WO2012132688A1 - 光伝送装置 - Google Patents

光伝送装置 Download PDF

Info

Publication number
WO2012132688A1
WO2012132688A1 PCT/JP2012/054612 JP2012054612W WO2012132688A1 WO 2012132688 A1 WO2012132688 A1 WO 2012132688A1 JP 2012054612 W JP2012054612 W JP 2012054612W WO 2012132688 A1 WO2012132688 A1 WO 2012132688A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
band
circuit
input
Prior art date
Application number
PCT/JP2012/054612
Other languages
English (en)
French (fr)
Inventor
井上 貴則
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2013507286A priority Critical patent/JP5700117B2/ja
Priority to EP12765332.7A priority patent/EP2690800A4/en
Priority to CN2012800138805A priority patent/CN103460628A/zh
Priority to US13/984,905 priority patent/US20130315591A1/en
Publication of WO2012132688A1 publication Critical patent/WO2012132688A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0209Multi-stage arrangements, e.g. by cascading multiplexers or demultiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0213Groups of channels or wave bands arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/028WDM bus architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0204Broadcast and select arrangements, e.g. with an optical splitter at the input before adding or dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0205Select and combine arrangements, e.g. with an optical combiner at the output after adding or dropping

Definitions

  • the present invention relates to an optical transmission apparatus in an optical communication system.
  • An OADM (Optical Add / Drop Multiplexing) device installed in a land-based optical communication network has been applied to an optical submarine cable system. Therefore, the optical submarine cable system can cope with the diversity of networks.
  • the OADM function is provided in the branching device laid on the seabed. Therefore, when changing the network configuration after the start of operation, the branching device is lifted from the seabed to the land and matched to the planned network configuration. It was necessary to replace the optical filter.
  • ROADM Reconfigurable OADM
  • WSS Widelength Selective Switch
  • the WSS has three functions: “demultiplexing” to divide the input optical signal by wavelength, “switching” for selecting the demultiplexed optical signal, and “multiplexing” of the selected optical signal. It is a wavelength selective device.
  • Japanese Patent Application Laid-Open No. 2002-262319 discloses an optical path cross-connect device using an optical matrix switch for the switching function among the above three functions. With the techniques disclosed in these documents, the network configuration can be changed in units of wavelengths.
  • the wavelength selection device such as WSS has a complicated configuration
  • the manufacturing cost increases when the wavelength selection device is used in the ROADM apparatus.
  • the optical submarine cable system is required to be reliable for stable operation over a long period of 25 years.
  • the reliability of the wavelength selective device having a complicated configuration is low for use on the seabed. .
  • One of the objects of the present invention is to provide a reconfigurable optical transmission apparatus that suppresses manufacturing costs and improves reliability.
  • An optical transmission device is a demultiplexer that demultiplexes an input optical signal into a plurality of wavelength bands, and a plurality of optical signals that are demultiplexed by the demultiplexer.
  • a plurality of optical switches composed of optical blockers or variable optical attenuators that transmit or block the optical signals, a first optical coupler that combines the optical signals output from the plurality of optical switches,
  • Each of the optical switches has a control unit for setting transmission or blocking of the demultiplexed optical signal.
  • FIG. 1 is a block diagram showing a configuration example of the optical submarine cable system of the present embodiment.
  • FIG. 2 is a block diagram showing a configuration example of the optical add / drop circuit shown in FIG.
  • FIG. 3 is a block diagram showing a configuration example of the RAOADM circuit of the present embodiment.
  • FIG. 4 is a block diagram illustrating a configuration example of the RAOADM circuit according to the first embodiment.
  • FIG. 5 is a block diagram illustrating a configuration example of the RAOADM circuit according to the second embodiment.
  • FIG. 6 is a block diagram illustrating a configuration example of the RAOADM circuit according to the third embodiment.
  • FIG. 7 is a block diagram illustrating a configuration example of the RAOADM circuit according to the fourth embodiment.
  • FIG. 1 is a block diagram showing a configuration example of the optical submarine cable system of the present embodiment.
  • the optical submarine cable system has landing stations 2 to 4 that transmit and receive optical signals and an optical add / drop branch device 1 that transmits optical signals received from the landing stations.
  • the optical add / drop branch device 1 is provided on the seabed, and is connected to each of the landing stations 2 to 4 provided on land via a seabed cable including the transmission path 5.
  • the landing station 2 and the landing station 4 are opposed to each other via the optical add / drop branch device 1 and are called “trunk stations”.
  • the landing station 3 is branched from a transmission path 5 connecting the landing station 2 and the landing station 4 and is called a “branch station”.
  • An optical repeater 6 that amplifies and outputs the optical signal is provided in the middle of the transmission line 5 in order to compensate for the loss of the optical signal in the optical fiber in the transmission line 5.
  • Each of the optical signal sent from the landing station 2 to the optical add / drop branching apparatus 1 and the optical signal sent from the landing station 4 to the optical add / drop branching apparatus 1 are called trunk signals.
  • the trunk signal transmitted from the landing station 2 to the optical add / drop branch device 1 is divided into two wavelength bands.
  • the optical signal in the first wavelength band is referred to as a trunk band signal 7a
  • the optical signal in the second wavelength band is referred to as a drop band signal 8a.
  • the trunk signal transmitted from the landing station 4 to the optical add / drop branch device 1 is also divided into two wavelength bands.
  • the optical signal in the first wavelength band is referred to as a trunk band signal 7b
  • the optical signal in the second wavelength band is referred to as a drop band signal 8b.
  • An optical signal transmitted from the landing station 3 to the optical add / drop branch device 1 is referred to as a branch signal.
  • the branch signal may be an optical signal including a plurality of wavelength bands. However, in the present embodiment, in order to simplify the description, it is assumed that the branch signal includes only an optical signal of the second wavelength band.
  • a branch signal transmitted from the landing station 3 to the landing station 4 is referred to as an add band signal 9a
  • a branch signal transmitted from the landing station 3 to the landing station 2 is referred to as an add band signal 9b.
  • the optical add / drop branching apparatus 1 includes optical add / drop circuits 10a and 10b.
  • the optical add / drop circuit 10 a transmits the trunk signal received from the landing station 2 to the landing station 3, removes a part from the trunk signal, and adds a branch signal received from the landing station 3 to land. Transmit to the lift station 4.
  • the optical add / drop circuit 10a receives a trunk signal including the trunk band signal 7a and the drop band signal 8a from the landing station 2, it transmits the trunk signal to the landing station 3. To do.
  • the optical add / drop circuit 10a extracts the drop band signal 8a from the trunk signal received from the landing station 2 and combines the add band signal 9a received from the landing station 3 with the trunk band signal 7a. Send to Landing Station 4.
  • the optical add / drop circuit 10 b transmits the trunk signal received from the landing station 4 to the landing station 3, removes a part from the trunk signal, and adds a branch signal received from the landing station 3 to land. Sent to lifting station 2.
  • the optical add / drop circuit 10b receives a trunk signal including the trunk band signal 7b and the drop band signal 8b from the landing station 4, it transmits the trunk signal to the landing station 3. To do.
  • the optical add / drop circuit 10b extracts the drop band signal 8b from the trunk signal received from the landing station 4 and combines the add band signal 9b and the trunk band signal 7b received from the landing station 3 with each other. Send to Landing Station 2.
  • FIG. 2 is a block diagram showing a configuration example of the optical add / drop circuit 10a. Since the configuration of the optical add / drop circuit 10b is the same as that of the optical add / drop circuit 10a, detailed description thereof is omitted.
  • the optical add / drop circuit 10a includes an optical coupler 12 that distributes optical signals, a ROADM circuit 15 and a ROADM circuit 17 that transmit optical signals in a predetermined wavelength band, and an optical coupler 14 that combines optical signals having different wavelength bands. And two input ports 11 and 13 and two output ports 16 and 18.
  • the input port 11 is connected to the landing station 2 through the transmission line 5, and a trunk signal is input from the landing station 2.
  • the input port 13 is connected to the landing station 3 via the transmission line 5, and a branch signal is input from the landing station 3.
  • the optical coupler 12 branches the trunk signal received from the landing station 2 via the input port 11 and outputs the trunk signal to each of the output port 16 and the ROADM circuit 15.
