JP2006116896A - Manufacturing method of die - Google Patents

Manufacturing method of die Download PDF

Info

Publication number
JP2006116896A
JP2006116896A JP2004309480A JP2004309480A JP2006116896A JP 2006116896 A JP2006116896 A JP 2006116896A JP 2004309480 A JP2004309480 A JP 2004309480A JP 2004309480 A JP2004309480 A JP 2004309480A JP 2006116896 A JP2006116896 A JP 2006116896A
Authority
JP
Japan
Prior art keywords
mold
fluorine
film
heat treatment
triazine dithiol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004309480A
Other languages
Japanese (ja)
Other versions
JP4500928B2 (en
Inventor
Yoshihiro Taguchi
好弘 田口
Kunio Mori
邦夫 森
Shunei Hirahara
俊英 平原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate University
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Iwate University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd, Iwate University filed Critical Alps Electric Co Ltd
Priority to JP2004309480A priority Critical patent/JP4500928B2/en
Publication of JP2006116896A publication Critical patent/JP2006116896A/en
Application granted granted Critical
Publication of JP4500928B2 publication Critical patent/JP4500928B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a die which can improve durability (namely, improvement of life) by a different process from the former one when forming the coat of a fluorine-content triazine dithiol derivative by an electrolytic polymerization method especially in a concavo-convex pattern surface of a die. <P>SOLUTION: The manufacturing method of a die enables improving the durability of a coat 5 by leaps and bounds comparing with the former method and prolonging the life of a die 4 infinitely more than the former method by performing a series of forming/heat treatment processes which perform the heat treating two or more times after forming the coat 5 having the fluorine-content triazine dithiol derivative by the electrolytic polymerization method to an opposed surface 4a in which the concavo-convex pattern of the die 4 was formed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えばLED(発光ダイオード)に使用される反射板の表面に凹凸パターンを転写するための金型の製造方法に係わり、特に耐久性を向上させることが可能な金型の製造方法に関する。   The present invention relates to a mold manufacturing method for transferring a concavo-convex pattern onto the surface of a reflector used in, for example, an LED (light emitting diode), and more particularly to a mold manufacturing method capable of improving durability. .

例えば、LED(発光ダイオード)に使用される反射板の表面に凹凸パターンを転写するための金型には良好な離型性が求められる。従来、前記離型性を向上させるために金型の表面にフッ素系樹脂などの離型材を塗布していたが、前記金型を繰返し使用すると、前記離型材が剥がれたりするなどの不具合が生じ、この結果、前記離型材を塗布し直したりする必要性があることから反射板の生産性の向上を適切に図ることができず、従来よりも離型性に優れた高寿命の金型が求められた。   For example, a good mold releasability is required for a mold for transferring a concavo-convex pattern onto the surface of a reflector used in an LED (light emitting diode). Conventionally, a release material such as a fluorine-based resin has been applied to the surface of the mold in order to improve the mold release property. However, when the mold is used repeatedly, problems such as peeling of the mold release material occur. As a result, since it is necessary to re-apply the release material, it is not possible to appropriately improve the productivity of the reflector, and a long-life mold having a better release property than the conventional one can be obtained. I was asked.

下記の特許文献は、いずれもフッ素含有トリアジンジチオール誘導体に関する公知文献である。   The following patent documents are all known documents relating to fluorine-containing triazine dithiol derivatives.

下記特許文献1にはフッ素含有トリアジンジチオール誘導体を金型表面に電解重合法により成膜することが開示されている。また下記の特許文献2には、前記フッ素含有トリアジンジチオール誘導体の製造方法について詳しい説明が開示されている。また、特許文献3には前記フッ素含有トリアジンジチオール誘導体をスパッタ法や蒸着法等で被膜形成することが開示されている。
特開平11−291259号公報 特許第3128574号の特許公報 特開平11−140626号公報
Patent Document 1 below discloses that a fluorine-containing triazine dithiol derivative is formed on the mold surface by electrolytic polymerization. Patent Document 2 below discloses a detailed description of the method for producing the fluorine-containing triazine dithiol derivative. Patent Document 3 discloses that the fluorine-containing triazine dithiol derivative is formed into a film by sputtering or vapor deposition.
JP-A-11-291259 Patent Publication No. 3128574 JP-A-11-140626

前記フッ素含有トリアジンジチオール誘導体からなる被膜を金型の凹凸パターン面に成膜すると、従来に比べて離型性に優れた金型を形成できる。本発明者らは後述する実験で前記フッ素含有トリアジンジチオール誘導体の被膜の「耐久性」を測定した。ここで「耐久性」とは、例えばアクリル系の熱硬化型樹脂等の樹脂部材の表面に凹凸パターンを金型によってプレス加工し、前記樹脂部材の表面に形成された凹凸パターンの深さ方向の長さが、前記金型に形成された凹凸パターンの深さ方向の長さの80%を下回るまでの転写回数で評価される。   When a film made of the fluorine-containing triazine dithiol derivative is formed on the concave / convex pattern surface of the mold, it is possible to form a mold having excellent releasability as compared with the prior art. The inventors measured the “durability” of the coating film of the fluorine-containing triazine dithiol derivative in the experiment described below. Here, “durability” refers to, for example, pressing a concavo-convex pattern on the surface of a resin member such as an acrylic thermosetting resin with a mold, and the depth direction of the concavo-convex pattern formed on the surface of the resin member. The length is evaluated by the number of times of transfer until the length of the concavo-convex pattern formed on the mold is less than 80% of the length in the depth direction.

ところで前記フッ素含有トリアジンジチオール誘導体からなる被膜を電解重合法により成膜し、特に成膜時間(重合時間)を長くして前記被膜の膜厚を厚くすることで前記耐久性を向上させることが出来ることが確認された。耐久性を向上させることで、前記金型の寿命を向上させることが出来る。   By the way, a film made of the fluorine-containing triazinedithiol derivative is formed by an electropolymerization method, and in particular, the durability can be improved by increasing the film formation time (polymerization time) to increase the film thickness of the film. It was confirmed. By improving the durability, the life of the mold can be improved.

しかしながら、単に前記被膜の膜厚を厚くするだけでは、飛躍的に耐久性を向上させるには至らず、より耐久性に優れた金型が必要とされた。また前記フッ素含有トリアジンジチオール誘導体からなる被膜を特許文献3のように、スパッタ法等で形成する手法もあるが、かかる場合、前記被膜の膜厚が厚くなりすぎ、凹凸パターンのアスペクト比を所定の範囲内に収めることが困難になるため、電解重合法によるフッ素含有トリアジンジチオール誘導体の成膜において耐久性の向上を図ることが必要であった。   However, simply increasing the thickness of the coating does not lead to dramatic improvement in durability, and a mold having higher durability is required. In addition, there is a method of forming a film made of the fluorine-containing triazine dithiol derivative by a sputtering method or the like as in Patent Document 3, but in such a case, the film thickness of the film becomes too thick, and the aspect ratio of the uneven pattern is set to a predetermined value. Since it becomes difficult to fit within the range, it was necessary to improve durability in the film formation of the fluorine-containing triazine dithiol derivative by the electrolytic polymerization method.

そこで本発明は上記従来の課題を解決するためのものであり、特に、特に金型の凹凸パターン面に電解重合法によりフッ素含有トリアジンジチオール誘導体の被膜を成膜するにあたり、従来とは異なる工程で成膜することで耐久性の向上(すなわち寿命の向上)を図ることが出来る金型の製造方法を提供することを目的としている。   Therefore, the present invention is for solving the above-described conventional problems, and in particular, in forming a coating film of a fluorine-containing triazine dithiol derivative by electrolytic polymerization on an uneven pattern surface of a mold, the process is different from the conventional processes. An object of the present invention is to provide a mold manufacturing method capable of improving durability (that is, improving life) by forming a film.

本発明は、部材に凹凸パターンをプレス加工するための金型の製造方法であって、
前記金型の前記部材との対向面に、フッ素含有トリアジンジチオール誘導体を有する被膜を電解重合法により成膜した後、熱処理を行なう一連の成膜・熱処理工程を複数回行なうことを特徴とするものである。
The present invention is a method for manufacturing a mold for pressing a concavo-convex pattern on a member,
A film having a fluorine-containing triazine dithiol derivative is formed on the surface of the mold facing the member by an electrolytic polymerization method, and then a series of film formation and heat treatment steps are performed a plurality of times. It is.

上記のようにフッ素含有トリアジンジチオール誘導体を有する被膜を電解重合法により成膜した後、熱処理を行なう一連の成膜・熱処理工程を複数回行なうことで、耐久性を従来に比べて飛躍的に向上させることが出来ることが後述する実験結果によって確認された。これは、上記した一連の成膜・熱処理工程を複数回行なうことで前記フッ素含有トリアジンジチオール誘導体の配向性が向上し、前記誘導体が緻密に整然と配列し、被膜が強靭になったためであると考えられる。   Durability is dramatically improved by performing a series of film-forming and heat-treating processes multiple times after the film containing the fluorine-containing triazine dithiol derivative is formed by electrolytic polymerization as described above and then heat-treated. It was confirmed by the experimental results to be described later. This is thought to be because the orientation of the fluorine-containing triazine dithiol derivative was improved by performing the above-described series of film formation and heat treatment steps a plurality of times, and the derivative was densely and orderly arranged, and the film became tough. It is done.

なお本発明では、熱処理工程の熱処理温度を、150℃〜250℃の範囲内に制御することが好ましい。   In the present invention, it is preferable to control the heat treatment temperature in the heat treatment step within a range of 150 ° C to 250 ° C.

また本発明では、前記部材は樹脂であり、前記金型は反射板を製造するためのものであることが好ましい。   Moreover, in this invention, it is preferable that the said member is resin and the said metal mold | die is for manufacturing a reflecting plate.

本発明では、金型の凹凸パターン面に、フッ素含有トリアジンジチオール誘導体を有する被膜を電解重合法により成膜した後、熱処理を行なう一連の成膜・熱処理工程を複数回行なうことで、被膜の耐久性を従来に比べて飛躍的に向上させることが出来、前記金型の寿命を従来よりも飛躍的に延ばすことが可能になる。   In the present invention, a film having a fluorine-containing triazinedithiol derivative is formed on the concave / convex pattern surface of the mold by electrolytic polymerization, and then a series of film formation / heat treatment steps are performed multiple times, thereby improving the durability of the film. As a result, it is possible to dramatically improve the performance of the mold, and it is possible to extend the life of the mold dramatically.

図1ないし図3は、本発明における金型を用いてLED(発光ダイオード)に使用される反射板の表面に凹凸パターンをプレス加工するための工程を示す一工程図であり、いずれも金型及び反射板を膜厚方向から切断した部分断面図、図4は図1ないし図3に示す金型をより詳細に説明するための部分断面図、図5は図4に示す金型の一部を拡大して示した部分拡大断面図、である。   FIG. 1 to FIG. 3 are process diagrams showing a process for pressing a concavo-convex pattern on the surface of a reflector used in an LED (light emitting diode) using the mold according to the present invention. FIG. 4 is a partial sectional view for explaining the mold shown in FIGS. 1 to 3 in more detail, and FIG. 5 is a part of the mold shown in FIG. It is the elements on larger scale which expanded and showed.

図1に示すように表面が平坦化された基板1上に反射板2の原料である樹脂部材3を載置する。前記樹脂部材3は、例えばアクリル系の熱硬化性樹脂、熱可塑性樹脂、またはノルボルネン、シクロペンタジエンなどのシクロ環、スピロ環等の樹脂である。   As shown in FIG. 1, a resin member 3 that is a raw material of the reflector 2 is placed on a substrate 1 having a flat surface. The resin member 3 is, for example, an acrylic thermosetting resin, a thermoplastic resin, or a resin such as norbornene or cyclopentadiene such as a cyclo ring or a spiro ring.

図1に示すように金型4の前記樹脂部材3と対向する対向面4aには所定形状の凹凸パターンが形成されている。前記金型4の対向面4aには、後述するようにフッ素含有トリアジンジチオール誘導体の被膜が成膜されている。前記金型4は、例えばニッケルの電鋳品であるが、材質はニッケルに限るものではない。   As shown in FIG. 1, a concave and convex pattern having a predetermined shape is formed on the opposing surface 4 a of the mold 4 facing the resin member 3. A film of a fluorine-containing triazine dithiol derivative is formed on the opposing surface 4a of the mold 4 as described later. The mold 4 is, for example, a nickel electroformed product, but the material is not limited to nickel.

図2に示すように、前記金型4の対向面4aを前記樹脂部材3の表面3aに押し当て、下方向へプレスすることで前記樹脂部材3の表面3aに前記金型4の凹凸パターンを転写する。図2の状態で加熱したりあるいは紫外線を照射して前記樹脂部材3を硬化させ、図3に示すように前記金型4を上方へ向けて樹脂部材3から剥離すると表面2aに凹凸パターンが形成された反射板2が完成する。   As shown in FIG. 2, the concavity and convexity pattern of the mold 4 is formed on the surface 3 a of the resin member 3 by pressing the facing surface 4 a of the mold 4 against the surface 3 a of the resin member 3 and pressing it downward. Transcript. When the resin member 3 is cured by heating in the state shown in FIG. 2 or by irradiating ultraviolet rays, and the mold 4 is peeled upward from the resin member 3 as shown in FIG. 3, an uneven pattern is formed on the surface 2a. The reflected reflector 2 is completed.

図4に示すように前記金型4の対向面4aには、フッ素含有トリアジンジチオール誘導体からなる被膜5が成膜されている。前記フッ素含有トリアジンジチオール誘導体の被膜5は電解重合法によって成膜されている。前記電解重合法について以下に説明する。   As shown in FIG. 4, a coating 5 made of a fluorine-containing triazine dithiol derivative is formed on the facing surface 4 a of the mold 4. The coating film 5 of the fluorine-containing triazine dithiol derivative is formed by an electrolytic polymerization method. The electrolytic polymerization method will be described below.

図6は電解槽の構造を示す部分断面図である。図6に示すように、浴槽10と、前記浴槽10内に配置される陽極である金型4と、ステンレス板あるいは白金等からなる陰極11とが設けられ、前記浴槽10内は、フッ素含有トリアジンジチオール誘導体及び電解質を含む溶液12で満たされる。
フッ素含有トリアジンジチオール誘導体は、下記の[化1]の化学式により表される。
FIG. 6 is a partial cross-sectional view showing the structure of the electrolytic cell. As shown in FIG. 6, the bathtub 10, the metal mold | die 4 which is an anode arrange | positioned in the said bathtub 10, and the cathode 11 which consists of a stainless steel plate or platinum, etc. are provided, The inside of the said bathtub 10 is a fluorine-containing triazine. Filled with a solution 12 containing a dithiol derivative and an electrolyte.
The fluorine-containing triazine dithiol derivative is represented by the following chemical formula [Chemical Formula 1].

ここで、Rは−H,−CH,−C,−C,−C17,−C,−CHCH=CH,−CCH=CH,−CHCH=CHCH=CHCH,−CCH=CH,−C12CH=CH,−CHCH=CH,−CH,−CH15,−C,−C17、Rは−CH−,−C−,−CH(CCHOCO−,−COCO−,−C−,−CHCH=CH−,−CO−,−C12−,−CHCH(OH)CH2 −のいずれかであり、MはHあるいはアルカリ金属を指し、nは8から12の範囲内である。 Wherein, R 1 is -H, -CH 3, -C 2 H 5, -C 4 H 9, -C 8 H 17, -C 6 H 5, -CH 2 CH = CH 2, -C 2 H 4 CH = CH 2, -CH 2 CH = CHCH = CHCH 3, -C 4 H 8 CH = CH 2, -C 6 H 12 CH = CH 2, -CH 2 C 6 H 4 CH = CH 2, -CH 2 C 3 F 7, -CH 2 C 7 F 15, -C 6 H 4 C 4 F 9, -C 6 H 4 C 8 F 17, R 2 is -CH 2 -, - C 2 H 4 -, - CH (C 2 H 4) 2 CHOCO -, - C 2 H 4 OCO -, - C 3 H 6 -, - CH 2 CH = CH -, - C 6 H 4 O -, - C 6 H 12 -, - CH 2 CH (OH) CH 2 —, M represents H or an alkali metal, and n is in the range of 8 to 12.

例えば、Rは、−CHCH=CHであり、Rは、−C−であり、MはHであり、nは8である。 For example, R 1 is —CH 2 CH═CH 2 , R 2 is —C 2 H 4 —, M is H, and n is 8.

nは小さいほど、パーフロロアルキルの鎖の長さが短くなるが、分子内に占めるトリアジンの占有率が大きいために前記パーフロロアルキの鎖の長さが短かすぎると重合が適切に起こらないと予測され、効果的に被膜5の耐久性を向上させることができないことがわかっている。このためnはあまり小さい値であると好ましくなく、本発明ではnを8〜12の範囲内に設定した。   The smaller the n, the shorter the length of the perfluoroalkyl chain. However, since the occupation ratio of triazine in the molecule is large, the polymerization does not occur properly if the length of the perfluoroalkyl chain is too short. It is predicted that the durability of the film 5 cannot be effectively improved. For this reason, it is not preferable that n is a very small value. In the present invention, n is set within the range of 8-12.

前記フッ素含有トリアジンジチオール誘導体は、溶液12内に1mmol〜100mmol程度含有される。   The fluorine-containing triazine dithiol derivative is contained in the solution 12 in an amount of about 1 mmol to 100 mmol.

電解質は、特に限定はないがNaCOやNaOH等である。また溶剤は特に限定はないが、水やメタノール等である。電流は直流電流あるいはパルス電流を用いることができ、電流密度は、例えば0.05mA/cm程度である。 The electrolyte is not particularly limited, but is Na 2 CO 3 or NaOH. The solvent is not particularly limited, but is water or methanol. As the current, a direct current or a pulse current can be used, and the current density is, for example, about 0.05 mA / cm 2 .

