WO2012129862A1 - 大面积柔性薄膜太阳能电池及其制造方法 - Google Patents

大面积柔性薄膜太阳能电池及其制造方法 Download PDF

Info

Publication number
WO2012129862A1
WO2012129862A1 PCT/CN2011/076765 CN2011076765W WO2012129862A1 WO 2012129862 A1 WO2012129862 A1 WO 2012129862A1 CN 2011076765 W CN2011076765 W CN 2011076765W WO 2012129862 A1 WO2012129862 A1 WO 2012129862A1
Authority
WO
WIPO (PCT)
Prior art keywords
release
protective film
manufacturing
solar cell
thin film
Prior art date
Application number
PCT/CN2011/076765
Other languages
English (en)
French (fr)
Inventor
李沅民
张超华
施成营
单洪青
徐颖
林朝晖
Original Assignee
泉州市博泰半导体科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泉州市博泰半导体科技有限公司 filed Critical 泉州市博泰半导体科技有限公司
Publication of WO2012129862A1 publication Critical patent/WO2012129862A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to the field of solar cell technology, and in particular to a large area flexible thin film solar cell and a method of fabricating the same.
  • Flexible substrate thin film solar cells have the advantages of being easy to carry, easy to install, easy to integrate with buildings and high power-to-weight ratio due to their light weight and curlability, and thus have good application prospects in many fields, greatly expanding The application space of solar cells.
  • Flexible substrate thin film solar cells traditionally use roll-to-roll
  • flexible thin film solar cells are basically fabricated directly on flexible substrates using equipment that specializes in handling flexible substrates.
  • a production apparatus for directly performing thin film deposition using a flexible substrate as a substrate is incompatible with an existing, widely used, relatively low-cost apparatus for depositing a thin film on a rigid substrate such as glass. It is also very expensive and the process is complicated.
  • the temporary substrate needs to be etched and removed, is not reusable, and is not conducive to large-area industrialization.
  • the existing technology for directly forming a thin film solar cell on a flexible substrate cannot achieve large-area intra-integration due to the opacity of the electrode on the substrate or the substrate, resulting in a large-area photovoltaic module. Cost increases and reliability declines.
  • the flexible substrate is adhered to the surface of a rigid substrate such as glass, and the thin film layer is deposited on the surface of the flexible substrate to complete the manufacture of the flexible thin film solar cell.
  • Problems encountered include harsh requirements for flexible substrate materials, such as temperature resistance, The non-contamination of the vacuum chamber, the light transmission and flexibility after the high temperature process, and the relative matching of the thermal expansion coefficients of the substrate and the device layer, and the temperature performance matching of the flexible substrate and the rigid substrate.
  • it is difficult to ensure that the large-area flexible substrate is laid flat on the surface of the rigid substrate throughout the entire device manufacturing process, and that the flexible substrate is easily peeled off without damaging the battery after the process is completed.
  • the present inventors have deliberately studied and actively explored a new type of flexible optoelectronic device, particularly a flexible thin film solar cell, and a manufacturing method thereof, in the Chinese patent application No. 201010501502. 4 and 201010288863.
  • Manufacture flexible molding, forming a release protective film directly on a rigid carrier such as glass, and a layer structure including a transparent conductive front electrode (TC0), a single junction or multi-junction semiconductor photoelectric conversion unit (for example, a pin laminated structure), and a back electrode
  • T0 transparent conductive front electrode
  • TC0 single junction or multi-junction semiconductor photoelectric conversion unit
  • the thin film solar cell layer has an inner cascading structure, and then the flexible carrier (flexible carrier layer) is firmly bonded to the battery layer, and then the battery layer, including the detachment protective film, is integrated together by the flexible carrier.
  • the release protective film of the flexible thin film solar cell is required to have good transparency, light scattering rate, high temperature resistance, tensile strength and dimensional stability, in particular, uniformity of stress distribution upon heating.
  • the release protective layer formed on the surface of a rigid substrate such as glass by a coating means has a bonding strength for ensuring the flatness of adhesion and dimensional stability at the time of subsequent deposition, but this is disadvantageous to the overall Peel off on a rigid substrate. In order to achieve good peeling effect, the combination of process and film layer is complicated, which is not conducive to the reduction of production cost.
  • an object of the present invention is to provide a method for manufacturing a large-area flexible thin film solar cell, which can utilize an already formed plastic film as a release protective layer, directly on a rigid substrate, and utilize existing and mature manufactured rigid thin film solar cells.
  • the present invention provides a method for manufacturing a large-area flexible thin film solar cell, comprising:
  • the release protective film, each layer of the thin film solar cell, and the entire encapsulation layer are separated from the rigid substrate.
  • the clamping heat stabilization treatment step is performed after forming the transparent conductive front electrode.
  • the step of performing a clamp-type heating stabilization process includes:
  • a heat-treated treatment is applied to the surface of the transparent conductive front electrode to prevent the release protective film from being bulged during heating.
  • the material of the clamping plate is quartz, glass or graphite.
  • the clamping plate is a rigid substrate having another stress-release structure on the clamping surface, and is adhered with a release protective film and having a transparent conductive front electrode on the surface of the protective film.
  • the method further includes forming a release layer on the clamping surface of the clamping plate, and/or
  • the steps of the clamping type heating stabilization process include:
  • a holding plate that prevents the release protective film from bulging during the heating process is applied to the surface of the release protective film; heat treatment is performed.
  • the material of the clamping plate is quartz, glass or graphite.
  • the clamping plate is a rigid substrate having a stress guiding release structure on the lower surface of the other piece and a release protective film adhered thereto.
  • the method further includes forming a release layer on the clamping surface of the clamping plate, and/or
  • the stress guiding release structure includes a surface structure composed of a plurality of grooves and/or ribs, and the surface structure includes a plurality of strips and parallel flats provided for laser scribing forming the inner cascade structure a region, and the flat region is in close contact with the release protective film after the clamp-type heat stabilization treatment.
  • the method of forming the surface structure comprises roll pressing, mechanical scribing, mask wet etching or screen printing.
  • the spacing between the grooves of the surface structure or between the ribs is 3 ⁇ 30 mm.
  • the stress bow lead release structure is an array of holes consisting of a plurality of through holes or blind holes.
  • the plurality of blind holes have a channel that does not intersect the strip-shaped flat region forming the inner cascade structure.
  • the material of the release protective film is a transparent, flexible, temperature resistant, low thermal expansion coefficient and tensile plastic film.
  • the release protective film preferably has a thickness of 6 to 50 ⁇ m.
  • the plastic film comprises polyimide, polyetherimide, polyetheretherketone resin, polyethylene naphthalate, polyethylene terephthalate PET or poly Fluoroethylene ETFE.
  • the temperature of the heat stabilization treatment is higher than the maximum temperature of the substrate when each layer of the thin film solar cell is deposited.
  • the maximum temperature includes a range of 180 ° C to 220 ° C.
  • the surface of the clamping plate that is sandwiched by the release protective film or the transparent conductive front electrode has a surface structure composed of grooves and/or ribs.
  • the method further includes the step of protectively encapsulating the light-receiving surface of the thin film solar cell.
  • the large area flexible thin film solar cell of the present invention comprises:
  • the release protective film is attached to the surface of the rigid substrate having a stress guiding release structure on the surface;
  • the release protective film together with the transparent conductive front electrode and the thin film solar cell have a surface relief structure corresponding to the stress bow release structure as a whole.
  • an already formed plastic film is used as a release protective film, which is adhered to the surface of a rigid substrate, and subsequent film deposition is performed.
  • the stress-guided release structure on the surface of the rigid substrate, and the clamp-type heat stabilization treatment the surface stress of the release film is uniformly limited to be released within a specific range defined by the stress-guided release structure, so that the stress is The release reaches a uniform and controllable degree, even if wrinkles appear at the corresponding positions specified by the stress-guided release structure, and the wrinkles are small and uniformly controllable, and dimensional stability and flatness are greatly improved. .
  • the layers of the thin film battery can be uniformly and reliably deposited on the surface of the protective film and the internal cascading between the plurality of cells can be formed by a laser scribing process.
  • Figures la to lb are schematic views illustrating deformation and blistering of a flexible substrate
  • FIGS. 2a to 2d are schematic structural views of an embodiment of a rigid substrate surface stress guiding release structure according to the present invention.
  • 3a to 3c are schematic views showing the structure of another embodiment of a rigid substrate surface stress guiding release structure according to the present invention.
  • FIGS. 4a-4b are schematic views showing the structure of another embodiment of a rigid substrate surface stress guiding release structure according to the present invention.
  • FIG. 5a-5b are schematic views showing the structure of another embodiment of a rigid substrate surface stress guiding release structure according to the present invention.
  • 6 to 13 are schematic diagrams showing the structure of a device structure of a method for manufacturing a large-area flexible thin film solar cell of the present invention.
  • Figure 13 is a schematic view showing the structure of a large-area flexible thin film solar cell of the present invention.
  • Figures la to lb are schematic views illustrating deformation and blistering of a flexible substrate. As shown in FIG. 1a and FIG. 1b, the detachment protection film 200 is adhered on the surface of the glass substrate 100.
  • the material of the detachment protection film 200 is an engineering plastic
  • the expansion coefficient is much larger than that of the rigid substrate, and a large temperature rise causes the detachment of the protective film 200.
  • a large stress is generated which is released by the irregular, unpredictable deformation of the protective film 200 itself.
  • the detachment of the protective film 200 causes severe deformation such as bubbling and wrinkles, and uniform deposition of the subsequent film. Sex, especially laser scribing, has serious effects.
  • the method of the present invention first forms a stress-induced release structure on the surface of a glass (hard substrate) 100.
  • 2a to 2d are structural schematic views of an embodiment of a rigid substrate surface stress guiding release structure according to the present invention.
  • Figure 2a is a cross-sectional view taken along line A-A of Figures 2b to 2d.
  • the stress guiding release structure is a vertical, horizontal or mesh surface structure composed of a plurality of grooves 110, and the strip-shaped flat region in which the laser line 10 formed in the inner cascade is formed is divided into a plurality of regions. , for example, 39 areas.
  • the groove 110 has a certain depth, for example, between 0.1 and 0.5 mm.
  • the vertical or horizontal or mesh surface structure may be various, and the grooves 110 may be arranged in a longitudinal direction as shown in FIG. 2b; or may be criss-crossed and penetrated each other, as shown in FIGS. 2c and 2d, and only exemplified herein. A few typical examples.
  • the form of the grid structure is not limited as long as the lateral and/or longitudinal grooves constitute a longitudinal, horizontal or grid structure of a certain pattern, and the position of the laser line is left, that is, the plurality of layers are formed.
  • the strip-shaped and parallel flat areas left by the laser scribing of the cascade structure are laser-scored in these areas.
  • the stress-guided release structure on the surface of the rigid substrate does not affect the laser scribing.
  • These flat areas having a certain area between the grooves are in close contact with the release protective film 200 after the sandwich type heat stabilization treatment.
  • the sum of the bonding areas for example, more than 50% of the entire substrate, that is, the contact area between the glass substrate 100 having the groove structure and the detachment protection film 200 is greater than 50%, which can be used as the surface stress guiding of the substrate of the present invention.
  • the release structure is within the scope of the present invention.
  • the method for forming the groove 110 of the groove mesh structure described above includes roll pressing, laser scribing, mechanical scribing or masking Mold wet etching.
  • the stress guiding release structure according to the present embodiment is a vertical, horizontal or mesh surface structure composed of a plurality of ribs 110', and the laser line 10 formed by the inner cascade is divided into a plurality of regions.
  • the ribs 110' have a certain height, such as between 0.1 and 0.5 mm.
  • the vertical or horizontal or mesh surface structure may be various, and the ribs 110' may be longitudinally arranged, and the laser lines 10 may be flat on the ribs 110', as shown in FIG.
  • the grid structure is not limited. Here, just a few typical examples are given. As long as these lateral and/or longitudinal ribs or bumps form a longitudinal, transverse or grid structure of a certain pattern, and leave a flat strip of laser line The position, that is, the area separated by the laser scribing, does not affect the laser scribing.
  • the rib 110' is a flat strip-like area of the laser line which is closely packed with the detachment protection film 200 after the squeezing type heat treatment
  • the rib 110' and the bump 110" have a certain surface area, and the sum of these areas (the contact area of the detachment protection film 200 from the rib 110' and the bump 110" accounts for more than 50% of the entire substrate area, All
  • the substrate surface stress guiding release structure which can be used as the present invention is within the protection range of the present invention.
  • the ribs 110' and the bumps 110" may be formed by screen printing, rolling, laser scribing, mechanical scribing or mask wet etching.
  • the spacing between the grooves of the surface structure or between the ribs is 3 to 30 mm.
  • FIGS. 4a-4b are schematic structural views of another embodiment of a rigid substrate surface stress guiding release structure according to the present invention; as shown, the stress guiding release structure on the surface of the glass substrate 100 may also be a plurality of circular through holes 120 or circular blinds.
  • a hole array structure composed of holes 121.
  • the passage 122 has a stress-guided release function while excluding the use of air between the separation protective film and the substrate.
  • the stress guiding release structure on the surface of the glass substrate 100 may also be a plurality of square through holes 130. Or a hole array structure composed of square blind holes 131. Between the square blind holes 131 shown in Figure 5b there are channels 132 which do not intersect the strip-like flat areas required for laser scribing forming the inner cascade structure, i.e., should not affect the laser scribing.
  • the passage 132 has a function of stress-guided release while excluding the use of air between the separation protective film and the substrate.
  • the laser line 10 divides the array of holes into several regions.
  • the distribution of the through holes or the blind holes is not necessarily uniform, as long as the laser line 10 is avoided.
  • the circular and square holes can exist on one substrate at the same time.
  • FIG. 6 to 13 are schematic views showing the structure of a device structure of a method for manufacturing a large-area flexible thin film solar cell of the present invention.
  • the release protective film 200 is pasted on the surface of the glass substrate 100 as shown in FIG.
  • the material that is detached from the protective film 200 needs to be a film-forming material that is transparent, flexible, temperature-resistant, has a low coefficient of thermal expansion, and is resistant to stretching, including various types of polymers, preferably having a thickness of 6 to 50 ⁇ m.
  • the polymer comprises a polyimide-containing, Teflon-containing polymer such as a perfluoroethylene propylene copolymer FEP, a tetrafluoroethylene-perfluoroalkoxy vinyl ether copolymer PFA, a polyetherimide PEI, Polyetheretherketone resin PEEK, polyvinyl fluoride ETFE, polyethylene terephthalate PET or polyethylene naphthalate PEN.
  • the surface of the release protective film 200 is preferably fluffy so as to better disperse the stress generated during heating and the film deposition process, which is advantageous for the protective film to remain flat during the battery production process.
  • a doped zinc oxide is deposited on the surface of the release protective film 200 to form a transparent conductive front electrode 300.
  • the process of the clamp-type stress release is performed.
  • a clamping plate 500 is applied to the surface of the spacer 400 as shown in FIG.
  • the clamping surface of the clamping plate 500 (the surface sandwiched by the transparent conductive front electrode 300) may be above or below the transparent conductive front electrode 300, and may be, for example, under the transparent conductive front electrode 300 as shown in FIG. 8a. . It is also possible to be placed obliquely as shown in Fig.
  • the material of the holding plate 500 is preferably quartz, glass or graphite.
  • the anti-adhesion layer 400 is disposed on the surface of the transparent conductive front electrode 300.
  • the material of the anti-adhesion layer 400 is preferably a glass fiber cloth coated with Teflon Teflon, which has the advantages of stable physical and chemical properties, high temperature resistance, dimensional stability and the like.
  • the clamping surface of the holding plate 500 (the surface in contact with the transparent conductive front electrode 300) may be subjected to a release treatment such as plating a layer of a release material.
  • the holding plate may also be another rigid substrate having a stress guiding release structure on the lower surface and having the release protective film 200 attached thereto, and having the transparent conductive front electrode 300 on the surface of the protective film 200.
  • 150 The transparent conductive front electrodes 300 on the two substrates are relatively clamped, as shown in FIG.
  • the two oppositely held substrates 100 and 150 can also be placed obliquely.
  • the release layer 400 prevents adhesion between the holding plate 500 and the transparent conductive front electrode 300, or between the two transparent conductive front electrodes 300 upon heating.
  • the process of performing the clamped stress relief may also be performed prior to depositing the zinc oxide to form the transparent conductive front electrode 300.
  • the holding plate 500 is applied to the surface of the protective film 200.
  • the holding plate 500 can be placed up, down, and tilted. As long as the release protective film 200 can be kept flat, it is prevented from bulging perpendicular to the surface of the substrate when heated.
  • the material of the holding plate 500 is preferably quartz, glass or graphite.
  • the release layer 400 is laid on the surface of the release protective film 200 as shown in FIG.
  • the holding plate may be another rigid substrate 100 having a stress guiding release structure on the lower surface and being detached from the protective film 200.
  • the release protective film 200 on the two substrates is relatively clamped as shown in Fig. 11.
  • the release layer 400 prevents adhesion between the holding plate 500 and the release protective film 200, or between the two release protective films 200 upon heating.
  • the baking is performed at a temperature higher than the highest temperature of each layer of the deposited thin film solar cell, for example, at a temperature of 200 to 230 °C.
  • the stress guiding release structure can not only remove the air between the separation protection film 200 and the substrate from the groove (as indicated by an arrow in FIG. 8), but also can limit the surface stress of the separation protection film 200. Release in the specific range between the grooves or between the ribs or between the holes, so that the release of stress is uniform and controllable, without the occurrence of localized undulations and large bubbling caused by excessive local stress. Wrinkles. Through this heat stabilization process, the flatness and dimensional stability of the release protective film 200 are greatly improved.
  • the holding plate 500 and the release layer 400 are removed, and the thin film solar cell layers 600 are deposited on the surface of the transparent conductive front electrode 300 of the protective film 200, and the relevant laser is performed.
  • the scribe process, and then the encapsulation layer 700 is formed, for example, using a multi-layer weathering, flexible material, and EVA (ethylene-vinyl acetate copolymer) is used to bond firmly to the thin film solar cell layers 600 by a lamination process.
  • EVA ethylene-vinyl acetate copolymer
  • the surface of the aforementioned holding plate which is sandwiched by the release protective film or the transparent conductive front electrode may also have a surface structure composed of grooves and/or ribs.
  • the method of the present invention further includes a light receiving surface of the thin film solar cell 600, that is, An encapsulation layer is formed on the lower surface of the protective film 200, for example, by laminating one or several layers of transparent weather resistant material, and performing a protective encapsulation step.
  • FIG. 13 is a schematic view showing the structure of a large-area flexible thin film solar cell of the present invention.
  • the large-area flexible thin film solar cell of the present invention comprises a release protective film 200 which is attached to a surface of a rigid substrate having a stress-guided release structure as described above at the time of manufacture; a transparent conductive front electrode formed on the surface of the release protective film 200 300; a thin film solar cell layer 600 having an inner cascade structure formed on the surface of the transparent conductive front electrode 300; and an encapsulation layer 700 formed on the surface of each layer of the thin film solar cell.
  • the large-area flexible thin film solar cell of the present invention in cross section, is separated from the protective film 200 together with the transparent conductive front electrode 300 and the thin film solar cell layer 600, and has a surface relief corresponding to the stress guiding release structure as a whole. Structure 800.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

提供一种大面积太阳能电池及其制造方法。先在硬性基板(100)表面形成应力引导释放结构(110),在粘贴脱离保护膜(200)之后,在脱离保护膜(200)表面形成透明导电前电极(300)之前或之后对脱离保护膜(200)进行夹持式加热稳定处理。脱离保护膜(200)作为在硬性基板(100)上制造柔性太阳能电池的载体。该方法能够很好地改善脱离保护膜(200)的应力分布的均匀性和可控性,极大地提高脱离保护膜(200)的平整度和尺寸稳定性。该方法使得利用在硬性基板(100)上制造薄膜太阳能电池的工艺和设备来完成大面积柔性薄膜太阳能电池的制造能够实现。

Description

大面积柔性薄膜太阳能电池及其制造方法 技术领域
本发明涉及太阳能电池技术领域, 特别是涉及一种大面积柔性薄膜太阳能电池 及其制造方法。
背景技术
能源是人类社会发展的动力, 是国民经济发展和人民生活水平提高的重要物质 基础。 目前广泛使用的常规能源 (主要是煤、 石油、 天然气等化石能源) 有限, 且 多年过度的开发利用已造成严重的环境问题, 制约着经济和社会的发展。 因此, 开 发可再生能源是关系到国家可持续发展战略的关键措施之一。
在各种可再生能源中, 太阳能光伏发电技术是近些年来太阳能利用领域中发展 最快, 最前沿的研究领域。 其中薄膜太阳能电池因为耗材少、 制造成本低而成为研 究的热点。 目前的薄膜太阳能电池按衬底可分为硬性衬底 (如玻璃衬底) 和柔性衬 底 (如高温塑料、 树脂聚合物、 铝箔、 钢带) 两大类。
柔性衬底薄膜太阳电池由于重量轻、 可卷曲的特性, 具有便于携带、 便于安装、 易与建筑一体化和高功率重量比的优点, 从而在多个领域具有良好的应用前景, 极 大地扩展了太阳能电池的应用空间。 柔性衬底薄膜太阳电池传统上采用卷对卷
(rol l-to-rol l)的连续沉积工艺, 虽生产成本较高但可大批量连续化生产。 如果采 用质量较轻且不易破碎的柔性太阳电池制作电站, 不仅可以大大降低电池的运输成 本和电站的建设及安装成本, 而且更便于在已有建筑的顶部和四周安装, 且不需要 增加建筑物的承重要求。 也可以制造出可以自由移动的太阳能电站, 还可制造出便 携式、 大众化太阳能电池, 这样不仅可以最大限度的利用太阳能, 而且可以满足形 形色色的能源需求。
目前, 柔性薄膜太阳能电池基本都是直接在柔性衬底上使用专门处理柔性基材 的设备上制造。 但是, 直接使用柔性衬底作为基板进行薄膜沉积的生产设备与现有 的、 广泛使用的、 生产成本相对低的在硬性基板比如玻璃上沉积薄膜的设备不兼容, 而且非常昂贵, 工艺也较为复杂。 其中, 在利用临时衬底作为柔性转移衬底制造柔 性薄膜太阳电池的方法中, 存在着临时衬底需要蚀刻去除, 不可重复利用, 且不利 于大面积产业化等问题。 而且现有的在柔性衬底上直接形成薄膜太阳能电池的技术 由于衬底或衬底上的电极的不透光性, 不能实现大面积内级联 (monol ithic integration) , 从而导致大面积光伏组件成本的提高和可靠性的下降。
在玻璃等硬性基板表面粘贴柔性衬底, 再在柔性衬底表面沉积薄膜层系来完成 柔性薄膜太阳能电池的制造, 会遇到的问题包括对柔性衬底材料的苛刻要求, 例如 耐温性、 真空腔室的非污染性、 高温过程后的透光性和柔韧性, 以及衬底与器件层 系热膨胀系数的相对匹配、 柔性衬底与硬性基板的温度性能匹配等。 另外, 大面积 柔性衬底很难保证在整个器件制造过程中自始至终保持平展地铺设在硬性基板表 面、 且工艺完成后在不损坏电池的前提下易于柔性衬底的剥离。 即使有这种材料, 例如被认为性能最佳的聚酰亚胺, 也不可能自始至终在硬性基板上保持全部平展, 在电池制造过程中容易产生严重的凸起或褶皱。 特别在大面积柔性薄膜太阳能电池 的制造过程中, 柔性衬底的这种不可忽略的凸起或褶皱, 不但极大地影响薄膜沉积 的均匀性和一致性, 而且形成内级联的激光划线工艺无法可靠、 满足性能要求地实 现。
本发明人经过潜心研究和积极探索, 在申请号为 201010501502. 4和 201010288863. 5的中国专利申请中提出了一种新型的柔性光电器件、 特别是柔性薄 膜太阳能电池和制造方法, 其宗旨是硬性制造、 柔性成型, 直接在玻璃等硬性载板 上形成脱离保护膜和包括透明导电前电极 (TC0)、 单结或多结半导体光电转换单元 (例如 p-i-n叠层结构)和背电极等层系结构的薄膜太阳能电池层系, 且使其具有内 级联结构, 再将柔性载体 (柔性承载层) 牢靠地结合在电池层系上, 然后利用柔性 载体将电池层系、 包括脱离保护膜一起整体性地从硬性载板表面脱离, 经过进一歩 的受光面保护性封装, 从而形成低成本、 大面积、 高度集成内级联的柔性薄膜太阳 能电池及其组件。 在上述的技术方案中, 柔性薄膜太阳能电池的脱离保护膜要求具有很好的透明 度、 光散射率、 耐高温性、 抗拉强度和尺寸稳定性, 特别是受热时应力分布的均匀 性。 但是, 利用涂敷手段在玻璃等硬性基板表面形成的脱离保护层, 虽然具有保证 附着的平展性以及后续沉积时的尺寸稳定性的粘结强度, 但这又不利于电池制造完 成后整体地从硬性基板上剥离。 要达到良好的剥离效果, 工艺过程和膜层组合又较 为复杂, 不利于生产成本的降低。
发明内容
因此, 本发明的目的是提供一种大面积柔性薄膜太阳能电池的制造方法, 能够 利用已经成型的塑料薄膜作为脱离保护层, 直接在硬性基板上, 利用现有的、 成熟 的制造硬性薄膜太阳能电池的设备和工艺, 来制造大面积、 具有内级联的柔性薄膜 太阳能电池。 为达到上述目的, 本发明提供了一种大面积柔性薄膜太阳能电池的制造方法, 包括:
提供硬性基板;
在所述硬性基板表面形成应力弓 1导释放结构;
在所述硬性基板表面粘贴脱离保护膜;
对所述脱离保护膜进行夹持式加热稳定处理;
在所述脱离保护膜表面形成透明导电前电极;
在所述前电极表面沉积薄膜太阳能电池各层系并使其具有内级联结构; 在所述薄膜太阳能电池各层系表面形成封装层;
将所述脱离保护膜、 薄膜太阳能电池各层系和封装层整体与所述硬性基板分离。 可选的, 所述夹持式加热稳定处理的歩骤在形成透明导电前电极之后进行。 所述执行夹持式加热稳定处理的歩骤包括:
在所述透明导电前电极表面施加使脱离保护膜在加热过程中不致鼓起的夹持 进行加热处理。 可选的, 所述夹持板的材料为石英、 玻璃或石墨。
可选的, 所述夹持板为另一块夹持表面具有所述应力引导释放结构、 且粘贴有 脱离保护膜、 且脱离保护膜表面具有透明导电前电极的硬性基板。
可选的, 所述方法还包括在夹持板的夹持面形成防粘层, 和 /或
在夹持板的夹持面与透明导电前电极表面之间铺设耐温防粘材料的歩骤。
所述夹持式加热稳定处理的歩骤包括:
在所述脱离保护膜表面施加使脱离保护膜在加热过程不致鼓起的夹持板; 进行加热处理。
可选的, 所述夹持板的材料为石英、 玻璃或石墨。
可选的, 所述夹持板为另一块下表面具有所述应力引导释放结构、 且粘贴有脱 离保护膜的硬性基板。
可选的, 所述方法还包括在夹持板的夹持面形成防粘层, 和 /或
在夹持板的夹持面与脱离保护膜表面之间铺设耐温防粘材料的歩骤。
所述应力引导释放结构包括由多个凹槽和 /或凸棱组成的表面结构, 且所述表面 结构包含多个为形成内级联结构的激光划线而提供的条状且相互平行的平坦区域, 且所述平坦区域与脱离保护膜在夹持式加热稳定处理后紧密贴合。
可选的, 所述表面结构的形成方法包括辊压、 机械刻划、 掩模湿法刻蚀或丝网 印刷。
可选的, 所述表面结构的凹槽之间或凸棱之间的间距为 3~30mm。
可选的, 所述应力弓 1导释放结构为由复数个通孔或盲孔组成的孔阵列。
可选的, 所述复数个盲孔之间具有与形成内级联结构的条状平坦区域不相交的 通道。
可选的, 所述脱离保护膜的材料为透明、 柔性、 耐温、 热膨胀系数较低且抗拉 的塑料薄膜。
可选的, 所述脱离保护膜优选的厚度为 6~50μιη。
可选的, 所述塑料薄膜包括聚酰亚胺、 聚醚酰亚胺 ΡΕΙ、 聚醚醚酮树脂 ΡΕΕΚ、 聚 萘二甲酸乙二醇酯 ΡΕΝ、 聚对苯二甲酸乙二醇酯 PET或聚氟乙烯 ETFE。 可选的, 所述加热稳定处理的温度高于沉积薄膜太阳能电池各层系时的基板最 高温度。
可选的, 所述最高温度包括 180°C~220°C的范围。
可选的, 所述夹持板的与脱离保护膜或透明导电前电极夹持的表面具有由凹槽 和 /或凸棱组成的表面结构。
可选的, 所述方法还包括对薄膜太阳能电池的受光面进行保护性封装的歩骤。 本发明的大面积柔性薄膜太阳能电池, 包括:
脱离保护膜, 所述脱离保护膜在制造时贴着在表面具有应力引导释放结构的硬 性基板表面;
在所述脱离保护膜表面形成的透明导电前电极;
在所述透明导电前电极表面形成的具有内级联结构的薄膜太阳能电池各层系; 以及
在所述薄膜太阳能电池各层系表面形成的封装层; 且
所述脱离保护膜连同透明导电前电极和薄膜太阳能电池各层系整体上具有与所 述应力弓 1导释放结构相对应的表面起伏结构。
本发明的优点:
本发明的大面积柔性薄膜太阳能电池的制造方法, 采用已经成型的塑料薄膜作 为脱离保护膜, 将其贴着在硬性基板表面, 并进行后续的薄膜沉积。 而且, 通过硬 性基板表面的应力引导释放结构, 以及夹持式加热稳定处理, 使脱离 ί¾护膜的表面 应力被均匀地局限在应力引导释放结构所限定的各个特定的范围内释放, 使应力的 释放达到均匀可控的程度, 即使出现褶皱也是出现在应力引导释放结构所限定的各 个特定范围对应的位置, 且褶皱是微小且均匀可控的, 尺寸稳定性和平展度都得到 了很大提高。 特别是避免了在激光划线区域出现褶皱。 这样, 就可以在脱离保护膜 表面均匀且可靠地沉积薄膜电池各层系并利用激光划线工艺形成多个电池之间的内 级联。 使得采用本发明的方法, 能够从根本上实现利用现有成熟的制造硬性薄膜太 阳能电池的设备和工艺, 例如专利号为 200810084627. 4的中国专利所描述的可大面 积、 低成本、 相对简单、 大批量沉积的 PECVD反应设备, 来制造大面积柔性薄膜太 阳能电池。
附图说明
通过附图中所示的本发明的优选实施例的更具体说明, 本发明的上述及其它目 的、 特征和优势将更加清晰。 在全部附图中相同的附图标记指示相同的部分。 并未 刻意按比例绘制附图, 重点在于示出本发明的主旨。 为清楚起见, 放大了层的厚度。
图 la至图 lb为说明柔性衬底变形和起泡现象的示意图;
图 2a至图 2d为根据本发明硬性基板表面应力引导释放结构实施例的结构示意 图;
图 3a至图 3c为根据本发明硬性基板表面应力引导释放结构另一实施例的结构 示意图;
图 4a至图 4b为根据本发明硬性基板表面应力引导释放结构另一实施例的结构 示意图;
图 5a至图 5b为根据本发明硬性基板表面应力引导释放结构另一实施例的结构 示意图;
图 6至图 13为说明本发明的大面积柔性薄膜太阳能电池制造方法的器件结构流 程示意图;
图 13为本发明的大面积柔性薄膜太阳能电池的结构示意图。
所述示图是示意性的, 而非限制性的, 在此不能过度限制本发明的保护范围。 具体实施方式
为使本发明的上述目的、 特征和优点能够更加明显易懂, 下面结合附图对本发 明的具体实施方式做详细的说明。 在下面的描述中阐述了很多具体细节以便于充分 理解本发明。 但是本发明能够以很多不同于在此描述的其它方式来实施, 本领域技 术人员可以在不违背本发明内涵的情况下做类似推广。 因此本发明不受下面公开的 具体实施例的限制。 图 la至图 lb为说明柔性衬底变形和起泡现象的示意图。 如图 la和图 lb所示, 在玻璃基板 100表面粘贴脱离保护膜 200, 由于脱离保护膜 200的材料为工程塑料, 其膨胀系数远大于硬性基板, 较大幅度的升温会使脱离保护膜 200产生较大的应力, 这种应力会通过脱离保护膜 200本身的无规则、 不可预料的变形方式得以释放。 特 别是沉积包括透明导电氧化锌前电极和硅基薄膜等电池层系 300之后, 由于这些膜 层本身的内应力, 特别是脱离保护膜 200和硬性基板 100的热膨胀系数之间的不可 避免的差异, 温度变化较大之后, 内应力和温度的变化使包括脱离保护膜的层系产 生不可控制的、 随机、 严重的鼓起和褶皱, 以至于某些区域脱离基板。 加之玻璃基 板 100与脱离保护膜 200之间的有局部残留的微小气泡, 在真空镀膜时会使脱离保 护膜 200出现大幅度的鼓泡和褶皱等严重的变形现象, 对后续的薄膜沉积的均匀性, 特别是激光划线造成严重的影响。
本发明的方法首先在玻璃 (硬性基板) 100表面形成应力引导释放结构。 图 2a 至图 2d为根据本发明硬性基板表面应力引导释放结构实施例的结构示意图。 图 2a 为图 2b至图 2d沿 A-A向的剖面图。 如图所示, 根据本实施例应力引导释放结构为 多个凹槽 110组成的纵、 横或网格表面结构, 且被形成内级联的激光线 10所在的条 状平坦区域分成若干个区域, 例如 39个区域。 凹槽 110具有一定的深度, 例如 0. 1 至 0. 5毫米之间。 纵横或网格表面结构可以是多种多样的, 凹槽 110可以是纵向排 列, 如图 2b所示; 也可以是纵横交错、 彼此贯通, 如图 2c、 2d所示, 在此仅是举 出几个典型的例子而已。 这种网格结构的形式不限, 只要是这些横向和 /或纵向的凹 槽组成一定图形的纵、 横或网格结构, 且留出划激光线的位置, 也就是包含多个为 形成内级联结构的激光划线而留出的条状且相互平行的平坦区域, 在这些区域进行 激光划线。 总之, 硬性基板表面的应力引导释放结构需不影响激光划线。 凹槽之间 这些具有一定面积的平坦区域, 与脱离保护膜 200在夹持式加热稳定处理后紧密贴 合。这些贴合面积的和占整个基板的面积比如大于 50%, 即能够使具有该凹槽结构的 玻璃基板 100与脱离保护膜 200的接触面积大于 50%,均可以作为本发明的基板表面 应力引导释放结构, 均在本发明的保护范围内。
上述凹槽网格结构的凹槽 110 的形成方法包括辊压、 激光刻划、 机械刻划或掩 模湿法刻蚀。
图 3a至图 3c为根据本发明硬性基板表面应力引导释放结构另一实施例的结构 示意图, 图 3a为图 3b和图 3c的 A-A向剖面结构图。 如图所示, 根据本实施例应力 引导释放结构为由多个凸棱 110' 组成的纵、横或网格表面结构, 且被形成内级联的 激光线 10分成若干个区域。 凸棱 110' 具有一定的高度, 比如为 0. 1至 0. 5毫米之 间。 纵横或网格表面结构可以是多种多样的, 凸棱 110' 可以是纵向排列, 激光线 10在凸棱 110' 平坦的表面, 如图 3b所示; 也可以是纵横交错、 彼此贯通, 也可以 是纵向凸棱 110' 和凸块 110" 的组合, 激光线 10在凸棱 110 ' 平坦的表面,将表面 结构分成若干个区域, 如图 3c所示。 这种网格结构的形式不限, 在此仅是举出几个 典型的例子而已。 只要是这些横向和 /或纵向的凸棱或凸块组成一定图形的纵、 横或 网格结构, 且留出划激光线的平坦条状位置, 也就是被激光划线的区域隔开, 不影 响激光划线。凸棱 110' 即为划激光线的平坦条状区域, 该区域在夹持式加热稳定处 理后与脱离保护膜 200紧密贴合。 凸棱 110' 和凸块 110"具有一定的表面积, 这些 面积 (脱离保护膜 200与凸棱 110' 和凸块 110" 的接触面积) 的和占整个基板的面 积大于例如 50%, 均可以作为本发明的基板表面应力引导释放结构, 均在本发明的保 护范围内。
凸棱 110' 和凸块 110"可以采用丝网印刷、 辊压、 激光刻划、 机械刻划或掩模 湿法刻蚀的方法形成。
在上述实施例中, 所述表面结构的凹槽之间或凸棱之间的间距为 3~30mm。
图 4a至图 4b为根据本发明硬性基板表面应力引导释放结构另一实施例的结构示 意图; 如图所示, 玻璃基板 100表面的应力引导释放结构还可以是由多个圆通孔 120 或圆盲孔 121组成的孔阵列结构。 在图 4b所示的圆盲孔 121之间具有通道 122, 这些通 道 122与形成内级联结构的激光划线所需的条状平坦区域不相交, 即不应影响激光划 线。 通道 122具有应力引导释放的作用, 同时供排除脱离保护膜和基板之间的空气使 用。 图 5a至图 5b为根据本发明硬性基板表面应力引导释放结构另一实施例的结构示 意图; 如图所示, 玻璃基板 100表面的应力引导释放结构还可以是由多个方通孔 130 或方盲孔 131组成的孔阵列结构。 在图 5b所示的方盲孔 131之间具有通道 132, 这些通 道 132与形成内级联结构的激光划线所需的条状平坦区域也不相交, 即也不应影响激 光划线。 通道 132具有应力引导释放的作用, 同时供排除脱离保护膜和基板之间的空 气使用。 激光线 10将孔阵列分成若干个区域。
其中, 通孔或盲孔的分布不一定均匀, 只要避开激光线 10即可。 此外, 圆形和 方孔可以同时存在于一块基板上。
图 6至图 13为说明本发明的大面积柔性薄膜太阳能电池制造方法的器件结构流 程示意图。 如图所示, 在玻璃基板 100表面形成应力引导释放结构之后, 在玻璃基板 100表面粘贴脱离保护膜 200, 如图 6所示。 脱离保护膜 200的材料需要是透明、 柔性、 耐温、热膨胀系数较低且抗拉的已成膜材料,包括含各类聚合物,优选厚度为 6~50μιη。 所说的聚合物包括含聚酰亚胺、 特氟隆的聚合物如全氟乙烯丙烯共聚物 FEP、 四氟乙 烯一全氟烷氧基乙烯基醚共聚物 PFA, 聚醚酰亚胺 PEI、 聚醚醚酮树脂 PEEK、 聚氟乙 烯 ETFE、 聚对苯二甲酸乙二醇酯 PET或聚萘二甲酸乙二醇酯 PEN。 脱离保护膜 200的表 面优选为绒性, 以便能够更好地分散加热时和薄膜沉积过程所产生的应力, 有利于 保护膜在电池生产过程中始终保持平展。
随后, 如图 7所示, 在所述脱离保护膜 200表面沉积掺杂氧化锌形成透明导电前 电极 300。 然后, 进行夹持式应力释放的过程。 在隔离层 400表面施加夹持板 500, 如 图 8所示。 夹持板 500的夹持面 (与透明导电前电极 300相夹的面) 在透明导电前电极 300的上面或下面均可, 例如可以是如图 8a所示的在透明导电前电极 300的下面。 还 可以是如图 8b所示的倾斜放置, 只要是能够夹住脱离保护膜 200既可, 以使表面具有 透明导电前电极 300的脱离保护膜 200保持平展, 防止加热时脱离保护膜 200产生垂直 于基板表面的鼓起。 夹持板 500的材料优选为石英、 玻璃或石墨。 优选的, 在透明导 电前电极 300表面铺设防粘层 400, 防粘层 400的材料优选为涂有特氟隆 Teflon的玻璃 纤维布, 其具有理化性能稳定、 耐高温、 尺寸稳定等优点。 或对夹持板 500的夹持面 (与透明导电前电极 300接触的面) 进行防粘处理, 例如镀一层防粘材料层。
在一个优选的实施例中, 夹持板也可以是下表面具有应力引导释放结构且粘贴 有脱离保护膜 200、 且脱离保护膜 200表面具有透明导电前电极 300的另一硬性基板 150 o 两块基板上的透明导电前电极 300相对夹持, 如图 9所示。 两块相对夹持的基板 100和 150也可以倾斜放置。 防粘层 400在加热时防止夹持板 500和透明导电前电极 300 之间, 或两个透明导电前电极 300之间的粘连。
在其它实施例中, 进行夹持式应力释放的过程也可以在沉积氧化锌形成透明导 电前电极 300之前进行。 在脱离保护膜 200表面施加夹持板 500。 夹持板 500在上、 在 下、 倾斜放置均可。 只要可以使脱离保护膜 200保持平展, 防止加热时产生垂直于基 板表面的鼓起。 夹持板 500的材料优选为石英、 玻璃或石墨。 优选的, 在脱离保护膜 200表面铺设防粘层 400, 如图 10所示。 同样, 夹持板也可以是下表面具有应力引导 释放结构且粘贴有脱离保护膜 200的另一硬性基板 100。两块基板上的脱离保护膜 200 相对夹持, 如图 1 1所示。 防粘层 400在加热时防止夹持板 500和脱离保护膜 200之间, 或两个脱离保护膜 200之间的粘连。
然后, 在高于沉积薄膜太阳能电池各层系的最高温度下, 例如温度在 200~230°C 下进行加热烘烤。 在加热的过程中, 应力引导释放结构不但能够将脱离保护膜 200和 基板之间的空气从凹槽中排除 (如图 8中的箭头所示) , 而且能够将脱离保护膜 200 的表面应力局限在凹槽之间或凸棱之间或孔之间的各个特定的范围内释放, 使应力 的释放达到均匀、 可控的程度, 不会出现局部应力过大造成的局部尺寸起伏很大的 鼓泡和褶皱。 经过这种热稳定处理的过程, 脱离保护膜 200的平展度和尺寸稳定性都 得到了很大提高。
接下来, 如图 12至图 13所示, 移去夹持板 500和防粘层 400, 在脱离保护膜 200的透明导电前电极 300表面沉积薄膜太阳能电池各层系 600, 及进行相关的激光 划线工艺, 然后形成封装层系 700, 例如用多层耐候、 柔性材料, 利用 EVA (乙烯- 醋酸乙烯共聚物) 通过层压工艺与薄膜太阳能电池各层系 600牢固地结合。 然后将 封装层 700、 薄膜太阳能电池各层系 600、 透明导电前电极 300和脱离保护膜 200, 整体性地与玻璃基板 100分离。
前述的夹持板的与脱离保护膜或透明导电前电极夹持的表面也可具有由凹槽和 /或凸棱组成的表面结构。
在其它实施例中, 本发明的方法还包括对薄膜太阳能电池 600的受光面, 也就是 在脱离保护膜 200的下表面形成封装层, 例如层压一层或数层透明耐候性材料, 进行 保护性封装的歩骤。
图 13为本发明的大面积柔性薄膜太阳能电池的结构示意图。 本发明的大面积柔 性薄膜太阳能电池包括脱离保护膜 200, 其在制造时贴着在如上述的表面具有应力引 导释放结构的硬性基板表面; 在所述脱离保护膜 200表面形成的透明导电前电极 300; 在透明导电前电极 300表面形成的具有内级联结构的薄膜太阳能电池各层系 600 ; 以 及在所述薄膜太阳能电池各层系表面形成的封装层系 700。 本发明的大面积柔性薄膜 太阳能电池从横截面来看, 脱离保护膜 200连同透明导电前电极 300和薄膜太阳能电 池各层系 600, 从整体上具有与所述应力引导释放结构相对应的表面起伏结构 800。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式上的限制。 任何熟悉本领域的技术人员, 在不脱离本发明技术方案范围情况下, 都可利用上述 揭示的技术内容对本发明技术方案做出许多可能的变动和修饰, 或修改为等同变化 的等效实施例。 因此, 凡是未脱离本发明技术方案的内容, 依据本发明的技术实质 对以上实施例所做的任何简单修改、 等同变化及修饰, 均仍属于本发明技术方案的 保护范围内。

Claims

权利要求
1、 一种大面积柔性薄膜太阳能电池的制造方法, 包括:
提供硬性基板;
在所述硬性基板表面形成应力弓 1导释放结构;
在所述硬性基板表面粘贴脱离保护膜;
对所述脱离保护膜进行夹持式加热稳定处理;
在所述脱离保护膜表面形成透明导电前电极;
在所述前电极表面沉积薄膜太阳能电池各层系并使其具有内级联结构; 在所述薄膜太阳能电池各层系表面形成封装层;
将所述脱离保护膜、 薄膜太阳能电池各层系和封装层整体与所述硬性基板分离。
2、 根据权利要求 1所述的制造方法, 其特征在于: 所述夹持式加热稳定处理的 歩骤在形成透明导电前电极之后进行。
3、 根据权利要求 2所述的制造方法, 其特征在于: 所述执行夹持式加热稳定处 理的歩骤包括:
在所述透明导电前电极表面施加使脱离保护膜在加热过程中不致鼓起的夹持 进行加热处理。
4、 根据权利要求 3所述的制造方法, 其特征在于: 所述夹持板的材料为石英、 玻璃或石墨。
5、 根据权利要求 3所述的制造方法, 其特征在于: 所述夹持板为另一块夹持表 面具有所述应力引导释放结构、 且粘贴有脱离保护膜、 且脱离保护膜表面具有透明 导电前电极的硬性基板。
6、 根据权利要求 4或 5所述的制造方法, 其特征在于: 所述方法还包括在夹持板 的夹持面形成防粘层, 和 /或
在夹持板的夹持面与透明导电前电极表面之间铺设耐温防粘材料的歩骤。
7、 根据权利要求 1所述的制造方法, 其特征在于: 所述夹持式加热稳定处理的 歩骤包括: 在所述脱离保护膜表面施加使脱离保护膜在加热过程不致鼓起的夹持板; 进行加热处理。
8、 根据权利要求 7所述的制造方法, 其特征在于: 所述夹持板的材料为石英、 玻璃或石墨。
9、 根据权利要求 7所述的制造方法, 其特征在于: 所述夹持板为另一块下表面 具有所述应力弓 I导释放结构、 且粘贴有脱离保护膜的硬性基板。
10、 根据权利要求 8或 9所述的制造方法, 其特征在于: 所述方法还包括在夹持 板的夹持面形成防粘层, 和 /或
在夹持板的夹持面与脱离保护膜表面之间铺设耐温防粘材料的歩骤。
11、 根据权利要求 1所述的制造方法, 其特征在于: 所述应力引导释放结构包括 由多个凹槽和 /或凸棱组成的表面结构, 且所述表面结构包含多个为形成内级联结构 的激光划线而提供的条状且相互平行的平坦区域, 且所述平坦区域与脱离保护膜在 夹持式加热稳定处理后紧密贴合。
12、 根据权利要求 11所述的制造方法, 其特征在于: 所述表面结构的形成方法 包括辊压、 机械刻划、 掩模湿法刻蚀或丝网印刷。
13、 根据权利要求 11所述的制造方法, 其特征在于: 所述表面结构的凹槽之间 或凸棱之间的间距为 3~30
14、 根据权利要求 1所述的制造方法, 其特征在于: 所述应力引导释放结构为由 复数个通孔或盲孔组成的孔阵列。
15、 根据权利要求 14所述的制造方法, 其特征在于: 所述复数个盲孔之间具有 与形成内级联结构的条状平坦区域不相交的通道。
16、 根据权利要求 1所述的制造方法, 其特征在于: 所述脱离保护膜的材料为透 明、 柔性、 耐温、 热膨胀系数较低且抗拉的塑料薄膜。
17、 根据权利要求 16所述的制造方法, 其特征在于: 所述脱离保护膜优选的厚 度为 6~50μιη
18、 根据权利要求 17所述的制造方法, 其特征在于: 所述塑料薄膜包括聚酰亚 胺、 聚醚酰亚胺 ΡΕΙ、 聚醚醚酮树脂 ΡΕΕΚ、 聚萘二甲酸乙二醇酯 ΡΕΝ、 聚对苯二甲酸
19、 根据权利要求 3或 7所述的制造方法, 其特征在于: 所述加热稳定处理的温 度高于沉积薄膜太阳能电池各层系时的基板最高温度。
20、根据权利要求 19所述的制造方法,其特征在于:所述最高温度包括 180 °C~220 °〇的范围。
21、 根据权利要求 4或 8所述的制造方法, 其特征在于: 所述夹持板的与脱离保 护膜或透明导电前电极夹持的表面具有由凹槽和 /或凸棱组成的表面结构。
22、 根据权利要求 1所述的制造方法, 其特征在于: 所述方法还包括对薄膜太阳 能电池的受光面进行保护性封装的歩骤。
23、 一种大面积柔性薄膜太阳能电池, 其特征在于, 包括:
脱离保护膜, 所述脱离保护膜在制造时贴着在表面具有应力引导释放结构的硬 性基板表面;
在所述脱离保护膜表面形成的透明导电前电极;
在所述透明导电前电极表面形成的具有内级联结构的薄膜太阳能电池各层系; 以及
在所述薄膜太阳能电池各层系表面形成的封装层; 且
所述脱离保护膜连同透明导电前电极和薄膜太阳能电池各层系整体上具有与所 述应力弓 1导释放结构相对应的表面起伏结构。
PCT/CN2011/076765 2011-04-01 2011-07-01 大面积柔性薄膜太阳能电池及其制造方法 WO2012129862A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011100818596A CN102185023A (zh) 2011-04-01 2011-04-01 大面积柔性薄膜太阳能电池及其制造方法
CN201110081859.6 2011-04-01

Publications (1)

Publication Number Publication Date
WO2012129862A1 true WO2012129862A1 (zh) 2012-10-04

Family

ID=44571157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076765 WO2012129862A1 (zh) 2011-04-01 2011-07-01 大面积柔性薄膜太阳能电池及其制造方法

Country Status (2)

Country Link
CN (1) CN102185023A (zh)
WO (1) WO2012129862A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102386279A (zh) * 2011-10-31 2012-03-21 北京精诚铂阳光电设备有限公司 大面积柔性薄膜太阳能电池及其制造方法
CN102437286A (zh) * 2011-12-08 2012-05-02 北京精诚铂阳光电设备有限公司 大面积柔性薄膜太阳能电池及其制造方法
TWI520215B (zh) 2012-09-19 2016-02-01 友達光電股份有限公司 元件基板及其製造方法
CN103258805B (zh) * 2013-04-17 2015-11-25 南通富士通微电子股份有限公司 半导体器件芯片级封装结构
CN104392901B (zh) * 2014-10-28 2017-08-25 京东方科技集团股份有限公司 一种柔性衬底基板及其制作方法
CN104752443B (zh) * 2015-04-20 2016-03-02 京东方科技集团股份有限公司 衬底载板、柔性显示面板及相应的制作方法、柔性显示装置
CN112786723B (zh) * 2021-01-27 2022-11-15 重庆神华薄膜太阳能科技有限公司 柔性薄膜太阳能电池组件及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005072567A (ja) * 2003-08-01 2005-03-17 Nippon Sheet Glass Co Ltd 太陽電池モジュールの製造方法
CN101618625A (zh) * 2008-07-02 2010-01-06 罗伯特别克勒有限公司 在压力和热作用下层压基本为板形的工件的方法和设备
CN101964398A (zh) * 2010-10-11 2011-02-02 福建钧石能源有限公司 柔性薄膜太阳能电池及其制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101265573B (zh) * 2008-03-14 2010-07-21 福建钧石能源有限公司 薄膜沉积方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005072567A (ja) * 2003-08-01 2005-03-17 Nippon Sheet Glass Co Ltd 太陽電池モジュールの製造方法
CN101618625A (zh) * 2008-07-02 2010-01-06 罗伯特别克勒有限公司 在压力和热作用下层压基本为板形的工件的方法和设备
CN101964398A (zh) * 2010-10-11 2011-02-02 福建钧石能源有限公司 柔性薄膜太阳能电池及其制造方法

Also Published As

Publication number Publication date
CN102185023A (zh) 2011-09-14

Similar Documents

Publication Publication Date Title
WO2012129862A1 (zh) 大面积柔性薄膜太阳能电池及其制造方法
US8119903B2 (en) Method of manufacturing single crystal silicon solar cell and single crystal silicon solar cell
US20180331244A1 (en) Small gauge wire solar cell interconnect
EP2157621B1 (en) Heterojunction solar cell and process for manufacturing the same
WO2014180281A1 (zh) 薄膜太阳能电池板及其制备方法
WO2011087878A3 (en) Manufacture of thin film solar cells with high conversion efficiency
CN101964398A (zh) 柔性薄膜太阳能电池及其制造方法
CN102054901A (zh) 柔性薄膜太阳能电池的制造方法
CN102208458A (zh) 大面积柔性薄膜太阳能电池及其制造方法
CN102386279A (zh) 大面积柔性薄膜太阳能电池及其制造方法
CN102544376B (zh) 具有亚波长抗反射结构的聚合物太阳能电池及其制造方法
KR101076787B1 (ko) 태양전지모듈용 이면 보호시트의 제조방법
WO2015021849A1 (zh) 一种多尺度陷光的柔性大面积叠层太阳能电池及制备方法
CN103107240B (zh) 多晶硅薄膜太阳能电池及其制作方法
KR101433427B1 (ko) 다층 시트 및 이를 포함하는 광전지 모듈
US10879478B2 (en) Polymer solar cell
KR101976918B1 (ko) 구조체 배열을 이용한 무손실 대면적 태양광 발전 시스템 및 그 제조 방법
JP2003243678A (ja) 太陽電池モジュール及びその製造方法
CN102176478A (zh) 大面积柔性薄膜太阳能电池
CN102763227A (zh) 背面场型异质结太阳能电池及其制造方法
KR101813763B1 (ko) 부착식 유기 태양전지 및 이의 제조 방법
CN102437286A (zh) 大面积柔性薄膜太阳能电池及其制造方法
JP2015185680A (ja) 太陽電池モジュール
JP2014229657A (ja) 太陽電池セル
US11114635B2 (en) Method for making polymer solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862819

Country of ref document: EP

Kind code of ref document: A1