WO2012132807A1 - ゲル電解質 - Google Patents

ゲル電解質 Download PDF

Info

Publication number
WO2012132807A1
WO2012132807A1 PCT/JP2012/055847 JP2012055847W WO2012132807A1 WO 2012132807 A1 WO2012132807 A1 WO 2012132807A1 JP 2012055847 W JP2012055847 W JP 2012055847W WO 2012132807 A1 WO2012132807 A1 WO 2012132807A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
formula
lithium salt
polyaniline derivative
gel precursor
Prior art date
Application number
PCT/JP2012/055847
Other languages
English (en)
French (fr)
Inventor
滋 三井
隆行 田村
卓司 吉本
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2013507325A priority Critical patent/JP5999370B2/ja
Publication of WO2012132807A1 publication Critical patent/WO2012132807A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a gel electrolyte, and more particularly to a gel electrolyte for a non-aqueous battery using a crosslinked polyaniline derivative.
  • non-aqueous electrolytes such as lithium secondary batteries that have special characteristics of high voltage and high energy density in the field of portable devices such as information-related devices and communication devices.
  • Batteries are attracting attention, and in particular, they are highly anticipated for applications such as electric vehicles that address environmental and resource issues, and research and development are actively underway.
  • Non-aqueous electrolytes used in non-aqueous electrolyte batteries contain non-aqueous solvents that are generally flammable. Therefore, in order to prevent leakage from the inside of the battery, the electrolyte is contained as a solid to prevent leakage of the electrolyte. Techniques for preventing this are disclosed (Patent Document 1 and Patent Document 2). Batteries that contain the electrolyte in a solid state in this way can be thinned, have a high degree of freedom in shape selection, and have a high level of safety by not using an electrolyte. It is also attracting attention as a power source. Among these, important technical issues include 1) improvement of safety, 2) improvement of cycle characteristics, and 3) higher energy density. In addition to the above technical issues, solid electrolytes are required to (1) achieve high ionic conductivity, (2) form a self-supporting thin film, and (3) have good mechanical strength. It is done.
  • Patent Document 3 and Patent Document 4 Conventionally proposed solid polymer electrolytes have been proposed in which a metal salt is dissolved in a polyethylene oxide (hereinafter referred to as PEO) polymer (Patent Document 3 and Patent Document 4).
  • PEO polyethylene oxide
  • Patent Document 4 This type of solid electrolyte used has a problem of low ionic conductivity because it does not contain a solvent.
  • a polymer gel electrolyte having improved ionic conductivity by including an organic solvent it has excellent solubility in both a polymer such as polyvinylidene fluoride and a group I or group II metal salt.
  • a polymer gel electrolyte made of an organic solvent has been proposed.
  • Polyvinylidene fluoride is not only used as a gelling agent for electrolytes, but also as a binder for electrodes, maintaining the affinity between gelled non-aqueous electrolyte and negative electrode, high capacity, load characteristics and cycle
  • Patent Document 6 A gel electrolyte secondary battery having good characteristics has also been proposed (Patent Document 6).
  • conductive polymers such as polyaniline are electronic materials, conductive materials such as battery electrode materials, antistatic materials, electromagnetic wave shielding materials, photoelectric conversion elements, optical memories, functional elements such as various sensors, display elements, and various hybrids. Applications in a wide range of fields such as materials, transparent conductors, and various terminal devices are being studied. Various methods of chemically cross-linking polyaniline itself have been disclosed (Patent Document 7).
  • a gel electrolyte using a PEO-based polymer gelling agent a gel electrolyte that promotes gelation by crosslinking a PEO-based polymer, which is a gelling agent, in an electrolyte solution (patent) Reference 4).
  • an electrolyte solution (patent) Reference 4).
  • a process for volatilizing the solvent is not required, a relatively large amount of gelling agent is required for gelation, which leads to a decrease in conductivity, and there is a concern about the influence on the output characteristics of the battery. Is done.
  • the ion-conducting gel electrolytes proposed so far have a performance sufficiently comparable to the conductivity: 10 ⁇ 3 to 10 ⁇ 2 S / cm obtained with a liquid electrolyte using a conventional organic electrolyte. It was absolutely impossible to say.
  • the present invention has been made based on the above circumstances, and the problem to be solved is easy to manufacture, can solve the problem of solvent recovery, and can be obtained in a liquid electrolyte at around room temperature.
  • the object is to provide a gel electrolyte capable of achieving an ionic conductivity greater than approximately 1 mS / cm.
  • the present inventors have adopted a crosslinked specific polyaniline derivative as a gelling agent, and a gel electrolyte containing the lithium salt and an organic solvent is good. As a result, the present invention was completed.
  • the present invention provides, as a first aspect, a gel electrolyte containing a crosslinked polyaniline derivative, a lithium salt, and an organic solvent,
  • the crosslinked polyaniline derivative is linked to the quinodiimine structure represented by the formula (I) and the 1,4-iminophenylene structure represented by the formula (II) via the crosslinked structure represented by the formula (III).
  • m represents the number of moles of the quinodiimine structure
  • n represents the number of moles of the 1,4-iminophenylene structure, where m + n represents 10 to 6000.
  • M represents a hydrogen atom or an alkali metal atom
  • X represents a saturated alicyclic tetravalent group
  • * represents a quinodiimine structure represented by the formula (I) and the formula (II).
  • the present invention relates to the gel electrolyte according to the first aspect, wherein X in the formula (III) represents a group selected from 11 structures represented by the following formula (IV).
  • a gel precursor containing a polyaniline derivative, an acid dianhydride, a lithium salt, and an organic solvent is a polymer compound having a quinodiimine structure represented by the following formula (I) and a 1,4-iminophenylene structure represented by the formula (II) as a main chain: About the body.
  • the said acid dianhydride is related with the gel precursor as described in a 3rd viewpoint selected from 11 compounds represented by following formula (V).
  • the lithium salt is an inorganic lithium salt selected from the group consisting of LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , and derivatives of the inorganic lithium salt, LiSO 3 CF 3 , LiN (SO 3 CF 3 )
  • An organic lithium salt selected from the group consisting of 2 , LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), and a derivative of the organic lithium salt
  • the gel precursor according to the third aspect which is at least one selected from the group.
  • the present invention relates to the gel precursor according to the fifth aspect, in which the lithium salt is LiClO 4 or LiBF 4 .
  • the present invention relates to the gel precursor according to the third aspect, in which the organic solvent is an organic solvent capable of dissolving the polyaniline derivative.
  • the present invention relates to the gel precursor according to the third aspect, in which the organic solvent is N-methyl-2-pyrrolidone.
  • a 9th viewpoint it is related with the gel-like composition obtained by heating the gel precursor as described in any one of 3rd viewpoint thru
  • a 10th viewpoint it is related with the gel electrolyte obtained by heating the gel precursor as described in any one among a 3rd viewpoint thru
  • the gel electrolyte of the present invention has high ionic conductivity exceeding 2 mS / cm at room temperature. Moreover, since the gel precursor of this invention can be gelatinized in the state containing lithium salt, it can be utilized as a gel electrolyte for lithium batteries. Furthermore, the gel precursor of this invention is maintaining the uniform solution state at the time of mixing a polyaniline derivative, lithium salt, an acid anhydride, and an organic solvent as a gel precursor. For this reason, when manufacturing a battery from the gel precursor of the present invention, it is possible to employ a battery manufacturing method in which an electrolyte solution is poured into the battery, which is considered difficult in a gel electrolyte according to a conventional gel sheet preparation method.
  • the gel precursor of this invention can be added in a battery cell in a solution state, stabilization of battery performance (durability, cycle characteristics, internal resistance) can be expected.
  • the gel precursor of the present invention requires heating for gel formation, but this does not promote volatilization of the solvent, and is intended for thermal crosslinking of polyaniline. For this reason, when manufacturing a battery from the gel precursor of the present invention, it is not necessary to consider the recovery of the solvent due to volatilization, which has been a problem with gel electrolytes by conventional gel sheet preparation.
  • FIG. 1 is a diagram showing a conductivity measurement cell used for conductivity evaluation in Examples.
  • the gel electrolyte according to the present invention includes a polyaniline derivative obtained by crosslinking polyaniline with an acid dianhydride as a polymer gelling agent, and includes an organic solvent and a lithium salt.
  • the crosslinked polyaniline derivative which is a polymer gelling agent, not only has a structure in which the main skeleton polyaniline is crosslinked with an acid dianhydride, but also includes ⁇ - ⁇ possessed by the polyaniline itself. * Interaction is also considered to be the cause of gelation. That is, the cross-linked polyaniline derivative used in the present invention is a polymer gelling agent having a very high gelling ability having both properties of chemical cross-linking and physical cross-linking.
  • the gel electrolyte of the present invention can be expected to have very high lithium ion conductivity not found in other gelling agents.
  • the present invention will be described in detail.
  • a gel electrolyte characterized by being a polymer compound having a mole number of 0.1 to 25 mol%. Further, with respect to the number of repeating units of the polyaniline derivative, m described in the formula (I) and n described in the formula (II) are particularly limited as long as they are 0 to 6000 with respect to each other. Absent.
  • the gel is characterized in that m is 1/10 or more of n, or n is 1/10 or more of m, more preferably m is 1/2 of n, and n is 0 to 4000. It is an electrolyte.
  • X in the formula (III) represents a group selected from 11 structures represented by the following formula (IV).
  • the gel electrolyte of the present invention is actually a polyaniline derivative having a quinonediimine structure represented by the formula (I) and a 1,4-iminophenylene structure represented by the formula (II), and a crosslinking agent for the derivative. It is made by heating a gel precursor containing an acid dianhydride, a lithium salt, and an organic solvent.
  • the crosslinking agent used for crosslinking the polyaniline derivative is an acid dianhydride and is not particularly limited as long as it has one of the chemical structures listed in the group (IV) in the structure.
  • the following 11 compounds may be mentioned.
  • Two or more of the acid dianhydrides listed above can be used in combination. Among these, it is particularly preferable to use the following four compounds. These acid dianhydrides are used in an amount of 5% by mass to 100% by mass with respect to the polyaniline derivative.
  • the organic solvent that is a medium for the crosslinking reaction and is the object of gelation is not particularly limited.
  • examples of usable organic solvents include toluene, p-xylene, o-xylene, m-xylene, and ethylbenzene.
  • N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, ⁇ -caprolactam, N-acryloylmorpholine and the like are particularly preferable.
  • N-methyl-2-pyrrolidone is preferred.
  • the lithium salt to be used is not particularly limited as long as it can be dissolved in the aforementioned organic solvent.
  • an inorganic lithium salt selected from LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , a derivative of these inorganic lithium salts, LiSO 3 CF 3 , LiN (SO 3 CF 3 ) 2 .
  • Examples include organic lithium salts selected from LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), and derivatives of the organic lithium salts.
  • LiBF 4 and LiClO 4 are particularly preferable from the viewpoint of ease of gel formation.
  • the composition ratio (mass ratio) in the gel electrolyte of the present invention may be appropriately set according to the target performance (gel strength, conductivity, etc.).
  • the organic solvent is 80 to 99% by mass
  • the polyaniline derivative may be about 1 to 20% by mass and the lithium salt is about 1 to 10% by mass. Therefore, the composition ratio (mass ratio) of the gel precursor may be appropriately set according to the target performance, as with the gel electrolyte.
  • the organic solvent is 80 to 99% by mass, and the polyaniline described above is 0.5%. About 10% by mass, about 0.5-10% by mass of acid dianhydride acting as a crosslinking agent, and about 1-10% by mass of lithium salt.
  • the gel precursor of the present invention has an organic solvent of 80 to 90% by mass, a polyaniline derivative of 1 to 5% by mass, and a lithium salt of 5 to 10% by mass because of the ease of gel formation. More preferably, the acid dianhydride is contained at 3 to 8% by mass.
  • the gel precursor of the present invention is gelled by heating to become a gel composition. Moreover, the gel precursor of this invention turns into a gel electrolyte by heating. These gel-like compositions and gel electrolytes are also objects of the present invention. The above heating is performed at 30 to 120 ° C. for 10 minutes to 6 hours.
  • Example 1 3.07 g of NMP solution of emeraldine-based polyaniline prepared in Production Example 1 was added to 0.27 g of lithium tetrafluoroborate (manufactured by STREM CHEMICALS, purity 98%), 1,2,3,4-cyclobutanetetracarboxylic dianhydride A product (hereinafter referred to as CBDA) 0.09 g was added and stirred with a magnetic stirrer for 30 minutes to prepare a gel precursor solution. Then, the stirring bar was taken out, and this gel precursor solution was heated for 30 minutes at a bath internal temperature of 80 ° C. using a dry bath incubator (manufactured by First Gene). After heating, when the sample tube used was turned upside down, the contents remained at the bottom of the sample tube and did not fall, so it was confirmed that the gel was gelled.
  • a dry bath incubator manufactured by First Gene
  • Example 3 Except for changing the addition of 0.27 g of lithium tetrafluoroborate (STREM CHEMICALS, purity 98%) to 0.31 g of lithium perchlorate (> 97.0% (T)) manufactured by Kanto Chemical Co., Inc.
  • a gel precursor solution was prepared in the same manner as in Example 1 and heated. After heating, when the sample tube used was turned upside down, the contents remained at the bottom of the sample tube and did not fall, so it was confirmed that the gel was gelled. Further, even after 2 weeks from gel formation, the gel was maintained.
  • Example 4 Addition of 0.27 g of lithium tetrafluoroborate (STREM CHEMICALS, purity 98%) to 0.31 g of lithium perchlorate (> 97.0% (T)) manufactured by CBDA A gel precursor solution was prepared and heated in the same manner as in Example 1 except that the amount added was 0.05 g. After heating, when the sample tube used was turned upside down, the contents remained at the bottom of the sample tube and did not fall, so it was confirmed that the gel was gelled. Further, even after 2 weeks from gel formation, the gel was maintained.
  • Example 5 A gel precursor solution was prepared in the same manner as in Example 1 except that the addition of CBDA was changed to the addition of 2,3,5-tricarboxycyclopentylacetic acid dianhydride represented by the following formula (A). Heated. After heating, when the sample tube used was turned upside down, the contents remained at the bottom of the sample tube and did not fall, so it was confirmed that the gel was gelled. Further, even after 2 weeks from gel formation, the gel was maintained.
  • Example 6 The same as in Example 1 except that the addition of CBDA was changed to the addition of 2,3,5-tricarboxycyclopentylacetic acid dianhydride represented by the above formula (A) and the addition amount was 0.05 g.
  • a gel precursor solution was prepared by the method and heated. After heating, when the sample tube used was turned upside down, the contents remained at the bottom of the sample tube and did not fall, so it was confirmed that the gel was gelled. Further, even after 2 weeks from gel formation, the gel was maintained.
  • Example 7 The addition of CBDA was changed to the addition of 1,2,3,4-cyclopentanetetracarboxylic dianhydride (Tokyo Chemical Industry Co., Ltd., purity> 98% (T)) represented by the following formula (B) Then, a gel precursor solution was prepared in the same manner as in Example 1 except that the amount added was 0.05 g, and heated. After heating, when the sample tube used was turned upside down, the contents remained at the bottom of the sample tube and did not fall, so it was confirmed that the gel was gelled. Further, even after 2 weeks from gel formation, the gel was maintained.
  • 1,2,3,4-cyclopentanetetracarboxylic dianhydride Tokyo Chemical Industry Co., Ltd., purity> 98% (T)
  • Example 8 A gel precursor solution was prepared in the same manner as in Example 1, and the gel was formed from the side surface (made of silicon rubber) of the conductivity measurement cell (length 2 cm, width 2 cm, height 0.5 cm) shown in FIG. The precursor solution was inserted with a syringe. The cell containing the precursor solution was heated at 80 ° C. for 30 minutes in a ventilation dryer (manufactured by Isuzu Seisakusho, constant temperature EPPH-214S) to gel the precursor solution, and then taken out from the dryer. The conductivity was measured after confirming that the cell was sufficiently cooled. The conductivity was measured using the AC impedance method.
  • both electrodes 1 (aluminum plates) of the cell shown in FIG. 1 are connected to an impedance analyzer (Advanced Potentiostat / Galvanostat PARSTAT (registered trademark) 2273 manufactured by Princeton Applied Research), and a measurement frequency range: 2 M to 100 mHz, Measurement temperature: The impedance of the cell was measured at 25 ° C. The obtained data was subjected to plane complex impedance analysis, and the conductivity was obtained from the resistance value of the sample obtained by performing the colle-coll plot graphic processing on the result. The measurement results are shown in Table 1.
  • Example 9 A gel precursor solution was prepared in the same manner as in Example 2, and a cell for measuring the AC impedance method was measured and measured using the same method as in Example 8. The measurement results are shown in Table 1.
  • Example 10 A gel precursor solution was prepared by the same method as in Example 3, and a cell for AC impedance method measurement was prepared and measured using the same method as in Example 8. The measurement results are shown in Table 1.
  • Example 11 A gel precursor solution was prepared by the same method as in Example 4, and a cell for AC impedance method measurement was prepared and measured using the same method as in Example 8. The measurement results are shown in Table 1.
  • Example 12 A gel precursor solution was prepared in the same manner as in Example 5, and a cell for AC impedance method measurement was prepared and measured using the same method as in Example 8. The measurement results are shown in Table 1.
  • Example 13 A gel precursor solution was prepared by the same method as in Example 6, and the AC impedance method measurement cell was prepared and measured using the same method as in Example 8. The measurement results are shown in Table 1.
  • Example 14 A gel precursor solution was prepared in the same manner as in Example 7, and the AC impedance method measurement cell was prepared and measured using the same method as in Example 8. The measurement results are shown in Table 1.
  • Example 15 In the same manner as in Example 1, a gel precursor solution was prepared, and an AC impedance measurement cell was prepared and measured using the same method as in Example 5 except that the impedance measurement temperature was 9 ° C. It was. The measurement results are shown in Table 1.
  • the gel electrolyte of the present invention has a high conductivity exceeding 2 mS / cm as a result of AC impedance measurement not only at room temperature (25 ° C.) but also at a low temperature region (9 ° C.). It was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

【課題】製造が容易であり、溶媒の回収という問題を解決でき、しかも、液体電解質において得られる、室温付近でおよそ2mS/cmを超えるイオン伝導度を達成できる、ゲル電解質を提供すること。 【解決手段】架橋されたポリアニリン誘導体、リチウム塩及び有機溶媒を含有するゲル電解質であって、前記架橋されたポリアニリン誘導体が、キノジイミン構造及び1,4-イミノフェニレン構造が、架橋構造を介して連結されており、そして、前記架橋されたポリアニリン誘導体中の窒素原子に対する、前記架橋構造に連結する窒素原子のモル数が0.1~25モル%である高分子化合物であることを特徴とする、ゲル電解質。

Description

ゲル電解質
 本発明は、ゲル電解質に関し、詳細には、架橋されたポリアニリン誘導体を用いた非水電池用のゲル電解質に関する。
 近年、パソコン、ビデオカメラ、携帯電話等電子機器の小型化に伴い、情報関連機器、通信機器等の携帯機器分野では、高電圧、高エネルギー密度という特等を有するリチウム二次電池等の非水電解質電池が注目を集め、特に、環境問題・資源問題に対応した電気自動車向けなどの用途は非常に期待されている分野であり、研究開発が活発に行われている。
 非水電解質電池に用いられる非水電解質は、一般的に可燃性である非水溶媒を含むことから、電池内部からの漏液を防止するために、電解質をソリッド状として封じ込め、電解質の漏洩を防止する技術が開示されている(特許文献1及び特許文献2)。
 このように電解質をソリッド状にとして封じ込めた電池は、薄型化が可能であること、形状選択の自由度の高さ、電解液を用いないことによる安全性の高さなどから、モバイル機器用の電源などとしても注目されている。こうした中で重要な技術課題として1)安全性の向上、2)サイクル特性の改善、3)高エネルギー密度化などが挙げられる。
 ソリッド状の電解質には、上述の技術課題に加え、(1)高いイオン導電率の実現、(2)自立性薄膜の形成、そして(3)その薄膜が良好な力学強度を有することなどが求められる。
 従来提案されている高分子固体電解質としては、ポリエチレンオキサイド系(以下PEO系)ポリマーに金属塩を溶解させたもの(特許文献3、特許文献4)が提案されているが、こうしたPEO系ポリマーを用いたこの種の固体電解質は溶媒を含まないことからイオン導電率が低いという問題点があった。
 これに対し、有機溶媒を含ませることによりイオン導電率を改善した高分子ゲル電解質として、ポリフッ化ビニリデン等のポリマーと、I族またはII族金属塩と、両者に対して優れた溶解性を有する有機溶媒からなる高分子ゲル電解質(特許文献5)などが提案されている。またポリフッ化ビニリデンを電解液のゲル化剤として用いるだけでなく、電極の結着剤としても用いてゲル状の非水電解質と負極との親和性を保ち、高容量であり、負荷特性やサイクル特性が良好であるとするゲル状電解質二次電池も提案されている(特許文献6)。
 一方、ポリアニリン等の導電性高分子は、電子材料、導電材料として、電池の電極材料、帯電防止材料、電磁波遮蔽材料、光電子変換素子、光メモリー、各種センサー等の機能素子、表示素子、各種ハイブリッド材料、透明導電体、各種端末機器など、広い分野への応用が検討されている。ポリアニリンは、それ自身を化学架橋する方法も種々開示されている(特許文献7)。
 従来提案されているPEO系やポリフッ化ビニリデン系の高分子ゲル化剤を用いたゲル電解質の作製には、その多くの場合、電解液を含有したゲルシートを作製し、それをゲル電解質として使用している。ただし、この種のゲルシート作製の際に、溶媒を揮発させる工程が必要となり、電池の作製時に、電池内に電解液を注ぎいれるといった簡便な作製方法を採用することは困難である。また、環境負荷への影響を考慮すると、この揮発した溶媒の回収という新たな問題も生じる。
 なお、PEO系の高分子ゲル化剤を用いたゲル電解質には、ゲル化剤であるPEO系のポリマーを電解液中で架橋反応させることでゲル化を進行させるものが提案されている(特許文献4)。この場合は溶媒を揮発させる工程を必要としないものの、ゲル化させるために比較的多量のゲル化剤が必要となり、これが導電性の低下につながることとなり、電池の出力特性等への影響が懸念される。
 またこれまで提案されたイオン伝導性ゲル電解質は、従来の有機電解液を用いる液体電解質で得られる伝導度:10-3~10-2S/cmに十分匹敵する性能を有しているとは到底言えないものであった。
 本発明は、上記の事情に基づいてなされたものであり、その解決しようとする課題は、製造が容易であり、溶媒の回収という問題を解決でき、しかも、液体電解質において得られる、室温付近でおよそ1mS/cmを超えるイオン伝導度を達成できる、ゲル電解質を提供することにある。
 本発明者らは、上記の課題を解決すべく鋭意研究を行った結果、架橋された特定のポリアニリン誘導体をゲル化剤として採用し、これとリチウム塩及び有機溶媒とを含むゲル電解質が、良好なイオン伝導性を有することを見出し、本発明を完成させた。
 すなわち、本発明は、第1観点として、架橋されたポリアニリン誘導体、リチウム塩及び有機溶媒を含有するゲル電解質であって、
前記架橋されたポリアニリン誘導体が、式(I)で表されるキノジイミン構造及び式(II)で表される1,4-イミノフェニレン構造が、式(III)で表される架橋構造を介して連結されており、
Figure JPOXMLDOC01-appb-C000006
(これらの式中、mはキノジイミン構造のモル数を表し、nは1,4-イミノフェニレン構造のモル数を表す。ただし、m+nが10~6000を表す。)
Figure JPOXMLDOC01-appb-C000007
(式中、Mは水素原子又はアルカリ金属原子を表し、Xは飽和脂環式の四価の基を表し、*は式(I)で表されるキノジイミン構造及び式(II)で表される1,4-イミノフェニレン構造中の窒素原子との連結箇所を表す。)
そして、
前記架橋されたポリアニリン誘導体中の窒素原子に対する、式(III)で表される架橋構造に連結する窒素原子のモル数が0.1~25モル%である高分子化合物であることを特徴とする、ゲル電解質に関する。
 第2観点として、前記式(III)中のXが、下記式(IV)で表される11の構造から選択される基を表す、第1観点に記載のゲル電解質に関する。
Figure JPOXMLDOC01-appb-C000008
 第3観点として、ポリアニリン誘導体、酸二無水物、リチウム塩、有機溶媒を含有するゲル前駆体であって、
前記ポリアニリン誘導体が、主鎖として下記式(I)で表されるキノジイミン構造及び式(II)で表される1,4-イミノフェニレン構造を有する高分子化合物であることを特徴とする、ゲル前駆体に関する。
Figure JPOXMLDOC01-appb-C000009
(これらの式中、mはキノジイミン構造のモル数を表し、nは1,4-イミノフェニレン構造のモル数を表す。ただし、m+nが10~6000を表す。)
 第4観点として、前記酸二無水物が下記式(V)で表される11の化合物から選択される、第3観点に記載のゲル前駆体に関する。
Figure JPOXMLDOC01-appb-C000010
 第5観点として、前記リチウム塩が、LiPF6、LiBF4、LiClO4及びLiAsF6からなる群から選択される無機リチウム塩、及びその無機リチウム塩の誘導体、LiSO3CF3、LiN(SO3CF32、LiN(SO2252及びLiN(SO2CF3)(SO249)からなる群から選択される有機リチウム塩、及びその有機リチウム塩の誘導体からなる群から選択される少なくとも1種である、第3観点に記載のゲル前駆体に関する。
 第6観点として、前記リチウム塩が、LiClO4又はLiBF4である、第5観点に記載のゲル前駆体に関する。
 第7観点として、前記有機溶媒が、前記ポリアニリン誘導体を溶解可能な有機溶媒である、第3観点記載のゲル前駆体に関する。
 第8観点として、前記有機溶媒が、N-メチル-2-ピロリドンである、第3観点に記載のゲル前駆体に関する。
 第9観点として、第3観点乃至第8観点のうちいずれか一項に記載のゲル前駆体を加熱して得られるゲル状組成物に関する。
 第10観点として、第3観点乃至第8観点のうちいずれか一項に記載のゲル前駆体を加熱して得られるゲル電解質に関する。
 本発明のゲル電解質は、室温で2mS/cmを超える高いイオン伝導性を有する。
 また本発明のゲル前駆体は、リチウム塩を含有した状態でゲル化可能であるため、リチウム電池用のゲル電解質として利用することができる。
 さらに本発明のゲル前駆体は、ゲル前駆体としてポリアニリン誘導体、リチウム塩、酸無水物及び有機溶媒を混合した時点では、均一な溶液状態を保っている。このため、本発明のゲル前駆体から電池を製造するにあたり、従来のゲルシート作成法に従うゲル電解質において困難とされた、電池内に電解液を注ぎいれる電池の作製方法を採用できる。そして本発明のゲル前駆体は、電池セル内に溶液状態で添加することができることから、電池性能(耐久性、サイクル特性、内部抵抗)の安定化が期待できる。
 そして本発明のゲル前駆体はゲル形成に加熱を必要とするが、これは溶媒の揮発を促すものではなく、ポリアニリンの熱架橋を目的とするものである。このため、本発明のゲル前駆体から電池を製造するにあたり、従来のゲルシート作成によるゲル電解質で問題とされた揮発による溶媒の回収を考慮する必要がない。
図1は、実施例において伝導性の評価に用いた伝導度測定用のセルを示す図である。
 本発明に係るゲル電解質は、ポリアニリンを酸二無水物で架橋したポリアニリン誘導体を高分子ゲル化剤として用い、有機溶媒及びリチウム塩を含みて構成される。
 本発明において、高分子ゲル化剤である架橋されたポリアニリン誘導体は、主骨格のポリアニリンが酸二無水物に架橋されている構造を有している点だけでなく、ポリアニリン自身が有するπ-π*相互作用もまた、ゲル化の起因となっているものと考えられる。
 すなわち、本発明で用いる架橋されたポリアニリン誘導体は化学架橋と物理架橋の双方の性質を有する非常に高いゲル化能を有する高分子ゲル化剤であり、このため、溶媒のゲル化に必要なゲル化剤の含有量が少なくすることが可能となり、ひいてはイオン伝導度の向上につながる。
 また、ポリアニリン誘導体に含まれる窒素原子上の非共有電子対、並びに、架橋剤である酸二無水物由来のカルボキシル基により、リチウムイオンの易動度を向上させる可能性があるため、こうした特徴からも、本発明のゲル電解質は他のゲル化剤にはない非常に高いリチウムイオン伝導性が期待できるものである。
 以下、本発明を詳細に説明する。
[ゲル電解質]
 本発明は、架橋されたポリアニリン誘導体、リチウム塩及び有機溶媒を含有することを特徴とするゲル電解質であって、前記架橋されたポリアニリン誘導体が、式(I)で表されるキノジイミン構造及び式(II)で表される1,4-イミノフェニレン構造が、式(III)で表される架橋構造を介して連結されており、
Figure JPOXMLDOC01-appb-C000011
(これらの式中、mはキノジイミン構造のモル数を表し、nは1,4-イミノフェニレン構造のモル数を表す。ただし、m+nが10~6000を表す。)
Figure JPOXMLDOC01-appb-C000012
(式中、Mは水素原子又はアルカリ金属原子を表し、Xは飽和脂環式の四価の基を表し、*は式(I)で表されるキノジイミン構造及び式(II)で表される1,4-イミノフェニレン構造中の窒素原子との連結箇所を表す。)、そして、前記架橋されたポリアニリン誘導体中の窒素原子に対する、式(III)で表される架橋構造に連結する窒素原子のモル数が0.1~25モル%である高分子化合物であることを特徴とする、ゲル電解質である。
 さらに、前記ポリアニリン誘導体の繰り返し単位数に対する、式(I)中に記載されているm、式(II)中に記載されているnについては、互いに0~6000であれば特に限定されることはない。好ましくは、mがnの1/10以上、あるいはnがmの1/10以上であり、より好ましくはmがnの1/2であり、nが0~4000であることを特徴する、ゲル電解質である。
 前記式(III)中のXが、下記式(IV)で表される11の構造から選択される基を表すことが好ましい。
Figure JPOXMLDOC01-appb-C000013
[ゲル前駆体]
 本発明のゲル電解質は、実際には前記式(I)で表されるキノンジイミン構造と前記式(II)で表される1,4-イミノフェニレン構造を有するポリアニリン誘導体と、該誘導体の架橋剤である酸二無水物、リチウム塩、有機溶媒を含有するゲル前駆体を加熱することによって作成される。
 ポリアニリン誘導体の架橋に用いられる架橋剤としては、酸二無水物であり、前述の(IV)群に挙げた化学構造のうちの一つをその構造内に有するものであれば特に限定することなく使用可能であり、例えば、以下の11の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 上記に挙げた酸二無水物は2種類以上併用することもできる。これらの中でも特に、以下の4つの化合物を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000015
 これら酸二無水物は、ポリアニリン誘導体に対して5質量%~100質量%の量にて使用される。
 また架橋反応の媒体であり、ゲル化の対象である有機溶媒は特に限定されるものではなく、使用可能な有機溶媒としては、例えば、トルエン、p-キシレン、o-キシレン、m-キシレン、エチルベンゼン、スチレン、エチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコ-ルモノブチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコール、1-オクタノール、エチレングリコール、プロピレングリコール、ヘキシレングリコール、トリメチレングリコール、1-メトキシ-2-ブタノール、シクロヘキサノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、ベンジルアルコール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、γ-ブチロラクトン、ε-カプロラクタム、アセトン、メチルエチルケトン、メチルイソプロピルケトン、ジエチルケトン、メチルイソブチルケトン、メチル-n-ブチルケトン、シクロヘキサノン、酢酸エチル、酢酸イソプロピルケトン、酢酸-n-プロピル、酢酸イソブチル、酢酸-n-ブチル、乳酸エチル、メタノール、エタノール、イソプロパノール、tert-ブタノール、アリルアルコール、n-プロパノール、2-メチル-2-ブタノール、イソブタノール、n-ブタノール、2-メチル-1-ブタノール、1-ペンタノール、2-メチル-1-ペンタノール、2-エチルヘキサノール、イソプロピルエーテル、テトラヒドロフラン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド、N-シクロヘキシル-2-ピロリジノン、モルホリン、N-メチルモルホリン、N-エチルモルホリン、N-ホルミルモルホリン、N-アセチルモルホリン、N-メチルモルホリン、N-アクリロイルモルホリン、N-(3-アミノ)モルホリン等が挙げられる。中でも、ポリアニリン誘導体の溶解性の観点から、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ε-カプロラクタム、N-アクリロイルモルホリン等が好適であり、特にN-メチル-2-ピロリドンが好ましい。
 使用されるリチウム塩は、前述の有機溶媒に溶解可能であれば特に限定されることはない。あえてリチウム塩を具体的に例示するなら、LiPF6、LiBF4、LiClO4およびLiAsF6から選ばれる無機リチウム塩、それら無機リチウム塩の誘導体、LiSO3CF3、LiN(SO3CF32、LiN(SO2252およびLiN(SO2CF3)(SO249)から選ばれる有機リチウム塩、並びにその有機リチウム塩の誘導体が挙げられる。
 これらのリチウム塩の中でも、ゲルの形成し易さ観点から特にLiBF4、LiClO4がより好ましい。
 本発明のゲル電解質中の組成比(質量比)は、目的とする性能(ゲル強度、伝導度等)に応じて適宜設定すればよく、例えば、有機溶媒は80~99質量%、上記架橋されたポリアニリン誘導体は1~20質量%、リチウム塩1~10質量%程度とすればよい。
 したがって、ゲル前駆体の組成比(質量比)についてもゲル電解質と同様、目的とする性能に応じて適宜設定すれよく、例えば、有機溶媒は80~99質量%、上記記載のポリアニリンは0.5~10質量%、架橋剤として作用する酸二無水物は0.5~10質量%、リチウム塩は1~10質量%程度とすれば良い。
 これらの組成の中でも、ゲルの形成し易さという点から、本発明のゲル前駆体において、有機溶媒は80~90質量%、ポリアニリン誘導体は1~5質量%、リチウム塩は5~10質量%、そして酸二無水物は3~8質量%にて含まれてなることがより好ましい。
 本発明のゲル前駆体は、加熱することによりゲル化し、ゲル状組成物となる。また本発明のゲル前駆体は、加熱することによりゲル電解質となる。これら該ゲル状組成物及びゲル電解質も、本発明の対象である。
 上述の加熱は、30~120℃で、10分~6時間で実施される。
 なお、本発明においては、本発明の効果を損なわない限りにおいて、その他の成分、例えば、界面活性剤等が含まれていてもよい。
 以下、実施例により本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
[製造例1]
 N-メチル-2-ピロリドン(純正化学(株)製、純正特級)(以下、NMPという)200.0gの中に、特許第2855206号公報の参考例1記載の方法にて合成したエメラルジンベース型ポリアニリン(Mw:53,000、Mn:19,000)6.2gを加え、ホモディスパー(プライミクス株式会社製)を用いて5,000rpmで30分間処理を行った。
(ゲル化の確認)
[実施例1]
 製造例1で作製したエメラルジンベース型ポリアニリンのNMP溶液3.03gにテトラフルオロホウ酸リチウム(STREM CHEMICALS社製、純度 98%)0.27g、1,2,3,4-シクロブタンテトラカルボン酸二無水物(以下、CBDAという)0.09gを添加し、30分間マグネチックスターラーで撹拌し、ゲル前駆体溶液を調製した。その後、撹拌子を取り出し、このゲル前駆体溶液をドライ・バス・インキュベーター(First Gene社製)を用いて、バス内温度80℃で30分間加熱した。
 加熱後、使用したサンプル管を倒置させたところ、内容物はサンプル管の底に留まって落ちてこなかったため、ゲル化していることが確認できた。
[実施例2]
 CBDAの添加量を0.05gとした以外は実施例1と同様の方法にてゲル前駆体溶液を調製し、加熱を行った。
 加熱後、使用したサンプル管を倒置させたところ、内容物はサンプル管の底に留まって落ちてこなかったため、ゲル化していることが確認できた。また、ゲル形成後2週間経過しても、ゲルの状態で保たれていた。
[実施例3]
 テトラフルオロホウ酸リチウム(STREM CHEMICALS社製、純度 98%)0.27gの添加を過塩素酸リチウム(関東化学株式会社製、>97.0%(T))0.31gの添加変更した以外は実施例1と同様の方法にてゲル前駆体溶液を調製し、加熱を行った。
 加熱後、使用したサンプル管を倒置させたところ、内容物はサンプル管の底に留まって落ちてこなかったため、ゲル化していることが確認できた。また、ゲル形成後2週間経過しても、ゲルの状態で保たれていた。
[実施例4]
 テトラフルオロホウ酸リチウム(STREM CHEMICALS社製、純度 98%)0.27gの添加を過塩素酸リチウム(関東化学株式会社製、>97.0%(T))0.31gの添加にし、CBDAの添加量を0.05gとした以外は実施例1と同様の方法にてゲル前駆体溶液を調製し、加熱を行った。
 加熱後、使用したサンプル管を倒置させたところ、内容物はサンプル管の底に留まって落ちてこなかったため、ゲル化していることが確認できた。また、ゲル形成後2週間経過しても、ゲルの状態で保たれていた。
[実施例5]
 CBDAの添加を下記の式(A)で表される2,3,5-トリカルボキシシクロペンチル酢酸二無水物の添加に変更した以外は実施例1と同様の方法にてゲル前駆体溶液を調製し、加熱を行った。
 加熱後、使用したサンプル管を倒置させたところ、内容物はサンプル管の底に留まって落ちてこなかったため、ゲル化していることが確認できた。また、ゲル形成後2週間経過しても、ゲルの状態で保たれていた。
Figure JPOXMLDOC01-appb-C000016
[実施例6]
 CBDAの添加を上記式(A)で表される2,3,5-トリカルボキシシクロペンチル酢酸二無水物の添加に変更し、その添加量を0.05gとした以外は、実施例1と同様の方法にてゲル前駆体溶液を調製し、加熱を行った。
 加熱後、使用したサンプル管を倒置させたところ、内容物はサンプル管の底に留まって落ちてこなかったため、ゲル化していることが確認できた。また、ゲル形成後2週間経過しても、ゲルの状態で保たれていた。
[実施例7]
 CBDAの添加を下記の式(B)で表される1,2,3,4-シクロペンタンテトラカルボン酸二無水物(東京化成工業株式会社製、純度 >98%(T))の添加に変更し、その添加量を0.05gとした以外は実施例1と同様の方法にてゲル前駆体溶液を調製し、加熱を行った。
 加熱後、使用したサンプル管を倒置させたところ、内容物はサンプル管の底に留まって落ちてこなかったため、ゲル化していることが確認できた。また、ゲル形成後2週間経過しても、ゲルの状態で保たれていた。
Figure JPOXMLDOC01-appb-C000017
(伝導性の評価)
[実施例8]
 実施例1と同様の方法で、ゲル前駆体溶液を調製し、図1に示す伝導度測定用のセル(縦2cm、横2cm、高さ0.5cm)の側面(シリコンゴム製)から該ゲル前駆体溶液を注射器で挿入した。この前駆体溶液の入ったセルを送風乾燥器(株式会社いすゞ製作所製、恒温器 EPPH-214S)内、80℃で30分間加熱して該前駆体溶液をゲル化させた後、乾燥器から取り出し、セルが十分に冷却されていることを確認した上で伝導度測定を行った。伝導度測定には交流インピーダンス法を用いて測定した。具体的には、図1に示すセルの両電極1(アルミニウム板)をインピーダンス・アナライザー(Prinston Applied Resurch製 Advanced Potentiostat/Galvanostat PARSTAT(登録商標)2273)に接続し、測定周波数範囲:2M~100mHz、測定温度:25℃でセルのインピーダンスを測定した。得られたデータを平面複素インピーダンス解析し、その結果をcole-coleプロット図形処理をして得られたサンプルの抵抗値から導電率を求めた。測定結果を表1に示す。
[実施例9]
 実施例2と同様の方法で、ゲル前駆体溶液を調製し、実施例8と同様の方法を用いて交流インピーダンス法測定用セルの作製及び測定を行った。測定結果を表1に示す。
[実施例10]
 実施例3と同様の方法で、ゲル前駆体溶液を調製し、実施例8と同様の方法を用いて交流インピーダンス法測定用セルの作製及び測定を行った。測定結果を表1に示す。
[実施例11]
 実施例4と同様の方法で、ゲル前駆体溶液を調製し、実施例8と同様の方法を用いて交流インピーダンス法測定用セルの作製及び測定を行った。測定結果を表1に示す。
[実施例12]
 実施例5と同様の方法で、ゲル前駆体溶液を調製し、実施例8と同様の方法を用いて交流インピーダンス法測定用セルの作製及び測定を行った。測定結果を表1に示す。
[実施例13]
 実施例6と同様の方法で、ゲル前駆体溶液を調製し、実施例8と同様の方法を用いて交流インピーダンス法測定用セルの作製及び測定を行った。測定結果を表1に示す。
[実施例14]
 実施例7と同様の方法で、ゲル前駆体溶液を調製し、実施例8と同様の方法を用いて交流インピーダンス法測定用セルの作製及び測定を行った。測定結果を表1に示す。
[実施例15]
 実施例1と同様の方法で、ゲル前駆体溶液を調製し、インピーダンス測定温度を9℃とした以外は、実施例5と同様の方法を用いて交流インピーダンス法測定用セルの作製及び測定を行った。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000018
 本発明のゲル前駆体溶液において、ポリアニリン誘導体3wt%、架橋剤1.5乃至3wt%という比較的少ない添加量にて、またリチウム塩を含みて、ゲル化が達成できた。
 また表1に示すように、本発明のゲル電解質は、常温(25℃)においてだけでなく、低温領域(9℃)においても、交流インピーダンス測定の結果、2mS/cmを超える高い導電性が得られた。
特開2000-223105号公報 特開2000-348769号公報 米国特許第4303748号明細書 特開平8-7924号公報 特公昭61-23947号公報 特開2010-147031号公報 特開平5-194735号公報
1・・・電極(アルミ板)
2・・・シリコンゴム(セル)

Claims (10)

  1. 架橋されたポリアニリン誘導体、リチウム塩及び有機溶媒を含有するゲル電解質であって、
    前記架橋されたポリアニリン誘導体が、式(I)で表されるキノジイミン構造及び式(II)で表される1,4-イミノフェニレン構造が、式(III)で表される架橋構造を介して連結されており、
    Figure JPOXMLDOC01-appb-C000001
    (これらの式中、mはキノジイミン構造のモル数を表し、nは1,4-イミノフェニレン構造のモル数を表す。ただし、m+nが10~6000を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Mは水素原子又はアルカリ金属原子を表し、Xは飽和脂環式の四価の基を表し、*は式(I)で表されるキノジイミン構造及び式(II)で表される1,4-イミノフェニレン構造中の窒素原子との連結箇所を表す。)
    そして、
    前記架橋されたポリアニリン誘導体中の窒素原子に対する、式(III)で表される架橋構造に連結する窒素原子のモル数が0.1~25モル%である高分子化合物であることを特徴とする、ゲル電解質。
  2. 前記式(III)中のXが、下記式(IV)で表される11の構造から選択される基を表す、請求項1に記載のゲル電解質。
    Figure JPOXMLDOC01-appb-C000003
  3. ポリアニリン誘導体、酸二無水物、リチウム塩、有機溶媒を含有するゲル前駆体であって、
    前記ポリアニリン誘導体が、主鎖として下記式(I)で表されるキノジイミン構造及び式(II)で表される1,4-イミノフェニレン構造を有する高分子化合物であることを特徴とする、ゲル前駆体。
    Figure JPOXMLDOC01-appb-C000004
    (これらの式中、mはキノジイミン構造のモル数を表し、nは1,4-イミノフェニレン構造のモル数を表す。ただし、m+nが10~6000を表す。)
  4. 前記酸二無水物が下記式(V)で表される11の化合物から選択される、請求項3に記載のゲル前駆体。
    Figure JPOXMLDOC01-appb-C000005
  5. 前記リチウム塩が、LiPF6、LiBF4、LiClO4及びLiAsF6からなる群から選択される無機リチウム塩、及びその無機リチウム塩の誘導体、LiSO3CF3、LiN(SO3CF32、LiN(SO2252及びLiN(SO2CF3)(SO249)からなる群から選択される有機リチウム塩、及びその有機リチウム塩の誘導体からなる群から選択される少なくとも1種である、請求項3に記載のゲル前駆体。
  6. 前記リチウム塩が、LiClO4又はLiBF4である、請求項5に記載のゲル前駆体。
  7. 前記有機溶媒が、前記ポリアニリン誘導体を溶解可能な有機溶媒である、請求項3に記載のゲル前駆体。
  8. 前記有機溶媒が、N-メチル-2-ピロリドンである、請求項3に記載のゲル前駆体。
  9. 請求項3乃至請求項8のうちいずれか一項に記載のゲル前駆体を加熱して得られるゲル状組成物。
  10. 請求項3乃至請求項8のうちいずれか一項に記載のゲル前駆体を加熱して得られるゲル電解質。
PCT/JP2012/055847 2011-03-31 2012-03-07 ゲル電解質 WO2012132807A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013507325A JP5999370B2 (ja) 2011-03-31 2012-03-07 ゲル電解質

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011080598 2011-03-31
JP2011-080598 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012132807A1 true WO2012132807A1 (ja) 2012-10-04

Family

ID=46930552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055847 WO2012132807A1 (ja) 2011-03-31 2012-03-07 ゲル電解質

Country Status (3)

Country Link
JP (1) JP5999370B2 (ja)
TW (1) TW201301620A (ja)
WO (1) WO2012132807A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183013A (ja) * 2016-03-29 2017-10-05 三菱ケミカル株式会社 非水系電解液及びそれを用いた非水系電解液電池
CN112652813A (zh) * 2020-12-21 2021-04-13 中南大学 一种pan与改性plla组成的生物凝胶电解质及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102664359B1 (ko) * 2016-11-10 2024-05-09 솔브레인 주식회사 전해액 및 이를 포함하는 리튬 이차 전지

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198303A (ja) * 1992-01-21 1993-08-06 Dai Ichi Kogyo Seiyaku Co Ltd 電 池
JP2010113939A (ja) * 2008-11-06 2010-05-20 Nissan Motor Co Ltd 双極型二次電池およびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2645966B2 (ja) * 1992-10-20 1997-08-25 株式会社巴川製紙所 電 極

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198303A (ja) * 1992-01-21 1993-08-06 Dai Ichi Kogyo Seiyaku Co Ltd 電 池
JP2010113939A (ja) * 2008-11-06 2010-05-20 Nissan Motor Co Ltd 双極型二次電池およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183013A (ja) * 2016-03-29 2017-10-05 三菱ケミカル株式会社 非水系電解液及びそれを用いた非水系電解液電池
CN112652813A (zh) * 2020-12-21 2021-04-13 中南大学 一种pan与改性plla组成的生物凝胶电解质及其制备方法

Also Published As

Publication number Publication date
TW201301620A (zh) 2013-01-01
JP5999370B2 (ja) 2016-09-28
JPWO2012132807A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
Cong et al. Unlocking the Poly (vinylidene fluoride-co-hexafluoropropylene)/Li10GeP2S12 composite solid-state Electrolytes for Dendrite-Free Li metal batteries assisting with perfluoropolyethers as bifunctional adjuvant
Wang et al. Poly (ionic liquid) s-in-salt electrolytes with co-coordination-assisted lithium-ion transport for safe batteries
Lee et al. PEO based polymer electrolyte comprised of epoxidized natural rubber material (ENR50) for Li-Ion polymer battery application
Wang et al. In-Situ synthesized Non-flammable gel polymer electrolyte enable highly safe and Dendrite-Free lithium metal batteries
Ahmad RETRACTED ARTICLE: Polymer electrolytes: characteristics and peculiarities
Pont et al. Pyrrolidinium-based polymeric ionic liquids as mechanically and electrochemically stable polymer electrolytes
Oubaha et al. Carbonyl‐based π‐conjugated materials: from synthesis to applications in lithium‐ion batteries
Lu et al. Polymeric polyhedral oligomeric silsesquioxane ionic liquids based solid polymer electrolytes for lithium ion batteries
Shang et al. A novel polyhedral oligomeric silsesquioxane based ionic liquids (POSS-ILs) polymer electrolytes for lithium ion batteries
Ogihara et al. Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes
Jin et al. Li/LiFePO4 batteries with room temperature ionic liquid as electrolyte
JP6203585B2 (ja) 溶媒可溶性の正極活物質を含む電池
Na et al. Hybrid ionogel electrolytes with POSS epoxy networks for high temperature lithium ion capacitors
WO2020084828A1 (ja) ポリマー、電極活物質及び二次電池
JP5999370B2 (ja) ゲル電解質
Javadian et al. Effect of imidazolium-based ionic liquid as electrolyte additive on electrochemical performance of 18650 cylindrical Li-ion batteries at room and 60° C temperatures
Du et al. Ameliorating structural and electrochemical properties of traditional poly-dioxolane electrolytes via integrated design of ultra-stable network for solid-state batteries
Niu et al. Preparation of imidazolium based polymerized ionic liquids gel polymer electrolytes for high-performance lithium batteries
US8841406B2 (en) Branched rod-coil polyimide—poly( alkylene oxide) copolymers and electrolyte compositions
US8871390B2 (en) PAN-PEO gels with improved conductance and solvent retention
JP2014130706A (ja) 蓄電デバイス用正極および蓄電デバイス
Swiderska-Mocek et al. Preparation and electrochemical properties of polymer electrolyte containing lithium difluoro (oxalato) borate or lithium bis (oxalate) borate for Li-ion polymer batteries
Hong et al. Solid polymer electrolytes from double-comb Poly (methylhydrosiloxane) based on quaternary ammonium moiety-containing crosslinking system for Li/S battery
Ma et al. New oligoether plasticizers for poly (ethylene oxide)-based solid polymer electrolytes
JPH02223160A (ja) 全固態リチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12762771

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507325

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12762771

Country of ref document: EP

Kind code of ref document: A1