図6に示す電解槽を用いて前記金型4の凹凸パターンが形成された対向面4aにフッ素含有トリアジンジチオール誘導体からなる被膜5を成膜する。成膜時間は例えば10分程度である。   A coating 5 made of a fluorine-containing triazine dithiol derivative is formed on the opposing surface 4a on which the concave / convex pattern of the mold 4 is formed using the electrolytic cell shown in FIG. The film formation time is, for example, about 10 minutes.

従来では成膜時間を延ばして前記被膜5の膜厚を厚くし、前記被膜5の耐久性を向上させる試みがなされていたが、本発明では、成膜時間を長くせず所定時間、前記被膜5を電解重合法により成膜した後、一旦、前記金型4を前記溶液12内から取り出し前記金型4を洗浄した後、熱処理工程に移行させる。   Conventionally, attempts have been made to extend the film formation time to increase the film thickness of the coating film 5 and improve the durability of the coating film 5. After 5 is formed into a film by the electrolytic polymerization method, the mold 4 is once taken out from the solution 12 and the mold 4 is washed, and then the process proceeds to a heat treatment step.

前記熱処理工程では、150℃〜250℃の範囲内の熱処理温度で、20分〜1時間程度の熱処理時間により前記皮膜5を熱処理する。   In the heat treatment step, the film 5 is heat treated at a heat treatment temperature within a range of 150 ° C. to 250 ° C. for a heat treatment time of about 20 minutes to 1 hour.

本発明では前記被膜5を熱処理した後、再び、前記金型4を溶液12内に入れ、前記金型4の凹凸パターンの対向面4aにさらに前記フッ素含有トリアジンジチオール誘導体の被膜5を電解重合法により成膜する。そして前記金型4を溶液12内から取り出し洗浄後、上記した熱処理条件によって熱処理を施す。   In the present invention, after heat-treating the coating film 5, the mold 4 is again placed in the solution 12, and the coating film 5 of the fluorine-containing triazine dithiol derivative is further applied to the opposing surface 4 a of the concave-convex pattern of the mold 4 by an electrolytic polymerization method. The film is formed by Then, the mold 4 is taken out from the solution 12 and washed, and then heat treatment is performed under the above heat treatment conditions.

本発明では前記フッ素含有トリアジンジチオール誘導体の成膜・熱処理工程からなる一連の工程を複数回行なう点に特徴的な部分がある。   In the present invention, there is a characteristic part in that a series of steps including film formation and heat treatment steps of the fluorine-containing triazine dithiol derivative is performed a plurality of times.

図5は、前記金型4の凹凸パターンが形成された対向面4aの部分拡大断面図であるが、図5のように、前記フッ素含有トリアジンジチオール誘導体からなる被膜5を被膜5a,5b,5cと複数回、成膜し、その成膜したごとに熱処理を施す。図5では、複数回の被膜成膜をわかりやすくするため点線で各被膜間の境界を図示したが、前記点線は、このような皮膜間の境界が実際に見えることを意味するものではない。   FIG. 5 is a partially enlarged cross-sectional view of the facing surface 4a on which the concave / convex pattern of the mold 4 is formed. As shown in FIG. 5, the film 5 made of the fluorine-containing triazine dithiol derivative is coated with the films 5a, 5b, 5c. The film is formed a plurality of times, and heat treatment is performed every time the film is formed. In FIG. 5, the boundary between the films is illustrated by dotted lines in order to make it easy to understand the film formation of a plurality of times, but the dotted line does not mean that the boundary between the films is actually visible.

本発明では、以下に示す複数のサンプルを形成して各サンプルの耐久性を測定した。
図6に示す電解槽を用い、浴槽10内に上記の[化1]のRを、−CHCH=CH、Rを、−C−、MをH、nを8としたフッ素含有トリアジンジチオール誘導体(1mmol)と電解質である炭酸ナトリウム(NaCO)との混合液(0.1mol)を入れた。成膜諸条件としては、前記混合液を溶剤に溶かしてフッ素含有トリアジンジチオール誘導体濃度が0.01mol/Lとなるように調整し、電流密度を0.05mA/cm、成膜時間を10分として成膜した。
In the present invention, a plurality of samples shown below were formed and the durability of each sample was measured.
Using the electrolytic cell shown in FIG. 6, R 1 of the above [Chemical Formula 1] in the bath 10 is —CH 2 CH═CH 2 , R 2 is —C 2 H 4 —, M is H, and n is 8 A mixed solution (0.1 mol) of the fluorine-containing triazine dithiol derivative (1 mmol) and sodium carbonate (Na 2 CO 3 ) as an electrolyte was added. As film formation conditions, the mixed solution was dissolved in a solvent and adjusted so that the fluorine-containing triazine dithiol derivative concentration was 0.01 mol / L, the current density was 0.05 mA / cm 2 , and the film formation time was 10 minutes. As a film formation.

(実施例1)
金型4の対向面4aに、図8のフローに示すように、フッ素含有トリアジンジチオール誘導体の被膜5を上記の成膜諸条件で電解重合法により成膜した後(ST1)、前記金型4を前記浴槽10内から取り出して洗浄し(ST2)、150℃で30分の熱処理を施し(ST3)(以下、上記成膜諸条件によるフッ素含有トリアジンジチオール誘導体の成膜工程−洗浄工程−150℃で30分の熱処理工程を「一連の実施例工程」と呼ぶ)、その後に再度、前記金型4に対し一連の実施例工程を施した。
(実施例2)
金型4の対向面4aに前記一連の実施例工程を3回行なった。
(実施例3)
金型4の対向面4aに前記一連の実施例工程を4回行なった。
(実施例4)
金型4の対向面4aに前記一連の実施例工程を5回行なった。
(実施例5)
金型4の対向面4aに前記一連の実施例工程を6回行なった。
(Example 1)
As shown in the flow of FIG. 8, a film 5 of a fluorine-containing triazine dithiol derivative is formed on the facing surface 4 a of the mold 4 by the electrolytic polymerization method under the above-described film formation conditions (ST 1), and then the mold 4. Was removed from the bath 10 and washed (ST2), and heat-treated at 150 ° C. for 30 minutes (ST3) (hereinafter referred to as film forming step of fluorine-containing triazine dithiol derivative under the above film forming conditions-cleaning step-150 ° C. The heat treatment step for 30 minutes is referred to as “a series of example steps”), and then a series of example steps were performed on the mold 4 again.
(Example 2)
The series of example steps were performed three times on the facing surface 4 a of the mold 4.
(Example 3)
The series of example steps were performed four times on the opposing surface 4 a of the mold 4.
(Example 4)
The series of example steps were performed 5 times on the opposing surface 4 a of the mold 4.
(Example 5)
The series of example steps were performed 6 times on the opposing surface 4 a of the mold 4.

(従来例1)
金型4の対向面4aに、フッ素含有トリアジンジチオール誘導体の被膜5を上記の成膜諸条件で電解重合法により成膜した後、前記金型4を前記浴槽10内から取り出して洗浄した(以下、上記成膜諸条件によるフッ素含有トリアジンジチオール誘導体の成膜工程−洗浄工程を「一連の従来例例工程」と呼ぶ)。なお従来例1ないし4ではいずれも熱処理は行なっていない。
(従来例2)
金型4の対向面4aに前記一連の従来例工程を2回行なった。
(従来例3)
金型4の対向面4aに前記一連の従来例工程を3回行なった。
(従来例4)
上記の成膜諸条件のうち、成膜時間を10分から90分に伸ばして、金型4の対向面4aに、フッ素含有トリアジンジチオール誘導体の被膜5を成膜し、その後洗浄した。
(Conventional example 1)
A film 5 of a fluorine-containing triazine dithiol derivative was formed on the facing surface 4a of the mold 4 by the electrolytic polymerization method under the above-mentioned various film formation conditions, and then the mold 4 was taken out of the bath 10 and washed (hereinafter referred to as the following). The film forming step of the fluorine-containing triazine dithiol derivative under the above film forming conditions—the cleaning step is referred to as “a series of conventional example steps”). In all of the conventional examples 1 to 4, no heat treatment is performed.
(Conventional example 2)
The series of conventional steps were performed twice on the opposing surface 4a of the mold 4.
(Conventional example 3)
The series of conventional steps were performed three times on the opposing surface 4a of the mold 4.
(Conventional example 4)
Among the above film forming conditions, the film forming time was extended from 10 minutes to 90 minutes, and the coating film 5 of the fluorine-containing triazine dithiol derivative was formed on the facing surface 4a of the mold 4 and then washed.

(比較例1)
金型4の対向面4aに前記一連の従来例工程を2回行なった後、150℃で30分の熱処理を行なった。
(Comparative Example 1)
The series of conventional steps were performed twice on the facing surface 4a of the mold 4, and then heat treatment was performed at 150 ° C. for 30 minutes.

上記した実施例1〜5、従来例1〜4及び比較例1の各サンプルにおけるフッ素含有トリアジンジチオール誘導体の被膜5の膜厚をESCA(アルバックファイ社製)によって算出した。   The film thickness of the coating film 5 of the fluorine-containing triazine dithiol derivative in each sample of Examples 1 to 5, Conventional Examples 1 to 4, and Comparative Example 1 was calculated by ESCA (manufactured by ULVAC-PHI).

算出方法は、アルゴンイオンを各サンプルの被膜5に照射して、概ね100Å/分のスピードで前記被膜5を削るとともにESCAによってS元素の原子強度を測定し、原子強度とスパッタ時間との関係により、各サンプルの膜厚の相対値を求めた。なお従来例1のフッ素含有トリアジンジチオール誘導体の被膜5の膜厚を1としたときの他のサンプルの膜厚を相対値として求めた。   The calculation method is to irradiate the coating film 5 of each sample with argon ions, scrape the coating film 5 at a speed of approximately 100 Å / min, measure the atomic strength of the S element by ESCA, and determine the relationship between the atomic strength and the sputtering time. The relative value of the film thickness of each sample was obtained. In addition, the film thickness of the other sample when the film thickness of the coating film 5 of the fluorine-containing triazine dithiol derivative of Conventional Example 1 was 1 was determined as a relative value.

耐久性実験では、各サンプルの金型4を用い、図1ないし図3で説明した樹脂部材3に対して凹凸パターンの転写を行ない、前記樹脂部材3の凹凸パターンの深さ方向の長さ寸法が、前記金型4の凹凸パターンの深さ方向の長さに対して80%以上であるか否かを測定した。多数用意された各樹脂部材3に対して次々と凹凸パターンの転写を行い、上記した長さ比が80%を下回るまでの転写回数を測定した。
その実験結果を以下の表1に示す。
In the durability experiment, the concavo-convex pattern was transferred to the resin member 3 described with reference to FIGS. 1 to 3 using the mold 4 of each sample, and the length dimension in the depth direction of the concavo-convex pattern of the resin member 3 was measured. However, it was measured whether it was 80% or more with respect to the length of the uneven | corrugated pattern of the said metal mold | die 4 in the depth direction. The concavo-convex pattern was transferred one after another to each of the prepared resin members 3, and the number of transfers until the above-mentioned length ratio fell below 80% was measured.
The experimental results are shown in Table 1 below.

表1に示すように、実施例1ないし5は、従来例1ないし4及び比較例1に比べて耐久性が飛躍的に向上したことがわかった。これにより金型4の寿命を従来よりもより効果的に伸ばすことが可能になった。   As shown in Table 1, it was found that the durability of Examples 1 to 5 was dramatically improved as compared with Conventional Examples 1 to 4 and Comparative Example 1. This makes it possible to extend the life of the mold 4 more effectively than before.

実施例1ないし5はいずれもフッ素含有トリアジンジチオール誘導体を電解重合法により成膜した後、熱処理工程を施し、この一連の成膜・熱処理工程を複数回、繰り返したものである。一方、従来例1ないし4は、いずれも熱処理工程を施さず、比較例1は熱処理を施すが、2回、フッ素含有トリアジンジチオール誘導体の被膜を成膜した後に、熱処理工程を施したものであり、実施例のように一連の成膜・熱処理工程を複数回行なうものではない。   In each of Examples 1 to 5, a fluorine-containing triazine dithiol derivative was formed into a film by electrolytic polymerization, and then a heat treatment step was performed, and this series of film formation and heat treatment steps was repeated a plurality of times. On the other hand, none of Conventional Examples 1 to 4 is subjected to a heat treatment step, and Comparative Example 1 is subjected to a heat treatment. The series of film formation / heat treatment steps are not performed a plurality of times as in the embodiments.

実施例1ないし5のように、一連の成膜・熱処理工程を施したものは、成膜のつど熱処理を施すことで、前記フッ素含有トリアジンジチオール誘導体の配向性が飛躍的に向上して、前記誘導体が緻密に整然と配列し、膜が強靭になったため、耐久性が従来例1ないし4や比較例1に比べて向上したものと考えられる。   As in Examples 1 to 5, those subjected to a series of film formation / heat treatment steps were subjected to a heat treatment for each film formation, whereby the orientation of the fluorine-containing triazine dithiol derivative was dramatically improved. It is considered that the durability was improved as compared with the conventional examples 1 to 4 and the comparative example 1 because the derivatives were arranged densely and orderly and the film became tough.

同じ回数だけフッ素含有トリアジンジチオール誘導体の成膜を行なった実施例1、従来例2及び比較例1を見ると、成膜ごとに熱処理を行なう実施例1は、全く熱処理を施さない従来例1や熱処理回数が成膜回数よりも少ない比較例1に比べて耐久性が向上していることがわかった。   Looking at Example 1, Conventional Example 2 and Comparative Example 1 in which the film formation of the fluorine-containing triazine dithiol derivative was performed the same number of times, Example 1 in which the heat treatment was performed for each film formation was as follows. It was found that the durability was improved as compared with Comparative Example 1 in which the number of heat treatments was smaller than the number of film formations.

上記の前記フッ素含有トリアジンジチオール誘導体の配向性が向上して、前記誘導体が緻密に整然と配列していると考えられるのは、表1に示す膜厚比の欄からも推測できる。すなわち、実施例1、従来例2、及び比較例1は、フッ素含有トリアジンジチオール誘導体を2回、電解重合法により成膜しているが、膜厚比は実施例1のほうが従来例2や比較例1に比べて小さくなっており、このことからも成膜のたびに熱処理を施すことで、前記誘導体が緻密に整然と配列しているものと予測できる。このように、実施例のものは、同じ成膜回数であるが成膜後、熱処理を行なう一連の工程を行なっていない(すなわち熱処理を全く行なっていないか、熱処理を行なっていても、その熱処理回数が成膜回数よりも少ない)ものに比べて膜厚比が小さくなることがわかった。   It can be estimated from the column of the film thickness ratio shown in Table 1 that the orientation of the fluorine-containing triazinedithiol derivative is improved and the derivative is considered to be densely and orderly arranged. That is, in Example 1, Conventional Example 2, and Comparative Example 1, the fluorine-containing triazine dithiol derivative was formed twice by the electrolytic polymerization method, but the film thickness ratio of Example 1 was higher than that of Conventional Example 2 and Comparative Example 1. It is smaller than Example 1, and it can be predicted from this that the derivatives are arranged in a precise and orderly manner by performing a heat treatment for each film formation. As described above, in the example, the number of film formations is the same, but a series of steps for performing heat treatment is not performed after film formation (that is, no heat treatment is performed or heat treatment is performed even if heat treatment is performed). It has been found that the film thickness ratio is smaller than that in which the number of times is smaller than the number of times of film formation.

表1に示すように、一連の成膜・熱処理工程の回数を2回よりも3回、3回よりも4回と多くしていくと耐久性が向上することがわかったが、実施例5は、実施例4に比べて耐久性が向上していない。また実施例4と実施例5とでは膜厚比はほとんど同じ結果となった。これは、一連の成膜・熱処理工程の回数を多くしすぎても、絶縁物である前記フッ素含有トリアジンジチオール誘導体の被膜の膜厚が厚くなりすぎ次に電解重合法によってフッ素含有トリアジンジチオール誘導体を成膜しようとしても適切に成膜できないためであると考えられる。   As shown in Table 1, it was found that the durability improved when the number of times of the series of film formation and heat treatment steps was increased from 3 times to 3 times to 3 times to 3 times. The durability is not improved as compared with Example 4. In addition, the film thickness ratio in Example 4 and Example 5 was almost the same. This is because the film thickness of the fluorine-containing triazinedithiol derivative, which is an insulator, becomes too thick even if the number of series of film formation / heat treatment steps is increased too much, and then the fluorine-containing triazinedithiol derivative is formed by electrolytic polymerization. This is probably because the film cannot be formed properly even if it is going to be formed.

実施例1ないし5はいずれも熱処理温度を150℃にした。熱処理温度は250℃程度まで上昇させてもよいが、あまり熱処理温度を高くしすぎても、金型4自体が酸化し腐食の問題が生じるので好ましくない。逆に熱処理温度を150℃よりも低くすると上記したフッ素含有トリアジンジチオール誘導体の配向性が適切に向上せず、飛躍的な耐久性の向上を期待できない。   In all of Examples 1 to 5, the heat treatment temperature was set to 150 ° C. Although the heat treatment temperature may be raised to about 250 ° C., too high a heat treatment temperature is not preferable because the mold 4 itself is oxidized and causes corrosion problems. On the other hand, if the heat treatment temperature is lower than 150 ° C., the orientation of the fluorine-containing triazine dithiol derivative is not appropriately improved, and a dramatic improvement in durability cannot be expected.

図7は、エックス線光電子分光測定(XPS)を用いて行なった実験結果であり、実施例1と従来例3の各サンプルに対し、分析時のサンプル表面との測定プローブのなす角度(deg)と、フッ素濃度との関係を示すものである。なす角度が大きいほど、被膜の深い部分でのフッ素濃度を示している。測定では、なす角度を5,15,45,65,85(deg)で行っており、これにより皮膜の表面深さ約10Å〜120Åまでのフッ素元素の濃度を検出できる。   FIG. 7 shows the results of experiments conducted using X-ray photoelectron spectroscopy (XPS). For each sample of Example 1 and Conventional Example 3, the angle (deg) formed by the measurement probe with the sample surface at the time of analysis is shown. This shows the relationship with the fluorine concentration. The larger the angle formed, the more the fluorine concentration in the deep part of the film. In the measurement, the angles formed are 5, 15, 45, 65, and 85 (deg), whereby the concentration of the fluorine element at a surface depth of about 10 to 120 mm can be detected.

図7に示すように、実施例1では、フッ素元素の濃度はなす角度が5(deg)で最大になっており、なす角度が大きくなるほど徐々にフッ素元素の濃度が低下することがわかった。これは、被膜の表面で最もフッ素元素の濃度が高まり、被膜の深さ方向へ向けて徐々にフッ素濃度が低下していくことを意味する。一方、従来例3では、なす角度の大きさに係わらず、概ねフッ素元素の濃度は一定であり、これは被膜の表面でも内部でも前記フッ素元素の濃度がほぼ一定であることを意味する。   As shown in FIG. 7, in Example 1, it was found that the concentration of the fluorine element was the maximum when the angle formed was 5 (deg), and the concentration of the fluorine element was gradually decreased as the angle formed was increased. This means that the concentration of elemental fluorine increases most on the surface of the coating, and the concentration of fluorine gradually decreases in the depth direction of the coating. On the other hand, in Conventional Example 3, regardless of the angle formed, the concentration of the fluorine element is generally constant, which means that the concentration of the fluorine element is substantially constant both on the surface and inside the coating.

図7に示す実験結果から、実施例1では、上記[化1]に示したパーフロロアルキル中のFが被膜の表面に適切に配向し、一方チオール側は金型4の表面側に向けられており、フッ素含有トリアジンジチオール誘導体が全体的に適切に配向していることがわかった。一方、従来例3は無配向であることがわかった。   From the experimental results shown in FIG. 7, in Example 1, F in the perfluoroalkyl shown in [Chemical Formula 1] is properly oriented on the surface of the coating, while the thiol side is directed to the surface side of the mold 4. It was found that the fluorine-containing triazine dithiol derivative was properly oriented as a whole. On the other hand, it was found that Conventional Example 3 was non-oriented.

図8に示す一連の成膜・熱処理工程において、ステップ(ST0)にて、成膜のたびに上記[化1]のR、R、n等が異なるフッ素含有トリアジンジチオール誘導体を用いた電解槽を準備してもよい。例えば、図8のステップ(ST0)で電解槽の溶液中におけるフッ素含有トリアジンジチオール誘導体の上記[化1]のnが一回前の成膜工程時に使用した電解槽中におけるフッ素含有トリアジンジチオール誘導体のnよりも大きくなるように適宜調整し、フッ素含有トリアジンジチオール誘導体の被膜中に含まれるフッ素濃度が被膜の表面に向けて図7の実施例1よりもより急激に大きくなるようにしてもよい。 In the series of film formation and heat treatment steps shown in FIG. 8, in step (ST0), electrolysis using fluorine-containing triazine dithiol derivatives in which R 1 , R 2 , n, etc. of the above [Chemical Formula 1] are different for each film formation. A tank may be prepared. For example, in step (ST0) of FIG. 8, n of the above [Chemical Formula 1] of the fluorine-containing triazine dithiol derivative in the electrolytic cell solution is the fluorine-containing triazine dithiol derivative in the electrolytic cell used in the previous film formation step. The concentration of fluorine contained in the coating of the fluorine-containing triazine dithiol derivative may be adjusted as appropriate so as to be larger than n, and the concentration of fluorine contained in the coating may be increased more rapidly than Example 1 in FIG.

また、被膜はフッ素含有トリアジンジチオール誘導体のみで構成されず他の有機成分が含まれていてもかまわない。   In addition, the coating may not be composed of only the fluorine-containing triazine dithiol derivative and may contain other organic components.

本発明は特にLED(発光ダイオード)に内臓される反射板の表面に凹凸パターンを転写するための金型の製造方法に最適であるが、反射板の製造に使用される金型以外の金型で特に良好な離型性を必要とする金型の製造方法に本発明を適用することが出来る。   The present invention is particularly suitable for a mold manufacturing method for transferring a concavo-convex pattern onto the surface of a reflector incorporated in an LED (light emitting diode), but a mold other than the mold used for manufacturing the reflector. Therefore, the present invention can be applied to a mold manufacturing method that requires particularly good releasability.

本発明における金型を用いてLED(発光ダイオード)に使用される反射板の表面に凹凸パターンをプレス加工するための工程を示す一工程図、1 process drawing which shows the process for pressing an uneven | corrugated pattern on the surface of the reflecting plate used for LED (light emitting diode) using the metal mold | die in this invention, 図1の次に行なわれる工程図、Process diagram performed next to FIG. 図2の次に行なわれる工程図、FIG. 2 is a process diagram performed next to FIG. 図1ないし図3に示す金型をより詳細に説明するための部分断面図、1 is a partial sectional view for explaining the mold shown in FIGS. 1 to 3 in more detail; 図4に示す金型の一部を拡大して示した部分拡大断面図、The partial expanded sectional view which expanded and showed a part of metal mold | die shown in FIG. 電解槽の構造を示す部分断面図、Partial sectional view showing the structure of the electrolytic cell, エックス線光電子分光測定(XPS)を用いて行なった実験結果であり、実施例1と従来例3の各サンプルに対し、分析時のサンプル表面との測定プローブのなす角度(deg)と、フッ素濃度との関係を示すグラフ、It is an experimental result performed using X-ray photoelectron spectroscopy (XPS). For each sample of Example 1 and Conventional Example 3, the angle (deg) formed by the measurement probe with the sample surface at the time of analysis, fluorine concentration, A graph showing the relationship between 本発明におけるフッ素含有トリアジンジチオール誘導体の被膜の成膜及び熱処理工程の順番を説明するためのフロー図、Flow chart for explaining the order of film formation and heat treatment step of the fluorine-containing triazine dithiol derivative film in the present invention,

符号の説明Explanation of symbols

1 基板
2 反射板
3 樹脂部材
4 金型
5 被膜
10 浴槽
11 陰極
12 溶液
DESCRIPTION OF SYMBOLS 1 Substrate 2 Reflecting plate 3 Resin member 4 Mold 5 Coating 10 Bathtub 11 Cathode 12 Solution

Claims (3)

部材に凹凸パターンをプレス加工するための金型の製造方法であって、
前記金型の前記部材との対向面に、フッ素含有トリアジンジチオール誘導体を有する被膜を電解重合法により成膜した後、熱処理を行なう一連の成膜・熱処理工程を複数回行なうことを特徴とする金型の製造方法。
A method of manufacturing a mold for pressing a concavo-convex pattern on a member,
A metal film characterized in that a film having a fluorine-containing triazinedithiol derivative is formed on the surface of the mold facing the member by an electrolytic polymerization method, and then a series of film formation and heat treatment steps are performed a plurality of times. Mold manufacturing method.
熱処理工程の熱処理温度を、150℃〜250℃の範囲内に制御する請求項1記載の金型の製造方法。   The manufacturing method of the metal mold | die of Claim 1 which controls the heat processing temperature of a heat processing process in the range of 150 to 250 degreeC. 前記部材は樹脂であり、前記金型は反射板を製造するためのものである請求項1または2に記載の金型の製造方法。   The method for producing a mold according to claim 1 or 2, wherein the member is a resin, and the mold is for producing a reflector.
JP2004309480A 2004-10-25 2004-10-25 Mold manufacturing method Active JP4500928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004309480A JP4500928B2 (en) 2004-10-25 2004-10-25 Mold manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004309480A JP4500928B2 (en) 2004-10-25 2004-10-25 Mold manufacturing method

Publications (2)

Publication Number Publication Date
JP2006116896A true JP2006116896A (en) 2006-05-11
JP4500928B2 JP4500928B2 (en) 2010-07-14

Family

ID=36535233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004309480A Active JP4500928B2 (en) 2004-10-25 2004-10-25 Mold manufacturing method

Country Status (1)

Country Link
JP (1) JP4500928B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131919A (en) * 2005-11-10 2007-05-31 Iwate Univ Method for producing electroforming die
WO2011111741A1 (en) * 2010-03-10 2011-09-15 旭化成株式会社 Resin mold
WO2011118591A1 (en) * 2010-03-25 2011-09-29 三菱レイヨン株式会社 Method for producing molds and method for producing products with superfine concave-convex structures on surface
WO2012133390A1 (en) * 2011-03-30 2012-10-04 シャープ株式会社 Mold release treatment method, and antireflective film production method
KR101342441B1 (en) 2012-01-30 2013-12-17 재영솔루텍 주식회사 Mold for injection-molding product which displays 3-dimensional picture and method for manufacturing this mold
US9142663B2 (en) 2005-05-24 2015-09-22 Cree, Inc. Silicon carbide devices having smooth channels

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9142663B2 (en) 2005-05-24 2015-09-22 Cree, Inc. Silicon carbide devices having smooth channels
JP2007131919A (en) * 2005-11-10 2007-05-31 Iwate Univ Method for producing electroforming die
WO2011111741A1 (en) * 2010-03-10 2011-09-15 旭化成株式会社 Resin mold
CN102791452A (en) * 2010-03-10 2012-11-21 旭化成株式会社 Resin mold
US10766169B2 (en) 2010-03-10 2020-09-08 Asahi Kasei E-Materials Corporation Resin mold
WO2011118591A1 (en) * 2010-03-25 2011-09-29 三菱レイヨン株式会社 Method for producing molds and method for producing products with superfine concave-convex structures on surface
CN102791454A (en) * 2010-03-25 2012-11-21 三菱丽阳株式会社 Method for producing molds and method for producing products with superfine concave-convex structures on surface
JPWO2011118591A1 (en) * 2010-03-25 2013-07-04 三菱レイヨン株式会社 Method for producing mold and method for producing article having fine uneven structure on surface
JP5549943B2 (en) * 2010-03-25 2014-07-16 三菱レイヨン株式会社 Method for producing mold and method for producing article having fine uneven structure on surface
WO2012133390A1 (en) * 2011-03-30 2012-10-04 シャープ株式会社 Mold release treatment method, and antireflective film production method
KR101342441B1 (en) 2012-01-30 2013-12-17 재영솔루텍 주식회사 Mold for injection-molding product which displays 3-dimensional picture and method for manufacturing this mold

Also Published As

Publication number Publication date
JP4500928B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
US2844530A (en) Black nickel plating
KR970001795B1 (en) Coated article and method for producing the same
CN1288945C (en) Surface treated copper foil and method for preparing the same and copper-clad laminate using the same
CN105308220A (en) Methods for improving adhesion of aluminum films
US10745820B2 (en) Method of mirror coating an optical article and article thereby obtained
JP4500928B2 (en) Mold manufacturing method
JP7389847B2 (en) How to produce thin functional coatings on light alloys
JP2009030151A (en) Plating holder used for plating of resin molded article
CN1831205A (en) Metal structure and method of its production
JP4414346B2 (en) Surface treatment of polyacetal articles
JP6927061B2 (en) Manufacturing method of plated structure
US5284711A (en) Method for forming a fluororesin film and articles having a fluororesin film formed by the method
JP6893478B2 (en) Circuit formation method on the board
JP6115548B2 (en) Method for producing electrogalvanized steel sheet
KR101801331B1 (en) Electrodeposition coating method
KR101849158B1 (en) Process for producing a wiring board
JPH08252886A (en) Manufacture of fluorine resin coating
JP7448119B2 (en) Method for manufacturing an article having a plating film on the surface of a carbon fiber reinforced resin base material
WO2001090447A1 (en) Far-infrared radiator and method for producing the same
US3729388A (en) Method of preparing at least one conductive form
JP4699793B2 (en) Decorative plate manufacturing method
JP2006274361A (en) Electrolytic copper foil and production method of the electrolytic copper foil
JP2005042198A (en) Surface treated aluminum material
CN1813081A (en) Method for manufacturing water appliance made from copper alloy containing lead
JP4232649B2 (en) Electrodeposition coating method for aluminum or aluminum alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100318

R150 Certificate of patent or registration of utility model

Ref document number: 4500928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350