  • the optical coupler 14 combines the optical signals received from each of the ROADM circuit 15 and the ROADM circuit 17 and transmits the combined signal to the landing station 4 via the output port 18.
  • the ROADM circuit 15 When the ROADM circuit 15 receives the trunk signal from the optical coupler 12, the ROADM circuit 15 transmits an optical signal in a predetermined wavelength band in the trunk signal and transmits the optical signal to the optical coupler 14. In the case of the optical add / drop circuit 10 a shown in FIG. 1, the ROADM circuit 15 transmits the trunk band signal 7 a to the optical coupler 14.
  • the ROADM circuit 17 receives a branch signal from the landing station 3 via the input port 13
  • the ROADM circuit 17 transmits an optical signal in a predetermined wavelength band in the branch signal and transmits the optical signal to the optical coupler 14.
  • the ROADM circuit 17 transmits the add band signal 9 a to the optical coupler 14.
  • FIG. 3 is a block diagram illustrating a configuration example of the RAOADM circuit 15.
  • the configuration of the RAOADM circuit 15 will be described here. Further, it is assumed that the trunk signal transmitted from the landing station 2 to the optical add / drop branch device 1 is divided into three wavelength bands. Of the three divided wavelength bands, the optical signal in the first wavelength band is the first band signal 151, the optical signal in the second wavelength band is the second band signal 152, and the optical signal in the third wavelength band is The third band signal 153 is assumed.
  • the RAODM circuit 15 includes a duplexer 101 that demultiplexes an input optical signal into a plurality of wavelength bands, optical switches 111 to 113 that transmit or block the input light, and transmission or blocking of the optical switches 111 to 113. And a control unit 81 that sets the optical signal and an optical coupler 120 that combines the input optical signals.
  • the demultiplexer 101 demultiplexes the input trunk signal into a first band signal, a second band signal, and a third band signal. Then, the duplexer 101 transmits the first band signal to the optical switch 111, transmits the second band signal to the optical switch 112, and transmits the third band signal to the optical switch 113.
  • the control unit 130 is connected to the landing station 2 via a signal line.
  • the control unit 130 receives a control signal for setting transmission or blocking for each of the optical switches 111 to 113 from the landing station 2, the control unit 130 sets transmission or blocking for the optical switches 111 to 113 according to the control signal.
  • the configuration of the control unit 130 there is a logic circuit that sets ON / OFF for each of the optical switches 111 to 113 in accordance with a control signal received from the landing station 2.
  • transmission the case of being on
  • blocking the case of being off is referred to as “blocking”.
  • the optical switches 111 to 113 are optical blockers or variable optical attenuators, and transmit or block an input optical signal according to the on / off setting by the control unit 130.
  • the optical coupler 120 is a three-input one-output multiplexer, and transmits optical signals received from the optical switches 111 to 113 to the outside. When receiving two or more types of optical signals having different wavelength bands from the optical switches 111 to 113, the optical coupler 120 multiplexes the two or more types of received optical signals and sends them to the outside.
  • the control part 130 is connected with the landing station 2 by the signal wire
  • the control part 130 may be connected to two or more landing stations.
  • the signal line connecting the control unit 130 and the landing station 2 is provided in the submarine cable along the transmission line 5 in the same manner as the power supply line to the optical add / drop branching apparatus 1.
  • the optical signal is divided into three wavelength bands.
  • the optical signal may be divided into two wavelength bands. In this case, two optical switches may be provided.
  • the optical coupler 120 may be a 2-input 1-output type multiplexer.
  • control unit 130 has received a control signal from landing station 2 to set optical switch 111 and optical switch 113 to “transmission” and to set optical switch 112 to “blocking”.
  • the control unit 130 sets the optical switch 111 and the optical switch 113 to ON and sets the optical switch 112 to OFF according to the control signal.
  • the duplexer 101 shown in FIG. 3 transmits a first band signal to the optical switch 111, transmits a second band signal to the optical switch 112, and A 3-band signal is transmitted to the optical switch 113.
  • the optical switch 111 transmits the first band signal received from the duplexer 101 and transmits it to the optical coupler 120.
  • the optical switch 113 transmits the third band signal received from the duplexer 101 and transmits it to the optical coupler 120.
  • the optical switch 112 blocks the second band signal received from the duplexer 101 and does not transmit the second band signal to the optical coupler 120.
  • the optical coupler 120 transmits a combined signal obtained by combining the first band signal received from the optical switch 111 and the third band signal received from the optical switch 113 to the optical coupler 14 illustrated in FIG.
  • an input optical signal is demultiplexed into a plurality of wavelength bands by a demultiplexer, and the demultiplexed optical signals are signals of a desired wavelength band by a selective optical switch. Only the transmitted optical signal is transmitted, and the transmitted optical signal is combined by an optical coupler and transmitted.
  • the configuration of the apparatus is simplified, and the optical signal to be transmitted can be selected by dividing the optical signal not by the wavelength unit but by the wavelength band. As a result, in the optical submarine cable system, the manufacturing cost can be suppressed and the reliability can be improved.
  • the network can be reconfigured by enabling the control unit to change the setting of the optical switch. Examples of the optical transmission apparatus according to this embodiment will be described below.
  • the duplexer 101 shown in FIG. 3 is composed of a plurality of optical filters connected in multiple stages.
  • FIG. 4 is a block diagram showing a configuration example of the RAOADM circuit of this embodiment.
  • the trunk signal transmitted from the landing station 2 to the optical add / drop branch device 1 is divided into four wavelength bands.
  • the optical signal of the first wavelength band is the first band signal 71
  • the optical signal of the second wavelength band is the second band signal 72
  • the optical signal of the third wavelength band is The optical signal is the third band signal 73
  • the optical signal in the fourth wavelength band is the fourth band signal.
  • the RAODM circuit 15 shown in FIG. 4 includes optical filters 31 to 33, optical circuit breakers 41 to 44, a control unit 81, and optical couplers 51 to 53.
  • the optical filters 31 to 33 correspond to the duplexer 101 shown in FIG.
  • Each of the optical couplers 51 to 53 is a 2-input 1-output type multiplexer.
  • the optical filters 31 to 33 are, for example, a dielectric multilayer filter, a waveguide type duplexer, or a fiber Bragg grating type duplexer.
  • Each of the optical filters 31 to 33 is a reflective optical filter that transmits an optical signal in a predetermined wavelength band and reflects an optical signal in another wavelength band.
  • an optical signal transmitted through the optical filter is referred to as a transmitted signal
  • an optical signal reflected from the optical filter is referred to as a reflected signal.
  • the optical filter 32 is a transmission path for transmitting a transmission signal of the optical filter 31 and is connected to the optical filter 31.
  • the optical filter 33 is a transmission path for transmitting the reflected signal of the optical filter 31 and is connected to the optical filter 31.
  • the optical filter 31 transmits the optical signal in the wavelength band including the first band signal 71 and the second band signal 72, but reflects the optical signal in the wavelength band including the third band signal 73 and the fourth band signal 74.
  • the optical filter 32 transmits the first band signal 71 but reflects the second band signal 72.
  • the optical filter 33 transmits the third band signal 73 but reflects the fourth band signal 74.
  • the optical circuit breakers 41 to 44 correspond to the optical switches 111 to 113 shown in FIG.
  • the optical circuit breakers 41 to 44 are, for example, mechanical optical switches using bulk optical elements or optical fibers, or electronic optical switches using an electro-optical effect or an electric field absorption effect.
  • a transmission signal of the optical filter 32 is input to the optical circuit breaker 41 through the transmission line, and a reflection signal of the optical filter 32 is input to the optical circuit breaker 42 through the transmission line.
  • a transmission signal of the optical filter 33 is input to the optical circuit breaker 43 through the transmission path, and a reflection signal of the optical filter 33 is input to the optical circuit breaker 44 through the transmission path.
  • control unit 130 has received from the landing station 2 a control signal indicating that the optical breakers 41, 42, and 44 are set to “transmission” and the optical breaker 43 is set to “break”. To do.
  • the control unit 130 sets the light breakers 41, 42, and 44 to on and sets the light breaker 43 to off according to the control signal.
  • the trunk signal output from the optical coupler 12 shown in FIG. 2 is input to the optical filter 31, the trunk signal is divided into optical signals of two wavelength bands by the optical filter 31.
  • the optical signal in one wavelength band is divided into a first band signal 71 and a second band signal 72 by the optical filter 32.
  • the optical signal in the other wavelength band is divided into a third band signal 73 and a fourth band signal 74 by the optical filter 33.
  • the first band signal 71 is transmitted through the optical breaker 41 and input to the optical coupler 51.
  • the second band signal 72 is transmitted through the optical circuit breaker 42 and input to the optical coupler 51.
  • the third band signal 73 is blocked by the optical blocker 43.
  • the fourth band signal 74 is transmitted through the optical circuit breaker 44 and input to the optical coupler 52.
  • the first band signal 71 and the second band signal 72 input to the optical coupler 51 are combined by the optical coupler 51 and then input to the optical coupler 53.
  • the fourth band signal 74 input to the optical coupler 52 is transmitted to the optical coupler 53.
  • the first band signal 71, the second band signal 72, and the fourth band signal 74 are combined by the optical coupler 53 and then output to the optical coupler 14 shown in FIG.
  • a reliable RAOADM circuit can be realized with a simple configuration by using a configuration in which optical filters are connected in multiple stages as a duplexer.
  • the number of divisions of the wavelength band can be increased according to the number of stages of the optical filter.
  • the duplexer 101 shown in FIG. 3 is composed of an optical coupler and an optical filter.
  • FIG. 5 is a block diagram showing a configuration example of the RAOADM circuit of this embodiment.
  • the trunk signal transmitted from the landing station 2 to the optical add / drop branching apparatus 1 is divided into four wavelength bands.
  • the RAODM circuit 15 of this embodiment includes optical couplers 54 to 56, optical filters 34 to 37, optical circuit breakers 41 to 44, and optical couplers 51 to 53.
  • the optical couplers 54 to 56 and the optical filters 34 to 37 correspond to the duplexer 101 shown in FIG.
  • Each of the optical couplers 54 to 56 is a 1-input 2-output distributor.
  • the control unit 130 shown in FIG. 3 is provided, and the control unit 130 is connected to the optical circuit breakers 41 to 44 through signal lines, but the illustration in FIG. 5 is omitted. .
  • the input ends of the optical couplers 55 and 56 are connected to the two output ends of the optical coupler 54 via transmission lines, respectively.
  • the respective input ends of the optical filters 34 and 35 are connected to the two output ends of the optical coupler 55 via transmission lines.
  • the respective input ends of the optical filters 36 and 37 are connected to the two output ends of the optical coupler 56 via transmission lines.
  • the optical filters 34 to 37 are, for example, a dielectric multilayer filter, a waveguide type duplexer, or a fiber Bragg grating type duplexer.
  • Each of the optical filters 34 to 37 is an absorption type optical filter that transmits an optical signal in a predetermined wavelength band but does not transmit or reflect an optical signal in another wavelength band.
  • the optical signal transmitted through the optical filter is referred to as a transmitted signal.
  • the optical filter 34 transmits or blocks the first band signal 71.
  • the optical filter 35 transmits or blocks the second band signal 72.
  • the optical filter 36 transmits or blocks the third band signal 73.
  • the optical filter 37 transmits or blocks the fourth band signal 74.
  • control unit 130 has received from the landing station 2 a control signal indicating that the optical breakers 41, 42, and 44 are set to “transmission” and the optical breaker 43 is set to “break”. To do.
  • the control unit 130 sets the light breakers 41, 42, and 44 to on and sets the light breaker 43 to off according to the control signal.
  • the trunk signal output from the optical coupler 12 shown in FIG. 2 is input to the optical coupler 54, the trunk signal is distributed to the two optical couplers 55 and 56 by the optical coupler 54.
  • the trunk signal input to the optical coupler 55 is distributed to each of the optical filters 34 and 35.
  • the trunk signal input to the optical coupler 56 is distributed to the optical filters 36 and 37, respectively.
  • the trunk signal input to the optical filter 34 only the first band signal 71 is transmitted through the optical filter 34 and input to the optical circuit breaker 41.
  • the second band signal 72 is transmitted through the optical filter 35 and input to the optical circuit breaker 42.
  • the third band signal 73 is transmitted through the optical filter 36 and input to the optical circuit breaker 43.
  • the fourth band signal 74 is transmitted through the optical filter 37 and input to the optical circuit breaker 44.
  • the first band signal 71 is transmitted through the optical breaker 41 and input to the optical coupler 51.
  • the second band signal 72 is transmitted through the optical circuit breaker 42 and input to the optical coupler 51.
  • the third band signal 73 is blocked by the optical blocker 43.
  • the fourth band signal 74 is transmitted through the optical circuit breaker 44 and input to the optical coupler 52. Since the operations of the optical couplers 51 to 53 are the same as those in the first embodiment, detailed description thereof is omitted.
  • the optical signal is divided so that the wavelength band of the transmitted optical signal is uniform, but this embodiment is a case where the width of the wavelength band is not uniform.
  • the optical signal is divided into three wavelength bands in the ROADM circuit 15 of the second embodiment.
  • an optical signal in the first wavelength band is referred to as a first band signal 75
  • an optical signal in the second wavelength band is referred to as a second band signal 76
  • an optical signal in the third wavelength band is referred to as an optical signal in the third wavelength band.
  • This is referred to as a third band signal 77.
  • the widths of the wavelength bands of the second band signal 76 and the third band signal 77 are the same, but the width of the wavelength band of the first band signal 75 is twice that of the second band signal 76.
  • FIG. 6 is a block diagram showing a configuration example of the RAOADM circuit of the present embodiment.
  • the RAODM circuit 15 includes optical filters 31 and 33, optical circuit breakers 41 to 43, and optical couplers 52 and 53.
  • the optical filters 31 and 33 correspond to the duplexer 101 shown in FIG.
  • the control unit 130 shown in FIG. 3 is provided, and the control unit 130 is connected to the optical circuit breakers 41 to 43 through signal lines, but the illustration of FIG. 6 is omitted. .
  • the light breakers 41 to 43 transmit or block the input optical signal according to the ON / OFF setting by the control unit 130 as in the first embodiment.
  • the optical blocker 41 transmits or blocks the first band signal 75.
  • the optical blocker 42 transmits or blocks the second band signal 76.
  • the optical blocker 43 transmits or blocks the third band signal 77.
  • the number of divisions of the wavelength band of the optical signal is three, and the width of the wavelength band of the first band signal 75 is larger than that of the other band signals. Therefore, a detailed description of the operation of the RAOADM circuit 15 is omitted.
  • a highly reliable RAOADM circuit can be realized with a simple configuration even if the transmitted optical signal includes optical signals having different wavelength band widths.
  • variable optical attenuator is used instead of the optical circuit breaker in the RAOADM circuit 15 of the third embodiment.
  • FIG. 7 is a block diagram showing a configuration example of the RAOADM circuit of this embodiment.
  • the RAODM circuit 15 includes optical filters 31 and 33, variable optical attenuators 61 to 63, and optical couplers 52 and 53.
  • the optical filters 31 and 33 correspond to the duplexer 101 shown in FIG.
  • the control unit 130 shown in FIG. 3 is provided, and the control unit 130 is connected to the variable optical attenuators 61 to 63 through signal lines, but the illustration of FIG. 7 is omitted. Yes.
  • variable optical attenuators 61 to 63 transmit or attenuate the input optical signal according to the on / off setting by the control unit 130.
  • the variable optical attenuator 61 transmits or attenuates the first band signal 75.
  • the variable optical attenuator 62 transmits or attenuates the second band signal 76.
  • the variable optical attenuator 63 transmits or attenuates the third band signal 77.
  • the number of divisions of the wavelength band of the optical signal is 3, the width of the wavelength band of the first band signal 75 is larger than the other band signals, and the optical switch of the RAOADM circuit 15 is variable. Since the optical attenuator is the same as that of the first embodiment except for the optical attenuator, detailed description of the operation of the RAOADM circuit 15 is omitted.
  • the present embodiment corresponds to an example in which a part of the configuration shown in the second embodiment is changed. However, the present embodiment is not limited to being applied to the second embodiment, and is applied to any of the above-described embodiments and examples. May be.
  • a highly reliable RAOADM circuit can be realized with a simple configuration by using a variable optical attenuator having an optical cutoff function instead of an optical cutoff as an optical switch. Further, if the attenuation rate of each variable optical attenuator can be adjusted, the level difference of each wavelength band can be corrected.
  • the manufacturing cost can be suppressed and the reliability can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

 本発明の光伝送装置は、入力される光信号を複数の波長帯域に分波する分波器(101)と、分波された複数の光信号に対応して光信号を透過もしくは遮断する光遮断器または可変光減衰器で構成される複数の光スイッチ(111)~(113)と、複数の光スイッチ(111)~(113)から出力される光信号を合波する光カプラ(120)と、複数の光スイッチ(111)~(113)のそれぞれについて、分波された光信号に対する透過または遮断を設定するための制御部(130)と、を有する。

Description

光伝送装置
 本発明は、光通信システムにおける光伝送装置に関する。
 陸上の光通信ネットワークに導入されているOADM(Optical Add/Drop Multiplexing)装置が、光海底ケーブルシステムに適用されるようになった。そのため、光海底ケーブルシステムにおいても、ネットワークの多様性に対応することが可能となった。しかし、光海底ケーブルシステムにおいては、OADM機能は海底に敷設される分岐装置に設けられるため、運用開始後にネットワーク構成を変更する場合、分岐装置を海底から陸に引き上げ、変更予定のネットワーク構成に合わせて光フィルタを交換するなどの作業が必要であった。
 運用開始後にネットワーク構成を変更可能にするために、陸上の光通信ネットワークでは、現在、再構成可能なOADM(ROADM:Reconfigurable OADM)装置が広く適用されるようになった。WSS(Wavelength Selective Switch)を用いたROADM装置が、特開2010-098545号公報に開示されている。WSSは、入力される光信号を波長単位で分ける「分波」、分波した光信号を選択するための「スイッチング」、および選択された光信号の「合波」の3つの機能を備えた波長選択デバイスである。
 また、特開2002-262319号公報には、上記3つの機能のうち、スイッチングの機能に光マトリクススイッチを用いた光パスクロスコネクト装置が開示されている。これらの文献に開示された技術では、波長単位でネットワーク構成の変更が可能である。
 ROADM装置のスイッチング機能に光マトリクススイッチを使用すると、選択可能な波長の数が多くなるほどスイッチの数が増えるため、波長数に応じて製造コストが高くなってしまうという問題がある。
 また、WSSのような波長選択デバイスは構成が複雑なため、ROADM装置に波長選択デバイスを使用すると、製造コストが高くなるという問題がある。さらに、光海底ケーブルシステムでは、25年の長期にわたって安定して動作可能という信頼性が要求されるが、構成が複雑な波長選択デバイスの海底での使用に対して信頼性が低いという問題がある。
 本発明の目的の一つは、製造コストを抑制し、かつ、信頼性を向上させた再構成可能な光伝送装置を提供することである。
 本発明の一側面の光伝送装置は、入力される光信号を複数の波長帯域に分波する分波器と、分波器で分波された複数の光信号に対応して、分波された光信号を透過もしくは遮断する光遮断器または可変光減衰器で構成される、複数の光スイッチと、複数の光スイッチから出力される光信号を合波する第1の光カプラと、複数の光スイッチのそれぞれについて、分波された光信号に対する透過または遮断を設定するための制御部と、を有する構成である。
図1は本実施形態の光海底ケーブルシステムの一構成例を示すブロック図である。 図2は図1に示した光アド/ドロップ回路の一構成例を示すブロック図である。 図3は本実施形態のRAOADM回路の一構成例を示すブロック図である。 図4は実施例1のRAOADM回路の一構成例を示すブロック図である。 図5は実施例2のRAOADM回路の一構成例を示すブロック図である。 図6は実施例3のRAOADM回路の一構成例を示すブロック図である。 図7は実施例4のRAOADM回路の一構成例を示すブロック図である。
 本実施形態の光アド/ドロップ分岐装置を含む通信システムの構成を説明する。図1は本実施形態の光海底ケーブルシステムの一構成例を示すブロック図である。
 図1に示すように、光海底ケーブルシステムは、光信号を送受信する陸揚局2~4と、陸揚局から受信する光信号を伝送する光アド/ドロップ分岐装置1とを有する。光アド/ドロップ分岐装置1は海底に設けられ、陸上に設けられた陸揚局2~4のそれぞれと伝送路5を含む海底ケーブルを介して接続されている。陸揚局2および陸揚局4は光アド/ドロップ分岐装置1を介して対向しており、「トランク局」と呼ばれている。陸揚局3は、陸揚局2および陸揚局4を結ぶ伝送路5に分岐して設けられ、「ブランチ局」と呼ばれている。伝送路5の途中には、伝送路5中の光ファイバにおける、光信号の損失を補償するために、光信号を増幅して出力する光中継器6が設けられている。
 陸揚局2から光アド/ドロップ分岐装置1に送出される光信号、および陸揚局4から光アド/ドロップ分岐装置1に送出される光信号のそれぞれをトランク信号と称する。図1に示すシステムでは、陸揚局2から光アド/ドロップ分岐装置1に伝送されるトランク信号を2つの波長帯域に分割した場合とする。分割した2つの波長帯域のうち、第1の波長帯域の光信号をトランク帯信号7aと称し、第2の波長帯域の光信号をドロップ帯信号8aと称する。陸揚局4から光アド/ドロップ分岐装置1に伝送されるトランク信号も、2つの波長帯域に分割している。2つの波長帯域のうち、第1の波長帯域の光信号をトランク帯信号7bと称し、第2の波長帯域の光信号をドロップ帯信号8bと称する。
 陸揚局3から光アド/ドロップ分岐装置1に送出される光信号をブランチ信号と称する。ブランチ信号もトランク信号と同様に複数の波長帯域を含む光信号でもよいが、本実施形態では、説明を簡単にするために、ブランチ信号が第2の波長帯域の光信号のみを含む場合とする。陸揚局3から陸揚局4に伝送されるブランチ信号をアド帯信号9aと称し、陸揚局3から陸揚局2に伝送されるブランチ信号をアド帯信号9bと称する。
 図1に示すように、光アド/ドロップ分岐装置1は、光アド/ドロップ回路10a、10bを有する。光アド/ドロップ回路10aは、陸揚局2から受信するトランク信号を陸揚局3に送信するとともに、トランク信号から一部を抜き落とし、陸揚局3から受信するブランチ信号を追加して陸揚局4に送信する。図1を参照して詳しく説明すると、光アド/ドロップ回路10aは、トランク帯信号7aおよびドロップ帯信号8aを含むトランク信号を陸揚局2から受信すると、そのトランク信号を陸揚局3に送信する。また、光アド/ドロップ回路10aは、陸揚局2から受信するトランク信号からドロップ帯信号8aを抜き落とし、陸揚局3から受信するアド帯信号9aとトランク帯信号7aとを合波して陸揚局4に送信する。
 光アド/ドロップ回路10bは、陸揚局4から受信するトランク信号を陸揚局3に送信するとともに、トランク信号から一部を抜き落とし、陸揚局3から受信するブランチ信号を追加して陸揚局2に送信する。図1を参照して詳しく説明すると、光アド/ドロップ回路10bは、トランク帯信号7bおよびドロップ帯信号8bを含むトランク信号を陸揚局4から受信すると、そのトランク信号を陸揚局3に送信する。また、光アド/ドロップ回路10bは、陸揚局4から受信するトランク信号からドロップ帯信号8bを抜き落とし、陸揚局3から受信するアド帯信号9bとトランク帯信号7bとを合波して陸揚局2に送信する。
 次に、図1に示した光アド/ドロップ回路10a、10bの構成を説明する。図2は光アド/ドロップ回路10aの一構成例を示すブロック図である。光アド/ドロップ回路10bの構成は、光アド/ドロップ回路10aと同様なため、詳細な説明を省略する。
 光アド/ドロップ回路10aは、光信号を分配する光カプラ12と、所定の波長帯域の光信号を透過させるROADM回路15およびROADM回路17と、波長帯域の異なる光信号を合波する光カプラ14と、2つの入力ポート11、13と、2つの出力ポート16、18とを有する。
 入力ポート11は、伝送路5を介して陸揚局2と接続され、陸揚局2からトランク信号が入力される。入力ポート13は、伝送路5を介して陸揚局3と接続され、陸揚局3からブランチ信号が入力される。
 光カプラ12は、陸揚局2から入力ポート11を介して受信するトランク信号を分岐し、トランク信号を出力ポート16およびROADM回路15のそれぞれに出力する。光カプラ14は、ROADM回路15およびROADM回路17のそれぞれから受信する光信号を合波し、合波信号を出力ポート18を介して陸揚局4に送信する。
 ROADM回路15は、光カプラ12からトランク信号を受信すると、トランク信号のうち所定の波長帯域の光信号を透過させて光カプラ14に送信する。図1に示した光アド/ドロップ回路10aの場合、ROADM回路15は、トランク帯信号7aを光カプラ14に送信する。ROADM回路17は、陸揚局3から入力ポート13を介してブランチ信号を受信すると、ブランチ信号のうち所定の波長帯域の光信号を透過させて光カプラ14に送信する。図1に示した光アド/ドロップ回路10aの場合、ROADM回路17は、アド帯信号9aを光カプラ14に送信する。
 次に、図2に示したROADM回路15、17の構成を説明する。ROADM回路15、17が本実施形態の光伝送装置に相当する。図3はRAOADM回路15の一構成例を示すブロック図である。
 ROADM回路15、17は同様な構成なため、ここでは、RAOADM回路15の構成を説明する。また、陸揚局2から光アド/ドロップ分岐装置1に伝送されるトランク信号を、3つの波長帯域に分割した場合とする。分割した3つの波長帯域のうち、第1の波長帯域の光信号を第1バンド信号151とし、第2の波長帯域の光信号を第2バンド信号152とし、第3の波長帯域の光信号を第3バンド信号153とする。
 RAODM回路15は、入力される光信号を複数の波長帯域に分波する分波器101と、入力される光を透過または遮断する光スイッチ111~113と、光スイッチ111~113の透過または遮断を設定する制御部81と、入力される光信号を合波する光カプラ120とを有する。
 分波器101は、入力されるトランク信号を、第1バンド信号、第2バンド信号および第3バンド信号に分波する。そして、分波器101は、第1バンド信号を光スイッチ111に送信し、第2バンド信号を光スイッチ112に送信し、第3バンド信号を光スイッチ113に送信する。
 制御部130は、陸揚局2と信号線を介して接続されている。制御部130は、光スイッチ111~113のそれぞれについて透過または遮断を設定するための制御信号を陸揚局2から受信すると、制御信号にしたがって光スイッチ111~113に対して透過または遮断を設定する。制御部130の構成の一例として、陸揚局2から受信する制御信号にしたがって光スイッチ111~113のそれぞれに対して、オン/オフを設定する論理回路がある。以下では、オンの場合を「透過」とし、オフの場合を「遮断」とする。
 光スイッチ111~113は、光遮断器または可変光減衰器であり、制御部130によるオン/オフの設定にしたがって、入力される光信号を透過または遮断する。光カプラ120は、3入力1出力型の合波器であり、光スイッチ111~113から受信する光信号を外部に送出する。光カプラ120は、光スイッチ111~113から、波長帯域の異なる2種以上の光信号を受信する場合、受信する2種以上の光信号を合波して外部に送出する。
 なお、本実施形態では、制御部130が陸揚局2と信号線で接続されている場合で説明するが、制御部130は他の陸揚局3または陸揚局4と接続されていてもよく、2以上の陸揚局と接続されていてもよい。また、制御部130および陸揚局2を結ぶ信号線は、光アド/ドロップ分岐装置1への電力供給線と同様に、伝送路5に沿って海底ケーブル内に設けられている。さらに、図3に示す構成では、光信号を3つの波長帯域に分割する場合で説明したが、2つの波長帯域に分割してもよく、この場合、光スイッチが2つ設けられていればよく、光カプラ120は2入力1出力型の合波器であればよい。
 次に、図3に示したROADM回路15の動作を説明する。ここでは、制御部130は、光スイッチ111および光スイッチ113を「透過」に設定し、光スイッチ112を「遮断」に設定する旨の制御信号を、陸揚局2から受信したものとする。制御部130は、制御信号にしたがって、光スイッチ111および光スイッチ113をオンに設定し、光スイッチ112をオフに設定する。
 図3に示す分波器101は、図2に示した光カプラ12からトランク信号を受信すると、第1バンド信号を光スイッチ111に送信し、第2バンド信号を光スイッチ112に送信し、第3バンド信号を光スイッチ113に送信する。光スイッチ111は、分波器101から受信する第1バンド信号を透過させて光カプラ120に送信する。また、光スイッチ113は、分波器101から受信する第3バンド信号を透過させて光カプラ120に送信する。一方、光スイッチ112は、分波器101から受信する第2バンド信号を遮断し、第2バンド信号を光カプラ120に送信しない。光カプラ120は、光スイッチ111から受信する第1バンド信号と光スイッチ113から受信する第3バンド信号を合波した合波信号を、図2に示した光カプラ14に送信する。
 本実施形態の光伝送装置では、入力される光信号が分波器によって複数の波長帯域に分波され、分波された各波長帯域の光信号が選択型光スイッチによって所望の波長帯域の信号のみが透過され、透過された光信号が光カプラにより合波され、送出される。装置の構成を簡素化して、光信号を波長単位ではなく、波長帯域で分割することで、伝送する光信号を選択可能にしている。その結果、光海底ケーブルシステムにおいて、製造コストを抑制し、かつ、信頼性を向上させることができる。また、本実施形態の光伝送装置では、制御部によって光スイッチの設定を変更可能にすることで、ネットワークの再構成を可能にしている。以下に、本実施形態の光伝送装置の実施例を説明する。
 本実施例は、図3に示した分波器101を、多段に接続した複数の光フィルタで構成したものである。図4は本実施例のRAOADM回路の一構成例を示すブロック図である。
 本実施例では、陸揚局2から光アド/ドロップ分岐装置1に伝送されるトランク信号を4つの波長帯域に分割した場合である。分割した4つの波長帯域の光信号のうち、第1の波長帯域の光信号を第1バンド信号71とし、第2の波長帯域の光信号を第2バンド信号72とし、第3の波長帯域の光信号を第3バンド信号73とし、第4の波長帯域の光信号を第4バンド信号とする。
 図4に示すRAODM回路15は、光フィルタ31~33と、光遮断器41~44と、制御部81と、光カプラ51~53とを有する。光フィルタ31~33は図3に示した分波器101に相当する。光カプラ51~53のそれぞれは2入力1出力型の合波器である。
 光フィルタ31~33は、例えば、誘電体多層膜フィルタ、導波路型分波器、またはFiber Bragg Grating型分波器である。光フィルタ31~33のそれぞれは、所定の波長帯域の光信号を透過し、他の波長帯域の光信号を反射する反射型光フィルタである。以下では、光フィルタを透過する光信号を透過信号と称し、光フィルタを反射する光信号を反射信号と称する。
 光フィルタ32は、光フィルタ31の透過信号を伝送するための伝送路で、光フィルタ31と接続されている。光フィルタ33は、光フィルタ31の反射信号を伝送するための伝送路で、光フィルタ31と接続されている。光フィルタ31は、第1バンド信号71および第2バンド信号72を含む波長帯域の光信号を透過するが、第3バンド信号73および第4バンド信号74を含む波長帯域の光信号を反射する。光フィルタ32は、第1バンド信号71を透過するが、第2バンド信号72を反射する。光フィルタ33は、第3バンド信号73を透過するが、第4バンド信号74を反射する。
 光遮断器41~44は図3に示した光スイッチ111~113に相当する。光遮断器41~44は、例えば、バルク型光学素子もしくは光ファイバを利用した機械式光スイッチ、または、電気光学効果もしくは電界吸収効果などを利用した電子式光スイッチである。光遮断器41には伝送路を介して光フィルタ32の透過信号が入力され、光遮断器42には伝送路を介して光フィルタ32の反射信号が入力される。光遮断器43には伝送路を介して光フィルタ33の透過信号が入力され、光遮断器44には伝送路を介して光フィルタ33の反射信号が入力される。
 次に、図4に示したRAOADM回路15の動作を説明する。ここでは、制御部130は、光遮断器41、42、44を「透過」に設定し、光遮断器43を「遮断」に設定する旨の制御信号を、陸揚局2から受信したものとする。制御部130は、制御信号にしたがって、光遮断器41、42、44をオンに設定し、光遮断器43をオフに設定する。
 図2に示した光カプラ12から出力されたトランク信号が光フィルタ31に入力されると、トランク信号は光フィルタ31によって2つの波長帯域の光信号に分割される。一方の波長帯域の光信号は光フィルタ32によって、第1バンド信号71と第2バンド信号72に分割される。他方の波長帯域の光信号は光フィルタ33によって、第3バンド信号73と第4バンド信号74に分割される。
 第1バンド信号71は光遮断器41で透過され、光カプラ51に入力される。第2バンド信号72は光遮断器42で透過され、光カプラ51に入力される。第3バンド信号73は光遮断器43で遮断される。第4バンド信号74は光遮断器44で透過され、光カプラ52に入力される。
 光カプラ51に入力された第1バンド信号71および第2バンド信号72は、光カプラ51で合波された後、光カプラ53に入力される。光カプラ52に入力された第4バンド信号74は光カプラ53に伝送される。第1バンド信号71、第2バンド信号72および第4バンド信号74は、光カプラ53で合波された後、図2に示した光カプラ14へ出力される。
 本実施例では、分波器として、光フィルタを多段に接続した構成を用いることで、簡素な構成で、信頼性のRAOADM回路を実現できる。また、光フィルタの段数に応じて、波長帯域の分割数を増やすことが可能となる。
 本実施例は、図3に示した分波器101を、光カプラと光フィルタで構成したものである。図5は本実施例のRAOADM回路の一構成例を示すブロック図である。
 本実施例も、実施例1と同様に、陸揚局2から光アド/ドロップ分岐装置1に伝送されるトランク信号を4つの波長帯域に分割した場合とする。
 図5に示すように、本実施例のRAODM回路15は、光カプラ54~56と、光フィルタ34~37と、光遮断器41~44と、光カプラ51~53とを有する。光カプラ54~56および光フィルタ34~37は図3に示した分波器101に相当する。光カプラ54~56のそれぞれは1入力2出力型の分配器である。なお、本実施例においても、図3に示した制御部130が設けられ、制御部130が光遮断器41~44と信号線で接続されているが、図5に示すことを省略している。
 光カプラ54の2つの出力端のそれぞれに光カプラ55、56のそれぞれの入力端が伝送路を介して接続されている。光カプラ55の2つの出力端のそれぞれに光フィルタ34、35のそれぞれの入力端が伝送路を介して接続されている。光カプラ56の2つの出力端のそれぞれに光フィルタ36、37のそれぞれの入力端が伝送路を介して接続されている。
 光フィルタ34~37は、例えば、誘電体多層膜フィルタ、導波路型分波器、またはFiber Bragg Grating型分波器である。光フィルタ34~37のそれぞれは、所定の波長帯域の光信号を透過するが、他の波長帯域の光信号を透過も反射もしない吸収型光フィルタである。以下では、光フィルタを透過する光信号を透過信号と称する。
 光フィルタ34は第1バンド信号71を透過または遮断する。光フィルタ35は第2バンド信号72を透過または遮断する。光フィルタ36は第3バンド信号73を透過または遮断する。光フィルタ37は第4バンド信号74を透過または遮断する。
 次に、図5に示したRAOADM回路15の動作を説明する。ここでは、制御部130は、光遮断器41、42、44を「透過」に設定し、光遮断器43を「遮断」に設定する旨の制御信号を、陸揚局2から受信したものとする。制御部130は、制御信号にしたがって、光遮断器41、42、44をオンに設定し、光遮断器43をオフに設定する。
 図2に示した光カプラ12から出力されたトランク信号が光カプラ54に入力されると、トランク信号は光カプラ54によって2つの光カプラ55、56に分配される。光カプラ55に入力されたトランク信号は、光フィルタ34、35のそれぞれに分配される。また、光カプラ56に入力されたトランク信号は、光フィルタ36、37のそれぞれに分配される。
 光フィルタ34に入力されたトランク信号のうち、第1バンド信号71のみが光フィルタ34で透過され、光遮断器41に入力される。光フィルタ35に入力されたトランク信号のうち、第2バンド信号72のみが光フィルタ35で透過され、光遮断器42に入力される。光フィルタ36に入力されたトランク信号のうち、第3バンド信号73のみが光フィルタ36で透過され、光遮断器43に入力される。光フィルタ37に入力されたトランク信号のうち、第4バンド信号74のみが光フィルタ37で透過され、光遮断器44に入力される。
 第1バンド信号71は光遮断器41で透過され、光カプラ51に入力される。第2バンド信号72は光遮断器42で透過され、光カプラ51に入力される。第3バンド信号73は光遮断器43で遮断される。第4バンド信号74は光遮断器44で透過され、光カプラ52に入力される。なお、光カプラ51~53の動作は実施例1と同様なため、その詳細な説明を省略する。
 本実施例では、分波器として、複数の光フィルタを多段に接続した構成の代わりに、光カプラと光フィルタを組み合わせた構成を用いることで、本実施例においても、簡素な構成で、信頼性の高いRAOADM回路を実現できる。
 実施例2では伝送される光信号の波長帯域が均等になるように光信号を分割したが、本実施例は、波長帯域の幅が均等でない場合である。
 本実施例では、実施例2のROADM回路15において、光信号を3つの波長帯域に分割した場合とする。3つの波長帯域のうち、第1の波長帯域の光信号を第1バンド信号75と称し、第2の波長帯域の光信号を第2バンド信号76と称し、第3の波長帯域の光信号を第3バンド信号77と称する。そして、第2バンド信号76と第3バンド信号77の波長帯域の幅は同じであるが、第1バンド信号75の波長帯域の幅は第2バンド信号76の2倍である。
 図6は本実施例のRAOADM回路の一構成例を示すブロック図である。図6に示すように、RAODM回路15は、光フィルタ31、33と、光遮断器41~43と、光カプラ52、53とを有する。光フィルタ31、33は図3に示した分波器101に相当する。なお、本実施例においても、図3に示した制御部130が設けられ、制御部130が光遮断器41~43と信号線で接続されているが、図6に示すことを省略している。
 光遮断器41~43は、実施例1と同様に、制御部130によるオン/オフの設定にしたがって、入力される光信号を透過または遮断する。光遮断器41は、第1バンド信号75を透過または遮断する。光遮断器42は、第2バンド信号76を透過または遮断する。光遮断器43は、第3バンド信号77を透過または遮断する。
 なお、本実施例では、光信号の波長帯域の分割数が3つであること、第1バンド信号75の波長帯域の幅が他のバンド信号よりも大きいことを除いて、実施例1と同様なため、RAOADM回路15の動作についての詳細な説明を省略する。
 本実施例では、伝送される光信号に波長帯域の幅が異なる光信号が含まれていても、簡素な構成で、信頼性の高いRAOADM回路を実現できる。
 本実施例は、実施例3のRAOADM回路15において、光遮断器の代わりに可変光減衰器を用いたものである。
 図7は本実施例のRAOADM回路の一構成例を示すブロック図である。図7に示すように、RAODM回路15は、光フィルタ31、33と、可変光減衰器61~63と、光カプラ52、53とを有する。光フィルタ31、33は図3に示した分波器101に相当する。なお、本実施例においても、図3に示した制御部130が設けられ、制御部130が可変光減衰器61~63と信号線で接続されているが、図7に示すことを省略している。
 可変光減衰器61~63は、制御部130によるオン/オフの設定にしたがって、入力される光信号を透過または減衰させる。可変光減衰器61は、第1バンド信号75を透過または減衰させる。可変光減衰器62は、第2バンド信号76を透過または減衰させる。可変光減衰器63は、第3バンド信号77を透過または減衰させる。
 なお、本実施例では、光信号の波長帯域の分割数が3つであること、第1バンド信号75の波長帯域の幅が他のバンド信号よりも大きいこと、RAOADM回路15の光スイッチが可変光減衰器であることを除いて、実施例1と同様なため、RAOADM回路15の動作についての詳細な説明を省略する。また、本実施例は、実施例2に示した構成の一部を変更した例に相当するが、実施例2に適用する場合に限らず、上記実施形態および実施例のうち、いずれに適用してもよい。
 本実施例では、光スイッチとして、光遮断器の代わりに、光遮断機能を備えた可変光減衰器を用いることで、簡素な構成で、信頼性の高いRAOADM回路を実現できる。また、各可変光減衰器の減衰率を調節可能にすれば、各波長帯域のレベル差を補正することができる。
 本発明の効果の一例として、ネットワーク構成の変更可能な通信システムにおいて、製造コストを抑制し、信頼性を向上させることができる。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 なお、この出願は、2011年3月25日に出願された日本出願の特願2011-067687の内容が全て取り込まれており、この日本出願を基礎として優先権を主張するものである。
 1  光アド/ドロップ分岐装置
 2~4  陸揚局
 10a、10b  光アド/ドロップ回路
 15、17  ROADM回路
 31~33  光フィルタ
 41~47  光遮断器
 51~53  光カプラ
 61~63  可変光減衰器
 101  分波器
 111~113  光スイッチ
 120  光カプラ
 130  制御部

Claims (5)

  1.  入力される光信号を複数の波長帯域に分波する分波器と、
     前記分波器で分波された複数の光信号に対応して、分波された光信号を透過もしくは遮断する光遮断器または可変光減衰器で構成される、複数の光スイッチと、
     前記複数の光スイッチから出力される光信号を合波する第1の光カプラと、
     前記複数の光スイッチのそれぞれについて、前記分波された光信号に対する透過または遮断を設定するための制御部と、
    を有する光伝送装置。
  2.  請求項1記載の光伝送装置において、
     前記分波器は、
     前記入力される光信号のうち、所定の波長帯域の光信号を透過し、該所定の波長帯域以外の波長帯域の光信号を反射する反射型光フィルタである、光伝送装置。
  3.  請求項2記載の光伝送装置において、
     前記分波器は、
     前記反射型光フィルタが多段に接続された構成を有する、光伝送装置。
  4.  請求項1記載の光伝送装置において、
     前記分波器は、
     前記入力される光信号を分配する第2の光カプラと、
     前記第2の光カプラと前記複数の光スイッチとの間に該複数の光スイッチに対応して設けられ、該第2の光カプラから分配される光信号に対して、相互に異なる波長帯域の光信号を透過する複数の吸収型光フィルタとを有する、光伝送装置。
  5.  請求項1から4のいずれか1項記載の光伝送装置において、
     前記複数の波長帯域は帯域幅が均等ではない、光伝送装置。
PCT/JP2012/054612 2011-03-25 2012-02-24 光伝送装置 WO2012132688A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013507286A JP5700117B2 (ja) 2011-03-25 2012-02-24 光伝送装置
EP12765332.7A EP2690800A4 (en) 2011-03-25 2012-02-24 DEVICE FOR OPTICAL TRANSMISSIONS
CN2012800138805A CN103460628A (zh) 2011-03-25 2012-02-24 光传输装置
US13/984,905 US20130315591A1 (en) 2011-03-25 2012-02-24 Optical transmission apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011067687 2011-03-25
JP2011-067687 2011-03-25

Publications (1)

Publication Number Publication Date
WO2012132688A1 true WO2012132688A1 (ja) 2012-10-04

Family

ID=46930447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054612 WO2012132688A1 (ja) 2011-03-25 2012-02-24 光伝送装置

Country Status (5)

Country Link
US (1) US20130315591A1 (ja)
EP (1) EP2690800A4 (ja)
JP (1) JP5700117B2 (ja)
CN (1) CN103460628A (ja)
WO (1) WO2012132688A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146107A1 (ja) * 2014-03-27 2015-10-01 日本電気株式会社 光通信装置、光通信システム及び光通信方法
JP2016208407A (ja) * 2015-04-27 2016-12-08 Necエンジニアリング株式会社 波長多重光ネットワークシステム、分岐装置およびその制御方法
WO2019065383A1 (ja) 2017-09-28 2019-04-04 日本電気株式会社 海底分岐装置、光海底ケーブルシステム、光通信方法
WO2019116776A1 (ja) 2017-12-15 2019-06-20 日本電気株式会社 海底光伝送装置及び海底光通信システム
WO2019188462A1 (ja) 2018-03-26 2019-10-03 日本電気株式会社 海底分岐装置、光海底ケーブルシステム及び光通信方法
WO2020194842A1 (ja) * 2019-03-27 2020-10-01 日本電気株式会社 海底光分岐装置、海底光ケーブルシステム、切替方法、及び非一時的なコンピュータ可読媒体

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3057247B1 (en) * 2013-11-13 2018-04-11 Huawei Marine Networks Co., Ltd. Reconfigurable optical add-drop multiplexer apparatus
WO2016051774A1 (ja) * 2014-10-01 2016-04-07 日本電気株式会社 ノード装置及びノード装置の制御方法
US9853762B2 (en) 2014-12-04 2017-12-26 Ciena Corporation Automated provisioning and control of shared optical spectrum in submarine optical networks
US9559776B2 (en) * 2015-01-21 2017-01-31 Google Inc. Locally powered optical communication network
EP3432489A4 (en) * 2016-03-14 2019-11-20 Nec Corporation OPTICAL CONTROL DEVICE AND OPTICAL BRANCHING DEVICE
US10461852B1 (en) * 2018-08-07 2019-10-29 Facebook, Inc. Submarine cable network architecture
CN113395114B (zh) * 2020-03-12 2022-09-16 华为技术有限公司 光模块、数据中心系统以及数据传输方法
US11487063B2 (en) * 2020-03-31 2022-11-01 Subcom, Llc Pair routing between three undersea fiber optic cables
US20240113800A1 (en) * 2022-10-04 2024-04-04 Nokia Solutions And Networks Oy Optical multiplexer supporting multiple channel sizes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155700A (ja) * 1997-08-05 1999-02-26 Nec Corp 波長光adm装置並びにこの装置を使用した光信号障害監視方式およびリングネットワーク
JP2002262319A (ja) 2001-03-01 2002-09-13 Nippon Telegr & Teleph Corp <Ntt> 光通信網および光パスクロスコネクト装置
WO2008035753A1 (fr) * 2006-09-21 2008-03-27 Nippon Telegraph And Telephone Corporation Bloqueur de longueur d'onde
JP2010098545A (ja) 2008-10-16 2010-04-30 Nippon Telegr & Teleph Corp <Ntt> 光伝送装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5524155A (en) * 1995-01-06 1996-06-04 Texas Instruments Incorporated Demultiplexer for wavelength-multiplexed optical signal
KR0183945B1 (ko) * 1996-11-28 1999-05-15 삼성전자주식회사 광 디멀티플렉서
GB9801183D0 (en) * 1998-01-20 1998-03-18 Alsthom Cge Alcatel A reconfigurable branching unit for a submarine communications system
JP3187017B2 (ja) * 1998-11-02 2001-07-11 日本電気株式会社 分岐装置
US20030002104A1 (en) * 2001-06-29 2003-01-02 Caroli Carl A. Wavelength-selective add/drop arrangement for optical communication systems
US7239772B2 (en) * 2004-06-18 2007-07-03 Nec Laboratories America, Inc. Flexible waveband aggregator and deaggregator and hierarchical hybrid optical cross-connect system
US20050281558A1 (en) * 2004-06-18 2005-12-22 Nec Laboratories America, Inc. Flexible band tunable add/drop multiplexer and modular optical node architecture
JP4528147B2 (ja) * 2005-02-01 2010-08-18 株式会社日立製作所 光波長挿入分岐装置およびそれを用いた光ネットワーク装置
JP4557771B2 (ja) * 2005-03-30 2010-10-06 富士通株式会社 光伝送装置
US8861966B2 (en) * 2006-12-07 2014-10-14 Futurewei Technologies, Inc. Method and system for band blocking in an optical telecommunication network
CN100546229C (zh) * 2007-04-10 2009-09-30 华为技术有限公司 海缆光补偿的装置和方法
US7995921B2 (en) * 2007-08-02 2011-08-09 Infinera Corporation Banded semiconductor optical amplifiers and waveblockers
JP5525041B2 (ja) * 2009-05-14 2014-06-18 タイコ エレクトロニクス サブシー コミュニケーションズ エルエルシー 別個の分岐ユニットと所定波長フィルタ・ユニットを含む分岐構成およびこれを含むシステムおよび方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155700A (ja) * 1997-08-05 1999-02-26 Nec Corp 波長光adm装置並びにこの装置を使用した光信号障害監視方式およびリングネットワーク
JP2002262319A (ja) 2001-03-01 2002-09-13 Nippon Telegr & Teleph Corp <Ntt> 光通信網および光パスクロスコネクト装置
WO2008035753A1 (fr) * 2006-09-21 2008-03-27 Nippon Telegraph And Telephone Corporation Bloqueur de longueur d'onde
JP2010098545A (ja) 2008-10-16 2010-04-30 Nippon Telegr & Teleph Corp <Ntt> 光伝送装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2690800A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146107A1 (ja) * 2014-03-27 2015-10-01 日本電気株式会社 光通信装置、光通信システム及び光通信方法
JPWO2015146107A1 (ja) * 2014-03-27 2017-04-13 日本電気株式会社 光通信装置、光通信システム及び光通信方法
JP2016208407A (ja) * 2015-04-27 2016-12-08 Necエンジニアリング株式会社 波長多重光ネットワークシステム、分岐装置およびその制御方法
WO2019065383A1 (ja) 2017-09-28 2019-04-04 日本電気株式会社 海底分岐装置、光海底ケーブルシステム、光通信方法
US11336386B2 (en) 2017-09-28 2022-05-17 Nec Corporation Submarine branching apparatus, optical submarine cable system, and optical communication method
WO2019116776A1 (ja) 2017-12-15 2019-06-20 日本電気株式会社 海底光伝送装置及び海底光通信システム
WO2019188462A1 (ja) 2018-03-26 2019-10-03 日本電気株式会社 海底分岐装置、光海底ケーブルシステム及び光通信方法
US11251895B2 (en) 2018-03-26 2022-02-15 Nec Corporation Seabed branching device, optical seabed cable system, and optical communication method
WO2020194842A1 (ja) * 2019-03-27 2020-10-01 日本電気株式会社 海底光分岐装置、海底光ケーブルシステム、切替方法、及び非一時的なコンピュータ可読媒体
JPWO2020194842A1 (ja) * 2019-03-27 2021-12-09 日本電気株式会社 海底光分岐装置、海底光ケーブルシステム、切替方法、及びプログラム
JP7264233B2 (ja) 2019-03-27 2023-04-25 日本電気株式会社 海底光分岐装置、海底光ケーブルシステム、切替方法、及びプログラム
US11942991B2 (en) 2019-03-27 2024-03-26 Nec Corporation Optical submarine branching apparatus, optical submarine cable system, switching method, non-transitory computer-readable medium

Also Published As

Publication number Publication date
US20130315591A1 (en) 2013-11-28
JPWO2012132688A1 (ja) 2014-07-24
EP2690800A1 (en) 2014-01-29
JP5700117B2 (ja) 2015-04-15
CN103460628A (zh) 2013-12-18
EP2690800A4 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
JP5700117B2 (ja) 光伝送装置
US7650075B2 (en) Optical add-drop multiplexer, and optical network equipment using the same
JP4739928B2 (ja) 波長選択光スイッチおよび波長選択光スイッチモジュール
EP3176968B1 (en) Optical communication device, optical communication system, and optical communication method
US11108488B2 (en) Optical transceiver and method of controlling optical powers of optical channels
CN101222277B (zh) 一种波长选择开关型的可重配置光分插复用器传输设备及该设备中光通道功率自动均衡的方法
EP1043859B1 (en) Optical add/drop multiplexer node device
WO2000005832A1 (en) Optical communication systems, apparatuses, and methods
EP3057247B1 (en) Reconfigurable optical add-drop multiplexer apparatus
CN101019359A (zh) 具有可重配置插入波长选择开关的光分插复用器
JP6256626B2 (ja) ノード装置及びノード装置の制御方法
JP2013258530A (ja) 双方向モニタモジュール、光モジュール及び光分岐挿入装置
US7218805B2 (en) WDM ring network for flexible connections
EP2768173B1 (en) A protected optical single-fiber WDM system
US6859576B2 (en) Optical cross-connect system
US20040165891A1 (en) Low-loss, efficient hub ring networks and methods for their use
US20120183292A1 (en) Method and apparatus for trafficking wavelengths of different spacings within an optical node
EP2403170B1 (en) A reconfigurable optical add and drop wavelength multiplexer for an optical network using wavelength division multiplexing
CN100583714C (zh) 光分插复用器
US7133612B1 (en) Bidirectional WDM transmission system having transmission format for reducing adverse effects of filter concatonation
JP2003124888A (ja) 波長光信号監視機構およびその方法、光アドドロップ装置用監視システムならびに光クロスコネクト装置用監視システム
EP2925012B1 (en) A wavelength routing cross-connect
CN107959527A (zh) 可重构光分插复用器以及光通路保护方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765332

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012765332

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012765332

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13984905

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013507286

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE