WO2012132236A1 - Semiconductor light-emitting element and light-emitting device - Google Patents

Semiconductor light-emitting element and light-emitting device Download PDF

Info

Publication number
WO2012132236A1
WO2012132236A1 PCT/JP2012/001473 JP2012001473W WO2012132236A1 WO 2012132236 A1 WO2012132236 A1 WO 2012132236A1 JP 2012001473 W JP2012001473 W JP 2012001473W WO 2012132236 A1 WO2012132236 A1 WO 2012132236A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
oxygen
layer
insulating film
emitting device
Prior art date
Application number
PCT/JP2012/001473
Other languages
French (fr)
Japanese (ja)
Inventor
秀紀 春日井
真治 吉田
山中 一彦
裕人 大崎
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2012800154210A priority Critical patent/CN103443942A/en
Priority to JP2013507113A priority patent/JPWO2012132236A1/en
Publication of WO2012132236A1 publication Critical patent/WO2012132236A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil

Definitions

  • the present invention relates to a semiconductor light emitting element and a light emitting device using a quantum dot phosphor in a phosphor layer.
  • White LEDs used for illumination light sources, liquid crystal display backlight light sources, etc., combine a semiconductor light emitting element that emits blue light and a phosphor that emits fluorescence such as green, yellow, and red. It has been realized.
  • the phosphor include rare earth phosphors, organic phosphors, and quantum dot phosphors composed of semiconductors.
  • rare earth phosphors are used for general white LEDs.
  • the rare earth phosphor is an oxide or nitride to which rare earth ions are added as an activator. Fluorescence is emitted when electrons in the rare earth ions are excited and transition to the ground state.
  • the quantum dot phosphor directly uses band edge light absorption / emission, high quantum efficiency can be realized.
  • the quantum dot phosphor is a semiconductor fine particle in which a compound semiconductor crystal is made into nano-sized particles, and can utilize a quantum confinement effect.
  • the fluorescence peak wavelength can be adjusted by changing the particle diameter of the semiconductor fine particles.
  • a white LED combining such a phosphor and a semiconductor light-emitting element has a conventional configuration in which a semiconductor light-emitting element is disposed on a package, and the phosphor is contained in a transparent material such as a resin so that the semiconductor in the package. It arrange
  • Patent Document 1 discloses a structure of a light emitting device using a rare earth phosphor.
  • FIG. 28 is a cross-sectional view showing a conventional light emitting device disclosed in Patent Document 1.
  • the semiconductor light emitting element 1011 is disposed on the terminal 1012 exposed in the container 1018, and the container 1018 is so covered that the resin 1015 including the phosphor 1016 covers the semiconductor light emitting element 1011. It is the structure filled in.
  • Patent Document 2 shows a structure of a conventional semiconductor light emitting element using a rare earth phosphor.
  • FIG. 29 is a cross-sectional view showing a conventional semiconductor light emitting device disclosed in Patent Document 2.
  • an Si-doped n-type GaN layer 1002 an Si-doped n-type AlGaN layer 1003, an undoped GaN active layer 1004, an Mg-doped p-type AlGaN layer. 1005 and an Mg-doped p-type GaN layer 1006 are sequentially stacked, and a part of the surface of the stacked part is dug until reaching the Si-doped n-type GaN layer 1002.
  • An n-side electrode 1009 is formed on the substrate.
  • a p-type electrode 1008 is formed on the Mg-doped p-type GaN layer 1006 to constitute a GaN-based semiconductor light-emitting element that outputs ultraviolet light emission.
  • a phosphor layer 1007 in which a phosphor is dispersed in a resin is applied on the GaN-based semiconductor light emitting element.
  • a mask pattern is applied to this, and ultraviolet exposure is performed to solidify only a portion desired to be left as the phosphor layer 1007, and an unnecessary portion is removed.
  • a semiconductor light emitting device in which the phosphor layer 1007 is formed only on the portion other than the p-side electrode 1008 above the Mg-doped p-type GaN layer 1006 is formed.
  • Quantum dot phosphors have a very small particle size, so that quantum efficiency strongly depends on surface characteristics such as surface structure and surface crystallinity. For this reason, quantum efficiency falls rapidly by the defect formed in the surface of quantum dot fluorescent substance.
  • Defects formed on the surface are generated by oxygen that has reached the quantum dot phosphor through the resin in which the quantum dot phosphor is dispersed and oxidizes the surface of the quantum dot phosphor. Furthermore, this oxidation phenomenon is accelerated by light emitted from the semiconductor light emitting device.
  • the quantum dot phosphor when the quantum dot phosphor is arranged in the vicinity of the semiconductor light emitting device, the light density irradiated to the quantum dot phosphor becomes very strong, and the quantum dot phosphor is violently oxidized.
  • the present invention reduces the quantum efficiency of quantum dot phosphors by suppressing contact between oxygen and phosphor particles, which is one of the causes of oxidation of quantum dot phosphors (semiconductor fine particles).
  • An object of the present invention is to provide a semiconductor light-emitting element and a light-emitting device that can suppress long-term reliability and realize long-term reliability.
  • an embodiment of a semiconductor light emitting device includes a semiconductor layer including an active layer, a first metal layer formed on the semiconductor layer, a first metal layer, a semiconductor A first insulating film formed so as to cover an upper surface and a side surface of the layer; a second insulating film containing semiconductor fine particles formed on the first insulating film; and a second insulating film formed on the second insulating film And a third insulating film, wherein the second insulating film is covered with the first insulating film and the third insulating film.
  • the second insulating film containing the semiconductor fine particles (quantum dot phosphor) is covered with the third insulating film, the transmission of oxygen to the second insulating film can be suppressed. it can. Thereby, since contact with oxygen and semiconductor fine particles can be suppressed, it can suppress that the quantum efficiency of semiconductor fine particles (quantum dot fluorescent substance) falls.
  • an opening is formed in the first insulating film on the first metal layer.
  • a second metal layer is formed in the opening so as to be connected to the first metal layer.
  • the first metal layer is a transparent electrode
  • the material of the transparent electrode is indium oxide to which tin is added, tin oxide to which antimony is added, and oxide. It is preferably any of zinc.
  • the semiconductor fine particle is preferably a quantum dot phosphor, and is configured to absorb light emitted from the active layer and emit light different from light emitted from the active layer.
  • the third insulating film is a film that does not transmit oxygen and has high thermal conductivity, and includes aluminum nitride, silicon nitride, nitrogen silicon oxide, It is preferably any of silicon oxide, zinc oxide, aluminum oxide, and indium oxide.
  • a fourth insulating film is provided between the second insulating film and the third insulating film, and the second insulating film is covered with the fourth insulating film.
  • the fourth insulating film is preferably covered with a third insulating film.
  • Another embodiment of the light emitting device is a light emitting device including the above semiconductor light emitting element, a package made of a resin having a recess, a lead frame exposed on the bottom surface of the recess, and a lead frame in the recess.
  • the semiconductor light-emitting element installed in and a resin part formed so as to cover the semiconductor light-emitting element in the recess, and the resin part contains heat conductive fine particles.
  • one aspect of the first light emitting device is installed in a package made of a resin having a recess, a lead frame exposed on the bottom surface of the recess, and a lead frame in the recess.
  • a semiconductor light emitting device and a first resin portion formed in the recess so as to cover the semiconductor light emitting device are formed, and the first resin portion is composed of a quantum dot phosphor and a first getter particle that adsorbs oxygen. It is characterized by being.
  • the first getter particles preferably have a particle size of 100 nm or less.
  • the first light emitting device further includes a second resin portion formed so as to cover the first resin portion exposed in the recess, and the second resin portion contains oxygen. It is preferable to have second getter particles that adsorb.
  • the first getter particles preferably have a particle size of 100 nm or less, and the second getter particles have a particle size of 100 ⁇ m or less.
  • a layer that does not adsorb oxygen or permeate oxygen is provided on the surface of the recess.
  • the first and second getter particles absorb the wavelength of light emitted from the semiconductor light emitting element and the wavelength of light emitted from the quantum dot phosphor. Preferably not.
  • a glass lid is provided on the second resin portion, and the glass lid is bonded to the package.
  • Another aspect of the first light emitting device is a light emitting device including a semiconductor light emitting element mounted on a package and a wavelength conversion unit in the package, wherein the wavelength conversion unit is made of resin. It is composed of a quantum dot phosphor and at least getter particles that adsorb oxygen.
  • the getter particles preferably have a particle size of 100 nm or less.
  • the particle diameter of the quantum dot phosphor is approximately 20 nm or less in the case of a wavelength in the visible light region. Therefore, when the getter particle diameter is on the order of several microns or several tens of microns, the quantum dot phosphor cannot be uniformly dispersed and color unevenness occurs.
  • the wavelength conversion unit has a two-layer structure of a first layer and a second layer, and the first layer includes a resin and quantum dot fluorescence.
  • the body and at least the getter particles that adsorb oxygen are mixed, and at least the semiconductor light emitting element is covered.
  • the second layer is a mixture of resin and at least oxygen that adsorbs oxygen, and the second layer is the first layer. It is preferable to be formed on one layer.
  • the getter particles of the first layer have a particle size of 100 nm or less, and the getter particles of the second layer have a particle size of 100 ⁇ m or less. Preferably there is.
  • the first layer can suppress uneven color. If the particle diameter of the getter particles in the second layer is larger than 100 ⁇ m, the dispersibility deteriorates due to sedimentation due to the weight of the particles.
  • a layer that does not adsorb or transmit oxygen is provided between the wavelength conversion unit and the side surface of the package. Oxygen permeates also from the package side surface, so that the oxidation of the quantum dot phosphor can be further suppressed.
  • the getter particles do not absorb the wavelength of the semiconductor light emitting element and the wavelength of the quantum dot phosphor.
  • getter particles absorb the wavelength of the semiconductor light emitting element or the quantum dot phosphor, the light emission intensity of the light emitting device decreases. Therefore, it is preferable to use getter particles that do not absorb wavelengths from semiconductor light emitting elements and quantum dot phosphors.
  • the wavelength conversion unit has a glass lid on the top, and the glass lid is bonded to the package to seal the wavelength conversion unit. Is preferred.
  • an aspect of the second light emitting device includes a package made of a resin having a recess, a lead frame exposed on the bottom surface of the recess, and a lead frame exposed at least on the bottom surface.
  • a first oxygen getter layer formed to cover the quantum dot phosphor layer, a quantum dot phosphor layer formed on the first oxygen getter layer, and a second layer formed to cover the quantum dot phosphor layer And an oxygen getter layer.
  • this aspect includes a semiconductor light emitting device mounted on a package, a layer in which a quantum dot phosphor is dispersed in a resin (quantum dot phosphor layer), and a getter that adsorbs at least oxygen dispersed in the resin.
  • a layer containing particles (oxygen getter layer), and the upper and lower portions of the quantum dot phosphor layer are covered with the oxygen getter layer.
  • the getter particles in the oxygen getter layer provided on the top and bottom of the quantum dot phosphor layer adsorb oxygen.
  • oxygen permeation to the quantum dot phosphor layer can be suppressed.
  • a glass lid is provided on the second oxygen getter layer. That is, it is preferable that a glass lid is provided on the oxygen getter layer formed on the quantum dot phosphor layer.
  • the upper surface of the oxygen getter layer provided above the quantum dot phosphor layer can be covered with glass, so that the surface in contact with the air layer can be covered with the glass lid. Oxygen permeation to the dot phosphor layer can be greatly suppressed. As a result, it is possible to prevent a decrease in light emission efficiency of the quantum dot phosphor due to oxidation.
  • the inner wall of the recess is provided with a reflective metal layer that adsorbs oxygen or does not transmit oxygen, or a porous particle layer that adsorbs oxygen.
  • a reflective metal layer that adsorbs oxygen or does not transmit oxygen
  • a porous particle layer that adsorbs oxygen.
  • it is. That is, between the side of the package and the quantum dot phosphor layer, or a layer in which the upper or lower part of the quantum dot phosphor layer is covered with an oxygen getter layer, oxygen adsorption or a reflective metal film that does not transmit oxygen is adsorbed.
  • a porous particle film is preferably provided.
  • oxygen transmitted from the package side wall can be adsorbed, so that the oxidation of the quantum dot phosphor in the quantum dot phosphor layer in contact with the package side wall can be further suppressed.
  • the inner wall of the recess is provided with a reflective metal layer that adsorbs oxygen or does not transmit oxygen, or a porous particle layer that adsorbs oxygen. Preferably it is.
  • the getter particles contained in the first oxygen getter layer and the second oxygen getter layer are titanium oxide, niobium oxide, hafnium oxide, indium. It preferably contains any of oxide, tungsten oxide, tin oxide, zinc oxide, zirconia oxide, magnesium oxide, antimony oxide, silicon dioxide, and nitrogen silicon oxide.
  • the quantum dot phosphor layer includes CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnZe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnZeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, CdHgSeTe, CdHgSTe, CdHgSeTe, CdHgSTe, HgZnSS, HgZnSeTe,
  • the present invention it is possible to prevent a decrease in light emission efficiency of the quantum dot phosphor due to oxidation, and thus it is possible to realize a semiconductor light emitting element and a light emitting device having long-term reliability.
  • FIG. 1 is a cross-sectional view showing a semiconductor light emitting device according to the first embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of a region A in the semiconductor light emitting device according to the first embodiment of the present invention.
  • FIG. 3 is an enlarged cross-sectional view of the B region in the semiconductor light emitting device according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing oxygen permeability of an insulating film from a resin material.
  • FIG. 5 is a diagram showing the oxygen permeability of the oxygen barrier film used in the first embodiment of the present invention.
  • FIG. 6 is a diagram showing a method for manufacturing the semiconductor light emitting device according to the first embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a semiconductor light emitting device according to the first embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of a region A in the semiconductor light emitting device according to the first embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing a modification of the semiconductor light emitting device according to the first embodiment of the present invention.
  • FIG. 8 is a sectional view showing a semiconductor light emitting device according to the second embodiment of the present invention.
  • FIG. 9 is an enlarged cross-sectional view of a C region in the semiconductor light emitting device according to the second embodiment of the present invention.
  • FIG. 10 is an enlarged cross-sectional view of a D region in the semiconductor light emitting device according to the second embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a method for manufacturing a semiconductor light emitting device according to the second embodiment of the present invention.
  • FIG. 12 is a cross-sectional view showing a modification of the semiconductor light emitting device according to the second embodiment of the present invention.
  • FIG. 13 is a sectional view showing a light emitting device according to the third embodiment of the present invention.
  • FIG. 14 is a sectional view showing a semiconductor light emitting device according to the fourth embodiment of the present invention.
  • FIG. 15 is a diagram showing a method for manufacturing a semiconductor light emitting device according to the fourth embodiment of the present invention.
  • FIG. 16 is sectional drawing which shows the light-emitting device based on the 5th Embodiment of this invention.
  • FIG. 17 is a sectional view showing a light emitting device according to the sixth embodiment of the present invention.
  • FIG. 18 is a sectional view showing a light emitting device according to the seventh embodiment of the present invention.
  • FIG. 19 is a sectional view showing a light emitting device according to the eighth embodiment of the present invention.
  • FIG. 20 is a sectional view showing a light emitting device according to the ninth embodiment of the present invention.
  • FIG. 21 is a sectional view showing a light emitting device according to the tenth embodiment of the present invention.
  • FIG. 22 is a sectional view showing a light emitting device according to the eleventh embodiment of the present invention.
  • FIG. 23 is a sectional view showing a light emitting device according to the twelfth embodiment of the present invention.
  • FIG. 24 is a sectional view showing a light emitting device according to the thirteenth embodiment of the present invention.
  • FIG. 25 is a sectional view showing a light emitting device according to the fourteenth embodiment of the present invention.
  • FIG. 26 is a sectional view showing a light emitting device according to the fifteenth embodiment of the present invention.
  • FIG. 21 is a sectional view showing a light emitting device according to the tenth embodiment of the present invention.
  • FIG. 22 is a sectional view showing a light emitting device according to
  • FIG. 27 is a cross-sectional view showing a light emitting device according to the sixteenth embodiment of the present invention.
  • FIG. 28 is a cross-sectional view showing a conventional light emitting device.
  • FIG. 29 is a cross-sectional view showing a conventional semiconductor light emitting device.
  • the semiconductor light emitting device of each embodiment of the present invention is preferably a semiconductor light emitting device having an active layer that emits light at a wavelength of 380 nm to 480 nm.
  • the semiconductor fine particles that are quantum dot phosphors preferably absorb the wavelength of 380 nm to 480 nm of the semiconductor light emitting element and emit light between 450 nm and 700 nm.
  • the wavelength of light emitted from the active layer of the semiconductor light emitting element is 450 nm in the above wavelength range.
  • the quantum dot phosphor absorbs the wavelength of 450 nm of the semiconductor light emitting element.
  • the first semiconductor fine particle having a peak wavelength of 530 nm and the second semiconductor fine particle having a fluorescence peak wavelength of 620 nm are two. The case where it is composed of various types of semiconductor fine particles will be described.
  • FIG. 1 is a cross-sectional view of a semiconductor light emitting device according to a first embodiment of the present invention.
  • 2 and 3 are enlarged views of the A region and the B region in the semiconductor light emitting device according to the first embodiment of the present invention.
  • a semiconductor layer stacked structure including an active layer 13 which is, for example, an InGaN / GaN multiple quantum well is formed on a substrate 10 (for example, a sapphire substrate). It has been done.
  • a first metal layer 16 is formed as a p-electrode on the semiconductor layer stacked structure.
  • the semiconductor layer stack structure includes, for example, a buffer layer 11 that is a Si-doped GaN layer, for example, a first cladding layer 12 that is a Si-doped AlGaN layer, and an active layer 13 that has a multiple quantum well structure, such as a second layer that is a Mg-doped AlGaN layer.
  • the cladding layer 14 and the contact layer 15 which is an Mg-doped GaN layer are sequentially laminated.
  • the first metal layer 16 on the contact layer 15 is a transparent electrode that transmits light from the active layer 13.
  • the transparent electrode is indium oxide (ITO) to which tin is added.
  • a silicon oxide film (SiO 2 ), a silicon nitride film (Si 1-x N x ), and an alumina film (so as to cover the upper part of the first metal layer 16 and the upper and side surfaces of the semiconductor layer stacked structure.
  • a first insulating film 18 having an oxygen barrier property such as Al 2 O 3 is formed.
  • a second insulating film 20 is formed on the first insulating film 18.
  • the second insulating film 20 is composed of, for example, two types of semiconductor fine particles, a first semiconductor fine particle 25a having a fluorescence peak wavelength of 530 nm and a second semiconductor fine particle 25b having a fluorescence peak wavelength of 620 nm, in a silicone resin. It is the fluorescent substance layer which disperse
  • a third insulating film 21 is formed so as to cover the surface of the second insulating film 20.
  • the third insulating film 21 is formed of, for example, an aluminum nitride film, a silicon nitride film (Si 1-x N x ), an alumina film (Al 2 O 3 ), a silicon oxide film (SiO 2 ), or a silicon oxynitride film ( An insulating film having an oxygen barrier property such as SiO 1-x N 1-xy ). That is, by covering the surface of the second insulating film 20 with the oxygen barrier film of the first insulating film 18 and the third insulating film 21, oxygen can be prevented from entering the second insulating film 20. Can do.
  • an opening is formed in the first insulating film 18 above the first metal layer 16, and the first metal layer 16 is connected to the opening so as to be connected to the first metal layer 16.
  • Two metal layers 19a are formed.
  • the n-electrode 17 is formed on the buffer layer 11, and the second metal layer 19b is further formed thereon.
  • FIGS. 2 and 3 show the positional relationship between the first insulating film 18, the second insulating film 20, and the third insulating film 21 in the regions A and B.
  • the second insulating film 20 is formed on the inner side of the first insulating film 18.
  • the third insulating film 21 is formed inside the first insulating film 18 and outside the second insulating film 20.
  • the second insulating film 20 containing the quantum dot phosphor is covered with the first insulating film 18 and the third insulating film 21 made of an insulating film having an oxygen barrier property, whereby the second insulating film Oxygen permeation to 20 can be suppressed. Therefore, contact between semiconductor fine particles (quantum dot phosphor) and oxygen can be suppressed. Thereby, since the oxidation of the semiconductor fine particles can be suppressed, a decrease in the light emission efficiency of the semiconductor light emitting element can be reduced.
  • FIG. 4 is a diagram showing oxygen permeability of an insulating film made of a resin material.
  • FIG. 5 is a diagram showing oxygen permeability of an insulating film formed using a CVD (Chemical Vapor Deposition) method, an Electron Magnetic Resonance (ECR) sputtering method, and an electron beam (EB) method. It is.
  • CVD Chemical Vapor Deposition
  • ECR Electron Magnetic Resonance
  • EB electron beam
  • the oxygen transmission rate of the resin used when the phosphor of the semiconductor light emitting device is contained is 460000 cc / m 2 ⁇ day
  • Epoxy is 50 cc / m 2 ⁇ day
  • acrylic is 657 ccg / m 2 ⁇ day.
  • the oxygen permeability of the aluminum nitride film (8 nm or more) formed by the CVD method is lower than 0.4 cc / m 2 ⁇ day (temperature 33 ° C., humidity 0%).
  • the oxygen permeability of aluminum oxide (17 nm) formed by ECR sputtering is 1.45 cc / m 2 ⁇ day (temperature 30 ° C., humidity 70%), and the oxygen permeability is lowered even under high humidity conditions. be able to. Therefore, the amount of oxygen reaching the quantum dot phosphor can be reduced by using these films as the third insulating film 21.
  • indium oxide (ITO) with tin added to the first metal layer 16 is used.
  • ITO indium oxide
  • tin oxide to which antimony is added zinc oxide, or the like may be used.
  • the second insulating film 20 may be any transparent material that can easily mix the first semiconductor fine particles 25a and the second semiconductor fine particles 25b.
  • thermosetting resins such as epoxy resins, fluoride resins, acrylic resins, transparent polyimide resins, polyarylate resins, polyethylene terephthalate resins, polysulfone resins, polyparaxylene resins, polyparabanic acid resins, etc.
  • An organic material or an inorganic glass formed by a sol-gel method may be used.
  • the third insulating film 21 is used as the third insulating film 21, it is not limited to this.
  • silicon nitride, silicon oxynitride, silicon oxide, zinc oxide, aluminum oxide, or indium oxide may be used.
  • examples of the configuration of the quantum dot phosphor in the second insulating film 20 include a core / shell type and a quantum well type. In the present embodiment, any configuration can be applied.
  • the core and shell materials constituting the quantum dot phosphor are, for example, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, as in the case of II-VI group compounds.
  • III-V compounds include GaN, GaP, GaAs, GaSb, AlN, AlGaN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, InGaN, GaNP, GANAS, GaNSb, GaPAs, GaPSb, and AlNP.
  • the sapphire substrate is used as the substrate 10
  • GaN, SiC, Si, graphite, ZnO, AlN may be used.
  • the semiconductor light emitting device 1 may have a configuration in which the substrate 10 is removed by a laser lift-off method or the like.
  • FIG. 6 is a diagram showing a method for manufacturing the semiconductor light emitting device according to the first embodiment of the present invention.
  • a buffer layer 11 made of, for example, Si-doped n-type GaN, for example, Si-doped n is formed on a substrate 10 (sapphire substrate) by metal organic vapor phase epitaxy.
  • a contact layer 15 made of GaN is sequentially grown.
  • a resist pattern (not shown) is formed on the surface of the contact layer 15, and an opening 30 reaching the buffer layer 11 is formed by dry etching using, for example, a chlorine-based gas, as shown in FIG. .
  • a transparent electrode made of, for example, ITO is formed as the first metal layer 16 on the contact layer 15 by electron beam evaporation or sputtering.
  • the first insulating film 18 is used as the first insulating film 18 to form the buffer layer 11 and the first metal layer 16. It is formed on the upper surface and the side surfaces of the buffer layer 11, the first cladding layer 12, the active layer 13, the second cladding layer 14, the contact layer 15, and the first metal layer 16.
  • a plasma CVD method preferably an ECR sputtering method, for example, SiO 2 , Si 2 N 3 , or Al 2 O 3 is used as the first insulating film 18 to form the buffer layer 11 and the first metal layer 16. It is formed on the upper surface and the side surfaces of the buffer layer 11, the first cladding layer 12, the active layer 13, the second cladding layer 14, the contact layer 15, and the first metal layer 16.
  • a resist pattern (not shown) corresponding to the openings 35 and 36 for forming the n-electrode 17 and the second metal layers 19a and 19b is formed, and the portions opened by dry etching are formed.
  • openings 35 and 36 are formed as shown in FIG.
  • the n-electrode 17 made of, for example, Ti / Al / Ti / Au is formed in the exposed opening 36 of the buffer layer 11 using photolithography and electron beam evaporation ((d) in FIG. 6).
  • second metal layers 19a and 19b made of, for example, Cr / Au are formed on the exposed first metal layer 16 and n electrode 17.
  • a resist pattern (not shown) is formed using photolithography
  • Cr / Au is formed using an electron beam evaporation method
  • second metal layers 19a and 19b are formed using a lift-off method.
  • the second insulating film 20 made of a silicone resin containing semiconductor fine particles that are, for example, core-shell type quantum dot phosphors is applied to the entire surface by, eg, spin coating, spraying, or bar coating.
  • the semiconductor fine particles are a mixture of the first semiconductor fine particles 25a having a fluorescence peak wavelength of 530 nm and the second semiconductor fine particles 25b having a fluorescence peak wavelength of 620 nm, both of which have a core material of CdSe or InP is a semiconductor fine particle which is a core / shell type quantum dot phosphor composed of ZnS as a shell material.
  • the semiconductor fine particles may be covered with a SiO 2 film.
  • the second insulating film 20 containing unnecessary semiconductor fine particles is removed using an alkaline solution.
  • the second insulating film 20 containing the semiconductor fine particles is opened so that the end is inside the first insulating film 18.
  • a silicon nitride film having a thickness of at least 50 nm is formed as the third insulating film 21 by, for example, an electron beam evaporation method, a plasma CVD method, preferably an ECR sputtering method.
  • a resist mask is formed using photolithography, and the unnecessary third insulating film 21 is removed by dry etching as shown in FIG.
  • the opening of the third insulating film 21 is made so that the end of the third insulating film 21 is inside the first insulating film 18.
  • the semiconductor light emitting element 1 can be obtained by performing element separation by dicing thereafter.
  • the second insulating film 20 including the quantum dot phosphor is the first insulating film 18 and the third insulating film having a high oxygen barrier property. Since it is covered with 21, the oxidation of the quantum dot phosphor can be suppressed. Thereby, it is possible to realize a semiconductor light emitting device in which the quantum efficiency of the quantum dot phosphor is high and the quantum efficiency of the quantum dot phosphor is not lowered.
  • FIG. 7 is a cross-sectional view of a modification of the semiconductor light emitting device according to the first embodiment of the present invention.
  • the semiconductor light emitting device 101 according to this modification is different from the semiconductor light emitting device 1 according to the first embodiment in that the second insulating film 20 has a quantum dot fluorescence with a fluorescence peak wavelength of 530 nm.
  • the second insulating film 20 By making the second insulating film 20 have such a structure, it is possible to suppress color unevenness compared to the case where two types of quantum dot phosphors are mixed.
  • the second insulating film 20a and the second insulating film 20b are alternately formed as shown in FIG. Then, the second insulating film 20 is formed.
  • a second insulating film 20a containing a quantum dot phosphor that is a first semiconductor fine particle 25a having an emission wavelength of 530 nm is formed on a fluorine-based resin mask provided with a recess, for example, by an inkjet method or screen printing. Apply using a method and heat cure.
  • the second insulating film 20b containing the quantum dot phosphor that is the second semiconductor fine particles 25b having an emission wavelength of 620 nm is applied and thermally cured using, for example, an inkjet method.
  • silicon nitride is formed to a thickness of at least 8 nm as the third insulating film 21 by, for example, electron beam evaporation, plasma CVD, preferably ECR sputtering. Film.
  • a resist mask is formed using photolithography, and the unnecessary third insulating film 21 is removed by dry etching.
  • the opening of the third insulating film 21 is made to be inside the first insulating film 18.
  • element isolation is performed by dicing.
  • the second insulating film 20 including the quantum dot phosphor is covered with the first insulating film 18 and the third insulating film 21 having a high oxygen barrier property. Therefore, the oxidation of the quantum dot phosphor can be suppressed.
  • the second insulating film 20 is constituted by the second insulating film 20a containing the first semiconductor fine particles 25a and the second insulating film 20b containing the second semiconductor fine particles 25b. Therefore, color unevenness can be suppressed as compared with the case of mixing two types of semiconductor fine particles. As a result, it is possible to realize a semiconductor light emitting device that has excellent quantum efficiency and color reproducibility and further suppresses color unevenness.
  • FIG. 8 is a cross-sectional view of a semiconductor light emitting device according to the second embodiment of the present invention.
  • 9 and 10 are enlarged views of the C region and the D region of the semiconductor light emitting device 2 according to the second embodiment of the present invention.
  • the semiconductor light emitting device 2 according to this embodiment is different from the semiconductor light emitting device 1 according to the first embodiment in that the second insulating film 20, the third insulating film 21, and the like. A fourth insulating film 22 is provided between them.
  • the second insulating film 20 is completely covered with the first insulating film 18 and the fourth insulating film 22. Further, the second insulating film 20 and the fourth insulating film 22 are completely covered with the first insulating film 18 and the third insulating film 21. At this time, the fourth insulating film 22 is preferably formed by electron beam evaporation which can be formed with low damage to the resin layer.
  • the material of the fourth insulating film silicon nitride is used. Silicon oxide, silicon oxynitride, alumina, or the like can be used.
  • the second insulating film 20 including the quantum dot phosphor is covered with the first insulating film 18, the third insulating film 21, and the fourth insulating film 22, the quantum dot phosphor Oxidation can be suppressed. Thereby, it is possible to realize a semiconductor light emitting device with good quantum efficiency and no damage to the second insulating film 20.
  • FIG. 11 is a diagram illustrating a method for manufacturing a semiconductor light emitting device according to the second embodiment of the present invention.
  • a buffer layer 11 made of, for example, n-type GaN, for example, a first layer made of, for example, n-type AlGaN is formed on a substrate 10 (sapphire substrate) by metal organic vapor phase epitaxy.
  • the first cladding layer 12, for example, an active layer 13 made of a multiple quantum well of InGaN and GaN, a second cladding layer 14 made of p-type AlGaN, and a contact layer 15 made of p-type GaN are sequentially grown.
  • a resist pattern (not shown) corresponding to the shape of the opening 30 is formed using photolithography.
  • a part of the buffer layer 11 is etched using dry etching to form an opening 30 as shown in FIG.
  • a transparent electrode made of, for example, ITO is formed as the first metal layer 16 on the contact layer 15 by electron beam evaporation or sputtering.
  • the buffer layer 11 and the first metal layer 16 are formed. It is formed on the upper surface and the side surfaces of the buffer layer 11, the first cladding layer 12, the active layer 13, the second cladding layer 14, the contact layer 15, and the first metal layer 16. Thereafter, as shown in FIG. 11C, openings 35 and 36 are formed in the first insulating film 18 using photolithography in order to form the n-electrode 17 and the second metal layers 19a and 19b. Form.
  • a plasma CVD method preferably an ECR sputtering method, for example, SiO 2 , Si 2 N 3 , Al 2 O 3 as the first insulating film 18. It is formed on the upper surface and the side surfaces of the buffer layer 11, the first cladding layer 12, the active layer 13, the second cladding layer 14, the contact layer 15, and the first metal layer 16.
  • openings 35 and 36 are formed in the first insulating film 18 using photolithography in order to form the n-electrode 17 and the second metal layers 19a and 19b.
  • an n-electrode 17 made of, for example, Ti / Al / Ti / Au is formed in the exposed opening 36 of the buffer layer 11 using photolithography and electron beam evaporation ((c) in FIG. 11).
  • a first layer made of Cr / Au is formed by lift-off combining a photolithography method and an electron beam evaporation method.
  • Two metal layers 19a and 19b are formed.
  • the second insulating film 20 made of a silicone resin containing semiconductor fine particles that are, for example, core-shell type quantum dot phosphors is applied to the entire surface by, eg, spin coating or spraying.
  • the semiconductor fine particles are a mixture of the first semiconductor fine particles 25a having a fluorescence peak wavelength of 530 nm and the second semiconductor fine particles 25b having a fluorescence peak wavelength of 620 nm, both of which have a core material of CdSe or InP is a semiconductor fine particle which is a core-shell type quantum dot phosphor composed of ZnS as a shell material.
  • the semiconductor fine particles may be covered with a SiO 2 film.
  • the second insulating film 20 containing unnecessary semiconductor fine particles is removed using an alkaline solution.
  • the second insulating film 20 containing the semiconductor fine particles is opened so that the end thereof is inside the first insulating film 18.
  • a resist mask is formed using photolithography, and the fourth insulating film 22 is formed so as to cover the entire surface of the second insulating film 20 as shown in FIG.
  • a silicon nitride film is formed with a thickness of at least 10 nm.
  • the opening of the fourth insulating film 22 is made so that the end of the fourth insulating film 22 is inside the first insulating film 18.
  • a silicon nitride film having a thickness of at least 8 nm is formed as the third insulating film 21 by using, for example, a plasma CVD method, preferably an ECR sputtering method. Thereafter, a resist mask is formed using photolithography, and the unnecessary third insulating film 21 is removed by dry etching as shown in FIG. At this time, as shown in FIGS. 9 and 10, the opening of the third insulating film 21 is made so that the end of the third insulating film 21 is inside the first insulating film 18.
  • the semiconductor light emitting element 2 can be obtained by performing element separation by dicing thereafter.
  • the fourth insulating film 22 is formed on the second insulating film 20, so that the dense structure using the ECR sputtering method or the CVD method is used.
  • a simple crystal is formed as the third insulating film 21
  • damage to the second insulating film 20 including the semiconductor fine particles (quantum dot phosphor) can be suppressed.
  • a decrease in quantum efficiency due to oxidation of the quantum dot phosphor can be reduced, and a decrease in quantum efficiency due to damage received during the formation of the third insulating film 21 can be reduced.
  • a semiconductor light emitting device having high quantum efficiency of the quantum dot phosphor can be realized.
  • the quantum dot phosphor may be any material described in the first embodiment. Moreover, although the core / shell type was used for the configuration of the quantum dot phosphor, it may be a quantum well type.
  • the second insulating film 20 may be any material described in the first embodiment.
  • the third insulating film 21 may be any material described in the first embodiment.
  • FIG. 12 is a cross-sectional view of a modification of the semiconductor light emitting element according to the second embodiment of the present invention.
  • the semiconductor light emitting device 201 according to this modification is different from the semiconductor light emitting device 2 according to the second embodiment in that the second insulating film 20 has a quantum dot fluorescence with a fluorescence peak wavelength of 530 nm.
  • the semiconductor light emitting element according to this modification can be manufactured by the same method as that of the modification of the first embodiment.
  • FIG. 13 is a cross-sectional view of a light emitting device according to the third embodiment of the present invention.
  • the light emitting device 3 includes a package 50 composed of a resin 51 having a recess and two lead frames 52 and 53 exposed on the bottom surface of the recess.
  • the semiconductor light emitting device 1 installed on the lead frame 52 in the recess, the two wires 55 and 56 connecting the semiconductor light emitting device 1 and the two lead frames 52 and 53, and the semiconductor light emitting device 1 in the recess.
  • a resin layer 60 formed to cover the top.
  • the semiconductor light emitting device 1 according to the first embodiment has been described.
  • the modified example of the first embodiment, the second embodiment, or the semiconductor light emitting device according to the modified example is applied. You can also.
  • two lead frames 52 and 53 made of copper having a surface plated with silver, for example, are embedded in a resin 51 made of, for example, polyamide having a recess, forming the first electrode and the second electrode of the package 50. It is a structured.
  • Part of the lead frames 52 and 53 is exposed at the bottom surface in the recess of the resin 51, and the second metal layer of the semiconductor light emitting element 1 is formed by two wires 55 and 56 as the first electrode and the second electrode. 19a and 19b are electrically connected.
  • the resin layer 60 is formed so as to cover the semiconductor light emitting element 1 disposed on the bottom surface of the recess and the lead frames 52 and 53 exposed in the recess.
  • fine particles made of aluminum nitride having a thermal conductivity of 200 W / m ⁇ K, for example, are dispersed as the high thermal conductive fine particles 61.
  • the resin layer 60 is in contact with the lead frames 52 and 53 having high thermal conductivity, the heat generated in the second insulating film 20 is dispersed in the third insulating film 21 and the high thermal conductive fine particles 61. The heat is radiated through the resin layer 60 formed. Therefore, the temperature rise of the second insulating film 20 can be suppressed.
  • this structure in addition to being able to suppress the oxidation of the quantum dot phosphor, it is possible to suppress a decrease in light emission efficiency due to heat generation.
  • the semiconductor light emitting device 1 is manufactured by the manufacturing method described in the first embodiment.
  • the semiconductor light emitting element 1 is mounted on the package 50. Thereafter, a liquid resin containing the high thermal conductive fine particles 61 is potted on the package 50. Thereafter, the resin layer 60 is formed by thermosetting the resin at 160 ° C. for 30 minutes.
  • thermal conductivity of an aluminum nitride is 200W / m ⁇ K.
  • aluminum nitride is used as the high thermal conductive fine particles 61.
  • the high heat conductive fine particles 61 may be any material that does not absorb light emitted from a semiconductor element and light emitted from a quantum dot phosphor and has high heat conductivity. Silicon nitride, silicon oxynitride, silicon oxide, zinc oxide, aluminum oxide, indium oxide, it is possible to use a silicon carbide or diamond.
  • the package 50 is a package in which a lead frame is molded with a resin.
  • the present invention is not limited to this, and a ceramic package with higher thermal conductivity may be used.
  • FIG. 14 is a cross-sectional view of a semiconductor light emitting device according to the fourth embodiment of the present invention.
  • the n-electrode 17 is formed on the back surface of the substrate 10, that is, the surface opposite to the surface on which the active layer is formed.
  • the film 20 is sealed between the first insulating film 18 and the third insulating film 21.
  • the third insulating film 21 is made of a resin that can easily adjust the film thickness from several tens of ⁇ m to several 100 ⁇ m and has a high oxygen barrier property, such as an epoxy resin.
  • the second insulating film 20 containing the semiconductor fine particles can be easily covered with a film having a high oxygen barrier property by a manufacturing method described later.
  • FIG. 15 is a diagram showing a method for manufacturing the semiconductor light emitting device 4 according to the fourth embodiment of the present invention.
  • an organic metal vapor deposition method is used to form, for example, n-type GaN on a substrate 10 that is a conductive substrate such as an n-type GaN substrate or a SiC substrate.
  • Buffer layer 11 for example, a first cladding layer 12 made of n-type AlGaN, for example, an active layer 13 made of multiple quantum wells of InGaN and GaN, for example, a second cladding layer 14 made of p-type AlGaN, and, for example, p-type A contact layer 15 made of GaN is sequentially grown.
  • the opening 30 is formed by photolithography and dry etching.
  • a first metal layer 16 made of, for example, ITO is formed on the contact layer 15.
  • the first insulating film 18 made of at least one of SiO 2 , Si 2 N 3 , and Al 2 O 3 is formed on the buffer layer 11 and the buffer layer 11 by using, for example, a plasma CVD method, preferably an ECR sputtering method. It is formed on the upper surface of the first metal layer 16 and the side surfaces of the buffer layer 11, the first cladding layer 12, the active layer 13, the second cladding layer 14, the contact layer 15, and the first metal layer 16.
  • an opening is provided in the first insulating film 18 using photolithography, and a second metal layer 19 made of, for example, Cr / Au is formed.
  • the second insulating film 20 made of a silicone resin containing semiconductor fine particles, for example, core / shell type quantum dot phosphors, is applied to the entire surface by, eg, spin coating or spraying.
  • the semiconductor fine particles are a mixture of the first semiconductor fine particles having a fluorescence peak wavelength of 530 nm and the second semiconductor fine particles having a fluorescence peak wavelength of 620 nm, both of which have a core material of CdSe or InP, shell material is a semiconductor particle is a core-shell quantum dot phosphors made of a ZnS.
  • a resist mask is formed by using photolithography, and the second insulating film 20 around the upper part of the second metal layer 19 and its periphery is removed using an alkaline solution. .
  • the second insulating film 20, the first insulating film 18, and the buffer layer 11 near the center of the opening 30 are cut using a dicing blade 91,
  • the groove 31 is formed by digging up to reach the substrate 10.
  • a third insulating film 21 having an oxygen barrier property with a predetermined film thickness such as an epoxy resin is formed so as to cover the trench 31 and the second insulating film 20.
  • a resist mask is formed using photolithography, and an opening 35 is formed so as to open the vicinity of the second metal layer 19 as shown in FIG. At this time, the opening is made so that the end of the third insulating film 21 is inside the second insulating film 20.
  • the laser beam 92 is irradiated around the center of the groove 31 using, for example, a laser dicing technique. Use to isolate the device. Thereby, the semiconductor light emitting element 4 can be obtained.
  • the second insulating film 20 including the quantum dot phosphor is covered with the first insulating film 18 and the third insulating film 21. Therefore, the oxidation of the quantum dot phosphor can be suppressed. As a result, a semiconductor light emitting device with good quantum efficiency can be realized.
  • the quantum dot phosphor may be any material described in the first and second embodiments. Moreover, although the core / shell type was used for the configuration of the quantum dot phosphor, it may be a quantum well type.
  • the second insulating film 20 may be any material described in the first embodiment.
  • the third insulating film 21 may be any material described in the first embodiment.
  • FIG. 16 is a cross-sectional view of a light emitting device according to the fifth embodiment of the present invention.
  • the package 70 has a structure having a recess made of resin, and a lead frame 71 made of a conductor having a first electrode and a second electrode is embedded in the bottom surface of the recess.
  • a part of the lead frame 71 is exposed at the bottom surface in the recess of the package 70, and is electrically connected to the semiconductor light emitting element 72 that emits light at 450 nm, for example, as the first electrode and the second electrode.
  • a wavelength converter 73 is formed so as to cover the semiconductor light emitting element 72 disposed on the bottom surface of the recess and the lead frame 71 exposed in the recess.
  • the wavelength conversion unit 73 (first resin unit) includes, for example, a quantum dot phosphor 75 having a particle diameter of 20 nm or less and peak wavelengths of 530 nm and 620 nm and a getter particle 77a (first resin) that adsorbs oxygen.
  • the getter particles include titanium oxide (TiO x : x> 0) having an average particle diameter of 50 nm.
  • the getter particles 77a (titanium oxide) used in the present embodiment has an average particle size of 50 nm and a size close to the particle size of the quantum dot phosphor 75, and therefore, together with the quantum dot phosphor 75 in the resin 74a. It can be uniformly dispersed. Thereby, it is possible to suppress a decrease in the light emission efficiency of the quantum dot phosphor 75 due to oxidation, and to realize a highly reliable light emitting device.
  • the amount of oxygen that permeates the resin 74a is examined.
  • the amount of oxygen that passes through the resin 74a can be calculated from the oxygen permeability coefficient of the resin 74a.
  • the oxygen transmission coefficient is 52 cc / m 2 ⁇ day
  • the size of the LED package is, for example, a 3.5 mm long and 3.5 mm wide square package.
  • the amount of oxygen permeating from the air layer to the epoxy resin is 1.97 ⁇ 10 11 pieces / s. In general, LED lighting is required to have a long product life of 40,000 hours.
  • the oxygen permeation amount at that time is 2.84 ⁇ 10 19 pieces. Further, oxygen passes through the gap between the lead frame 71 and the package 70. The transmission amount is 2.7 ⁇ 10 8 pieces / s (3.99 ⁇ 10 16 pieces after 40,000 hours). Further, oxygen is also transmitted from the package 70. The permeation amount is 5.3 ⁇ 10 8 pieces / s (7.7 ⁇ 10 16 pieces after 40,000 hours). Considering that one getter particle is adsorbed to one oxygen molecule, the amount of getter particles 77a contained in the resin 74a should be at least 2.86 ⁇ 10 19 or more in order to adsorb all permeated oxygen. There is a need to.
  • an epoxy resin is used as the resin 74a.
  • the resin 74a has a high transmittance with respect to the emission wavelength from the semiconductor light emitting element and the quantum dot phosphor, such as a silicone resin, a fluoride resin, and an acrylic resin. Any resin may be used.
  • titanium oxide is used as the getter particle 77a, but the present invention is not limited to this.
  • metal oxides and porous materials as candidates for the getter particles 77a.
  • Examples of the metal oxide getter particles 77a include titanium oxide (TiO x ), niobium oxide (NbO x ), hafnium oxide (HfO x ), indium oxide (In 2 O x ), and tungsten oxide (WO x ), tin oxide (SnO x ), zinc oxide (ZnO x ), zirconia oxide (ZrO x ), magnesium oxide (MgO), antimony oxide (SbO x ), aluminum oxide (Al 2 O x) ) And the like.
  • Examples of the porous getter particles 77a include silicon dioxide (SiO x ) and silicon oxynitride (SiON) (where X> 0).
  • the configuration of the quantum dot phosphor 75 includes a core / shell type, a quantum well type, and the like, but any configuration can be applied in the present embodiment.
  • the core and shell materials constituting the quantum dot phosphor 75 are, for example, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, and the like in the case of II-VI group compounds.
  • III-V compounds include GaN, GaP, GaAs, GaSb, AlN, AlGaN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, InGaN, GaNP, GANAS, GaNSb, GaPAs, GaPSb, and AlNP.
  • a resin 74a in which quantum dot phosphors 75 and getter particles 77a (TiOx: x> 0) are dispersed is potted on a package 70 on which a semiconductor light emitting element 72 is mounted, thereby forming a wavelength conversion unit 73.
  • the wavelength conversion unit 73 is formed so as to cover the bottom surface of the package 70 and the lead frame 71.
  • the wavelength conversion unit 73 is a resin 74a containing a quantum dot phosphor 75 and getter particles 77a.
  • the quantum dot phosphor 75 is a fine particle having a particle diameter of 20 nm or less using, for example, CdSe for the core and ZnS for the shell so as to emit light with emission wavelengths of 530 nm and 620 nm.
  • the getter particles 77a are made of, for example, a material that adsorbs oxygen and does not absorb the emission wavelength of the semiconductor light emitting element 72 that emits light at 450 nm and the wavelength converted by the quantum dot phosphor 75, for example.
  • Such getter particles 77a are, for example, titanium oxide having an average particle size of 50 nm.
  • the resin 74a is once thermally cured at, for example, 160 ° C. for 30 minutes.
  • the semiconductor device which concerns on the 5th Embodiment of this invention, since most of the oxygen which permeate
  • FIG. 17 is a cross-sectional view of a light emitting device according to a sixth embodiment of the present invention.
  • the package 70 has a structure having a recess made of resin, and a lead frame 71 made of a conductor having a first electrode and a second electrode is embedded in the bottom surface of the recess.
  • a part of the lead frame 71 is exposed at the bottom surface in the recess of the package 70, and is electrically connected to the semiconductor light emitting element 72 that emits light at 450 nm, for example, as the first electrode and the second electrode.
  • An oxygen barrier layer 78 is formed on the inner wall of the recess of the package 70 as a layer that adsorbs oxygen or does not transmit oxygen, and is exposed to the semiconductor light emitting element 72 disposed on the bottom surface of the recess and the recess.
  • a wavelength converter 73 is formed so as to cover the lead frame 71 and the oxygen barrier layer 78.
  • the wavelength conversion unit 73 includes a quantum dot phosphor 75 having a particle diameter of 20 nm or less and a peak wavelength of 530 nm and 620 nm and a getter particle 77a that adsorbs oxygen, for example, a titanium oxide having an average particle diameter of 50 nm. TiO x : x> 0).
  • the getter particles 77a (titanium oxide) used in the present embodiment has an average particle size of 50 nm and a size close to the particle size of the quantum dot phosphor 75, and therefore, together with the quantum dot phosphor 75 in the resin 74a. It can be uniformly dispersed.
  • the oxygen barrier layer 78 is, for example, silver having a thickness of 10 nm or more. Silver has high thermal conductivity and also has a heat dissipation effect. Thereby, the oxygen barrier layer 78 can also suppress the promotion of the oxidation reaction due to the heat generation of the quantum dot phosphor 75.
  • silver is used as the material of the oxygen barrier layer 78, but the present invention is not limited to this.
  • a material of the oxygen barrier layer 78 a material that adsorbs oxygen or a material that does not transmit oxygen may be used.
  • a metal, a metal oxide, and porous particles are not particularly limited.
  • the metal include gold, silver, aluminum, titanium, magnesium, and nickel.
  • the metal oxide include titanium oxide, niobium oxide, hafnium oxide, indium oxide, tungsten oxide, tin oxide, zinc oxide, zirconia oxide, magnesium oxide, and antimony oxide.
  • porous particles for example, silicon dioxide, silicon oxynitrate, zeolite and the like can be mentioned.
  • the amount of oxygen permeating from the inner wall of the package 70 is 5.3 ⁇ 10 8 pieces / s (7.7 ⁇ 10 16 pieces after 40,000 hours).
  • the film thickness must be at least 10 nm.
  • the oxygen permeation amount from the air layer is 2.84 ⁇ 10 19 (after 40,000 hours) when, for example, an epoxy resin is used as the resin 74a.
  • the amount of getter particles 77a put in the wavelength conversion unit 73 is 2.85 ⁇ 10 19 to adsorb all the transmitted oxygen. It is necessary to make it more than (the amount necessary to have a life of 40,000 hours).
  • the light emitting device of the sixth embodiment of the present invention not only the getter particles 77a that adsorb oxygen in the wavelength conversion unit 73 are dispersed, but also the oxygen transmitted from the package 70 enters the oxygen barrier layer 78. Since it is adsorbed, oxygen transmission to the wavelength conversion unit 73 can be suppressed. Even if oxygen permeates into the resin 74a, most of the permeated oxygen is adsorbed by the getter particles 77a, so that the oxidation of the quantum dot phosphor 75 can be suppressed. Therefore, oxidation of the quantum dot phosphor 75 can be reduced. As a result, a light emitting device with high luminous efficiency and good color reproducibility can be realized.
  • a resist mask is formed so as to cover the bottom surface of the recess of the package 70 and the lead frame 71. Thereafter, as the oxygen barrier layer 78 using vapor deposition or sputtering, for example, the emitted light is reflected to form a silver film having high thermal conductivity. Next, the resist mask is removed.
  • the semiconductor light emitting element 72 is mounted on the package 70.
  • a resin 74 a in which quantum dot phosphors 75 and getter particles 77 a (TiO x : x> 0) are dispersed is potted on the package 70 on which the semiconductor light emitting element 72 is mounted, thereby forming the wavelength conversion unit 73.
  • the wavelength conversion unit 73 is formed so as to cover the bottom surface of the package 70, the lead frame 71, and the oxygen barrier layer 78.
  • the wavelength conversion unit 73 is a resin 74a containing a quantum dot phosphor 75 and getter particles 77a.
  • the quantum dot phosphor 75 is a fine particle having a particle diameter of 20 nm or less using, for example, CdSe for the core and ZnS for the shell so as to emit light with emission wavelengths of 530 nm and 620 nm.
  • the getter particles 77a are made of a material that adsorbs oxygen, for example, and does not absorb the emission wavelength of the semiconductor light emitting element 72 that emits light at 450 nm and the wavelength converted by the quantum dot phosphor 75, for example.
  • Such getter particles 77a are, for example, titanium oxide having an average particle size of 50 nm.
  • the resin 74a is once thermally cured at, for example, 160 ° C. for 30 minutes.
  • the quantum dot fluorescent substance 75 should just be the material described in 5th Embodiment.
  • the configuration of the quantum dot phosphor 75 is a core / shell type, but may be a quantum well type.
  • the material of the getter particle 77a may be the material described in the fifth embodiment.
  • the material of the resin 74a may be the material described in the fifth embodiment.
  • FIG. 18 is a cross-sectional view of a light emitting device according to the seventh embodiment of the present invention.
  • the package 70 has a structure having a recess made of resin, and a lead frame 71 made of a conductor having a first electrode and a second electrode is embedded in the bottom surface of the recess.
  • a part of the lead frame 71 is exposed at the bottom surface in the recess of the package 70, and is electrically connected to the semiconductor light emitting element 72 that emits light at 450 nm, for example, as the first electrode and the second electrode.
  • a wavelength converter 73 is formed so as to cover the semiconductor light emitting element 72 disposed on the bottom surface of the recess and the lead frame 71 exposed in the recess.
  • a glass lid 79 is provided above the wavelength conversion unit 73, and the wavelength conversion unit 73 is hermetically sealed with the glass lid 79.
  • the wavelength conversion unit 73 includes a quantum dot phosphor 75 having a particle diameter of 20 nm or less and a peak wavelength of 530 nm and 620 nm and a getter particle 77a that adsorbs oxygen, for example, a titanium oxide having an average particle diameter of 50 nm. TiO x : x> 0).
  • the getter particles 77a that adsorb oxygen into the wavelength conversion unit 73, and bonding the upper part of the wavelength conversion unit 73 with the package 70 and the adhesive 80 by the glass lid 79, the air layer can be removed. It is possible to dramatically suppress oxygen permeation. As a result, it is possible to dramatically suppress the reduction in the light emission efficiency of the quantum dot phosphor 75 due to oxidation.
  • the amount of getter particles 77a mixed in the wavelength conversion unit 73 will be examined.
  • the path through which oxygen passes through the wavelength conversion unit 73 is the package 70, the gap between the package 70 and the lead frame 71, and the location where the package 70 and the glass lid 79 are bonded with the adhesive 80.
  • the amount of oxygen permeated from these three locations is, for example, 7.8 ⁇ 10 16 when an epoxy resin is used as the resin 74a and the adhesive 80.
  • the amount of getter particles 77a put into the wavelength conversion unit 73 is 7.8 ⁇ 10 16 or more in order to adsorb all the transmitted oxygen. It is necessary to.
  • a resin 70 in which quantum dot phosphors 75 and getter particles 77a (TiO x : x> 0) are dispersed is potted on a package 70 on which a semiconductor light emitting element 72 is mounted, thereby forming a wavelength conversion unit 73.
  • the wavelength converter 73 is formed so as to cover the bottom surface of the package and the lead frame 71.
  • the wavelength conversion unit 73 is a resin 74a containing a quantum dot phosphor 75 and getter particles 77a.
  • the quantum dot phosphor 75 is a fine particle having a particle diameter of 20 nm or less using, for example, CdSe for the core and ZnS for the shell so as to emit light with emission wavelengths of 530 nm and 620 nm.
  • the getter particles 77a are made of a material that adsorbs oxygen, for example, and does not absorb the emission wavelength of the semiconductor light emitting element 72 that emits light at 450 nm and the wavelength converted by the quantum dot phosphor 75, for example.
  • Such getter particles 77a are, for example, titanium oxide having an average particle size of 50 nm.
  • the wavelength conversion part 73 is formed by making the potted resin 74a flush with the convex part of the package 70 using a spatula and thermosetting, for example, at 160 ° C. for 30 minutes.
  • the resin 74a is thinly applied to the glass lid 79, and the package 70 and the glass lid 79 are bonded with an adhesive 80 made of, for example, an epoxy adhesive so that the resin 74a is in contact with the wavelength conversion unit 73, and hermetically sealed. . Thereby, oxygen permeation to the wavelength conversion unit 73 can be dramatically suppressed.
  • the quantum dot fluorescent substance 75 should just be the material described in 5th embodiment.
  • the configuration of the quantum dot phosphor 75 is a core / shell type, but may be a quantum well type.
  • the material of the getter particle 77a may be the material described in the fifth embodiment.
  • the material of the resin 74a may be the material described in the fifth embodiment.
  • a light emitting device according to an eighth embodiment of the invention.
  • the basic configuration of the light emitting device according to this embodiment is the same as that of the first embodiment.
  • This embodiment is different from the fifth embodiment in that an oxygen barrier layer is provided as a layer that adsorbs oxygen or does not transmit oxygen between the wavelength conversion portion and the inner wall of the recess of the package.
  • a glass lid is provided on the wavelength conversion unit and the oxygen barrier layer.
  • FIG. 19 is a cross-sectional view of a light emitting device according to an eighth embodiment of the present invention.
  • the package 70 has a structure having a recess made of resin, and a lead frame 71 made of a conductor having a first electrode and a second electrode is embedded in the bottom surface of the recess.
  • a part of the lead frame 71 is exposed at the bottom surface in the recess of the package 70, and is electrically connected to the semiconductor light emitting element 72 that emits light at 450 nm, for example, as the first electrode and the second electrode.
  • An oxygen barrier layer 78 is formed on the inner wall of the recess of the package 70 as a layer that adsorbs oxygen or does not transmit oxygen, and is exposed to the semiconductor light emitting element 72 disposed on the bottom surface of the recess and the recess.
  • a wavelength converter 73 is formed so as to cover the lead frame 71 and the oxygen barrier layer 78.
  • the wavelength conversion unit 73 includes a quantum dot phosphor 75 having a particle diameter of 20 nm or less and a peak wavelength of 530 nm and 620 nm and a getter particle 77a that adsorbs oxygen, for example, a titanium oxide having an average particle diameter of 50 nm. TiO x : x> 0).
  • the oxygen barrier layer 78 is, for example, silver having a thickness of 10 nm or more. Further, a glass lid 79 is provided on the wavelength conversion unit 73 and the oxygen barrier layer 78. The glass lid 79 and the package 70 are bonded with an adhesive 80, whereby the wavelength conversion unit 73 is hermetically sealed.
  • the path through which oxygen passes to the wavelength conversion unit 73 is the gap between the package 70 and the lead frame 71 and the location where the package 70 and the glass lid 79 are bonded with the adhesive 80.
  • the amount of oxygen transmitted from two locations is 4.1 ⁇ 10 16 pieces.
  • the amount of getter particles 77a put into the wavelength conversion unit 73 is 4.1 ⁇ 10 16 or more in order to adsorb all the transmitted oxygen. It is necessary to.
  • the thickness of the oxygen barrier layer 78 is preferably at least 10 nm.
  • the oxygen permeation amount from the air layer can be reduced, and the oxygen permeation from the package 70 can be dramatically reduced.
  • silver has high thermal conductivity and has a heat dissipation effect. Therefore, by using silver as the oxygen barrier layer 78, acceleration of the oxidation reaction due to heat generation of the quantum dot phosphor 75 can be suppressed.
  • the semiconductor light emitting element 72 is mounted on the package 70.
  • a resin in which the quantum dot phosphor 75 and getter particles 77a (TiO x : x> 0) are dispersed is potted on the package 70 on which the semiconductor light emitting element 72 is mounted, thereby forming the wavelength conversion unit 73.
  • the wavelength conversion unit 73 is formed so as to cover the bottom surface of the package 70, the lead frame 71, and the oxygen barrier layer 78.
  • the wavelength conversion unit 73 is a resin 74a containing a quantum dot phosphor 75 and getter particles 77a.
  • the quantum dot phosphor 75 is a fine particle having a particle diameter of 20 nm or less using, for example, CdSe for the core and ZnS for the shell so as to emit light with emission wavelengths of 530 nm and 620 nm.
  • the getter particles 77a are made of a material that adsorbs oxygen, for example, and does not absorb the emission wavelength of the semiconductor light emitting element 72 that emits light at 450 nm and the wavelength converted by the quantum dot phosphor 75, for example.
  • Such getter particles 77a are, for example, titanium oxide having an average particle size of 50 nm.
  • the wavelength conversion part 73 is formed by making the potted resin 74a flush with the convex part of the package 70 using a spatula and thermosetting, for example, at 160 ° C. for 30 minutes.
  • the resin 74a is thinly applied to the glass lid 79, and the package 70 and the glass lid 79 are bonded with an adhesive 80 made of, for example, an epoxy adhesive so that the resin 74a is in contact with the wavelength conversion unit 73, and hermetically sealed. . Thereby, oxygen permeation to the wavelength conversion unit 73 can be dramatically suppressed.
  • the quantum dot fluorescent substance 75 should just be the material described in 5th Embodiment.
  • the configuration of the quantum dot phosphor 75 is a core / shell type, but may be a quantum well type.
  • the material of the getter particle 77a may be the material described in the fifth embodiment.
  • the material of the resin 74a may be the material described in the fifth embodiment.
  • silver was used as a material of the oxygen barrier layer 78, it is not limited thereto, and any material described in the sixth embodiment may be used.
  • FIG. 20 is a sectional view of a light emitting device according to the ninth embodiment of the present invention.
  • the package 70 has a structure having a recess made of resin, and a lead frame 71 made of a conductor having a first electrode and a second electrode is embedded in the bottom surface of the recess.
  • a part of the lead frame 71 is exposed at the bottom surface in the recess of the package 70, and is electrically connected to the semiconductor light emitting element 72 that emits light at 450 nm, for example, as the first electrode and the second electrode.
  • a wavelength converter 73 is formed so as to cover the semiconductor light emitting element 72 disposed on the bottom surface of the recess and the lead frame 71 exposed in the recess.
  • the wavelength conversion unit 73 includes a quantum dot phosphor 75 having a particle diameter of 20 nm or less and a peak wavelength of 530 nm and 620 nm and a getter particle 77a that adsorbs oxygen, for example, a titanium oxide having an average particle diameter of 50 nm. TiO x : x> 0).
  • an oxygen getter layer 76 (second resin portion) is formed so as to cover the wavelength conversion portion 73.
  • the oxygen getter layer 76 is constituted by containing getter particles 77b (second getter particles) made of, for example, zeolite (aluminosilicate) having a particle diameter of 100 ⁇ m or less in the resin 74b.
  • Zeolite (aluminosilicate) is a regular porous body having a crystal structure in which four oxygens (O) are regularly and three-dimensionally connected around silicon (Si) and aluminum (Al).
  • zeolite has a structure in which trivalent Al enters at the same position as tetravalent Si, Al is negatively charged, and cations are contained in the pores so as to maintain electrical neutrality.
  • K potassium
  • the pore diameter can be changed to 0.3 nm, which is almost the same size as the oxygen molecule, and oxygen entering the pore is adsorbed by the electrostatic field of the cation.
  • Zeolite particle size at this time is preferably from 1 [mu] m ⁇ 100 [mu] m, more preferably 1 [mu] m ⁇ 20 [mu] m. This is because if the particle size is too large, the zeolite is not uniformly dispersed in the resin and the oxygen adsorption effect is reduced.
  • the oxygen getter layer 76 on the upper layer of the wavelength conversion unit 73, oxygen transmission from the air layer to the wavelength conversion unit 73 can be significantly suppressed. Even if oxygen cannot be completely adsorbed by the oxygen getter layer 76 and oxygen enters the wavelength conversion unit 73, the oxygen that has entered is adsorbed by the getter particles 77a mixed in the wavelength conversion unit 73.
  • the getter particles 77a titanium oxide used in the present embodiment have an average particle size of 50 nm and a size close to the particle size of the quantum dot phosphor 75. Thereby, it can disperse
  • the amount of getter particles 77a put in the wavelength conversion unit 73 is such that the resin 74a is, for example, an epoxy resin from a path (a gap between the package 70, the lead frame 71, and the package 70) through which oxygen passes through the wavelength conversion unit 73. From the amount of oxygen permeating the epoxy resin (4 ⁇ 10 14 pieces: the amount of oxygen after 40,000 hours), it is necessary to make it 4 ⁇ 10 14 pieces or more.
  • the amount of getter particles 77b to be put into the oxygen getter layer 76 is such that when one getter particle is adsorbed to one oxygen molecule, in order to adsorb all permeated oxygen, the resin 74b from the air layer is adsorbed. From the amount of oxygen permeating (for example, epoxy resin) (2.84 ⁇ 10 19 pieces: the amount of oxygen permeation after 40,000 hours), it is necessary to make it 2.85 ⁇ 10 19 pieces or more.
  • zeolite aluminosilicate
  • the present invention is not limited to this.
  • metal oxides and porous materials as candidates for the getter particles 77b.
  • the metal oxide getter particles 77b include titanium oxide (TiO x ), niobium oxide (NbO x ), hafnium oxide (HfO x ), indium oxide (In 2 O x ), and tungsten oxide (WO x ), tin oxide (SnO x ), zinc oxide (ZnO x ), zirconia oxide (ZrO x ), magnesium oxide (MgO), antimony oxide (SbO x ), aluminum oxide (Al 2 O x) ) And the like.
  • the porous material getter particles 77b include silicon dioxide (SiO x ) and silicon oxynitride (SiON) (where X> 0).
  • any resin may be used as long as it has a high transmittance with respect to the emission wavelength from the semiconductor light emitting element and the quantum dot phosphor, such as a silicone resin, a fluoride resin, and an acrylic resin.
  • a resin 74a in which quantum dot phosphors 75 and getter particles 77a (TiO x : x> 0) are dispersed is potted on a package 70 on which a semiconductor light emitting device 72 is mounted, thereby forming a wavelength conversion unit 73.
  • the wavelength converter 73 is formed so as to cover the bottom surface of the package and the lead frame 71.
  • the wavelength conversion unit 73 is a resin 74a containing a quantum dot phosphor 75 and getter particles 77a.
  • the quantum dot phosphor 75 is a fine particle having a particle diameter of 20 nm or less using, for example, CdSe for the core and ZnS for the shell so as to emit light with emission wavelengths of 530 nm and 620 nm.
  • the getter particles 77a are made of a material that adsorbs, for example, oxygen and does not absorb the emission wavelength of the semiconductor light emitting element 72 that emits light at 450 nm and the wavelength converted by the quantum dot phosphor 75, for example.
  • Such getter particles 77a are, for example, titanium oxide having an average particle size of 50 nm.
  • the resin 74a is once thermally cured at, for example, 160 ° C. for 30 minutes.
  • the resin 74b in which the getter particles 77b are dispersed is potted to form the oxygen getter layer 76.
  • the oxygen getter layer 76 is formed so as to cover the wavelength converter 73 and the recesses of the package 70.
  • the oxygen getter layer 76 is obtained by, for example, containing getter particles 77b in a resin 74b made of epoxy.
  • the getter particles 77b is a particle diameter 100 ⁇ m or less of the zeolite (aluminosilicate).
  • the resin 74b is thermoset at 160 ° C. for 30 minutes, for example.
  • the light emitting device As described above, according to the light emitting device according to the ninth embodiment of the present invention, most of the oxygen that has permeated into the resin 74b constituting the oxygen getter layer 76 is adsorbed by the getter particles 77b. Oxygen permeation to 73 can be suppressed. As a result, oxidation of the quantum dot phosphor 75 can be suppressed, and a light emitting device with high luminous efficiency and good color reproducibility can be realized.
  • the quantum dot fluorescent substance 75 should just be the material described in 5th Embodiment.
  • the configuration of the quantum dot phosphor 75 is a core / shell type, but may be a quantum well type.
  • the material of the getter particle 77a may be the material described in the fifth embodiment.
  • the material of the resin 74a may be the material described in the fifth embodiment.
  • an oxygen barrier layer is formed as a layer that adsorbs oxygen or does not transmit oxygen between the wavelength conversion section and the oxygen getter layer and the inner wall of the recess of the package. It is the composition which is.
  • FIG. 21 is a sectional view of a light emitting device according to the tenth embodiment of the present invention.
  • the package 70 has a structure having a recess made of resin, and a lead frame 71 made of a conductor having a first electrode and a second electrode is embedded in the bottom surface of the recess.
  • a part of the lead frame 71 is exposed at the bottom surface in the recess of the package 70, and is electrically connected to the semiconductor light emitting element 72 that emits light at 450 nm, for example, as the first electrode and the second electrode.
  • a wavelength converter 73 is formed so as to cover the semiconductor light emitting element 72 disposed on the bottom surface of the recess and the lead frame 71 exposed in the recess.
  • the wavelength conversion unit 73 includes a quantum dot phosphor 75 having a particle diameter of 20 nm or less and a peak wavelength of 530 nm and 620 nm and a getter particle 77a that adsorbs oxygen, for example, a titanium oxide having an average particle diameter of 50 nm. TiO x : x> 0).
  • an oxygen getter layer 76 is formed so as to cover the wavelength conversion unit 73.
  • the oxygen getter layer 76 can be configured by containing, for example, zeolite (aluminosilicate) having a particle size of 100 ⁇ m or less in the resin 74b.
  • An oxygen barrier layer 78 is formed between the wavelength conversion unit 73 and the inner wall of the recess of the package 70 and between the oxygen getter layer 76 and the inner wall of the recess of the package 70.
  • the oxygen barrier layer 78 can be formed by depositing, for example, silver (Ag) at least 10 nm or more. Furthermore, silver has high thermal conductivity and has a heat dissipation effect. Thereby, the oxygen barrier layer 78 can also suppress the promotion of the oxidation reaction due to the heat generation of the quantum dot phosphor 75.
  • the amount of getter particles 77a put in the wavelength conversion unit 73 is such that the resin 74a is, for example, an epoxy resin from a path (a gap between the package 70, the lead frame 71, and the package 70) through which oxygen passes through the wavelength conversion unit 73. From the amount of oxygen permeating the epoxy resin (2.84 ⁇ 10 19 pieces: the amount of oxygen after 40,000 hours), it is necessary to make it 2.85 ⁇ 10 19 pieces or more.
  • the amount of getter particles 77b to be put into the oxygen getter layer 76 is based on the amount of oxygen permeated from the adhesive 80 (for example, epoxy resin) (2.84 ⁇ 10 19 pieces: oxygen permeation amount after 40,000 hours). 84 ⁇ 10 19 or more is necessary.
  • oxygen transmitted from the package 70 is adsorbed by the oxygen barrier layer 78 (silver), and thus oxygen transmission to the wavelength conversion unit 73 is further suppressed. Can do.
  • the semiconductor light emitting element 72 is mounted on the package 70.
  • a resin 74 a in which quantum dot phosphors 75 and getter particles 77 a (TiO x : x> 0) are dispersed is potted on the package 70 on which the semiconductor light emitting element 72 is mounted, thereby forming the wavelength conversion unit 73.
  • the wavelength conversion unit 73 is formed so as to cover the bottom surface of the package 70 and the lead frame 71.
  • the wavelength conversion unit 73 is a resin 74a containing a quantum dot phosphor 75 and getter particles 77a.
  • the quantum dot phosphor 75 is a fine particle having a particle diameter of 20 nm or less using, for example, CdSe for the core and ZnS for the shell so as to emit light with emission wavelengths of 530 nm and 620 nm.
  • the getter particles 77b are made of a material that adsorbs oxygen, for example, and does not absorb the emission wavelength of the semiconductor light emitting element 72 that emits light at 450 nm and the wavelength converted by the quantum dot phosphor 75, for example.
  • Such getter particles 77a are, for example, titanium oxide having an average particle size of 50 nm.
  • the resin 74a is once thermally cured at, for example, 160 ° C. for 30 minutes.
  • potted dispersed resin 74b getter particles 77b, to form an oxygen getter layer 76.
  • the oxygen getter layer 76 is formed so as to cover the wavelength converter 73 and the recesses of the package 70.
  • the oxygen getter layer 76 is obtained by containing getter particles 77b in a resin 74b made of, for example, an epoxy resin.
  • the getter particles 77b is, for example, a particle diameter 100 ⁇ m or less of the zeolite (aluminosilicate).
  • the resin 74b is thermoset at 160 ° C. for 30 minutes, for example.
  • the light emitting device As described above, according to the light emitting device according to the tenth embodiment of the present invention, most of the oxygen that has permeated into the resin 74b constituting the oxygen getter layer 76 is adsorbed by the getter particles 77b, and therefore the wavelength conversion unit 73. Oxygen permeation can be suppressed. As a result, the oxidation of the quantum dot phosphor 75 can be further suppressed, and a light emitting device with high luminous efficiency and good color reproducibility can be realized.
  • the quantum dot fluorescent substance 75 should just be the material described in 5th Embodiment.
  • the configuration of the quantum dot phosphor 75 is a core / shell type, but may be a quantum well type.
  • the material of the getter particle 77a may be the material described in the fifth embodiment.
  • the material of the getter particle 77b may be the material described in the ninth embodiment.
  • the material of the resin 74a may be the material described in the fifth embodiment.
  • the material of the resin 74b may be the material described in the ninth embodiment.
  • FIG. 22 is a sectional view of a light emitting device according to the eleventh embodiment of the present invention.
  • the package 70 has a structure having a recess made of resin, and a lead frame 71 made of a conductor having a first electrode and a second electrode is embedded in the bottom surface of the recess.
  • a part of the lead frame 71 is exposed at the bottom surface in the recess of the package 70, and is electrically connected to the semiconductor light emitting element 72 that emits light at 450 nm, for example, as the first electrode and the second electrode.
  • a wavelength converter 73 is formed so as to cover the semiconductor light emitting element 72 disposed on the bottom surface of the recess and the lead frame 71 exposed in the recess.
  • the wavelength conversion unit 73 includes a quantum dot phosphor 75 having a particle diameter of 20 nm or less and a peak wavelength of 530 nm and 620 nm and a getter particle 77a that adsorbs oxygen, for example, a titanium oxide having an average particle diameter of 50 nm. TiOx: x> 0).
  • an oxygen getter layer 76 is formed so as to cover the wavelength conversion unit 73.
  • the oxygen getter layer 76 is configured by containing, for example, zeolite (aluminosilicate) having a particle size of 100 ⁇ m or less in the resin 74b.
  • the glass lid 79 is bonded to the package 70 with an adhesive 80 so that the upper portion of the oxygen getter layer 76 is covered with the glass lid 79.
  • Zeolite is a regular porous body having a crystal structure in which four oxygens (O) are regularly and three-dimensionally connected around silicon (Si) and aluminum (Al).
  • zeolite has a structure in which trivalent Al enters at the same position as tetravalent Si, Al is negatively charged, and cations are contained in the pores so as to maintain electrical neutrality.
  • K potassium
  • the pore diameter can be changed to 0.3 nm, which is almost the same size as the oxygen molecule, and oxygen entering the pore is adsorbed by the electrostatic field of the cation.
  • Zeolite particle size at this time is preferably from 1 [mu] m ⁇ 100 [mu] m, more preferably 1 [mu] m ⁇ 20 [mu] m. This is because if the particle size is too large, the zeolite is not uniformly dispersed in the resin and the oxygen adsorption effect is reduced.
  • the oxygen getter layer 76 in the upper layer of the wavelength conversion unit 73, a large amount of oxygen transmission from the air layer to the wavelength conversion unit 73 can be suppressed. Even if oxygen cannot be completely adsorbed by the oxygen getter layer 76, it is adsorbed by the getter particles 77 a mixed in the wavelength conversion unit 73.
  • the getter particles 77a (titanium oxide) used in the present embodiment has an average particle size of 50 nm and a size close to the particle size of the quantum dot phosphor 75, so that the quantum dot phosphor in the resin 74a. 75 can be uniformly dispersed.
  • the oxygen getter layer 76 by covering the oxygen getter layer 76 with a glass lid 79, it is possible to significantly reduce oxygen permeation to the oxygen getter layer 76 that is most in contact with oxygen.
  • the amount of getter particles 77a to be put into the wavelength conversion unit 73 is transmitted through a path (a gap between the package 70, the lead frame 71, and the package 70) through which oxygen passes to the wavelength conversion unit 73 to the resin 74a (for example, epoxy resin). It is necessary to make 1.2 ⁇ 10 17 or more from the amount of oxygen (1.1 ⁇ 10 17 pieces: oxygen amount after 40,000 hours).
  • the amount of getter particles 77b to be put into the oxygen getter layer 76 is 7. From the amount of oxygen permeating to the adhesive 80 (for example, epoxy resin) (7.6 ⁇ 10 14 pieces: oxygen permeation amount after 40,000 hours). It needs to be 7 ⁇ 10 14 or more.
  • a resin 74a in which quantum dot phosphors 75 and getter particles 77a (TiO x : x> 0) are dispersed is potted on a package 70 on which a semiconductor light emitting device 72 is mounted, thereby forming a wavelength conversion unit 73.
  • the wavelength conversion unit 73 is formed so as to cover the bottom surface of the package 70 and the lead frame 71.
  • the wavelength conversion unit 73 is a resin 74a containing a quantum dot phosphor 75 and getter particles 77a.
  • the quantum dot phosphor 75 is a fine particle having a particle diameter of 20 nm or less using, for example, CdSe for the core and ZnS for the shell so as to emit light with emission wavelengths of 530 nm and 620 nm.
  • the getter particles 77a are made of a material that adsorbs oxygen, for example, and does not absorb the emission wavelength of the semiconductor light emitting element 72 that emits light at 450 nm and the wavelength converted by the quantum dot phosphor 75, for example.
  • Such getter particles 77a are, for example, titanium oxide having an average particle size of 50 nm.
  • the resin 74a is once thermally cured at, for example, 160 ° C. for 30 minutes.
  • potted dispersed resin 74b getter particles 77b to form an oxygen getter layer 76.
  • the oxygen getter layer 76 is formed so as to cover the wavelength converter 73 and the recesses of the package 70.
  • the oxygen getter layer 76 is obtained by, for example, containing getter particles 77b in a resin 74b made of epoxy.
  • An example of such getter particles 77b is zeolite (aluminosilicate) having a particle size of 100 ⁇ m or less.
  • the oxygen getter layer 76 is formed by making the potted resin 74b flush with the convex portion of the package 70 using a spatula and thermosetting at 160 ° C. for 30 minutes, for example.
  • the resin 74b is thinly applied to the glass lid 79, and the package 70 and the glass lid 79 are adhered with an adhesive 80 made of, for example, an epoxy adhesive so that the resin 74b is in contact with the oxygen getter layer 76, and hermetically sealed. . Thereby, oxygen permeation to the wavelength conversion unit 73 can be dramatically suppressed.
  • the amount of oxygen transmitted to the wavelength conversion unit 73 can be greatly reduced, so that the oxidation of the quantum dot phosphor 75 can be significantly suppressed. it can. As a result, a light emitting device with high luminous efficiency and good color reproducibility can be realized.
  • the quantum dot fluorescent substance 75 should just be the material described in 5th Embodiment.
  • the configuration of the quantum dot phosphor 75 is a core / shell type, but may be a quantum well type.
  • the material of the getter particle 77a may be the material described in the fifth embodiment.
  • the material of the getter particles 77b may be the material described in the ninth embodiment.
  • the material of the resin 74a may be the material described in the fifth embodiment.
  • the material of the resin 74b may be the material described in the ninth embodiment.
  • FIG. 23 is a cross-sectional view of a light emitting device according to a twelfth embodiment of the present invention.
  • the package 70 has a structure having a recess made of resin, and a lead frame 71 made of a conductor having a first electrode and a second electrode is embedded in the bottom surface of the recess.
  • a part of the lead frame 71 is exposed at the bottom surface in the recess of the package 70, and is electrically connected to the semiconductor light emitting element 72 that emits light at 450 nm, for example, as the first electrode and the second electrode.
  • a wavelength converter 73 is formed so as to cover the semiconductor light emitting element 72 disposed on the bottom surface of the recess and the lead frame 71 exposed in the recess.
  • the wavelength conversion unit 73 includes a quantum dot phosphor 75 having a particle diameter of 20 nm or less and a peak wavelength of 530 nm and 620 nm and a getter particle 77a that adsorbs oxygen, for example, a titanium oxide having an average particle diameter of 50 nm. TiOx: x> 0).
  • an oxygen getter layer 76 is formed so as to cover the wavelength conversion unit 73.
  • the oxygen getter layer 76 is configured by containing, for example, zeolite (aluminosilicate) having a particle size of 100 ⁇ m or less in the resin 74b.
  • An oxygen barrier layer 78 is formed between the wavelength conversion unit 73 and the inner wall of the recess of the package 70 and between the oxygen getter layer 76 and the inner wall of the recess of the package 70.
  • the oxygen barrier layer 78 can be formed by depositing, for example, silver (Ag) at least 10 nm or more. Silver has high thermal conductivity and also has a heat dissipation effect. Thereby, the oxygen barrier layer 78 not only adsorbs oxygen or does not transmit oxygen, but can also suppress the promotion of the oxidation reaction due to heat generation of the quantum dot phosphor 75.
  • the glass lid 79 is bonded to the package 70 with an adhesive 80 so that the upper portions of the oxygen getter layer 76 and the oxygen barrier layer 78 are covered with the glass lid 79.
  • the amount of getter particles 77a put in the wavelength conversion unit 73 is such that the resin 74a is, for example, an epoxy resin from a path (a gap between the package 70, the lead frame 71, and the package 70) through which oxygen passes through the wavelength conversion unit 73. From the amount of oxygen permeating through the epoxy resin (1.2 ⁇ 10 17 pieces: the amount of oxygen after 40,000 hours), it is necessary to make 1.3 ⁇ 10 17 pieces or more.
  • the amount of getter particles 77b to be put into the oxygen getter layer 76 is determined based on the amount of oxygen transmitted from the adhesive 80 (for example, epoxy resin) (7.7 ⁇ 10 14 particles: the amount of oxygen transmitted after 40,000 hours). It needs to be 7 ⁇ 10 14 or more.
  • oxygen transmitted from the package 70 is adsorbed by the oxygen barrier layer 78 (silver), and thus oxygen transmission to the wavelength conversion unit 73 is further suppressed. Can do.
  • the semiconductor light emitting element 72 is mounted on the package 70.
  • a resin 74 a in which quantum dot phosphors 75 and getter particles 77 a (TiO x : x> 0) are dispersed is potted on the package 70 on which the semiconductor light emitting element 72 is mounted, thereby forming the wavelength conversion unit 73.
  • the wavelength conversion unit 73 is formed so as to cover the bottom surface of the package 70 and the lead frame 71.
  • the wavelength conversion unit 73 is a resin 74a containing a quantum dot phosphor 75 and getter particles 77a.
  • the quantum dot phosphor 75 is a fine particle having a particle diameter of 20 nm or less using, for example, CdSe for the core and ZnS for the shell so as to emit light with emission wavelengths of 530 nm and 620 nm.
  • the getter particles 77a are made of, for example, a material that adsorbs oxygen and does not absorb the emission wavelength of the semiconductor light emitting element 72 that emits light at 450 nm and the wavelength converted by the quantum dot phosphor 75, for example.
  • Such getter particles 77a are, for example, titanium oxide having an average particle size of 50 nm.
  • the resin 74a is once thermally cured at, for example, 160 ° C. for 30 minutes.
  • the resin 74b in which the getter particles 77b are dispersed is potted to form an oxygen getter layer 76.
  • the oxygen getter layer 76 is formed so as to cover the wavelength converter 73 and the recesses of the package 70.
  • the oxygen getter layer 76 is obtained by containing getter particles 77b in a resin 74b made of, for example, an epoxy resin.
  • the getter particles 77b are, for example, zeolite (aluminosilicate) having a particle size of 100 ⁇ m or less.
  • the second oxygen getter layer is formed by making the potted resin 74b flush with the convex portion of the package 70 using a spatula and thermosetting, for example, at 160 ° C. for 30 minutes. Thereafter, the resin 74b is thermoset at 160 ° C. for 30 minutes, for example.
  • the resin 74b is thinly applied to the glass lid 79, and the package 70 and the glass lid 79 are bonded with an adhesive 80 made of, for example, an epoxy adhesive so that the resin 74b is in contact with the oxygen getter layer 76, and hermetically sealed. .
  • an adhesive 80 made of, for example, an epoxy adhesive so that the resin 74b is in contact with the oxygen getter layer 76, and hermetically sealed.
  • the quantum dot fluorescent substance 75 should just be the material described in 5th Embodiment.
  • the configuration of the quantum dot phosphor 75 is a core / shell type, but may be a quantum well type.
  • the material of the getter particle 77a may be the material described in the fifth embodiment.
  • the material of the getter particles 77b may be the material described in the ninth embodiment.
  • the material of the resin 74a may be the material described in the fifth embodiment.
  • the material of the resin 74b may be the material described in the ninth embodiment.
  • FIG. 24 is a cross-sectional view of a light emitting device according to a thirteenth embodiment of the present invention.
  • the light emitting device is formed so as to cover the package 70 having the recess, the lead frame 71 exposed on the bottom surface of the recess, and the exposed lead frame.
  • the package 70 has a structure having a recess made of resin, and a lead frame 71 made of a conductor having a first electrode and a second electrode is embedded in the bottom surface of the recess.
  • a part of the lead frame 71 is exposed on the bottom surface in the recess of the package 70 and is electrically connected to the semiconductor light emitting element 72 that emits light at 450 nm, for example, as the first electrode and the second electrode.
  • a first oxygen getter layer 76a is formed so as to cover the semiconductor light emitting element 72 disposed on the bottom surface of the recess and the lead frame 71 exposed in the recess.
  • the first oxygen getter layer 76a is configured by containing, for example, zeolite (aluminosilicate) as getter particles 77 that adsorb oxygen in the resin 74a.
  • the quantum dot fluorescent substance layer 75a by which the quantum dot fluorescent substance 75 which has a peak wavelength, for example to 530 nm and 620 nm is disperse
  • This quantum dot phosphor layer 75a may or may not be in contact with the package 70.
  • a second oxygen getter layer 76b is formed on the quantum dot phosphor layer 75a so as to cover the quantum dot phosphor layer 75a exposed in the recess.
  • the second oxygen getter layer 76b is configured by containing, for example, zeolite (aluminosilicate) as getter particles 77 that adsorb oxygen in the resin 74c.
  • the quantum dot phosphor layer 75a is covered with the first oxygen getter layer 76a, the second oxygen getter layer 76b, and the resin portion of the package 70, so that the quantum dot phosphor layer 75a enters from the upper and bottom portions of the package 70. It is possible to suppress the quantum dot phosphor 75 from being oxidized by the oxygen that is generated.
  • the quantum dot phosphor layer 75a is covered only with a resin layer containing an oxygen adsorbent such as getter particles 77 such as the first oxygen getter layer 76a and the second oxygen getter layer 76b. Further, it is possible to suppress the quantum dot phosphor 75 from being oxidized by oxygen entering from above and the bottom surface of the package 70.
  • the zeolite (aluminosilicate) used as the getter particle 77 is a regular porous material having a crystal structure in which four oxygen (O) are regularly and three-dimensionally connected around silicon (Si) and aluminum (Al). Is the body.
  • zeolite has a structure in which trivalent Al enters at the same position as tetravalent Si, Al is negatively charged, and cations enter pores so that it is electrically neutral. ing.
  • K potassium
  • the pore diameter can be changed to 0.3 nm, which is almost the same size as the oxygen molecule, and oxygen entering the pore is adsorbed by the electrostatic field of the cation.
  • Zeolite particle size at this time is preferably from 1 [mu] m ⁇ 100 [mu] m, more preferably 1 [mu] m ⁇ 20 [mu] m. This is because if the particle size is too large, the zeolite is not uniformly dispersed in the resin and the oxygen adsorption effect is reduced.
  • the location where oxygen, which is a factor for reducing the luminous efficiency of the quantum dot phosphor 75, is the space between the package 70 and the lead frame 71 and the surface in contact with the air on the top surface.
  • the quantum dot phosphor layer 75a since the upper and lower portions of the quantum dot phosphor layer 75a are covered with the first oxygen getter layer 76a and the second oxygen getter layer 76b, oxygen enters the quantum dot phosphor layer 75a. I can suppress coming. Thereby, since the luminous efficiency fall of the quantum dot fluorescent substance 75 by oxidation can be suppressed, a highly reliable light-emitting device is realizable.
  • the amount of oxygen that permeates the resin is examined.
  • the amount of oxygen that permeates through the resin can be calculated from the oxygen permeation coefficient of the resin. For example, when an epoxy resin (100 ⁇ m) is used as the resin 74a and the resin 74c, the oxygen permeation coefficient is 52 cc / m 2 ⁇ day, and the amount of oxygen permeating from the air layer to the epoxy resin is 1.97 ⁇ 10 11 pieces / s. is there.
  • LED lighting is required to have a long product life of 40,000 hours. That is, it is necessary to suppress the oxidation of the quantum dot phosphor 75 for 40,000 hours, and the oxygen permeation amount at that time is 2.84 ⁇ 10 19 pieces.
  • the zeolite needs to be 2.85 ⁇ 10 19 or more in order to adsorb all the permeated oxygen.
  • the oxygen permeation amount from the gap between the lead frame 71 and the package 70 is 8.1 ⁇ 10 8 pieces / s (1.2 ⁇ 10 17 pieces after 40,000 hours). Therefore, it is necessary to use 1.3 ⁇ 10 17 or more zeolites in the oxygen getter layer provided below the quantum dot phosphor layer 75a.
  • an epoxy resin is used as the resin 74a and the resin 74c.
  • the resin 74a and the resin 74c are emission wavelengths from semiconductor light emitting elements and quantum dot phosphors such as silicone resin, fluoride resin, and acrylic resin.
  • any resin having a high transmittance may be used.
  • zeolite aluminosilicate
  • the present invention is not limited to this.
  • metal oxides and porous materials as candidates for the getter particles 77.
  • Examples of the metal oxide getter particles 77 include titanium oxide (TiO x ), niobium oxide (NbO x ), hafnium oxide (HfO x ), indium oxide (In 2 O x ), tungsten oxide (WO x ), tin oxide (SnO x ), zinc oxide (ZnO x ), zirconia oxide (ZrO x ), magnesium oxide (MgO), antimony oxide (SbO x ), and the like.
  • Examples of the porous material getter particles 77 include silicon dioxide (SiO x ) and silicon oxynitride (SiON) (where 0 ⁇ X).
  • the configuration of the quantum dot phosphor 75 includes a core / shell type, a quantum well type, and the like, but any configuration can be applied in the present embodiment.
  • the core / shell material constituting the quantum dot phosphor 75 is, for example, a group II-VI compound such as CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnZe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnZeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, CdHgSeTe, CdHgSTe, CdHgSeTe, Cd
  • III-V compounds include GaN, GaP, GaAs, GaSb, AlN, AlGaN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, InGaN, GaNP, GANAS, GaNSb, GaPAs, GaPSb, and AlNP.
  • a resin 74a in which getter particles 77 (zeolite) are dispersed is potted in a package 70 on which a semiconductor light emitting element 72 is mounted.
  • the resin 74a is formed so as to cover at least a portion and the lead frame 71 of the bottom surface of the package 70.
  • This resin 74a contains getter particles 77 that adsorb oxygen, for example, and that do not absorb the emission wavelength of the semiconductor light emitting element 72 that emits light at 450 nm and the wavelength converted by the quantum dot phosphor 75, for example.
  • getter particles 77 include zeolite having a pore size equivalent to an oxygen molecular size of 0.3 nm and a particle size of about 5 to 20 ⁇ m.
  • the first oxygen getter layer 76a is formed by thermosetting the resin 74a, for example, at 160 ° C. for 30 minutes.
  • a quantum dot phosphor 75 having a peak wavelength of, for example, 530 nm and 620 nm having a particle size of 20 nm or less using CdSe for the core and ZnS for the shell is dispersed. Potting resin 74b. Then, the quantum dot phosphor layer 75a is formed by thermosetting the resin 74b at 160 ° C. for 30 minutes.
  • a resin 74c in which getter particles 77 (zeolite) is dispersed is potted on the quantum dot phosphor layer 75a so as to cover the top of the quantum dot phosphor layer 75a in the recess, for example, at 160 ° C. for 30 minutes,
  • the second oxygen getter layer 76b is formed by thermosetting.
  • FIG. 25 is a sectional view of a light emitting device according to a fourteenth embodiment of the present invention.
  • the light emitting device according to the fourteenth embodiment of the present invention is configured to cover the top of the light emitting device according to the thirteenth embodiment with a glass lid 79.
  • the amount of oxygen that permeates the second oxygen getter layer 76b can be significantly suppressed. Thereby, the fall of the luminous efficiency of the quantum dot fluorescent substance 75 by oxidation can be prevented.
  • a resin 74a in which getter particles 77 (zeolite) are dispersed is potted in a package 70 on which a semiconductor light emitting element 72 is mounted.
  • the resin 74 a is formed so as to cover at least a part of the bottom surface of the package 70 and the lead frame 71.
  • This resin 74a contains getter particles 77 that adsorb oxygen, for example, and that do not absorb the emission wavelength of the semiconductor light emitting element 72 that emits light at 450 nm and the wavelength converted by the quantum dot phosphor 75, for example.
  • getter particles 77 include zeolite having a pore size equivalent to an oxygen molecular size of 0.3 nm and a particle size of about 5 to 20 ⁇ m.
  • the first oxygen getter layer 76a is formed by thermosetting the resin 74a, for example, at 160 ° C. for 30 minutes.
  • a quantum dot phosphor 75 having a peak wavelength of, for example, 530 nm and 620 nm having a particle size of 20 nm or less using CdSe for the core and ZnS for the shell is dispersed.
  • the quantum dot phosphor layer 75a is formed by thermosetting the resin 74b at 160 ° C. for 30 minutes.
  • a resin 74c in which getter particles 77 (zeolite) are dispersed is potted on the quantum dot phosphor layer 75a so as to cover the upper part of the quantum dot phosphor layer 75a in the recess.
  • the second resin getter layer 76b is formed by making the potted resin 74c flush with the convex portion of the package 70 using a spatula and thermosetting at 160 ° C. for 30 minutes, for example.
  • a thin resin 74c is applied to the glass lid 79, and the glass lid 79 and the package 70 are bonded using an organic polymer adhesive (for example, epoxy resin) so that the resin 74c is in contact with the second oxygen getter layer 76b. To do.
  • an organic polymer adhesive for example, epoxy resin
  • the amount of oxygen that passes through the second oxygen getter layer 76b is covered with the glass lid 79 where the uppermost portion of the package 70 is exposed to oxygen. Can be greatly suppressed. Thereby, the fall of the luminous efficiency of the quantum dot fluorescent substance 75 by oxidation can be prevented.
  • the amount of oxygen permeated from the organic polymer adhesive between the package 70 and the glass lid 79 is 5.4 ⁇ 10 8 pieces / s (7.8 ⁇ after 40,000 hours). 10 16 ).
  • the amount of getter particles 77 mixed with the second oxygen getter layer 76b provided on the top of the quantum dot phosphor layer 75a is oxygen permeated when one zeolite particle is adsorbed to one oxygen molecule. In order to adsorb all, it is necessary to make it 7.9 ⁇ 10 16 or more. Further, the amount of zeolite described in the manufacturing method of the thirteenth embodiment may be added to the zeolite to be put in the oxygen getter layer provided below the quantum dot phosphor layer 75a.
  • zeolite aluminosilicate
  • metal oxides and porous materials as candidates for the getter particles 77, and the materials may be those listed in the thirteenth embodiment.
  • the configuration of the quantum dot phosphor 75 is a core / shell type, but may be a quantum well type.
  • the material which comprises the quantum dot fluorescent substance 75 should just be enumerated in 13th Embodiment.
  • the material of resin 74a and resin 74b should just be what was enumerated in 13th Embodiment.
  • an organic polymer adhesive is used for bonding the package 70 and the glass lid 79.
  • getter particles 77 may be included in the adhesive. Thereby, oxygen permeation from the bonding surface can be suppressed.
  • FIG. 26 is a sectional view of a light emitting device according to the fifteenth embodiment of the present invention.
  • the light emitting device according to the fifteenth embodiment of the present invention is similar to the thirteenth embodiment in the package 70, the lead frame 71, the first oxygen getter layer 76a, and the quantum dots.
  • a phosphor layer 75a and a second oxygen getter layer 76b are provided.
  • the light emitting device according to this embodiment includes an oxygen barrier layer 78.
  • the package 70 has a structure having a recess made of resin, and a lead frame 71 made of a conductor having a first electrode and a second electrode is embedded in the bottom surface of the recess.
  • a part of the lead frame 71 is exposed at the bottom surface in the recess of the package 70, and is electrically connected to the semiconductor light emitting element 72 that emits light at 450 nm, for example, as the first electrode and the second electrode.
  • a first oxygen getter layer 76a is formed so as to cover the semiconductor light emitting element 72 disposed on the bottom surface of the recess and the lead frame 71 exposed in the recess.
  • the first oxygen getter layer 76a is constituted by containing, for example, zeolite (aluminosilicate) as getter particles 77 that adsorb oxygen, for example, in the resin 74a.
  • a quantum dot phosphor layer 75a in which a quantum dot phosphor 75 having peak wavelengths of, for example, 530 nm and 620 nm is dispersed in the resin 74b is formed.
  • This quantum dot phosphor layer 75a may or may not be in contact with the package 70.
  • a second oxygen getter layer 76b is formed on the quantum dot phosphor layer 75a so as to cover the quantum dot phosphor layer 75a exposed in the recess.
  • the second oxygen getter layer 76b is configured by containing, for example, zeolite (aluminosilicate) as getter particles 77 that adsorb oxygen to the resin 74c.
  • a barrier layer 78 is formed.
  • a reflective metal film for example, silver
  • a porous particle film for example, zeolite
  • a reflective metal film made of, for example, silver (Ag) is formed on the inner wall of the package 70 as an oxygen barrier layer 78 by vapor deposition, sputtering, plating, electrodeposition, or the like.
  • the semiconductor light emitting element 72 is mounted on the package. Thereafter, similarly to the manufacturing method of the thirteenth embodiment, the light emitting device can be manufactured by covering the upper and lower portions of the quantum dot phosphor layer 75a with an oxygen getter layer.
  • the quantum dot phosphor 75 is oxidized at the portion where the package side surface and the quantum dot phosphor layer 75a are in contact with each other, so that no light is emitted.
  • the oxygen barrier layer 78 as in the present embodiment, it is possible to suppress the transmission of oxygen from the package 70, so that the quantum dot phosphor layer 75a and the side surface of the package 70 are in contact with the quantum.
  • the oxidation of the dot phosphor 75 can be suppressed.
  • color unevenness and a decrease in light emission efficiency can be suppressed.
  • silver is used as the material of the oxygen barrier layer 78, but the present invention is not limited to this.
  • a material of the oxygen barrier layer 78 a material that adsorbs oxygen or a material that does not transmit oxygen may be used.
  • a metal, a metal oxide, and porous particles are not particularly limited.
  • the metal include gold, silver, aluminum, titanium, magnesium, and nickel.
  • the metal oxide include titanium oxide, niobium oxide, hafnium oxide, indium oxide, tungsten oxide, tin oxide, zinc oxide, zirconia oxide, magnesium oxide, and antimony oxide.
  • porous particles for example, silicon dioxide, silicon oxynitrate, zeolite and the like can be mentioned.
  • the amount of oxygen permeating from the side wall of the package 70 is 5.3 ⁇ 10 8 / s (7.7 ⁇ 10 16 after 40,000 hours).
  • the film thickness needs to be at least 10 nm or more.
  • the amount of zeolite (getter particles 77) to be put in the oxygen getter layer formed above and below the quantum dot phosphor layer 75a may be the amount described in the manufacturing method of the thirteenth embodiment.
  • zeolite aluminosilicate
  • metal oxides and porous materials as candidates for the getter particles 77, and the materials may be those listed in the thirteenth embodiment.
  • the configuration of the quantum dot phosphor 75 is a core / shell type, but may be a quantum well type.
  • the material which comprises the quantum dot fluorescent substance 75 should just be enumerated in 13th Embodiment.
  • the material of resin 74a and resin 74b should just be what was enumerated in 13th Embodiment.
  • FIG. 27 is a cross-sectional view of the light emitting device in the sixteenth embodiment of the present invention.
  • the light-emitting device according to the sixteenth embodiment of the present invention is configured to cover the top of the light-emitting device according to the fifteenth embodiment with a glass lid 79.
  • the amount of oxygen that permeates the second oxygen getter layer 76b can be significantly suppressed. Thereby, the fall of the luminous efficiency of quantum dot fluorescent substance 75 can be prevented.
  • the light emitting device According to the sixteenth embodiment of the present invention, it is possible to suppress a trace amount of oxygen that passes through the side wall of the package 70. Thereby, the oxidation of the quantum dot phosphor 75 in contact with the side surface of the package 70 can be suppressed. Color unevenness and a decrease in luminous efficiency can be prevented.
  • a resist mask is formed so as to cover the bottom surface of the recess of the package 70 and the lead frame 71.
  • the oxygen barrier layer 78 using vapor deposition, sputtering, or the like for example, the light that is emitted is reflected, and silver having high thermal conductivity is deposited on the sidewall of the recess of the package 70 (inner wall of the recess). .
  • the resist mask is removed.
  • the semiconductor light emitting element 72 is mounted on the package 70.
  • a resin 74a in which quantum dot phosphors 75 and getter particles 77 (zeolite) are dispersed is potted on the package 70 on which the semiconductor light emitting element 72 is mounted.
  • the resin 74 a is formed so as to cover the bottom surface and at least a part of the package 70 and the lead frame 71.
  • This resin 74a contains getter particles 77 that adsorb oxygen, for example, and that do not absorb the emission wavelength of the semiconductor light emitting element 72 that emits light at 450 nm and the wavelength converted by the quantum dot phosphor 75, for example.
  • getter particles 77 include zeolite having a pore size equivalent to an oxygen molecular size of 0.3 nm and a particle size of about 5 to 20 ⁇ m. Thereafter, the resin 74a is thermally cured, for example, at 160 ° C. for 30 minutes, thereby forming the first oxygen getter layer 76a.
  • a quantum dot phosphor 75 having a peak wavelength of, for example, 530 nm and 620 nm having a particle size of 20 nm or less using CdSe for the core and ZnS for the shell is dispersed. Potting resin 74b. Then, the quantum dot phosphor layer 75a is formed by thermosetting the resin 74b at 160 ° C. for 30 minutes.
  • a resin 74c in which getter particles 77 (zeolite) are dispersed is potted on the quantum dot phosphor layer 75a so as to cover the upper part of the quantum dot phosphor layer 75a in the recess.
  • the second resin getter layer 76b is formed by making the potted resin 74c flush with the convex portion of the package 70 using a spatula and thermosetting at 160 ° C. for 30 minutes, for example.
  • the resin 74c is thinly applied to the glass lid 79, and the glass lid 79 and the package 70 are bonded using an adhesive (for example, epoxy resin) so that the resin 74c is in contact with the second oxygen getter layer 76b.
  • an adhesive for example, epoxy resin
  • the quantum dot fluorescent substance 75 should just be the material described in 13th Embodiment.
  • the configuration of the quantum dot phosphor 75 is a core / shell type, but may be a quantum well type.
  • the material of the getter particles 77 may be any material described in the thirteenth embodiment.
  • the material of resin 74a and resin 74c should just be what was described in 13th Embodiment.
  • the oxygen barrier layer 78 is not limited thereto, and is not particularly limited if it is a material that adsorbs oxygen or a material that does not transmit oxygen, such as metal, metal oxide, and porous particles. There is no problem as long as it is the material mentioned in the fifteenth embodiment.
  • the glass lid 79 by covering the portion that is most in contact with oxygen with the glass lid 79, it is possible to suppress oxygen that cannot be adsorbed by the oxygen getter layer and permeate the quantum dot phosphor layer 75a. Thereby, the amount of oxygen permeation can be further reduced, and a decrease in the light emission efficiency of the quantum dot phosphor 75 due to oxidation can be prevented.
  • the amount of oxygen permeated from the organic polymer adhesive is 5.3 ⁇ 10 6 pieces / s (7.7 ⁇ 10 14 pieces after 40,000 hours).
  • the amount of getter particles 77 mixed with the first oxygen getter layer 76a provided at the bottom of the quantum dot phosphor layer 75a permeates when one zeolite particle is adsorbed to one oxygen molecule. In order to adsorb all the oxygen, 7.8 ⁇ 10 14 or more are necessary. Further, the amount of zeolite described in the manufacturing method of the thirteenth embodiment may be added to the zeolite to be put in the first oxygen getter layer 76a provided below the quantum dot phosphor layer 75a.
  • the amount of zeolite described in the manufacturing method of the thirteenth embodiment may be added to the second oxygen getter layer 76b provided on the top of the quantum dot phosphor layer 75a.
  • the film thickness needs to be at least 10 nm.
  • zeolite aluminosilicate
  • the present invention is not limited to this.
  • metal oxides and porous materials as candidates for the getter particles 77, and the materials may be those listed in the thirteenth embodiment.
  • the configuration of the quantum dot phosphor 75 is a core / shell type, but may be a quantum well type.
  • an organic polymer adhesive is used for bonding the package 70 and the glass lid 79.
  • getter particles 77 may be included in the adhesive. This is because oxygen permeation from the bonding surface can be suppressed.
  • the present invention can suppress oxidation of a phosphor formed on a semiconductor light emitting device and suppress a decrease in quantum efficiency. Therefore, a semiconductor having high emission efficiency using a quantum dot phosphor or an organic phosphor. This is useful as a technique for realizing a light emitting element and a light emitting device.

Abstract

Disclosed is a semiconductor light-emitting element with which a decline in light emission efficiency due to oxidation of quantum dot phosphors can be suppressed. A semiconductor light-emitting element (1) according to the present invention comprises: a semiconductor layer containing an active layer (13); a first metal layer (16) formed on the semiconductor layer; a first insulating film (18) formed on the first metal layer (16) so as to cover the upper face and side face of the semiconductor layer; a second insulating film (20) containing fine semiconductor particles formed on the first insulating film (18); and a third insulating film (21) formed on the second insulating film (20). The second insulating film (20) is covered by the first insulating film (18) and the third insulating film (21).

Description

半導体発光素子および発光装置Semiconductor light emitting element and light emitting device
 本発明は、蛍光体層に量子ドット蛍光体を用いた半導体発光素子および発光装置に関するものである。 The present invention relates to a semiconductor light emitting element and a light emitting device using a quantum dot phosphor in a phosphor layer.
 照明用光源、液晶ディスプレイバックライト用光源などに用いられる白色LED(Light Emitting Diode)は、青色光を放射する半導体発光素子と、緑、黄、赤色等の蛍光を発する蛍光体とを組み合わせることで実現されている。蛍光体の種類としては、希土類蛍光体、有機蛍光体、または、半導体から構成される量子ドット蛍光体などがある。 White LEDs (Light Emitting Diodes) used for illumination light sources, liquid crystal display backlight light sources, etc., combine a semiconductor light emitting element that emits blue light and a phosphor that emits fluorescence such as green, yellow, and red. It has been realized. Examples of the phosphor include rare earth phosphors, organic phosphors, and quantum dot phosphors composed of semiconductors.
 現在、一般的な白色LEDには希土類蛍光体が用いられている。希土類蛍光体は、希土類イオンが付活剤として添加された酸化物や窒化物等である。希土類イオン中の電子が励起され、基底状態に遷移するときに蛍光を発する。 Currently, rare earth phosphors are used for general white LEDs. The rare earth phosphor is an oxide or nitride to which rare earth ions are added as an activator. Fluorescence is emitted when electrons in the rare earth ions are excited and transition to the ground state.
 一方、量子ドット蛍光体は、バンド端光吸収・発光を直接利用するため、高い量子効率を実現することができる。特に、量子ドット蛍光体は、化合物半導体結晶をナノサイズの粒子にした半導体微粒子であり、量子閉じ込め効果を利用することができる。この半導体微粒子の粒径を変化させることで、蛍光ピーク波長を調整することができるなどの特徴がある。 On the other hand, since the quantum dot phosphor directly uses band edge light absorption / emission, high quantum efficiency can be realized. In particular, the quantum dot phosphor is a semiconductor fine particle in which a compound semiconductor crystal is made into nano-sized particles, and can utilize a quantum confinement effect. There is a feature that the fluorescence peak wavelength can be adjusted by changing the particle diameter of the semiconductor fine particles.
 このような蛍光体と半導体発光素子とを組み合わせた白色LEDは、従来の構成としては、パッケージ上に半導体発光素子を配置し、蛍光体は樹脂等の透明材料中に含有させ、パッケージ内の半導体発光素子を覆うように配置されている。例えば特許文献1には、希土類蛍光体を用いた発光装置の構造が示されている。 A white LED combining such a phosphor and a semiconductor light-emitting element has a conventional configuration in which a semiconductor light-emitting element is disposed on a package, and the phosphor is contained in a transparent material such as a resin so that the semiconductor in the package. It arrange | positions so that a light emitting element may be covered. For example, Patent Document 1 discloses a structure of a light emitting device using a rare earth phosphor.
 図28は、特許文献1に開示された従来の発光装置を示す断面図である。 FIG. 28 is a cross-sectional view showing a conventional light emitting device disclosed in Patent Document 1.
 図28に示すように、従来の発光装置は、半導体発光素子1011が容器1018内に露出した端子1012に配置され、そして、蛍光体1016を含む樹脂1015が半導体発光素子1011を覆うように容器1018内に充填された構成である。 As shown in FIG. 28, in the conventional light emitting device, the semiconductor light emitting element 1011 is disposed on the terminal 1012 exposed in the container 1018, and the container 1018 is so covered that the resin 1015 including the phosphor 1016 covers the semiconductor light emitting element 1011. It is the structure filled in.
 一方、半導体発光素子上に直接、蛍光体が含まれる蛍光体層を配置することで、より簡単に白色LEDと同様の白色光を放射する半導体発光素子を構成する方法が提案されている。例えば特許文献2には、希土類蛍光体を用いた従来の半導体発光素子の構造が示されている。 On the other hand, a method has been proposed in which a phosphor layer containing a phosphor is disposed directly on a semiconductor light emitting device, thereby forming a semiconductor light emitting device that emits white light similar to a white LED more easily. For example, Patent Document 2 shows a structure of a conventional semiconductor light emitting element using a rare earth phosphor.
 図29は、特許文献2に開示された従来の半導体発光素子を示す断面図である。 FIG. 29 is a cross-sectional view showing a conventional semiconductor light emitting device disclosed in Patent Document 2.
 図29に示すように、従来の半導体発光素子では、まず、サファイア基板1001上に、Siドープn型GaN層1002、Siドープn型AlGaN層1003、アンドープGaN活性層1004、Mgドープp型AlGaN層1005、Mgドープp型GaN層1006を順に積層した積層部を形成し、その積層部の表面の一部をSiドープn型GaN層1002に到達するまで掘り下げ、Siドープn型GaN層1002の上にn側電極1009を形成する。そして、Mgドープp型GaN層1006上にp型電極1008を形成して、紫外線発光を出力するGaN系半導体発光素子を構成する。 As shown in FIG. 29, in the conventional semiconductor light emitting device, first, on a sapphire substrate 1001, an Si-doped n-type GaN layer 1002, an Si-doped n-type AlGaN layer 1003, an undoped GaN active layer 1004, an Mg-doped p-type AlGaN layer. 1005 and an Mg-doped p-type GaN layer 1006 are sequentially stacked, and a part of the surface of the stacked part is dug until reaching the Si-doped n-type GaN layer 1002. An n-side electrode 1009 is formed on the substrate. Then, a p-type electrode 1008 is formed on the Mg-doped p-type GaN layer 1006 to constitute a GaN-based semiconductor light-emitting element that outputs ultraviolet light emission.
 さらに、このGaN系半導体発光素子の上に、樹脂内に蛍光体を分散した蛍光体層1007(例えばY2O3:Eu3+が分散された樹脂)を塗布する。これにマスクパターンをかけ、紫外線露光を行って、蛍光体層1007として残したい部分だけを固化させ、不要な部分を除去する。これにより、Mgドープp型GaN層1006上部のp側電極1008以外の部分のみに蛍光体層1007が形成された半導体発光素子が形成される。 Further, a phosphor layer 1007 in which a phosphor is dispersed in a resin (for example, a resin in which Y 2 O 3: Eu 3 + is dispersed) is applied on the GaN-based semiconductor light emitting element. A mask pattern is applied to this, and ultraviolet exposure is performed to solidify only a portion desired to be left as the phosphor layer 1007, and an unnecessary portion is removed. As a result, a semiconductor light emitting device in which the phosphor layer 1007 is formed only on the portion other than the p-side electrode 1008 above the Mg-doped p-type GaN layer 1006 is formed.
特表平11-500584号公報Japanese National Patent Publication No. 11-500584 特開平10-012916号公報JP 10-012916 A
 ところが、図29の半導体発光素子において、半導体発光素子上に蛍光体を分散した蛍光体層を形成する場合、次のような課題が顕在化する。まず、希土類蛍光体を用いてGaN系半導体発光素子の上に蛍光体層を形成する場合、非常に薄い膜に所定の量の希土類蛍光体粒子を含有させる必要がある。この場合、蛍光体層中の希土類蛍光体粒子の濃度が非常に高くなり、実効的な単位体積あたりの希土類イオンの密度が高くなる。この結果、濃度消光によって蛍光体の量子効率の低下が生じる。 However, in the semiconductor light emitting device of FIG. 29, when a phosphor layer in which a phosphor is dispersed is formed on the semiconductor light emitting device, the following problems become apparent. First, when a phosphor layer is formed on a GaN-based semiconductor light emitting device using a rare earth phosphor, it is necessary to contain a predetermined amount of rare earth phosphor particles in a very thin film. In this case, the concentration of rare earth phosphor particles in the phosphor layer becomes very high, and the effective density of rare earth ions per unit volume becomes high. As a result, the quantum efficiency of the phosphor decreases due to concentration quenching.
 一方、このような濃度消光を避けるために蛍光体として希土類イオンを用いない蛍光体である量子ドット蛍光体を用いる方法が挙げられる。しかしながら、量子ドット蛍光体を用いてGaN系半導体発光素子上に蛍光体層を形成する場合、次のような課題が発生する。 On the other hand, in order to avoid such concentration quenching, there is a method using a quantum dot phosphor which is a phosphor that does not use rare earth ions as the phosphor. However, when a phosphor layer is formed on a GaN-based semiconductor light emitting device using a quantum dot phosphor, the following problems occur.
 量子ドット蛍光体は、その粒子サイズが非常に小さいため、量子効率が表面構造や表面結晶性などの表面特性に強く依存する。このため、量子効率は、量子ドット蛍光体の表面に形成される欠陥により急激に低下する。 Quantum dot phosphors have a very small particle size, so that quantum efficiency strongly depends on surface characteristics such as surface structure and surface crystallinity. For this reason, quantum efficiency falls rapidly by the defect formed in the surface of quantum dot fluorescent substance.
 この表面に形成される欠陥は、量子ドット蛍光体が分散されている樹脂等を透過して量子ドット蛍光体に到達した酸素が量子ドット蛍光体の表面を酸化することで生じる。さらに、この酸化現象は半導体発光素子から発せられる光により加速される。 Defects formed on the surface are generated by oxygen that has reached the quantum dot phosphor through the resin in which the quantum dot phosphor is dispersed and oxidizes the surface of the quantum dot phosphor. Furthermore, this oxidation phenomenon is accelerated by light emitted from the semiconductor light emitting device.
 したがって、量子ドット蛍光体を半導体発光素子の近傍に配置した場合、量子ドット蛍光体に照射される光密度が非常に強くなり、量子ドット蛍光体が激しく酸化される。 Therefore, when the quantum dot phosphor is arranged in the vicinity of the semiconductor light emitting device, the light density irradiated to the quantum dot phosphor becomes very strong, and the quantum dot phosphor is violently oxidized.
 本発明は、上記課題を解決するため、量子ドット蛍光体(半導体微粒子)の酸化の原因の一つである酸素と蛍光体粒子との接触を抑制することで量子ドット蛍光体の量子効率が低下することを抑制し、長期信頼性を実現することができる半導体発光素子および発光装置を提供することを目的とする。 In order to solve the above problems, the present invention reduces the quantum efficiency of quantum dot phosphors by suppressing contact between oxygen and phosphor particles, which is one of the causes of oxidation of quantum dot phosphors (semiconductor fine particles). An object of the present invention is to provide a semiconductor light-emitting element and a light-emitting device that can suppress long-term reliability and realize long-term reliability.
 上記課題を解決するために、本発明に係る半導体発光素子の一態様は、活性層を含む半導体層と、半導体層上に形成された第1の金属層と、第1の金属層上、半導体層の上面および側面を覆うように形成された第1の絶縁膜と、第1の絶縁膜上に形成された半導体微粒子を含む第2の絶縁膜と、第2の絶縁膜上に形成された第3の絶縁膜とを備え、第2の絶縁膜は、第1の絶縁膜と第3の絶縁膜で覆われていることを特徴とする。 In order to solve the above problems, an embodiment of a semiconductor light emitting device according to the present invention includes a semiconductor layer including an active layer, a first metal layer formed on the semiconductor layer, a first metal layer, a semiconductor A first insulating film formed so as to cover an upper surface and a side surface of the layer; a second insulating film containing semiconductor fine particles formed on the first insulating film; and a second insulating film formed on the second insulating film And a third insulating film, wherein the second insulating film is covered with the first insulating film and the third insulating film.
 本態様によれば、半導体微粒子(量子ドット蛍光体)を含んだ第2の絶縁膜が第3の絶縁膜で覆われているため、第2の絶縁膜への酸素の透過を抑制することができる。これにより、酸素と半導体微粒子との接触を抑制することができるので、半導体微粒子(量子ドット蛍光体)の量子効率が低下することを抑制することができる。 According to this aspect, since the second insulating film containing the semiconductor fine particles (quantum dot phosphor) is covered with the third insulating film, the transmission of oxygen to the second insulating film can be suppressed. it can. Thereby, since contact with oxygen and semiconductor fine particles can be suppressed, it can suppress that the quantum efficiency of semiconductor fine particles (quantum dot fluorescent substance) falls.
 また、本発明に係る半導体発光素子の一態様において、前記第1の金属層上の前記第1の絶縁膜に開口部が形成されていることが好ましい。 Moreover, in one embodiment of the semiconductor light emitting device according to the present invention, it is preferable that an opening is formed in the first insulating film on the first metal layer.
 また、本発明に係る半導体発光素子の一態様において、開口部に第1の金属層に接続するように第2の金属層が形成されていることが好ましい。 Further, in one embodiment of the semiconductor light emitting device according to the present invention, it is preferable that a second metal layer is formed in the opening so as to be connected to the first metal layer.
 また、本発明に係る半導体発光素子の一態様において、第1の金属層は、透明電極であり、透明電極の材料は、錫が添加された酸化インジウム、アンチモンが添加された酸化錫、および酸化亜鉛のうちのいずれかであることが好ましい。 In one embodiment of the semiconductor light emitting device according to the present invention, the first metal layer is a transparent electrode, and the material of the transparent electrode is indium oxide to which tin is added, tin oxide to which antimony is added, and oxide. It is preferably any of zinc.
 また、本発明に係る半導体発光素子の一態様において、半導体微粒子は、量子ドット蛍光体であって、活性層からの発光を吸収し、活性層の発光と異なる光を発する構成であることが好ましい。 In one embodiment of the semiconductor light emitting device according to the present invention, the semiconductor fine particle is preferably a quantum dot phosphor, and is configured to absorb light emitted from the active layer and emit light different from light emitted from the active layer. .
 また、本発明に係る半導体発光素子の一態様において、第3の絶縁膜は、少なくとも酸素を透過しない膜、且つ、熱伝導率が高い膜であって、窒化アルミニウム、窒化シリコン、シリコン酸窒素、シリコン酸化物、亜鉛酸化物、アルミニウム酸化物、インジウム酸化物のいずれかであることが好ましい。 In one embodiment of the semiconductor light emitting device according to the present invention, the third insulating film is a film that does not transmit oxygen and has high thermal conductivity, and includes aluminum nitride, silicon nitride, nitrogen silicon oxide, It is preferably any of silicon oxide, zinc oxide, aluminum oxide, and indium oxide.
 また、本発明に係る半導体発光素子の一態様において、第2の絶縁膜と第3の絶縁膜との間に第4の絶縁膜を備え、第2の絶縁膜は第4の絶縁膜で覆われ、第4の絶縁膜は第3の絶縁膜で覆われていることが好ましい。 In one embodiment of the semiconductor light emitting device according to the present invention, a fourth insulating film is provided between the second insulating film and the third insulating film, and the second insulating film is covered with the fourth insulating film. In other words, the fourth insulating film is preferably covered with a third insulating film.
 また、本発明に係る発光装置の一態様は、上記の半導体発光素子を備える発光装置であって、凹部を有する樹脂からなるパッケージと、凹部の底面に露出したリードフレームと、凹部内のリードフレームに設置された前記半導体発光素子と、凹部内に前記半導体発光素子上を覆うように形成された樹脂部とを備え、樹脂部は、熱伝導微粒子を含むものである。 Another embodiment of the light emitting device according to the present invention is a light emitting device including the above semiconductor light emitting element, a package made of a resin having a recess, a lead frame exposed on the bottom surface of the recess, and a lead frame in the recess. The semiconductor light-emitting element installed in and a resin part formed so as to cover the semiconductor light-emitting element in the recess, and the resin part contains heat conductive fine particles.
 上記課題を解決するために、本発明に係る第1の発光装置の一態様は、凹部を有する樹脂からなるパッケージと、凹部の底面に露出したリードフレームと、凹部内のリードフレームに設置された半導体発光素子と、凹部内に半導体発光素子上を覆うように形成された第1の樹脂部とを備え、第1の樹脂部は量子ドット蛍光体および酸素を吸着する第1のゲッター粒子から構成されていることを特徴とする。 In order to solve the above problems, one aspect of the first light emitting device according to the present invention is installed in a package made of a resin having a recess, a lead frame exposed on the bottom surface of the recess, and a lead frame in the recess. A semiconductor light emitting device and a first resin portion formed in the recess so as to cover the semiconductor light emitting device are formed, and the first resin portion is composed of a quantum dot phosphor and a first getter particle that adsorbs oxygen. It is characterized by being.
 さらに、本発明に係る第1の発光装置の一態様において、第1のゲッター粒子の粒径は、100nm以下であることが好ましい。 Furthermore, in one embodiment of the first light emitting device according to the present invention, the first getter particles preferably have a particle size of 100 nm or less.
 さらに、本発明に係る第1の発光装置の一態様において、凹部内に露出した第1の樹脂部を覆うように形成された第2の樹脂部をさらに備え、第2の樹脂部は酸素を吸着する第2のゲッター粒子を有していることが好ましい。 Further, in one aspect of the first light emitting device according to the present invention, the first light emitting device further includes a second resin portion formed so as to cover the first resin portion exposed in the recess, and the second resin portion contains oxygen. It is preferable to have second getter particles that adsorb.
 さらに、本発明に係る第1の発光装置の一態様において、第1のゲッター粒子の粒径は、100nm以下であり、第2のゲッター粒子の粒径は、100μm以下であることが好ましい。 Furthermore, in one embodiment of the first light-emitting device according to the present invention, the first getter particles preferably have a particle size of 100 nm or less, and the second getter particles have a particle size of 100 μm or less.
 さらに、本発明に係る第1の発光装置の一態様において、凹部の表面には、酸素吸着あるいは酸素透過しない層が設けられていることが好ましい。 Furthermore, in one embodiment of the first light emitting device according to the present invention, it is preferable that a layer that does not adsorb oxygen or permeate oxygen is provided on the surface of the recess.
 さらに、本発明に係る第1の発光装置の一態様において、第1および第2のゲッター粒子は、半導体発光素子から放射される光の波長および量子ドット蛍光体から放射される光の波長を吸収しないことが好ましい。 Furthermore, in one aspect of the first light emitting device according to the present invention, the first and second getter particles absorb the wavelength of light emitted from the semiconductor light emitting element and the wavelength of light emitted from the quantum dot phosphor. Preferably not.
 さらに、本発明に係る第1の発光装置の一態様において、第2の樹脂部の上部には、ガラス蓋があって、ガラス蓋はパッケージと接着されていることが好ましい。 Furthermore, in one embodiment of the first light emitting device according to the present invention, it is preferable that a glass lid is provided on the second resin portion, and the glass lid is bonded to the package.
 また、本発明に係る第1の発光装置の他の一態様は、パッケージ上に実装された半導体発光素子とパッケージ内に波長変換部とを備えた発光装置であって、波長変換部は樹脂と量子ドット蛍光体と少なくとも酸素を吸着するゲッター粒子とから構成されていることを特徴とする。 Another aspect of the first light emitting device according to the present invention is a light emitting device including a semiconductor light emitting element mounted on a package and a wavelength conversion unit in the package, wherein the wavelength conversion unit is made of resin. It is composed of a quantum dot phosphor and at least getter particles that adsorb oxygen.
 上記構成は、樹脂に量子ドット蛍光体と少なくとも酸素を吸着するゲッター粒子とを均一に混ぜることにより、樹脂を透過した酸素はゲッター粒子に吸着される。これにより、量子ドット蛍光体の酸化を低減させることができる。その結果、酸化による量子ドット蛍光体の発光効率低下を防ぐことができる。 In the above configuration, when the quantum dot phosphor and at least the getter particles that adsorb oxygen are mixed uniformly in the resin, the oxygen transmitted through the resin is adsorbed by the getter particles. Thereby, oxidation of quantum dot fluorescent substance can be reduced. As a result, it is possible to prevent a decrease in the light emission efficiency of the quantum dot phosphor due to oxidation.
 さらに、本発明に係る第1の発光装置の他の一態様において、ゲッター粒子の粒径は、100nm以下であることが好ましい。 Furthermore, in another aspect of the first light emitting device according to the present invention, the getter particles preferably have a particle size of 100 nm or less.
 量子ドット蛍光体の粒径は、可視光領域の波長の場合、およそ20nm以下である。その為、ゲッター粒子径が数ミクロン、数十ミクロンオーダーの場合、量子ドット蛍光体は均一に分散できずに色むらが発生するためである。 The particle diameter of the quantum dot phosphor is approximately 20 nm or less in the case of a wavelength in the visible light region. Therefore, when the getter particle diameter is on the order of several microns or several tens of microns, the quantum dot phosphor cannot be uniformly dispersed and color unevenness occurs.
 さらに、本発明に係る第1の発光装置の他の一態様において、波長変換部は第一の層と第二の層の2層構造であって、第一の層は、樹脂と量子ドット蛍光体と少なくとも酸素を吸着するゲッター粒子が混合すると共に、少なくとも半導体発光素子を覆っており、第二の層は、樹脂と少なくとも酸素を吸着するゲッター粒子が混合しており、第二の層は第一の層の上に形成されていることが好ましい。 Furthermore, in another aspect of the first light emitting device according to the present invention, the wavelength conversion unit has a two-layer structure of a first layer and a second layer, and the first layer includes a resin and quantum dot fluorescence. The body and at least the getter particles that adsorb oxygen are mixed, and at least the semiconductor light emitting element is covered. The second layer is a mixture of resin and at least oxygen that adsorbs oxygen, and the second layer is the first layer. It is preferable to be formed on one layer.
 第一の層上に第二の層にゲッター粒子を分散した層を設けることにより、第二の層へ透過した酸素はゲッター粒子で吸着される。その為、第一の層への酸素透過を大幅に抑制することができる。 By providing a layer in which getter particles are dispersed in the second layer on the first layer, oxygen transmitted to the second layer is adsorbed by the getter particles. Therefore, oxygen permeation to the first layer can be greatly suppressed.
 さらに、本発明に係る第1の発光装置の他の一態様において、第一の層のゲッター粒子の粒径は、100nm以下であり、第二の層のゲッター粒子の粒径は、100μm以下であることが好ましい。 Furthermore, in another aspect of the first light-emitting device according to the present invention, the getter particles of the first layer have a particle size of 100 nm or less, and the getter particles of the second layer have a particle size of 100 μm or less. Preferably there is.
 上記構成にすることで、第一の層は色むらを抑制することができる。第二の層のゲッター粒子の粒径は100μmより大きくすると、粒子の自重による沈降で分散性が悪くなってしまうため100μm以下にするのがよい。 With the above configuration, the first layer can suppress uneven color. If the particle diameter of the getter particles in the second layer is larger than 100 μm, the dispersibility deteriorates due to sedimentation due to the weight of the particles.
 また、本発明に係る第1の発光装置の他の一態様において、波長変換部とパッケージ側面との間には、酸素吸着あるいは透過しない層が設けられていることが好ましい。パッケージ側面からも酸素が透過するため、量子ドット蛍光体の酸化をより抑制することが可能となる。 Further, in another aspect of the first light emitting device according to the present invention, it is preferable that a layer that does not adsorb or transmit oxygen is provided between the wavelength conversion unit and the side surface of the package. Oxygen permeates also from the package side surface, so that the oxidation of the quantum dot phosphor can be further suppressed.
 さらに、本発明に係る第1の発光装置の他の一態様において、ゲッター粒子は、半導体発光素子の波長および量子ドット蛍光体の波長を吸収しないことが好ましい。 Furthermore, in another aspect of the first light emitting device according to the present invention, it is preferable that the getter particles do not absorb the wavelength of the semiconductor light emitting element and the wavelength of the quantum dot phosphor.
 ゲッター粒子が半導体発光素子や量子ドット蛍光体の波長を吸収してしまうと、発光装置の発光強度が低下する。そのため、半導体発光素子や量子ドット蛍光体からの波長を吸収しないゲッター粒子を用いることが好ましい。 If the getter particles absorb the wavelength of the semiconductor light emitting element or the quantum dot phosphor, the light emission intensity of the light emitting device decreases. Therefore, it is preferable to use getter particles that do not absorb wavelengths from semiconductor light emitting elements and quantum dot phosphors.
 さらに、本発明に係る第1の発光装置の他の一態様において、波長変換部の上部には、ガラス蓋があって、ガラス蓋はパッケージと接着することで、波長変換部を封止することが好ましい。 Furthermore, in another aspect of the first light emitting device according to the present invention, the wavelength conversion unit has a glass lid on the top, and the glass lid is bonded to the package to seal the wavelength conversion unit. Is preferred.
 ガラスは酸素を透過しないため、量子ドット蛍光体層の上部に設けた酸素ゲッター層の上部をガラスで蓋をすることにより、量子ドット蛍光体層への酸素透過を大幅に抑制させることができる。その結果、より酸化による量子ドット蛍光体の発光効率の低下を防ぎ、長期信頼性を実現することができる。 Since glass does not transmit oxygen, oxygen permeation to the quantum dot phosphor layer can be significantly suppressed by covering the upper part of the oxygen getter layer provided on the quantum dot phosphor layer with glass. As a result, it is possible to prevent a decrease in the light emission efficiency of the quantum dot phosphor due to oxidation and realize long-term reliability.
 上記課題を解決するために、本発明に係る第2の発光装置の一態様は、凹部を有する樹脂からなるパッケージと、前記凹部の底面に露出したリードフレームと、少なくとも前記底面に露出したリードフレームを覆うように形成された第1の酸素ゲッター層と、前記第1の酸素ゲッター層上に形成された量子ドット蛍光体層と、前記量子ドット蛍光体層を覆うように形成された第2の酸素ゲッター層とを備えるものである。 In order to solve the above-described problem, an aspect of the second light emitting device according to the present invention includes a package made of a resin having a recess, a lead frame exposed on the bottom surface of the recess, and a lead frame exposed at least on the bottom surface. A first oxygen getter layer formed to cover the quantum dot phosphor layer, a quantum dot phosphor layer formed on the first oxygen getter layer, and a second layer formed to cover the quantum dot phosphor layer And an oxygen getter layer.
 このように、本態様は、パッケージ上に実装された半導体発光素子と、樹脂に量子ドット蛍光体が分散された層(量子ドット蛍光体層)と、樹脂に分散された少なくとも酸素を吸着するゲッター粒子を含んだ層(酸素ゲッター層)とを備え、量子ドット蛍光体層の上部および下部には前記酸素ゲッター層で覆われている。 As described above, this aspect includes a semiconductor light emitting device mounted on a package, a layer in which a quantum dot phosphor is dispersed in a resin (quantum dot phosphor layer), and a getter that adsorbs at least oxygen dispersed in the resin. A layer containing particles (oxygen getter layer), and the upper and lower portions of the quantum dot phosphor layer are covered with the oxygen getter layer.
 上記構成にすることで、量子ドット蛍光体層の上部および下部に設けた酸素ゲッター層のゲッター粒子が酸素を吸着する。これにより、量子ドット蛍光体層への酸素透過を抑制させることができる。その結果、酸化による量子ドット蛍光体の発光効率の低下を防ぐことができる。 With the above configuration, the getter particles in the oxygen getter layer provided on the top and bottom of the quantum dot phosphor layer adsorb oxygen. Thereby, oxygen permeation to the quantum dot phosphor layer can be suppressed. As a result, it is possible to prevent a decrease in light emission efficiency of the quantum dot phosphor due to oxidation.
 さらに、本発明に係る第2の発光装置の一態様において、前記第2の酸素ゲッター層の上部には、ガラス蓋が設けられていることが好ましい。すなわち、量子ドット蛍光体層の上部に形成されている酸素ゲッター層の上部にガラス蓋が設けられていることが好ましい。 Furthermore, in one embodiment of the second light emitting device according to the present invention, it is preferable that a glass lid is provided on the second oxygen getter layer. That is, it is preferable that a glass lid is provided on the oxygen getter layer formed on the quantum dot phosphor layer.
 ガラスは酸素を透過しないため、量子ドット蛍光体層の上部に設けた酸素ゲッター層の上部をガラスで蓋をすることにより、空気層を接している面をガラス蓋で覆うことができるので、量子ドット蛍光体層への酸素透過を大幅に抑制させることができる。その結果、より酸化による量子ドット蛍光体の発光効率の低下を防ぐことができる。 Since glass does not transmit oxygen, the upper surface of the oxygen getter layer provided above the quantum dot phosphor layer can be covered with glass, so that the surface in contact with the air layer can be covered with the glass lid. Oxygen permeation to the dot phosphor layer can be greatly suppressed. As a result, it is possible to prevent a decrease in light emission efficiency of the quantum dot phosphor due to oxidation.
 さらに、本発明に係る第2の発光装置の一態様において、前記凹部の内壁には、酸素を吸着するあるいは酸素を透過しない反射金属層、または、酸素を吸着する多孔質粒子層が設けられていることが好ましい。すなわち、量子ドット蛍光体層、または、量子ドット蛍光体層の上部あるいは下部を酸素ゲッター層で覆った層とパッケージ側面との間には、酸素吸着や酸素透過しない反射金属膜あるいは酸素を吸着する多孔質粒子膜が設けられているのが好ましい。 Furthermore, in one aspect of the second light emitting device according to the present invention, the inner wall of the recess is provided with a reflective metal layer that adsorbs oxygen or does not transmit oxygen, or a porous particle layer that adsorbs oxygen. Preferably it is. That is, between the side of the package and the quantum dot phosphor layer, or a layer in which the upper or lower part of the quantum dot phosphor layer is covered with an oxygen getter layer, oxygen adsorption or a reflective metal film that does not transmit oxygen is adsorbed. A porous particle film is preferably provided.
 この構成にすることで、パッケージ側壁から透過する酸素を吸着することができるため、パッケージ側壁と接している量子ドット蛍光体層の量子ドット蛍光体の酸化を更に抑制することができる。 With this configuration, oxygen transmitted from the package side wall can be adsorbed, so that the oxidation of the quantum dot phosphor in the quantum dot phosphor layer in contact with the package side wall can be further suppressed.
 さらに、本発明に係る第2の発光装置の一態様において、前記凹部の内壁には、酸素を吸着するあるいは酸素を透過しない反射金属層、または、酸素を吸着する多孔質粒子層が設けられていることが好ましい。 Furthermore, in one aspect of the second light emitting device according to the present invention, the inner wall of the recess is provided with a reflective metal layer that adsorbs oxygen or does not transmit oxygen, or a porous particle layer that adsorbs oxygen. Preferably it is.
 さらに、本発明に係る第2の発光装置の一態様において、前記第1の酸素ゲッター層および第2の酸素ゲッター層に含まれるゲッター粒子は、チタン酸化物、ニオブ酸化物、ハフニウム酸化物、インジウム酸化物、タングステン酸化物、スズ酸化物、亜鉛酸化物、ジルコニア酸化物、マグネシウム酸化物、アンチモン酸化物、二酸化ケイ素、シリコン酸窒素のいずれかを含むことが好ましい。 Furthermore, in one embodiment of the second light-emitting device according to the present invention, the getter particles contained in the first oxygen getter layer and the second oxygen getter layer are titanium oxide, niobium oxide, hafnium oxide, indium. It preferably contains any of oxide, tungsten oxide, tin oxide, zinc oxide, zirconia oxide, magnesium oxide, antimony oxide, silicon dioxide, and nitrogen silicon oxide.
 さらに、本発明に係る第2の発光装置の一態様において、前記量子ドット蛍光体層は、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnZe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnZeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、CdHgSeTe、CdHgSTe、HgZnSS、HgZnSeTe、HgZnSTe、GaN、GaP、GaAs、GaSb、AlN、AlGaN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、InGaN、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSbを含むことが好ましい。 Furthermore, in one aspect of the second light emitting device according to the present invention, the quantum dot phosphor layer includes CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnZe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnZeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, CdHgSeTe, CdHgSTe, HgZnSS, HgZnSeTe, HgZnSTe, GaN, GaP, GaAs, GaSb, AlN, AlGaN, AlP, AlAs, AlSb, InN, InP, nAs, InSb, InGaN, GaNP, GaNAS, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, InGaPS GaInNSb, GaInPAs, InAlNP, InAlNAs, InAlNSb, InAlPAs, and InAlPSb are preferably included.
 本発明によれば、酸化による量子ドット蛍光体の発光効率の低下を防ぐことができるので、長期信頼性を有する半導体発光素子及び発光装置を実現することができる。 According to the present invention, it is possible to prevent a decrease in light emission efficiency of the quantum dot phosphor due to oxidation, and thus it is possible to realize a semiconductor light emitting element and a light emitting device having long-term reliability.
図1は、本発明の第1の実施形態に係る半導体発光素子を示す断面図である。FIG. 1 is a cross-sectional view showing a semiconductor light emitting device according to the first embodiment of the present invention. 図2は、本発明の第1の実施形態に係る半導体発光素子におけるA領域を拡大した断面図である。FIG. 2 is an enlarged cross-sectional view of a region A in the semiconductor light emitting device according to the first embodiment of the present invention. 図3は、本発明の第1の実施形態に係る半導体発光素子におけるB領域を拡大した断面図である。FIG. 3 is an enlarged cross-sectional view of the B region in the semiconductor light emitting device according to the first embodiment of the present invention. 図4は、樹脂材料から絶縁膜の酸素透過性を示す図である。FIG. 4 is a diagram showing oxygen permeability of an insulating film from a resin material. 図5は、本発明の第1の実施形態に用いる酸素バリア膜の酸素透過性を示す図である。FIG. 5 is a diagram showing the oxygen permeability of the oxygen barrier film used in the first embodiment of the present invention. 図6は、本発明の第1の実施形態に係る半導体発光素子の製造方法を示す図である。FIG. 6 is a diagram showing a method for manufacturing the semiconductor light emitting device according to the first embodiment of the present invention. 図7は、本発明の第1の実施形態に係る半導体発光素子の変形例を示す断面図である。FIG. 7 is a cross-sectional view showing a modification of the semiconductor light emitting device according to the first embodiment of the present invention. 図8は、本発明の第2の実施形態に係る半導体発光素子を示す断面図である。FIG. 8 is a sectional view showing a semiconductor light emitting device according to the second embodiment of the present invention. 図9は、本発明の第2の実施形態に係る半導体発光素子におけるC領域を拡大した断面図である。FIG. 9 is an enlarged cross-sectional view of a C region in the semiconductor light emitting device according to the second embodiment of the present invention. 図10は、本発明の第2の実施形態に係る半導体発光素子におけるD領域を拡大した断面図である。FIG. 10 is an enlarged cross-sectional view of a D region in the semiconductor light emitting device according to the second embodiment of the present invention. 図11は、本発明の第2の実施形態に係る半導体発光素子の製造方法を示す図である。FIG. 11 is a diagram illustrating a method for manufacturing a semiconductor light emitting device according to the second embodiment of the present invention. 図12は、本発明の第2の実施形態に係る半導体発光素子の変形例を示す断面図である。FIG. 12 is a cross-sectional view showing a modification of the semiconductor light emitting device according to the second embodiment of the present invention. 図13は、本発明の第3の実施形態に係る発光装置を示す断面図である。FIG. 13 is a sectional view showing a light emitting device according to the third embodiment of the present invention. 図14は、本発明の第4の実施形態に係る半導体発光素子を示す断面図である。FIG. 14 is a sectional view showing a semiconductor light emitting device according to the fourth embodiment of the present invention. 図15は、本発明の第4の実施形態に係る半導体発光素子の製造方法を示す図である。FIG. 15 is a diagram showing a method for manufacturing a semiconductor light emitting device according to the fourth embodiment of the present invention. 図16は、本発明の第5の実施形態に係る発光装置を示す断面図である。FIG. 16: is sectional drawing which shows the light-emitting device based on the 5th Embodiment of this invention. 図17は、本発明の第6の実施形態に係る発光装置を示す断面図である。FIG. 17 is a sectional view showing a light emitting device according to the sixth embodiment of the present invention. 図18は、本発明の第7の実施形態に係る発光装置を示す断面図である。FIG. 18 is a sectional view showing a light emitting device according to the seventh embodiment of the present invention. 図19は、本発明の第8の実施形態に係る発光装置を示す断面図である。FIG. 19 is a sectional view showing a light emitting device according to the eighth embodiment of the present invention. 図20は、本発明の第9の実施形態に係る発光装置を示す断面図である。FIG. 20 is a sectional view showing a light emitting device according to the ninth embodiment of the present invention. 図21は、本発明の第10の実施形態に係る発光装置を示す断面図である。FIG. 21 is a sectional view showing a light emitting device according to the tenth embodiment of the present invention. 図22は、本発明の第11の実施形態に係る発光装置を示す断面図である。FIG. 22 is a sectional view showing a light emitting device according to the eleventh embodiment of the present invention. 図23は、本発明の第12の実施形態に係る発光装置を示す断面図である。FIG. 23 is a sectional view showing a light emitting device according to the twelfth embodiment of the present invention. 図24は、本発明の第13の実施形態に係る発光装置を示す断面図である。FIG. 24 is a sectional view showing a light emitting device according to the thirteenth embodiment of the present invention. 図25は、本発明の第14の実施形態に係る発光装置を示す断面図である。FIG. 25 is a sectional view showing a light emitting device according to the fourteenth embodiment of the present invention. 図26は、本発明の第15の実施形態に係る発光装置を示す断面図である。FIG. 26 is a sectional view showing a light emitting device according to the fifteenth embodiment of the present invention. 図27は、本発明の第16の実施形態に係る発光装置を示す断面図である。FIG. 27 is a cross-sectional view showing a light emitting device according to the sixteenth embodiment of the present invention. 図28は、従来の発光装置を示す断面図である。FIG. 28 is a cross-sectional view showing a conventional light emitting device. 図29は、従来の半導体発光素子を示す断面図である。FIG. 29 is a cross-sectional view showing a conventional semiconductor light emitting device.
 以下に、本発明の各実施の形態について図面を参照しながら説明するが、本発明は、請求の範囲の記載に基づいて特定される。よって、以下の実施の形態における構成要素のうち、請求項に記載されていない構成要素は、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。また、各図において同じ構成要素には同じ符号を付している。なお、各図は、模式図であり、必ずしも厳密に図示したものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is specified based on the description of the scope of claims. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the claims are not necessarily required to achieve the object of the present invention, but are described as constituting more preferable embodiments. . Moreover, the same code | symbol is attached | subjected to the same component in each figure. Each figure is a schematic diagram and is not necessarily illustrated exactly.
 また、本発明の各実施の形態の半導体発光素子は、380nm~480nmの波長で発光する活性層を有する半導体発光素子であることが好ましい。そして、量子ドット蛍光体である半導体微粒子は、半導体発光素子の波長380nm~480nmを吸収し、450nm~700nmの間で発光することが好ましい。 In addition, the semiconductor light emitting device of each embodiment of the present invention is preferably a semiconductor light emitting device having an active layer that emits light at a wavelength of 380 nm to 480 nm. The semiconductor fine particles that are quantum dot phosphors preferably absorb the wavelength of 380 nm to 480 nm of the semiconductor light emitting element and emit light between 450 nm and 700 nm.
 なお、本実施形態では、上記波長の範囲のうち、例えば、半導体発光素子の活性層から発光する光の波長が450nmである場合について説明する。また、本実施形態では、量子ドット蛍光体は、半導体発光素子の波長450nmを吸収し、例えばピーク波長が530nmである第1の半導体微粒子と蛍光ピーク波長が620nmである第2の半導体微粒子の2種類の半導体微粒子で構成される場合について説明する。 In the present embodiment, a case will be described in which, for example, the wavelength of light emitted from the active layer of the semiconductor light emitting element is 450 nm in the above wavelength range. Further, in this embodiment, the quantum dot phosphor absorbs the wavelength of 450 nm of the semiconductor light emitting element. For example, the first semiconductor fine particle having a peak wavelength of 530 nm and the second semiconductor fine particle having a fluorescence peak wavelength of 620 nm are two. The case where it is composed of various types of semiconductor fine particles will be described.
 (第1の実施形態)
 (構成)
 本発明の第1の実施形態に係る半導体発光素子1の概略構成について、図1~図3を用いて説明する。図1は、本発明の第1の実施形態に係る半導体発光素子の断面図である。また、図2および図3は、本発明の第1の実施形態に係る半導体発光素子におけるA領域およびB領域の拡大図である。
(First embodiment)
(Constitution)
A schematic configuration of the semiconductor light emitting device 1 according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view of a semiconductor light emitting device according to a first embodiment of the present invention. 2 and 3 are enlarged views of the A region and the B region in the semiconductor light emitting device according to the first embodiment of the present invention.
 図1に示すように、第1の実施形態に係る半導体発光素子1は、基板10(例えばサファイア基板)上に例えばInGaN/GaN多重量子井戸である活性層13を含む半導体層積層構造体が形成されたものである。その半導体層積層構造体上に、p電極として第1の金属層16が形成されている。半導体層積層構造体は、例えばSiドープGaN層であるバッファ層11、例えばSiドープAlGaN層である第1のクラッド層12、多重量子井戸構造の活性層13、例えばMgドープAlGaN層である第2のクラッド層14およびMgドープGaN層であるコンタクト層15が順次積層されたものである。 As shown in FIG. 1, in the semiconductor light emitting device 1 according to the first embodiment, a semiconductor layer stacked structure including an active layer 13 which is, for example, an InGaN / GaN multiple quantum well is formed on a substrate 10 (for example, a sapphire substrate). It has been done. A first metal layer 16 is formed as a p-electrode on the semiconductor layer stacked structure. The semiconductor layer stack structure includes, for example, a buffer layer 11 that is a Si-doped GaN layer, for example, a first cladding layer 12 that is a Si-doped AlGaN layer, and an active layer 13 that has a multiple quantum well structure, such as a second layer that is a Mg-doped AlGaN layer. The cladding layer 14 and the contact layer 15 which is an Mg-doped GaN layer are sequentially laminated.
 コンタクト層15上の第1の金属層16は、活性層13からの光を透過する透明電極である。この透明電極は、本実施形態では、錫が添加された酸化インジウム(ITO)である。 The first metal layer 16 on the contact layer 15 is a transparent electrode that transmits light from the active layer 13. In this embodiment, the transparent electrode is indium oxide (ITO) to which tin is added.
 その第1の金属層16の上部と、半導体層積層構造体の上面および側面とを覆うように、例えばシリコン酸化膜(SiO)、窒化シリコン膜(Si1-x)、アルミナ膜(Al)のように酸素バリア性を有する第1の絶縁膜18が形成されている。 For example, a silicon oxide film (SiO 2 ), a silicon nitride film (Si 1-x N x ), and an alumina film (so as to cover the upper part of the first metal layer 16 and the upper and side surfaces of the semiconductor layer stacked structure. A first insulating film 18 having an oxygen barrier property such as Al 2 O 3 is formed.
 そして、第1の絶縁膜18上には、第2の絶縁膜20が形成されている。この第2の絶縁膜20は、例えばシリコーン樹脂に、蛍光ピーク波長が530nmである第1の半導体微粒子25aと蛍光ピーク波長が620nmである第2の半導体微粒子25bとの2種類の半導体微粒子から構成される量子ドット蛍光体を分散させた蛍光体層である。 A second insulating film 20 is formed on the first insulating film 18. The second insulating film 20 is composed of, for example, two types of semiconductor fine particles, a first semiconductor fine particle 25a having a fluorescence peak wavelength of 530 nm and a second semiconductor fine particle 25b having a fluorescence peak wavelength of 620 nm, in a silicone resin. It is the fluorescent substance layer which disperse | distributed quantum dot fluorescent substance.
 そして、第2の絶縁膜20の表面を覆うように第3の絶縁膜21が形成されている。この第3の絶縁膜21は、例えば、窒化アルミニウム膜、窒化シリコン膜(Si1-x)、アルミナ膜(Al)、シリコン酸化膜(SiO)、または酸窒化シリコン膜(SiO1-x1-x-y)のような酸素バリア性を有する絶縁膜からなる。つまり、第2の絶縁膜20の表面を第1の絶縁膜18および第3の絶縁膜21の酸素バリア膜で覆うことで、第2の絶縁膜20中に酸素が進入することを抑制することができる。 A third insulating film 21 is formed so as to cover the surface of the second insulating film 20. The third insulating film 21 is formed of, for example, an aluminum nitride film, a silicon nitride film (Si 1-x N x ), an alumina film (Al 2 O 3 ), a silicon oxide film (SiO 2 ), or a silicon oxynitride film ( An insulating film having an oxygen barrier property such as SiO 1-x N 1-xy ). That is, by covering the surface of the second insulating film 20 with the oxygen barrier film of the first insulating film 18 and the third insulating film 21, oxygen can be prevented from entering the second insulating film 20. Can do.
 また、図1中の領域Aにおいては、第1の金属層16上部の第1の絶縁膜18には、開口部が形成され、その開口部に第1の金属層16に接続するように第2の金属層19aが形成されている。 Further, in the region A in FIG. 1, an opening is formed in the first insulating film 18 above the first metal layer 16, and the first metal layer 16 is connected to the opening so as to be connected to the first metal layer 16. Two metal layers 19a are formed.
 また、領域Bにおいては、バッファ層11上にn電極17が形成され、さらにその上に第2の金属層19bが形成される。 In the region B, the n-electrode 17 is formed on the buffer layer 11, and the second metal layer 19b is further formed thereon.
 この領域Aおよび領域Bにおける、第1の絶縁膜18、第2の絶縁膜20および第3の絶縁膜21の位置関係を図2および図3に示す。 2 and 3 show the positional relationship between the first insulating film 18, the second insulating film 20, and the third insulating film 21 in the regions A and B.
 図2および図3に示すように、第2の絶縁膜20は、第1の絶縁膜18よりも内側に形成されている。第3の絶縁膜21は、第1の絶縁膜18よりも内側、且つ、第2の絶縁膜20よりも外側に形成されている。 As shown in FIGS. 2 and 3, the second insulating film 20 is formed on the inner side of the first insulating film 18. The third insulating film 21 is formed inside the first insulating film 18 and outside the second insulating film 20.
 このように、量子ドット蛍光体を含む第2の絶縁膜20を、酸素バリア性を有する絶縁膜からなる第1の絶縁膜18および第3の絶縁膜21で覆うことにより、第2の絶縁膜20への酸素の透過を抑制することができる。そのため、半導体微粒子(量子ドット蛍光体)と酸素との接触を抑制することができる。これにより、半導体微粒子の酸化を抑制することができるので、半導体発光素子の発光効率の低下を低減することができる。 In this way, the second insulating film 20 containing the quantum dot phosphor is covered with the first insulating film 18 and the third insulating film 21 made of an insulating film having an oxygen barrier property, whereby the second insulating film Oxygen permeation to 20 can be suppressed. Therefore, contact between semiconductor fine particles (quantum dot phosphor) and oxygen can be suppressed. Thereby, since the oxidation of the semiconductor fine particles can be suppressed, a decrease in the light emission efficiency of the semiconductor light emitting element can be reduced.
 続いて、具体的に本実施形態で用いた酸素バリア膜の効果について、図4および図5を用いて説明する。図4は、樹脂材料からなる絶縁膜の酸素透過性を示す図である。図5は、CVD(Chemical Vapor Deposition)法、電子磁気共鳴(Electron Cyclotron Resonance:ECR)スパッタ法、電子ビーム(EB:Electron Beam)蒸着法を用いて成膜した絶縁膜の酸素透過性を示す図である。 Subsequently, the effect of the oxygen barrier film used in the present embodiment will be specifically described with reference to FIGS. FIG. 4 is a diagram showing oxygen permeability of an insulating film made of a resin material. FIG. 5 is a diagram showing oxygen permeability of an insulating film formed using a CVD (Chemical Vapor Deposition) method, an Electron Magnetic Resonance (ECR) sputtering method, and an electron beam (EB) method. It is.
 図4に示すように、半導体発光素子の蛍光体を含有するときに用いられる樹脂の酸素透過率(樹脂膜厚が0.1mmの場合)については、シリコーンが460000cc/m・dayであり、エポキシが50cc/m・dayであり、アクリルが657ccg/m・dayである。 As shown in FIG. 4, the oxygen transmission rate of the resin used when the phosphor of the semiconductor light emitting device is contained (when the resin film thickness is 0.1 mm) is 460000 cc / m 2 · day, Epoxy is 50 cc / m 2 · day and acrylic is 657 ccg / m 2 · day.
 一方、CVD法により成膜した窒化アルミニウム膜(8nm以上)の酸素透過性は、0.4cc/m・day(温度33℃、湿度0%)よりも低くなる。また、ECRスパッタにより成膜した酸化アルミニウム(17nm)の酸素透過性は、1.45cc/m・day(温度30℃、湿度70%)と、湿度が高い条件においても酸素透過性を低くすることができる。したがって、これらの膜を第3の絶縁膜21とすることで量子ドット蛍光体に到達する酸素量を低減することが可能である。また、酸化シリコン膜(>15nm)、酸窒化シリコン膜(24nm)でも0.4cc/m・day(温度33℃、湿度0%、温度40℃、湿度0%)と低い値が得られており、湿度が高い条件においても酸素透過性を低くすることができる。さらに、電子ビーム蒸着法により成膜する場合は、結晶の緻密さが低くなるため、酸化シリコン膜の場合では少なくとも50nmより厚膜化することで、また、アルミナ膜の場合では25nmよりも厚膜化にすることで、酸素透過性を低くすることができる。 On the other hand, the oxygen permeability of the aluminum nitride film (8 nm or more) formed by the CVD method is lower than 0.4 cc / m 2 · day (temperature 33 ° C., humidity 0%). Moreover, the oxygen permeability of aluminum oxide (17 nm) formed by ECR sputtering is 1.45 cc / m 2 · day (temperature 30 ° C., humidity 70%), and the oxygen permeability is lowered even under high humidity conditions. be able to. Therefore, the amount of oxygen reaching the quantum dot phosphor can be reduced by using these films as the third insulating film 21. Also, a low value of 0.4 cc / m 2 · day (temperature 33 ° C., humidity 0%, temperature 40 ° C., humidity 0%) was obtained even with a silicon oxide film (> 15 nm) and a silicon oxynitride film (24 nm). Thus, oxygen permeability can be lowered even under high humidity conditions. Further, when the film is formed by the electron beam evaporation method, since the density of the crystal becomes low, in the case of the silicon oxide film, it is made thicker than at least 50 nm, and in the case of the alumina film, it is thicker than 25 nm. Oxygen permeability can be lowered by making it easier.
 なお、本実施形態では、第1の金属層16に錫が添加された酸化インジウム(ITO)を用いたが、アンチモンが添加された酸化錫、または酸化亜鉛などを用いてもよい。 In this embodiment, indium oxide (ITO) with tin added to the first metal layer 16 is used. However, tin oxide to which antimony is added, zinc oxide, or the like may be used.
 また、第2の絶縁膜20としてシリコーン樹脂を用いたが、第2の絶縁膜20としては、第1の半導体微粒子25aおよび第2の半導体微粒子25bを容易に混合可能な透明材料であればよく、例えばエポキシ樹脂、フッ化物樹脂、アクリル樹脂などの熱硬化性樹脂、透明なポリイミド系樹脂、ポリアリレート樹脂、ポリエチレンテレフタレート樹脂、ポリサルフォン樹脂、ポリパラキシレン樹脂、ポリパラバン酸樹脂などの熱可塑性樹脂などの有機材料、あるいは、ゾルゲル法により形成した無機ガラスを用いてもよい。 Further, although the silicone resin is used as the second insulating film 20, the second insulating film 20 may be any transparent material that can easily mix the first semiconductor fine particles 25a and the second semiconductor fine particles 25b. For example, thermosetting resins such as epoxy resins, fluoride resins, acrylic resins, transparent polyimide resins, polyarylate resins, polyethylene terephthalate resins, polysulfone resins, polyparaxylene resins, polyparabanic acid resins, etc. An organic material or an inorganic glass formed by a sol-gel method may be used.
 また、第3の絶縁膜21として、窒化アルミニウムを用いたが、これに限らない。第3の絶縁膜としては、窒化シリコン、シリコン酸窒素、シリコン酸化物、亜鉛酸化物、アルミニウム酸化物またはインジウム酸化物を用いてもよい。 Further, although aluminum nitride is used as the third insulating film 21, it is not limited to this. As the third insulating film, silicon nitride, silicon oxynitride, silicon oxide, zinc oxide, aluminum oxide, or indium oxide may be used.
 また、第2の絶縁膜20における量子ドット蛍光体の構成は、コア/シェル型、量子井戸型などが挙げられるが、本実施形態では、いずれの構成でも適用することができる。 In addition, examples of the configuration of the quantum dot phosphor in the second insulating film 20 include a core / shell type and a quantum well type. In the present embodiment, any configuration can be applied.
 また、量子ドット蛍光体を構成しているコアおよびシェルの材料は、例えば、II-VI族化合物の場合として、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnZe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnZeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、CdHgSeTe、CdHgSTe、HgZnSS、HgZnSeTe、HgZnSTeなどから選択される少なくとも1つが挙げられる。 The core and shell materials constituting the quantum dot phosphor are, for example, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, as in the case of II-VI group compounds. , CdSTe, ZnSeS, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnZe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnZeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, CdHgSeTe, CdHgSTe, HgZnSS, HgZnSeTe And at least one selected from HgZnSTe and the like.
 また、III-V族化合物の例として、GaN、GaP、GaAs、GaSb、AlN、AlGaN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、InGaN、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSbなどから選択される少なくとも1種が挙げられる。 Examples of III-V compounds include GaN, GaP, GaAs, GaSb, AlN, AlGaN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, InGaN, GaNP, GANAS, GaNSb, GaPAs, GaPSb, and AlNP. AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, InAlNSIn, InAlNP, InAlNSIn At least one of them.
 また、基板10はサファイア基板を用いたが、GaN、SiC、Si、グラファイト、ZnO、AlNを用いても良い。また、半導体発光素子1は、基板10をレーザリフトオフ法などにより除去した構成であっても良い。 Further, although the sapphire substrate is used as the substrate 10, GaN, SiC, Si, graphite, ZnO, AlN may be used. Further, the semiconductor light emitting device 1 may have a configuration in which the substrate 10 is removed by a laser lift-off method or the like.
 (製造方法)
 次に、本発明の第1の実施形態に係る半導体発光素子1の製造方法について、図6を用いて、以下に説明する。図6は、本発明の第1の実施形態に係る半導体発光素子の製造方法を示す図である。
(Production method)
Next, a method for manufacturing the semiconductor light emitting device 1 according to the first embodiment of the present invention will be described below with reference to FIGS. FIG. 6 is a diagram showing a method for manufacturing the semiconductor light emitting device according to the first embodiment of the present invention.
 図6の(a)に示すように、まず初めに、有機金属気相成長法により、基板10(サファイア基板)上に、例えばSiドープしたn型GaNからなるバッファ層11、例えばSiドープしたn型AlGaNからなる第1のクラッド層12、例えばInGaNとGaNとの多重量子井戸からなる活性層13、例えばMgドープしたp型AlGaNからなる第2のクラッド層14、および、例えばMgドープしたp型GaNからなるコンタクト層15を順次成長する。 As shown in FIG. 6A, first, a buffer layer 11 made of, for example, Si-doped n-type GaN, for example, Si-doped n is formed on a substrate 10 (sapphire substrate) by metal organic vapor phase epitaxy. First cladding layer 12 made of type AlGaN, for example, active layer 13 made of multiple quantum wells of InGaN and GaN, for example, second cladding layer 14 made of Mg-doped p-type AlGaN, and Mg-doped p-type, for example A contact layer 15 made of GaN is sequentially grown.
 続いて、コンタクト層15表面に図示しないレジストパターンを形成し、例えば塩素系ガスを用いたドライエッチングにより、図6の(b)に示すように、バッファ層11まで到達する開口部30を形成する。 Subsequently, a resist pattern (not shown) is formed on the surface of the contact layer 15, and an opening 30 reaching the buffer layer 11 is formed by dry etching using, for example, a chlorine-based gas, as shown in FIG. .
 続いて、図6の(c)に示すように、電子ビーム蒸着法あるいはスパッタ法により、コンタクト層15の上部に、第1の金属層16として、例えばITOからなる透明電極を成膜する。 Subsequently, as shown in FIG. 6C, a transparent electrode made of, for example, ITO is formed as the first metal layer 16 on the contact layer 15 by electron beam evaporation or sputtering.
 その後、プラズマCVD法、好ましくはECRスパッタ法を用いて、第1の絶縁膜18として、例えばSiO、Si、またはAlを、バッファ層11および第1の金属層16の上面と、バッファ層11、第1のクラッド層12、活性層13、第2のクラッド層14、コンタクト層15および第1の金属層16の各側面とに形成する。 Thereafter, by using a plasma CVD method, preferably an ECR sputtering method, for example, SiO 2 , Si 2 N 3 , or Al 2 O 3 is used as the first insulating film 18 to form the buffer layer 11 and the first metal layer 16. It is formed on the upper surface and the side surfaces of the buffer layer 11, the first cladding layer 12, the active layer 13, the second cladding layer 14, the contact layer 15, and the first metal layer 16.
 次に、フォトリソグラフィーを用いて、n電極17と第2の金属層19aおよび19bとを形成するための開口部35および36に相当する図示しないレジストパターンを形成し、ドライエッチングにより開口した箇所の第1の絶縁膜18を除去することで、図6の(d)に示すように、開口部35および36を形成する。 Next, using photolithography, a resist pattern (not shown) corresponding to the openings 35 and 36 for forming the n-electrode 17 and the second metal layers 19a and 19b is formed, and the portions opened by dry etching are formed. By removing the first insulating film 18, openings 35 and 36 are formed as shown in FIG.
 次に、露出したバッファ層11の開口部36に、フォトリソグラフィーおよび電子ビーム蒸着法を用いて、例えばTi/Al/Ti/Auからなるn電極17を形成する(図6の(d))。 Next, the n-electrode 17 made of, for example, Ti / Al / Ti / Au is formed in the exposed opening 36 of the buffer layer 11 using photolithography and electron beam evaporation ((d) in FIG. 6).
 次に、図6の(e)に示すように、露出した第1の金属層16およびn電極17の上部に、例えばCr/Auからなる第2の金属層19aおよび19bを形成する。具体的には、フォトリソグラフィーを用いて図示しないレジストパターンを形成し、電子ビーム蒸着法を用いてCr/Auを成膜し、リフトオフ法により第2の金属層19aおよび19bを形成する。 Next, as shown in FIG. 6E, second metal layers 19a and 19b made of, for example, Cr / Au are formed on the exposed first metal layer 16 and n electrode 17. Specifically, a resist pattern (not shown) is formed using photolithography, Cr / Au is formed using an electron beam evaporation method, and second metal layers 19a and 19b are formed using a lift-off method.
 次に、例えばスピンコート、スプレー法、またはバーコート法により、例えばコア・シェル型量子ドット蛍光体である半導体微粒子を含むシリコーン樹脂からなる第2の絶縁膜20を全面に塗布する。ここで半導体微粒子は、蛍光ピーク波長が530nmである第1の半導体微粒子25aと、蛍光ピーク波長が620nmである第2の半導体微粒子25bとが混合されたものであり、いずれもコア材料がCdSeもしくはInP、シェル材料がZnSで構成されたコア/シェル型量子ドット蛍光体である半導体微粒子である。このとき、半導体微粒子は、SiO膜で覆われていてもよい。 Next, the second insulating film 20 made of a silicone resin containing semiconductor fine particles that are, for example, core-shell type quantum dot phosphors is applied to the entire surface by, eg, spin coating, spraying, or bar coating. Here, the semiconductor fine particles are a mixture of the first semiconductor fine particles 25a having a fluorescence peak wavelength of 530 nm and the second semiconductor fine particles 25b having a fluorescence peak wavelength of 620 nm, both of which have a core material of CdSe or InP is a semiconductor fine particle which is a core / shell type quantum dot phosphor composed of ZnS as a shell material. At this time, the semiconductor fine particles may be covered with a SiO 2 film.
 その後、フォトリソグラフィーを用いてレジストマスクを形成し、図6の(f)に示すように、不要な半導体微粒子を含む第2の絶縁膜20をアルカリ溶液を用いて除去する。この時、図2および図3に示すように、半導体微粒子を含む第2の絶縁膜20の端が第1の絶縁膜18より内側になるように開口する。 Thereafter, a resist mask is formed using photolithography, and as shown in FIG. 6F, the second insulating film 20 containing unnecessary semiconductor fine particles is removed using an alkaline solution. At this time, as shown in FIGS. 2 and 3, the second insulating film 20 containing the semiconductor fine particles is opened so that the end is inside the first insulating film 18.
 次に、例えば電子ビーム蒸着法、プラズマCVD法、好ましくはECRスパッタ法により、第3の絶縁膜21として、例えば窒化シリコン膜を少なくとも50nmよりも厚い膜厚で成膜する。その後、フォトリソグラフィーを用いてレジストマスクを形成し、図6の(g)に示すように、不要な第3の絶縁膜21をドライエッチングにより除去する。この時、図2および図3に示すように、第3の絶縁膜21の端が第1の絶縁膜18より内側になるように開口する。 Next, for example, a silicon nitride film having a thickness of at least 50 nm is formed as the third insulating film 21 by, for example, an electron beam evaporation method, a plasma CVD method, preferably an ECR sputtering method. Thereafter, a resist mask is formed using photolithography, and the unnecessary third insulating film 21 is removed by dry etching as shown in FIG. At this time, as shown in FIGS. 2 and 3, the opening of the third insulating film 21 is made so that the end of the third insulating film 21 is inside the first insulating film 18.
 なお、その後、ダイシングによって素子分離を行うことで、半導体発光素子1を得ることができる。 In addition, the semiconductor light emitting element 1 can be obtained by performing element separation by dicing thereafter.
 以上、本発明の第1の実施形態に係る半導体発光素子1によれば、量子ドット蛍光体を含む第2の絶縁膜20が酸素バリア性の高い第1の絶縁膜18および第3の絶縁膜21で覆われているので、量子ドット蛍光体の酸化を抑制することができる。これにより、量子ドット蛍光体の量子効率が高く、かつ量子ドット蛍光体の量子効率が低下しない半導体発光素子を実現することができる。 As described above, according to the semiconductor light emitting device 1 according to the first embodiment of the present invention, the second insulating film 20 including the quantum dot phosphor is the first insulating film 18 and the third insulating film having a high oxygen barrier property. Since it is covered with 21, the oxidation of the quantum dot phosphor can be suppressed. Thereby, it is possible to realize a semiconductor light emitting device in which the quantum efficiency of the quantum dot phosphor is high and the quantum efficiency of the quantum dot phosphor is not lowered.
 (第1の実施形態の変形例)
 次に、本発明の第1の実施形態に係る半導体発光素子の変形例について説明する。
(Modification of the first embodiment)
Next, a modification of the semiconductor light emitting device according to the first embodiment of the present invention will be described.
 (構成)
 図7は、本発明の第1の実施形態に係る半導体発光素子の変形例の断面図である。
(Constitution)
FIG. 7 is a cross-sectional view of a modification of the semiconductor light emitting device according to the first embodiment of the present invention.
 図7に示すように、本変形例に係る半導体発光素子101は、第1の実施形態に係る半導体発光素子1に対して、第2の絶縁膜20が、蛍光ピーク波長が530nmの量子ドット蛍光体である第1の半導体微粒子25aが含まれた第2の絶縁膜20aと、蛍光ピーク波長が620nmの量子ドット蛍光体である第2の半導体微粒子25bが含まれた第2の絶縁膜20bとが交互に形成されることで構成されている。 As shown in FIG. 7, the semiconductor light emitting device 101 according to this modification is different from the semiconductor light emitting device 1 according to the first embodiment in that the second insulating film 20 has a quantum dot fluorescence with a fluorescence peak wavelength of 530 nm. A second insulating film 20a containing the first semiconductor fine particles 25a as a body, a second insulating film 20b containing the second semiconductor fine particles 25b as a quantum dot phosphor having a fluorescence peak wavelength of 620 nm, and Are formed alternately.
 第2の絶縁膜20をこのような構造にすることで、2種類の量子ドット蛍光体を混ぜあわせる場合と比較して色むらを抑制することが可能となる。 By making the second insulating film 20 have such a structure, it is possible to suppress color unevenness compared to the case where two types of quantum dot phosphors are mixed.
 (製造方法)
 次に、本変形例に係る半導体発光素子101の製造方法について、以下に説明する。
(Production method)
Next, a method for manufacturing the semiconductor light emitting device 101 according to this modification will be described below.
 まず、第1の実施形態において説明した製造方法と同様に、図6の(e)までを作製する。 First, similarly to the manufacturing method described in the first embodiment, the process up to (e) in FIG.
 その後、図6の(f)に示す第2の絶縁膜20の成膜工程では、図7に示すように、第2の絶縁膜20aと第2の絶縁膜20bとを交互に成膜することで第2の絶縁膜20を形成する。具体的には、凹部を設けたフッ素系樹脂マスク上に、発光波長が530nmの第1の半導体微粒子25aである量子ドット蛍光体を含有した第2の絶縁膜20aを、例えばインクジェット法、スクリーン印刷法などを用いて塗布し、熱硬化する。同様に、発光波長が620nmの第2の半導体微粒子25bである量子ドット蛍光体を含有した第2の絶縁膜20bを、例えばインクジェット法を用いて塗布し、熱硬化する。 Thereafter, in the step of forming the second insulating film 20 shown in FIG. 6F, the second insulating film 20a and the second insulating film 20b are alternately formed as shown in FIG. Then, the second insulating film 20 is formed. Specifically, a second insulating film 20a containing a quantum dot phosphor that is a first semiconductor fine particle 25a having an emission wavelength of 530 nm is formed on a fluorine-based resin mask provided with a recess, for example, by an inkjet method or screen printing. Apply using a method and heat cure. Similarly, the second insulating film 20b containing the quantum dot phosphor that is the second semiconductor fine particles 25b having an emission wavelength of 620 nm is applied and thermally cured using, for example, an inkjet method.
 その後、図6の(g)と同様に、例えば電子ビーム蒸着法、プラズマCVD法、好ましくはECRスパッタ法により、第3の絶縁膜21として、例えば窒化シリコンを少なくとも8nmよりも厚い膜厚で成膜する。その後、フォトリソグラフィーを用いてレジストマスクを形成し、不要な第3の絶縁膜21をドライエッチングにより除去する。この時、本変形例においても、図2および図3に示すように、第3の絶縁膜21の端が第1の絶縁膜18より内側になるように開口する。その後、ダイシングによって素子分離を行う。 Thereafter, as in FIG. 6G, for example, silicon nitride is formed to a thickness of at least 8 nm as the third insulating film 21 by, for example, electron beam evaporation, plasma CVD, preferably ECR sputtering. Film. Thereafter, a resist mask is formed using photolithography, and the unnecessary third insulating film 21 is removed by dry etching. At this time, also in this modified example, as shown in FIGS. 2 and 3, the opening of the third insulating film 21 is made to be inside the first insulating film 18. Thereafter, element isolation is performed by dicing.
 以上、本変形例に係る半導体発光素子101によれば、量子ドット蛍光体を含む第2の絶縁膜20が酸素バリア性の高い第1の絶縁膜18および第3の絶縁膜21で覆われているので、量子ドット蛍光体の酸化を抑制することができる。さらに、本変形例では、第2の絶縁膜20が第1の半導体微粒子25aが含まれた第2の絶縁膜20aと第2の半導体微粒子25bが含まれた第2の絶縁膜20bとによって構成されているので、2種類の半導体微粒子を混ぜあわせる場合と比較して色むらを抑制することが可能となる。これにより、量子効率・色再現性に優れ、更には色ムラが抑制された半導体発光素子を実現することができる。 As described above, according to the semiconductor light emitting device 101 according to this modification, the second insulating film 20 including the quantum dot phosphor is covered with the first insulating film 18 and the third insulating film 21 having a high oxygen barrier property. Therefore, the oxidation of the quantum dot phosphor can be suppressed. Further, in the present modification, the second insulating film 20 is constituted by the second insulating film 20a containing the first semiconductor fine particles 25a and the second insulating film 20b containing the second semiconductor fine particles 25b. Therefore, color unevenness can be suppressed as compared with the case of mixing two types of semiconductor fine particles. As a result, it is possible to realize a semiconductor light emitting device that has excellent quantum efficiency and color reproducibility and further suppresses color unevenness.
 (第2の実施形態)
 次に、本発明の第2の実施形態に係る半導体発光素子2について説明する。本実施形態に係る半導体発光素子2の構成は、実施の形態1に係る半導体発光素子の構成とほとんど同じであるため、異なる部分についてのみ説明する。
(Second Embodiment)
Next, the semiconductor light emitting device 2 according to the second embodiment of the present invention will be described. Since the configuration of the semiconductor light emitting device 2 according to the present embodiment is almost the same as the configuration of the semiconductor light emitting device according to the first embodiment, only different portions will be described.
 (構成)
 まず、本発明の第2の実施形態に係る半導体発光素子2の概略構成について、図8~図10を用いて説明する。図8は、本発明の第2の実施形態に係る半導体発光素子の断面図である。また、図9および図10は、本発明の第2の実施形態に係る半導体発光素子2のC領域およびD領域の拡大図である。
(Constitution)
First, a schematic configuration of the semiconductor light emitting device 2 according to the second embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a cross-sectional view of a semiconductor light emitting device according to the second embodiment of the present invention. 9 and 10 are enlarged views of the C region and the D region of the semiconductor light emitting device 2 according to the second embodiment of the present invention.
 図8~図10に示すように、本実施形態に係る半導体発光素子2は、第1の実施形態に係る半導体発光素子1に対して、第2の絶縁膜20と第3の絶縁膜21との間に第4の絶縁膜22を備えるものである。 As shown in FIGS. 8 to 10, the semiconductor light emitting device 2 according to this embodiment is different from the semiconductor light emitting device 1 according to the first embodiment in that the second insulating film 20, the third insulating film 21, and the like. A fourth insulating film 22 is provided between them.
 そして、第2の絶縁膜20は第1の絶縁膜18および第4の絶縁膜22により完全に覆われている。さらに、第2の絶縁膜20および第4の絶縁膜22を第1の絶縁膜18および第3の絶縁膜21により完全に覆う構造である。このとき、第4の絶縁膜22は、樹脂層に対し低ダメージで成膜することができる電子ビーム蒸着で成膜することが好ましく、このような第4の絶縁膜の材料としては、窒化シリコン、酸化シリコン、酸窒化シリコン、アルミナなどを用いることができる。 The second insulating film 20 is completely covered with the first insulating film 18 and the fourth insulating film 22. Further, the second insulating film 20 and the fourth insulating film 22 are completely covered with the first insulating film 18 and the third insulating film 21. At this time, the fourth insulating film 22 is preferably formed by electron beam evaporation which can be formed with low damage to the resin layer. As the material of the fourth insulating film, silicon nitride is used. Silicon oxide, silicon oxynitride, alumina, or the like can be used.
 このように、量子ドット蛍光体を含む第2の絶縁膜20が、第1の絶縁膜18、第3の絶縁膜21および第4の絶縁膜22で覆われているので、量子ドット蛍光体の酸化を抑制することができる。これにより、量子効率が良好で、かつ第2の絶縁膜20へのダメージが無い半導体発光素子を実現することができる。 As described above, since the second insulating film 20 including the quantum dot phosphor is covered with the first insulating film 18, the third insulating film 21, and the fourth insulating film 22, the quantum dot phosphor Oxidation can be suppressed. Thereby, it is possible to realize a semiconductor light emitting device with good quantum efficiency and no damage to the second insulating film 20.
 (製造方法)
 次に、第2の実施形態に係る半導体発光素子の製造方法について、図11を用いて、以下に説明する。図11は、本発明の第2の実施形態に係る半導体発光素子の製造方法を示す図である。
(Production method)
Next, a method for manufacturing a semiconductor light emitting element according to the second embodiment will be described below with reference to FIGS. FIG. 11 is a diagram illustrating a method for manufacturing a semiconductor light emitting device according to the second embodiment of the present invention.
 図11の(a)に示すように、まず初めに、有機金属気相成長法により、基板10(サファイア基板)上に、例えばn型GaNからなるバッファ層11、例えばn型AlGaNからなる第1のクラッド層12、例えばInGaNとGaNとの多重量子井戸からなる活性層13、例えばp型AlGaNからなる第2のクラッド層14、および、p型GaNからなるコンタクト層15を順次成長する。 As shown in FIG. 11A, first, a buffer layer 11 made of, for example, n-type GaN, for example, a first layer made of, for example, n-type AlGaN is formed on a substrate 10 (sapphire substrate) by metal organic vapor phase epitaxy. The first cladding layer 12, for example, an active layer 13 made of a multiple quantum well of InGaN and GaN, a second cladding layer 14 made of p-type AlGaN, and a contact layer 15 made of p-type GaN are sequentially grown.
 続いて、フォトリソグラフィーを用いて開口部30の形状に対応した図示しないレジストパターンを形成する。次に、ドライエッチングを用いてバッファ層11の一部までエッチングして、図11の(b)に示すように、開口部30を形成する。その後、図示しないが、電子ビーム蒸着法あるいはスパッタ法により、コンタクト層15の上部に、第1の金属層16として、例えばITOからなる透明電極を成膜する。 Subsequently, a resist pattern (not shown) corresponding to the shape of the opening 30 is formed using photolithography. Next, a part of the buffer layer 11 is etched using dry etching to form an opening 30 as shown in FIG. Thereafter, although not shown, a transparent electrode made of, for example, ITO is formed as the first metal layer 16 on the contact layer 15 by electron beam evaporation or sputtering.
 次に、プラズマCVD法、好ましくはECRスパッタ法を用いて、第1の絶縁膜18として、例えばSiO、Si、Alを、バッファ層11および第1の金属層16の上面と、バッファ層11、第1のクラッド層12、活性層13、第2のクラッド層14、コンタクト層15および第1の金属層16の各側面とに形成する。その後、図11の(c)に示すように、n電極17と第2の金属層19aおよび19bとを形成するために、フォトリソグラフィーを用いて第1の絶縁膜18に開口部35および36を形成する。 Next, using a plasma CVD method, preferably an ECR sputtering method, for example, SiO 2 , Si 2 N 3 , Al 2 O 3 as the first insulating film 18, the buffer layer 11 and the first metal layer 16 are formed. It is formed on the upper surface and the side surfaces of the buffer layer 11, the first cladding layer 12, the active layer 13, the second cladding layer 14, the contact layer 15, and the first metal layer 16. Thereafter, as shown in FIG. 11C, openings 35 and 36 are formed in the first insulating film 18 using photolithography in order to form the n-electrode 17 and the second metal layers 19a and 19b. Form.
 次に、露出したバッファ層11の開口部36に、フォトリソグラフィーおよび電子ビーム蒸着法を用いて、例えばTi/Al/Ti/Auからなるn電極17を形成する(図11の(c))。 Next, an n-electrode 17 made of, for example, Ti / Al / Ti / Au is formed in the exposed opening 36 of the buffer layer 11 using photolithography and electron beam evaporation ((c) in FIG. 11).
 次に、図11の(d)に示すように、露出した第1の金属層16およびn電極17の上部に、フォトリソグラフィー法と電子ビーム蒸着法を組み合わせたリフトオフにより、Cr/Auからなる第2の金属層19aおよび19bを形成する。 Next, as shown in FIG. 11 (d), on the exposed first metal layer 16 and the n-electrode 17, a first layer made of Cr / Au is formed by lift-off combining a photolithography method and an electron beam evaporation method. Two metal layers 19a and 19b are formed.
 次に、例えばスピンコートあるいはスプレー法により、例えばコア・シェル型量子ドット蛍光体である半導体微粒子を含むシリコーン樹脂からなる第2の絶縁膜20を全面に塗布する。ここで半導体微粒子は、蛍光ピーク波長が530nmである第1の半導体微粒子25aと、蛍光ピーク波長が620nmである第2の半導体微粒子25bとが混合されたものであり、いずれもコア材料がCdSeもしくはInP、シェル材料がZnSで構成されたコア・シェル型量子ドット蛍光体である半導体微粒子である。このとき、半導体微粒子はSiO膜で覆われていてもよい。 Next, the second insulating film 20 made of a silicone resin containing semiconductor fine particles that are, for example, core-shell type quantum dot phosphors is applied to the entire surface by, eg, spin coating or spraying. Here, the semiconductor fine particles are a mixture of the first semiconductor fine particles 25a having a fluorescence peak wavelength of 530 nm and the second semiconductor fine particles 25b having a fluorescence peak wavelength of 620 nm, both of which have a core material of CdSe or InP is a semiconductor fine particle which is a core-shell type quantum dot phosphor composed of ZnS as a shell material. At this time, the semiconductor fine particles may be covered with a SiO 2 film.
 その後、フォトリソグラフィーを用いてレジストマスクを形成し、図11の(e)に示すように、不要な半導体微粒子を含む第2の絶縁膜20を、アルカリ溶液を用いて除去する。この時、図9および図10に示すように、半導体微粒子を含む第2の絶縁膜20の端が第1の絶縁膜18より内側になるように開口する。 Thereafter, a resist mask is formed using photolithography, and as shown in FIG. 11E, the second insulating film 20 containing unnecessary semiconductor fine particles is removed using an alkaline solution. At this time, as shown in FIGS. 9 and 10, the second insulating film 20 containing the semiconductor fine particles is opened so that the end thereof is inside the first insulating film 18.
 次に、フォトリソグラフィーを用いてレジストマスクを形成し、例えば電子ビーム蒸着法により、図11の(f)に示すように、第2の絶縁膜20の全面を覆うように第4の絶縁膜22として、例えば窒化シリコン膜を少なくとも10nmよりも厚い膜厚で成膜する。この時、図9および図10に示すように、第4の絶縁膜22の端が第1の絶縁膜18より内側になるように開口する。 Next, a resist mask is formed using photolithography, and the fourth insulating film 22 is formed so as to cover the entire surface of the second insulating film 20 as shown in FIG. For example, a silicon nitride film is formed with a thickness of at least 10 nm. At this time, as shown in FIGS. 9 and 10, the opening of the fourth insulating film 22 is made so that the end of the fourth insulating film 22 is inside the first insulating film 18.
 次に、例えばプラズマCVD法、好ましくはECRスパッタ法を用いて、第3の絶縁膜21として、例えば窒化シリコン膜を少なくとも8nmよりも厚い膜厚で成膜する。その後、フォトリソグラフィーを用いてレジストマスクを形成し、図11の(g)に示すように、不要な第3の絶縁膜21をドライエッチングにより除去する。この時、図9および図10に示すように、第3の絶縁膜21の端が第1の絶縁膜18より内側になるように開口する。 Next, for example, a silicon nitride film having a thickness of at least 8 nm is formed as the third insulating film 21 by using, for example, a plasma CVD method, preferably an ECR sputtering method. Thereafter, a resist mask is formed using photolithography, and the unnecessary third insulating film 21 is removed by dry etching as shown in FIG. At this time, as shown in FIGS. 9 and 10, the opening of the third insulating film 21 is made so that the end of the third insulating film 21 is inside the first insulating film 18.
 なお、その後、ダイシングによって素子分離を行うことで、半導体発光素子2を得ることができる。 In addition, the semiconductor light emitting element 2 can be obtained by performing element separation by dicing thereafter.
 以上、本発明の第2の実施形態に係る半導体発光素子2によれば、第2の絶縁膜20上に第4の絶縁膜22を形成することにより、ECRスパッタ法やCVD法を用いて緻密な結晶を第3の絶縁膜21として形成する時に、半導体微粒子(量子ドット蛍光体)を含んだ第2の絶縁膜20へのダメージを抑制することができる。その結果、量子ドット蛍光体の酸化による量子効率の低下を低減することができるとともに、第3の絶縁膜21の形成時に受けるダメージによる量子効率の低下を低減することができる。これにより、量子ドット蛍光体の量子効率が高い半導体発光素子を実現することができる。 As described above, according to the semiconductor light emitting device 2 according to the second embodiment of the present invention, the fourth insulating film 22 is formed on the second insulating film 20, so that the dense structure using the ECR sputtering method or the CVD method is used. When a simple crystal is formed as the third insulating film 21, damage to the second insulating film 20 including the semiconductor fine particles (quantum dot phosphor) can be suppressed. As a result, a decrease in quantum efficiency due to oxidation of the quantum dot phosphor can be reduced, and a decrease in quantum efficiency due to damage received during the formation of the third insulating film 21 can be reduced. Thereby, a semiconductor light emitting device having high quantum efficiency of the quantum dot phosphor can be realized.
 なお、量子ドット蛍光体は、第1の実施形態にて記載した材料であれば良い。また、量子ドット蛍光体の構成は、コア/シェル型を用いたが、量子井戸型であってもよい。また、第2の絶縁膜20は、第1の実施形態にて記載した材料であれば良い。また、第3の絶縁膜21は、第1の実施形態にて記載した材料であれば良い。 The quantum dot phosphor may be any material described in the first embodiment. Moreover, although the core / shell type was used for the configuration of the quantum dot phosphor, it may be a quantum well type. The second insulating film 20 may be any material described in the first embodiment. The third insulating film 21 may be any material described in the first embodiment.
 (第2の実施形態の変形例)
 次に、本発明の第2の実施形態に係る半導体発光素子の変形例について説明する。
(Modification of the second embodiment)
Next, a modification of the semiconductor light emitting device according to the second embodiment of the present invention will be described.
 (構成)
 図12は、本発明の第2の実施形態に係る半導体発光素子の変形例の断面図である。
(Constitution)
FIG. 12 is a cross-sectional view of a modification of the semiconductor light emitting element according to the second embodiment of the present invention.
 図12に示すように、本変形例に係る半導体発光素子201は、第2の実施形態に係る半導体発光素子2に対して、第2の絶縁膜20が、蛍光ピーク波長が530nmの量子ドット蛍光体である第1の半導体微粒子25aが含まれた第2の絶縁膜20aと、蛍光ピーク波長が620nmの量子ドット蛍光体である第2の半導体微粒子25bが含まれた第2の絶縁膜20bとが交互に形成されることで構成されている。 As shown in FIG. 12, the semiconductor light emitting device 201 according to this modification is different from the semiconductor light emitting device 2 according to the second embodiment in that the second insulating film 20 has a quantum dot fluorescence with a fluorescence peak wavelength of 530 nm. A second insulating film 20a containing the first semiconductor fine particles 25a as a body, a second insulating film 20b containing the second semiconductor fine particles 25b as a quantum dot phosphor having a fluorescence peak wavelength of 620 nm, and Are formed alternately.
 第2の絶縁膜20をこのような構造にすることで、2種類の量子ドット蛍光体を混ぜあわせる場合と比較して色むらを抑制することが可能となる。また、本変形例に係る半導体発光素子は、実施の形態1の変形例と同様の方法によって製造することができる。 By making the second insulating film 20 have such a structure, it is possible to suppress color unevenness compared to the case where two types of quantum dot phosphors are mixed. In addition, the semiconductor light emitting element according to this modification can be manufactured by the same method as that of the modification of the first embodiment.
 (第3の実施形態)
 次に、本発明の第3の実施形態に係る発光装置について説明する。
(Third embodiment)
Next, a light emitting device according to a third embodiment of the invention will be described.
 (構成)
 図13は、本発明の第3の実施形態に係る発光装置の断面図である。
(Constitution)
FIG. 13 is a cross-sectional view of a light emitting device according to the third embodiment of the present invention.
 図13に示すように、本発明の第3の実施形態に係る発光装置3は、凹部を有する樹脂51と凹部の底面に露出した2本のリードフレーム52、53とで構成されるパッケージ50と、凹部内のリードフレーム52に設置された半導体発光素子1と、半導体発光素子1と2本のリードフレーム52、53とを接続する2本のワイヤー55、56と、凹部内に半導体発光素子1上を覆うように形成された樹脂層60とを備える。本実施形態では、第1の実施形態に係る半導体発光素子1を用いて説明したが、第1の実施形態の変形例、第2の実施形態またはこの変形例に係る半導体発光素子を適用することもできる。 As shown in FIG. 13, the light emitting device 3 according to the third embodiment of the present invention includes a package 50 composed of a resin 51 having a recess and two lead frames 52 and 53 exposed on the bottom surface of the recess. The semiconductor light emitting device 1 installed on the lead frame 52 in the recess, the two wires 55 and 56 connecting the semiconductor light emitting device 1 and the two lead frames 52 and 53, and the semiconductor light emitting device 1 in the recess. And a resin layer 60 formed to cover the top. In the present embodiment, the semiconductor light emitting device 1 according to the first embodiment has been described. However, the modified example of the first embodiment, the second embodiment, or the semiconductor light emitting device according to the modified example is applied. You can also.
 パッケージ50は、凹部を有する例えばポリアミドからなる樹脂51に、パッケージ50の第1電極および第2電極をなす、例えば表面に銀のメッキがなされた銅からなる2本のリードフレーム52、53が埋め込まれた構造である。 In the package 50, two lead frames 52 and 53 made of copper having a surface plated with silver, for example, are embedded in a resin 51 made of, for example, polyamide having a recess, forming the first electrode and the second electrode of the package 50. It is a structured.
 このリードフレーム52、53の一部は、樹脂51の凹部内の底面部に露出し、第1電極および第2電極として、2本のワイヤー55、56により半導体発光素子1の第2の金属層19a、19bと電気的に接続されている。 Part of the lead frames 52 and 53 is exposed at the bottom surface in the recess of the resin 51, and the second metal layer of the semiconductor light emitting element 1 is formed by two wires 55 and 56 as the first electrode and the second electrode. 19a and 19b are electrically connected.
 そして、凹部の底面部に配置された半導体発光素子1および凹部内に露出したリードフレーム52、53を覆うように樹脂層60が形成されている。樹脂層60内には、高熱伝導微粒子61として、例えば熱伝導率が200W/m・Kである窒化アルミニウムからなる微粒子が分散されている。 The resin layer 60 is formed so as to cover the semiconductor light emitting element 1 disposed on the bottom surface of the recess and the lead frames 52 and 53 exposed in the recess. In the resin layer 60, fine particles made of aluminum nitride having a thermal conductivity of 200 W / m · K, for example, are dispersed as the high thermal conductive fine particles 61.
 本実施形態では、樹脂層60が熱伝導性の高いリードフレーム52、53と接しているため、第2の絶縁膜20で発生した熱は、第3の絶縁膜21および高熱伝導微粒子61が分散された樹脂層60を介して放熱される。その為、第2の絶縁膜20の温度上昇を抑えることができる。この構造により、量子ドット蛍光体の酸化を抑制することができることに加えて、発熱による発光効率低下を抑制することができる。 In this embodiment, since the resin layer 60 is in contact with the lead frames 52 and 53 having high thermal conductivity, the heat generated in the second insulating film 20 is dispersed in the third insulating film 21 and the high thermal conductive fine particles 61. The heat is radiated through the resin layer 60 formed. Therefore, the temperature rise of the second insulating film 20 can be suppressed. With this structure, in addition to being able to suppress the oxidation of the quantum dot phosphor, it is possible to suppress a decrease in light emission efficiency due to heat generation.
 (製造方法)
 次に、第3の実施形態に係る発光装置3の製造方法について、図13を用いて、以下に説明する。
(Production method)
Next, a method for manufacturing the light emitting device 3 according to the third embodiment will be described below with reference to FIGS.
 まず、第1の実施形態において説明した製造方法により、半導体発光素子1を作製する。 First, the semiconductor light emitting device 1 is manufactured by the manufacturing method described in the first embodiment.
 その後、パッケージ50にこの半導体発光素子1を実装する。その後、パッケージ50に、高熱伝導微粒子61を含有する液状樹脂をポッティングする。その後、樹脂を160℃で30分、熱硬化することにより、樹脂層60を形成する。 Thereafter, the semiconductor light emitting element 1 is mounted on the package 50. Thereafter, a liquid resin containing the high thermal conductive fine particles 61 is potted on the package 50. Thereafter, the resin layer 60 is formed by thermosetting the resin at 160 ° C. for 30 minutes.
 なお、高熱伝導微粒子61としては、熱伝導率が200W/m・Kである窒化アルミニウムを用いた。また、本実施形態では、高熱伝導微粒子61として窒化アルミニウムを用いたが、これに限らない。高熱伝導微粒子61としては、半導体素子からの発光および量子ドット蛍光体からの発光を吸収しない材料で、且つ、高熱伝導率を有する材料であればよく、窒化シリコン、シリコン酸窒素、シリコン酸化物、亜鉛酸化物、アルミニウム酸化物、インジウム酸化物、シリコンカーバイドまたはダイヤモンドを用いることができる。 As the high thermal conductive fine particles 61, thermal conductivity of an aluminum nitride is 200W / m · K. In the present embodiment, aluminum nitride is used as the high thermal conductive fine particles 61. However, the present invention is not limited to this. The high heat conductive fine particles 61 may be any material that does not absorb light emitted from a semiconductor element and light emitted from a quantum dot phosphor and has high heat conductivity. Silicon nitride, silicon oxynitride, silicon oxide, zinc oxide, aluminum oxide, indium oxide, it is possible to use a silicon carbide or diamond.
 また、本実施形態においてパッケージ50はリードフレームを樹脂でモールドしたパッケージを用いたがこの限りではなく、より熱伝導率の高いセラミックパッケージを用いても良い。 In this embodiment, the package 50 is a package in which a lead frame is molded with a resin. However, the present invention is not limited to this, and a ceramic package with higher thermal conductivity may be used.
 (第4の実施形態)
 次に、本発明の第4の実施形態に係る半導体発光素子4について説明する。本実施形態に係る半導体発光素子4の構成は、実施の形態1および2に係る半導体発光素子の構成とほとんど同じであるため、異なる部分を中心に説明する。
(Fourth embodiment)
Next, a semiconductor light emitting device 4 according to a fourth embodiment of the present invention will be described. Since the configuration of the semiconductor light emitting element 4 according to the present embodiment is almost the same as the configuration of the semiconductor light emitting element according to the first and second embodiments, different portions will be mainly described.
 (構成)
 まず、本発明の第4の実施形態に係る半導体発光素子4の概略構成について、図14を用いて説明する。図14は、本発明の第4の実施形態に係る半導体発光素子の断面図である。
(Constitution)
First, a schematic configuration of the semiconductor light emitting device 4 according to the fourth embodiment of the present invention will be described with reference to FIG. FIG. 14 is a cross-sectional view of a semiconductor light emitting device according to the fourth embodiment of the present invention.
 図14に示すように、本実施形態に係る半導体発光素子4は、n電極17が基板10の裏面、つまり活性層が形成された面とは反対側の面、に形成され、第2の絶縁膜20が第1の絶縁膜18と第3の絶縁膜21との間に封止されていることを特徴とする。 As shown in FIG. 14, in the semiconductor light emitting device 4 according to the present embodiment, the n-electrode 17 is formed on the back surface of the substrate 10, that is, the surface opposite to the surface on which the active layer is formed. The film 20 is sealed between the first insulating film 18 and the third insulating film 21.
 このとき、第3の絶縁膜21は、例えばエポキシ樹脂のように、膜厚を数10μmから数100μmまで容易に膜厚を調整することができ、かつ酸素バリア性の高い樹脂を用いる。 At this time, the third insulating film 21 is made of a resin that can easily adjust the film thickness from several tens of μm to several 100 μm and has a high oxygen barrier property, such as an epoxy resin.
 これにより、後述する製造方法により、半導体微粒子(量子ドット蛍光体)を含んだ第2の絶縁膜20を、酸素バリア性の高い膜で容易に覆うことができる。 Thereby, the second insulating film 20 containing the semiconductor fine particles (quantum dot phosphor) can be easily covered with a film having a high oxygen barrier property by a manufacturing method described later.
 (製造方法)
 次に、第4の実施形態に係る半導体発光素子4の製造方法について、図15を用いて、以下に説明する。図15は、本発明の第4の実施形態に係る半導体発光素子4の製造方法を示す図である。
(Production method)
Next, a method for manufacturing the semiconductor light emitting device 4 according to the fourth embodiment will be described below with reference to FIGS. FIG. 15 is a diagram showing a method for manufacturing the semiconductor light emitting device 4 according to the fourth embodiment of the present invention.
 図15の(a)に示すように、まず初めに、有機金属気相成長法により、導電性基板である例えばn型GaN基板もしくはSiC基板である基板10の上に、例えばn型GaNからなるバッファ層11、例えばn型AlGaNからなる第1のクラッド層12、例えばInGaNとGaNとの多重量子井戸からなる活性層13、例えばp型AlGaNからなる第2のクラッド層14、および、例えばp型GaNからなるコンタクト層15を順次成長する。その後、フォトリソグラフィーとドライエッチングにより開口部30を形成する。続いてコンタクト層15の上部に、例えばITOからなる第1の金属層16を形成する。その後、例えばSiO、Si、Alの少なくとも一つ以上の膜からなる第1の絶縁膜18を、例えばプラズマCVD法、好ましくはECRスパッタ法を用いて、バッファ層11および第1の金属層16の上面と、バッファ層11、第1のクラッド層12、活性層13、第2のクラッド層14、コンタクト層15および第1の金属層16の各側面とに形成する。次に、フォトリソグラフィーを用いて第1の絶縁膜18に開口部を設けるとともに例えばCr/Auからなる第2の金属層19を形成する。 As shown in FIG. 15A, first, an organic metal vapor deposition method is used to form, for example, n-type GaN on a substrate 10 that is a conductive substrate such as an n-type GaN substrate or a SiC substrate. Buffer layer 11, for example, a first cladding layer 12 made of n-type AlGaN, for example, an active layer 13 made of multiple quantum wells of InGaN and GaN, for example, a second cladding layer 14 made of p-type AlGaN, and, for example, p-type A contact layer 15 made of GaN is sequentially grown. Thereafter, the opening 30 is formed by photolithography and dry etching. Subsequently, a first metal layer 16 made of, for example, ITO is formed on the contact layer 15. Thereafter, the first insulating film 18 made of at least one of SiO 2 , Si 2 N 3 , and Al 2 O 3 is formed on the buffer layer 11 and the buffer layer 11 by using, for example, a plasma CVD method, preferably an ECR sputtering method. It is formed on the upper surface of the first metal layer 16 and the side surfaces of the buffer layer 11, the first cladding layer 12, the active layer 13, the second cladding layer 14, the contact layer 15, and the first metal layer 16. Next, an opening is provided in the first insulating film 18 using photolithography, and a second metal layer 19 made of, for example, Cr / Au is formed.
 次に、図15(b)に示すように、例えばスピンコートあるいはスプレー法により、例えばコア・シェル型量子ドット蛍光体である半導体微粒子を含むシリコーン樹脂からなる第2の絶縁膜20を全面に塗布する。ここで半導体微粒子は、蛍光ピーク波長が530nmである第1の半導体微粒子と、蛍光ピーク波長が620nmである第2の半導体微粒子とが混合されたものであり、いずれもコア材料がCdSeもしくはInP、シェル材料がZnSで構成されたコア・シェル型量子ドット蛍光体である半導体微粒子である。 Next, as shown in FIG. 15B, the second insulating film 20 made of a silicone resin containing semiconductor fine particles, for example, core / shell type quantum dot phosphors, is applied to the entire surface by, eg, spin coating or spraying. To do. Here, the semiconductor fine particles are a mixture of the first semiconductor fine particles having a fluorescence peak wavelength of 530 nm and the second semiconductor fine particles having a fluorescence peak wavelength of 620 nm, both of which have a core material of CdSe or InP, shell material is a semiconductor particle is a core-shell quantum dot phosphors made of a ZnS.
 その後、図15(c)に示すように、フォトリソグラフィーを用いてレジストマスクを形成し、第2の金属層19の上部およびその周囲の第2の絶縁膜20を、アルカリ溶液を用いて除去する。 After that, as shown in FIG. 15C, a resist mask is formed by using photolithography, and the second insulating film 20 around the upper part of the second metal layer 19 and its periphery is removed using an alkaline solution. .
 次に、図15(d)に示すように、ダイシングブレード91を用いて、開口部30の中央部付近における、第2の絶縁膜20、第1の絶縁膜18およびバッファ層11を切削し、基板10に達するところまで掘り込んで溝31を形成する。 Next, as shown in FIG. 15 (d), the second insulating film 20, the first insulating film 18, and the buffer layer 11 near the center of the opening 30 are cut using a dicing blade 91, The groove 31 is formed by digging up to reach the substrate 10.
 続いて、例えばエポキシ樹脂のような所定の膜厚で酸素バリア性を有する第3の絶縁膜21を、溝31および第2の絶縁膜20を覆うように形成する。続いて、フォトリソグラフィーを用いてレジストマスクを形成し、図15の(e)に示すように、第2の金属層19付近を開口するように、開口部35を形成する。この時、第3の絶縁膜21の端が第2の絶縁膜20より内側になるように開口する。 Subsequently, a third insulating film 21 having an oxygen barrier property with a predetermined film thickness such as an epoxy resin is formed so as to cover the trench 31 and the second insulating film 20. Subsequently, a resist mask is formed using photolithography, and an opening 35 is formed so as to open the vicinity of the second metal layer 19 as shown in FIG. At this time, the opening is made so that the end of the third insulating film 21 is inside the second insulating film 20.
 最後に、図15の(f)に示すように、基板10の裏面に例えばTi/Auであるn電極17を形成した後、溝31の中央付近を例えばレーザーダイシング技術を用いてレーザー光92を用いて素子分離する。これにより、半導体発光素子4を得ることができる。 Finally, as shown in FIG. 15 (f), after the n-electrode 17 made of Ti / Au, for example, is formed on the back surface of the substrate 10, the laser beam 92 is irradiated around the center of the groove 31 using, for example, a laser dicing technique. Use to isolate the device. Thereby, the semiconductor light emitting element 4 can be obtained.
 以上、本発明の第4の実施形態に係る半導体発光素子4によれば、量子ドット蛍光体を含む第2の絶縁膜20が第1の絶縁膜18および第3の絶縁膜21で覆われているので、量子ドット蛍光体の酸化を抑制することができる。これにより、量子効率が良好な半導体発光素子を実現することができる。 As described above, according to the semiconductor light emitting device 4 according to the fourth embodiment of the present invention, the second insulating film 20 including the quantum dot phosphor is covered with the first insulating film 18 and the third insulating film 21. Therefore, the oxidation of the quantum dot phosphor can be suppressed. As a result, a semiconductor light emitting device with good quantum efficiency can be realized.
 なお、量子ドット蛍光体は、第1および第2の実施形態にて記載した材料であれば良い。また、量子ドット蛍光体の構成は、コア/シェル型を用いたが、量子井戸型であってもよい。また、第2の絶縁膜20は、第1の実施形態にて記載した材料であれば良い。また、第3の絶縁膜21は、第1の実施形態にて記載した材料であれば良い。 Note that the quantum dot phosphor may be any material described in the first and second embodiments. Moreover, although the core / shell type was used for the configuration of the quantum dot phosphor, it may be a quantum well type. The second insulating film 20 may be any material described in the first embodiment. The third insulating film 21 may be any material described in the first embodiment.
 (第5の実施形態)
 次に、本発明の第5の実施形態に係る発光装置について説明する。
(Fifth embodiment)
Next, a light emitting device according to a fifth embodiment of the invention will be described.
 (構成)
 まず、本発明の第5の実施形態に係る発光装置の概略構成について、図16を用いて説明する。図16は、本発明の第5の実施形態に係る発光装置の断面図である。
(Constitution)
First, a schematic configuration of a light emitting device according to a fifth embodiment of the present invention will be described with reference to FIG. FIG. 16 is a cross-sectional view of a light emitting device according to the fifth embodiment of the present invention.
 図16に示すように、パッケージ70は、樹脂からなる凹部を有する構造で、凹部の底面部には、第1電極および第2電極を有する導体からなるリードフレーム71が埋め込まれている。 As shown in FIG. 16, the package 70 has a structure having a recess made of resin, and a lead frame 71 made of a conductor having a first electrode and a second electrode is embedded in the bottom surface of the recess.
 このリードフレーム71の一部は、パッケージ70の凹部内の底面部に露出しており、第1電極および第2電極として、例えば450nmで発光する半導体発光素子72と電気的に接続している。そして凹部の底面部に配置された半導体発光素子72および凹部内に露出したリードフレーム71を覆うように波長変換部73が形成されている。 A part of the lead frame 71 is exposed at the bottom surface in the recess of the package 70, and is electrically connected to the semiconductor light emitting element 72 that emits light at 450 nm, for example, as the first electrode and the second electrode. A wavelength converter 73 is formed so as to cover the semiconductor light emitting element 72 disposed on the bottom surface of the recess and the lead frame 71 exposed in the recess.
 波長変換部73(第1の樹脂部)は、樹脂74aに、例えば粒径20nm以下で530nmと620nmとのピーク波長を有する量子ドット蛍光体75と、酸素を吸着するゲッター粒子77a(第1のゲッター粒子)として例えば平均粒径50nmのチタン酸化物(TiO:x>0)とを含有することにより構成される。このように、波長変換部73内に酸素を吸着するゲッター粒子77aを分散することで、量子ドット蛍光体75の酸化を抑制することができる。 The wavelength conversion unit 73 (first resin unit) includes, for example, a quantum dot phosphor 75 having a particle diameter of 20 nm or less and peak wavelengths of 530 nm and 620 nm and a getter particle 77a (first resin) that adsorbs oxygen. For example, the getter particles include titanium oxide (TiO x : x> 0) having an average particle diameter of 50 nm. Thus, by dispersing the getter particles 77a that adsorb oxygen in the wavelength conversion unit 73, the oxidation of the quantum dot phosphor 75 can be suppressed.
 本実施形態で用いたゲッター粒子77a(チタン酸化物)は、平均粒径が50nmであって、量子ドット蛍光体75の粒径に近いサイズであるため、樹脂74a内に量子ドット蛍光体75とともに均一に分散することができる。これにより、酸化による量子ドット蛍光体75の発光効率低下を抑制し、高い信頼性の発光装置を実現することができる。 The getter particles 77a (titanium oxide) used in the present embodiment has an average particle size of 50 nm and a size close to the particle size of the quantum dot phosphor 75, and therefore, together with the quantum dot phosphor 75 in the resin 74a. It can be uniformly dispersed. Thereby, it is possible to suppress a decrease in the light emission efficiency of the quantum dot phosphor 75 due to oxidation, and to realize a highly reliable light emitting device.
 ここで、樹脂74aを透過する酸素量について、検討する。樹脂74aを透過する酸素量は、樹脂74aが持つ酸素透過係数から算出することができる。例えば樹脂74aとしてエポキシ樹脂(100μm)を用いる場合、酸素透過係数は52cc/m・dayであり、LEDパッケージの大きさとして例えば縦3.5mm、横3.5mmの角型パッケージを考えると、空気層からエポキシ樹脂に透過する酸素量は1.97×1011個/sである。一般に、LED照明は4万時間とも言われる長い製品寿命を持つことが要求されている。つまり、量子ドット蛍光体75の酸化を4万時間抑制する必要があり、そのときの酸素透過量は2.84×1019個である。また、リードフレーム71とパッケージ70の隙間からも酸素が透過する。その透過量は2.7×10個/s(4万時間後には3.99×1016個)である。さらに、パッケージ70からも酸素が透過する。その透過量は、5.3×10個/s(4万時間後には7.7×1016個)である。酸素分子1個に対し、ゲッター粒子1個が吸着することを考えた場合、透過した酸素全てを吸着するには、樹脂74aに入れるゲッター粒子77aの量は少なくとも2.86×1019個以上にする必要がある。 Here, the amount of oxygen that permeates the resin 74a is examined. The amount of oxygen that passes through the resin 74a can be calculated from the oxygen permeability coefficient of the resin 74a. For example, when an epoxy resin (100 μm) is used as the resin 74a, the oxygen transmission coefficient is 52 cc / m 2 · day, and the size of the LED package is, for example, a 3.5 mm long and 3.5 mm wide square package. The amount of oxygen permeating from the air layer to the epoxy resin is 1.97 × 10 11 pieces / s. In general, LED lighting is required to have a long product life of 40,000 hours. That is, it is necessary to suppress the oxidation of the quantum dot phosphor 75 for 40,000 hours, and the oxygen permeation amount at that time is 2.84 × 10 19 pieces. Further, oxygen passes through the gap between the lead frame 71 and the package 70. The transmission amount is 2.7 × 10 8 pieces / s (3.99 × 10 16 pieces after 40,000 hours). Further, oxygen is also transmitted from the package 70. The permeation amount is 5.3 × 10 8 pieces / s (7.7 × 10 16 pieces after 40,000 hours). Considering that one getter particle is adsorbed to one oxygen molecule, the amount of getter particles 77a contained in the resin 74a should be at least 2.86 × 10 19 or more in order to adsorb all permeated oxygen. There is a need to.
 なお、本実施形態では、樹脂74aとしてエポキシ樹脂を用いたが、樹脂74aは、シリコーン樹脂、フッ化物樹脂、アクリル樹脂など、半導体発光素子および量子ドット蛍光体からの発光波長に対し高い透過率を有する樹脂であればよい。 In this embodiment, an epoxy resin is used as the resin 74a. However, the resin 74a has a high transmittance with respect to the emission wavelength from the semiconductor light emitting element and the quantum dot phosphor, such as a silicone resin, a fluoride resin, and an acrylic resin. Any resin may be used.
 また、本実施形態ではゲッター粒子77aとしてチタン酸化物を用いたが、これに限らない。例えばゲッター粒子77aの候補として金属酸化物や多孔質材料がある。 In this embodiment, titanium oxide is used as the getter particle 77a, but the present invention is not limited to this. For example, there are metal oxides and porous materials as candidates for the getter particles 77a.
 金属酸化物のゲッター粒子77aとしては、例えばチタン酸化物(TiO)、ニオブ酸化物(NbO)、ハフニウム酸化物(HfO)、インジウム酸化物(In)、タングステン酸化物(WO)、スズ酸化物(SnO)、亜鉛酸化物(ZnO)、ジルコニア酸化物(ZrO)、マグネシウム酸化物(MgO)、アンチモン酸化物(SbO)、アルミニウム酸化物(Al)などが挙げられる。多孔質材料のゲッター粒子77aとしては、例えば二酸化ケイ素(SiO)、シリコン酸窒素(SiON)などが挙げられる(但し、X>0)。 Examples of the metal oxide getter particles 77a include titanium oxide (TiO x ), niobium oxide (NbO x ), hafnium oxide (HfO x ), indium oxide (In 2 O x ), and tungsten oxide (WO x ), tin oxide (SnO x ), zinc oxide (ZnO x ), zirconia oxide (ZrO x ), magnesium oxide (MgO), antimony oxide (SbO x ), aluminum oxide (Al 2 O x) ) And the like. Examples of the porous getter particles 77a include silicon dioxide (SiO x ) and silicon oxynitride (SiON) (where X> 0).
 量子ドット蛍光体75の構成は、コア/シェル型、量子井戸型などが挙げられるが、本実施形態では、いずれの構成でも適用することができる。 The configuration of the quantum dot phosphor 75 includes a core / shell type, a quantum well type, and the like, but any configuration can be applied in the present embodiment.
 また、量子ドット蛍光体75を構成しているコアおよびシェルの材料は、例えば、II-VI族化合物の場合として、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnZe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnZeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、CdHgSeTe、CdHgSTe、HgZnSS、HgZnSeTe、HgZnSTeなどから選択される少なくとも1つが挙げられる。 The core and shell materials constituting the quantum dot phosphor 75 are, for example, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, and the like in the case of II-VI group compounds. CdSeTe, CdSTe, ZnSeS, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnZe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnZeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, CdHgSeTe, CdHgSTe, HgZnSS, Examples thereof include at least one selected from HgZnSeTe, HgZnSTe, and the like.
 また、III-V族化合物の例として、GaN、GaP、GaAs、GaSb、AlN、AlGaN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、InGaN、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSbなどから選択される少なくとも1つが挙げられる。 Examples of III-V compounds include GaN, GaP, GaAs, GaSb, AlN, AlGaN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, InGaN, GaNP, GANAS, GaNSb, GaPAs, GaPSb, and AlNP. AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, InAlNSIn, InAlNP, InAlNSIn At least one of them.
 (製造方法)
 次に、本発明の第5の実施形態に係る発光装置の製造方法について、以下に説明する。
(Production method)
Next, a method for manufacturing a light-emitting device according to the fifth embodiment of the present invention will be described below.
 まず初めに、半導体発光素子72が実装されたパッケージ70に、量子ドット蛍光体75とゲッター粒子77a(TiOx:x>0)とを分散した樹脂74aをポッティングし、波長変換部73を形成する。この時、波長変換部73はパッケージ70の底面およびリードフレーム71を覆うように形成する。この波長変換部73は、樹脂74aに、量子ドット蛍光体75とゲッター粒子77aとを含有させたものである。量子ドット蛍光体75は、発光波長が530nmと620nmとで発光するように、例えばコアにCdSe、シェルにZnSを用いた粒径20nm以下の微粒子である。ゲッター粒子77aは、例えば酸素を吸着し、なお且つ、例えば450nmで発光する半導体発光素子72の発光波長および量子ドット蛍光体75により変換された波長を吸収しない材料によって構成されている。このようなゲッター粒子77aとしては、例えば平均粒径50nmのチタン酸化物である。その後、一度樹脂74aを例えば160℃で30分、熱硬化する。 First, a resin 74a in which quantum dot phosphors 75 and getter particles 77a (TiOx: x> 0) are dispersed is potted on a package 70 on which a semiconductor light emitting element 72 is mounted, thereby forming a wavelength conversion unit 73. At this time, the wavelength conversion unit 73 is formed so as to cover the bottom surface of the package 70 and the lead frame 71. The wavelength conversion unit 73 is a resin 74a containing a quantum dot phosphor 75 and getter particles 77a. The quantum dot phosphor 75 is a fine particle having a particle diameter of 20 nm or less using, for example, CdSe for the core and ZnS for the shell so as to emit light with emission wavelengths of 530 nm and 620 nm. The getter particles 77a are made of, for example, a material that adsorbs oxygen and does not absorb the emission wavelength of the semiconductor light emitting element 72 that emits light at 450 nm and the wavelength converted by the quantum dot phosphor 75, for example. Such getter particles 77a are, for example, titanium oxide having an average particle size of 50 nm. Thereafter, the resin 74a is once thermally cured at, for example, 160 ° C. for 30 minutes.
 以上、本発明の第5の実施形態に係る半導装置によれば、樹脂74a内に透過した酸素の多くはゲッター粒子77aにて吸着されるので量子ドット蛍光体75の酸化を抑制することができる。そのため、量子ドット蛍光体75の酸化を低減することができる。これにより、発光効率が高く、色再現性の良い発光装置を実現することができる。 As mentioned above, according to the semiconductor device which concerns on the 5th Embodiment of this invention, since most of the oxygen which permeate | transmitted in the resin 74a is adsorbed by the getter particle 77a, it can suppress the oxidation of the quantum dot fluorescent substance 75. it can. Therefore, oxidation of the quantum dot phosphor 75 can be reduced. As a result, a light emitting device with high luminous efficiency and good color reproducibility can be realized.
 (第6の実施形態)
 次に、本発明の第6の実施形態に係る発光装置について説明する。本実施形態に係る発光装置の基本的な構成は、第5の実施形態と同じである。本実施形態が、第5の実施形態と異なるのは、波長変換部とパッケージの凹部内の内壁との間に、酸素を吸着するあるいは酸素を透過しない層を設けている構成である。
(Sixth embodiment)
Next, a light emitting device according to a sixth embodiment of the present invention will be described. The basic configuration of the light emitting device according to this embodiment is the same as that of the fifth embodiment. This embodiment is different from the fifth embodiment in a configuration in which a layer that adsorbs oxygen or does not transmit oxygen is provided between the wavelength conversion unit and the inner wall in the recess of the package.
 (構成)
 以下、本発明の第6の実施形態に係る発光装置の概略構成について、図17を用いて説明する。図17は、本発明の第6の実施形態に係る発光装置の断面図である。
(Constitution)
Hereinafter, a schematic configuration of the light emitting device according to the sixth embodiment of the present invention will be described with reference to FIG. FIG. 17 is a cross-sectional view of a light emitting device according to a sixth embodiment of the present invention.
 図17に示すように、パッケージ70は、樹脂からなる凹部を有する構造で、凹部の底面部には、第1電極および第2電極を有する導体からなるリードフレーム71が埋め込まれている。 As shown in FIG. 17, the package 70 has a structure having a recess made of resin, and a lead frame 71 made of a conductor having a first electrode and a second electrode is embedded in the bottom surface of the recess.
 このリードフレーム71の一部は、パッケージ70の凹部内の底面部に露出しており、第1電極および第2電極として、例えば450nmで発光する半導体発光素子72と電気的に接続している。そして、パッケージ70の凹部内の内壁に、酸素を吸着するあるいは酸素を透過しない層として酸素バリア層78が形成され、さらに、凹部の底面部に配置された半導体発光素子72と凹部内に露出したリードフレーム71と酸素バリア層78とを覆うように波長変換部73が形成されている。 A part of the lead frame 71 is exposed at the bottom surface in the recess of the package 70, and is electrically connected to the semiconductor light emitting element 72 that emits light at 450 nm, for example, as the first electrode and the second electrode. An oxygen barrier layer 78 is formed on the inner wall of the recess of the package 70 as a layer that adsorbs oxygen or does not transmit oxygen, and is exposed to the semiconductor light emitting element 72 disposed on the bottom surface of the recess and the recess. A wavelength converter 73 is formed so as to cover the lead frame 71 and the oxygen barrier layer 78.
 波長変換部73は、樹脂74aに、例えば粒径20nm以下で530nmと620nmとのピーク波長を有する量子ドット蛍光体75と、酸素を吸着するゲッター粒子77aとして例えば平均粒径50nmのチタン酸化物(TiO:x>0)とを含有することにより構成される。 For example, the wavelength conversion unit 73 includes a quantum dot phosphor 75 having a particle diameter of 20 nm or less and a peak wavelength of 530 nm and 620 nm and a getter particle 77a that adsorbs oxygen, for example, a titanium oxide having an average particle diameter of 50 nm. TiO x : x> 0).
 本実施形態で用いたゲッター粒子77a(チタン酸化物)は、平均粒径が50nmであって、量子ドット蛍光体75の粒径に近いサイズであるため、樹脂74a内に量子ドット蛍光体75とともに均一に分散することができる。 The getter particles 77a (titanium oxide) used in the present embodiment has an average particle size of 50 nm and a size close to the particle size of the quantum dot phosphor 75, and therefore, together with the quantum dot phosphor 75 in the resin 74a. It can be uniformly dispersed.
 また、酸素バリア層78は、例えば膜厚10nm以上の銀である。銀は熱伝導性が高く、放熱効果もある。これにより、酸素バリア層78は、量子ドット蛍光体75の発熱による酸化反応の促進をも抑制することができる。 Further, the oxygen barrier layer 78 is, for example, silver having a thickness of 10 nm or more. Silver has high thermal conductivity and also has a heat dissipation effect. Thereby, the oxygen barrier layer 78 can also suppress the promotion of the oxidation reaction due to the heat generation of the quantum dot phosphor 75.
 なお、本実施形態では酸素バリア層78の材料として銀を用いたが、これに限らない。酸素バリア層78の材料としては、酸素を吸着する材料あるいは酸素を透過しない材料を用いればよく、例えば、金属、金属酸化物、多孔質粒子ならば特に制限はない。金属ならば、例えば金、銀、アルミニウム、チタン、マグネシウム、ニッケルなどが挙げられる。金属酸化物ならば、例えばチタン酸化物、ニオブ酸化物、ハフニウム酸化物、インジウム酸化物、タングステン酸化物、スズ酸化物、亜鉛酸化物、ジルコニア酸化物、マグネシウム酸化物、アンチモン酸化物などが挙げられる。多孔質粒子の場合は、例えば、二酸化ケイ素、シリコン酸窒素、ゼオライトなどが挙げられる。 In this embodiment, silver is used as the material of the oxygen barrier layer 78, but the present invention is not limited to this. As a material of the oxygen barrier layer 78, a material that adsorbs oxygen or a material that does not transmit oxygen may be used. For example, a metal, a metal oxide, and porous particles are not particularly limited. Examples of the metal include gold, silver, aluminum, titanium, magnesium, and nickel. Examples of the metal oxide include titanium oxide, niobium oxide, hafnium oxide, indium oxide, tungsten oxide, tin oxide, zinc oxide, zirconia oxide, magnesium oxide, and antimony oxide. . In the case of porous particles, for example, silicon dioxide, silicon oxynitrate, zeolite and the like can be mentioned.
 この時、パッケージ70の内壁から透過する酸素量は、5.3×10個/s(4万時間後では7.7×1016個)である。このため、酸素バリア層78として例えば銀を用いた場合、膜厚は少なくとも10nm以上必要である。また、空気層からの酸素透過量は、例えば樹脂74aとしてエポキシ樹脂を用いた場合、2.84×1019個(4万時間後)である。酸素分子1個に対し、ゲッター粒子1個が吸着することを考えた場合、透過した酸素全てを吸着するには、波長変換部73内に入れるゲッター粒子77aの量は2.85×1019個(4万時間の寿命を持たせるのに必要な量)以上にする必要がある。 At this time, the amount of oxygen permeating from the inner wall of the package 70 is 5.3 × 10 8 pieces / s (7.7 × 10 16 pieces after 40,000 hours). For this reason, when silver is used as the oxygen barrier layer 78, the film thickness must be at least 10 nm. Moreover, the oxygen permeation amount from the air layer is 2.84 × 10 19 (after 40,000 hours) when, for example, an epoxy resin is used as the resin 74a. When it is considered that one getter particle is adsorbed to one oxygen molecule, the amount of getter particles 77a put in the wavelength conversion unit 73 is 2.85 × 10 19 to adsorb all the transmitted oxygen. It is necessary to make it more than (the amount necessary to have a life of 40,000 hours).
 以上、本発明の第6の実施形態に係る発光装置によれば、波長変換部73内に酸素を吸着するゲッター粒子77aを分散させるだけでなく、パッケージ70から透過した酸素が酸素バリア層78に吸着されるため、波長変換部73への酸素透過を抑制することができる。また、樹脂74a内に酸素が透過しても、透過した酸素の多くはゲッター粒子77aにて吸着されるので量子ドット蛍光体75の酸化を抑制することができる。そのため、量子ドット蛍光体75の酸化を低減することができる。これにより、発光効率が高く、色再現性の良い発光装置を実現することができる。 As described above, according to the light emitting device of the sixth embodiment of the present invention, not only the getter particles 77a that adsorb oxygen in the wavelength conversion unit 73 are dispersed, but also the oxygen transmitted from the package 70 enters the oxygen barrier layer 78. Since it is adsorbed, oxygen transmission to the wavelength conversion unit 73 can be suppressed. Even if oxygen permeates into the resin 74a, most of the permeated oxygen is adsorbed by the getter particles 77a, so that the oxidation of the quantum dot phosphor 75 can be suppressed. Therefore, oxidation of the quantum dot phosphor 75 can be reduced. As a result, a light emitting device with high luminous efficiency and good color reproducibility can be realized.
 (製造方法)
 次に、本発明の第6の実施形態に係る発光装置の製造方法について、以下に説明する。
(Production method)
Next, a method for manufacturing a light-emitting device according to the sixth embodiment of the present invention will be described below.
 まず初めに、パッケージ70の凹部の底面および、リードフレーム71を覆うように例えばレジストマスクを形成する。その後、蒸着あるいは、スパッタなどを用いて酸素バリア層78として、例えば発光した光を反射し、熱伝導率の高い銀を成膜する。次に、レジストマスクの除去を行う。 First, for example, a resist mask is formed so as to cover the bottom surface of the recess of the package 70 and the lead frame 71. Thereafter, as the oxygen barrier layer 78 using vapor deposition or sputtering, for example, the emitted light is reflected to form a silver film having high thermal conductivity. Next, the resist mask is removed.
 その後、パッケージ70に半導体発光素子72を実装する。次に、半導体発光素子72が実装されたパッケージ70に、量子ドット蛍光体75とゲッター粒子77a(TiO:x>0)とを分散した樹脂74aをポッティングし、波長変換部73を形成する。この時、波長変換部73は、パッケージ70の底面、リードフレーム71および酸素バリア層78を覆うように形成する。この波長変換部73は、樹脂74aに、量子ドット蛍光体75とゲッター粒子77aとを含有させたものである。量子ドット蛍光体75は、発光波長が530nmと620nmとで発光するように、例えばコアにCdSe、シェルにZnSを用いた粒径20nm以下の微粒子である。ゲッター粒子77aは、例えば酸素を吸着し、なお且つ、例えば、450nmで発光する半導体発光素子72の発光波長および量子ドット蛍光体75により変換された波長を吸収しない材料によって構成されている。このようなゲッター粒子77aとしては、例えば平均粒径50nmのチタン酸化物である。その後、一度樹脂74aを例えば160℃で30分、熱硬化する。 Thereafter, the semiconductor light emitting element 72 is mounted on the package 70. Next, a resin 74 a in which quantum dot phosphors 75 and getter particles 77 a (TiO x : x> 0) are dispersed is potted on the package 70 on which the semiconductor light emitting element 72 is mounted, thereby forming the wavelength conversion unit 73. At this time, the wavelength conversion unit 73 is formed so as to cover the bottom surface of the package 70, the lead frame 71, and the oxygen barrier layer 78. The wavelength conversion unit 73 is a resin 74a containing a quantum dot phosphor 75 and getter particles 77a. The quantum dot phosphor 75 is a fine particle having a particle diameter of 20 nm or less using, for example, CdSe for the core and ZnS for the shell so as to emit light with emission wavelengths of 530 nm and 620 nm. The getter particles 77a are made of a material that adsorbs oxygen, for example, and does not absorb the emission wavelength of the semiconductor light emitting element 72 that emits light at 450 nm and the wavelength converted by the quantum dot phosphor 75, for example. Such getter particles 77a are, for example, titanium oxide having an average particle size of 50 nm. Thereafter, the resin 74a is once thermally cured at, for example, 160 ° C. for 30 minutes.
 なお、量子ドット蛍光体75は、第5の実施形態にて記載した材料であれば良い。また、量子ドット蛍光体75の構成は、コア/シェル型を用いたが、量子井戸型であってもよい。また、ゲッター粒子77aの材料は、第5の実施形態にて記載した材料であれば良い。また、樹脂74aの材料は、第5の実施形態に記載した材料であれば良い。 In addition, the quantum dot fluorescent substance 75 should just be the material described in 5th Embodiment. In addition, the configuration of the quantum dot phosphor 75 is a core / shell type, but may be a quantum well type. Moreover, the material of the getter particle 77a may be the material described in the fifth embodiment. The material of the resin 74a may be the material described in the fifth embodiment.
 (第7の実施形態)
 次に、本発明の第7の実施形態に係る発光装置について説明する。本実施形態に係る発光装置の基本的な構成は、第5の実施形態と同じである。本実施形態が、第5の実施形態と異なるのは、波長変換部の上部をガラス蓋で覆っている構成である。
(Seventh embodiment)
Next, a light emitting device according to a seventh embodiment of the present invention will be described. The basic configuration of the light emitting device according to this embodiment is the same as that of the fifth embodiment. This embodiment is different from the fifth embodiment in the configuration in which the upper part of the wavelength conversion unit is covered with a glass lid.
 (構成)
 以下、本発明の第7の実施形態に係る発光装置の概略構成について、図18を用いて説明する。図18は、本発明の第7の実施形態に係る発光装置の断面図である。
(Constitution)
Hereinafter, a schematic configuration of the light emitting device according to the seventh embodiment of the present invention will be described with reference to FIG. FIG. 18 is a cross-sectional view of a light emitting device according to the seventh embodiment of the present invention.
 図18に示すように、パッケージ70は、樹脂からなる凹部を有する構造で、凹部の底面部には、第1電極および第2電極を有する導体からなるリードフレーム71が埋め込まれている。 As shown in FIG. 18, the package 70 has a structure having a recess made of resin, and a lead frame 71 made of a conductor having a first electrode and a second electrode is embedded in the bottom surface of the recess.
 このリードフレーム71の一部は、パッケージ70の凹部内の底面部に露出しており、第1電極および第2電極として、例えば450nmで発光する半導体発光素子72と電気的に接続している。そして凹部の底面部に配置された半導体発光素子72および凹部内に露出したリードフレーム71を覆うように波長変換部73が形成されている。波長変換部73の上部にはガラス蓋79が設けられており、これにより波長変換部73がガラス蓋79にて気密封止されている。 A part of the lead frame 71 is exposed at the bottom surface in the recess of the package 70, and is electrically connected to the semiconductor light emitting element 72 that emits light at 450 nm, for example, as the first electrode and the second electrode. A wavelength converter 73 is formed so as to cover the semiconductor light emitting element 72 disposed on the bottom surface of the recess and the lead frame 71 exposed in the recess. A glass lid 79 is provided above the wavelength conversion unit 73, and the wavelength conversion unit 73 is hermetically sealed with the glass lid 79.
 波長変換部73は、樹脂74aに、例えば粒径20nm以下で530nmと620nmとのピーク波長を有する量子ドット蛍光体75と、酸素を吸着するゲッター粒子77aとして例えば平均粒径50nmのチタン酸化物(TiO:x>0)とを含有することにより構成される。 For example, the wavelength conversion unit 73 includes a quantum dot phosphor 75 having a particle diameter of 20 nm or less and a peak wavelength of 530 nm and 620 nm and a getter particle 77a that adsorbs oxygen, for example, a titanium oxide having an average particle diameter of 50 nm. TiO x : x> 0).
 このように、波長変換部73内に酸素を吸着するゲッター粒子77aを入れることと、その波長変換部73の上部をガラス蓋79によってパッケージ70と接着剤80で接着することとにより、空気層からの酸素透過を劇的に抑制することが可能となる。これにより、酸化による量子ドット蛍光体75の発光効率低下を劇的に抑制することが可能となる。 In this way, by putting the getter particles 77a that adsorb oxygen into the wavelength conversion unit 73, and bonding the upper part of the wavelength conversion unit 73 with the package 70 and the adhesive 80 by the glass lid 79, the air layer can be removed. It is possible to dramatically suppress oxygen permeation. As a result, it is possible to dramatically suppress the reduction in the light emission efficiency of the quantum dot phosphor 75 due to oxidation.
 ここで、波長変換部73へ混ぜるゲッター粒子77aの量について検討する。酸素が波長変換部73へ透過する経路は、パッケージ70、パッケージ70とリードフレーム71との隙間、パッケージ70とガラス蓋79とを接着剤80で接着している箇所である。この3ヵ所から透過する酸素量(4万時間後)は、例えば樹脂74aおよび接着剤80としてエポキシ樹脂を用いた場合、7.8×1016個である。酸素分子1個に対し、ゲッター粒子1個が吸着することを考えた場合、透過した酸素全てを吸着するには、波長変換部73へ入れるゲッター粒子77aの量は7.8×1016個以上にする必要がある。 Here, the amount of getter particles 77a mixed in the wavelength conversion unit 73 will be examined. The path through which oxygen passes through the wavelength conversion unit 73 is the package 70, the gap between the package 70 and the lead frame 71, and the location where the package 70 and the glass lid 79 are bonded with the adhesive 80. The amount of oxygen permeated from these three locations (after 40,000 hours) is, for example, 7.8 × 10 16 when an epoxy resin is used as the resin 74a and the adhesive 80. When it is considered that one getter particle is adsorbed to one oxygen molecule, the amount of getter particles 77a put into the wavelength conversion unit 73 is 7.8 × 10 16 or more in order to adsorb all the transmitted oxygen. It is necessary to.
 (製造方法)
 次に、本発明の第7の実施形態に係る発光装置の製造方法について、以下に説明する。
(Production method)
Next, a method for manufacturing a light emitting device according to the seventh embodiment of the present invention will be described below.
 まず初めに、半導体発光素子72が実装されたパッケージ70に、量子ドット蛍光体75とゲッター粒子77a(TiO:x>0)とを分散した樹脂をポッティングし、波長変換部73を形成する。この時、波長変換部73はパッケージの底面およびリードフレーム71を覆うように形成する。波長変換部73は、樹脂74aに、量子ドット蛍光体75とゲッター粒子77aとを含有させたものである。量子ドット蛍光体75は、発光波長が530nmと620nmとで発光するように、例えばコアにCdSe、シェルにZnSを用いた粒径20nm以下の微粒子である。ゲッター粒子77aは、例えば酸素を吸着し、なお且つ、例えば、450nmで発光する半導体発光素子72の発光波長および量子ドット蛍光体75により変換された波長を吸収しない材料によって構成されている。このようなゲッター粒子77aとしては、例えば平均粒径50nmのチタン酸化物である。このとき、ポッティングした樹脂74aを、ヘラを用いてパッケージ70の凸部と同一平面にし、例えば160℃で30分、熱硬化することで、波長変換部73を形成する。 First, a resin 70 in which quantum dot phosphors 75 and getter particles 77a (TiO x : x> 0) are dispersed is potted on a package 70 on which a semiconductor light emitting element 72 is mounted, thereby forming a wavelength conversion unit 73. At this time, the wavelength converter 73 is formed so as to cover the bottom surface of the package and the lead frame 71. The wavelength conversion unit 73 is a resin 74a containing a quantum dot phosphor 75 and getter particles 77a. The quantum dot phosphor 75 is a fine particle having a particle diameter of 20 nm or less using, for example, CdSe for the core and ZnS for the shell so as to emit light with emission wavelengths of 530 nm and 620 nm. The getter particles 77a are made of a material that adsorbs oxygen, for example, and does not absorb the emission wavelength of the semiconductor light emitting element 72 that emits light at 450 nm and the wavelength converted by the quantum dot phosphor 75, for example. Such getter particles 77a are, for example, titanium oxide having an average particle size of 50 nm. At this time, the wavelength conversion part 73 is formed by making the potted resin 74a flush with the convex part of the package 70 using a spatula and thermosetting, for example, at 160 ° C. for 30 minutes.
 その後、ガラス蓋79に樹脂74aを薄く塗布し、樹脂74aが波長変換部73と接するように、パッケージ70とガラス蓋79とを例えばエポキシ接着剤からなる接着剤80で接着し、気密封止する。これにより、波長変換部73への酸素透過を劇的に抑制することができる。 Thereafter, the resin 74a is thinly applied to the glass lid 79, and the package 70 and the glass lid 79 are bonded with an adhesive 80 made of, for example, an epoxy adhesive so that the resin 74a is in contact with the wavelength conversion unit 73, and hermetically sealed. . Thereby, oxygen permeation to the wavelength conversion unit 73 can be dramatically suppressed.
 なお、量子ドット蛍光体75は、第5の施形態にて記載した材料であれば良い。また、量子ドット蛍光体75の構成は、コア/シェル型を用いたが、量子井戸型であってもよい。また、ゲッター粒子77aの材料は、第5の実施形態にて記載した材料であれば良い。また、樹脂74aの材料は、第5の実施形態に記載した材料であれば良い。 In addition, the quantum dot fluorescent substance 75 should just be the material described in 5th embodiment. In addition, the configuration of the quantum dot phosphor 75 is a core / shell type, but may be a quantum well type. Moreover, the material of the getter particle 77a may be the material described in the fifth embodiment. The material of the resin 74a may be the material described in the fifth embodiment.
 また、接着剤80内にもゲッター粒子77aを入れることによって、より波長変換部73への酸素透過を抑制することができる。 In addition, by introducing the getter particles 77a into the adhesive 80, it is possible to further suppress oxygen transmission to the wavelength conversion unit 73.
 (第8の実施形態)
 次に、本発明の第8の実施形態に係る発光装置について説明する。本実施形態に係る発光装置の基本的な構成は、第1の実施形態と同じである。本実施形態が、第5の実施形態と異なるのは、波長変換部とパッケージの凹部の内壁との間に、酸素を吸着するあるいは酸素を透過しない層として酸素バリア層が設けられており、更に波長変換部および酸素バリア層の上部にガラス蓋が設けられた構成である。
(Eighth embodiment)
Next, a light emitting device according to an eighth embodiment of the invention will be described. The basic configuration of the light emitting device according to this embodiment is the same as that of the first embodiment. This embodiment is different from the fifth embodiment in that an oxygen barrier layer is provided as a layer that adsorbs oxygen or does not transmit oxygen between the wavelength conversion portion and the inner wall of the recess of the package. In this configuration, a glass lid is provided on the wavelength conversion unit and the oxygen barrier layer.
 (構成)
 以下、本発明の第8の実施形態に係る発光装置の概略構成について、図19を用いて説明する。図19は、本発明の第8の実施形態に係る発光装置の断面図である。
(Constitution)
The schematic configuration of the light emitting device according to the eighth embodiment of the present invention will be described below with reference to FIG. FIG. 19 is a cross-sectional view of a light emitting device according to an eighth embodiment of the present invention.
 図19に示すように、パッケージ70は、樹脂からなる凹部を有する構造で、凹部の底面部には、第1電極および第2電極を有する導体からなるリードフレーム71が埋め込まれている。 As shown in FIG. 19, the package 70 has a structure having a recess made of resin, and a lead frame 71 made of a conductor having a first electrode and a second electrode is embedded in the bottom surface of the recess.
 このリードフレーム71の一部は、パッケージ70の凹部内の底面部に露出しており、第1電極および第2電極として、例えば450nmで発光する半導体発光素子72と電気的に接続している。そして、パッケージ70の凹部内の内壁に、酸素を吸着するあるいは酸素を透過しない層として酸素バリア層78が形成され、さらに、凹部の底面部に配置された半導体発光素子72と凹部内に露出したリードフレーム71と酸素バリア層78とを覆うように波長変換部73が形成されている。 A part of the lead frame 71 is exposed at the bottom surface in the recess of the package 70, and is electrically connected to the semiconductor light emitting element 72 that emits light at 450 nm, for example, as the first electrode and the second electrode. An oxygen barrier layer 78 is formed on the inner wall of the recess of the package 70 as a layer that adsorbs oxygen or does not transmit oxygen, and is exposed to the semiconductor light emitting element 72 disposed on the bottom surface of the recess and the recess. A wavelength converter 73 is formed so as to cover the lead frame 71 and the oxygen barrier layer 78.
 波長変換部73は、樹脂74aに、例えば粒径20nm以下で530nmと620nmとのピーク波長を有する量子ドット蛍光体75と、酸素を吸着するゲッター粒子77aとして例えば平均粒径50nmのチタン酸化物(TiO:x>0)とを含有することにより構成される。 For example, the wavelength conversion unit 73 includes a quantum dot phosphor 75 having a particle diameter of 20 nm or less and a peak wavelength of 530 nm and 620 nm and a getter particle 77a that adsorbs oxygen, for example, a titanium oxide having an average particle diameter of 50 nm. TiO x : x> 0).
 酸素バリア層78は、例えば膜厚10nm以上の銀である。さらに、波長変換部73と酸素バリア層78との上部にはガラス蓋79が設けられている。ガラス蓋79とパッケージ70とは接着剤80で接着され、これにより波長変換部73が気密封止されている。 The oxygen barrier layer 78 is, for example, silver having a thickness of 10 nm or more. Further, a glass lid 79 is provided on the wavelength conversion unit 73 and the oxygen barrier layer 78. The glass lid 79 and the package 70 are bonded with an adhesive 80, whereby the wavelength conversion unit 73 is hermetically sealed.
 ここで、波長変換部73へ混ぜるゲッター粒子77aの量について検討する。酸素が波長変換部73へ透過する経路は、パッケージ70とリードフレーム71との隙間、パッケージ70とガラス蓋79とを接着剤80で接着している箇所である。例えば樹脂74aおよび接着剤80としてエポキシ樹脂を用いた場合、2ヵ所から透過する酸素量(4万時間後)は4.1×1016個である。酸素分子1個に対し、ゲッター粒子1個が吸着することを考えた場合、透過した酸素全てを吸着するには、波長変換部73へ入れるゲッター粒子77aの量は4.1×1016個以上にする必要がある。 Here, the amount of getter particles 77a mixed in the wavelength conversion unit 73 will be examined. The path through which oxygen passes to the wavelength conversion unit 73 is the gap between the package 70 and the lead frame 71 and the location where the package 70 and the glass lid 79 are bonded with the adhesive 80. For example, when an epoxy resin is used as the resin 74a and the adhesive 80, the amount of oxygen transmitted from two locations (after 40,000 hours) is 4.1 × 10 16 pieces. When it is considered that one getter particle is adsorbed to one oxygen molecule, the amount of getter particles 77a put into the wavelength conversion unit 73 is 4.1 × 10 16 or more in order to adsorb all the transmitted oxygen. It is necessary to.
 また、酸素バリア層78として例えば銀を用いた場合、酸素バリア層78の膜厚は少なくとも10nm以上とすることが好ましい。 In addition, when silver is used as the oxygen barrier layer 78, the thickness of the oxygen barrier layer 78 is preferably at least 10 nm.
 以上、本発明の第8の実施形態に係る発光装置によれば、空気層からの酸素透過量を低減することができるとともに、パッケージ70からの酸素透過を劇的に低減することができる。さらに、銀は熱伝導性が高く、放熱効果もある。したがって、酸素バリア層78として銀を用いることにより、量子ドット蛍光体75の発熱による酸化反応の促進をも抑制することができる。 As described above, according to the light emitting device according to the eighth embodiment of the present invention, the oxygen permeation amount from the air layer can be reduced, and the oxygen permeation from the package 70 can be dramatically reduced. Furthermore, silver has high thermal conductivity and has a heat dissipation effect. Therefore, by using silver as the oxygen barrier layer 78, acceleration of the oxidation reaction due to heat generation of the quantum dot phosphor 75 can be suppressed.
 (製造方法)
 次に、本発明の第8の実施形態に係る発光装置の製造方法について、以下に説明する。
(Production method)
Next, a method for manufacturing a light emitting device according to the eighth embodiment of the present invention will be described below.
 まず初めに、パッケージ70の凹部の底面および、リードフレーム71を覆うように例えばレジストマスクを形成する。その後、蒸着あるいは、スパッタなどを用いて酸素バリア層78として、例えば発光した光を反射し、なお且つ、熱伝導率の高い銀を成膜する。次に、レジストマスクの除去を行う。 First, the bottom surface of the recess of the package 70 and, for example, is formed a resist mask so as to cover the lead frame 71. Thereafter, as the oxygen barrier layer 78 using vapor deposition or sputtering, for example, the emitted light is reflected, and silver having high thermal conductivity is formed. Next, the resist mask is removed.
 その後、パッケージ70に半導体発光素子72を実装する。次に、半導体発光素子72が実装されたパッケージ70に、量子ドット蛍光体75とゲッター粒子77a(TiO:x>0)とを分散した樹脂をポッティングし、波長変換部73を形成する。この時、波長変換部73は、パッケージ70の底面、リードフレーム71および酸素バリア層78を覆うように形成する。この波長変換部73は、樹脂74aに、量子ドット蛍光体75とゲッター粒子77aとを含有させたものである。量子ドット蛍光体75は、発光波長が530nmと620nmとで発光するように、例えばコアにCdSe、シェルにZnSを用いた粒径20nm以下の微粒子である。ゲッター粒子77aは、例えば酸素を吸着し、なお且つ、例えば、450nmで発光する半導体発光素子72の発光波長および量子ドット蛍光体75により変換された波長を吸収しない材料によって構成されている。このようなゲッター粒子77aとしては、例えば平均粒径50nmのチタン酸化物である。このとき、ポッティングした樹脂74aを、ヘラを用いてパッケージ70の凸部と同一平面にし、例えば160℃で30分、熱硬化することで、波長変換部73を形成する。 Thereafter, the semiconductor light emitting element 72 is mounted on the package 70. Next, a resin in which the quantum dot phosphor 75 and getter particles 77a (TiO x : x> 0) are dispersed is potted on the package 70 on which the semiconductor light emitting element 72 is mounted, thereby forming the wavelength conversion unit 73. At this time, the wavelength conversion unit 73 is formed so as to cover the bottom surface of the package 70, the lead frame 71, and the oxygen barrier layer 78. The wavelength conversion unit 73 is a resin 74a containing a quantum dot phosphor 75 and getter particles 77a. The quantum dot phosphor 75 is a fine particle having a particle diameter of 20 nm or less using, for example, CdSe for the core and ZnS for the shell so as to emit light with emission wavelengths of 530 nm and 620 nm. The getter particles 77a are made of a material that adsorbs oxygen, for example, and does not absorb the emission wavelength of the semiconductor light emitting element 72 that emits light at 450 nm and the wavelength converted by the quantum dot phosphor 75, for example. Such getter particles 77a are, for example, titanium oxide having an average particle size of 50 nm. At this time, the wavelength conversion part 73 is formed by making the potted resin 74a flush with the convex part of the package 70 using a spatula and thermosetting, for example, at 160 ° C. for 30 minutes.
 その後、ガラス蓋79に樹脂74aを薄く塗布し、樹脂74aが波長変換部73と接するように、パッケージ70とガラス蓋79とを例えばエポキシ接着剤からなる接着剤80で接着し、気密封止する。これにより、波長変換部73への酸素透過を劇的に抑制することができる。 Thereafter, the resin 74a is thinly applied to the glass lid 79, and the package 70 and the glass lid 79 are bonded with an adhesive 80 made of, for example, an epoxy adhesive so that the resin 74a is in contact with the wavelength conversion unit 73, and hermetically sealed. . Thereby, oxygen permeation to the wavelength conversion unit 73 can be dramatically suppressed.
 なお、量子ドット蛍光体75は、第5の実施形態にて記載した材料であれば良い。また、量子ドット蛍光体75の構成は、コア/シェル型を用いたが、量子井戸型であってもよい。また、ゲッター粒子77aの材料は、第5の実施形態にて記載した材料であれば良い。また、樹脂74aの材料は、第5の実施形態に記載した材料であれば良い。 In addition, the quantum dot fluorescent substance 75 should just be the material described in 5th Embodiment. In addition, the configuration of the quantum dot phosphor 75 is a core / shell type, but may be a quantum well type. Moreover, the material of the getter particle 77a may be the material described in the fifth embodiment. The material of the resin 74a may be the material described in the fifth embodiment.
 また、接着剤80内にもゲッター粒子77aを入れることによって、より波長変換部73への酸素透過を抑制することができる。 In addition, by introducing the getter particles 77a into the adhesive 80, it is possible to further suppress oxygen transmission to the wavelength conversion unit 73.
 なお、酸素バリア層78の材料として銀を用いたが、これに限らず、第6の実施形態にて記載した材料であれば良い。 In addition, although silver was used as a material of the oxygen barrier layer 78, it is not limited thereto, and any material described in the sixth embodiment may be used.
 (第9の実施形態)
 次に、本発明の第9の実施形態に係る発光装置について説明する。本実施形態に係る発光装置の基本的な構成は、第5の実施形態と同じである。本実施形態が、第5の実施形態と異なるのは、波長変換部の上部に酸素ゲッター層を形成している構成である。
(Ninth embodiment)
Next, a light emitting device according to a ninth embodiment of the invention will be described. The basic configuration of the light emitting device according to this embodiment is the same as that of the fifth embodiment. This embodiment is different from the fifth embodiment in a configuration in which an oxygen getter layer is formed on the upper portion of the wavelength conversion unit.
 (構成)
 以下、本発明の第9の実施形態に係る発光装置の概略構成について、図20を用いて説明する。図20は、本発明の第9の実施形態に係る発光装置の断面図である。
(Constitution)
The schematic configuration of the light emitting device according to the ninth embodiment of the present invention will be described below with reference to FIG. FIG. 20 is a sectional view of a light emitting device according to the ninth embodiment of the present invention.
 図20に示すように、パッケージ70は、樹脂からなる凹部を有する構造で、凹部の底面部には、第1電極および第2電極を有する導体からなるリードフレーム71が埋め込まれている。 As shown in FIG. 20, the package 70 has a structure having a recess made of resin, and a lead frame 71 made of a conductor having a first electrode and a second electrode is embedded in the bottom surface of the recess.
 このリードフレーム71の一部は、パッケージ70の凹部内の底面部に露出しており、第1電極および第2電極として、例えば450nmで発光する半導体発光素子72と電気的に接続している。そして凹部の底面部に配置された半導体発光素子72および凹部内に露出したリードフレーム71を覆うように波長変換部73が形成されている。 A part of the lead frame 71 is exposed at the bottom surface in the recess of the package 70, and is electrically connected to the semiconductor light emitting element 72 that emits light at 450 nm, for example, as the first electrode and the second electrode. A wavelength converter 73 is formed so as to cover the semiconductor light emitting element 72 disposed on the bottom surface of the recess and the lead frame 71 exposed in the recess.
 波長変換部73は、樹脂74aに、例えば粒径20nm以下で530nmと620nmとのピーク波長を有する量子ドット蛍光体75と、酸素を吸着するゲッター粒子77aとして例えば平均粒径50nmのチタン酸化物(TiO:x>0)とを含有することにより構成される。 For example, the wavelength conversion unit 73 includes a quantum dot phosphor 75 having a particle diameter of 20 nm or less and a peak wavelength of 530 nm and 620 nm and a getter particle 77a that adsorbs oxygen, for example, a titanium oxide having an average particle diameter of 50 nm. TiO x : x> 0).
 また、波長変換部73を覆うように、酸素ゲッター層76(第2の樹脂部)が形成されている。酸素ゲッター層76は、樹脂74bに、例えば粒径100μm以下のゼオライト(アルミノケイ酸塩)からなるゲッター粒子77b(第2のゲッター粒子)を含有することにより構成される。ゼオライト(アルミノケイ酸塩)は、シリコン(Si)およびアルミニウム(Al)のまわりに4つの酸素(O)が規則正しく三次元的に連結した結晶構造を持つ規則性多孔体である。 Further, an oxygen getter layer 76 (second resin portion) is formed so as to cover the wavelength conversion portion 73. The oxygen getter layer 76 is constituted by containing getter particles 77b (second getter particles) made of, for example, zeolite (aluminosilicate) having a particle diameter of 100 μm or less in the resin 74b. Zeolite (aluminosilicate) is a regular porous body having a crystal structure in which four oxygens (O) are regularly and three-dimensionally connected around silicon (Si) and aluminum (Al).
 また、ゼオライトは、4価のSiと同じ位置に3価のAlが入る構造のため、Alがマイナスに帯電しており、電気的中性を保つように、細孔内に陽イオンが入っている。例えばカリウム(K)を入れると、細孔径は酸素分子とほぼ同サイズの0.3nmと変化させることができ、細孔内に入った酸素は陽イオンの静電場により吸着される。このときのゼオライトの粒径は、1μm~100μmが好ましく、1μm~20μmがより好ましい。これは、粒径が大きすぎると、樹脂内にゼオライトが均一分散されず、酸素吸着効果が低減するからである。 In addition, since zeolite has a structure in which trivalent Al enters at the same position as tetravalent Si, Al is negatively charged, and cations are contained in the pores so as to maintain electrical neutrality. Yes. For example, when potassium (K) is added, the pore diameter can be changed to 0.3 nm, which is almost the same size as the oxygen molecule, and oxygen entering the pore is adsorbed by the electrostatic field of the cation. Zeolite particle size at this time is preferably from 1 [mu] m ~ 100 [mu] m, more preferably 1 [mu] m ~ 20 [mu] m. This is because if the particle size is too large, the zeolite is not uniformly dispersed in the resin and the oxygen adsorption effect is reduced.
 このように、波長変換部73の上層に酸素ゲッター層76を形成することで、空気層から波長変換部73への酸素透過を大幅に抑制することができる。また、酸素ゲッター層76にて完全に酸素を吸着できずに波長変換部73に酸素が進入しても、進入した酸素は波長変換部73内に混ざっているゲッター粒子77aによって吸着される。 As described above, by forming the oxygen getter layer 76 on the upper layer of the wavelength conversion unit 73, oxygen transmission from the air layer to the wavelength conversion unit 73 can be significantly suppressed. Even if oxygen cannot be completely adsorbed by the oxygen getter layer 76 and oxygen enters the wavelength conversion unit 73, the oxygen that has entered is adsorbed by the getter particles 77a mixed in the wavelength conversion unit 73.
 また、本実施形態で用いたゲッター粒子77a(チタン酸化物)は、平均粒径が50nmであって、量子ドット蛍光体75の粒径に近いサイズである。これにより、樹脂74a内に量子ドット蛍光体75とともに均一に分散することができる。その結果、量子ドット蛍光体75の酸化を効果的に抑制することができ、高効率発光・高信頼性が得られる発光装置を提供することができる。 Further, the getter particles 77a (titanium oxide) used in the present embodiment have an average particle size of 50 nm and a size close to the particle size of the quantum dot phosphor 75. Thereby, it can disperse | distribute uniformly with the quantum dot fluorescent substance 75 in resin 74a. As a result, it is possible to provide a light emitting device that can effectively suppress oxidation of the quantum dot phosphor 75 and obtain high efficiency light emission and high reliability.
 ここで、波長変換部73に入れるゲッター粒子77aの量は、酸素が波長変換部73へ透過する経路(パッケージ70、リードフレーム71およびパッケージ70の隙間)から、樹脂74aが例えばエポキシ樹脂とすると、エポキシ樹脂に透過する酸素量(4×1014個:4万時間後の酸素量)より、4×1014個以上にする必要がある。 Here, the amount of getter particles 77a put in the wavelength conversion unit 73 is such that the resin 74a is, for example, an epoxy resin from a path (a gap between the package 70, the lead frame 71, and the package 70) through which oxygen passes through the wavelength conversion unit 73. From the amount of oxygen permeating the epoxy resin (4 × 10 14 pieces: the amount of oxygen after 40,000 hours), it is necessary to make it 4 × 10 14 pieces or more.
 また、酸素ゲッター層76に入れるゲッター粒子77bの量は、酸素分子1個に対し、ゲッター粒子1個が吸着することを考えた場合、透過した酸素全てを吸着するには、空気層から樹脂74b(例えばエポキシ樹脂)に透過する酸素量(2.84×1019個:4万時間後の酸素透過量)から、2.85×1019個以上にする必要がある。 Further, the amount of getter particles 77b to be put into the oxygen getter layer 76 is such that when one getter particle is adsorbed to one oxygen molecule, in order to adsorb all permeated oxygen, the resin 74b from the air layer is adsorbed. From the amount of oxygen permeating (for example, epoxy resin) (2.84 × 10 19 pieces: the amount of oxygen permeation after 40,000 hours), it is necessary to make it 2.85 × 10 19 pieces or more.
 また、本実施形態ではゲッター粒子77bとしてゼオライト(アルミノケイ酸塩)を用いたが、これに限らない。例えばゲッター粒子77bの候補として金属酸化物や多孔質材料がある。金属酸化物のゲッター粒子77bとしては、例えばチタン酸化物(TiO)、ニオブ酸化物(NbO)、ハフニウム酸化物(HfO)、インジウム酸化物(In)、タングステン酸化物(WO)、スズ酸化物(SnO)、亜鉛酸化物(ZnO)、ジルコニア酸化物(ZrO)、マグネシウム酸化物(MgO)、アンチモン酸化物(SbO)、アルミニウム酸化物(Al)などが挙げられる。多孔質材料のゲッター粒子77bとしては、例えば二酸化ケイ素(SiO)、シリコン酸窒素(SiON)などが挙げられる(但し、X>0)。 In this embodiment, zeolite (aluminosilicate) is used as the getter particles 77b, but the present invention is not limited to this. For example, there are metal oxides and porous materials as candidates for the getter particles 77b. Examples of the metal oxide getter particles 77b include titanium oxide (TiO x ), niobium oxide (NbO x ), hafnium oxide (HfO x ), indium oxide (In 2 O x ), and tungsten oxide (WO x ), tin oxide (SnO x ), zinc oxide (ZnO x ), zirconia oxide (ZrO x ), magnesium oxide (MgO), antimony oxide (SbO x ), aluminum oxide (Al 2 O x) ) And the like. Examples of the porous material getter particles 77b include silicon dioxide (SiO x ) and silicon oxynitride (SiON) (where X> 0).
 また、樹脂74bにエポキシ樹脂を用いたが、シリコーン樹脂、フッ化物樹脂、アクリル樹脂など、半導体発光素子および量子ドット蛍光体からの発光波長に対し高い透過率を有する樹脂であればよい。 In addition, although an epoxy resin is used for the resin 74b, any resin may be used as long as it has a high transmittance with respect to the emission wavelength from the semiconductor light emitting element and the quantum dot phosphor, such as a silicone resin, a fluoride resin, and an acrylic resin.
 (製造方法)
 次に、本発明の第9の実施形態に係る発光装置の製造方法について、以下に説明する。
(Production method)
Next, a method for manufacturing a light emitting device according to the ninth embodiment of the present invention will be described below.
 まず初めに、半導体発光素子72が実装されたパッケージ70に、量子ドット蛍光体75とゲッター粒子77a(TiO:x>0)とを分散した樹脂74aをポッティングし、波長変換部73を形成する。この時、波長変換部73はパッケージの底面およびリードフレーム71を覆うように形成する。この波長変換部73は、樹脂74aに、量子ドット蛍光体75とゲッター粒子77aとを含有させたものである。量子ドット蛍光体75は、発光波長が530nmと620nmとで発光するように、例えばコアにCdSe、シェルにZnSを用いた粒径20nm以下の微粒子である。ゲッター粒子77aは、例えば酸素を吸着し、なお且つ、例えば、450nmで発光する半導体発光素子72の発光波長と、量子ドット蛍光体75により変換された波長とを吸収しない材料によって構成されている。このようなゲッター粒子77aとしては、例えば平均粒径50nmのチタン酸化物である。 First, a resin 74a in which quantum dot phosphors 75 and getter particles 77a (TiO x : x> 0) are dispersed is potted on a package 70 on which a semiconductor light emitting device 72 is mounted, thereby forming a wavelength conversion unit 73. . At this time, the wavelength converter 73 is formed so as to cover the bottom surface of the package and the lead frame 71. The wavelength conversion unit 73 is a resin 74a containing a quantum dot phosphor 75 and getter particles 77a. The quantum dot phosphor 75 is a fine particle having a particle diameter of 20 nm or less using, for example, CdSe for the core and ZnS for the shell so as to emit light with emission wavelengths of 530 nm and 620 nm. The getter particles 77a are made of a material that adsorbs, for example, oxygen and does not absorb the emission wavelength of the semiconductor light emitting element 72 that emits light at 450 nm and the wavelength converted by the quantum dot phosphor 75, for example. Such getter particles 77a are, for example, titanium oxide having an average particle size of 50 nm.
 その後、一度樹脂74aを例えば160℃で30分、熱硬化する。その後、ゲッター粒子77bを分散した樹脂74bをポッティングし、酸素ゲッター層76を形成する。この時、酸素ゲッター層76は、波長変換部73およびパッケージ70の凹部を覆うように形成する。この酸素ゲッター層76は、例えばエポキシからなる樹脂74bにゲッター粒子77bを含有させたものである。このゲッター粒子77bは、粒径100μm以下のゼオライト(アルミノケイ酸塩)である。その後、樹脂74bを例えば160℃で30分、熱硬化する。 Thereafter, the resin 74a is once thermally cured at, for example, 160 ° C. for 30 minutes. Thereafter, the resin 74b in which the getter particles 77b are dispersed is potted to form the oxygen getter layer 76. At this time, the oxygen getter layer 76 is formed so as to cover the wavelength converter 73 and the recesses of the package 70. The oxygen getter layer 76 is obtained by, for example, containing getter particles 77b in a resin 74b made of epoxy. The getter particles 77b is a particle diameter 100μm or less of the zeolite (aluminosilicate). Thereafter, the resin 74b is thermoset at 160 ° C. for 30 minutes, for example.
 以上、本発明の第9の実施形態に係る発光装置によれば、酸素ゲッター層76を構成している樹脂74b内に透過した酸素の多くはゲッター粒子77bにて吸着されるので、波長変換部73への酸素透過を抑制することができる。その結果、量子ドット蛍光体75の酸化を抑制することができ、発光効率が高く、色再現性の良い発光装置を実現することができる。 As described above, according to the light emitting device according to the ninth embodiment of the present invention, most of the oxygen that has permeated into the resin 74b constituting the oxygen getter layer 76 is adsorbed by the getter particles 77b. Oxygen permeation to 73 can be suppressed. As a result, oxidation of the quantum dot phosphor 75 can be suppressed, and a light emitting device with high luminous efficiency and good color reproducibility can be realized.
 なお、量子ドット蛍光体75は、第5の実施形態にて記載した材料であれば良い。また、量子ドット蛍光体75の構成は、コア/シェル型を用いたが、量子井戸型であってもよい。また、ゲッター粒子77aの材料は、第5の実施形態にて記載した材料であれば良い。また、樹脂74aの材料は、第5の実施形態に記載した材料であれば良い。 In addition, the quantum dot fluorescent substance 75 should just be the material described in 5th Embodiment. In addition, the configuration of the quantum dot phosphor 75 is a core / shell type, but may be a quantum well type. Moreover, the material of the getter particle 77a may be the material described in the fifth embodiment. The material of the resin 74a may be the material described in the fifth embodiment.
 (第10の実施形態)
 次に、本発明の第10の実施形態に係る発光装置について説明する。本実施形態に係る発光装置の基本的な構成は、第9の実施形態と同じである。本実施形態が、第9の実施形態と異なるのは、波長変換部および酸素ゲッター層とパッケージの凹部の内壁との間に酸素を吸着するあるいは酸素を透過しない層として酸素バリア層を形成している構成である。
(Tenth embodiment)
Next, a light emitting device according to a tenth embodiment of the present invention will be described. The basic configuration of the light emitting device according to this embodiment is the same as that of the ninth embodiment. This embodiment differs from the ninth embodiment in that an oxygen barrier layer is formed as a layer that adsorbs oxygen or does not transmit oxygen between the wavelength conversion section and the oxygen getter layer and the inner wall of the recess of the package. It is the composition which is.
 (構成)
 以下、本発明の第10の実施形態に係る発光装置の概略構成について、図21を用いて説明する。図21は、本発明の第10の実施形態に係る発光装置の断面図である。
(Constitution)
The schematic configuration of the light emitting device according to the tenth embodiment of the present invention will be described below with reference to FIG. FIG. 21 is a sectional view of a light emitting device according to the tenth embodiment of the present invention.
 図21に示すように、パッケージ70は、樹脂からなる凹部を有する構造で、凹部の底面部には、第1電極および第2電極を有する導体からなるリードフレーム71が埋め込まれている。 As shown in FIG. 21, the package 70 has a structure having a recess made of resin, and a lead frame 71 made of a conductor having a first electrode and a second electrode is embedded in the bottom surface of the recess.
 このリードフレーム71の一部は、パッケージ70の凹部内の底面部に露出しており、第1電極および第2電極として、例えば450nmで発光する半導体発光素子72と電気的に接続している。そして凹部の底面部に配置された半導体発光素子72および凹部内に露出したリードフレーム71を覆うように波長変換部73が形成されている。 A part of the lead frame 71 is exposed at the bottom surface in the recess of the package 70, and is electrically connected to the semiconductor light emitting element 72 that emits light at 450 nm, for example, as the first electrode and the second electrode. A wavelength converter 73 is formed so as to cover the semiconductor light emitting element 72 disposed on the bottom surface of the recess and the lead frame 71 exposed in the recess.
 波長変換部73は、樹脂74aに、例えば粒径20nm以下で530nmと620nmとのピーク波長を有する量子ドット蛍光体75と、酸素を吸着するゲッター粒子77aとして例えば平均粒径50nmのチタン酸化物(TiO:x>0)とを含有している。 For example, the wavelength conversion unit 73 includes a quantum dot phosphor 75 having a particle diameter of 20 nm or less and a peak wavelength of 530 nm and 620 nm and a getter particle 77a that adsorbs oxygen, for example, a titanium oxide having an average particle diameter of 50 nm. TiO x : x> 0).
 また、波長変換部73を覆うように、酸素ゲッター層76が形成されている。酸素ゲッター層76は、樹脂74bに、例えば粒径100μm以下のゼオライト(アルミノケイ酸塩)を含有することによって構成することができる。 Further, an oxygen getter layer 76 is formed so as to cover the wavelength conversion unit 73. The oxygen getter layer 76 can be configured by containing, for example, zeolite (aluminosilicate) having a particle size of 100 μm or less in the resin 74b.
 波長変換部73とパッケージ70の凹部の内壁との間、および、酸素ゲッター層76とパッケージ70の凹部の内壁との間には、酸素バリア層78が形成されている。酸素バリア層78は、例えば銀(Ag)を少なくとも10nm以上成膜することによって形成することができる。さらに、銀は熱伝導性が高く、放熱効果もある。これにより、酸素バリア層78は、量子ドット蛍光体75の発熱による酸化反応の促進をも抑制することができる。 An oxygen barrier layer 78 is formed between the wavelength conversion unit 73 and the inner wall of the recess of the package 70 and between the oxygen getter layer 76 and the inner wall of the recess of the package 70. The oxygen barrier layer 78 can be formed by depositing, for example, silver (Ag) at least 10 nm or more. Furthermore, silver has high thermal conductivity and has a heat dissipation effect. Thereby, the oxygen barrier layer 78 can also suppress the promotion of the oxidation reaction due to the heat generation of the quantum dot phosphor 75.
 ここで、波長変換部73に入れるゲッター粒子77aの量は、酸素が波長変換部73へ透過する経路(パッケージ70、リードフレーム71およびパッケージ70の隙間)から、樹脂74aが例えばエポキシ樹脂とすると、エポキシ樹脂に透過する酸素量(2.84×1019個:4万時間後の酸素量)から、2.85×1019個以上にする必要がある。 Here, the amount of getter particles 77a put in the wavelength conversion unit 73 is such that the resin 74a is, for example, an epoxy resin from a path (a gap between the package 70, the lead frame 71, and the package 70) through which oxygen passes through the wavelength conversion unit 73. From the amount of oxygen permeating the epoxy resin (2.84 × 10 19 pieces: the amount of oxygen after 40,000 hours), it is necessary to make it 2.85 × 10 19 pieces or more.
 また、酸素ゲッター層76に入れるゲッター粒子77bの量は、接着剤80(例えばエポキシ樹脂)から透過する酸素量(2.84×1019個:4万時間後の酸素透過量)より、2.84×1019個以上にする必要がある。 Further, the amount of getter particles 77b to be put into the oxygen getter layer 76 is based on the amount of oxygen permeated from the adhesive 80 (for example, epoxy resin) (2.84 × 10 19 pieces: oxygen permeation amount after 40,000 hours). 84 × 10 19 or more is necessary.
 以上、本発明の第10の実施形態に係る発光装置によれば、パッケージ70から透過した酸素が酸素バリア層78(銀)で吸着されるため、波長変換部73への酸素透過をより抑えることができる。 As described above, according to the light emitting device according to the tenth embodiment of the present invention, oxygen transmitted from the package 70 is adsorbed by the oxygen barrier layer 78 (silver), and thus oxygen transmission to the wavelength conversion unit 73 is further suppressed. Can do.
 (製造方法)
 次に、本発明の第10の実施形態に係る発光装置の製造方法について、以下に説明する。
(Production method)
Next, a method for manufacturing a light emitting device according to the tenth embodiment of the present invention will be described below.
 まず初めに、パッケージ70の凹部の底面および、リードフレーム71を覆うように例えばレジストマスクを形成する。その後、蒸着あるいは、スパッタなどを用いて酸素バリア層78として、例えば発光した光を反射し、なお且つ、熱伝導率の高い銀を成膜する。次に、レジストマスクの除去を行う。 First, the bottom surface of the recess of the package 70 and, for example, is formed a resist mask so as to cover the lead frame 71. Thereafter, as the oxygen barrier layer 78 using vapor deposition or sputtering, for example, the emitted light is reflected, and silver having high thermal conductivity is formed. Next, the resist mask is removed.
 その後、パッケージ70に半導体発光素子72を実装する。その後、半導体発光素子72が実装されたパッケージ70に、量子ドット蛍光体75とゲッター粒子77a(TiO:x>0)とを分散した樹脂74aをポッティングし、波長変換部73を形成する。この時、波長変換部73はパッケージ70の底面およびリードフレーム71を覆うように形成する。この波長変換部73は、樹脂74aに、量子ドット蛍光体75とゲッター粒子77aとを含有させたものである。量子ドット蛍光体75は、発光波長が530nmと620nmとで発光するように、例えばコアにCdSe、シェルにZnSを用いた粒径20nm以下の微粒子である。ゲッター粒子77bは、例えば酸素を吸着し、なお且つ、例えば450nmで発光する半導体発光素子72の発光波長および量子ドット蛍光体75により変換された波長を吸収しない材料によって構成されている。このようなゲッター粒子77aとしては、例えば平均粒径50nmのチタン酸化物である。その後、一度樹脂74aを例えば160℃で30分、熱硬化する。 Thereafter, the semiconductor light emitting element 72 is mounted on the package 70. Thereafter, a resin 74 a in which quantum dot phosphors 75 and getter particles 77 a (TiO x : x> 0) are dispersed is potted on the package 70 on which the semiconductor light emitting element 72 is mounted, thereby forming the wavelength conversion unit 73. At this time, the wavelength conversion unit 73 is formed so as to cover the bottom surface of the package 70 and the lead frame 71. The wavelength conversion unit 73 is a resin 74a containing a quantum dot phosphor 75 and getter particles 77a. The quantum dot phosphor 75 is a fine particle having a particle diameter of 20 nm or less using, for example, CdSe for the core and ZnS for the shell so as to emit light with emission wavelengths of 530 nm and 620 nm. The getter particles 77b are made of a material that adsorbs oxygen, for example, and does not absorb the emission wavelength of the semiconductor light emitting element 72 that emits light at 450 nm and the wavelength converted by the quantum dot phosphor 75, for example. Such getter particles 77a are, for example, titanium oxide having an average particle size of 50 nm. Thereafter, the resin 74a is once thermally cured at, for example, 160 ° C. for 30 minutes.
 その後、ゲッター粒子77bを分散した樹脂74bをポッティングし、酸素ゲッター層76を形成する。この時、酸素ゲッター層76は、波長変換部73およびパッケージ70の凹部を覆うように形成する。この酸素ゲッター層76は、例えばエポキシ樹脂からなる樹脂74bにゲッター粒子77bを含有させたものである。このゲッター粒子77bは、例えば粒径100μm以下のゼオライト(アルミノケイ酸塩)である。その後、樹脂74bを例えば160℃で30分、熱硬化する。 Thereafter, potted dispersed resin 74b getter particles 77b, to form an oxygen getter layer 76. At this time, the oxygen getter layer 76 is formed so as to cover the wavelength converter 73 and the recesses of the package 70. The oxygen getter layer 76 is obtained by containing getter particles 77b in a resin 74b made of, for example, an epoxy resin. The getter particles 77b is, for example, a particle diameter 100μm or less of the zeolite (aluminosilicate). Thereafter, the resin 74b is thermoset at 160 ° C. for 30 minutes, for example.
 以上、本発明の第10の実施形態に係る発光装置によれば、酸素ゲッター層76を構成している樹脂74b内に透過した酸素の多くはゲッター粒子77bにて吸着されるので波長変換部73への酸素透過を抑制することができる。その結果、量子ドット蛍光体75の酸化を更に抑制することができ、発光効率が高く、色再現性の良い発光装置を実現することができる。 As described above, according to the light emitting device according to the tenth embodiment of the present invention, most of the oxygen that has permeated into the resin 74b constituting the oxygen getter layer 76 is adsorbed by the getter particles 77b, and therefore the wavelength conversion unit 73. Oxygen permeation can be suppressed. As a result, the oxidation of the quantum dot phosphor 75 can be further suppressed, and a light emitting device with high luminous efficiency and good color reproducibility can be realized.
 なお、量子ドット蛍光体75は、第5の実施形態にて記載した材料であれば良い。また、量子ドット蛍光体75の構成は、コア/シェル型を用いたが、量子井戸型であってもよい。また、ゲッター粒子77aの材料は、第5の実施形態にて記載した材料であれば良い。また、ゲッター粒子77bの材料は、第9の実形態にて記載した材料であれば良い。また、樹脂74aの材料は、第5の実施形態に記載した材料であれば良い。また、樹脂74bの材料は、第9の実施形態に記載した材料であれば良い。 In addition, the quantum dot fluorescent substance 75 should just be the material described in 5th Embodiment. In addition, the configuration of the quantum dot phosphor 75 is a core / shell type, but may be a quantum well type. Moreover, the material of the getter particle 77a may be the material described in the fifth embodiment. Moreover, the material of the getter particle 77b may be the material described in the ninth embodiment. The material of the resin 74a may be the material described in the fifth embodiment. Further, the material of the resin 74b may be the material described in the ninth embodiment.
 (第11の実施形態)
 次に、本発明の第11の実施形態に係る発光装置について説明する。本実施形態に係る発光装置の基本的な構成は、第9の実施形態と同じである。本実施形態が、第9の実施形態と異なるのは、波長変換部の上部に酸素ゲッター層を形成している構成である。
(Eleventh embodiment)
Next, a light emitting device according to an eleventh embodiment of the present invention will be described. The basic configuration of the light emitting device according to this embodiment is the same as that of the ninth embodiment. This embodiment is different from the ninth embodiment in a configuration in which an oxygen getter layer is formed on the wavelength conversion unit.
 (構成)
 以下、本発明の第11の実施形態に係る発光装置の概略構成について、図22を用いて説明する。図22は、本発明の第11の実施形態に係る発光装置の断面図である。
(Constitution)
The schematic configuration of the light-emitting device according to the eleventh embodiment of the present invention will be described below with reference to FIG. FIG. 22 is a sectional view of a light emitting device according to the eleventh embodiment of the present invention.
 図22に示すように、パッケージ70は、樹脂からなる凹部を有する構造で、凹部の底面部には、第1電極および第2電極を有する導体からなるリードフレーム71が埋め込まれている。 As shown in FIG. 22, the package 70 has a structure having a recess made of resin, and a lead frame 71 made of a conductor having a first electrode and a second electrode is embedded in the bottom surface of the recess.
 このリードフレーム71の一部は、パッケージ70の凹部内の底面部に露出しており、第1電極および第2電極として、例えば450nmで発光する半導体発光素子72と電気的に接続している。そして凹部の底面部に配置された半導体発光素子72および凹部内に露出したリードフレーム71を覆うように波長変換部73が形成されている。 A part of the lead frame 71 is exposed at the bottom surface in the recess of the package 70, and is electrically connected to the semiconductor light emitting element 72 that emits light at 450 nm, for example, as the first electrode and the second electrode. A wavelength converter 73 is formed so as to cover the semiconductor light emitting element 72 disposed on the bottom surface of the recess and the lead frame 71 exposed in the recess.
 波長変換部73は、樹脂74aに、例えば粒径20nm以下で530nmと620nmとのピーク波長を有する量子ドット蛍光体75と、酸素を吸着するゲッター粒子77aとして例えば平均粒径50nmのチタン酸化物(TiOx:x>0)とを含有することにより構成される。 For example, the wavelength conversion unit 73 includes a quantum dot phosphor 75 having a particle diameter of 20 nm or less and a peak wavelength of 530 nm and 620 nm and a getter particle 77a that adsorbs oxygen, for example, a titanium oxide having an average particle diameter of 50 nm. TiOx: x> 0).
 また、波長変換部73を覆うように、酸素ゲッター層76が形成されている。酸素ゲッター層76は、樹脂74bに、例えば粒径100μm以下のゼオライト(アルミノケイ酸塩)を含有することによって構成されている。その酸素ゲッター層76の上部をガラス蓋79で覆うように、ガラス蓋79がパッケージ70と接着剤80で接着されている。 Further, an oxygen getter layer 76 is formed so as to cover the wavelength conversion unit 73. The oxygen getter layer 76 is configured by containing, for example, zeolite (aluminosilicate) having a particle size of 100 μm or less in the resin 74b. The glass lid 79 is bonded to the package 70 with an adhesive 80 so that the upper portion of the oxygen getter layer 76 is covered with the glass lid 79.
 ゼオライト(アルミノケイ酸塩)は、シリコン(Si)およびアルミニウム(Al)のまわりに4つの酸素(O)が規則正しく三次元的に連結した結晶構造を持つ規則性多孔体である。 Zeolite (aluminosilicate) is a regular porous body having a crystal structure in which four oxygens (O) are regularly and three-dimensionally connected around silicon (Si) and aluminum (Al).
 また、ゼオライトは、4価のSiと同じ位置に3価のAlが入る構造のため、Alがマイナスに帯電しており、電気的中性を保つように、細孔内に陽イオンが入っている。例えばカリウム(K)を入れると、細孔径は酸素分子とほぼ同サイズの0.3nmと変化させることができ、細孔内に入った酸素は陽イオンの静電場により吸着される。このときのゼオライトの粒径は、1μm~100μmが好ましく、1μm~20μmがより好ましい。これは、粒径が大きすぎると、樹脂内にゼオライトが均一分散されず、酸素吸着効果が低減するからである。 In addition, since zeolite has a structure in which trivalent Al enters at the same position as tetravalent Si, Al is negatively charged, and cations are contained in the pores so as to maintain electrical neutrality. Yes. For example, when potassium (K) is added, the pore diameter can be changed to 0.3 nm, which is almost the same size as the oxygen molecule, and oxygen entering the pore is adsorbed by the electrostatic field of the cation. Zeolite particle size at this time is preferably from 1 [mu] m ~ 100 [mu] m, more preferably 1 [mu] m ~ 20 [mu] m. This is because if the particle size is too large, the zeolite is not uniformly dispersed in the resin and the oxygen adsorption effect is reduced.
 このように、波長変換部73の上層に酸素ゲッター層76を形成することで、空気層から波長変換部73へ大量の酸素透過を抑制することができる。また、酸素ゲッター層76にて完全に酸素を吸着できなくとも、波長変換部73内に混ざっているゲッター粒子77aにて吸着される。 Thus, by forming the oxygen getter layer 76 in the upper layer of the wavelength conversion unit 73, a large amount of oxygen transmission from the air layer to the wavelength conversion unit 73 can be suppressed. Even if oxygen cannot be completely adsorbed by the oxygen getter layer 76, it is adsorbed by the getter particles 77 a mixed in the wavelength conversion unit 73.
 また、本実施形態で用いたゲッター粒子77a(チタン酸化物)は、平均粒径が50nmであって、量子ドット蛍光体75の粒径に近いサイズであるため、樹脂74a内に量子ドット蛍光体75とともに均一に分散することができる。 Further, the getter particles 77a (titanium oxide) used in the present embodiment has an average particle size of 50 nm and a size close to the particle size of the quantum dot phosphor 75, so that the quantum dot phosphor in the resin 74a. 75 can be uniformly dispersed.
 さらに、酸素ゲッター層76をガラス蓋79で覆うことにより、最も酸素と触れる酸素ゲッター層76への酸素透過を大幅に低減することが可能となる。 Furthermore, by covering the oxygen getter layer 76 with a glass lid 79, it is possible to significantly reduce oxygen permeation to the oxygen getter layer 76 that is most in contact with oxygen.
 ここで、波長変換部73に入れるゲッター粒子77aの量は、酸素が波長変換部73へ透過する経路(パッケージ70、リードフレーム71およびパッケージ70の隙間)から、樹脂74a(例えばエポキシ樹脂)へ透過する酸素量(1.1×1017個:4万時間後の酸素量)より、1.2×1017個以上にする必要がある。 Here, the amount of getter particles 77a to be put into the wavelength conversion unit 73 is transmitted through a path (a gap between the package 70, the lead frame 71, and the package 70) through which oxygen passes to the wavelength conversion unit 73 to the resin 74a (for example, epoxy resin). It is necessary to make 1.2 × 10 17 or more from the amount of oxygen (1.1 × 10 17 pieces: oxygen amount after 40,000 hours).
 また、酸素ゲッター層76に入れるゲッター粒子77bの量は、接着剤80(例えばエポキシ樹脂)へ透過する酸素量(7.6×1014個:4万時間後の酸素透過量)より、7.7×1014個以上にする必要がある。 Further, the amount of getter particles 77b to be put into the oxygen getter layer 76 is 7. From the amount of oxygen permeating to the adhesive 80 (for example, epoxy resin) (7.6 × 10 14 pieces: oxygen permeation amount after 40,000 hours). It needs to be 7 × 10 14 or more.
 このような構成にすることで、量子ドット蛍光体75の酸化を抑制し、高効率発光・高信頼性が得られる発光装置を提供することができる。 By adopting such a configuration, it is possible to provide a light emitting device that can suppress the oxidation of the quantum dot phosphor 75 and obtain high efficiency light emission and high reliability.
 (製造方法)
 次に、本発明の第11の実施形態に係る発光装置の製造方法について、以下に説明する。
(Production method)
Next, a method for manufacturing a light emitting device according to the eleventh embodiment of the present invention will be described below.
 まず初めに、半導体発光素子72が実装されたパッケージ70に、量子ドット蛍光体75とゲッター粒子77a(TiO:x>0)とを分散した樹脂74aをポッティングし、波長変換部73を形成する。この時、波長変換部73はパッケージ70の底面およびリードフレーム71を覆うように形成する。この波長変換部73は、樹脂74aに、量子ドット蛍光体75とゲッター粒子77aとを含有させたものである。量子ドット蛍光体75は、発光波長が530nmと620nmとで発光するように、例えばコアにCdSe、シェルにZnSを用いた粒径20nm以下の微粒子である。ゲッター粒子77aは、例えば酸素を吸着し、なお且つ、例えば、450nmで発光する半導体発光素子72の発光波長および量子ドット蛍光体75により変換された波長を吸収しない材料によって構成されている。このようなゲッター粒子77aとしては、例えば平均粒径50nmのチタン酸化物である。その後、一度樹脂74aを例えば160℃で30分、熱硬化する。 First, a resin 74a in which quantum dot phosphors 75 and getter particles 77a (TiO x : x> 0) are dispersed is potted on a package 70 on which a semiconductor light emitting device 72 is mounted, thereby forming a wavelength conversion unit 73. . At this time, the wavelength conversion unit 73 is formed so as to cover the bottom surface of the package 70 and the lead frame 71. The wavelength conversion unit 73 is a resin 74a containing a quantum dot phosphor 75 and getter particles 77a. The quantum dot phosphor 75 is a fine particle having a particle diameter of 20 nm or less using, for example, CdSe for the core and ZnS for the shell so as to emit light with emission wavelengths of 530 nm and 620 nm. The getter particles 77a are made of a material that adsorbs oxygen, for example, and does not absorb the emission wavelength of the semiconductor light emitting element 72 that emits light at 450 nm and the wavelength converted by the quantum dot phosphor 75, for example. Such getter particles 77a are, for example, titanium oxide having an average particle size of 50 nm. Thereafter, the resin 74a is once thermally cured at, for example, 160 ° C. for 30 minutes.
 その後、ゲッター粒子77bを分散した樹脂74bをポッティングし、酸素ゲッター層76を形成する。この時、酸素ゲッター層76は、波長変換部73およびパッケージ70の凹部を覆うように形成する。この酸素ゲッター層76は、例えばエポキシからなる樹脂74bにゲッター粒子77bを含有させたものである。このようなゲッター粒子77bとしては、例えば粒径100μm以下のゼオライト(アルミノケイ酸塩)である。このとき、ポッティングした樹脂74bをヘラを用いてパッケージ70の凸部と同一平面にし、例えば160℃で30分、熱硬化することで、酸素ゲッター層76を形成する。 Thereafter, potted dispersed resin 74b getter particles 77b, to form an oxygen getter layer 76. At this time, the oxygen getter layer 76 is formed so as to cover the wavelength converter 73 and the recesses of the package 70. The oxygen getter layer 76 is obtained by, for example, containing getter particles 77b in a resin 74b made of epoxy. An example of such getter particles 77b is zeolite (aluminosilicate) having a particle size of 100 μm or less. At this time, the oxygen getter layer 76 is formed by making the potted resin 74b flush with the convex portion of the package 70 using a spatula and thermosetting at 160 ° C. for 30 minutes, for example.
 その後、ガラス蓋79に樹脂74bを薄く塗布し、樹脂74bが酸素ゲッター層76と接するように、パッケージ70とガラス蓋79とを例えばエポキシ接着剤からなる接着剤80で接着し、気密封止する。これにより、波長変換部73への酸素透過を劇的に抑制することができる。 Thereafter, the resin 74b is thinly applied to the glass lid 79, and the package 70 and the glass lid 79 are adhered with an adhesive 80 made of, for example, an epoxy adhesive so that the resin 74b is in contact with the oxygen getter layer 76, and hermetically sealed. . Thereby, oxygen permeation to the wavelength conversion unit 73 can be dramatically suppressed.
 以上、本発明の第11の実施形態に係る発光装置によれば、波長変換部73へ透過する酸素量を大幅に減らすことができるので、量子ドット蛍光体75の酸化を大幅に抑制することができる。その結果、発光効率が高く、色再現性の良い発光装置を実現することができる。 As described above, according to the light emitting device according to the eleventh embodiment of the present invention, the amount of oxygen transmitted to the wavelength conversion unit 73 can be greatly reduced, so that the oxidation of the quantum dot phosphor 75 can be significantly suppressed. it can. As a result, a light emitting device with high luminous efficiency and good color reproducibility can be realized.
 なお、量子ドット蛍光体75は、第5の実施形態にて記載した材料であれば良い。また、量子ドット蛍光体75の構成は、コア/シェル型を用いたが、量子井戸型であってもよい。また、ゲッター粒子77aの材料は、第5の実施形態にて記載した材料であれば良い。また、ゲッター粒子77bの材料は、第9の実施形態にて記載した材料であれば良い。また、樹脂74aの材料は、第5の実施形態に記載した材料であれば良い。また、樹脂74bの材料は、第9の実施形態に記載した材料であれば良い。 In addition, the quantum dot fluorescent substance 75 should just be the material described in 5th Embodiment. In addition, the configuration of the quantum dot phosphor 75 is a core / shell type, but may be a quantum well type. Moreover, the material of the getter particle 77a may be the material described in the fifth embodiment. Further, the material of the getter particles 77b may be the material described in the ninth embodiment. The material of the resin 74a may be the material described in the fifth embodiment. Further, the material of the resin 74b may be the material described in the ninth embodiment.
 (第12の実施形態)
 次に、本発明の第12の実施形態に係る発光装置について説明する。本実施形態に係る発光装置の基本的な構成は、第10の実施形態と同じである。本実施形態が、第10の実施形態と異なるのは、酸素ゲッター層の上部にガラス蓋を形成している構成である。
(Twelfth embodiment)
Next, a light emitting device according to a twelfth embodiment of the present invention will be described. The basic configuration of the light emitting device according to this embodiment is the same as that of the tenth embodiment. This embodiment is different from the tenth embodiment in a configuration in which a glass lid is formed on the upper part of the oxygen getter layer.
 (構成)
 以下、本発明の第12の実施形態に係る発光装置の概略構成について、図23を用いて説明する。図23は、本発明の第12の実施形態における発光装置の断面図である。
(Constitution)
The schematic configuration of the light emitting device according to the twelfth embodiment of the present invention will be described below with reference to FIG. FIG. 23 is a cross-sectional view of a light emitting device according to a twelfth embodiment of the present invention.
 図23に示すように、パッケージ70は、樹脂からなる凹部を有する構造で、凹部の底面部には、第1電極および第2電極を有する導体からなるリードフレーム71が埋め込まれている。 As shown in FIG. 23, the package 70 has a structure having a recess made of resin, and a lead frame 71 made of a conductor having a first electrode and a second electrode is embedded in the bottom surface of the recess.
 このリードフレーム71の一部は、パッケージ70の凹部内の底面部に露出しており、第1電極および第2電極として、例えば450nmで発光する半導体発光素子72と電気的に接続している。そして凹部の底面部に配置された半導体発光素子72および凹部内に露出したリードフレーム71を覆うように波長変換部73が形成されている。 A part of the lead frame 71 is exposed at the bottom surface in the recess of the package 70, and is electrically connected to the semiconductor light emitting element 72 that emits light at 450 nm, for example, as the first electrode and the second electrode. A wavelength converter 73 is formed so as to cover the semiconductor light emitting element 72 disposed on the bottom surface of the recess and the lead frame 71 exposed in the recess.
 波長変換部73は、樹脂74aに、例えば粒径20nm以下で530nmと620nmとのピーク波長を有する量子ドット蛍光体75と、酸素を吸着するゲッター粒子77aとして例えば平均粒径50nmのチタン酸化物(TiOx:x>0)とを含有することにより構成される。 For example, the wavelength conversion unit 73 includes a quantum dot phosphor 75 having a particle diameter of 20 nm or less and a peak wavelength of 530 nm and 620 nm and a getter particle 77a that adsorbs oxygen, for example, a titanium oxide having an average particle diameter of 50 nm. TiOx: x> 0).
 また、波長変換部73を覆うように、酸素ゲッター層76が形成されている。酸素ゲッター層76は、樹脂74bに、例えば粒径100μm以下のゼオライト(アルミノケイ酸塩)を含有することによって構成されている。 Further, an oxygen getter layer 76 is formed so as to cover the wavelength conversion unit 73. The oxygen getter layer 76 is configured by containing, for example, zeolite (aluminosilicate) having a particle size of 100 μm or less in the resin 74b.
 波長変換部73とパッケージ70の凹部の内壁との間、および、酸素ゲッター層76とパッケージ70の凹部の内壁との間には、酸素バリア層78が形成されている。酸素バリア層78は、例えば銀(Ag)を少なくとも10nm以上成膜することによって形成することができる。銀は熱伝導性が高く、放熱効果もある。これにより、酸素バリア層78は、酸素を吸着するあるいは酸素を透過しないだけではなく、量子ドット蛍光体75の発熱による酸化反応の促進をも抑制することができる。 An oxygen barrier layer 78 is formed between the wavelength conversion unit 73 and the inner wall of the recess of the package 70 and between the oxygen getter layer 76 and the inner wall of the recess of the package 70. The oxygen barrier layer 78 can be formed by depositing, for example, silver (Ag) at least 10 nm or more. Silver has high thermal conductivity and also has a heat dissipation effect. Thereby, the oxygen barrier layer 78 not only adsorbs oxygen or does not transmit oxygen, but can also suppress the promotion of the oxidation reaction due to heat generation of the quantum dot phosphor 75.
 その酸素ゲッター層76と酸素バリア層78の上部をガラス蓋79で覆われるように、ガラス蓋79がパッケージ70と接着剤80で接着されている。 The glass lid 79 is bonded to the package 70 with an adhesive 80 so that the upper portions of the oxygen getter layer 76 and the oxygen barrier layer 78 are covered with the glass lid 79.
 ここで、波長変換部73に入れるゲッター粒子77aの量は、酸素が波長変換部73へ透過する経路(パッケージ70、リードフレーム71およびパッケージ70の隙間)から、樹脂74aが例えばエポキシ樹脂とすると、エポキシ樹脂に透過する酸素量(1.2×1017個:4万時間後の酸素量)より、1.3×1017個以上にする必要がある。 Here, the amount of getter particles 77a put in the wavelength conversion unit 73 is such that the resin 74a is, for example, an epoxy resin from a path (a gap between the package 70, the lead frame 71, and the package 70) through which oxygen passes through the wavelength conversion unit 73. From the amount of oxygen permeating through the epoxy resin (1.2 × 10 17 pieces: the amount of oxygen after 40,000 hours), it is necessary to make 1.3 × 10 17 pieces or more.
 また、酸素ゲッター層76に入れるゲッター粒子77bの量は、接着剤80(例えばエポキシ樹脂)から透過する酸素量(7.7×1014個:4万時間後の酸素透過量)より、7.7×1014個以上にする必要がある。 Further, the amount of getter particles 77b to be put into the oxygen getter layer 76 is determined based on the amount of oxygen transmitted from the adhesive 80 (for example, epoxy resin) (7.7 × 10 14 particles: the amount of oxygen transmitted after 40,000 hours). It needs to be 7 × 10 14 or more.
 以上、本発明の第12の実施形態に係る発光装置によれば、パッケージ70から透過した酸素が酸素バリア層78(銀)で吸着されるため、波長変換部73への酸素透過をより抑えることができる。 As described above, according to the light emitting device according to the twelfth embodiment of the present invention, oxygen transmitted from the package 70 is adsorbed by the oxygen barrier layer 78 (silver), and thus oxygen transmission to the wavelength conversion unit 73 is further suppressed. Can do.
 (製造方法)
 次に、本発明の第12の実施形態に係る発光装置の製造方法について、以下に説明する。
(Production method)
Next, a method for manufacturing a light emitting device according to the twelfth embodiment of the present invention will be described below.
 まず初めに、パッケージ70の凹部の底面および、リードフレーム71を覆うように例えばレジストマスクを形成する。その後、蒸着あるいは、スパッタなどを用いて酸素バリア層78として、例えば発光した光を反射し、なお且つ、熱伝導率の高い銀を成膜する。次に、レジストマスクの除去を行う。 First, the bottom surface of the recess of the package 70 and, for example, is formed a resist mask so as to cover the lead frame 71. Thereafter, as the oxygen barrier layer 78 using vapor deposition or sputtering, for example, the emitted light is reflected, and silver having high thermal conductivity is formed. Next, the resist mask is removed.
 その後、パッケージ70に半導体発光素子72を実装する。その後、半導体発光素子72が実装されたパッケージ70に、量子ドット蛍光体75とゲッター粒子77a(TiO:x>0)とを分散した樹脂74aをポッティングし、波長変換部73を形成する。この時、波長変換部73はパッケージ70の底面およびリードフレーム71を覆うように形成する。この波長変換部73は、樹脂74aに、量子ドット蛍光体75とゲッター粒子77aとを含有させたものである。量子ドット蛍光体75は、発光波長が530nmと620nmとで発光するように、例えばコアにCdSe、シェルにZnSを用いた粒径20nm以下の微粒子である。ゲッター粒子77aは、例えば酸素を吸着し、なお且つ、例えば450nmで発光する半導体発光素子72の発光波長および量子ドット蛍光体75により変換された波長を吸収しない材料によって構成されている。このようなゲッター粒子77aとしては、例えば平均粒径50nmのチタン酸化物である。その後、一度樹脂74aを例えば160℃で30分、熱硬化する。 Thereafter, the semiconductor light emitting element 72 is mounted on the package 70. Thereafter, a resin 74 a in which quantum dot phosphors 75 and getter particles 77 a (TiO x : x> 0) are dispersed is potted on the package 70 on which the semiconductor light emitting element 72 is mounted, thereby forming the wavelength conversion unit 73. At this time, the wavelength conversion unit 73 is formed so as to cover the bottom surface of the package 70 and the lead frame 71. The wavelength conversion unit 73 is a resin 74a containing a quantum dot phosphor 75 and getter particles 77a. The quantum dot phosphor 75 is a fine particle having a particle diameter of 20 nm or less using, for example, CdSe for the core and ZnS for the shell so as to emit light with emission wavelengths of 530 nm and 620 nm. The getter particles 77a are made of, for example, a material that adsorbs oxygen and does not absorb the emission wavelength of the semiconductor light emitting element 72 that emits light at 450 nm and the wavelength converted by the quantum dot phosphor 75, for example. Such getter particles 77a are, for example, titanium oxide having an average particle size of 50 nm. Thereafter, the resin 74a is once thermally cured at, for example, 160 ° C. for 30 minutes.
 その後、ゲッター粒子77bを分散した樹脂74bをポッティングし、酸素ゲッター層76を形成する。この時、酸素ゲッター層76は、波長変換部73およびパッケージ70の凹部を覆うように形成する。この酸素ゲッター層76は、例えばエポキシ樹脂からなる樹脂74bにゲッター粒子77bを含有させたものである。このゲッター粒子77bは、例えば粒径100μm以下のゼオライト(アルミノケイ酸塩)である。このとき、ポッティングした樹脂74bをヘラを用いてパッケージ70の凸部と同一平面にし、例えば160℃で30分、熱硬化することで、第2の酸素ゲッター層を形成する。その後、樹脂74bを例えば160℃で30分、熱硬化する。 Thereafter, the resin 74b in which the getter particles 77b are dispersed is potted to form an oxygen getter layer 76. At this time, the oxygen getter layer 76 is formed so as to cover the wavelength converter 73 and the recesses of the package 70. The oxygen getter layer 76 is obtained by containing getter particles 77b in a resin 74b made of, for example, an epoxy resin. The getter particles 77b are, for example, zeolite (aluminosilicate) having a particle size of 100 μm or less. At this time, the second oxygen getter layer is formed by making the potted resin 74b flush with the convex portion of the package 70 using a spatula and thermosetting, for example, at 160 ° C. for 30 minutes. Thereafter, the resin 74b is thermoset at 160 ° C. for 30 minutes, for example.
 その後、ガラス蓋79に樹脂74bを薄く塗布し、樹脂74bを酸素ゲッター層76と接するように、パッケージ70とガラス蓋79とを例えばエポキシ接着剤からなる接着剤80で接着し、気密封止する。これにより、波長変換部73への酸素透過を劇的に抑制することができる。また、量子ドット蛍光体75の酸化を劇的に抑制することができる。その結果、発光効率が高く、色再現性の良い発光装置を実現することができる。 Thereafter, the resin 74b is thinly applied to the glass lid 79, and the package 70 and the glass lid 79 are bonded with an adhesive 80 made of, for example, an epoxy adhesive so that the resin 74b is in contact with the oxygen getter layer 76, and hermetically sealed. . Thereby, oxygen permeation to the wavelength conversion unit 73 can be dramatically suppressed. Further, the oxidation of the quantum dot phosphor 75 can be dramatically suppressed. As a result, a light emitting device with high luminous efficiency and good color reproducibility can be realized.
 なお、量子ドット蛍光体75は、第5の実施形態にて記載した材料であれば良い。また、量子ドット蛍光体75の構成は、コア/シェル型を用いたが、量子井戸型であってもよい。また、ゲッター粒子77aの材料は、第5の実施形態にて記載した材料であれば良い。また、ゲッター粒子77bの材料は、第9の実施形態にて記載した材料であれば良い。また、樹脂74aの材料は、第5の実施形態に記載した材料であれば良い。また、樹脂74bの材料は、第9の実施形態に記載した材料であれば良い。 In addition, the quantum dot fluorescent substance 75 should just be the material described in 5th Embodiment. In addition, the configuration of the quantum dot phosphor 75 is a core / shell type, but may be a quantum well type. Moreover, the material of the getter particle 77a may be the material described in the fifth embodiment. Further, the material of the getter particles 77b may be the material described in the ninth embodiment. The material of the resin 74a may be the material described in the fifth embodiment. Further, the material of the resin 74b may be the material described in the ninth embodiment.
 (第13の実施形態)
 次に、本発明の第13の実施形態に係る発光装置について説明する。
(13th Embodiment)
Next, a light emitting device according to a thirteenth embodiment of the present invention will be described.
 (構成)
 以下、本発明の第13の実施形態に係る発光装置の概略構成について、図24を用いて説明する。図24は、本発明の第13の実施形態に係る発光装置の断面図である。
(Constitution)
The schematic configuration of the light emitting device according to the thirteenth embodiment of the present invention will be described below with reference to FIG. FIG. 24 is a cross-sectional view of a light emitting device according to a thirteenth embodiment of the present invention.
 図24に示すように、本発明の第13の実施形態に係る発光装置は、凹部を有するパッケージ70と、凹部の底面に露出したリードフレーム71と、露出したリードフレームを覆うように形成された第1の酸素ゲッター層76aと、第1の酸素ゲッター層76a上に形成された量子ドット蛍光体層75aと、量子ドット蛍光体層75aを覆うように形成された第2の酸素ゲッター層76bとを備える。 As shown in FIG. 24, the light emitting device according to the thirteenth embodiment of the present invention is formed so as to cover the package 70 having the recess, the lead frame 71 exposed on the bottom surface of the recess, and the exposed lead frame. A first oxygen getter layer 76a, a quantum dot phosphor layer 75a formed on the first oxygen getter layer 76a, and a second oxygen getter layer 76b formed so as to cover the quantum dot phosphor layer 75a. Is provided.
 パッケージ70は、樹脂からなる凹部を有する構造であり、凹部の底面部には、第1電極および第2電極を有する導体からなるリードフレーム71が埋め込まれている。 The package 70 has a structure having a recess made of resin, and a lead frame 71 made of a conductor having a first electrode and a second electrode is embedded in the bottom surface of the recess.
 このリードフレーム71の一部は、パッケージ70の凹部内の底面部に露出し、第1電極および第2電極として、例えば450nmで発光する半導体発光素子72と電気的に接続している。 A part of the lead frame 71 is exposed on the bottom surface in the recess of the package 70 and is electrically connected to the semiconductor light emitting element 72 that emits light at 450 nm, for example, as the first electrode and the second electrode.
 そして、凹部の底面部に配置された半導体発光素子72および凹部内に露出したリードフレーム71を覆うように第1の酸素ゲッター層76aが形成されている。第1の酸素ゲッター層76aは、樹脂74aに、酸素を吸着するゲッター粒子77として例えばゼオライト(アルミノケイ酸塩)を含有することによって構成されている。 A first oxygen getter layer 76a is formed so as to cover the semiconductor light emitting element 72 disposed on the bottom surface of the recess and the lead frame 71 exposed in the recess. The first oxygen getter layer 76a is configured by containing, for example, zeolite (aluminosilicate) as getter particles 77 that adsorb oxygen in the resin 74a.
 そして、凹部内の第1の酸素ゲッター層76a上には、樹脂74bに、例えば530nmと620nmとにピーク波長を有する量子ドット蛍光体75が分散された量子ドット蛍光体層75aが形成されている。この量子ドット蛍光体層75aは、パッケージ70に接しても接しなくてもよい。 And on the 1st oxygen getter layer 76a in a recessed part, the quantum dot fluorescent substance layer 75a by which the quantum dot fluorescent substance 75 which has a peak wavelength, for example to 530 nm and 620 nm is disperse | distributed to resin 74b is formed. . This quantum dot phosphor layer 75a may or may not be in contact with the package 70.
 そして、量子ドット蛍光体層75aの上には、凹部内に露出した量子ドット蛍光体層75aを覆うように第2の酸素ゲッター層76bが形成されている。第2の酸素ゲッター層76bは、樹脂74cに、酸素を吸着するゲッター粒子77として例えばゼオライト(アルミノケイ酸塩)を含有することによって構成されている。 A second oxygen getter layer 76b is formed on the quantum dot phosphor layer 75a so as to cover the quantum dot phosphor layer 75a exposed in the recess. The second oxygen getter layer 76b is configured by containing, for example, zeolite (aluminosilicate) as getter particles 77 that adsorb oxygen in the resin 74c.
 このように、量子ドット蛍光体層75aが、第1の酸素ゲッター層76a、第2の酸素ゲッター層76bおよびパッケージ70の樹脂部により覆われていることにより、パッケージ70の上方および底面部から侵入する酸素によって量子ドット蛍光体75が酸化することを抑制することができる。 As described above, the quantum dot phosphor layer 75a is covered with the first oxygen getter layer 76a, the second oxygen getter layer 76b, and the resin portion of the package 70, so that the quantum dot phosphor layer 75a enters from the upper and bottom portions of the package 70. It is possible to suppress the quantum dot phosphor 75 from being oxidized by the oxygen that is generated.
 また、量子ドット蛍光体層75aが、第1の酸素ゲッター層76aおよび第2の酸素ゲッター層76bなどゲッター粒子77のような酸素吸着剤を含む樹脂層のみで覆われている場合であっても、パッケージ70の上方および底面部から侵入する酸素によって量子ドット蛍光体75が酸化することを抑制することができる。 Further, even when the quantum dot phosphor layer 75a is covered only with a resin layer containing an oxygen adsorbent such as getter particles 77 such as the first oxygen getter layer 76a and the second oxygen getter layer 76b. Further, it is possible to suppress the quantum dot phosphor 75 from being oxidized by oxygen entering from above and the bottom surface of the package 70.
 ここで、ゲッター粒子77として用いたゼオライト(アルミノケイ酸塩)は、シリコン(Si)およびアルミニウム(Al)のまわりに4つの酸素(O)が規則正しく三次元的に連結した結晶構造を持つ規則性多孔体である。 Here, the zeolite (aluminosilicate) used as the getter particle 77 is a regular porous material having a crystal structure in which four oxygen (O) are regularly and three-dimensionally connected around silicon (Si) and aluminum (Al). Is the body.
 また、ゼオライトは、4価のSiと同じ位置に3価のAlが入る構造のため、Alがマイナスに帯電しており、電気的に中性を保つように、細孔内に陽イオンが入っている。例えばカリウム(K)を入れると、細孔径は酸素分子とほぼ同サイズの0.3nmと変化させることができ、細孔内に入った酸素は陽イオンの静電場により吸着される。このときのゼオライトの粒径は、1μm~100μmが好ましく、1μm~20μmがより好ましい。これは、粒径が大きすぎると、樹脂内にゼオライトが均一分散されず、酸素吸着効果が低減するからである。 In addition, since zeolite has a structure in which trivalent Al enters at the same position as tetravalent Si, Al is negatively charged, and cations enter pores so that it is electrically neutral. ing. For example, when potassium (K) is added, the pore diameter can be changed to 0.3 nm, which is almost the same size as the oxygen molecule, and oxygen entering the pore is adsorbed by the electrostatic field of the cation. Zeolite particle size at this time is preferably from 1 [mu] m ~ 100 [mu] m, more preferably 1 [mu] m ~ 20 [mu] m. This is because if the particle size is too large, the zeolite is not uniformly dispersed in the resin and the oxygen adsorption effect is reduced.
 以上、本発明の第13の実施形態に係る発光装置によれば、以下の作用効果を奏する。 As described above, according to the light-emitting device according to a thirteenth embodiment of the present invention has the following advantages.
 量子ドット蛍光体75の発光効率低下の要因である酸素が浸入する箇所は、パッケージ70とリードフレーム71との隙間および上面の空気と接している面である。 The location where oxygen, which is a factor for reducing the luminous efficiency of the quantum dot phosphor 75, is the space between the package 70 and the lead frame 71 and the surface in contact with the air on the top surface.
 本実施形態では、量子ドット蛍光体層75aの上部および下部が、第1の酸素ゲッター層76aおよび第2の酸素ゲッター層76bで覆われているため、量子ドット蛍光体層75aに酸素が入ってくるのを抑制することができる。これにより、酸化による量子ドット蛍光体75の発光効率低下を抑制することができるので、高い信頼性の発光装置を実現することができる。 In the present embodiment, since the upper and lower portions of the quantum dot phosphor layer 75a are covered with the first oxygen getter layer 76a and the second oxygen getter layer 76b, oxygen enters the quantum dot phosphor layer 75a. I can suppress coming. Thereby, since the luminous efficiency fall of the quantum dot fluorescent substance 75 by oxidation can be suppressed, a highly reliable light-emitting device is realizable.
 ここで、樹脂を透過する酸素量について検討する。樹脂を透過する酸素量は、樹脂が持つ酸素透過係数から算出することができる。例えば樹脂74aおよび樹脂74cとしてエポキシ樹脂(100μm)を用いる場合、酸素透過係数は52cc/m・dayであり、空気層からエポキシ樹脂に透過する酸素量は1.97×1011個/sである。 Here, the amount of oxygen that permeates the resin is examined. The amount of oxygen that permeates through the resin can be calculated from the oxygen permeation coefficient of the resin. For example, when an epoxy resin (100 μm) is used as the resin 74a and the resin 74c, the oxygen permeation coefficient is 52 cc / m 2 · day, and the amount of oxygen permeating from the air layer to the epoxy resin is 1.97 × 10 11 pieces / s. is there.
 一般に、LED照明は4万時間とも言われる長い製品寿命を持つことが要求されている。つまり、量子ドット蛍光体75の酸化を4万時間抑制する必要があり、そのときの酸素透過量は2.84×1019個である。酸素分子1個に対し、ゼオライト粒子1個が吸着することを考えた場合、透過した酸素全てを吸着するには、ゼオライトは、2.85×1019個以上を必要とする。また、リードフレーム71とパッケージ70との隙間からの酸素透過量は8.1×10個/s(4万時間後には1.2×1017個)である。そのため、量子ドット蛍光体層75aの下部に設けた酸素ゲッター層に入れるゼオライトは、1.3×1017個以上にする必要がある。 In general, LED lighting is required to have a long product life of 40,000 hours. That is, it is necessary to suppress the oxidation of the quantum dot phosphor 75 for 40,000 hours, and the oxygen permeation amount at that time is 2.84 × 10 19 pieces. When it is considered that one zeolite particle is adsorbed to one oxygen molecule, the zeolite needs to be 2.85 × 10 19 or more in order to adsorb all the permeated oxygen. The oxygen permeation amount from the gap between the lead frame 71 and the package 70 is 8.1 × 10 8 pieces / s (1.2 × 10 17 pieces after 40,000 hours). Therefore, it is necessary to use 1.3 × 10 17 or more zeolites in the oxygen getter layer provided below the quantum dot phosphor layer 75a.
 なお、本実施形態では、樹脂74aおよび樹脂74cとしてエポキシ樹脂を用いたが、樹脂74aおよび樹脂74cは、シリコーン樹脂、フッ化物樹脂、アクリル樹脂など、半導体発光素子および量子ドット蛍光体からの発光波長に対し高い透過率を有する樹脂であればよい。 In this embodiment, an epoxy resin is used as the resin 74a and the resin 74c. However, the resin 74a and the resin 74c are emission wavelengths from semiconductor light emitting elements and quantum dot phosphors such as silicone resin, fluoride resin, and acrylic resin. In contrast, any resin having a high transmittance may be used.
 また、本実施形態では、ゲッター粒子77としてゼオライト(アルミノケイ酸塩)を用いたが、これに限らない。例えばゲッター粒子77の候補として金属酸化物や多孔質材料がある。 In this embodiment, zeolite (aluminosilicate) is used as the getter particle 77, but the present invention is not limited to this. For example, there are metal oxides and porous materials as candidates for the getter particles 77.
 金属酸化物のゲッター粒子77としては、例えばチタン酸化物(TiO)、ニオブ酸化物(NbO)、ハフニウム酸化物(HfO)、インジウム酸化物(In)、タングステン酸化物(WO)、スズ酸化物(SnO)、亜鉛酸化物(ZnO)、ジルコニア酸化物(ZrO)、マグネシウム酸化物(MgO)、アンチモン酸化物(SbO)などが挙げられる。多孔質材料のゲッター粒子77としては、例えば二酸化ケイ素(SiO)、シリコン酸窒素(SiON)などが挙げられる(但し、0<X)。 Examples of the metal oxide getter particles 77 include titanium oxide (TiO x ), niobium oxide (NbO x ), hafnium oxide (HfO x ), indium oxide (In 2 O x ), tungsten oxide (WO x ), tin oxide (SnO x ), zinc oxide (ZnO x ), zirconia oxide (ZrO x ), magnesium oxide (MgO), antimony oxide (SbO x ), and the like. Examples of the porous material getter particles 77 include silicon dioxide (SiO x ) and silicon oxynitride (SiON) (where 0 <X).
 量子ドット蛍光体75の構成は、コア/シェル型、量子井戸型などが挙げられるが、本実施形態では、いずれの構成でも適用することができる。 The configuration of the quantum dot phosphor 75 includes a core / shell type, a quantum well type, and the like, but any configuration can be applied in the present embodiment.
 また、量子ドット蛍光体75を構成しているコア/シェルの材料は、例えば、II-VI族化合物の場合として、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnZe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnZeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、CdHgSeTe、CdHgSTe、HgZnSS、HgZnSeTe、HgZnSTeなどから選択される少なくとも1つが挙げられる。 The core / shell material constituting the quantum dot phosphor 75 is, for example, a group II-VI compound such as CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnZe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnZeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, CdHgSeTe, CdHgSTe, HgZnSS, Examples thereof include at least one selected from HgZnSeTe, HgZnSTe, and the like.
 また、III-V族化合物の例として、GaN、GaP、GaAs、GaSb、AlN、AlGaN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、InGaN、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb、などから選択される少なくとも1つが挙げられる。 Examples of III-V compounds include GaN, GaP, GaAs, GaSb, AlN, AlGaN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, InGaN, GaNP, GANAS, GaNSb, GaPAs, GaPSb, and AlNP. , AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, InAlNP, InAlNSIn, InAlNP, InAlNSIn At least one of which may be mentioned.
 (製造方法)
 次に、本発明の第13の実施形態に係る発光装置の製造方法について、以下に説明する。
(Production method)
Next, a method for manufacturing a light emitting device according to the thirteenth embodiment of the present invention will be described below.
 まず初めに、半導体発光素子72が実装されたパッケージ70に、ゲッター粒子77(ゼオライト)を分散した樹脂74aをポッティングする。この時、樹脂74aは、パッケージ70の底面の少なくとも一部およびリードフレーム71を覆うように形成する。この樹脂74aは、例えば酸素を吸着し、なお且つ、例えば450nmで発光する半導体発光素子72の発光波長および量子ドット蛍光体75により変換された波長を吸収しないゲッター粒子77を含有している。このようなゲッター粒子77としては、酸素分子径0.3nmと同等の細孔径を有する粒径サイズが約5~20μmのゼオライトがある。 First, a resin 74a in which getter particles 77 (zeolite) are dispersed is potted in a package 70 on which a semiconductor light emitting element 72 is mounted. At this time, the resin 74a is formed so as to cover at least a portion and the lead frame 71 of the bottom surface of the package 70. This resin 74a contains getter particles 77 that adsorb oxygen, for example, and that do not absorb the emission wavelength of the semiconductor light emitting element 72 that emits light at 450 nm and the wavelength converted by the quantum dot phosphor 75, for example. Examples of such getter particles 77 include zeolite having a pore size equivalent to an oxygen molecular size of 0.3 nm and a particle size of about 5 to 20 μm.
 その後、樹脂74aを、例えば160℃で30分、熱硬化することで、第1の酸素ゲッター層76aを形成する。 Thereafter, the first oxygen getter layer 76a is formed by thermosetting the resin 74a, for example, at 160 ° C. for 30 minutes.
 次に、凹部内の第1の酸素ゲッター層76a上に、例えばコアにCdSe、シェルにZnSを用いた粒径20nm以下の例えば530nmと620nmとにピーク波長を有する量子ドット蛍光体75を分散した樹脂74bをポッティングする。そして、樹脂74bを160℃で30分、熱硬化させることで、量子ドット蛍光体層75aを形成する。 Next, on the first oxygen getter layer 76a in the recess, a quantum dot phosphor 75 having a peak wavelength of, for example, 530 nm and 620 nm having a particle size of 20 nm or less using CdSe for the core and ZnS for the shell is dispersed. Potting resin 74b. Then, the quantum dot phosphor layer 75a is formed by thermosetting the resin 74b at 160 ° C. for 30 minutes.
 そして、量子ドット蛍光体層75aの上に、ゲッター粒子77(ゼオライト)を分散した樹脂74cを、凹部内の量子ドット蛍光体層75aの上部を覆うようにポッティングし、例えば160℃で30分、熱硬化することで、第2の酸素ゲッター層76bを形成する。 Then, a resin 74c in which getter particles 77 (zeolite) is dispersed is potted on the quantum dot phosphor layer 75a so as to cover the top of the quantum dot phosphor layer 75a in the recess, for example, at 160 ° C. for 30 minutes, The second oxygen getter layer 76b is formed by thermosetting.
 (第14の実施形態)
 次に、本発明の第14の実施形態に係る発光装置について説明する。
(Fourteenth embodiment)
Next, a light emitting device according to a fourteenth embodiment of the present invention will be described.
 (構成)
 以下、本発明の第14の実施形態に係る発光装置の概略構成について、図25を用いて説明する。図25は、本発明の第14の実施形態に係る発光装置の断面図である。
(Constitution)
The schematic configuration of the light emitting device according to the fourteenth embodiment of the present invention will be described below with reference to FIG. FIG. 25 is a sectional view of a light emitting device according to a fourteenth embodiment of the present invention.
 図25に示すように、本発明の第14の実施形態に係る発光装置は、第13の実施形態に係る発光装置の上部をガラス蓋79で覆う構成である。このように、パッケージ70の上部の最も酸素に触れる箇所をガラス蓋79で覆うことにより、第2の酸素ゲッター層76bを透過する酸素の量を大幅に抑制することができる。これにより、酸化による量子ドット蛍光体75の発光効率の低下を防ぐことができる。 As shown in FIG. 25, the light emitting device according to the fourteenth embodiment of the present invention is configured to cover the top of the light emitting device according to the thirteenth embodiment with a glass lid 79. Thus, by covering the portion of the upper part of the package 70 that is most in contact with oxygen with the glass lid 79, the amount of oxygen that permeates the second oxygen getter layer 76b can be significantly suppressed. Thereby, the fall of the luminous efficiency of the quantum dot fluorescent substance 75 by oxidation can be prevented.
 (製造方法)
 次に、本発明の第14の実施形態に係る発光装置の製造方法について説明する。
(Production method)
Next, a method for manufacturing a light emitting device according to the fourteenth embodiment of the present invention will be described.
 まず初めに、半導体発光素子72が実装されたパッケージ70に、ゲッター粒子77(ゼオライト)を分散した樹脂74aをポッティングする。この時、樹脂74aは、パッケージ70の底面の少なくとも一部およびリードフレーム71を覆うように形成する。この樹脂74aは、例えば酸素を吸着し、なお且つ、例えば450nmで発光する半導体発光素子72の発光波長および量子ドット蛍光体75により変換された波長を吸収しないゲッター粒子77を含有している。このようなゲッター粒子77としては、酸素分子径0.3nmと同等の細孔径を有する粒径サイズが約5~20μmのゼオライトがある。 First, a resin 74a in which getter particles 77 (zeolite) are dispersed is potted in a package 70 on which a semiconductor light emitting element 72 is mounted. At this time, the resin 74 a is formed so as to cover at least a part of the bottom surface of the package 70 and the lead frame 71. This resin 74a contains getter particles 77 that adsorb oxygen, for example, and that do not absorb the emission wavelength of the semiconductor light emitting element 72 that emits light at 450 nm and the wavelength converted by the quantum dot phosphor 75, for example. Examples of such getter particles 77 include zeolite having a pore size equivalent to an oxygen molecular size of 0.3 nm and a particle size of about 5 to 20 μm.
 その後、樹脂74aを、例えば160℃で30分、熱硬化することで、第1の酸素ゲッター層76aを形成する。 Thereafter, the first oxygen getter layer 76a is formed by thermosetting the resin 74a, for example, at 160 ° C. for 30 minutes.
 次に、凹部内の第1の酸素ゲッター層76a上に、例えばコアにCdSe、シェルにZnSを用いた粒径20nm以下の例えば530nmと620nmとにピーク波長を有する量子ドット蛍光体75を分散した樹脂74bをポッティングする。そして、樹脂74bを160℃で30分、熱硬化させることで、量子ドット蛍光体層75aを形成する。そして、量子ドット蛍光体層75aの上に、ゲッター粒子77(ゼオライト)を分散した樹脂74cを、凹部内の量子ドット蛍光体層75aの上部を覆うようにポッティングする。このとき、ポッティングした樹脂74cをヘラを用いてパッケージ70の凸部と同一平面にし、例えば160℃で30分、熱硬化することで、第2の酸素ゲッター層76bを形成する。 Next, on the first oxygen getter layer 76a in the recess, a quantum dot phosphor 75 having a peak wavelength of, for example, 530 nm and 620 nm having a particle size of 20 nm or less using CdSe for the core and ZnS for the shell is dispersed. Potting resin 74b. Then, the quantum dot phosphor layer 75a is formed by thermosetting the resin 74b at 160 ° C. for 30 minutes. Then, a resin 74c in which getter particles 77 (zeolite) are dispersed is potted on the quantum dot phosphor layer 75a so as to cover the upper part of the quantum dot phosphor layer 75a in the recess. At this time, the second resin getter layer 76b is formed by making the potted resin 74c flush with the convex portion of the package 70 using a spatula and thermosetting at 160 ° C. for 30 minutes, for example.
 その後、ガラス蓋79に樹脂74cを薄く塗布し、樹脂74cが第2の酸素ゲッター層76bと接するように、ガラス蓋79とパッケージ70とを有機高分子接着剤(例えばエポキシ樹脂)を用いて接着する。 Thereafter, a thin resin 74c is applied to the glass lid 79, and the glass lid 79 and the package 70 are bonded using an organic polymer adhesive (for example, epoxy resin) so that the resin 74c is in contact with the second oxygen getter layer 76b. To do.
 以上、本発明の第14の実施形態に係る発光装置によれば、パッケージ70の上部の最も酸素に触れる箇所をガラス蓋79で覆うことにより、第2の酸素ゲッター層76bを透過する酸素の量を大幅に抑制することができる。これにより、酸化による量子ドット蛍光体75の発光効率の低下を防ぐことができる。 As described above, according to the light emitting device of the fourteenth embodiment of the present invention, the amount of oxygen that passes through the second oxygen getter layer 76b is covered with the glass lid 79 where the uppermost portion of the package 70 is exposed to oxygen. Can be greatly suppressed. Thereby, the fall of the luminous efficiency of the quantum dot fluorescent substance 75 by oxidation can be prevented.
 また、本実施形態において、パッケージ70とガラス蓋79との間の有機高分子接着剤から透過する酸素の透過量は、5.4×10個/s(4万時間後には7.8×1016個)である。量子ドット蛍光体層75aの上部に設けた第2の酸素ゲッター層76bへ混ぜるゲッター粒子77の量は、酸素分子1個に対し、ゼオライト粒子1個が吸着することを考えた場合、透過した酸素全てを吸着するには7.9×1016個以上にする必要がある。また、量子ドット蛍光体層75aの下部に設けた酸素ゲッター層に入れるゼオライトは、第13の実施形態の製造方法にて述べた量を入れればよい。 In this embodiment, the amount of oxygen permeated from the organic polymer adhesive between the package 70 and the glass lid 79 is 5.4 × 10 8 pieces / s (7.8 × after 40,000 hours). 10 16 ). The amount of getter particles 77 mixed with the second oxygen getter layer 76b provided on the top of the quantum dot phosphor layer 75a is oxygen permeated when one zeolite particle is adsorbed to one oxygen molecule. In order to adsorb all, it is necessary to make it 7.9 × 10 16 or more. Further, the amount of zeolite described in the manufacturing method of the thirteenth embodiment may be added to the zeolite to be put in the oxygen getter layer provided below the quantum dot phosphor layer 75a.
 なお、本実施形態では、ゲッター粒子77としてゼオライト(アルミノケイ酸塩)を用いたが、これに限らない。ゲッター粒子77の候補として金属酸化物や多孔質材料があり、その材料は第13の実施形態に列挙したものであれば良い。また、量子ドット蛍光体75の構成は、コア/シェル型を用いたが、量子井戸型であってもよい。また、量子ドット蛍光体75を構成している材料は、第13の実施形態に列挙したものであれば良い。また、樹脂74a、樹脂74bの材料は、第13の実施形態に列挙したものであれば良い。 In this embodiment, zeolite (aluminosilicate) is used as the getter particle 77, but the present invention is not limited to this. There are metal oxides and porous materials as candidates for the getter particles 77, and the materials may be those listed in the thirteenth embodiment. In addition, the configuration of the quantum dot phosphor 75 is a core / shell type, but may be a quantum well type. Moreover, the material which comprises the quantum dot fluorescent substance 75 should just be enumerated in 13th Embodiment. Moreover, the material of resin 74a and resin 74b should just be what was enumerated in 13th Embodiment.
 また、本実施形態では、パッケージ70とガラス蓋79との接着に有機高分子接着剤を用いたが、この接着剤の中にもゲッター粒子77を入れても良い。これにより、接着面からの酸素透過を抑制できる。 In this embodiment, an organic polymer adhesive is used for bonding the package 70 and the glass lid 79. However, getter particles 77 may be included in the adhesive. Thereby, oxygen permeation from the bonding surface can be suppressed.
 (第15の実施形態)
 次に、本発明の第15の実施形態に係る発光装置について説明する。
(Fifteenth embodiment)
Next, a light emitting device according to a fifteenth embodiment of the present invention will be described.
 (構成)
 以下、本発明の第15の実施形態に係る発光装置の概略構成について、図26を用いて説明する。図26は、本発明の第15の実施形態に係る発光装置の断面図である。
(Constitution)
The schematic configuration of the light emitting device according to the fifteenth embodiment of the present invention will be described below with reference to FIG. FIG. 26 is a sectional view of a light emitting device according to the fifteenth embodiment of the present invention.
 図26に示すように、本発明の第15の実施形態に係る発光装置は、第13の実施形態と同様に、パッケージ70と、リードフレーム71と、第1の酸素ゲッター層76aと、量子ドット蛍光体層75aと、第2の酸素ゲッター層76bとを備える。さらに、本実施形態に係る発光装置は、酸素バリア層78を備える。 As shown in FIG. 26, the light emitting device according to the fifteenth embodiment of the present invention is similar to the thirteenth embodiment in the package 70, the lead frame 71, the first oxygen getter layer 76a, and the quantum dots. A phosphor layer 75a and a second oxygen getter layer 76b are provided. Furthermore, the light emitting device according to this embodiment includes an oxygen barrier layer 78.
 パッケージ70は、樹脂からなる凹部を有する構造であり、凹部の底面部には、第1電極および第2電極を有する導体からなるリードフレーム71が埋め込まれている。 The package 70 has a structure having a recess made of resin, and a lead frame 71 made of a conductor having a first electrode and a second electrode is embedded in the bottom surface of the recess.
 このリードフレーム71の一部は、パッケージ70の凹部内の底面部に露出しており、第1電極および第2電極として、例えば450nmで発光する半導体発光素子72と電気的に接続している。 A part of the lead frame 71 is exposed at the bottom surface in the recess of the package 70, and is electrically connected to the semiconductor light emitting element 72 that emits light at 450 nm, for example, as the first electrode and the second electrode.
 そして、凹部の底面部に配置された半導体発光素子72および凹部内に露出したリードフレーム71を覆うように第1の酸素ゲッター層76aが形成されている。第1の酸素ゲッター層76aは、樹脂74aに、例えば酸素を吸着するゲッター粒子77として例えばゼオライト(アルミノケイ酸塩)を含有することによって構成されている。 A first oxygen getter layer 76a is formed so as to cover the semiconductor light emitting element 72 disposed on the bottom surface of the recess and the lead frame 71 exposed in the recess. The first oxygen getter layer 76a is constituted by containing, for example, zeolite (aluminosilicate) as getter particles 77 that adsorb oxygen, for example, in the resin 74a.
 そして、凹部内の第1の酸素ゲッター層76a上には、樹脂74bに、例えば530nmと620nmとにピーク波長を有する量子ドット蛍光体75を分散した量子ドット蛍光体層75aが形成されている。この量子ドット蛍光体層75aは、パッケージ70に接しても接しなくてもよい。 Then, on the first oxygen getter layer 76a in the recess, a quantum dot phosphor layer 75a in which a quantum dot phosphor 75 having peak wavelengths of, for example, 530 nm and 620 nm is dispersed in the resin 74b is formed. This quantum dot phosphor layer 75a may or may not be in contact with the package 70.
 そして、量子ドット蛍光体層75aの上には、凹部内に露出した量子ドット蛍光体層75aを覆うように第2の酸素ゲッター層76bが形成されている。第2の酸素ゲッター層76bは、樹脂74cに、酸素を吸着するゲッター粒子77として、例えばゼオライト(アルミノケイ酸塩)を含有することによって構成されている。 A second oxygen getter layer 76b is formed on the quantum dot phosphor layer 75a so as to cover the quantum dot phosphor layer 75a exposed in the recess. The second oxygen getter layer 76b is configured by containing, for example, zeolite (aluminosilicate) as getter particles 77 that adsorb oxygen to the resin 74c.
 第1の酸素ゲッター層76a、量子ドット蛍光体層75aおよび第2の酸素ゲッター層76bとパッケージ70の側壁(凹部の内壁)との間には、酸素を吸着するまたは酸素が透過しない層として酸素バリア層78が形成されている。この酸素バリア層78として、例えば反射金属膜(例えば銀)あるいは多孔質粒子膜(例えばゼオライト)を用いることが好ましい。 Between the first oxygen getter layer 76a, the quantum dot phosphor layer 75a and the second oxygen getter layer 76b and the side wall (inner wall of the recess) of the package 70, oxygen is adsorbed or oxygen is not transmitted. A barrier layer 78 is formed. As the oxygen barrier layer 78, for example, a reflective metal film (for example, silver) or a porous particle film (for example, zeolite) is preferably used.
 この構成にすることで、パッケージ70の側壁を透過する微量の酸素を抑制することができる。これにより、パッケージ70の側面と接する量子ドット蛍光体75の酸化を抑制することができ、色ムラ、発光効率の低下を防止することができる。 With this configuration, a small amount of oxygen that permeates the side wall of the package 70 can be suppressed. Thereby, the oxidation of the quantum dot phosphor 75 in contact with the side surface of the package 70 can be suppressed, and color unevenness and a decrease in light emission efficiency can be prevented.
 (製造方法)
 次に、本発明の第15の実施形態に係る発光装置の製造方法について説明する。なお、本実施形態における製造方法では、第13の実施形態に対して追加する部分を中心に説明する。
(Production method)
Next, a method for manufacturing a light emitting device according to the fifteenth embodiment of the present invention will be described. Note that, in the manufacturing method according to the present embodiment, portions added to the thirteenth embodiment will be mainly described.
 例えばパッケージ70の内壁に酸素バリア層78として、例えば銀(Ag)からなる反射金属膜を蒸着、スパッタ、メッキ、電着法などを用いて成膜する。 For example, a reflective metal film made of, for example, silver (Ag) is formed on the inner wall of the package 70 as an oxygen barrier layer 78 by vapor deposition, sputtering, plating, electrodeposition, or the like.
 次に、半導体発光素子72をパッケージに実装する。その後、第13の実施形態の製造方法と同様に、量子ドット蛍光体層75aの上部および下部を酸素ゲッター層で覆うことで発光装置を作製することができる。 Next, the semiconductor light emitting element 72 is mounted on the package. Thereafter, similarly to the manufacturing method of the thirteenth embodiment, the light emitting device can be manufactured by covering the upper and lower portions of the quantum dot phosphor layer 75a with an oxygen getter layer.
 以上、本発明の第15の実施形態に係る発光装置によれば、第13の実施形態の作用効果に加えて以下の作用効果を奏する。 As mentioned above, according to the light-emitting device which concerns on 15th Embodiment of this invention, in addition to the effect of 13th Embodiment, there exist the following effects.
 パッケージ70は樹脂で成型しているため、パッケージ70からも微量の酸素が透過する。第13および第14の実施形態ではパッケージ側面と量子ドット蛍光体層75aが接している箇所においては量子ドット蛍光体75の酸化が起こり発光しなくなるため、色むらが発生する。 Since the package 70 is molded from resin, a small amount of oxygen permeates from the package 70 as well. In the thirteenth and fourteenth embodiments, the quantum dot phosphor 75 is oxidized at the portion where the package side surface and the quantum dot phosphor layer 75a are in contact with each other, so that no light is emitted.
 しかし、本実施形態のように、酸素バリア層78を設けることにより、パッケージ70からの酸素の透過を抑制することができるので、量子ドット蛍光体層75aとパッケージ70の側面とが接する箇所の量子ドット蛍光体75の酸化を抑制することができる。その結果、色むらおよび発光効率の低下を抑制することが可能である。 However, by providing the oxygen barrier layer 78 as in the present embodiment, it is possible to suppress the transmission of oxygen from the package 70, so that the quantum dot phosphor layer 75a and the side surface of the package 70 are in contact with the quantum. The oxidation of the dot phosphor 75 can be suppressed. As a result, color unevenness and a decrease in light emission efficiency can be suppressed.
 なお、本実施形態では、酸素バリア層78の材料として銀を用いたが、これに限らない。酸素バリア層78の材料としては、酸素を吸着する材料あるいは酸素を透過しない材料を用いればよく、例えば、金属、金属酸化物、多孔質粒子ならば特に制限はない。金属ならば、例えば金、銀、アルミニウム、チタン、マグネシウム、ニッケルなどが挙げられる。金属酸化物ならば、例えばチタン酸化物、ニオブ酸化物、ハフニウム酸化物、インジウム酸化物、タングステン酸化物、スズ酸化物、亜鉛酸化物、ジルコニア酸化物、マグネシウム酸化物、アンチモン酸化物などが挙げられる。多孔質粒子の場合は、例えば、二酸化ケイ素、シリコン酸窒素、ゼオライトなどが挙げられる。 In this embodiment, silver is used as the material of the oxygen barrier layer 78, but the present invention is not limited to this. As a material of the oxygen barrier layer 78, a material that adsorbs oxygen or a material that does not transmit oxygen may be used. For example, a metal, a metal oxide, and porous particles are not particularly limited. Examples of the metal include gold, silver, aluminum, titanium, magnesium, and nickel. Examples of the metal oxide include titanium oxide, niobium oxide, hafnium oxide, indium oxide, tungsten oxide, tin oxide, zinc oxide, zirconia oxide, magnesium oxide, and antimony oxide. . In the case of porous particles, for example, silicon dioxide, silicon oxynitrate, zeolite and the like can be mentioned.
 この時、パッケージ70の側壁から透過する酸素量は、5.3×10個/s(4万時間後では7.7×1016個)である。この時、パッケージ70の側面には、酸素バリア層78として例えば銀を用いた場合、膜厚は少なくとも10nm以上必要である。 At this time, the amount of oxygen permeating from the side wall of the package 70 is 5.3 × 10 8 / s (7.7 × 10 16 after 40,000 hours). At this time, when silver is used as the oxygen barrier layer 78 on the side surface of the package 70, the film thickness needs to be at least 10 nm or more.
 また、量子ドット蛍光体層75aの上部および下部に形成した酸素ゲッター層に入れるゼオライト(ゲッター粒子77)は、第13の実施形態の製造方法にて述べた量を入れればよい。 Further, the amount of zeolite (getter particles 77) to be put in the oxygen getter layer formed above and below the quantum dot phosphor layer 75a may be the amount described in the manufacturing method of the thirteenth embodiment.
 なお、本実施形態では、ゲッター粒子77としてゼオライト(アルミノケイ酸塩)を用いたが、これに限らない。ゲッター粒子77の候補として金属酸化物や多孔質材料があり、その材料は第13の実施形態に列挙したものであれば良い。また、量子ドット蛍光体75の構成は、コア/シェル型を用いたが、量子井戸型であってもよい。また、量子ドット蛍光体75を構成している材料は、第13の実施形態に列挙したものであれば良い。また、樹脂74a、樹脂74bの材料は、第13の実施形態に列挙したものであれば良い。 In this embodiment, zeolite (aluminosilicate) is used as the getter particle 77, but the present invention is not limited to this. There are metal oxides and porous materials as candidates for the getter particles 77, and the materials may be those listed in the thirteenth embodiment. In addition, the configuration of the quantum dot phosphor 75 is a core / shell type, but may be a quantum well type. Moreover, the material which comprises the quantum dot fluorescent substance 75 should just be enumerated in 13th Embodiment. Moreover, the material of resin 74a and resin 74b should just be what was enumerated in 13th Embodiment.
 (第16の実施形態)
 次に、本発明の第16の実施形態に係る発光装置について説明する。
(Sixteenth embodiment)
Next, a light emitting device according to a sixteenth embodiment of the present invention will be described.
 (構成)
 以下、本発明の第16の実施形態に係る発光装置の概略構成について、図27を用いて説明する。図27は、本発明の第16の実施形態における発光装置の断面図である。
(Constitution)
The schematic configuration of the light emitting device according to the sixteenth embodiment of the present invention will be described below with reference to FIG. FIG. 27 is a cross-sectional view of the light emitting device in the sixteenth embodiment of the present invention.
 図27に示すように、本発明の第16の実施形態に係る発光装置は、第15の実施形態に係る発光装置の上部をガラス蓋79で覆う構成である。このように、パッケージ70の上部の最も酸素に触れる箇所をガラス蓋79で覆うことにより、第2の酸素ゲッター層76bを透過する酸素の量を大幅に抑制することができる。これにより、量子ドット蛍光体75の発光効率の低下を防ぐことができる。 As shown in FIG. 27, the light-emitting device according to the sixteenth embodiment of the present invention is configured to cover the top of the light-emitting device according to the fifteenth embodiment with a glass lid 79. Thus, by covering the portion of the upper part of the package 70 that is most in contact with oxygen with the glass lid 79, the amount of oxygen that permeates the second oxygen getter layer 76b can be significantly suppressed. Thereby, the fall of the luminous efficiency of quantum dot fluorescent substance 75 can be prevented.
 以上、本発明の第16の実施形態に係る発光装置によれば、パッケージ70の側壁を透過する微量の酸素を抑制することができる。これにより、パッケージ70の側面と接する量子ドット蛍光体75の酸化を抑制することができ。色ムラ、発光効率の低下を防止することができる。 As described above, according to the light emitting device according to the sixteenth embodiment of the present invention, it is possible to suppress a trace amount of oxygen that passes through the side wall of the package 70. Thereby, the oxidation of the quantum dot phosphor 75 in contact with the side surface of the package 70 can be suppressed. Color unevenness and a decrease in luminous efficiency can be prevented.
 (製造方法)
 次に、本発明の第16の実施形態に係る発光装置の製造方法について説明する。
(Production method)
Next, a method for manufacturing a light emitting device according to a sixteenth embodiment of the present invention will be described.
 まず初めに、パッケージ70の凹部の底面およびリードフレーム71を覆うように、例えばレジストマスクを形成する。 First, for example, a resist mask is formed so as to cover the bottom surface of the recess of the package 70 and the lead frame 71.
 その後、蒸着あるいは、スパッタなどを用いて酸素バリア層78として、例えば発光した光を反射し、なお且つ、熱伝導率の高い銀を、パッケージ70の凹部の側壁(凹部の内壁)に成膜する。次に、レジストマスクの除去を行う。その後、パッケージ70に半導体発光素子72を実装する。 Thereafter, as the oxygen barrier layer 78 using vapor deposition, sputtering, or the like, for example, the light that is emitted is reflected, and silver having high thermal conductivity is deposited on the sidewall of the recess of the package 70 (inner wall of the recess). . Next, the resist mask is removed. Thereafter, the semiconductor light emitting element 72 is mounted on the package 70.
 その後、半導体発光素子72が実装されたパッケージ70に、量子ドット蛍光体75とゲッター粒子77(ゼオライト)とを分散した樹脂74aをポッティングする。この時、樹脂74aは、パッケージ70の底面と少なくとも一部およびリードフレーム71を覆うように形成する。この樹脂74aは、例えば酸素を吸着し、なお且つ、例えば450nmで発光する半導体発光素子72の発光波長および量子ドット蛍光体75により変換された波長を吸収しないゲッター粒子77を含有している。このようなゲッター粒子77としては、酸素分子径0.3nmと同等の細孔径を有する粒径サイズが約5~20μmのゼオライトがある。その後、樹脂74aを、例えば160℃で30分、熱硬化することで、第1の酸素ゲッター層76aを形成する。 Thereafter, a resin 74a in which quantum dot phosphors 75 and getter particles 77 (zeolite) are dispersed is potted on the package 70 on which the semiconductor light emitting element 72 is mounted. At this time, the resin 74 a is formed so as to cover the bottom surface and at least a part of the package 70 and the lead frame 71. This resin 74a contains getter particles 77 that adsorb oxygen, for example, and that do not absorb the emission wavelength of the semiconductor light emitting element 72 that emits light at 450 nm and the wavelength converted by the quantum dot phosphor 75, for example. Examples of such getter particles 77 include zeolite having a pore size equivalent to an oxygen molecular size of 0.3 nm and a particle size of about 5 to 20 μm. Thereafter, the resin 74a is thermally cured, for example, at 160 ° C. for 30 minutes, thereby forming the first oxygen getter layer 76a.
 次に、凹部内の第1の酸素ゲッター層76a上に、例えばコアにCdSe、シェルにZnSを用いた粒径20nm以下の例えば530nmと620nmとにピーク波長を有する量子ドット蛍光体75を分散した樹脂74bをポッティングする。そして、樹脂74bを160℃で30分、熱硬化させることで、量子ドット蛍光体層75aを形成する。 Next, on the first oxygen getter layer 76a in the recess, a quantum dot phosphor 75 having a peak wavelength of, for example, 530 nm and 620 nm having a particle size of 20 nm or less using CdSe for the core and ZnS for the shell is dispersed. Potting resin 74b. Then, the quantum dot phosphor layer 75a is formed by thermosetting the resin 74b at 160 ° C. for 30 minutes.
 そして、量子ドット蛍光体層75aの上に、ゲッター粒子77(ゼオライト)を分散した樹脂74cを、凹部内の量子ドット蛍光体層75aの上部を覆うようにポッティングする。このとき、ポッティングした樹脂74cをヘラを用いてパッケージ70の凸部と同一平面にし、例えば160℃で30分、熱硬化することで、第2の酸素ゲッター層76bを形成する。 Then, a resin 74c in which getter particles 77 (zeolite) are dispersed is potted on the quantum dot phosphor layer 75a so as to cover the upper part of the quantum dot phosphor layer 75a in the recess. At this time, the second resin getter layer 76b is formed by making the potted resin 74c flush with the convex portion of the package 70 using a spatula and thermosetting at 160 ° C. for 30 minutes, for example.
 その後、ガラス蓋79に樹脂74cを薄く塗布し、樹脂74cが第2の酸素ゲッター層76bと接するように、ガラス蓋79とパッケージ70とを接着剤(例えばエポキシ樹脂)を用いて接着する。 Thereafter, the resin 74c is thinly applied to the glass lid 79, and the glass lid 79 and the package 70 are bonded using an adhesive (for example, epoxy resin) so that the resin 74c is in contact with the second oxygen getter layer 76b.
 なお、本実施形態において、量子ドット蛍光体75は、第13の実施形態にて記載した材料であれば良い。また、量子ドット蛍光体75の構成は、コア/シェル型を用いたが、量子井戸型であってもよい。また、ゲッター粒子77の材料は、第13の実施形態にて記載してある材料であれば良い。また、樹脂74a、樹脂74cの材料は、第13の実施形態に記載したものであれば良い。 In addition, in this embodiment, the quantum dot fluorescent substance 75 should just be the material described in 13th Embodiment. In addition, the configuration of the quantum dot phosphor 75 is a core / shell type, but may be a quantum well type. The material of the getter particles 77 may be any material described in the thirteenth embodiment. Moreover, the material of resin 74a and resin 74c should just be what was described in 13th Embodiment.
 また、本実施形態では、酸素バリア層78として、銀を用いたがこれに限らず、酸素を吸着する材料あるいは酸素を透過しない材料、例えば、金属、金属酸化物、多孔質粒子ならば特に制限はなく、第15の実施形態にて挙げた材料であれば良い。 In the present embodiment, silver is used as the oxygen barrier layer 78, but the oxygen barrier layer 78 is not limited thereto, and is not particularly limited if it is a material that adsorbs oxygen or a material that does not transmit oxygen, such as metal, metal oxide, and porous particles. There is no problem as long as it is the material mentioned in the fifteenth embodiment.
 また、最も酸素に触れる箇所をガラス蓋79で覆うことにより、酸素ゲッター層にて吸着できず量子ドット蛍光体層75aへ透過する酸素を抑制することができる。これにより、より酸素透過量を減らすことができ、酸化による量子ドット蛍光体75の発光効率の低下を防ぐことができる。 Further, by covering the portion that is most in contact with oxygen with the glass lid 79, it is possible to suppress oxygen that cannot be adsorbed by the oxygen getter layer and permeate the quantum dot phosphor layer 75a. Thereby, the amount of oxygen permeation can be further reduced, and a decrease in the light emission efficiency of the quantum dot phosphor 75 due to oxidation can be prevented.
 また、本実施形態において、有機高分子接着剤(例えばエポキシ)から透過する酸素の透過量は、5.3×10個/s(4万時間後には7.7×1014個)であり、量子ドット蛍光体層75aの下部に設けた第1の酸素ゲッター層76aへ混ぜるゲッター粒子77の量は、酸素分子1個に対し、ゼオライト粒子1個が吸着することを考えた場合、透過した酸素全てを吸着するには、7.8×1014個以上必要である。また、量子ドット蛍光体層75aの下部に設けた第1の酸素ゲッター層76aに入れるゼオライトは、第13の実施形態の製造方法にて述べた量を入れればよい。また、量子ドット蛍光体層75aの上部に設けた第2の酸素ゲッター層76bに入れるゼオライトは、第13の実施形態の製造方法にて述べた量を入れればよい。また、酸素バリア層78として銀を用いた場合、膜厚は少なくとも10nm以上必要である。 In this embodiment, the amount of oxygen permeated from the organic polymer adhesive (for example, epoxy) is 5.3 × 10 6 pieces / s (7.7 × 10 14 pieces after 40,000 hours). The amount of getter particles 77 mixed with the first oxygen getter layer 76a provided at the bottom of the quantum dot phosphor layer 75a permeates when one zeolite particle is adsorbed to one oxygen molecule. In order to adsorb all the oxygen, 7.8 × 10 14 or more are necessary. Further, the amount of zeolite described in the manufacturing method of the thirteenth embodiment may be added to the zeolite to be put in the first oxygen getter layer 76a provided below the quantum dot phosphor layer 75a. In addition, the amount of zeolite described in the manufacturing method of the thirteenth embodiment may be added to the second oxygen getter layer 76b provided on the top of the quantum dot phosphor layer 75a. When silver is used as the oxygen barrier layer 78, the film thickness needs to be at least 10 nm.
 また、本実施形態では、ゲッター粒子77としてゼオライト(アルミノケイ酸塩)を用いたが、これに限らない。ゲッター粒子77の候補として金属酸化物や多孔質材料があり、その材料は第13の実施形態に列挙したものであれば良い。また、量子ドット蛍光体75の構成は、コア/シェル型を用いたが、量子井戸型であってもよい。 In this embodiment, zeolite (aluminosilicate) is used as the getter particle 77, but the present invention is not limited to this. There are metal oxides and porous materials as candidates for the getter particles 77, and the materials may be those listed in the thirteenth embodiment. In addition, the configuration of the quantum dot phosphor 75 is a core / shell type, but may be a quantum well type.
 また、本実施形態では、パッケージ70とガラス蓋79との接着に有機高分子接着剤を用いたが、この接着剤の中にもゲッター粒子77を入れても良い。これにより、接着面からの酸素透過を抑制できるためである。 In this embodiment, an organic polymer adhesive is used for bonding the package 70 and the glass lid 79. However, getter particles 77 may be included in the adhesive. This is because oxygen permeation from the bonding surface can be suppressed.
 以上、本発明について、実施形態および変形例に基づいて説明したが、本発明は、これらの実施形態および変形例に限定されるものではない。例えば、本発明の要旨を逸脱しない範囲内で当業者が思いつく各種変形を本実施形態に施したものも本発明の範囲内に含まれる。また、本発明の趣旨を逸脱しない範囲で、複数の実施形態における各構成要素を任意に組み合わせてもよい。 As mentioned above, although this invention was demonstrated based on embodiment and a modification, this invention is not limited to these embodiment and a modification. For example, various modifications which those skilled in the art can think of within the scope of the present invention are included in the scope of the present invention. Moreover, you may combine each component in several embodiment arbitrarily in the range which does not deviate from the meaning of this invention.
 本発明は、半導体発光素子上に形成された蛍光体の酸化を抑制し、量子効率の低下を抑制することができるので、量子ドット蛍光体や有機蛍光体を用いた、高い発光効率を有する半導体発光素子および発光装置を実現する技術として有用である。 The present invention can suppress oxidation of a phosphor formed on a semiconductor light emitting device and suppress a decrease in quantum efficiency. Therefore, a semiconductor having high emission efficiency using a quantum dot phosphor or an organic phosphor. This is useful as a technique for realizing a light emitting element and a light emitting device.
1、101、2、201、4 半導体発光素子
3 発光装置
10 基板
11 バッファ層
12 第1のクラッド層
13 活性層
14 第2のクラッド層
15 コンタクト層
16 第1の金属層
17 n電極
18 第1の絶縁膜
19、19a、19b 第2の金属層
20、20a、20b 第2の絶縁膜
21 第3の絶縁膜
22 第4の絶縁膜
25a 第1の半導体微粒子
25b 第2の半導体微粒子
30、35、36 開口部
31 溝
50 パッケージ
51 樹脂
52、53 リードフレーム
55、56 ワイヤー
60 樹脂層
61 高熱伝導微粒子
70 パッケージ
71 リードフレーム
72 半導体発光素子
73 波長変換部
74a、74b、74c 樹脂
75 量子ドット蛍光体
75a 量子ドット蛍光体層
76 酸素ゲッター層
76a 第1の酸素ゲッター層
76b 第2の酸素ゲッター層
77、77a、77b ゲッター粒子
78 酸素バリア層
79 ガラス蓋
80 接着剤
91 ダイシングブレード
92 レーザー光
 
1, 101, 2, 201, 4 Semiconductor light emitting element 3 Light emitting device 10 Substrate 11 Buffer layer 12 First clad layer 13 Active layer 14 Second clad layer 15 Contact layer 16 First metal layer 17 N electrode 18 First Insulating films 19, 19a, 19b Second metal layers 20, 20a, 20b Second insulating film 21 Third insulating film 22 Fourth insulating film 25a First semiconductor fine particles 25b Second semiconductor fine particles 30, 35 36 Opening 31 Groove 50 Package 51 Resin 52, 53 Lead frame 55, 56 Wire 60 Resin layer 61 High thermal conductive fine particle 70 Package 71 Lead frame 72 Semiconductor light emitting element 73 Wavelength conversion part 74a, 74b, 74c Resin 75 Quantum dot phosphor 75a Quantum dot phosphor layer 76 Oxygen getter layer 76a First oxygen getter layer 76b Second oxygen getter Over layer 77,77a, 77b getter particles 78 oxygen barrier layer 79 glass lid 80 adhesive 91 dicing blade 92 laser beam

Claims (20)

  1.  活性層を含む半導体層と、
     前記半導体層上に形成された第1の金属層と、
     前記第1の金属層上、前記半導体層の上面および側面を覆うように形成された第1の絶縁膜と、
     前記第1の絶縁膜上に形成された半導体微粒子を含む第2の絶縁膜と、
     前記第2の絶縁膜上に形成された第3の絶縁膜とを備え、
     前記第2の絶縁膜は、第1の絶縁膜と第3の絶縁膜とで覆われている
     半導体発光素子。
    A semiconductor layer including an active layer;
    A first metal layer formed on the semiconductor layer;
    A first insulating film formed on the first metal layer so as to cover an upper surface and a side surface of the semiconductor layer;
    A second insulating film containing semiconductor fine particles formed on the first insulating film;
    A third insulating film formed on the second insulating film,
    The second insulating film is covered with a first insulating film and a third insulating film. A semiconductor light emitting element.
  2.  前記第1の金属層上の前記第1の絶縁膜に開口部が形成されている
     請求項1に記載の半導体発光素子。
    The semiconductor light emitting element according to claim 1, wherein an opening is formed in the first insulating film on the first metal layer.
  3.  前記開口部に前記第1の金属層に接続するように第2の金属層が形成されている
     請求項2に記載の半導体発光素子。
    The semiconductor light emitting element according to claim 2, wherein a second metal layer is formed in the opening so as to be connected to the first metal layer.
  4.  前記第1の金属層は、透明電極であり、
     前記透明電極の材料は、錫が添加された酸化インジウム、アンチモンが添加された酸化錫、および酸化亜鉛のうちのいずれかである
     請求項1に記載の半導体発光素子。
    The first metal layer is a transparent electrode;
    The semiconductor light emitting element according to claim 1, wherein the material of the transparent electrode is any one of indium oxide to which tin is added, tin oxide to which antimony is added, and zinc oxide.
  5.  前記半導体微粒子は、量子ドット蛍光体であって、前記活性層からの発光を吸収し、前記活性層の発光と異なる光を発する構成である
     請求項1に記載の半導体発光素子。
    The semiconductor light-emitting element according to claim 1, wherein the semiconductor fine particles are quantum dot phosphors, and are configured to absorb light emitted from the active layer and emit light different from light emitted from the active layer.
  6.  前記第3の絶縁膜は、少なくとも酸素を透過しない膜、且つ、熱伝導率が高い膜であって、窒化アルミニウム、窒化シリコン、シリコン酸窒素、シリコン酸化物、亜鉛酸化物、アルミニウム酸化物、およびインジウム酸化物のいずれかである
     請求項1に記載の半導体発光素子。
    The third insulating film is a film that does not transmit at least oxygen and has high thermal conductivity, and includes aluminum nitride, silicon nitride, silicon oxynitride, silicon oxide, zinc oxide, aluminum oxide, and The semiconductor light emitting element according to claim 1, wherein the semiconductor light emitting element is any one of indium oxides.
  7.  前記第2の絶縁膜と前記第3の絶縁膜との間に第4の絶縁膜を備え、
     前記第2の絶縁膜は、前記第4の絶縁膜で覆われ、
     前記第4の絶縁膜は、前記第3の絶縁膜で覆われている
     請求項1~6のいずれか1項に記載の半導体発光素子。
    A fourth insulating film is provided between the second insulating film and the third insulating film;
    The second insulating film is covered with the fourth insulating film;
    The semiconductor light emitting element according to any one of claims 1 to 6, wherein the fourth insulating film is covered with the third insulating film.
  8.  請求項1~7のいずれか1項に記載の半導体発光素子を備える発光装置であって、
     凹部を有する樹脂からなるパッケージと、
     前記凹部の底面に露出したリードフレームと、
     前記凹部内のリードフレームに設置された前記半導体発光素子と、
     前記凹部内に前記半導体発光素子上を覆うように形成された樹脂部とを備え、
     前記樹脂部は、熱伝導微粒子を含む
     発光装置。
    A light-emitting device comprising the semiconductor light-emitting element according to any one of claims 1 to 7,
    A package made of a resin having a recess;
    A lead frame exposed at the bottom of the recess;
    The semiconductor light emitting element installed on the lead frame in the recess,
    A resin portion formed so as to cover the semiconductor light emitting element in the recess,
    The resin part includes a heat conductive fine particle.
  9.  凹部を有する樹脂からなるパッケージと、
     前記凹部の底面に露出したリードフレームと、
     前記凹部内のリードフレームに設置された半導体発光素子と、
     前記凹部内に前記半導体発光素子を覆うように形成された第1の樹脂部とを備え、
     前記第1の樹脂部は量子ドット蛍光体および酸素を吸着する第1のゲッター粒子から構成されている
     発光装置。
    A package made of a resin having a recess;
    A lead frame exposed at the bottom of the recess;
    A semiconductor light emitting element installed on a lead frame in the recess,
    A first resin portion formed to cover the semiconductor light emitting element in the recess,
    The first resin portion includes a quantum dot phosphor and first getter particles that adsorb oxygen.
  10.  前記第1のゲッター粒子の粒径は、100nm以下である
     請求項9に記載の発光装置。
    The light emitting device according to claim 9, wherein a particle diameter of the first getter particle is 100 nm or less.
  11.  前記凹部内に露出した前記第1の樹脂部を覆うように形成された第2の樹脂部をさらに備え、
     前記第2の樹脂部は、酸素を吸着する第2のゲッター粒子を有している
     請求項9に記載の発光装置。
    A second resin portion formed to cover the first resin portion exposed in the recess;
    The light emitting device according to claim 9, wherein the second resin portion has second getter particles that adsorb oxygen.
  12.  前記第1のゲッター粒子の粒径は、100nm以下であり、
     前記第2のゲッター粒子の粒径は、100μm以下である
     請求項11に記載の発光装置。
    The particle diameter of the first getter particles is 100 nm or less,
    The light emitting device according to claim 11, wherein a particle diameter of the second getter particle is 100 μm or less.
  13.  前記凹部の表面には、酸素を吸着するあるいは酸素を透過しない層が設けられている
     請求項9または11に記載の発光装置。
    The light emitting device according to claim 9, wherein a layer that adsorbs oxygen or does not transmit oxygen is provided on a surface of the recess.
  14.  前記第1および第2のゲッター粒子は、前記半導体発光素子から放射される光の波長および量子ドット蛍光体から放射される光の波長を吸収しない
     請求項9または11に記載の発光装置。
    The light emitting device according to claim 9 or 11, wherein the first and second getter particles do not absorb the wavelength of light emitted from the semiconductor light emitting element and the wavelength of light emitted from a quantum dot phosphor.
  15.  前記第2の樹脂部の上部に、ガラス蓋が設けられており、
     前記ガラス蓋は、前記パッケージと接着されている
     請求項9または11に記載の発光装置。
    A glass lid is provided on the top of the second resin part,
    The light emitting device according to claim 9, wherein the glass lid is bonded to the package.
  16.  凹部を有する樹脂からなるパッケージと、
     前記凹部の底面に露出したリードフレームと、
     少なくとも前記底面に露出したリードフレームを覆うように形成された第1の酸素ゲッター層と、
     前記第1の酸素ゲッター層上に形成された量子ドット蛍光体層と、
     前記量子ドット蛍光体層を覆うように形成された第2の酸素ゲッター層とを備える
     発光装置。
    A package made of a resin having a recess;
    A lead frame exposed at the bottom of the recess;
    A first oxygen getter layer formed to cover at least the lead frame exposed on the bottom surface;
    A quantum dot phosphor layer formed on the first oxygen getter layer;
    A light emitting device comprising: a second oxygen getter layer formed to cover the quantum dot phosphor layer.
  17.  前記第2の酸素ゲッター層の上部には、ガラス蓋が設けられている
     請求項16に記載の発光装置。
    The light emitting device according to claim 16, wherein a glass lid is provided on an upper portion of the second oxygen getter layer.
  18.  前記凹部の内壁には、酸素を吸着するあるいは酸素を透過しない反射金属層、または、酸素を吸着する多孔質粒子層が設けられている
     請求項16または17に記載の発光装置。
    18. The light emitting device according to claim 16, wherein a reflective metal layer that adsorbs oxygen or does not transmit oxygen or a porous particle layer that adsorbs oxygen is provided on an inner wall of the recess.
  19.  前記第1の酸素ゲッター層および第2の酸素ゲッター層に含まれるゲッター粒子は、チタン酸化物、ニオブ酸化物、ハフニウム酸化物、インジウム酸化物、タングステン酸化物、スズ酸化物、亜鉛酸化物、ジルコニア酸化物、マグネシウム酸化物、アンチモン酸化物、二酸化ケイ素、シリコン酸窒素のいずれかを含む
     請求項16~18のいずれか1項に記載の発光装置。
    The getter particles contained in the first oxygen getter layer and the second oxygen getter layer are titanium oxide, niobium oxide, hafnium oxide, indium oxide, tungsten oxide, tin oxide, zinc oxide, zirconia. The light-emitting device according to any one of claims 16 to 18, comprising any of oxide, magnesium oxide, antimony oxide, silicon dioxide, and nitrogen silicon oxide.
  20.  前記量子ドット蛍光体層は、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnZe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnZeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、CdHgSeTe、CdHgSTe、HgZnSS、HgZnSeTe、HgZnSTe、GaN、GaP、GaAs、GaSb、AlN、AlGaN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、InGaN、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSbを含む
     請求項16~19のいずれか1項に記載の発光装置。
     
    The quantum dot phosphor layer includes CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnSg, CdZnSg. CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnZeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, CdHgSeTe, CdHgSTe, HgZnS InN, InP, InAs, InSb, InGaN, GaNP, GaNAs, aNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNPIn, GaInNAsIn, GaInNSIn, GaInNSIn The light emitting device according to any one of claims 16 to 19, comprising InAlPAs and InAlPSb.
PCT/JP2012/001473 2011-03-31 2012-03-02 Semiconductor light-emitting element and light-emitting device WO2012132236A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2012800154210A CN103443942A (en) 2011-03-31 2012-03-02 Semiconductor light-emitting element and light-emitting device
JP2013507113A JPWO2012132236A1 (en) 2011-03-31 2012-03-02 Semiconductor light emitting element and light emitting device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-080001 2011-03-31
JP2011080737 2011-03-31
JP2011-080737 2011-03-31
JP2011-080739 2011-03-31
JP2011080739 2011-03-31
JP2011080001 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012132236A1 true WO2012132236A1 (en) 2012-10-04

Family

ID=46930032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001473 WO2012132236A1 (en) 2011-03-31 2012-03-02 Semiconductor light-emitting element and light-emitting device

Country Status (3)

Country Link
JP (1) JPWO2012132236A1 (en)
CN (1) CN103443942A (en)
WO (1) WO2012132236A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014076610A1 (en) * 2012-11-16 2014-05-22 Koninklijke Philips N.V. Led-based lighting device and manufacture thereof
WO2015004711A1 (en) * 2013-07-08 2015-01-15 Nsマテリアルズ株式会社 Light-emitting device using semiconductor
KR20150133143A (en) * 2014-05-19 2015-11-27 후지필름 가부시키가이샤 Wavelength conversion member, backlight unit and liquid crystal display device
WO2015189347A1 (en) * 2014-06-12 2015-12-17 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor device, method for producing an optoelectronic semiconductor device, and light source comprising an optoelectronic semiconductor device
JP2016042449A (en) * 2014-08-19 2016-03-31 株式会社ジャパンディスプレイ Display device
JP2016076634A (en) * 2014-10-08 2016-05-12 エルジー ディスプレイ カンパニー リミテッド Led package, backlight unit, and liquid crystal display device
WO2016075950A1 (en) * 2014-11-14 2016-05-19 富士フイルム株式会社 Wavelength conversion member, backlight unit including same, and liquid crystal display apparatus
WO2016075949A1 (en) * 2014-11-14 2016-05-19 富士フイルム株式会社 Wavelength conversion member, backlight unit including same, and liquid crystal display apparatus
JP2016103461A (en) * 2014-11-14 2016-06-02 富士フイルム株式会社 Wavelength conversion member, backlight unit and liquid crystal display device
JP2016102999A (en) * 2014-11-14 2016-06-02 富士フイルム株式会社 Wavelength conversion member, backlight unit including the same, and liquid crystal display device
WO2016087444A1 (en) * 2014-12-03 2016-06-09 Osram Opto Semiconductors Gmbh Radiation-emitting optoelectronic semiconductor component and method for producing same
JP2016525286A (en) * 2013-07-18 2016-08-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Dicing wafer of light emitting device
JP2016538723A (en) * 2013-11-13 2016-12-08 ナノコ テクノロジーズ リミテッド LED cap including quantum dot phosphor
US9651826B2 (en) 2014-05-19 2017-05-16 Fujifilm Corporation Wavelength conversion member, backlight unit, and liquid crystal display device
JP2017188686A (en) * 2016-04-04 2017-10-12 スタンレー電気株式会社 Light-emitting device and method for manufacturing the same
WO2017217023A1 (en) * 2016-06-15 2017-12-21 日本電気硝子株式会社 Wavelength conversion member, method for producing same, and light-emitting device
JP2017224780A (en) * 2016-06-17 2017-12-21 日本電気硝子株式会社 Wavelength conversion member, method for manufacturing the same, and light-emitting device
EP3279952A1 (en) * 2016-08-05 2018-02-07 Maven Optronics Co., Ltd. Moisture-resistant chip scale packaging light-emitting device
KR20180026033A (en) * 2016-09-01 2018-03-12 엘지디스플레이 주식회사 Organic light emitting diode display device
JP2018056552A (en) * 2016-08-05 2018-04-05 マブン オプトロニックス カンパニー リミテッドMaven Optronics Co., Ltd. Moisture-resistant chip scale packaging light-emitting device
JP2018056458A (en) * 2016-09-30 2018-04-05 日亜化学工業株式会社 Light-emitting device and manufacturing method therefor
JP2019508893A (en) * 2016-02-19 2019-03-28 サエス・ゲッターズ・エッセ・ピ・ア LED system
JP2019054299A (en) * 2019-01-11 2019-04-04 エルジー ディスプレイ カンパニー リミテッド Led package, backlight unit, and liquid crystal display
WO2019070949A1 (en) * 2017-10-06 2019-04-11 Wisconsin Alumni Research Foundation Aluminum nitride-aluminum oxide layers for enhancing the efficiency of group iii-nitride light-emitting devices
JP2019186505A (en) * 2018-04-17 2019-10-24 パナソニックIpマネジメント株式会社 Light-emitting device, luminaire, and silicone resin
JP2020512704A (en) * 2017-03-30 2020-04-23 深▲せん▼市華星光電技術有限公司Shenzhen China Star Optoelectronics Technology Co., Ltd. Quantum dot LED package structure
JPWO2021111777A1 (en) * 2019-12-02 2021-06-10
EP3913695A4 (en) * 2019-01-15 2023-01-11 Samsung Display Co., Ltd. Light emitting element and display device comprising same
EP3996157A4 (en) * 2019-07-02 2023-07-26 Samsung Display Co., Ltd. Light emitting element, manufacturing method of same, and display device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576961B (en) * 2014-12-03 2017-09-15 深圳丹邦投资集团有限公司 A kind of OLED white light parts based on quantum dot and preparation method thereof
CN105575951B (en) * 2015-12-25 2017-10-27 厦门市三安光电科技有限公司 High-voltage light-emitting diode and manufacturing method thereof
DE102016109308B4 (en) 2016-05-20 2024-01-18 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung RADIATION EMITTING COMPONENT
CN107706281B (en) * 2016-08-09 2019-07-19 行家光电股份有限公司 Has the wafer-class encapsulation light emitting device of moisture barrier structure
CN106449949A (en) * 2016-10-20 2017-02-22 苏州星烁纳米科技有限公司 Quantum dot colloid, light conversion element, and light-emitting device
CN108258099A (en) * 2018-01-12 2018-07-06 惠州市华星光电技术有限公司 A kind of quantum dot LED and preparation method
CN111200043B (en) * 2018-11-20 2021-08-27 中国科学院半导体研究所 Electrically pumped quantum dot single photon source and preparation method thereof
CN112968101B (en) * 2020-12-07 2022-06-10 重庆康佳光电技术研究院有限公司 Micro LED chip and manufacturing method thereof
CN113809219A (en) * 2021-09-27 2021-12-17 厦门乾照光电股份有限公司 Light-emitting structure with light conversion function, LED chip and preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6744196B1 (en) * 2002-12-11 2004-06-01 Oriol, Inc. Thin film LED
JP2007525016A (en) * 2003-07-14 2007-08-30 アリージス・テクノロジーズ・インコーポレーテッド Method for treating gallium nitride
JP2008258042A (en) * 2007-04-06 2008-10-23 Hitachi Displays Ltd Illumination device and display device using this illumination device
JP2011009143A (en) * 2009-06-29 2011-01-13 Sony Corp Lighting device and backlight
JP2011505432A (en) * 2007-10-29 2011-02-24 イーストマン コダック カンパニー Production of colloidal ternary nanocrystals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6744196B1 (en) * 2002-12-11 2004-06-01 Oriol, Inc. Thin film LED
JP2007525016A (en) * 2003-07-14 2007-08-30 アリージス・テクノロジーズ・インコーポレーテッド Method for treating gallium nitride
JP2008258042A (en) * 2007-04-06 2008-10-23 Hitachi Displays Ltd Illumination device and display device using this illumination device
JP2011505432A (en) * 2007-10-29 2011-02-24 イーストマン コダック カンパニー Production of colloidal ternary nanocrystals
JP2011009143A (en) * 2009-06-29 2011-01-13 Sony Corp Lighting device and backlight

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014076610A1 (en) * 2012-11-16 2014-05-22 Koninklijke Philips N.V. Led-based lighting device and manufacture thereof
JPWO2015004711A1 (en) * 2013-07-08 2017-02-23 Nsマテリアルズ株式会社 Light emitting device using semiconductor
WO2015004711A1 (en) * 2013-07-08 2015-01-15 Nsマテリアルズ株式会社 Light-emitting device using semiconductor
JP5905648B2 (en) * 2013-07-08 2016-04-20 Nsマテリアルズ株式会社 Light emitting device using semiconductor
US9786823B2 (en) 2013-07-08 2017-10-10 Ns Materials Inc. Light-emitting device with sealing member comprising zinc sulfide particles
JP2016525286A (en) * 2013-07-18 2016-08-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Dicing wafer of light emitting device
US10707387B2 (en) 2013-07-18 2020-07-07 Lumileds Llc Dicing a wafer of light emitting devices
EP3118904A1 (en) * 2013-07-18 2017-01-18 Koninklijke Philips N.V. Dicing a wafer of light emitting semiconductor devices
JP2016538723A (en) * 2013-11-13 2016-12-08 ナノコ テクノロジーズ リミテッド LED cap including quantum dot phosphor
US10128418B2 (en) 2013-11-13 2018-11-13 Nanoco Technologies Ltd. LED cap containing quantum dot phosphors
KR102223409B1 (en) * 2014-05-19 2021-03-08 후지필름 가부시키가이샤 Backlight unit and liquid crystal display device
US9651826B2 (en) 2014-05-19 2017-05-16 Fujifilm Corporation Wavelength conversion member, backlight unit, and liquid crystal display device
JP2016145950A (en) * 2014-05-19 2016-08-12 富士フイルム株式会社 Wavelength conversion member, backlight unit and liquid crystal display device
KR20150133143A (en) * 2014-05-19 2015-11-27 후지필름 가부시키가이샤 Wavelength conversion member, backlight unit and liquid crystal display device
US10505085B2 (en) 2014-06-12 2019-12-10 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor device package with conversion layer and method for producing the same
JP2017523602A (en) * 2014-06-12 2017-08-17 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic semiconductor device, method of manufacturing optoelectronic semiconductor device, and light source including optoelectronic semiconductor device
WO2015189347A1 (en) * 2014-06-12 2015-12-17 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor device, method for producing an optoelectronic semiconductor device, and light source comprising an optoelectronic semiconductor device
JP2016042449A (en) * 2014-08-19 2016-03-31 株式会社ジャパンディスプレイ Display device
US10573792B2 (en) 2014-10-08 2020-02-25 Lg Display Co., Ltd. LED package, backlight unit and liquid crystal display device
JP2016076634A (en) * 2014-10-08 2016-05-12 エルジー ディスプレイ カンパニー リミテッド Led package, backlight unit, and liquid crystal display device
WO2016075950A1 (en) * 2014-11-14 2016-05-19 富士フイルム株式会社 Wavelength conversion member, backlight unit including same, and liquid crystal display apparatus
JP2016102999A (en) * 2014-11-14 2016-06-02 富士フイルム株式会社 Wavelength conversion member, backlight unit including the same, and liquid crystal display device
JP2016103461A (en) * 2014-11-14 2016-06-02 富士フイルム株式会社 Wavelength conversion member, backlight unit and liquid crystal display device
WO2016075949A1 (en) * 2014-11-14 2016-05-19 富士フイルム株式会社 Wavelength conversion member, backlight unit including same, and liquid crystal display apparatus
CN107004747A (en) * 2014-12-03 2017-08-01 欧司朗光电半导体有限公司 Launch the optoelectronic semiconductor component and its manufacture method of radiation
WO2016087444A1 (en) * 2014-12-03 2016-06-09 Osram Opto Semiconductors Gmbh Radiation-emitting optoelectronic semiconductor component and method for producing same
JP2019508893A (en) * 2016-02-19 2019-03-28 サエス・ゲッターズ・エッセ・ピ・ア LED system
JP2017188686A (en) * 2016-04-04 2017-10-12 スタンレー電気株式会社 Light-emitting device and method for manufacturing the same
WO2017217023A1 (en) * 2016-06-15 2017-12-21 日本電気硝子株式会社 Wavelength conversion member, method for producing same, and light-emitting device
US10468560B2 (en) 2016-06-17 2019-11-05 Nippon Electric Glass Co., Ltd. Wavelength conversion member including cavity, method for producing same, and light-emitting device
JP2017224780A (en) * 2016-06-17 2017-12-21 日本電気硝子株式会社 Wavelength conversion member, method for manufacturing the same, and light-emitting device
WO2017217028A1 (en) * 2016-06-17 2017-12-21 日本電気硝子株式会社 Wavelength conversion member, method for producing same, and light-emitting device
EP3279952A1 (en) * 2016-08-05 2018-02-07 Maven Optronics Co., Ltd. Moisture-resistant chip scale packaging light-emitting device
JP2018056552A (en) * 2016-08-05 2018-04-05 マブン オプトロニックス カンパニー リミテッドMaven Optronics Co., Ltd. Moisture-resistant chip scale packaging light-emitting device
JP2021044554A (en) * 2016-08-05 2021-03-18 マブン オプトロニックス カンパニー リミテッドMaven Optronics Co., Ltd. Moisture resistant chip scale package light emitting element
US10230027B2 (en) 2016-08-05 2019-03-12 Maven Optronics Co., Ltd. Moisture-resistant chip scale packaging light-emitting device
JP7100383B2 (en) 2016-08-05 2022-07-13 マブン オプトロニックス カンパニー リミテッド Moisture resistant chip scale package light emitting element
KR20180026033A (en) * 2016-09-01 2018-03-12 엘지디스플레이 주식회사 Organic light emitting diode display device
KR102508915B1 (en) 2016-09-01 2023-03-10 엘지디스플레이 주식회사 Organic light emitting diode display device
JP2018056458A (en) * 2016-09-30 2018-04-05 日亜化学工業株式会社 Light-emitting device and manufacturing method therefor
JP2020512704A (en) * 2017-03-30 2020-04-23 深▲せん▼市華星光電技術有限公司Shenzhen China Star Optoelectronics Technology Co., Ltd. Quantum dot LED package structure
WO2019070949A1 (en) * 2017-10-06 2019-04-11 Wisconsin Alumni Research Foundation Aluminum nitride-aluminum oxide layers for enhancing the efficiency of group iii-nitride light-emitting devices
JP2019186505A (en) * 2018-04-17 2019-10-24 パナソニックIpマネジメント株式会社 Light-emitting device, luminaire, and silicone resin
JP2019054299A (en) * 2019-01-11 2019-04-04 エルジー ディスプレイ カンパニー リミテッド Led package, backlight unit, and liquid crystal display
EP3913695A4 (en) * 2019-01-15 2023-01-11 Samsung Display Co., Ltd. Light emitting element and display device comprising same
EP3996157A4 (en) * 2019-07-02 2023-07-26 Samsung Display Co., Ltd. Light emitting element, manufacturing method of same, and display device
WO2021111777A1 (en) * 2019-12-02 2021-06-10 信越化学工業株式会社 Quantum dot, wavelength conversion material, backlight unit, image display device, and method for manufacturing quantum dot
JPWO2021111777A1 (en) * 2019-12-02 2021-06-10
JP7273992B2 (en) 2019-12-02 2023-05-15 信越化学工業株式会社 Quantum dot, wavelength conversion material, backlight unit, image display device, and method for manufacturing quantum dot

Also Published As

Publication number Publication date
CN103443942A (en) 2013-12-11
JPWO2012132236A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
WO2012132236A1 (en) Semiconductor light-emitting element and light-emitting device
EP2448017B1 (en) Semiconductor light emitting device
KR101018111B1 (en) Quantum dot-matal oxide complex, preparing method of the same and light-emitting device comprising the same
KR100982990B1 (en) wavelength conversion plate and light emitting device using the same
KR100982991B1 (en) Quantum dot-wavelength conversion device, preparing method of the same and light-emitting device comprising the same
KR101101135B1 (en) Light Emitting Diode Package Using Liquid Crystal Polymer
JP5889646B2 (en) Phosphor plate, light emitting device using phosphor plate, and method of manufacturing phosphor plate
CN105762249A (en) White Light Devices Using Non-polar Or Semipolar Gallium Containing Materials And Phosphors
US9447932B2 (en) Light-emitting diode package and method of manufacturing the same
JP2013172041A (en) Light-emitting device
US20130193837A1 (en) Phosphor plate, light emitting device and method for manufacturing phosphor plate
KR101283368B1 (en) Fluorescence Resonance Energy Transfer-based Light Emitting Diode Device Using Quantum Dots
JP2014082416A (en) Light-emitting device
JP2013033916A (en) Light-emitting device and manufacturing method of the same
KR20120135999A (en) Light emitting device package
KR20120067541A (en) Light emitting diode package and manufacturing method thereof
JP2012036265A (en) Illuminating device
TWI812744B (en) Emitting devices, associated display screen and methods for fabricating an emitting device
CN108461610B (en) Quantum dot LED and preparation method thereof
KR20120140053A (en) Light emitting device package
US20220199692A1 (en) Color filter structure and display device including the same
KR20210043977A (en) Light emitting diode(LED) display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507113

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764760

Country of ref document: EP

Kind code of ref document: A1