート型との間で明確な差があり、10回転写後においても、3回コート型は優れた離型性を有している。 Referring to Table 2, when the number of times of transfer is about 10, there is no difference in releasability between the once-coated type, the twice-coated type, and the three-time coated type. However, as can be seen from Table 3, the remaining amount of the adhesive after the 10th transfer has a clear difference between the 1st coat type, the 2nd coat type, and the 3rd coat type. Later, the three-time coat type has excellent releasability.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記の結果から分かるように、離型剤を2回以上付与することによって、離型性の持続性を改善できることが分かる(表1等)。また、離型剤を3回付与することによって、さらに離型性の持続性を改善できることが分かる(表3)。 As can be seen from the above results, it can be seen that the sustainability of releasability can be improved by applying the release agent twice or more (Table 1 etc.). Moreover, it turns out that the sustainability of a mold release property can be improved further by giving a mold release agent 3 times (Table 3).
 図8に、フッ素系離型剤として、ダイキン工業社製のオプツールを0.1質量%含むものを用意し、上記の離型剤とともに、上記の小片平板型を用いて、離型性の持続性を評価した結果を示す。離型処理は、以下のようにして行った。 In FIG. 8, a fluorine-based mold release agent containing 0.1% by mass of an optool made by Daikin Industries, Ltd. is prepared. The result of having evaluated sex is shown. The mold release process was performed as follows.
 (1)小片平板型をほぼ垂直に保持した状態で、離型剤をスポイドで付与する。 (1) A mold release agent is applied with a spoid while the small plate type is held almost vertically.
 (2)その後、3分間、放置し、自然乾燥によって溶剤を除去する。なお、自然乾燥中、溶剤が除去された箇所と溶剤が残っている箇所の境界線が、小片平板型の上端から下端へと移動する様子が目視で観察された。 (2) Then, leave it for 3 minutes and remove the solvent by natural drying. During natural drying, it was visually observed that the boundary line between the part where the solvent was removed and the part where the solvent remained moved from the upper end to the lower end of the small plate type.
 この後、必要に応じて、上記(1)および(2)を2回繰り返す。 After this, repeat the above (1) and (2) twice as necessary.
 最後に、小片平板型をホットプレート上に静置し、100℃で15分間、加熱する。 Finally, the small plate type is placed on a hot plate and heated at 100 ° C. for 15 minutes.
 このようにして、離型剤を1回および3回コートした型を作製した。 In this way, a mold coated with a release agent once and three times was produced.
 図8からわかるように、オプツールを用いた場合も、1回コート型に比べ、3回コート型の方が離型性の持続性が高い。 As can be seen from FIG. 8, when the OPTOOL is used, the three-time coating type has higher releasability than the one-time coating type.
 上記の実験例で用いた離型剤の離型性成分の濃度は0.1質量%(0.0004モル/L)であった。上記の小片平板型に対し、離型剤成分(フロロサーフFG-5010)の濃度が0.1質量%、0.5質量%、0.7質量%および1.0質量%の離型剤を用いて、上記と同様の方法で離型処理を施し、型および、各型を用いて作製した反射防止膜の試料の表面状態を目視で評価した。反射防止膜の試料は、型の表面に、反射防止膜用の紫外線硬化型アクリル樹脂を付与した後、PETフィルを上に載せた状態で、ローラを用いてアクリル樹脂を延ばした後、フュージョンDランプを用いて、100mW/cm2(波長365nm)の紫外線を15秒間、照射した。 The concentration of the releasable component of the release agent used in the above experimental example was 0.1% by mass (0.0004 mol / L). A mold release agent having a concentration of the release agent component (Fluorosurf FG-5010) of 0.1% by mass, 0.5% by mass, 0.7% by mass, and 1.0% by mass is used with respect to the above-described small plate type. Then, the mold release treatment was performed in the same manner as described above, and the surface state of the mold and the sample of the antireflection film produced using each mold was visually evaluated. A sample of the antireflection film was prepared by applying an ultraviolet curable acrylic resin for the antireflection film to the surface of the mold, then extending the acrylic resin using a roller with a PET film placed on top, and then fusion D Using a lamp, ultraviolet rays of 100 mW / cm 2 (wavelength 365 nm) were irradiated for 15 seconds.
 上記の実験の結果、離型性成分の濃度が0.7質量%以上のとき、型の表面および反射防止膜試料の表面のいずれにもむらが観察された。黒色のアクリル板に反射防止膜試料を貼り付けて観察すると、反射防止膜試料の方が型よりもむらが容易に観察された。また、離型性成分の濃度が0.7質量%以上のとき、離型剤を付与し3分間放置した後に、離型剤に含まれている溶剤で洗浄しても、上記のむらの発生を防止することはできなかった。図9(a)~(c)に、離型性成分を1.0質量%含む離型剤で3回コートした型の表面のSEM像を示す。図9(a)~(c)に見られるむらは、離型性成分が凝集、偏在したためと思われる。 As a result of the above experiment, when the concentration of the releasable component was 0.7% by mass or more, unevenness was observed on both the surface of the mold and the surface of the antireflection film sample. When the antireflection film sample was attached to the black acrylic plate and observed, unevenness was more easily observed in the antireflection film sample than in the mold. In addition, when the concentration of the releasable component is 0.7% by mass or more, the above-mentioned unevenness is generated even if the release agent is applied and left for 3 minutes and then washed with a solvent contained in the release agent. It could not be prevented. 9 (a) to 9 (c) show SEM images of the surface of a mold coated three times with a mold release agent containing 1.0% by mass of a mold release component. The unevenness seen in FIGS. 9 (a) to 9 (c) seems to be due to the aggregation and uneven distribution of the releasable components.
 一方、離型性成分の濃度が0.1質量%および0.5質量%の離型剤を用いると、3回コートした場合にもむらが観察されることはなかった。このことから、離型剤中の離型性成分の濃度は0.5質量%(0.002モル/L)を超えないことが好ましいと言える。下限値は、適宜設定されるが、離型性成分の濃度は0.1質量%(0.0004モル/L)以上が好ましいと考えられる。 On the other hand, when a release agent having a release component concentration of 0.1% by mass and 0.5% by mass was used, no unevenness was observed even when coating was performed three times. From this, it can be said that the concentration of the releasable component in the release agent is preferably not more than 0.5% by mass (0.002 mol / L). The lower limit is appropriately set, but it is considered that the concentration of the releasable component is preferably 0.1% by mass (0.0004 mol / L) or more.
 本発明は、ポーラスアルミナ層を有する型およびそれを用いた反射防止膜などの製造に好適に用いられる。 The present invention is suitably used for producing a mold having a porous alumina layer and an antireflection film using the same.
 12  支持体
 14  ポーラスアルミナ層
 14p 細孔(微細な凹部)
 16  絶縁層
 18  アルミニウム層またはアルミニウム合金層
 18s アルミニウム層の表面
 32’ 紫外線硬化樹脂
 32  硬化物層
 42  被加工物
 42a ベースフィルム
 42b ハードコート層
 50  コア材
 100a、100A  モスアイ用型
12 Support 14 Porous Alumina Layer 14p Pore (Fine Concave)
16 Insulating layer 18 Aluminum layer or aluminum alloy layer 18s Surface of aluminum layer 32 'UV curable resin 32 Cured material layer 42 Work piece 42a Base film 42b Hard coat layer 50 Core material 100a, 100A Moss eye mold

Claims (6)

  1.  (a)離型性を有するフッ素系化合物と溶剤とを含む離型剤と、表面にポーラスアルミナ層を有する型とを用意する工程と、
     (b)前記型の前記表面の上に、前記離型剤を付与する工程と、
     (c)前記型の前記表面の上の前記離型剤に含まれる前記溶剤を除去する工程と、
     (d)前記工程(c)の後に、前記工程(b)と前記工程(c)とをさらに包含する、離型処理方法。
    (A) preparing a mold release agent containing a fluorine-based compound having a releasability and a solvent, and a mold having a porous alumina layer on the surface;
    (B) providing the mold release agent on the surface of the mold;
    (C) removing the solvent contained in the release agent on the surface of the mold;
    (D) A mold release processing method further including the step (b) and the step (c) after the step (c).
  2.  前記工程(d)の後に、前記工程(b)と前記工程(c)とをさらに包含する、請求項1に記載の離型処理方法。 The mold release processing method according to claim 1, further comprising the step (b) and the step (c) after the step (d).
  3.  前記離型剤に含まれる前記フッ素系化合物の濃度は、0.002モル/Lを超えない、請求項1または2に記載の離型処理方法。 The mold release treatment method according to claim 1 or 2, wherein the concentration of the fluorine compound contained in the mold release agent does not exceed 0.002 mol / L.
  4.  離型性を有する前記フッ素系化合物は、パーフルオロポリエーテル変性シランである、請求項1から3のいずれかに記載の離型処理方法。 The mold release treatment method according to any one of claims 1 to 3, wherein the fluorine-based compound having releasability is perfluoropolyether-modified silane.
  5.  前記パーフルオロポリエーテル変性シランは、アルコキシシランである、請求項4に記載の離型処理方法。 The mold release treatment method according to claim 4, wherein the perfluoropolyether-modified silane is an alkoxysilane.
  6.  請求項1から5のいずれかに記載の方法によって離型処理が施された型を用意する工程と、
     被加工物を用意する工程と、
     前記型と前記被加工物の表面との間に光硬化樹脂を付与した状態で、前記光硬化樹脂に光を照射することによって前記光硬化樹脂を硬化させる工程と、
     前記型を硬化させられた光硬化樹脂で形成されたフッ素系離型性成分から剥離する工程と
    を包含する、反射防止膜の製造方法。
    Preparing a mold subjected to a mold release treatment by the method according to claim 1;
    A step of preparing a workpiece;
    Curing the photocurable resin by irradiating the photocurable resin with light in a state where the photocurable resin is applied between the mold and the surface of the workpiece;
    A method for producing an antireflection film, comprising a step of peeling the fluorine-based mold release component formed of a cured photocurable resin.
PCT/JP2012/057896 2011-03-30 2012-03-27 Mold release treatment method, and antireflective film production method WO2012133390A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-075757 2011-03-30
JP2011075757 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012133390A1 true WO2012133390A1 (en) 2012-10-04

Family

ID=46931107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057896 WO2012133390A1 (en) 2011-03-30 2012-03-27 Mold release treatment method, and antireflective film production method

Country Status (1)

Country Link
WO (1) WO2012133390A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146656A1 (en) * 2012-03-26 2013-10-03 シャープ株式会社 Mold release treatment method and method for producing anti-reflective film
WO2016199764A1 (en) * 2015-06-09 2016-12-15 シャープ株式会社 Mold release method, method for manufacturing antireflective film, and mold release device
CN109571834A (en) * 2017-09-28 2019-04-05 夏普株式会社 Mold release treatment method, mold and anti-reflective film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120634A (en) * 1986-11-10 1988-05-25 Sekisui Plastics Co Ltd Foaming mold
JP2006116896A (en) * 2004-10-25 2006-05-11 Alps Electric Co Ltd Manufacturing method of die
JP2010005841A (en) * 2008-06-25 2010-01-14 Mitsubishi Rayon Co Ltd Mold manufacturing method
WO2011111669A1 (en) * 2010-03-08 2011-09-15 シャープ株式会社 Mold release treatment method, mold, method for producing anti-reflective film, mold release treatment device, and washing/drying device for mold
WO2011118591A1 (en) * 2010-03-25 2011-09-29 三菱レイヨン株式会社 Method for producing molds and method for producing products with superfine concave-convex structures on surface

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120634A (en) * 1986-11-10 1988-05-25 Sekisui Plastics Co Ltd Foaming mold
JP2006116896A (en) * 2004-10-25 2006-05-11 Alps Electric Co Ltd Manufacturing method of die
JP2010005841A (en) * 2008-06-25 2010-01-14 Mitsubishi Rayon Co Ltd Mold manufacturing method
WO2011111669A1 (en) * 2010-03-08 2011-09-15 シャープ株式会社 Mold release treatment method, mold, method for producing anti-reflective film, mold release treatment device, and washing/drying device for mold
WO2011118591A1 (en) * 2010-03-25 2011-09-29 三菱レイヨン株式会社 Method for producing molds and method for producing products with superfine concave-convex structures on surface

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146656A1 (en) * 2012-03-26 2013-10-03 シャープ株式会社 Mold release treatment method and method for producing anti-reflective film
JPWO2013146656A1 (en) * 2012-03-26 2015-12-14 シャープ株式会社 Mold release processing method and manufacturing method of antireflection film
US9821494B2 (en) 2012-03-26 2017-11-21 Sharp Kabushiki Kaisha Mold release treatment method and method for producing anti-reflective film
WO2016199764A1 (en) * 2015-06-09 2016-12-15 シャープ株式会社 Mold release method, method for manufacturing antireflective film, and mold release device
CN107635740A (en) * 2015-06-09 2018-01-26 夏普株式会社 Mold release treatment method, the manufacture method of antireflection film and demoulding processing unit
JPWO2016199764A1 (en) * 2015-06-09 2018-03-29 シャープ株式会社 Release processing method, manufacturing method of antireflection film, and release processing apparatus
CN107635740B (en) * 2015-06-09 2019-11-19 夏普株式会社 Mold release treatment method, the manufacturing method of antireflection film and demoulding processing unit
CN109571834A (en) * 2017-09-28 2019-04-05 夏普株式会社 Mold release treatment method, mold and anti-reflective film
JP2019064001A (en) * 2017-09-28 2019-04-25 シャープ株式会社 Method of processing mold releasing, mold, and anti-reflection coating

Similar Documents

Publication Publication Date Title
US8545708B2 (en) Mold and manufacturing method therefor
JP4583506B2 (en) Antireflection film, optical element including antireflection film, stamper, stamper manufacturing method, and antireflection film manufacturing method
JP4796216B2 (en) Mold, mold manufacturing method and antireflection film
TWI484071B (en) Method for forming anodized layer and method for producing mold
JP5615971B2 (en) Mold manufacturing method
JP5856286B2 (en) Mold release processing method and manufacturing method of antireflection film
US9108351B2 (en) Method for forming anodized layer, method for producing mold and method for producing antireflective film
JP5940662B2 (en) Method for producing antireflection film
EP2857558A1 (en) Method for manufacturing mold, and method for manufacturing molded article having fine uneven structure on surface
US9405043B2 (en) Mold and process for production of mold
JP5796491B2 (en) Nanoimprint mold manufacturing apparatus and nanoimprint mold manufacturing method
JP6458051B2 (en) Mold, mold manufacturing method and antireflection film
WO2012133390A1 (en) Mold release treatment method, and antireflective film production method
JP5833763B2 (en) Mold manufacturing method
JP2008158204A (en) Antireflection film, molding die and manufacturing methods therefor, and optical member having the antireflection film
JP6568563B2 (en) Mold release treatment method, mold and method for producing antireflection film
JP6546992B2 (en) Release processing method, method of manufacturing antireflective film, and release processing apparatus
JP6057130B2 (en) Method for manufacturing roll-shaped mold, and method for manufacturing article having a plurality of convex portions on the surface
JP2016209816A (en) Method for producing uneven structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP