WO2012133265A1 - 貯留物質の貯留装置および貯留方法 - Google Patents

貯留物質の貯留装置および貯留方法 Download PDF

Info

Publication number
WO2012133265A1
WO2012133265A1 PCT/JP2012/057686 JP2012057686W WO2012133265A1 WO 2012133265 A1 WO2012133265 A1 WO 2012133265A1 JP 2012057686 W JP2012057686 W JP 2012057686W WO 2012133265 A1 WO2012133265 A1 WO 2012133265A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
storage
well
aquifer
injection well
Prior art date
Application number
PCT/JP2012/057686
Other languages
English (en)
French (fr)
Inventor
自求 薛
晋 西尾
亀山 寛達
浩司 吉崎
Original Assignee
財団法人地球環境産業技術研究機構
東京瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人地球環境産業技術研究機構, 東京瓦斯株式会社 filed Critical 財団法人地球環境産業技術研究機構
Priority to US14/008,779 priority Critical patent/US8998532B2/en
Priority to CA2831026A priority patent/CA2831026C/en
Priority to AU2012233997A priority patent/AU2012233997B2/en
Priority to CN201280015040.2A priority patent/CN103442798B/zh
Priority to KR1020137027050A priority patent/KR101382753B1/ko
Priority to EP12763902.9A priority patent/EP2695671B1/en
Publication of WO2012133265A1 publication Critical patent/WO2012133265A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G5/00Storing fluids in natural or artificial cavities or chambers in the earth
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/005Waste disposal systems
    • E21B41/0057Disposal of a fluid by injection into a subterranean formation
    • E21B41/0064Carbon dioxide sequestration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a storage material storage device and a storage material storage method for storing a storage material such as carbon dioxide in an underground saltwater aquifer.
  • FIG. 9 is a view showing a conventional carbon dioxide storage device 80.
  • An injection well 87 which is a tubular body, extends to a reservoir 91 that stores carbon dioxide. Carbon dioxide stored in the carbon dioxide tank 81 is injected into the reservoir 91 through the injection well 87 by the pressure feeding device 83.
  • the seal layer 89 is a ground layer through which carbon dioxide such as clay is difficult to pass.
  • Carbon dioxide injected into the basement does not ooze out to the ground by the seal layer 89.
  • a formation having the convex seal layer 89 on the upper side exists only in a limited place, and an applicable place is limited.
  • the groundwater of a deep aquifer is pumped from the pumping well to the ground to make injection water, and carbon dioxide is microbubbled into the injection water injected at the top of the injection well to mix or dissolve the gas-liquid mixed fluid
  • an underground storage method for carbon dioxide in which injection water is injected by applying pulsation pressure to an injection well provided so that the injection water reaches the deep aquifer Patent Document 1.
  • a carbon dioxide compression device that compresses carbon dioxide to a liquid or supercritical state
  • a solvent such as seawater
  • carbon dioxide is dissolved in the solvent to form carbon dioxide-dissolved water.
  • a carbon dioxide underground storage system in which dissolved water is injected into an underground aquifer through an injection well penetrating from the ground surface to the aquifer (Patent Document 2).
  • a carbon dioxide compression device that compresses carbon dioxide to a liquid or supercritical state
  • a solvent such as seawater
  • carbon dioxide is dissolved in the solvent to form carbon dioxide-dissolved water.
  • a carbon dioxide underground storage system in which carbon dioxide gas is mixed with fine bubbles while flowing dissolved water at a predetermined high flow rate and injected into the underground aquifer through an injection well that penetrates from the ground surface to the aquifer.
  • the specific gravity of the dissolved water of carbon dioxide is larger than that of the water at the injection destination. For this reason, carbon dioxide can be stored stably.
  • facilities such as a solvent pump and a dissolution tank are required. For this reason, the whole system becomes a large scale.
  • Patent Document 2 the apparatus of Patent Document 3 also requires equipment such as a solvent pump to dissolve carbon dioxide in the solvent before injection. For this reason, the whole system becomes a large scale.
  • the present invention has been made in view of such problems, and it is possible to inject a storage substance such as carbon dioxide directly into an underground saltwater aquifer and efficiently store the storage substance in the saltwater aquifer.
  • An object of the present invention is to provide a storage device for a stored material and a storage method for the stored material.
  • a first invention is a storage device that stores carbon dioxide in a basement, a substance having a higher solubility in water than carbon dioxide, and a storage substance containing at least one of methane.
  • An injection well that reaches the salt water aquifer, a pumping device that pumps the storage material to the injection well, and a ceramic porous member provided in the injection well.
  • a horizontal well is formed in at least a part of the injection well in a substantially horizontal direction, and the storage material pumped into the horizontal well is passed through the porous member through the porous member.
  • the porous member is obtained by mixing and firing ceramic particles and a binder that binds the particles, and the mode of pore size distribution is 4.5 ⁇ m.
  • the porous material is When the reservoir material is injected from the timber into the brine aquifer, a reservoir device of the storage material, characterized in that for generating microbubbles of the retained substance.
  • a production well that reaches one of a gas field, an oil field, and an oil sand may be further provided, and gas, oil, or heavy oil may be collected from the production well.
  • the porous member having a pore diameter of 4.5 ⁇ m or less is provided in the horizontal well for injecting the storage substance, the pore diameter of the microbubble of the storage substance injected through the porous member is reduced. can do. For this reason, although the details will be described later, it is possible to use the sedimentation phenomenon of bubbles in the liquid. Therefore, the retained substance can be efficiently dissolved in the saltwater aquifer by causing the microbubbles to stay and settle in the aquifer.
  • a porous member having a mode of pore size distribution of 4.5 ⁇ m or less is obtained, for example, by mixing and firing ceramic particles having a 50% cumulative particle size of 4.5 ⁇ m or less and a binder. Can do. If such a porous member is used, desired microbubbles can be generated more reliably.
  • the storage substance can be injected into the saltwater aquifer over a wider range.
  • the microbubbles ejected from the horizontal well are injected downward inside the saltwater aquifer, and then all of the microbubbles Alternatively, the reservoir material can be settled inside the saltwater aquifer due to the sedimentation phenomenon partially described above. For this reason, the stored substance can be retained in the saltwater aquifer more stably for a longer time.
  • Oil and other oil can be recovered while being stored.
  • the stored substance can be injected into any of the gas field, oil field, or oil sand, and the microbubbles of the stored substance and the gas, petroleum, or heavy oil can be dissolved or suspended.
  • the second invention is a storage method for storing carbon dioxide, a substance having a higher solubility in water than carbon dioxide, and a storage substance containing at least one of methane, and reaches a saltwater aquifer.
  • the storage material storage device comprising an injection well, a pumping device for pumping the storage material to the injection well, and a ceramic porous member provided in the injection well, Inside the layer, at least a part of the injection well forms a horizontal well in a substantially horizontal direction, and the porous member is formed by mixing ceramic particles and a binder that binds the particles.
  • the mode value of the pore size distribution is 4.5 ⁇ m or less, and when the storage material is injected into the saltwater aquifer through the porous member, the microbubbles of the storage material are introduced. Generated The Robaburu a storage method of said reservoir material into saltwater aquifer, characterized in that precipitating inside said brine aquifer.
  • the storage device further includes a production well that reaches one of a gas field, an oil field, or an oil sand, and by injecting the storage material underground by the injection well, the gas, oil, heavy oil, and the storage material In a suspended state, gas, petroleum or heavy oil may be collected by the production well.
  • the pore diameter of the storage substance injected through the porous member can be reduced, the sedimentation phenomenon of the bubbles in the liquid can be used. Therefore, the retained substance can be efficiently dissolved in the saltwater aquifer by causing the microbubbles to stay and settle in the aquifer.
  • the stored substance can be retained in the saltwater aquifer for a long time in combination with the effect of the sedimentation phenomenon. Further, enhanced recovery of oil or the like can be performed while storing the stored substance in the ground.
  • a storage material storage device and a storage material storage method that can inject a storage material directly into an underground saltwater aquifer and efficiently store the storage material in the saltwater aquifer. Can be provided.
  • FIG. The figure which shows the carbon dioxide storage apparatus 1.
  • FIG. The enlarged view of filter 13 vicinity.
  • FIG. The figure which shows the carbon dioxide storage apparatus 30.
  • FIG. The figure which shows the carbon dioxide storage test apparatus.
  • FIG. The schematic diagram which shows the generation
  • FIG. The figure which shows the sedimentation phenomenon of the microbubble 75.
  • FIG. The schematic diagram which shows the sedimentation phenomenon of the microbubble 75.
  • FIG. The figure which shows the carbon dioxide storage apparatus 1a.
  • FIG. 1 is a diagram showing a carbon dioxide storage device 1 according to the present embodiment.
  • the carbon dioxide storage device 1 mainly includes a carbon dioxide tank 3, a pressure feeding device 5, an injection well 9, a filter 13, and the like.
  • a carbon dioxide tank 3 mainly includes a carbon dioxide tank 3, a pressure feeding device 5, an injection well 9, a filter 13, and the like.
  • an example of carbon dioxide is shown as the storage material, but flare gases such as acetylene, ammonia, sulfur dioxide, hydrogen chloride, chlorine, hydrogen sulfide, and methane, which have a higher solubility in water than carbon dioxide. But the same is true.
  • Carbon dioxide discharged from the factory is collected and stored in the carbon dioxide tank 3.
  • a carbon dioxide generation source adjoins, you may store by connecting piping etc. directly to the carbon dioxide tank 3.
  • the carbon dioxide tank 3 is connected to the pressure feeding device 5.
  • the pressure feeding device 5 includes a pump, a pressure regulating valve, a valve, a temperature regulator, and the like that are not shown.
  • An injection well 9 that is a tubular body is joined to the pressure feeding device 5.
  • the injection well 9 is provided so as to extend toward the bottom of the ground 7 and reach the saltwater aquifer 11.
  • the saltwater aquifer 11 is a stratum that exists underground with sand and gravel.
  • a seal layer (so-called cap lock) (not shown) exists above the salt water aquifer 11.
  • a horizontal well 10 is formed in a substantially horizontal direction in a part of the injection well 9 (site located inside the saltwater aquifer 11). That is, the horizontal well 10 is a portion where a part of the injection well 9 is formed in a substantially horizontal direction inside the saltwater aquifer 11.
  • the horizontal well 10 is provided with a plurality of porous filters 13 in a part of the axial direction.
  • the filter 13 for example, a member obtained by mixing and firing ceramic particles and a binder that binds the particles can be used. If the pore diameter of the filter 13 is small, microbubbles with a finer diameter can be generated.
  • the present inventors have found that even if bubbles are normally floating in the liquid, the bubbles settle in the same liquid by reducing the bubble diameter. That is, the present inventors discovered a phenomenon in which microbubbles of carbon dioxide having a diameter smaller than a predetermined diameter are generated in water, so that the microbubbles settle in water.
  • the mode value of the pore diameter distribution of the porous member is 4.5 ⁇ m or less.
  • Carbon dioxide stored in the carbon dioxide tank 3 is pumped by the pumping device 5.
  • the pumping device 5 sends the carbon dioxide in the carbon dioxide tank 3 to the injection well 9 (horizontal well 10) with a pump.
  • the pressure feeding device 5 can pump carbon dioxide at a predetermined pressure and a predetermined temperature by using a pressure regulating valve, a temperature regulator or the like.
  • the pumping apparatus 5 can also pump carbon dioxide in a supercritical state, for example, in this apparatus, an effect can be obtained even if the carbon dioxide is in a gas, liquid, or a mixed state thereof.
  • the carbon dioxide pumping conditions may be a carbon dioxide temperature of 20 to 40 ° C. and a pressure of 2 to 10 MPa. This is a condition suitable for storing carbon dioxide at a depth of 200 to 1000 m, for example. Carbon dioxide under such conditions is sent in the injection well 9 in the direction of arrow A, passes through the filter 13 provided in the horizontal well 10 and is injected into the saltwater aquifer 11.
  • FIG. 2A is a cross-sectional view of the filter 13 of the horizontal well 10.
  • a nozzle 17 is provided in a part of the horizontal well 10, and a filter 13 is provided in the nozzle 17.
  • the nozzle 17 is disposed toward the lower side of the horizontal well 10.
  • Carbon dioxide flowing inside is injected into the saltwater aquifer 11 through the filter 13.
  • Carbon dioxide is microbubbled by the filter 13 when injected into the saltwater aquifer 11.
  • Carbon dioxide injected as microbubbles 15 into the saltwater aquifer 11 is jetted in the direction of the nozzle 17 (arrow B in the figure), and then all or some of the microbubbles are settled by a sedimentation phenomenon (FIG. Middle arrow C).
  • the microbubble 15 dissolves into the saltwater aquifer 11 during the stay due to levitation or settling.
  • the residence time in the salt water aquifer 11 of a carbon dioxide can be lengthened by making carbon dioxide into the microbubble 15 below a predetermined diameter.
  • dissolution to the salt water aquifer 11 of a carbon dioxide can be advanced very efficiently.
  • the microbubbles 15 settle below the salt water aquifer 11, even if carbon dioxide is injected above the salt water aquifer 11, the storage space of the salt water aquifer 11 is effectively used. be able to. Carbon dioxide dissolved in the saltwater aquifer 11 while slowly moving in the saltwater aquifer 11 is converted into carbonate by a chemical reaction with rock minerals and the like existing around the saltwater aquifer 11. To form compounds. Therefore, carbon dioxide can be fixed as a carbonate compound not only in the saltwater aquifer but also underground and under the seabed.
  • the filter 13 may be directly attached to the horizontal well 10 without using a nozzle.
  • a hole 19 may be formed at a predetermined position of the horizontal well 10 and the filter 13 may be fixed to the hole 19.
  • the filter 13 may be formed in a plurality of directions in the cross section of the horizontal well 10 (two directions in the figure). Even in this case, it is desirable that the filter 13 is provided downward (downward from the horizontal direction). This is because the residence time of the microbubbles 15 can be increased due to the sedimentation phenomenon of the microbubbles 15.
  • the filter 13 may be formed on the ring member 21 as shown in FIG.
  • the ring member 21 may be fixed to a part of the horizontal well 10, and the inner surface of the ring member 21 may be in contact with the internal space of the horizontal well 10.
  • the filter 13 only the lower part (lower side than the horizontal direction) of the ring member 21 is the filter 13, and the other part (upper side than the horizontal) is made of metal or the like, so that the microbubbles 15 are jetted downward. be able to. Therefore, the residence time of the microbubbles 15 can be increased due to the sedimentation phenomenon of the microbubbles 15.
  • the filter 13 may be installed in any form. For example, it is desirable to arrange the filter 13 in a part (downward) in the circumferential direction of the horizontal well 10 and inject microbubbles in a part of the horizontal well 10 downward from the horizontal direction.
  • the filter 13 may be disposed above the circumferential direction and sprayed upward.
  • FIG. 3 is a diagram showing the carbon dioxide storage device 20.
  • components having the same functions as those of the carbon dioxide storage device 1 shown in FIG. 1 are denoted by the same reference numerals as those in FIG.
  • the carbon dioxide storage device 20 differs from the carbon dioxide storage device 1 in that a plurality of injection wells 9a and 9b are provided.
  • a sand-mud alternate layer in which a low-permeability mudstone layer and a high-permeability sandstone layer alternately exist is formed in the basement, each of the plurality of salt-water aquifers 11a, 11b exists.
  • Injection wells 9a and 9b are respectively provided so as to reach the sandstone layer.
  • the injection wells 9a and 9b are provided with horizontal wells 10a and 10b, respectively.
  • the carbon dioxide storage device 20 can inject carbon dioxide into the saltwater aquifers 11a and 11b simultaneously or individually by the respective horizontal wells 10a and 10b. Therefore, carbon dioxide can be efficiently injected into the saltwater aquifers 11a and 11b.
  • FIG. 4 is a diagram showing the carbon dioxide storage device 30.
  • the carbon dioxide storage device 30 is different from the carbon dioxide storage device 1 in that the carbon dioxide storage device 30 stores below the seabed 33.
  • the carbon dioxide storage device 30 is provided on the ground.
  • the injection well 9 is provided with an inclination, and the tip becomes the horizontal well 10.
  • the carbon dioxide storage device 30 can efficiently store carbon dioxide in the saltwater aquifer 11 below the seabed 33.
  • a pumping device may be installed on the seabed.
  • FIG. 5 is a view showing the carbon dioxide storage test apparatus 40.
  • the carbon dioxide storage test device 40 includes a carbon dioxide tank 41, a pressure adjustment valve 45, a syringe pump 43, a pressure vessel 63, and the like.
  • Carbon dioxide is stored in the carbon dioxide tank 41.
  • a syringe pump 43, a pressure adjustment valve 45, and a valve 47 are connected to the carbon dioxide tank 41 by a pipe 49.
  • the syringe pump 43 pumps carbon dioxide to the pressure vessel 63.
  • Carbon dioxide can be adjusted to an arbitrary pressure by the pressure adjusting valve 45, and the carbon dioxide fed to the pressure vessel 63 can be adjusted to an arbitrary temperature by a temperature regulator (not shown).
  • a filter 61 is provided at the joint between the pressure vessel 63 and the pipe 49.
  • the filter 61 has a disk shape with a diameter of 50 mm and a thickness of 5 mm.
  • the filter 61 can be replaced.
  • the test can be performed by changing the hole diameter.
  • the pressure vessel 63 is provided with an illumination window 67 and a photographing window 71 on the sides facing each other.
  • the illumination window 67 and the photographing window 71 are transparent windows, and the internal state can be confirmed.
  • the interior of the illumination window 67 is illuminated by illumination 69 installed outside.
  • a camera 73 is installed outside the photographing window 71 provided at the facing position.
  • the camera 73 can take an image of the inside of the pressure vessel 63 illuminated by the illumination 69.
  • the camera 73 is a high-speed camera and can know the state of carbon dioxide that has passed through the filter 61 and injected into the pressure vessel 63.
  • the inside of the pressure vessel 63 is filled with water having a predetermined pressure.
  • the pressure vessel 63 is provided with a discharge valve 65.
  • the discharge valve 65 functions so that the pressure vessel 63 is maintained at a constant pressure even when carbon dioxide is injected into the pressure vessel 63. That is, when the pressure is increased by the injected carbon dioxide, the internal water or the like is discharged so that the increased pressure becomes a steady state.
  • the water in the pressure vessel 63 corresponds to a simulated saltwater aquifer.
  • the state of carbon dioxide injected into the pressure vessel 63 in various states was observed.
  • a vitrified grindstone having a pore diameter (standard) of 11 ⁇ m and 4.5 ⁇ m was used as the filter 61.
  • the water temperature is two levels of 20 ° C. and 40 ° C.
  • the carbon dioxide injection pressure is three levels of 6 MPa, 8 MPa, and 10 MPa
  • the injection rates are 0.1 cc / min, 1.0 cc / min, 5
  • the three levels of 0.0 cc / min and the concentration of seawater in the pressure vessel were changed to three levels of 0% (pure water), 50%, and 100% to confirm the state of microbubbles.
  • FIGS. 6A and 6B show a vitrified grindstone in which the pore diameter (standard) of the filter 61 is 4.5 ⁇ m under conditions of 40 ° C., 10 MPa, 5.0 cc / min, and seawater concentration 0% (pure water). The example of the microbubble at the time of using a test is shown.
  • 6A is an image taken by the camera 73
  • FIG. 6B is a schematic diagram of FIG. 6A.
  • FIG. 7 (a) and 7 (b) are enlarged views of a portion I in FIG. 6 (b).
  • 7A is an image taken by the camera 73
  • FIG. 7B is a schematic diagram of FIG. 7A.
  • Each of the four figures shows the passage of time from left to right, 0.34 sec. It was taken at intervals.
  • microbubbles 75 were confirmed when the filter pore diameter was 4.5 ⁇ m.
  • the microbubbles (average diameter 4.5 ⁇ m) settled downward with time (in the direction of arrow J in the figure). That is, other relatively large bubbles (including microbubbles) float upward, but small-sized microbubbles (including nanobubbles) of a predetermined size or less settled in water without floating.
  • Such a sedimentation phenomenon is caused by rapid dissolution of carbon dioxide.
  • the density of water increases as carbon dioxide dissolves in water. For this reason, the density distribution of water arises and the downward convection of the water in which the carbon dioxide was dissolved arises.
  • the influence of this convection is increased by reducing the bubble diameter, and it is considered that the bubbles are carried downward by the convection of water. That is, by making the microbubbles having a diameter of at least a predetermined size (for example, 4.5 ⁇ m or less), the microbubbles can be settled inside the saltwater aquifer, whereby carbon dioxide is salted with high efficiency. It can be stored in the aquifer.
  • carbon dioxide is efficiently microbubbled in the salt water aquifer by injecting carbon dioxide into the salt water aquifer through the grindstone filter that is a porous member. Can be made. At this time, the microbubble sedimentation phenomenon can be used by generating the microbubbles using a filter having a pore diameter of 4.5 ⁇ m or less.
  • the microbubbles of carbon dioxide can be retained in the salt water aquifer for a longer time.
  • the microbubble residence time can be sufficiently secured, and carbon dioxide can be efficiently dissolved in the saltwater aquifer.
  • a carbon dioxide storage device 1a as shown in FIG. 8 may be used.
  • the carbon dioxide storage device 1 a is provided with a filter 13 over substantially the entire length of the horizontal well 10.
  • the filter 13 is formed in a part of the horizontal circumferential direction, but may be formed over the entire circumference. That is, the mode of the filter 13 is appropriately set so that carbon dioxide can be efficiently injected into the saltwater aquifer 11.
  • such an aspect is naturally applicable also to the other carbon dioxide storage apparatuses 20 and 30.
  • enhanced recovery of gas, oil, heavy oil, etc. can be performed by the production wells.
  • high pressure carbon dioxide is injected so that oil and carbon dioxide are dissolved or suspended, and carbon dioxide and the oil to be mined are mixed.
  • carbon dioxide and oil are unlikely to be dissolved or suspended by nature, and in fact, it is oxidized into gas fields, oil fields, oil sands, etc. that exist in deep places where the pressure at which dissolved or suspended can be maintained. If carbon is not injected, enhanced recovery cannot be achieved.
  • the injected carbon dioxide becomes fine bubbles, and carbon dioxide and oil are more likely to be dissolved or suspended at a lower pressure than before.
  • carbon dioxide can be precipitated more efficiently by mixing molecules that are heavier than carbon dioxide into carbon dioxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 二酸化炭素タンク3は圧送装置5と接続される。圧送装置5には管体である注入井9が接合されている。注入井9は、地面7下に向けて延伸され、塩水性帯水層11まで達するように設けられる。注入井9の一部には、略水平方向に水平井10が形成される。すなわち、水平井10は、塩水性帯水層11の内部において、注入井9の一部が略水平方向に形成された部位である。水平井10には、多孔質部材であるフィルタ13が設けられる。フィルタ13としては、たとえばセラミックス製の粒子と、前記粒子を結合する結合剤とを混合して焼成した部材が使用できる。なお、フィルタ13の孔径は、細かければより細かな径のマイクロバブルを発生させることができる。

Description

貯留物質の貯留装置および貯留方法
 本発明は、地下の塩水性帯水層へ二酸化炭素等の貯留物質を貯留するための、貯留物質の貯留装置および貯留物質の貯留方法に関するものである。
 現在、温室効果ガスとしての二酸化炭素に対し、大気中への排出量の低減が急務となっている。二酸化炭素の排出量を低減するためには、二酸化炭素自体の発生量を抑える方法の他に、二酸化炭素を地中へ貯留する方法が検討されている。
 年間100万トン規模の大量の二酸化炭素を地中へ貯留する方法としては、地層内へ二酸化炭素を注入する方法がある。図9は従来の二酸化炭素貯留装置80を示す図である。管体である注入井87が二酸化炭素を貯留する貯留層91まで延伸される。二酸化炭素タンク81に貯蔵されている二酸化炭素は、圧送装置83によって注入井87を介して、貯留層91へ注入される。
 この場合、貯留層91内へ二酸化炭素を注入した後、二酸化炭素が地上へ浸み出してこないことが望ましい。したがって、図9に示すように、貯留層91上方に、背斜構造(上方への凸形状)を有するシール層89の存在が必要である。シール層89は、例えば粘土質等の二酸化炭素の通過しにくい地層である。
 地下に注入された二酸化炭素は、シール層89によって地上に浸み出すことはない。しかし、このような上への凸形状のシール層89を有する地層は限られた場所にしか存在せず、適用可能な場所が限定される。
 そこで、シール層89が背斜構造ではなく単斜構造であるような場所でも適用可能な方法として、地下の塩水性帯水層に存在する地層水に二酸化炭素を溶解させ、地下水中に二酸化炭素を効率良く貯留する方法が検討されている。
 たとえば、深部帯水層の地下水を揚水井から地上に汲み上げて注入水を作り、注入井の上部で圧入された注入水に二酸化炭素を微細気泡化して混合または溶解させることにより気液混合流体を作り、注入水を深部帯水層に届くように設けられた注入井に脈動圧を加えて圧入する二酸化炭素の地中貯留方法がある(特許文献1)。
 また、炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置を用い、海水等の溶媒を圧送ポンプで圧縮し、溶媒に炭酸ガスを溶解させて炭酸ガス溶解水とし、生成された炭酸ガス溶解水を、地表面から帯水層まで貫通した注入井で地中の帯水層に圧入する炭酸ガスの地中貯留システムがある(特許文献2)。
 また、炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置を用い、海水等の溶媒を圧送ポンプで圧縮し、溶媒に炭酸ガスを溶解させて炭酸ガス溶解水とし、生成された炭酸ガス溶解水を所定の高流速で流しつつ炭酸ガスを細泡化しながら混入させ、地表面から帯水層まで貫通した注入井で地中の帯水層に圧入する炭酸ガスの地中貯留システムがある(特許文献3)。
特開2008-307483号公報 特開2008-238054号公報 特開2010-201330号公報
 しかし、特許文献1に記載された方法では、帯水層にある地層水を一旦汲み上げて気液混合状態にして再び帯水層へ注入する。このため、注入井の他に、地層水を汲み上げるための揚水井や揚水するためのポンプが必要となる。このため、システム全体が大がかりとなる。また、二酸化炭素の貯留のための大きな動力が必要となる。また、帯水層への注入圧力は、揚水井での吸い出し圧力とバランスさせる必要がある。また、注入された二酸化炭素は、揚水による水流に支配され、二酸化炭素が帯水層の一部に選択的に流れるため、貯留空間を有効に利用できない恐れがある。
 また、特許文献2の装置では、二酸化炭素の溶解水が注入先の水と比べて比重が大きくなる。このため、安定して二酸化炭素を貯留可能である。しかし、二酸化炭素を注入前に溶解槽で溶媒に溶解させるため、溶媒の圧送ポンプや溶解槽などの設備が必要となる。このため、システム全体が大がかりとなる。
 また、特許文献3の装置も、特許文献2と同様に、二酸化炭素を注入前に溶媒に溶解させるため、溶媒の圧送ポンプなどの設備が必要となる。このため、システム全体が大がかりとなる。
 ここで、事前に二酸化炭素を溶媒に溶解させるのではなく、帯水層に二酸化炭素を注入する場合において、より効率良く二酸化炭素を水に溶解させるためには、二酸化炭素を帯水層内部で長い時間滞留させる必要がある。
 通常、気泡として注入された二酸化炭素は、帯水層内部で上昇しながら周囲の水に溶解するものと考えられる。したがって、二酸化炭素を帯水層の深部から注入することで、二酸化炭素の滞留時間を長くすることができる。しかし、このように帯水層の深部まで注入井を設置することは、注入井の設置工数等の問題がある。
 本発明は、このような問題に鑑みてなされたもので、二酸化炭素等の貯留物質を直接地下の塩水性帯水層へ注入し、塩水性帯水層に効率良く貯留物質を貯留させることが可能な貯留物質の貯留装置、および貯留物質の貯留方法を提供することを目的とする。
 前述した目的を達成するため、第1の発明は、地下に二酸化炭素、二酸化炭素よりも水への溶解度が大きい物質およびメタンの内、少なくとも1種を含む貯留物質を貯留する貯留装置であって、塩水性帯水層へ達する注入井と、前記注入井へ前記貯留物質を圧送する圧送装置と、前記注入井に設けられたセラミックス製の多孔質部材と、を具備し、前記塩水性帯水層の内部において、前記注入井の少なくとも一部には略水平方向に向けて水平井が形成され、前記水平井内へ圧送される前記貯留物質を、前記多孔質部材を介して前記塩水性帯水層へ注入することが可能であり、前記多孔質部材は、セラミックス製の粒子と、前記粒子を結合する結合剤とを混合して焼成したものであり、孔径分布の最頻値が4.5μm以下であり、前記多孔質部材から前記塩水性帯水層へ前記貯留物質が注入される際に、前記貯留物質のマイクロバブルを発生させることを特徴とする貯留物質の貯留装置である。
 また、ガス田、油田またはオイルサンドのいずれかに達する生産井を更に具備し、前記生産井からはガス、石油または重油を採取可能であってもよい。
 第1の発明によれば、貯留物質を注入する水平井に4.5μm以下の孔径を有する多孔質部材が設けられるため、多孔質部材を介して注入される貯留物質のマイクロバブルの孔径を小さくすることができる。このため、詳細は後述するが、液体中の気泡の沈降現象を利用することができる。したがって、帯水層内にマイクロバブルを滞留・沈降させることで、貯留物質を効率良く塩水性帯水層へ溶解させることができる。
 なお、孔径分布の最頻値が4.5μm以下の多孔質部材は、例えば粒子の50%累積粒径が4.5μm以下であるセラミックス製の粒子と結合材とを混合焼成することで得ることができる。このような多孔質部材を用いれば、より確実に所望のマイクロバブルを発生させることができる。
 また、注入井の一部に水平井が設けられることで、より広範囲にわたって貯留物質を塩水性帯水層へ注入することができる。
 また、貯留物質を水平井から水平方向よりも下方に向けて注入することで、水平井から噴出したマイクロバブルが、塩水性帯水層内部において下方に向けて注入され、その後、マイクロバブルの全部または一部が前述した沈降現象によって、貯留物質を塩水性帯水層内部で沈降させることができる。このため、より長時間安定して貯留物質を塩水性帯水層内部に滞留させることができる。なお、貯留物質を水平方向よりも上方に向けて注入してもよく、水平井の全周(全方向)に対して注入してもよい。いずれにしてもマイクロバブルの全部または一部を沈降現象によって、安定して貯留物質を塩水性帯水層内に滞留させることが可能である。
 また、ガス田等からの生産井を用い、石油等を採取するとともに、石油等と同時に採取された水を貯留物質と混合して塩水性帯水層へ注入すれば、貯留物質を地中に貯留しながら石油等の増進回収ができる。この場合、ガス田、油田またはオイルサンドのいずれかに貯留物質を注入し、貯留物質のマイクロバブルと、ガス、石油または重油とを溶解または懸濁状態とすることができる。
 第2の発明は、地下に二酸化炭素、二酸化炭素よりも水への溶解度が大きい物質およびメタンの内、少なくとも1種を含む貯留物質を貯留する貯留方法であって、塩水性帯水層へ達する注入井と、前記注入井へ前記貯留物質を圧送する圧送装置と、前記注入井に設けられたセラミックス製の多孔質部材と、を具備する前記貯留物質の貯留装置を用い、前記塩水性帯水層の内部において、前記注入井の少なくとも一部には略水平方向に向けて水平井を形成し、前記多孔質部材は、セラミックス製の粒子と、前記粒子を結合する結合剤とを混合して焼成したものであり、孔径分布の最頻値が4.5μm以下であり、前記多孔質部材を介して前記塩水性帯水層へ前記貯留物質を注入する際に、前記貯留物質のマイクロバブルを発生させ、前記マイクロバブルを、前記塩水性帯水層内部において沈降させることを特徴とする塩水性帯水層への前記貯留物質の貯留方法である。
 前記貯留装置は、ガス田、油田またはオイルサンドのいずれかに達する生産井を更に具備し、前記注入井によって、前記貯留物質を地下に注入することで、ガス、石油、重油と前記貯留物質とを懸濁状態として、前記生産井によってガス、石油または重油を採取可能であってもよい。
 第2の発明によれば、多孔質部材を介して注入される貯留物質の孔径を小さくすることができため、液体中の気泡の沈降現象を利用することができる。したがって、帯水層内にマイクロバブルを滞留・沈降させることで、貯留物質を効率良く塩水性帯水層へ溶解させることができる。特に、貯留物質を水平方向よりも下方に向けて注入することで、沈降現象の効果と相まって長時間貯留物質を塩水性帯水層内部に滞留させることができる。また、貯留物質を地中に貯留しながら石油等の増進回収を行うことができる。
 本発明によれば、貯留物質を直接地下の塩水性帯水層へ注入し、塩水性帯水層に効率良く貯留物質を貯留させることが可能な貯留物質の貯留装置、および貯留物質の貯留方法を提供することができる。
二酸化炭素貯留装置1を示す図。 フィルタ13近傍の拡大図。 二酸化炭素貯留装置20を示す図。 二酸化炭素貯留装置30を示す図。 二酸化炭素貯留試験装置40を示す図。 マイクロバブル75の発生状態を示す図。 マイクロバブル75の発生状態を示す模式図。 マイクロバブル75の沈降現象を示す図。 マイクロバブル75の沈降現象を示す模式図。 二酸化炭素貯留装置1aを示す図。 二酸化炭素貯留装置80を示す図。
 以下、本発明の実施の形態を詳細に説明する。図1は、本実施の形態にかかる二酸化炭素貯留装置1を示す図である。二酸化炭素貯留装置1は、主に二酸化炭素タンク3、圧送装置5、注入井9、フィルタ13等から構成される。なお、以下の実施形態では、貯留物質として二酸化炭素の例を示すが、二酸化炭素よりも水への溶解度が大きいアセチレン、アンモニア、二酸化硫黄、塩化水素、塩素、硫化水素やメタン等のフレアガスであっても同様である。
 工場等で排出された二酸化炭素は回収され、二酸化炭素タンク3に貯留される。なお、二酸化炭素発生源が隣接する場合には、二酸化炭素タンク3へ直接配管等を接続して貯留を行ってもよい。
 二酸化炭素タンク3は圧送装置5と接続される。圧送装置5は、図示を省略したポンプ、圧力調整弁、バルブ、温度調整器等から構成される。圧送装置5には管体である注入井9が接合されている。注入井9は、地面7下に向けて延伸され、塩水性帯水層11まで達するように設けられる。塩水性帯水層11は、砂や砂利等とともに地下に存在する地層である。なお、塩水性帯水層11の上部には図示を省略したシール層(いわゆるキャップロック)が存在する。
 注入井9の一部(塩水性帯水層11の内部に位置する部位)には、略水平方向に水平井10が形成される。すなわち、水平井10は、塩水性帯水層11の内部において、注入井9の一部が略水平方向に形成された部位である。
 水平井10には、軸方向の一部に複数の多孔質部材であるフィルタ13が設けられる。フィルタ13としては、たとえばセラミックス製の粒子と、粒子を結合する結合剤とを混合して焼成した部材が使用できる。なお、フィルタ13の孔径は、細かければより細かな径のマイクロバブルを発生させることができる。
 ここで、本発明者らは、通常であれば液体中を浮上する気泡であっても、気泡径を小さくすることで、同じ液体中で気泡が沈降することを見出した。すなわち、水の中に、所定の径よりも小さな二酸化炭素のマイクロバブルを発生させることで、当該マイクロバブルが水中を沈降する現象を発見した。
 このような所定径以下のマイクロバブルを発生させるために、特に好ましいフィルタ13としては、多孔質部材の孔径分布の最頻値が4.5μm以下である。
 二酸化炭素タンク3内に貯留される二酸化炭素は、圧送装置5によって圧送される。圧送装置5は、二酸化炭素タンク3内の二酸化炭素をポンプで注入井9(水平井10)へ送り込む。この際、圧送装置5は、圧力調整弁、温度調整器等により、所定圧力、所定温度の状態で二酸化炭素を圧送することができる。
 なお、圧送装置5は、例えば、二酸化炭素を超臨界状態で圧送することもできるが、本装置においては、二酸化炭素が気体、液体またはこれらの混合状態であっても効果を得ることができる。たとえば、二酸化炭素の圧送条件としては、二酸化炭素温度20~40℃、圧力を2~10MPaとすればよい。これは、例えば200~1000m深度に二酸化炭素を貯留する際に適した条件である。このような条件の二酸化炭素は、注入井9を矢印A方向に送られ、水平井10に設けられたフィルタ13を通過して塩水性帯水層11へ注入される。
 図2(a)は、水平井10のフィルタ13における断面図である。図2(a)に示すように、水平井10の一部にノズル17が設けられて、ノズル17にフィルタ13が設けられる。ノズル17は、水平井10の下方に向けて配置される。内部を流れる二酸化炭素は、フィルタ13を介して塩水性帯水層11へ噴射される。二酸化炭素は、塩水性帯水層11へ噴射される際、フィルタ13によってマイクロバブル化する。
 塩水性帯水層11内へマイクロバブル15として注入された二酸化炭素は、ノズル17の方向に噴射され(図中矢印B)、その後、全部または一部のマイクロバブルは沈降現象によって沈降する(図中矢印C)。マイクロバブル15は、浮上または沈降による滞留中に塩水性帯水層11内へ溶解する。このように、二酸化炭素を所定径以下のマイクロバブル15とすることで、二酸化炭素の塩水性帯水層11内への滞留時間を長くすることができる。また、単位量当たりの塩水性帯水層11との接触面積を大きくできるため、二酸化炭素の塩水性帯水層11への溶解を極めて効率良く進行させることができる。
 また、マイクロバブル15は塩水性帯水層11の下方に沈降するため、塩水性帯水層11の上部で二酸化炭素を注入しても、塩水性帯水層11の貯留空間を有効に利用することができる。また、塩水性帯水層11内をゆっくりと移動しながら塩水性帯水層11へ溶解する二酸化炭素は、塩水性帯水層11の周囲に存在する岩石鉱物等との化学反応によって、炭酸塩などの化合物を形成する。したがって、二酸化炭素は塩水性帯水層のみならず地下や海底下に炭酸化合物として固定することができる。
 なお、図2(b)に示すように、フィルタ13はノズルを用いず、直接水平井10に取り付けてもよい。この場合、水平井10の所定の位置に孔19を形成し、孔19にフィルタ13を固定すればよい。なお、フィルタ13は、水平井10の断面において複数方向に形成してもよい(図では2方向)。この場合でも、フィルタ13は下方(水平方向よりも下方側)に向けて設けられることが望ましい。マイクロバブル15の沈降現象により、マイクロバブル15の滞留時間を長くすることができるためである。
 また、図2(c)に示すように、フィルタ13をリング部材21に形成してもよい。水平井10の一部にリング部材21を固定し、リング部材21の内面が水平井10の内部空間と接すればよい。この場合、リング部材21の下方(水平方向よりも下方側)のみをフィルタ13とし、他の部位(水平よりも上側)を金属等で構成することで、マイクロバブル15を下方に向けて噴射することができる。したがって、マイクロバブル15の沈降現象により、マイクロバブル15の滞留時間を長くすることができる。
 以上のように、本発明では、フィルタ13の設置形態はいずれのものでも良い。例えば、水平井10の周方向の一部(下方)にフィルタ13を配置し、水平井10の一部で水平方向よりも下方に向けてマイクロバブルを噴射することが望ましいが、水平井10の周方向の上方にフィルタ13を配置して上方に向けて噴射してもよい。
 次に、本発明にかかる二酸化炭素の貯留方法の他の実施形態について説明する。図3は、二酸化炭素貯留装置20を示す図である。なお、以下の実施の形態において、図1に示す二酸化炭素貯留装置1と同一の機能を果たす構成要素には、図1と同一番号を付し重複した説明を省略する。
 二酸化炭素貯留装置20は、二酸化炭素貯留装置1に対して、注入井9a、9bが複数設けられる点で異なる。地下に、浸透性の低い泥岩層と浸透性の高い砂岩層とが交互に存在するような砂泥互層が形成される場合には、塩水性帯水層11a、11bが存在するそれぞれの複数の砂岩層へ達するように、注入井9a、9bがそれぞれ設けられる。
 注入井9a、9bには、それぞれ水平井10a、10bが設けられる。二酸化炭素貯留装置20は、それぞれの水平井10a、10bによって、塩水性帯水層11a、11bへ二酸化炭素を同時に、または個別に注入することができる。したがって、効率良く二酸化炭素を塩水性帯水層11a、11bへ注入することができる。
 図4は、二酸化炭素貯留装置30を示す図である。二酸化炭素貯留装置30は、二酸化炭素貯留装置1に対して、海底33の下へ貯留する点で異なる。海底33下方に存在する塩水性帯水層11へ効率良く二酸化炭素を貯留するために、二酸化炭素貯留装置30は地上へ設けられる。この際、注入井9は傾斜して設けられ、先端が水平井10となる。二酸化炭素貯留装置30は、海底33下の塩水性帯水層11へ効率良く二酸化炭素を貯留することができる。なお、圧送装置を海底に設置してもよい。
 本発明にかかる二酸化炭素の貯留方法について、マイクロバブルの発生状況の確認を行った。図5は二酸化炭素貯留試験装置40を示す図である。
 二酸化炭素貯留試験装置40は、二酸化炭素タンク41、圧力調整弁45、シリンジポンプ43、圧力容器63等から構成される。
 二酸化炭素タンク41には二酸化炭素が貯留される。二酸化炭素タンク41にはシリンジポンプ43、圧力調整弁45、バルブ47が配管49によって接続される。シリンジポンプ43は、二酸化炭素を圧力容器63へ圧送する。なお、二酸化炭素は圧力調整弁45により任意の圧力に調整が可能であり、また図示を省略した温度調整器によって、圧力容器63へ圧送される二酸化炭素を任意の温度に調整することができる。
 バルブ47を調整することで、二酸化炭素単体または二酸化炭素を圧力容器63へ圧送することができる(図中矢印D方向)。
 圧力容器63と配管49との接合部には、フィルタ61が設けられる。フィルタ61は直径50mmで5mm厚さの円板状の形状である。フィルタ61は交換が可能であり、たとえば孔径を変更して試験を行うことができる。
 圧力容器63には互いに対向する側面に照明窓67および撮影窓71が設けられる。照明窓67および撮影窓71は透明な窓であり、内部の様子を確認することができる。照明窓67からは、外部に設置された照明69によって内部が照射される。対向する位置に設けられた撮影窓71の外部にはカメラ73が設置される。カメラ73は、照明69によって照らされた圧力容器63内の様子を撮影することができる。なお、カメラ73はハイスピードカメラであり、フィルタ61を通過して圧力容器63内へ注入された二酸化炭素の状態を知ることができる。
 圧力容器63内には、所定の圧力の水が充填されている。また、圧力容器63には、排出弁65が設けられる。排出弁65は、圧力容器63内へ二酸化炭素が注入されても、圧力容器63内が一定の圧力に保持されるように機能する。すなわち、注入された二酸化炭素によって圧力が上昇すると、上昇した圧力が定常な状態となるように内部の水等を排出する。なお、圧力容器63内の水が、模擬的な塩水性帯水層に該当する。
 二酸化炭素貯留試験装置40を使用して、圧力容器63内へ種々の状態で注入した二酸化炭素の状態を観察した。フィルタ61としては、孔径(規格)11μmおよび4.5μmのビトリファイド砥石を使用した。
 試験条件としては、水の温度として20℃と40℃の二水準、二酸化炭素の注入圧力として6MPa、8MPa、10MPaの三水準、注入レートとして、0.1cc/min、1.0cc/min、5.0cc/minの三水準、圧力容器内の海水濃度として、0%(純水)、50%、100%の三水準に振ってそれぞれマイクロバブルの状態を確認した。
 なお、圧力が6MPaの条件は、貯留深度が600mであることを想定しており、圧力が8MPaの条件は、貯留深度が800mであることを想定したものである。
 いずれの条件においても、マイクロバブルの発生が確認された。図6(a)、図6(b)は、40℃、10MPa、5.0cc/min、海水濃度0%(純水)の条件で、フィルタ61の孔径(規格)が4.5μmのビトリファイド砥石試験を用いた際のマイクロバブルの例を示すものである。なお、図6(a)はカメラ73により撮影された映像であり、図6(b)は図6(a)の模式図である。
 図6(b)に示すように、圧力容器63の下方より二酸化炭素を注入すると、二酸化炭素は圧力容器63内の水中を矢印E方向へ噴射される。この際、多少の気泡が生じるものの、非常に細かなマイクロバブル75が確認された。マイクロバブル75は、圧力容器63の上方へ行くにつれて消滅するものも見られた。これは、マイクロバブルとなった二酸化炭素が水77中に溶解したためである。
 図7(a)、図7(b)は図6(b)のI部の拡大図である。なお、図7(a)はカメラ73により撮影された映像であり、図7(b)は図7(a)の模式図である。それぞれの4つの図は、左から右に向かって時間経過を示し、0.34sec.間隔で撮影されたものである。
 図7(b)に示すように、フィルタ孔径を4.5μmとしたものでは、非常に細かなマイクロバブル75が確認された。また、このマイクロバブル(平均径4.5μm)が、時間の経過とともに、下方に沈降する現象が確認された(図中矢印J方向)。すなわち、他の比較的大きな気泡(マイクロバブルを含む)は上方に浮上するが、所定以下の小径のマイクロバブル(ナノバブルを含む)は、浮上せずに水中を沈降した。
 このような沈降現象は、急激な二酸化炭素の溶解によるものである。水へ二酸化炭素が溶解することで水の密度が増加する。このため、水の密度分布が生じ、二酸化炭素が溶解した水の下方への対流が生じる。この際、バブル径が小さくなることで、この対流による影響が大きくなり、バブルが水の対流によって下方に運ばれているものと考えられる。すなわち、少なくとも所定以下の径のマイクロバブル(例えば4.5μm以下)とすることで、塩水性帯水層内部でマイクロバブルを沈降させることができ、これにより、高い効率で、二酸化炭素を塩水性帯水層に貯留させることができる。
 以上本発明の実施の形態によれば、多孔質部材である砥石フィルタを介し、二酸化炭素を塩水性帯水層へ注入することで、塩水性帯水層内で二酸化炭素が効率良くマイクロバブル化させることができる。この際、孔径が4.5μm以下のフィルタを用いてマイクロバブルを発生させることで、マイクロバブルの沈降現象を利用することができる。
 このため、二酸化炭素のマイクロバブルをより長い時間に渡って、塩水性帯水層内に滞留させることができる。特に、マイクロバブルを下方に向けて発生させることで、マイクロバブルの滞留時間を十分確保することができ、効率良く、二酸化炭素を塩水性帯水層に溶解させることができる。
 以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 例えば、図8に示すような二酸化炭素貯留装置1aとしてもよい。二酸化炭素貯留装置1aは、水平井10の略全長に渡ってフィルタ13が設けられる。このようにすることで、フィルタ13の面積を大きくすることができる。このため、より多くの二酸化炭素をより圧損が少ない状態で塩水性帯水層11に注入することができる。また、前述の例では、フィルタ13を水平性の周方向の一部に形成したが、全周に渡って形成してもよい。すなわち、フィルタ13の態様は、塩水性帯水層11に効率良く二酸化炭素を注入できるように適宜設定される。なお、このような態様は、他の二酸化炭素貯留装置20、30にも当然に適用することができる。
 また、ガス田、油田、オイルサンドなどに達する生産井を設け、注入井によって、二酸化炭素を当該地下に注入することで、生産井によってガス、石油、重油等の増進回収を行うことができる。現在のガス、石油、重油等の増進回収法においては、油等と二酸化炭素とが溶解または懸濁状態になるような高圧の二酸化炭素を圧入して、二酸化炭素と採掘する油等を混合させて増進回収を図っている。ただし、二酸化炭素と油等が元来溶解または懸濁状態になりにくく、実際には溶解または懸濁状態になる圧力が維持できる相当に深い場所に存在するガス田、油田、オイルサンドなどへ二酸化炭素を圧入しないと増進回収が図れていない。本発明をこういった増進回収に適用することで、圧入した二酸化炭素が微細気泡となり、従来よりも低い圧力で二酸化炭素と油等とが、より一層溶解または懸濁状態になりやすくなる。本発明をこういった増進回収に適用することで、これまで二酸化炭素と油等が溶解または懸濁状態になりにくく増進回収が図られていなかった比較的浅い範囲のガス田、油田、オイルサンドなどにおいても、ガス、石油、重油等の増進回収を行うことができる。
 また、この際に、生産井によって採取された油等と水の混合物から油等を回収した後、残りの水を二酸化炭素に混合して地下へ注入することで、過剰に採取した水を地下へ戻すことができ、このため地盤沈下等を抑制するとともに、塩水性帯水層へ効率良く二酸化炭素を注入することができる。
 また、二酸化炭素に、二酸化炭素よりも重い分子を混入させることで、より効率良く二酸化炭素の沈降現象を発生させることもできる。
1、1a、20、30………二酸化炭素貯留装置
3………二酸化炭素タンク
5………圧送装置
7………地面
9………注入井
10………水平井
11………塩水性帯水層
13………フィルタ
15………マイクロバブル
17………ノズル
19………孔
21………リング部材
31………海面
33………海底
40………二酸化炭素貯留試験装置
41………二酸化炭素タンク
43………シリンジポンプ
45………圧力調整弁
47………バルブ
49………配管
61………フィルタ
63………圧力容器
65………排出弁
67………照明窓
69………照明
71………撮影窓
73………カメラ
75………マクロバブル
77………水
80………二酸化炭素貯留装置
81………二酸化炭素タンク
83………圧送装置
85………地面
87………注入井
89………シール層
91………貯留層
 

Claims (4)

  1.  地下に二酸化炭素、二酸化炭素よりも水への溶解度が大きい物質およびメタンの内、少なくとも1種を含む貯留物質を貯留する貯留装置であって、
     塩水性帯水層へ達する注入井と、
     前記注入井へ前記貯留物質を圧送する圧送装置と、
     前記注入井に設けられたセラミックス製の多孔質部材と、
     を具備し、
     前記塩水性帯水層の内部において、前記注入井の少なくとも一部には略水平方向に向けて水平井が形成され、
     前記水平井内へ圧送される前記貯留物質を、前記水平井に設けられた前記多孔質部材を介して前記塩水性帯水層へ注入することが可能であり、
     前記多孔質部材は、セラミックス製の粒子と、前記粒子を結合する結合剤とを混合して焼成したものであり、孔径分布の最頻値が4.5μm以下であり、
     前記多孔質部材から前記塩水性帯水層へ前記貯留物質が注入される際に、前記貯留物質のマイクロバブルを発生させることを特徴とする貯留物質の貯留装置。
  2.  ガス田、油田またはオイルサンドのいずれかに達する生産井を更に具備し、
     前記生産井からはガス、石油または重油を採取可能であることを特徴とする請求項1記載の貯留物質の貯留装置。
  3.  地下に二酸化炭素、二酸化炭素よりも水への溶解度が大きい物質およびメタンの内、少なくとも1種を含む貯留物質を貯留する貯留方法であって、
     塩水性帯水層へ達する注入井と、前記注入井へ前記貯留物質を圧送する圧送装置と、前記注入井に設けられたセラミックス製の多孔質部材と、を具備する前記貯留物質の貯留装置を用い、
     前記塩水性帯水層の内部において、前記注入井の少なくとも一部には略水平方向に向けて水平井を形成し、
     前記多孔質部材は、セラミックス製の粒子と、前記粒子を結合する結合剤とを混合して焼成したものであり、孔径分布の最頻値が4.5μm以下であり、
     前記水平井に設けられた前記多孔質部材を介して前記塩水性帯水層へ前記貯留物質を注入する際に、前記貯留物質のマイクロバブルを発生させ、
     前記マイクロバブルを、前記塩水性帯水層内部において沈降させることを特徴とする塩水性帯水層への貯留物質の貯留方法。
  4.  前記貯留装置は、ガス田、油田またはオイルサンドのいずれかに達する生産井を更に具備し、
     前記注入井によって、前記貯留物質を地下に注入することで、ガス、石油、重油と前記貯留物質とを懸濁状態として、前記生産井によってガス、石油または重油を採取可能であることを特徴とする請求項3記載の貯留物質の貯留方法。
     
PCT/JP2012/057686 2011-03-30 2012-03-26 貯留物質の貯留装置および貯留方法 WO2012133265A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/008,779 US8998532B2 (en) 2011-03-30 2012-03-26 Retention device for retained substance and retention method
CA2831026A CA2831026C (en) 2011-03-30 2012-03-26 Retention device for retained substance and retention method
AU2012233997A AU2012233997B2 (en) 2011-03-30 2012-03-26 Retention device for retained substance and retention method
CN201280015040.2A CN103442798B (zh) 2011-03-30 2012-03-26 储存物质的储存装置及储存方法
KR1020137027050A KR101382753B1 (ko) 2011-03-30 2012-03-26 저류 물질의 저류 장치 및 저류 방법
EP12763902.9A EP2695671B1 (en) 2011-03-30 2012-03-26 Retention device for retained substance and retention method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-076149 2011-03-30
JP2011076149A JP5399436B2 (ja) 2011-03-30 2011-03-30 貯留物質の貯留装置および貯留方法

Publications (1)

Publication Number Publication Date
WO2012133265A1 true WO2012133265A1 (ja) 2012-10-04

Family

ID=46930983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057686 WO2012133265A1 (ja) 2011-03-30 2012-03-26 貯留物質の貯留装置および貯留方法

Country Status (8)

Country Link
US (1) US8998532B2 (ja)
EP (1) EP2695671B1 (ja)
JP (1) JP5399436B2 (ja)
KR (1) KR101382753B1 (ja)
CN (1) CN103442798B (ja)
AU (1) AU2012233997B2 (ja)
CA (1) CA2831026C (ja)
WO (1) WO2012133265A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105089614B (zh) * 2014-05-08 2023-07-07 中国石油化工股份有限公司 热采水平井含水率测试仪
JP6302347B2 (ja) * 2014-05-08 2018-03-28 公益財団法人地球環境産業技術研究機構 岩石内部の診断システム、それに用いられる容器、岩石内部の診断方法および地中岩石内への流体注入方法
KR101920689B1 (ko) 2016-11-30 2018-11-21 인하대학교 산학협력단 수평정의 수직 위치 결정방법
KR102110407B1 (ko) * 2017-11-13 2020-06-08 인하대학교 산학협력단 단일 수평정을 이용한 이산화탄소 지중 저장장치
JP7186673B2 (ja) * 2019-07-04 2022-12-09 株式会社不動テトラ 二酸化炭素の地下貯留方法
US11873703B2 (en) 2021-02-16 2024-01-16 Japan Petroleum Exploration Co., Ltd. Method of underground storage of injection gas containing CO2 gas and enhanced oil recovery
WO2022201424A1 (ja) * 2021-03-25 2022-09-29 石油資源開発株式会社 二酸化炭素の地層内貯留方法、二酸化炭素含有天然ガス田の開発方法、および二酸化炭素の海水内貯留方法
CN115012877B (zh) * 2022-06-27 2023-12-22 中国石油大学(北京) 一种增加高温咸水层二氧化碳溶解度的水平井管柱

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050167103A1 (en) * 2003-10-06 2005-08-04 Horner W. N. Applications of waste gas injection into natural gas reservoirs
JP2008238054A (ja) 2007-03-27 2008-10-09 Tokyo Electric Power Co Inc:The 炭酸ガスの地中貯留システム
JP2008307483A (ja) 2007-06-15 2008-12-25 Hitoshi Koide 二酸化炭素の地中貯留方法及びその地中貯留システム
JP2010036154A (ja) * 2008-08-07 2010-02-18 Taisei Corp 二酸化炭素貯留施設および二酸化炭素の地中貯留方法
WO2010018844A1 (ja) * 2008-08-14 2010-02-18 東京瓦斯株式会社 貯留物質の貯留装置および貯留物質の貯留方法
JP2010201330A (ja) 2009-03-03 2010-09-16 Tokyo Electric Power Co Inc:The 炭酸ガスの地中貯留システム
WO2011019053A1 (ja) * 2009-08-12 2011-02-17 東京瓦斯株式会社 貯留物質の貯留装置および貯留物質の貯留方法

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US400884A (en) * 1889-04-02 Filter
US968226A (en) * 1909-09-29 1910-08-23 Robert L Ziller Porous pipe and method of manufacturing the same.
US997191A (en) * 1909-10-25 1911-07-04 Henry C Hogarth Well-casing.
US1031596A (en) * 1910-11-14 1912-07-02 Ira N Terrill Well.
US1062717A (en) * 1911-08-29 1913-05-27 Mahlon E Layne Well-screen.
US1146499A (en) * 1914-12-12 1915-07-13 Francis Jaszkowiak Well-filter.
US1256830A (en) * 1916-11-02 1918-02-19 Henry Rodrigo Sr Well-screen.
US1406825A (en) * 1919-06-04 1922-02-14 John A Dobson Oil-well screen
US1588920A (en) * 1923-05-15 1926-06-15 Paul O Trahan Well tubing
US2335558A (en) * 1940-08-30 1943-11-30 Bruce B Young Well screen
US2392263A (en) * 1942-07-08 1946-01-01 Chester E Records Method of constructing well screens
US2530223A (en) * 1947-10-01 1950-11-14 Elton H Breaux Oil well filter
US2796939A (en) * 1954-07-21 1957-06-25 Oil Tool Corp Well liner
US2905251A (en) * 1955-11-14 1959-09-22 Walter L Church Gravel packed screen
US3255821A (en) * 1961-05-02 1966-06-14 Texaco Trinidad Well liner
US3357564A (en) * 1964-09-22 1967-12-12 Halliburton Co Filtering apparatus and method of making it
US3361203A (en) * 1965-10-22 1968-01-02 Halliburton Co Self-cleaning sand screen
US4445574A (en) * 1980-03-24 1984-05-01 Geo Vann, Inc. Continuous borehole formed horizontally through a hydrocarbon producing formation
US4434054A (en) * 1982-12-20 1984-02-28 Texaco Canada Resources Ltd. Filter for separating discrete solid elements from a fluid stream
US4501326A (en) * 1983-01-17 1985-02-26 Gulf Canada Limited In-situ recovery of viscous hydrocarbonaceous crude oil
GB8629574D0 (en) * 1986-12-10 1987-01-21 Sherritt Gordon Mines Ltd Filtering media
US4917183A (en) * 1988-10-05 1990-04-17 Baker Hughes Incorporated Gravel pack screen having retention mesh support and fluid permeable particulate solids
US5004049A (en) * 1990-01-25 1991-04-02 Otis Engineering Corporation Low profile dual screen prepack
US5190102A (en) * 1990-10-22 1993-03-02 Otis Engineering Corporation Sintered metal substitute for prepack screen aggregate
US5088554A (en) * 1990-10-22 1992-02-18 Otis Engineering Corporation Sintered metal sand screen
US5664911A (en) * 1991-05-03 1997-09-09 Iit Research Institute Method and apparatus for in situ decontamination of a site contaminated with a volatile material
US5219028A (en) * 1992-02-25 1993-06-15 Conoco Inc. Well casing and well casing method
US5279362A (en) * 1992-04-28 1994-01-18 Pool James R Well screen and completion device having an attached gravel pack
US5295538A (en) * 1992-07-29 1994-03-22 Halliburton Company Sintered screen completion
US5310000A (en) * 1992-09-28 1994-05-10 Halliburton Company Foil wrapped base pipe for sand control
US5355949A (en) * 1993-04-22 1994-10-18 Sparlin Derry D Well liner with dual concentric half screens
US5664628A (en) * 1993-05-25 1997-09-09 Pall Corporation Filter for subterranean wells
DE4402284A1 (de) * 1994-01-27 1995-08-03 Ibn Gmbh Dresden Verfahren zur Herstellung von geformten, recyclingfähigen Verpackungen unter Verwendung von Altpapier
US6210955B1 (en) * 1994-10-05 2001-04-03 Gas Research Institute Foam transport process for in-situ remediation of contaminated soils
US5782299A (en) * 1996-08-08 1998-07-21 Purolator Products Company Particle control screen assembly for a perforated pipe used in a well, a sand filter system and methods of making the same
US5738170A (en) * 1996-09-03 1998-04-14 United States Filter Corporation Compact double screen assembly
US6089322A (en) * 1996-12-02 2000-07-18 Kelley & Sons Group International, Inc. Method and apparatus for increasing fluid recovery from a subterranean formation
US6015011A (en) * 1997-06-30 2000-01-18 Hunter; Clifford Wayne Downhole hydrocarbon separator and method
US6390192B2 (en) * 1998-03-31 2002-05-21 Well, Well, Well, Inc. Integral well filter and screen and method for making and using same
US6158507A (en) * 1998-07-08 2000-12-12 Rouse; William T. Well screen
WO2001081240A2 (en) * 2000-04-24 2001-11-01 Shell Internationale Research Maatschappij B.V. In-situ heating of coal formation to produce fluid
NO20002137A (no) * 2000-04-26 2001-04-09 Sinvent As Reservoarovervåkning ved bruk av kjemisk intelligent frigjøring av tracere
US6415509B1 (en) * 2000-05-18 2002-07-09 Halliburton Energy Services, Inc. Methods of fabricating a thin-wall expandable well screen assembly
US6848510B2 (en) * 2001-01-16 2005-02-01 Schlumberger Technology Corporation Screen and method having a partial screen wrap
SE525025C2 (sv) * 2000-12-15 2004-11-09 Arlington Trading Corp S A C O Anordning och förfarande för att skapa minst en reaktionszon i en akvifär
US6805202B2 (en) * 2001-01-16 2004-10-19 Weatherford/Lamb, Inc. Well screen cover
US6830104B2 (en) * 2001-08-14 2004-12-14 Halliburton Energy Services, Inc. Well shroud and sand control screen apparatus and completion method
NO318165B1 (no) * 2002-08-26 2005-02-14 Reslink As Bronninjeksjonsstreng, fremgangsmate for fluidinjeksjon og anvendelse av stromningsstyreanordning i injeksjonsstreng
RU2398813C2 (ru) * 2005-08-26 2010-09-10 Сентрал Рисерч Инститьют Оф Электрик Пауэр Индастри Способ получения, замещения или добычи гидрата газа
US7690097B1 (en) * 2006-01-03 2010-04-06 Bj Services Company Methods of assembling well screens
JP5347154B2 (ja) * 2006-06-28 2013-11-20 小出 仁 二酸化炭素地中貯留の処理方法及びその処理システム
US20080035330A1 (en) * 2006-08-10 2008-02-14 William Mark Richards Well screen apparatus and method of manufacture
US7661476B2 (en) * 2006-11-15 2010-02-16 Exxonmobil Upstream Research Company Gravel packing methods
MX2009005865A (es) * 2006-12-07 2009-08-31 Michael S Bruno Metodo para reducir la emision de gases de invernadero en la atmosfera.
US7647966B2 (en) * 2007-08-01 2010-01-19 Halliburton Energy Services, Inc. Method for drainage of heavy oil reservoir via horizontal wellbore
US7942206B2 (en) * 2007-10-12 2011-05-17 Baker Hughes Incorporated In-flow control device utilizing a water sensitive media
US7918272B2 (en) * 2007-10-19 2011-04-05 Baker Hughes Incorporated Permeable medium flow control devices for use in hydrocarbon production
US7913755B2 (en) * 2007-10-19 2011-03-29 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US7762341B2 (en) * 2008-05-13 2010-07-27 Baker Hughes Incorporated Flow control device utilizing a reactive media
US20100101783A1 (en) * 2008-10-13 2010-04-29 Vinegar Harold J Using self-regulating nuclear reactors in treating a subsurface formation
US7909097B2 (en) * 2008-10-17 2011-03-22 Archon Technologies Ltd. Well liner segments for in situ petroleum upgrading and recovery, and method of in situ upgrading and recovery
EP2406152A4 (en) * 2009-03-11 2015-10-14 Maurice B Dusseault METHOD FOR SEQUESTRATING LIQUIDS IN GEOLOGICAL FORMATIONS
US8251138B2 (en) * 2009-04-09 2012-08-28 Halliburton Energy Services, Inc. Securing layers in a well screen assembly
CN102639812A (zh) 2009-09-11 2012-08-15 C12能源公司 基于流体注射的地下储层分析
US8474531B2 (en) * 2009-11-24 2013-07-02 Conocophillips Company Steam-gas-solvent (SGS) process for recovery of heavy crude oil and bitumen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050167103A1 (en) * 2003-10-06 2005-08-04 Horner W. N. Applications of waste gas injection into natural gas reservoirs
JP2008238054A (ja) 2007-03-27 2008-10-09 Tokyo Electric Power Co Inc:The 炭酸ガスの地中貯留システム
JP2008307483A (ja) 2007-06-15 2008-12-25 Hitoshi Koide 二酸化炭素の地中貯留方法及びその地中貯留システム
JP2010036154A (ja) * 2008-08-07 2010-02-18 Taisei Corp 二酸化炭素貯留施設および二酸化炭素の地中貯留方法
WO2010018844A1 (ja) * 2008-08-14 2010-02-18 東京瓦斯株式会社 貯留物質の貯留装置および貯留物質の貯留方法
JP2010201330A (ja) 2009-03-03 2010-09-16 Tokyo Electric Power Co Inc:The 炭酸ガスの地中貯留システム
WO2011019053A1 (ja) * 2009-08-12 2011-02-17 東京瓦斯株式会社 貯留物質の貯留装置および貯留物質の貯留方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2695671A4

Also Published As

Publication number Publication date
EP2695671B1 (en) 2016-05-18
CA2831026C (en) 2016-08-23
EP2695671A1 (en) 2014-02-12
AU2012233997B2 (en) 2014-04-03
CN103442798A (zh) 2013-12-11
US20140072369A1 (en) 2014-03-13
KR20130127539A (ko) 2013-11-22
JP2012206103A (ja) 2012-10-25
AU2012233997A1 (en) 2013-10-24
KR101382753B1 (ko) 2014-04-08
US8998532B2 (en) 2015-04-07
CN103442798B (zh) 2015-01-07
CA2831026A1 (en) 2012-10-04
JP5399436B2 (ja) 2014-01-29
EP2695671A4 (en) 2014-12-31

Similar Documents

Publication Publication Date Title
JP5315346B2 (ja) 貯留物質の貯留装置および貯留物質の貯留方法
JP5399436B2 (ja) 貯留物質の貯留装置および貯留方法
JP5380463B2 (ja) 貯留物質の貯留装置および貯留物質の貯留方法
US8167037B2 (en) Method and device for feeding liquefied carbon-dioxide gas into an aquifer deep underground
JP2008006367A (ja) 二酸化炭素地中貯留の処理方法及びその処理システム
US20230038432A1 (en) Enhanced oil recovery method using injection well including two passages
RU2529197C1 (ru) Способ подземного захоронения буровых отходов
JP2010284605A (ja) エマルジョンの製造・注入装置及び方法並びにメタンハイドレートの採掘方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763902

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2831026

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14008779

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137027050

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012233997

Country of ref document: AU

Date of ref document: 20120326

Kind code of ref document: A