WO2012127854A1 - Optical information device and tracking method - Google Patents

Optical information device and tracking method Download PDF

Info

Publication number
WO2012127854A1
WO2012127854A1 PCT/JP2012/001918 JP2012001918W WO2012127854A1 WO 2012127854 A1 WO2012127854 A1 WO 2012127854A1 JP 2012001918 W JP2012001918 W JP 2012001918W WO 2012127854 A1 WO2012127854 A1 WO 2012127854A1
Authority
WO
WIPO (PCT)
Prior art keywords
track
resonance
elements
light
tracking
Prior art date
Application number
PCT/JP2012/001918
Other languages
French (fr)
Japanese (ja)
Inventor
竜也 高岡
和田 秀彦
佐野 晃正
松崎 圭一
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012127854A1 publication Critical patent/WO2012127854A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0901Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following only
    • G11B7/0903Multi-beam tracking systems
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/0857Arrangements for mechanically moving the whole head
    • G11B7/08576Swinging-arm positioners
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B2007/13727Compound lenses, i.e. two or more lenses co-operating to perform a function, e.g. compound objective lens including a solid immersion lens, positive and negative lenses either bonded together or with adjustable spacing

Definitions

  • the present invention relates to an optical information apparatus for recording or reproducing information on an information recording medium having a track, and a tracking method for the optical information apparatus.
  • FIG. 50 is a top view showing the configuration of the near-field optical head in the prior art
  • FIG. 51 is a side view showing the configuration of the near-field optical head in the prior art.
  • the near-field light head includes a light source 802, a prism 803 that transmits the emitted light LB of the light source 802, and a scatterer 804 that generates near-field light NL when the emitted light LB enters.
  • the heat dissipation material 805 is fixed to the light source 802 and dissipates heat generated by the light source 802.
  • the detection element 806 detects reproduction light from the optical disc 801.
  • a light source 802, a prism 803, a scatterer 804, a heat dissipation material 805, and a detection element 806 are held by a slider 807.
  • the slider 807 is held by a suspension 808 so that the distance between the optical disc 801 and the scatterer 804 is constant.
  • the near-field light NL generated from the scatterer 804 changes the crystal phase of the optical disk 801, which is a phase change material, to an amorphous phase, thereby forming a recording mark and recording information on the optical disk 801.
  • the information is detected by detecting the intensity change of the scattered light returning from the optical disk 801. Playback starts from 801.
  • the light source 802, the prism 803, the scatterer 804, the heat radiation member 805, and the detection element 806 are held by the slider 807 to form a so-called near-field optical probe slider. Therefore, it is possible to realize a near-field optical head device that records or reproduces information on the optical disc 801 with high density by using the near-field light NL while achieving a very small size.
  • FIG. 52 is a schematic diagram showing a configuration of a high-density probe memory reproducing device in the prior art
  • FIG. 53 is a perspective view of a principal part showing a probe attachment state and a deformation state in the conventional technology.
  • an information recording medium 901 includes a recording unit 902 formed in a track shape.
  • the information recording medium 901 is rotated by a rotating element 903.
  • the plurality of probes 904 are held by a slider 905 and a suspension 906 in a range where they can come into contact with one recording unit 902.
  • the positions of the plurality of probes 904 change as shown in FIG. 53 by contacting the recording unit 902.
  • the suspension 906 is held by a driving element 907 and is driven in a direction perpendicular to the track.
  • Incident light 908 from a light source (not shown) is applied to the plurality of probes 904.
  • the plurality of detection elements 910 detect reflected light 909 from the plurality of probes 904. Thereby, the displacement of the plurality of probes 904 is detected.
  • the arithmetic circuit 911 calculates and outputs a reproduction signal and a tracking signal based on a plurality of detection information obtained from the plurality of detection elements 910.
  • the tracking signal is input to the drive element 907.
  • the drive element 907 drives the suspension 906 according to the tracking signal. Thereby, tracking of the plurality of probes 904 is performed.
  • the position of the probe in order for the probe to detect the recording portion, the position of the probe must be displaced by the interaction with the recording portion. Therefore, the relative positions of the plurality of probes and the recording unit are changed, and the detection signal does not reflect only the distance in the direction perpendicular to the track between the plurality of probes and the recording unit. Had.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide an optical information device and a tracking method capable of performing stable and highly accurate tracking.
  • An optical information device is an optical information device for recording or reproducing information on an information recording medium having a track, and a light source, light from the light source is incident thereon, and the information recording medium is mutually connected.
  • a plurality of resonant elements that change the resonance state according to the distance from the track, and the positions of the plurality of resonant elements are shifted in a direction perpendicular to the track, and between the plurality of resonant elements A holding element that holds the distance fixed, a first detection element that individually detects a change in the resonance state of each of the plurality of resonance elements, and the resonance state that is detected by the first detection element
  • a tracking signal calculation circuit for calculating a tracking signal based on the change of the tracking signal, and the holding element in the track according to the tracking signal calculated by the tracking signal calculation circuit Comprising a first moving element that moves in a straight direction, the.
  • the holding element is arranged by shifting the position of the plurality of resonance elements in a direction perpendicular to the track, and holds the distance between the plurality of resonance elements fixed at a constant value.
  • the first detection element individually detects a change in the resonance state of each of the plurality of resonance elements.
  • the tracking signal calculation circuit calculates a tracking signal based on a change in the resonance state detected by the first detection element.
  • the first moving element moves the holding element in a direction perpendicular to the track in accordance with the tracking signal calculated by the tracking signal calculation circuit.
  • the positions of the plurality of resonance elements are shifted in the direction perpendicular to the track, and the distance between the plurality of resonance elements is held constant, so that the interaction with the information recording medium is possible.
  • the relative positions of the plurality of resonance elements and the tracks do not change. Therefore, stable and highly accurate tracking that depends only on the displacement from the track position can be performed.
  • the detection signal since a change in the resonance state of each of the plurality of resonance elements is individually detected and a tracking signal is calculated based on the detected change in the resonance state, the detection signal has an optical constant around the plurality of resonance elements.
  • a tracking signal having a high degree of modulation can be obtained with respect to a minute positional deviation from the track, which reacts sensitively to changes. Therefore, stable and highly accurate tracking can be performed.
  • FIG. 1 It is the schematic which shows the structure of the optical information apparatus in Embodiment 1 of this invention. It is a perspective view which shows the structure of the slider shown in FIG. It is a side view which shows the structure of the slider shown in FIG. It is a top view which shows the structure of the slider shown in FIG. It is an enlarged view which shows the metal antenna in Embodiment 1 of this invention.
  • (A) is a graph which shows the change of the near-field light intensity with respect to the distance from the track
  • (B) is the intensity
  • (C) is a graph which shows the intensity
  • (C) is a graph which shows the intensity
  • (C) is a graph which shows the intensity
  • it is a figure which shows the metal antenna which is a square plate shape.
  • Embodiment 1 and 2 of this invention it is a figure which shows the metal antenna which is a disk shape.
  • Embodiment 1 and 2 of this invention it is a figure which shows the metal antenna which is a probe shape. It is the schematic which shows the structure of the optical information apparatus in Embodiment 3 of this invention. It is a perspective view which shows the structure of the some metal antenna shown in FIG. It is a top view which shows the structure of the some metal antenna shown in FIG. (A) is a graph which shows the change of the scattered light intensity from a metal antenna with respect to the distance from the track
  • Embodiment 3 of this invention it is a figure which shows the metal antenna which is a fan-plate shape. In Embodiment 3 of this invention, it is a figure which shows the metal antenna which is a bowtie shape. In Embodiment 3 of this invention, it is a figure which shows the metal antenna which is a nano beak shape. It is a figure which shows the example which arrange
  • Embodiment 3 of this invention it is a figure which shows the example arrange
  • FIG. 31 is a top view showing the configuration of the slider shown in FIG. 30.
  • FIG. (A) shows a signal (a ⁇ (te1 ⁇ te0)) obtained by weighting the difference between the detection signal te1 and the detection signal te0 with respect to the positional deviation from the track and the difference between the detection signal te2 and the detection signal te0.
  • Embodiment 7 is a graph showing a change in intensity of a signal (b ⁇ (te2-te0)) weighted with a correction value b, and (B) is a graph showing a change in intensity of the tracking signal with respect to a positional deviation from the track.
  • it is a figure shown for demonstrating another example of arrangement
  • it is a figure for demonstrating another example of arrangement
  • FIG. 1 is a schematic diagram showing a configuration of an optical information device according to Embodiment 1 of the present invention.
  • 2 is a perspective view showing the configuration of the slider shown in FIG. 1
  • FIG. 3 is a side view showing the configuration of the slider shown in FIG. 1
  • FIG. 4 is a top view showing the configuration of the slider shown in FIG. FIG.
  • the optical information device includes semiconductor laser elements 107a, 107b, 107c, metal antennas 108a, 108b, 108c, waveguides 109a, 109b, 109c, light receiving elements 110a, 110b, 110c, a motor 103, and a slider 104.
  • a disc 101 as an information recording medium has a track 112 in which fine particles 102 made of a phase change material on which information is recorded or reproduced are arranged in a line.
  • the disk 101 is rotated by a motor 103 that holds and rotates the disk 101.
  • the phase change material constituting the fine particles 102 for example, a material made of an alloy such as Ge, Sb, Te, Bi, Tb, Fe, or Co can be considered.
  • a slider 104 is disposed as a holding element that holds the resonance element.
  • the slider 104 which is a holding element, is arranged by shifting the positions of the plurality of resonance elements (metal antennas 108b and 108c) in the direction perpendicular to the track 112, and holding the distance between the plurality of resonance elements fixed at a constant value.
  • the slider 104 is always pressed against the disk 101 by a suspension 105 as a spring element.
  • the suspension 105 also functions as a second moving element that moves a plurality of resonance elements in a direction perpendicular to the surface of the disk 101.
  • the suspension 105 is moved in a direction perpendicular to the track 112 by an actuator 106 as a first moving element.
  • the slider 104 is moved in a direction perpendicular to the track 112. That is, the actuator 106 as the first moving element moves the holding element (slider 104) in a direction perpendicular to the track 112 in accordance with the tracking signal.
  • the slider 104 scans while sliding on the disk 101.
  • the second moving element that moves the plurality of resonant elements in the direction perpendicular to the surface of the information recording medium includes the suspension 105 (spring element). Yes. At this time, the suspension 105 brings the slider 104 and the disk 101 into contact with each other.
  • semiconductor laser elements 107 a, 107 b, and 107 c indicate light sources.
  • a semiconductor laser element is used as the light source.
  • the polarization direction of the light emitted from the semiconductor laser elements 107 a, 107 b and 107 c is a direction perpendicular to the surface of the disk 101.
  • the metal antennas 108a, 108b, and 108c are resonance elements that excite plasmon resonance by light from the semiconductor laser elements 107a, 107b, and 107c.
  • the metal antennas 108b and 108c, which are resonance elements, interact with the disk 101, and the resonance state changes according to the distance from the track 112.
  • tracking metal antennas 108b and 108c are arranged side by side in a direction perpendicular to the track 112 with the recording or reproduction metal antenna 108a as the center.
  • the metal antennas 108b and 108c are disposed at positions separated from the metal antenna 108a by a distance P in the direction perpendicular to the track 112, respectively.
  • the distance P is a quarter of the tracking period (track pitch) Tp.
  • the distance (2P) in the direction perpendicular to the track 112 between the metal antenna 108b and the metal antenna 108c is fixed to one half of the tracking period Tp.
  • the light emitted from the three semiconductor laser elements 107a, 107b and 107c is individually guided to the three metal antennas 108a, 108b and 108c by the three waveguides 109a, 109b and 109c as optical elements for guiding the light, Excites plasmon resonance.
  • the three waveguides 109a, 109b and 109c are arranged non-parallel to each other in order to suppress waveguide mode coupling.
  • the waveguides 109a, 109b, and 109c are arranged so that the distance between the waveguide 109a and the waveguide 109b and the distance between the waveguide 109a and the waveguide 109c increase as the distance from the metal antennas 108a, 108b, and 108c increases. Has been.
  • Light receiving elements 110a, 110b, and 110c as detection elements are attached to the apex portions of the metal antennas 108a, 108b, and 108c, respectively.
  • the light receiving elements 110a, 110b and 110c individually detect the intensity of near-field light generated from the metal antennas 108a, 108b and 108c. That is, the light receiving elements 110b and 110c, which are first detection elements, individually detect changes in the resonance states of the plurality of resonance elements (metal antennas 108b and 108c).
  • the first detection element that individually detects and outputs the change in the resonance state of each of the plurality of resonance elements is the plurality of resonance elements (metal antennas).
  • 108b and 108c) includes a plurality of light receiving elements 110b and 110c arranged in a range in which near-field light generated from 108b and 108c) can be detected.
  • the shape of the metal antennas 108a, 108b and 108c is a triangular flat plate shape such as gold, silver, copper, titanium, aluminum or chrome as shown in FIG.
  • the metal antenna 108a is arranged so that the vertex of the triangle is closest to the surface of the fine particle 102, and strong near-field light is generated in the vicinity of the vertex of the triangle when plasmon resonance is excited.
  • the interaction between two metal particles appears prominently when the distance between the metal particles is several tens of nanometers or less, and becomes more prominent at a few nanometers (Confined plasmas in nanofabricated particulates: experimental observers. interactions, L. Gunnarsson et.al., J. Phys. Chem.
  • the distance between the metal antenna 108a and the surface of the fine particle 102 is preferably several tens of nm or less, and more preferably several nm.
  • the metal antennas 108b and 108c are also arranged in the same manner as the metal antenna 108a, and strong near-field light is generated near the apex of the triangle.
  • FIG. 6A is a graph showing a change in near-field light intensity with respect to the distance from the track 112 of the metal antennas 108a, 108b, and 108c.
  • FIG. 6B is a graph showing changes in the intensity of the detection signal te1 from the light receiving element 110b and the detection signal te2 from the light receiving element 110c.
  • FIG. 6C is a graph showing a change in intensity of the tracking signal TE, which is the difference between the detection signal te1 and the detection signal te2 output from the operational amplifier 111.
  • the resonance condition of plasmon resonance greatly depends on the dielectric constant of the medium around the resonance element. Therefore, if the shape of the metal antennas 108a, 108b and 108c is designed so that the plasmon resonance condition is satisfied on the fine particle 102 with respect to the frequency of light of the semiconductor laser elements 107a, 107b and 107c, the generated near-field light is generated. As shown in FIG. 6A, the intensity is maximum at the track position (position where the distance from the track 112 coincides with the tracking period Tp) and minimum at the position where the distance from the track 112 is half the tracking period Tp. Become.
  • the detection signal of the light receiving element 110a is output as a reproduction signal.
  • the detection signals te1 and te2 of the light receiving elements 110b and 110c are input to the operational amplifier 111 that functions as a tracking signal calculation circuit.
  • the light receiving elements 110b and 110c output detection signals te1 and te2 representing changes in the resonance states of the plurality of resonance elements (metal antennas 108b and 108c).
  • the operational amplifier 111 calculates a level difference between the detection signal te1 and the detection signal te2 output by the light receiving elements 110b and 110c as the tracking signal TE.
  • the operational amplifier 111 serving as the tracking signal calculation circuit calculates the tracking signal TE based on the change in the resonance state of each of the plurality of resonance elements (metal antennas 108b and 108c) detected by the light receiving elements 110b and 110c. .
  • the tracking metal antennas 108b and 108c are set apart from the recording or reproducing metal antenna 108a by a quarter of the tracking period Tp in the direction perpendicular to the track 112, respectively. ing. Therefore, the difference between the detection signal te1 and the detection signal te2 can be maximized, and a highly accurate tracking signal TE can be obtained.
  • the output tracking signal TE is input to the actuator 106.
  • the actuator 106 drives the slider 104 in a direction perpendicular to the track 112 in response to the tracking signal TE.
  • the metal antennas 108a, 108b, and 108c are arranged perpendicular to the surface of the disk 101, and the plasmon resonance is excited by the polarized light perpendicular to the surface of the disk 101. Is done. For this reason, the area on the disk 101 which interacts with the metal antennas 108a, 108b and 108c is reduced, and high resolution can be obtained.
  • light from the semiconductor laser elements 107a, 107b, and 107c is individually incident on the metal antennas 108a, 108b, and 108c using the plurality of waveguides 109a, 109b, and 109c.
  • the near-field light intensity of each of the metal antennas 108a, 108b, and 108c is directly detected individually by the light receiving elements 110a, 110b, and 110c attached to the metal antennas 108a, 108b, and 108c. For this reason, a highly accurate and highly efficient tracking signal can be obtained.
  • the distance between the metal antennas 108a, 108b and 108c and the fine particles 102 in the direction perpendicular to the surface of the disk 101 is not changed. Therefore, a stable and highly accurate tracking signal that depends only on the displacement in the direction perpendicular to the track 112 can be obtained.
  • the slider 104 slides on the disk 101. For this reason, the distance between the metal antennas 108a, 108b and 108c and the surface of the disk 101 can always be kept constant without using a complicated configuration. For this reason, stable tracking can be performed.
  • a disk is used as the information recording medium.
  • the slider 104 may be configured to move over the entire area of the disk, and the shape of the information recording medium is not limited to a circle.
  • FIG. 7 is a diagram for explaining a slider driving method in a modification of the first embodiment of the present invention.
  • the optical information device in the modification of the first embodiment moves the slider 104 in a direction perpendicular to the track 112 and the slider 104 moves in a direction parallel to the track 112.
  • a drive element 115 a drive element 115.
  • the information recording medium 113 has a card shape, for example, and is fixed at a predetermined position.
  • the slider 104 is driven on the fixed information recording medium 113 by driving elements 114 and 115 to scan the entire area of the information recording medium 113. Even with such a configuration, the gist of the present invention is not impaired.
  • the disk 101 corresponds to an example of an information recording medium
  • the semiconductor laser elements 107b and 107c correspond to an example of a light source
  • the metal antennas 108b and 108c correspond to an example of a plurality of resonance elements.
  • the slider 104 corresponds to an example of a holding element
  • the light receiving elements 110b and 110c correspond to an example of a first detection element and a plurality of light receiving elements
  • the operational amplifier 111 corresponds to an example of a tracking signal arithmetic circuit
  • the actuator 106 The suspension 105 corresponds to an example of a first moving element
  • the suspension 105 corresponds to an example of a second moving element
  • the waveguides 109b and 109c correspond to an example of a plurality of waveguides.
  • FIG. 8 is a flowchart for explaining the tracking method according to the first embodiment of the present invention.
  • the semiconductor laser elements 107a, 107b, and 107c which are light sources, emit light, and enter the metal antennas 108a, 108b, and 108c to excite plasmon resonance.
  • the metal antennas 108 a, 108 b and 108 c are designed so that the plasmon resonance condition is satisfied on the fine particle 102. Plasmon resonance weakens as the positional deviation from the track increases.
  • the light receiving elements 110a, 110b, and 110c individually detect changes in the resonance state of the metal antennas 108a, 108b, and 108c, and output a reproduction signal, a detection signal te1, and a detection signal te2. .
  • the intensity of near-field light generated by plasmon resonance increases as the plasmon resonance increases.
  • the light receiving elements 110a, 110b, and 110c individually detect the intensity of near-field light generated around the metal antennas 108a, 108b, and 108c, so that the resonance states of the individual metal antennas 108a, 108b, and 108c are detected. Changes can be detected.
  • the intensity of the near-field light generated by plasmon resonance shows a change as shown in FIG. 6A with respect to the distance from the track, becomes a maximum value at the track position, and is a position away from the track position by half of the tracking period Tp. Becomes the minimum value.
  • the tracking metal antennas 108b and 108c are separated from the recording or reproduction metal antenna 108a by a quarter of the tracking period Tp in a direction perpendicular to the track (tracking direction). is set up. Therefore, the light receiving elements 110b and 110c obtain detection signals te1 and te2 as shown in FIG.
  • the operational amplifier 111 as an arithmetic circuit calculates the tracking signal TE based on the change in the resonance state detected by the light receiving elements 110b and 110c.
  • the operational amplifier 111 calculates the difference between the detection signal te1 and the detection signal te2 as the tracking signal TE.
  • Detection signals te1 and te2 from the light receiving elements 110b and 110c are input to the operational amplifier 111.
  • the operational amplifier 111 amplifies the difference between the detection signal te1 and the detection signal te2 and outputs it as a tracking signal TE.
  • the tracking metal antennas 108b and 108c are installed apart from the recording or reproducing metal antenna 108a by a quarter of the tracking period Tp in the direction perpendicular to the track. ing.
  • the tracking signal TE has a maximum or minimum value at a position where the positional deviation from the track becomes a quarter of the tracking period Tp, and a position where the positional deviation from the track becomes a half of the tracking period Tp. 0.
  • the actuator 106 moves the slider 104 in a direction perpendicular to the track in accordance with the tracking signal TE calculated by the operational amplifier 111.
  • the tracking signal TE calculated by the operational amplifier 111 is output to the actuator 106.
  • the actuator 106 drives the suspension 105 according to the tracking signal TE to move the slider 104 in a direction perpendicular to the track.
  • Embodiment 1 when the tracking signal TE is a positive value, the actuator 106 drives the suspension 105 so that the slider 104 moves toward the metal antenna 108b. If the tracking signal TE is a negative value, the actuator 106 drives the suspension 105 so that the slider 104 moves toward the metal antenna 108c.
  • the recording or reproducing metal antenna 108a can be constantly and accurately tracked with respect to the fine particles 102.
  • the operational amplifier 111 amplifies the difference between the detection signals te1 and te2 from the light receiving elements 110b and 110c to create the tracking signal TE.
  • the optical information device includes the operational amplifier 111 and the actuator.
  • a low-pass filter may be provided between the low-pass filter 106 and the low-pass filter may remove the high-frequency component output from the operational amplifier 111 and output an average value of the difference between the detection signals te1 and te2 as the tracking signal TE.
  • the tracking method according to the first embodiment is a tracking method in an optical information device that records or reproduces information on an information recording medium having a track, and interacts with the information recording medium, and is a distance from the track.
  • the tracking signal calculation step for calculating the tracking signal based on the change in the resonance state, and the positions of the plurality of resonance elements are shifted in the direction perpendicular to the track according to the tracking signal calculated in the tracking signal calculation step.
  • the holding element that holds the fixed distance between the plurality of resonant elements is fixed to the one perpendicular to the track. Comprising a moving step of moving, to.
  • the positions of the plurality of resonance elements whose resonance states change according to the distance from the track are shifted in the direction perpendicular to the track, and the distance between the plurality of resonance elements is fixed and held constant.
  • the relative position between the plurality of resonance elements and the information recording position on the track does not change due to the interaction. For this reason, a stable and highly accurate tracking signal depending only on the displacement from the track position can be obtained.
  • the resonance state is sensitive to changes in the optical constants around the resonance element. For this reason, even if the information recording state on the track is an information recording state not accompanied by a change in surface shape, tracking can be performed stably and with high accuracy.
  • the change in the resonance state of the plurality of resonance elements is individually detected by the plurality of light receiving elements, and the difference between the detection signals is output as a tracking signal.
  • the detection signal reacts sensitively to changes in the optical constants around the resonant element, and a tracking signal having a high degree of modulation with respect to a positional deviation from a minute track can be obtained. For this reason, a stable and highly accurate tracking signal can be obtained.
  • FIG. 9 is a schematic diagram showing the configuration of the optical information device according to the second embodiment of the present invention.
  • 10 is a perspective view showing the configuration of the slider shown in FIG. 9
  • FIG. 11 is a side view showing the configuration of the slider shown in FIG. 9
  • FIG. 12 is a top view showing the configuration of the slider shown in FIG. FIG. 9 to 12, the same components as those in FIGS. 1 to 4 are denoted by the same reference numerals, and description thereof is omitted.
  • the optical information device includes semiconductor laser elements 107a, 107b, and 107c, metal antennas 128a, 128b, and 128c, waveguides 129a, 129b, and 129c, light receiving elements 120a, 120b, and 120c, a motor 103, and a slider 124.
  • a disk 101 having fine particles 102 arranged in a track shape is fixed to and held by a motor 103.
  • the slider 124 as a holding element is arranged by shifting the positions of the metal antennas 128a, 128b and 128c as resonance elements in the direction perpendicular to the track 112, and the distance between the metal antennas 128a, 128b and 128c is fixed. And hold.
  • Metal antennas 128b and 128c which are resonant elements, receive light from semiconductor laser elements 107b and 107c, interact with disk 101, and the resonance state changes according to the distance from track 112.
  • the air slider 132 moves the metal antennas 128a, 128b, and 128c in a direction perpendicular to the surface of the disk 101.
  • the suspension 125 is composed of a spring element.
  • the slider 124 and the air slider 132 are held facing the disk 101 by the suspension 125.
  • the distance between the slider 124 and the disk 101 is kept constant by using a technique similar to that of a flying head employed in a hard disk drive.
  • the second moving element that moves the plurality of resonant elements in the direction perpendicular to the surface of the information recording medium includes the suspension 125 (spring element). Yes.
  • the suspension 125 keeps the distance between the disk 101, the slider 104, and the air slider 132 constant by the force of the airflow flowing between the slider 104 and the air slider 132 and the disk 101.
  • the suspension 125 is driven in a direction perpendicular to the track 112 by the actuator 106.
  • the actuator 106 serving as the first moving element moves the holding element (slider 124) in a direction perpendicular to the track 112 in accordance with the tracking signal.
  • the slider 124 scans the disk 101.
  • the metal antennas 128a, 128b, and 128c are formed of triangular plates such as gold, silver, copper, titanium, aluminum, or chrome.
  • the metal antennas 128a, 128b, and 128c are arranged so that the apex of the triangle is closest to the surface of the fine particle 102, and strong near-field light is generated near the apex of the triangle when plasmon resonance is excited.
  • the distance between the metal antennas 128a, 128b and 128c and the surface of the fine particles 102 is preferably several tens of nm or less, and more preferably several nm.
  • the slider 124 has a stepped step in the direction perpendicular to the track 112 on the end surface of the track 112 in the longitudinal direction.
  • the stepped end face has three faces that are different in position in the longitudinal direction of the track 112.
  • the waveguides 129a, 129b and 129c individually guide light from the semiconductor laser elements 107a, 107b and 107c to the metal antennas 128a, 128b and 128c.
  • the waveguides 129a, 129b and 129c individually guide the reflected light from the metal antennas 128a, 128b and 128c to the light receiving elements 120a, 120b and 120c.
  • the light receiving elements 120a, 120b and 120c are arranged in the vicinity of the semiconductor laser elements 107a, 107b and 107c, respectively.
  • the light receiving elements 120a, 120b, and 120c individually detect changes in the resonance states of the metal antennas 128a, 128b, and 128c.
  • Each of the light receiving elements 120a, 120b, and 120c is attached to each of the plurality of waveguides 129a, 129b, and 129c, and individually detects the reflected light from the metal antennas 128a, 128b, and 128c.
  • the first detection elements that individually detect and output changes in the resonance states of the plurality of resonance elements are the plurality of light receiving elements 120b and 120c.
  • the optical information device includes a plurality of waveguides 129b and 129c that guide light from the plurality of resonance elements (metal antennas 128b and 128c) to the plurality of light receiving elements 120b and 120c.
  • a total of three metal antennas 128a, 128b, and 128c are fixed to the stepped end face of the slider 124, one each. Plasmon resonance is excited by light from the semiconductor laser elements 107a, 107b, and 107c guided by the plurality of waveguides 129a, 129b, and 129c.
  • the interaction between two metal particles appears prominently when the distance between the metal particles is several tens of nanometers or less (Confined plasmas in nanofabricated partialspars: experiential severinstrands. Al., J. Phys. Chem. B, 2005, 109, 1079-1087). Therefore, the length L in the longitudinal direction of the track between the metal antenna 128a and the metal antenna 128b and the length L in the longitudinal direction of the track between the metal antenna 128a and the metal antenna 128c are set to several tens of nm or more. Thereby, the interaction between the metal antennas 128a, 128b and 128c can be suppressed, and the degree of freedom of the shape of the metal antennas 128a, 128b and 128c is increased.
  • the tracking metal antennas 128b and 128c are arranged in a direction perpendicular to the track 112 with the recording or reproduction metal antenna 128a as the center.
  • the metal antennas 128b and 128c are disposed at positions separated from the metal antenna 128a by a distance P in a direction perpendicular to the track 112, respectively.
  • the distance P is a quarter of the tracking period (track pitch) Tp.
  • the distance (2P) in the direction perpendicular to the track 112 between the metal antenna 128b and the metal antenna 128c is fixed to one half of the tracking period Tp.
  • FIG. 13A is a graph showing changes in the intensity of reflected light from the metal antennas 128a, 128b, and 128c with respect to the distance from the track of the metal antennas 128a, 128b, and 128c.
  • FIG. 13B is a graph showing changes in the intensity of the detection signals te1 and te2 from the light receiving elements 120b and 120c for tracking.
  • FIG. 13C is a graph showing a change in intensity of the tracking signal TE, which is the difference between the detection signal te1 and the detection signal te2 output from the operational amplifier 111.
  • the metal antennas 128 a, 128 b and 128 c interact with the fine particles 102 and plasmon resonate together with the fine particles 102.
  • the resonance state between the metal antennas 128a, 128b, and 128c and the fine particles 102 varies depending on the design of the metal antennas 128a, 128b, and 128c and the fine particles 102. For this reason, depending on the design, the reflected light intensity from the metal antennas 128a, 128b, and 128c may increase due to plasmon resonance, or the reflected light intensity from the metal antennas 128a, 128b, and 128c may decrease due to plasmon resonance. is there. In the second embodiment, the case where the reflected light intensity from the metal antennas 128a, 128b, and 128c decreases due to resonance with the fine particles 102 is shown as an example.
  • the resonance state of plasmon resonance reacts sensitively to the distance between the metal antennas 128a, 128b and 128c and the fine particles 102. For this reason, the reflected light intensity from the metal antennas 128a, 128b and 128c is minimized at the track position (position where the distance from the track 112 coincides with the tracking period Tp) as shown in FIG. Is the maximum at a position where the distance from is half the tracking period Tp.
  • the detection signals te1 and te2 of the light receiving elements 120b and 120c are input to the operational amplifier 111 that functions as a tracking signal calculation circuit.
  • the operational amplifier 111 outputs the difference between the detection signal te1 and the detection signal te2 as the tracking signal TE.
  • the operational amplifier 111 serving as the tracking signal calculation circuit obtains the tracking signal TE based on the change in the resonance state of each of the plurality of resonance elements (metal antennas 128b and 128c).
  • the tracking metal antennas 128b and 128c are set apart from the recording or reproducing metal antenna 128a by a quarter of the tracking period Tp in the direction perpendicular to the track 112, respectively. ing. Therefore, as shown in FIGS. 13B and 13C, the difference between the detection signal te1 and the detection signal te2 can be maximized, and a highly accurate tracking signal TE can be obtained.
  • the output tracking signal TE is input to the actuator 106.
  • the actuator 106 drives the slider 124 in a direction perpendicular to the track 112 in response to the tracking signal TE.
  • the metal antennas 128b and 128c correspond to an example of a plurality of resonance elements
  • the slider 124 corresponds to an example of a holding element
  • the light receiving elements 120b and 120c include the first detection element and the plurality of resonance elements.
  • the suspension 125 corresponds to an example of a light receiving element
  • the suspension 125 corresponds to an example of a second moving element
  • the waveguides 129b and 129c correspond to an example of a plurality of waveguides.
  • the slider 124 can scan the disk 101 at a position of several nm to several tens of nm on the disk 101 without the slider 124 and the disk 101 coming into contact with each other. Therefore, precise gap control can be performed without causing the disk 101 and the slider 124 to wear.
  • the metal antennas 128a, 128b, and 128c are arranged so as to be shifted in the longitudinal direction of the track. That is, the slider 124 is arranged by shifting the positions of the metal antennas 128b and 128c in the longitudinal direction of the track. Thereby, the interaction between the adjacent metal antennas 128a, 128b, and 128c can be suppressed, and the degree of freedom of the shape of the metal antennas 128a, 128b, and 128c is increased.
  • the polarization direction of incident light incident on the plurality of resonant elements (metal antennas 128 b and 128 c) from the light source (semiconductor laser elements 107 b and 107 c) is a direction perpendicular to the surface of the disk 101.
  • the longitudinal position of the track of the plurality of resonance elements (metal antenna 128b and metal antenna 128c) is the thickness in the longitudinal direction of the track of one resonance element of the plurality of resonance elements (metal antenna 128b or 128c). It may be shifted as described above. Thereby, the interaction between a plurality of resonant elements can be further suppressed.
  • reflected light is detected instead of near-field light. This eliminates the need to fabricate minute light receiving elements 110a, 110b, and 110c in the immediate vicinity of the metal antennas 128a, 128b, and 128c, and facilitates fabrication of the optical information device.
  • the light receiving elements 120a, 120b, and 120c do not interact with the metal antennas 128a, 128b, and 128c. For this reason, the metal antennas 128a, 128b, and 128c and the disk 101 can be efficiently interacted, and tracking and information recording or reproduction can be performed efficiently.
  • a pair of a semiconductor laser element and a light receiving element is disposed adjacent to one waveguide, but for example, a Y-shaped waveguide may be used.
  • a semiconductor laser element may be disposed on one side of the Y-shaped waveguide, and a light receiving element may be disposed on the other side.
  • a stepped step is formed on the end surface of the slider 124, and the metal antennas 128a, 128b, and 128c are arranged on each step.
  • the metal antennas 128a, 128b, and 128c only need to be shifted in the longitudinal direction of the track so as not to interact with each other.
  • FIG. 14 is a top view showing the slider in the first modification of the second embodiment of the present invention
  • FIG. 15 is a top view showing the slider in the second modification of the second embodiment of the present invention. is there.
  • the end surface of the slider 124 may be convex or concave.
  • the metal antennas 128a, 128b and 128c are arranged so as to be shifted in the longitudinal direction of the track.
  • the slider 124 and the air slider 132 are configured separately, but the present invention is not particularly limited to this, and the slider 124 may be enlarged.
  • the slider 124 may also have the function of an air slider that moves the slider 124 in a direction perpendicular to the surface of the disk 101. Also in this case, the gist of the present invention is not impaired.
  • FIG. 16 is a diagram showing a configuration of a slider in a modification of the first and second embodiments of the present invention.
  • the optical information apparatus includes a motor 116 instead of the actuator 106 according to the first and second embodiments.
  • the motor 116 rotates the suspension 105 (125) around the motor 116 in a plane parallel to the surface of the disk 101.
  • the motor 116 may rotate the suspension 105 (or 125) as an arm and drive the slider 104 (or 124) in a direction perpendicular to the track like a hard disk drive.
  • Embodiments 1 and 2 fine particles composed of a phase change material are used for recording or reproducing information, but the present invention is not particularly limited to this.
  • the optical information device is an optical information device that performs only reproduction, such as a ROM (Read Only Memory) device, for example, an uneven pit may be used instead of fine particles, or a metal pattern or the like may be used. Also good.
  • the shape of the metal antenna is a triangular plate shape.
  • the shape of the metal antenna is not particularly limited to the above example, and examples other than the triangular plate shape are shown in FIGS. Such a shape is also conceivable.
  • the shape of the metal antenna is not particularly limited as long as plasmon resonance occurs on the fine particles and the plasmon resonance state efficiently changes according to the distance from the track.
  • FIG. 17 is a diagram showing a metal antenna having a square plate shape in the first and second embodiments of the present invention
  • FIG. 18 is a metal antenna having a disk shape in the first and second embodiments of the present invention
  • FIG. 19 is a diagram showing a metal antenna having a probe shape in the first and second embodiments of the present invention.
  • the metal antenna 117 when the shape of the metal antenna 117 is a rectangular flat plate shape, the metal antenna 117 is vertically symmetric, so that the analysis is easier than the triangular flat plate shape. Further, as shown in FIG. 18, when the shape of the metal antenna 118 is a disc shape, the pattern can be easily produced as compared with the triangular plate shape. Further, as shown in FIG. 19, when the shape of the metal antenna 119 is a probe shape, near-field light can be generated more efficiently at the tip of the probe.
  • the two metal antennas are arranged so as to be shifted by a half of the tracking period Tp in a direction perpendicular to the track.
  • the number of metal antennas and the arrangement method are such that the difference in detection signals from a plurality of metal antennas for tracking is zero at the track position and the difference in detection signals can be obtained according to the positional deviation from the track. Good.
  • the number of metal antennas for tracking and the arrangement method are not particularly limited to the configurations shown as the first and second embodiments.
  • the plurality of waveguides 109a to 109c are arranged non-parallel to each other in order to suppress the waveguide mode coupling. However, the waveguide mode coupling does not occur. If so, the plurality of waveguides 109a to 109c (129a to 129c) may be arranged in parallel to each other, and this does not impair the gist of the present invention.
  • the semiconductor laser elements 107a to 107c, the metal antennas 108a to 108c (128a to 128c), and the light receiving elements 110a to 110c (120a to 120c) are disposed on the end face of the slider 104 (124).
  • the present invention is not particularly limited to this. These elements may be arranged on the upper surface of the slider 104 (124) or inside the slider 104 (124), or these elements may be integrated on a single chip.
  • the optical information device includes three light sources (semiconductor laser elements 107a to 107c).
  • the optical information device includes one light source and emits light from one light source. The light may be incident on the metal antenna after being separated in three directions by a waveguide.
  • the optical information device includes one light source for recording or reproduction and one light source for tracking, and separates light from only the light source for tracking in two directions by a Y-shaped waveguide, thereby providing two metal antennas. Light may be incident on. These do not impair the gist of the present invention.
  • FIG. 20 is a schematic diagram showing the configuration of the optical information device according to the third embodiment of the present invention.
  • 21 is a perspective view showing the configuration of the plurality of metal antennas shown in FIG. 20, and
  • FIG. 22 is a top view showing the configuration of the plurality of metal antennas shown in FIG. 20 to 22, the same components as those in FIGS. 1 to 4 are denoted by the same reference numerals, and description thereof is omitted.
  • the optical information device includes semiconductor laser elements 202a, 202b, 202c, 202d, metal antennas 228a, 228b, 228c, lenses 203, 204, 205, 206, 207, half mirrors 208, 209, dichroic mirrors 210, 4 A half-wave plate 211, an analyzer 212, a light shielding plate 213, a diffraction grating 214, light receiving elements 215a, 215b, 215c, and 215d, a solid immersion lens 216, a lens holder 217, an actuator 218, and an operational amplifier 111 are provided.
  • a disk 221 is an information recording medium having tracks on which information is recorded in a line.
  • a groove 201 functioning as a track is formed on the disk 221, and information is recorded on the groove 201.
  • the output wavelengths of the semiconductor laser elements 202a, 202b, 202c and 202d are different from each other.
  • the semiconductor laser elements 202a, 202b, 202c, and 202d emit light having wavelengths of 780 nm, 630 nm, 830 nm, and 400 nm, respectively.
  • the polarization of light from the semiconductor laser elements 202a, 202b, 202c and 202d is linearly polarized light.
  • the semiconductor laser element 202a is used as a light source for recording or reproducing information
  • the semiconductor laser elements 202b and 202c are used as light sources for tracking
  • the semiconductor laser element 202d is used as a light source for gap detection.
  • the metal antennas 228a, 228b, and 228c are resonance elements that excite plasmon resonance by light from the semiconductor laser elements 202a, 202b, and 202c, respectively.
  • the metal antennas 228a, 228b, and 228c are made of a material such as gold, silver, copper, titanium, aluminum, or chromium. Further, as shown in FIG. 21, the metal antennas 228a, 228b, and 228c have a triangular flat plate shape.
  • the metal antennas 228 a, 228 b, and 228 c are arranged so that the triangular surface is parallel to the surface of the disk 221.
  • the metal antennas 228b and 228c which are resonance elements, interact with the disk 221, and the resonance state changes according to the distance from the track (groove 201).
  • the metal antennas 228a, 228b and 228c have different shapes or materials so that the maximum plasmon resonance can be obtained on the track center with respect to the light emitted from the semiconductor laser elements 202a, 202b and 202c, respectively.
  • the tracking metal antennas 228b and 228c are arranged with their positions shifted in the direction perpendicular to the track with the recording or reproduction metal antenna 228a as the center.
  • the metal antennas 228b and 228c are disposed at positions separated from the metal antenna 228a by a distance P in a direction perpendicular to the track 112, respectively.
  • the distance P is a quarter of the tracking period (track pitch) Tp.
  • the distance (2P) in the direction perpendicular to the track between the metal antenna 228b and the metal antenna 228c is fixed to one half of the tracking period Tp.
  • the metal antennas 228a and 228b are arranged so that the apex of the metal antenna 228a and the base of the metal antenna 228b do not overlap with the longitudinal direction of the track in order to avoid a plurality of metal antennas from interacting with each other. It is arranged to shift to.
  • the metal antennas 228a and 228c are arranged so as to be shifted in the longitudinal direction of the track so that the bottom of the metal antenna 228a and the apex of the metal antenna 228c do not overlap with the longitudinal direction of the track.
  • the polarization directions of the semiconductor laser elements 202a, 202b, and 202c are made to coincide with the resonance directions of the metal antennas 228a, 228b, and 228c that function as resonance elements having different resonance frequencies.
  • the polarization direction of incident light incident on the plurality of resonance elements (metal antennas 228b and 228c) from the light source (semiconductor laser elements 202b and 202c) is the disk 221.
  • the position in the longitudinal direction of the track between the plurality of resonance elements (metal antennas 228b and 228c) is shifted more than the length in the longitudinal direction of the track of one resonance element of the plurality of resonance elements.
  • the dichroic mirror 210 reflects light having a wavelength of 500 nm or less.
  • the quarter-wave plate 211 converts linearly polarized light into circularly polarized light with respect to the light from the semiconductor laser element 202d.
  • the analyzer 212 transmits light having the same polarization direction as that of the light from the semiconductor laser element 202d.
  • the light shielding plate 213 shields light at the central portion and transmits only light at the peripheral portion.
  • the diffraction grating 214 diffracts the reflected light from the metal antenna 228a to the light receiving element 215a, diffracts the reflected light from the metal antenna 228b to the light receiving element 215b, and diffracts the reflected light from the metal antenna 228c to the light receiving element 215c.
  • the light receiving elements 215a, 215b, and 215c individually detect changes in the resonance states of the metal antennas 228a, 228b, and 228c, and output detection signals.
  • the light receiving elements 215a, 215b and 215c individually detect scattered light from the metal antennas 228a, 228b and 228c, respectively.
  • the light receiving element 215d detects the distance between the metal antennas 228a, 228b and 228c and the disk 221.
  • the light receiving element 215d outputs a gap signal GT indicating the distance between the metal antennas 228a, 228b, and 228c and the disk 221.
  • Metal antennas 228a, 228b and 228c are formed on the bottom surface of the solid immersion lens 216.
  • the solid immersion lens 216 functions as a holding element that holds the metal antennas 228a, 228b, and 228c.
  • the solid immersion lens 216 which is a holding element, is arranged by shifting the positions of a plurality of resonance elements (metal antennas 228b and 228c) in a direction perpendicular to the track and fixing the distance between the plurality of resonance elements constant. Hold.
  • the lens holder 217 holds the solid immersion lens 216 and the lens 207, and relatively fixes the positions of the solid immersion lens 216 and the lens 207.
  • the actuator 218 moves the lens holder 217 in the direction perpendicular to the track and the direction perpendicular to the surface of the disk 221 based on the gap signal GT output from the light receiving element 215d and the tracking signal TE output from the operational amplifier 111. That is, the actuator 218 as the first moving element moves the holding element (solid immersion lens 216) in a direction perpendicular to the track in accordance with the tracking signal TE.
  • the actuator 218 has a plurality of resonance elements (metal antennas 228b and 228c) and a plurality of the plurality of resonance elements (metal antennas 228b and 228c) so that the distance between the disk 221 is constant according to the detection signal (gap signal GT) from the light receiving element 215d.
  • the resonant elements (metal antennas 228b and 228c) are moved in a direction perpendicular to the surface of the disk 221.
  • the lens 204, the half mirror 209, the lens 207, and the like are optical elements that guide light from the light sources (semiconductor laser elements 202b and 202c) to a plurality of resonance elements (metal antennas 228b and 228c). Function.
  • the disk 221 corresponds to an example of an information recording medium
  • the semiconductor laser elements 202b and 202c correspond to examples of a light source and a plurality of light sources
  • the metal antennas 228b and 228c include a plurality of resonance elements.
  • the solid immersion lens 216 corresponds to an example of a holding element
  • the light receiving elements 215b and 215c correspond to an example of a first detection element and a plurality of light receiving elements
  • the actuator 218 corresponds to an example of a first moving element and a first moving element.
  • the light receiving element 215d corresponds to an example of a second detection element
  • the diffraction grating 214 corresponds to an example of an optical element.
  • the operation of the optical information apparatus in the third embodiment will be described.
  • the gap detection method of the optical information device in the third embodiment will be described.
  • the light emitted from the semiconductor laser element 202d is collimated by the lens 203 and passes through the half mirror 208.
  • the light transmitted through the half mirror 208 is converted into circularly polarized light by the quarter wave plate 211 and reflected by the dichroic mirror 210.
  • the light reflected by the dichroic mirror 210 is collected by the lens 207 and the solid immersion lens 216.
  • the component light having a high numerical aperture NA is totally reflected on the bottom surface of the solid immersion lens 216.
  • the light totally reflected by the bottom surface of the solid immersion lens 216 is transmitted through the lens 207, is reflected by the dichroic mirror 210, and is transmitted through the quarter-wave plate 211 again.
  • Totally reflected light is out of phase with polarized light perpendicular to the reflecting surface and polarized light parallel to the reflecting surface as compared to before total reflection. Therefore, the light transmitted through the quarter-wave plate 211 again includes light having the same polarization as the light emitted from the semiconductor laser element 202d.
  • the light transmitted through the quarter-wave plate 211 is reflected by the half mirror 208, and only the light having the same polarization as that emitted from the semiconductor laser element 202 d is transmitted by the analyzer 212, and condensed by the lens 205 onto the light receiving element 215 d. Is done.
  • the light receiving element 215 d generates a gap signal GT by detecting the intensity of light totally reflected on the bottom surface of the solid immersion lens 216, and outputs the gap signal GT to the actuator 218.
  • the actuator 218 performs gap control based on the input gap signal GT.
  • the actuator 218 moves the plurality of resonance elements (metal antennas 228b and 228c) in a direction perpendicular to the surface of the disk 221.
  • the actuator 218 has a second detection element (light receiving element 215d) that detects the distance between the plurality of resonance elements (metal antennas 228b and 228c) and the disk 221. ),
  • the plurality of resonance elements (metal antennas 228b and 228c) are placed on the disk 221 so that the distance between the plurality of resonance elements (metal antennas 228b and 228c) and the disk 221 is constant. Move in a direction perpendicular to the surface.
  • the light emitted from the semiconductor laser elements 202a, 202b and 202c is collimated by the lens 204 and reflected by the half mirror 209.
  • the light reflected by the half mirror 209 passes through the dichroic mirror 210 and is collected by the lens 207 and the solid immersion lens 216.
  • the condensed light is incident on metal antennas 228a, 228b, and 228c formed on the bottom surface of the solid immersion lens 216, and excites plasmon resonance in the corresponding metal antennas 228a, 228b, and 228c. Each excited plasmon resonance generates scattered light having a corresponding wavelength.
  • the scattered light is collimated by the solid immersion lens 216 and the lens 207 and passes through the dichroic mirror 210.
  • the scattered light that has passed through the dichroic mirror 210 passes through the light shielding plate 213 after passing through the half mirror 209.
  • the central portion of the light shielding plate 213 is shielded from light, and only the scattered light forming the peripheral portion is transmitted by shielding the central portion light including the reflected incident light.
  • the scattered light transmitted through the light shielding plate 213 is diffracted by the diffraction grating 214 at different angles for each wavelength, and is condensed by the lens 206 onto the corresponding light receiving elements 215a, 215b, and 215c.
  • the light receiving elements 215a, 215b, and 215c detect scattered light from the metal antennas 228a, 228b, and 228c.
  • the light source includes a plurality of light sources (semiconductor laser elements 202b and 202c) that emit light having different wavelengths.
  • the plurality of resonance elements (metal antennas 228b and 228c) are formed in a shape or material having the resonance frequency as the frequency of light emitted from each of the plurality of light sources (semiconductor laser elements 202b and 202c).
  • the first detection element that individually detects and outputs the change in the resonance state of each of the plurality of resonance elements (metal antennas 228b and 228c) includes the plurality of light receiving elements 215b and 215c and the plurality of resonance elements.
  • an optical element (diffraction grating 214) that separates the plurality of lights having different frequencies and guides each of the plurality of lights to the corresponding light receiving elements 215b and 215c.
  • FIG. 23A is a graph showing changes in scattered light intensity from the metal antennas 228a, 228b and 228c with respect to the distance from the track of the metal antennas 228a, 228b and 228c.
  • FIG. 23B is a graph showing intensity changes of the detection signals te1 and te2 from the tracking light receiving elements 215b and 215c.
  • FIG. 23C is a graph showing a change in intensity of the tracking signal TE output from the operational amplifier 111.
  • the scattered light intensity from the metal antennas 228a, 228b, and 228c becomes maximum at the track position (position where the distance from the groove 201 coincides with the tracking period Tp), and the track (groove 201). Is the minimum at a position where the distance from is half the tracking period Tp.
  • the detection signal of the light receiving element 215a is used as a reproduction signal.
  • the detection signals te1 and te2 of the light receiving elements 215b and 215c change as shown in FIG. 23B and are input to the operational amplifier 111 that functions as a tracking signal arithmetic circuit.
  • the operational amplifier 111 outputs the difference between the detection signal te1 and the detection signal te2 with respect to the distance from the track as a tracking signal TE as shown in FIG.
  • the operational amplifier 111 serving as the tracking signal calculation circuit calculates the tracking signal TE based on the change in the resonance state of each of the plurality of resonance elements (metal antennas 228b and 228c).
  • the tracking metal antennas 228b and 228c are set apart from the recording or reproduction metal antenna 228a by a quarter of the tracking period Tp in the direction perpendicular to the track. Yes. Therefore, the difference between the detection signal te1 and the detection signal te2 can be maximized, and a highly accurate tracking signal TE can be obtained.
  • the individual resonance states of the metal antennas 228a, 228b, and 228c are detected using the difference in wavelength. For this reason, it is not necessary to integrate the light source, the first detection element, the waveguide, and the plurality of resonance elements in a minute region, and the production of the optical information device is easy.
  • the metal antennas 228a, 228b, and 228c are arranged so as to be parallel to the surface of the disk 221, and plasmon resonance is performed by incident light having a polarization direction parallel to the surface of the disk 221. Excited. For this reason, it is not necessary to hold the metal antennas 228a, 228b, and 228c perpendicular to the surface of the disk 221, and the manufacturing is easy.
  • the groove 201 is formed on the disk 221. Therefore, a large tracking signal can be obtained as compared with an information recording medium in which fine particles are arranged.
  • gap control is performed by detecting a change in the intensity of reflected light. For this reason, the application from the technique used in the conventional optical pickup is easy, and at the same time, the application to a removable information recording medium is also possible.
  • a disk having a groove is used as the information recording medium.
  • the fine particles arranged in rows used in the first and second embodiments may be used. good.
  • the shape of the metal antenna is a triangular plate shape.
  • the shape of the metal antenna is not particularly limited to the above example, and for example, as shown in FIGS. It may be a simple shape.
  • the shape of the metal antenna is not particularly limited as long as plasmon resonance occurs on the track and the plasmon resonance state efficiently changes according to the distance from the track.
  • FIG. 24 is a diagram showing a fan-shaped metal antenna in Embodiment 3 of the present invention
  • FIG. 25 is a diagram showing a bow-tie metal antenna in Embodiment 3 of the present invention.
  • FIG. 26 is a diagram showing a metal antenna having a nanobeak shape in the third embodiment of the present invention.
  • the shape of the metal antenna 117 when the shape of the metal antenna 117 is a fan shape, the influence of the parasitic light at the bottom side portion is reduced as compared with the triangular plate shape.
  • the shape of the metal antenna 117 when the shape of the metal antenna 117 is a bow tie shape, near-field light can be generated more efficiently in the portion where the apexes of the metal antenna face each other than the triangular plate shape.
  • the near-field light can be condensed three-dimensionally and the near-field light can be generated efficiently.
  • the recording or reproducing metal antenna 228a is disposed between the two tracking metal antennas 228b and 228c in the longitudinal direction of the track.
  • the present invention is particularly limited to this. Instead, the arrangement shown in FIGS. 27 to 29 may be used.
  • FIG. 27 is a diagram showing an example in which the tracking metal antenna is arranged close to the third embodiment of the present invention
  • FIG. 28 shows the direction of the tracking metal antenna in the third embodiment of the present invention
  • FIG. 29 is a diagram showing an example of disposing differently, and FIG. 29 is an example of disposing the recording or reproducing metal antenna and the tracking metal antenna so that the directions thereof are orthogonal to each other in the third embodiment of the present invention.
  • the recording or reproducing metal antenna 228a may be arranged independently, and the tracking metal antennas 228b and 228c may be arranged so as to approach each other.
  • the tracking accuracy is improved.
  • the tracking metal antennas 228b and 228c are all arranged in the same direction. However, as shown in FIG. 28, the tracking metal antennas 228b and 228c are oriented in the longitudinal direction of the track. The tracking metal antennas 228b and 228c may be arranged so that the positions of the vertices in the longitudinal direction of the tracks approach each other. In the configuration shown in FIG. 28, the tracking metal antennas 228b and 228c have the same detection position in the longitudinal direction of the track, so that tracking accuracy is improved.
  • the resonance states of the metal antennas 228b and 228c are separated using the difference in the wavelength of the scattered light.
  • the recording or reproducing metal antenna 228a and the tracking are separated.
  • the metal antennas 228b and 228c may be arranged so that their directions are orthogonal to each other. That is, the tracking metal antennas 228b and 228c are arranged so as to face each other in the direction perpendicular to the track, and the scattered light of the recording or reproducing metal antenna 228a and the scattered light of the tracking metal antennas 228b and 228c May be separated using a difference in polarization direction. If the configuration as shown in FIG. 29 is used, the number of light sources that emit light having different wavelengths can be reduced.
  • the main configuration of the optical information apparatus described in the first embodiment, the second embodiment, and the third embodiment is described below.
  • the optical information device described in the first embodiment, the second embodiment, and the third embodiment is an optical information device that records or reproduces information on an information recording medium having a track, and includes a light source and light from the light source.
  • a holding element that holds the distance between the resonance elements fixed at a fixed level, a first detection element that individually detects a change in the resonance state of each of the plurality of resonance elements, and a resonance detected by the first detection element
  • a tracking signal calculation circuit that calculates a tracking signal based on a change in state, and a holding element is moved in a direction perpendicular to the track according to the tracking signal calculated by the tracking signal calculation circuit.
  • a a first moving element to be.
  • the positions of the plurality of resonance elements whose resonance states change according to the distance from the track are shifted in the direction perpendicular to the track, and the distances between the plurality of resonance elements are fixedly held. Is done.
  • the relative position between the plurality of resonance elements and the information recording position on the track does not change due to the interaction. For this reason, a stable and highly accurate tracking signal depending only on the displacement from the track position can be obtained.
  • the resonance state is sensitive to changes in the optical constants around the resonance element. For this reason, even if the information recording state on the track is an information recording state not accompanied by a change in surface shape, tracking can be performed stably and with high accuracy.
  • the change in the resonance state of the plurality of resonance elements is individually detected by the plurality of light receiving elements, and the difference between the detection signals is output as a tracking signal.
  • the detection signal reacts sensitively to changes in the optical constants around the resonant element, and a tracking signal having a high degree of modulation with respect to a positional deviation from a minute track can be obtained. For this reason, a stable and highly accurate tracking signal can be obtained.
  • FIG. 30 is a schematic diagram showing the configuration of the optical information apparatus in the fourth embodiment of the present invention
  • FIG. 31 is a top view showing the configuration of the optical information apparatus in the fourth embodiment of the present invention
  • 32 is a perspective view showing the configuration of the slider shown in FIG. 30
  • FIG. 33 is a side view showing the configuration of the slider shown in FIG. 30,
  • FIG. 34 is a top view showing the configuration of the slider shown in FIG. FIG. 30 to 34, the same components as those in FIGS. 1 to 4 and FIGS. 9 to 12 are denoted by the same reference numerals, and description thereof is omitted.
  • the optical information device includes semiconductor laser elements 107a, 107b, 107c, metal antennas 128a, 128b, 128c, waveguides 129a, 129b, 129c, light receiving elements 120a, 120b, 120c, a motor 103, an air slider. 132, a slider 141, a suspension 142, a motor 143, piezo elements 144a and 144b, a yawing signal calculation circuit 151, and a tracking signal calculation circuit 161.
  • a disk 101 having fine particles 102 arranged in a track shape is fixed and held by a motor 103.
  • the slider 141 as a holding element is arranged by shifting the positions of the metal antennas 128a, 128b and 128c as resonance elements in the direction perpendicular to the track 112, and the distance between the metal antennas 128a, 128b and 128c is fixed. And hold.
  • Metal antennas 128a, 128b, and 128c which are resonance elements, receive light from semiconductor laser elements 107b and 107c, interact with disk 101, and the resonance state changes according to the distance from track 112.
  • the metal antennas 128a, 128b, and 128c in the fourth embodiment are made of a material such as gold, silver, copper, titanium, aluminum, or chromium.
  • the metal antennas 128a, 128b, and 128c are triangular flat plate shapes.
  • the metal antennas 128a, 128b, and 128c are arranged so that one vertex of the triangle is closest to the surface of the fine particle 102, and strong near-field light is generated near the vertex of the triangle when plasmon resonance is excited.
  • the distance between the metal antennas 128a, 128b, and 128c in the fourth embodiment and the surface of the fine particles 102 is preferably several tens of nm or less. More preferably, it is nm.
  • the distance P1 between the metal antenna 128a and the metal antenna 128b is larger than the distance P2 between the metal antenna 128a and the metal antenna 128c.
  • the metal antennas 128a, 128b, and 128c interact with the microparticles 102 and plasmon resonate together.
  • the resonance state between the metal antennas 128a, 128b, and 128c and the fine particles 102 varies depending on the design of the metal antennas 128a, 128b, and 128c and the fine particles 102.
  • the reflected light intensity from the metal antennas 128a, 128b, and 128c may increase due to plasmon resonance, or the reflected light intensity from the metal antennas 128a, 128b, and 128c may decrease due to plasmon resonance. is there.
  • the fourth embodiment the case where the reflected light intensity from the metal antennas 128a, 128b, and 128c decreases due to resonance with the fine particles 102 is shown as an example.
  • the resonance state of plasmon resonance reacts sensitively to the distance between the metal antennas 128a, 128b and 128c and the fine particles 102. Therefore, the reflected light intensity from the metal antennas 128a, 128b, and 128c is the track position (position where the distance from the track 112 coincides with the tracking period Tp) as shown in FIG. 13A of the second embodiment. It becomes the minimum and becomes the maximum at the position where the distance from the track 112 becomes half of the tracking period Tp.
  • the air slider 132 moves the metal antennas 128a, 128b, and 128c in a direction perpendicular to the surface of the disk 101.
  • the suspension 142 is composed of a spring element.
  • the slider 141 and the air slider 132 are held facing the disk 101 by a suspension 142.
  • the distance between the slider 141 and the disk 101 is kept constant by using a technique similar to that of a flying head employed in a hard disk drive.
  • the second moving element that moves the plurality of resonant elements in the direction perpendicular to the surface of the information recording medium includes the suspension 125 (spring element). Yes.
  • the suspension 125 keeps the distance between the disk 101, the slider 104, and the air slider 132 constant by the force of the airflow flowing between the slider 104 and the air slider 132 and the disk 101.
  • the suspension 142 is rotated by a motor 143.
  • the motor 143 as the first moving element moves the holding element (slider 141) in a direction perpendicular to the track 112 in accordance with the tracking signal.
  • the slider 141 scans the disk 101.
  • the yawing signal calculation circuit 151 calculates a yawing signal that represents the inclination of the slider 141 in a plane parallel to the surface of the disk 101 based on the change in the resonance state detected by the light receiving elements 120b and 120c.
  • the yawing signal calculation circuit 151 generates a yawing signal based on the detection signals te1 and te2 representing changes in the resonance state of the metal antennas 128b and 128c.
  • the piezo elements 144a and 144b are incorporated in the suspension 142.
  • the piezo elements 144 a and 144 b expand and contract in opposite phases to rotate the slider 141 in a plane parallel to the surface of the disk 101.
  • Piezo elements 144a and 144b which are rotating elements, rotate the slider 141 in a plane parallel to the surface of the disk 101 according to the yawing signal, and keep the relative distance in the direction perpendicular to the tracks of the metal antennas 128b and 128c constant. .
  • the sum of the length of the perpendicular line extending from the metal antenna 128b to the line passing through the center of the track and the length of the perpendicular line extending from the metal antenna 128c to the line passing through the center of the track is constant.
  • the slider 141 is rotated in a plane parallel to the surface of the disk 101.
  • the tracking signal calculation circuit 161 calculates a correction value for correcting the positional deviation of the track from the track from the metal antenna 128b based on the plurality of detection signals, and the plurality of detection signals corrected based on the calculated correction value. Is calculated as a tracking signal.
  • the tracking signal calculation circuit 161 generates a tracking signal based on the detection signals te0, te1, and te2 representing changes in the resonance state of the metal antennas 128a, 128b, and 128c.
  • the motor 143 moves the slider 141 in a direction perpendicular to the track 112 in accordance with the tracking signal.
  • the slider 141 has a stepped step in the direction perpendicular to the track 112 on the end face in the longitudinal direction of the track.
  • the step-like end face has three faces whose positions are different in the longitudinal direction of the track.
  • the waveguides 129a, 129b and 129c individually guide light from the semiconductor laser elements 107a, 107b and 107c to the metal antennas 128a, 128b and 128c.
  • the waveguides 129a, 129b and 129c individually guide the reflected light from the metal antennas 128a, 128b and 128c to the light receiving elements 120a, 120b and 120c.
  • the light receiving elements 120a, 120b and 120c are arranged in the vicinity of the semiconductor laser elements 107a, 107b and 107c, respectively.
  • the light receiving elements 120a, 120b, and 120c individually detect changes in the resonance states of the metal antennas 128a, 128b, and 128c.
  • Each of the light receiving elements 120a, 120b, and 120c is attached to each of the plurality of waveguides 129a, 129b, and 129c, and individually detects the reflected light from the metal antennas 128a, 128b, and 128c.
  • the first detection elements that individually detect and output changes in the resonance states of the plurality of resonance elements are the plurality of light receiving elements 120a and 120b.
  • the optical information device includes a plurality of waveguides 129a, 129b, and 129c that guide light from the plurality of resonance elements to the plurality of light receiving elements.
  • a total of three metal antennas 128a, 128b, and 128c are fixed to the stepped end face of the slider 141, one each. Plasmon resonance is excited by light from the semiconductor laser elements 107a, 107b, and 107c guided by the plurality of waveguides 129a, 129b, and 129c.
  • the interaction between two metal particles appears prominently when the distance between the metal particles is several tens of nanometers or less (Confined plasmas in nanofabricated partialspars: experiential severinstrands. Al., J. Phys. Chem. B, 2005, 109, 1079-1087). Therefore, the length L in the longitudinal direction of the track between the metal antenna 128a and the metal antenna 128b and the length L in the longitudinal direction of the track between the metal antenna 128a and the metal antenna 128c are set to several tens of nm or more. Thereby, the interaction between the metal antennas 128a, 128b and 128c can be suppressed, and the degree of freedom of the shape of the metal antennas 128a, 128b and 128c is increased.
  • the tracking metal antennas 128b and 128c are arranged in a direction perpendicular to the track with the recording or reproduction metal antenna 128a as the center.
  • the metal antennas 128b and 128c are arranged at positions separated from the metal antenna 128a by arbitrary distances P1 and P2 in a direction perpendicular to the track 112, respectively.
  • FIG. 35 is a diagram showing the configuration of the yawing signal calculation circuit 151 shown in FIG.
  • the yawing signal operation circuit 151 includes a phase comparison circuit 152, a first control circuit 153, a first sampling hold circuit 154a, a second sampling hold circuit 154b, a first addition circuit 155a, a second addition circuit 155b, and a difference.
  • a circuit 156, a second control circuit 157, and a switch 158 are provided.
  • FIG. 35 shows a positional shift between the tip position 171b of the metal antenna 128b and the tip position 171c of the metal antenna 128c when the tip position 171a of the metal antenna 128a is on the center of the track.
  • the detection signals te1 and te2 are described as being output from the tip position 171b of the metal antenna 128b and the tip position 171c of the metal antenna 128c. Are output from the light receiving elements 120b and 120c.
  • the phase comparison circuit 152 compares the phases of the detection signals te1 and te2, and outputs the phase difference between the detection signals te1 and te2 as the first yawing signal YE1.
  • the first control circuit 153 outputs a signal for driving the piezo elements 144a and 144b so that the first yawing signal YE1 becomes ⁇ radians.
  • the first sample and hold circuit 154a stores and outputs the value of the detection signal te1 when yawing signal YE1 becomes ⁇ radians as an initial value te1 0.
  • the second sample and hold circuit 154b and outputs the stored value of the detection signal te2 when yawing signal YE1 becomes ⁇ radians as an initial value te2 0.
  • the first addition circuit 155a calculates and outputs the sum of the initial value te1 0 and the initial value te2 0 .
  • the second addition circuit 155b calculates and outputs the sum of the detection signal te1 and the detection signal te2.
  • the difference circuit 156 subtracts the addition value (te1 0 + te2 0 ) of the initial value te1 0 and the initial value te2 0 from the addition value (te1 + te2) of the detection signal te1 and the detection signal te2, and outputs the result as the yawing signal YE2. .
  • the second control circuit 157 drives the piezo elements 144a and 144b according to the yawing signal YE2 so that the distance in the direction perpendicular to the track between the metal antennas 128b and 128c is maintained at half of the tracking period Tp.
  • a drive signal is output.
  • the switch 158 switches the connection destination of the piezo elements 144a and 144b to either the first control circuit 153 or the second control circuit 157.
  • the control sequence using the yawing signal is a first control that uses the yawing signal YE1 to adjust the inclination of the slider 141 so that the distance between the metal antennas 128a and 128b in the direction perpendicular to the track is half the tracking period Tp. And a second step of maintaining the tilt of the slider 141 so that the distance in the direction perpendicular to the track between the metal antennas 128a and 128b becomes half the tracking period Tp using the yawing signal YE2.
  • the motor 143 scans the slider 141 in a small amount in the direction perpendicular to the track.
  • the detection signals te1 and te2 corresponding to the resonance intensities of the metal antennas 128b and 128c periodically change with respect to the distance from the track 112, as shown in FIG.
  • the detection signals te1 and te2 are input to the phase comparison circuit 152.
  • the phase comparison circuit 152 compares the phase of the detection signal te1 with the phase of the detection signal te2, and outputs the phase difference between the two detection signals as the yawing signal YE1.
  • the first control circuit 153 outputs a drive signal for driving the piezo elements 144a and 144b so that the yawing signal YE1 output from the phase comparison circuit 152 becomes ⁇ radians.
  • the switch 158 connects the first control circuit 153 and the piezo elements 144a and 144b.
  • the motor 143 scans in the direction perpendicular to the track of the slider 141.
  • the first sample and hold circuit 154a samples the value of the detection signal te1 when yawing signal YE1 becomes ⁇ radians, is stored as an initial value te1 0.
  • the second sample and hold circuit 154b samples the value of the detection signal te2 when yawing signal YE1 becomes ⁇ radians, is stored as an initial value te2 0.
  • the first sample and hold circuit 154a outputs an initial value te1 0 of the detection signal te1
  • the second sample and hold circuit 154b sets the initial value te2 0 of the detection signal te2 Output.
  • the first addition circuit 155a adds the initial value te1 0 and the initial value te2 0 .
  • the first addition circuit 155a always outputs the sum (te1 0 + te2 0 ) of two initial values te1 0 and te2 0 as a reference value.
  • the second addition circuit 155b adds the detection signal te1 and the detection signal te2.
  • the second addition circuit 155b outputs the sum (te1 + te2) of the detection signals te1 and te2.
  • the yawing signal YE2 indicates the amount of change from the initial value of the sum of the detection signals te1 and te2.
  • the second control circuit 157 drives the piezo elements 144a and 144b according to the yawing signal YE2 so that the distance in the direction perpendicular to the track 112 between the metal antennas 128b and 128c is maintained at half of the tracking period Tp. Drive signal to output.
  • the switch 158 connects the second control circuit 157 and the piezo elements 144a and 144b.
  • the track angle changes due to the eccentricity of the disk 101 or the movement in the direction perpendicular to the track using the motor 143 and the suspension 142
  • the distance changes. That is, when the track is tilted counterclockwise about the tip position 171a of the metal antenna 128a, the distance P1 between the tip position 171b of the metal antenna 128b and the track center is increased, and the tip position of the metal antenna 128c is increased.
  • the distance P2 between 171c and the track center is increased.
  • the initial values of the detection signals te1 and te2 are te1 0 and te2 0 , respectively.
  • the phase difference of the detection signal te1 and the detection signal te2 with respect to the track position shift is ⁇ radians. It becomes a constant value (te1 0 + te2 0 ).
  • the sum (te1 0 + te2 0 ) of the initial values te1 0 and te2 0 can be used as the reference value of the yawing signal YE2 regardless of the positional deviation from the track.
  • the intensities of the detection signals te1 and te2 are values represented by white circles.
  • both the metal antennas 128b and 128c approach the track center, and the intensity of the detection signals te1 and te2 is shifted in the cw direction in FIG. It becomes the value to be. For this reason, when the track angle changes clockwise, the detection signals te1 and te2 both decrease.
  • the yawing signal YE2 is an error signal that zero-crosses at the origin. Further, the sum (te1 0 + te2 0 ) of the initial values te1 0 and te2 0 used as the reference value does not change with respect to the positional deviation from the track. For this reason, the yawing signal YE2 can be generated even when the track is off the track. By controlling the tilt of the slider 141 based on the yawing signal YE2, the distance in the direction perpendicular to the track between the metal antennas 128b and 128c can be maintained at half the tracking period Tp.
  • FIG. 40 is a conceptual diagram for explaining the track angle change in the case of P1 ⁇ P2. If the three metal antennas 128a, 128b, and 128c are not accurately aligned, an unbalanced arrangement as shown in FIG. 40 can be obtained. As shown in FIG. 40, when the track angle changes due to the eccentricity of the disk 101 or the movement in the direction perpendicular to the track using the motor 143 and the suspension 142, the direction perpendicular to the track of the metal antennas 128a, 128b and 128c. The distance changes.
  • the distance P1 between the tip position 171b of the metal antenna 128b and the track center is increased, and the tip position of the metal antenna 128c is increased.
  • the distance P2 between 171c and the track center is increased.
  • FIG. 41 is a diagram showing changes in the intensity of the detection signals te1 and te2 with respect to the positional deviation from the track when P1 ⁇ P2.
  • the initial values of the detection signals te1 and te2 are te1 0 and te2 0 , respectively.
  • the phase difference of the detection signal te1 and the detection signal te2 with respect to the track position deviation is ⁇ radians, so the average of the two detection signals ((te1 + te2) / 2) It becomes a constant value ((te1 0 + te2 0 ) / 2) regardless of the deviation.
  • the sum (te1 0 + te2 0 ) of the initial values te1 0 and te2 0 can be used as the reference value of the yawing signal YE2 regardless of the positional deviation from the track.
  • FIG. 42 is a diagram showing changes in the intensity of the detection signals te1 and te2 with respect to the distance between the track center and the tips of the metal antennas 128b and 128c when P1 ⁇ P2.
  • the strengths of the detection signals te1 and te2 are values represented by white circles.
  • the phases of the detection signals te1 and te2 with respect to changes in the track angle are shifted by the same amount in the opposite direction.
  • the sum (te1 0 + te2 0 ) of the initial values te1 0 and te2 0 used as the reference value does not change with respect to the positional deviation from the track. For this reason, the yawing signal YE2 can be generated even when the track is off the track.
  • FIG. 44 is a diagram showing the sensitivity of the yawing signal YE2 with respect to the distance between the track center and the midpoints of the tips of the metal antennas 128b and 128c when P1 ⁇ P2.
  • the sensitivity of the yawing signal YE2 to the change in the track angle when the change in the track angle is 0 changes as shown in FIG.
  • the sensitivity of the yawing signal YE2 is maximum when the track center and the midpoint of the tips of the metal antennas 128b and 128c coincide, and the distance between the track center and the midpoint of the tips of the metal antennas 128b and 128c is Tp / 4. 0.
  • the distance in the direction perpendicular to the track between the metal antennas 128b and 128c can be kept at half the tracking period Tp even when P1 ⁇ P2. .
  • the yawing signal calculation circuit 151 obtains a yawing signal based on the change in the resonance state of the resonance element.
  • the piezo elements 144a and 144b rotate the holding element (slider 141) in a plane parallel to the surface of the information recording medium according to the yawing signal.
  • the tracking signal calculation circuit 161 includes a correction value calculation circuit 162, a first difference circuit 163a, a second difference circuit 163b, a weighted difference circuit 164, and a control circuit 165.
  • FIG. 45 shows a positional shift between the tip position 171b of the metal antenna 128b and the tip position 171c of the metal antenna 128c when the tip position 171a of the metal antenna 128a is on the center of the track.
  • the detection signals te0, te1, and te2 are output from the tip position 171a of the metal antenna 128a, the tip position 171b of the metal antenna 128b, and the tip position 171c of the metal antenna 128c.
  • the detection signals te0, te1, and te2 are output from the light receiving elements 120a, 120b, and 120c.
  • the motor 143 scans the slider 141 in a direction perpendicular to the track.
  • the detection signals te0, te1, and te2 corresponding to the resonance intensities of the metal antennas 128a, 128b, and 128c periodically change with respect to the distance from the track, as shown in FIG.
  • the detection signals te0, te1 and te2 are input to the correction value calculation circuit 162.
  • the correction value calculation circuit 162 determines correction values a and b based on the detection signals te0, te1, and te2. A method for determining the correction values a and b will be described later.
  • the motor 143 stops scanning the slider 141 in the direction perpendicular to the track.
  • the first difference circuit 163a generates a difference (te1-te0) between the detection signal te1 and the detection signal te0 and outputs the difference to the weighted difference circuit 164.
  • the second difference circuit 163b generates a difference (te2 ⁇ te0) between the detection signal te2 and the detection signal te0 and outputs the difference to the weighted difference circuit 164.
  • the weighted difference circuit 164 uses the correction values a and b determined by the correction value calculation circuit 162, the difference calculated by the first difference circuit 163a, and the difference calculated by the second difference circuit 163b.
  • a tracking signal TE (TE a ⁇ (te1-te0) ⁇ b ⁇ (te2-te0)) is generated.
  • the control circuit 165 outputs a control signal for controlling the motor 143 so as to track the metal antenna 128a based on the tracking signal TE.
  • x represents the amount of positional deviation from the track
  • represents the phase difference of the detection signal te1 from the detection signal te0
  • represents the detection of the detection signal te2.
  • the phase difference with respect to the signal te0 is represented, and ⁇ represents an offset.
  • the tracking signal TE is expressed as the following formula (4).
  • the coefficient of the first term on the right side of the above equation (4) may be 0. That is, the correction values a and b may satisfy the relationship of the following formula (5).
  • the coefficient of the first term on the right side of the above equation (4) is 0, so that the tracking signal TE is expressed by the above equation (4). It is represented only by the second term on the right side. At this time, the signal amplitude of the tracking signal TE is determined by the coefficient of the second term on the right side of the above equation (4).
  • the correction value calculation circuit 162 determines the correction value a based on the following equation (6), whereby the coefficient of the second term on the right side of the above equation (4) is “2” and the signal amplitude is “2”. "Is obtained.
  • FIG. 46A shows a signal (a ⁇ (te1 ⁇ te0)) obtained by weighting the difference between the detection signal te1 and the detection signal te0 with respect to the positional deviation from the track and the detection signal te2 and the detection signal te0. It is a graph which shows the intensity
  • the intensity of a ⁇ (te1-te0) and the intensity of b ⁇ (te2-te0) periodically change in the tracking period Tp with respect to the positional deviation from the track, and the position from the track by the correction values a and b. At positions where the deviation is 0, the values are equal to each other.
  • FIG. 46B is a graph showing a change in intensity of the tracking signal TE with respect to a positional deviation from the track.
  • the tracking signal TE is zero-crossed when the positional deviation from the track is zero, and is proportional to the positional deviation from the track. Tracking is performed by controlling the motor 143 based on the tracking signal TE. With this configuration, the recording or reproducing metal antenna 128a can be stably and accurately tracked with respect to the fine particles 102.
  • the semiconductor laser elements 107a, 107b, and 107c correspond to an example of a light source
  • the metal antennas 128a, 128b, and 128c correspond to an example of a plurality of resonance elements
  • the slider 141 is an example of a holding element.
  • the light receiving elements 120a, 120b, and 120c correspond to an example of the first detection element and the plurality of light receiving elements
  • the motor 103 corresponds to an example of the first moving element
  • the suspension 142 corresponds to the second moving element.
  • the tracking signal calculation circuit 161 corresponds to an example of a tracking signal calculation circuit
  • the yawing signal calculation circuit 151 corresponds to an example of a yawing signal calculation circuit
  • the piezo elements 144a and 144b correspond to an example of a rotation element. To do.
  • the slider 141 and the disk 101 are not in contact with each other, and the slider 141 is several nm on the disk 101.
  • the disk 101 can be scanned at a position of ⁇ tens of nm. Therefore, precise gap control can be performed without causing the disk 101 and the slider 141 to wear.
  • the metal antennas 128a, 128b, and 128c are arranged so as to be shifted in the longitudinal direction of the track. That is, the slider 141 is arranged by shifting the positions of the metal antennas 128a, 128b and 128c in the longitudinal direction of the track. Thereby, the interaction between the adjacent metal antennas 128a, 128b, and 128c can be suppressed, and the degree of freedom of the shape of the metal antennas 128a, 128b, and 128c is increased.
  • the positional deviation in the longitudinal direction of the tracks of the plurality of resonance elements is caused by the resonance of one resonance element of the plurality of resonance elements (metal antenna 128a, 128b or metal antenna 128c). It may be shifted beyond the thickness in the longitudinal direction of the track. Thereby, the interaction between a plurality of resonant elements can be further suppressed.
  • reflected light is detected instead of near-field light. This eliminates the need to fabricate minute light receiving elements 110a, 110b, and 110c in the immediate vicinity of the metal antennas 128a, 128b, and 128c, and facilitates fabrication of the optical information device.
  • the light receiving elements 120a, 120b, and 120c do not interact with the metal antennas 128a, 128b, and 128c. For this reason, the metal antennas 128a, 128b, and 128c and the disk 101 can be efficiently interacted, and tracking and information recording or reproduction can be performed efficiently.
  • a yawing signal calculation circuit 151 generates a yawing signal based on a change in the resonance state of the resonance element, and piezoelectric elements 144a and 144b use slider 141 (holding element) according to the yawing signal. Is rotated in a plane parallel to the surface of the disk 101. Therefore, the distance in the direction perpendicular to the track of the resonant elements (metal antennas 128b and 128c) with respect to the change in the track angle due to the eccentricity of the disk 101 or the movement in the direction perpendicular to the track using the motor 143 and the suspension 142. Is held constant. Therefore, stable tracking can be performed.
  • the tracking signal calculation circuit 161 calculates the correction values a and b from the detection signals te0, te1 and te2, and the product of the difference value (te1-te0) of the detection signal and the correction value a. And the difference between the product of the difference value (te2-te0) of the detection signal and the correction value b is output as the tracking signal TE. Therefore, a tracking signal can be obtained using the tracking metal antennas 128b and 128c arranged at an arbitrary distance from the recording or reproducing metal antenna 128a. Therefore, there are no restrictions on the distances between the metal antennas 128a, 128b, and 128c, and the fabrication of the optical information device is facilitated.
  • the pair of the semiconductor laser element and the light receiving element is disposed adjacent to one waveguide, but for example, a Y-shaped waveguide may be used.
  • a semiconductor laser element may be disposed on one side of the Y-shaped waveguide, and a light receiving element may be disposed on the other side.
  • a stepped step is formed on the end surface of the slider 141, and the metal antennas 128a, 128b, and 128c are arranged on each step.
  • the metal antennas 128a, 128b, and 128c only need to be shifted in the longitudinal direction of the track so as not to interact with each other.
  • the end surface of the slider 141 may be convex or concave.
  • the metal antennas 128a, 128b and 128c are arranged so as to be shifted in the longitudinal direction of the track.
  • the slider 141 and the air slider 132 are configured separately, but the present invention is not particularly limited to this, and the slider 141 may be enlarged.
  • the slider 141 may also have the function of an air slider that moves the slider 141 in a direction perpendicular to the surface of the disk 101. Also in this case, the gist of the present invention is not impaired.
  • the slider 141 is moved in the direction perpendicular to the track using the motor 143 and the suspension 142.
  • an actuator is used instead of the motor 143.
  • the suspension 142 may be moved in a direction perpendicular to the track.
  • fine particles made of a phase change material are used for recording or reproducing information, but the present invention is not particularly limited to this.
  • the optical information device is an optical information device that performs only reproduction, such as a ROM device, for example, uneven pits may be used instead of fine particles, or metal patterns may be used.
  • the shape of the metal antenna is a triangular plate shape.
  • the shape of the metal antenna is not particularly limited to the above example.
  • FIGS. A shape is also conceivable.
  • the shape of the metal antenna is not particularly limited as long as plasmon resonance occurs on the fine particles and the plasmon resonance state efficiently changes according to the distance from the track.
  • FIG. 17 when the shape of the metal antenna 117 is a square flat plate shape, the metal antenna 117 is vertically symmetric, so that the analysis is easier than the triangular flat plate shape.
  • the shape of the metal antenna 118 is a disc shape, the pattern can be easily produced as compared with the triangular plate shape.
  • FIG. 19 when the shape of the metal antenna 119 is a probe shape, near-field light can be generated more efficiently at the tip of the probe.
  • the difference between detection signals from a plurality of tracking metal antennas is 0 at the track position. What is necessary is just to be able to obtain a difference in detection signal according to the positional deviation from the track.
  • the number of metal antennas for tracking and the arrangement method are not particularly limited to the configuration shown in the fourth embodiment.
  • the plurality of waveguides 129a to 129c are arranged non-parallel to each other in order to suppress the waveguide mode coupling. However, if the waveguide mode coupling does not occur, the plurality of waveguides 129a to 129c may be arranged parallel to each other, and this does not impair the gist of the present invention.
  • the semiconductor laser elements 107a to 107c, the metal antennas 128a to 128c, and the light receiving elements 120a to 120c are arranged on the end face of the slider 141, but the present invention is not particularly limited to this. These elements may be arranged on the upper surface of the slider 141 or inside the slider 141, or these elements may be integrated on a single chip.
  • the optical information device includes three light sources (semiconductor laser elements 107a to 107c).
  • the optical information device includes one light source and guides light from one light source to the waveguide. The light may be incident on the metal antenna after being separated in three directions.
  • the optical information device includes one light source for recording or reproduction and one light source for tracking, and separates light from only the light source for tracking in two directions by a Y-shaped waveguide, thereby providing two metal antennas. Light may be incident on. These do not impair the gist of the present invention.
  • two piezo elements 144a and 144b are used as rotating elements for rotating the slider 141 in a plane parallel to the surface of the disk 101.
  • the slider 141 is a surface parallel to the surface of the disk 101.
  • Any driving element may be used as long as it is configured to rotate inside.
  • a configuration that mechanically drives using a motor a configuration that drives using electrostatic force or magnetic force, a configuration that uses thermal expansion, and the like can be considered.
  • the distance may be longer than the tracking period Tp.
  • FIG. 47 is a diagram for explaining another arrangement example of the metal antennas 128a, 128b, and 128c in the fourth embodiment of the present invention
  • FIG. 48 is a diagram illustrating the metal antenna in the fourth embodiment of the present invention. It is a figure shown for demonstrating another example of arrangement
  • the distance P1 in the direction perpendicular to the track between the tip position 171a of the metal antenna 128a and the tip position 171b of the metal antenna 128b is equal to or longer than the tracking period Tp, and the tip position 171a of the metal antenna 128a.
  • the distance P2 in the direction perpendicular to the track between the tip end position 171c of the metal antenna 128c and the tracking period Tp may be shorter.
  • the distance P1 may be shorter than the tracking period Tp, and the distance P2 may be longer than the tracking period Tp.
  • yawing is performed by subtracting the addition value (te1 0 + te2 0 ) of the initial value te1 0 and the initial value te2 0 from the addition value (te1 + te2) of the detection signal te1 and the detection signal te2.
  • the signal YE2 is generated, the generated yawing signal YE2 is multiplied by an appropriate integer according to the positional deviation from the track or the distances P1 and P2 in the direction perpendicular to the track of the metal antennas 128a, 128b and 128c.
  • the sensitivity of the signal YE2 may be adjusted so as to be always constant.
  • the detection signals te0, te1, and te2 are assumed as in the above equations (1) to (3), but the detection signals te0, te1, and te2 are in the above equation (1).
  • it is not represented by a simple expression as in (3) only the components represented by the above expressions (1) to (3) are extracted from the detection signals te0, te1 and te2 by signal processing and used. Only a component that changes in the tracking period Tp with respect to the positional deviation from the track may be extracted from the generated tracking signal TE and used.
  • FIG. 49 is a flowchart for explaining the tracking method according to the fourth embodiment of the present invention.
  • the semiconductor laser elements 107a, 107b, and 107c that are light sources emit light, and light is incident on the metal antennas 128a, 128b, and 128c that are a plurality of resonance elements to excite plasmon resonance.
  • the metal antennas 128 a, 128 b, and 128 c are designed so that the plasmon resonance condition is satisfied on the fine particle 102. Plasmon resonance weakens as the positional deviation from the track increases.
  • the light receiving elements 110a, 110b and 110c individually detect changes in the resonance state of the metal antennas 128a, 128b and 128c, and output detection signals te0, te1 and te2.
  • the metal antennas 128a, 128b, and 128c are designed such that the intensity of reflected light from the metal antennas 128a, 128b, and 128c decreases when plasmon resonance is excited.
  • the reflected light intensity from the metal antennas 128a, 128b, and 128c individually by the light receiving elements 120a, 120b, and 120c, it is possible to detect changes in the resonance state of the individual metal antennas 128a, 128b, and 128c. it can.
  • the reflected light intensity from the metal antennas 128a, 128b, and 128c changes as shown in FIG. 13A with respect to the distance from the track, becomes a minimum value at the track position, and is separated from the track position by half of the tracking period Tp. The maximum value at the position.
  • the motor 143 scans the slider 141 by a small amount in the direction perpendicular to the track.
  • the light receiving elements 120b and 120c output detection signals te1 and te2 according to the displacement in the direction perpendicular to the track.
  • the phase comparison circuit 152 calculates the phase difference with respect to the displacement amount in the direction perpendicular to the track of the detection signals te1 and te2 as the yawing signal YE1.
  • the first control circuit 153 controls the piezo elements 144a and 144b based on the yawing signal YE1 so that the phase difference between the detection signals te1 and te2 becomes ⁇ radians.
  • the piezoelectric elements 144 a and 144 b rotate the slider 141 in a plane parallel to the surface of the disk 101.
  • the detection signals te1 and te2 change with the tracking period Tp with respect to the displacement amount in the direction perpendicular to the track.
  • the first sample and hold circuit 154a and the second sample and hold circuit 154b stores a value of the detection signal te1 and te2 when yawing signal YE1 becomes ⁇ radians as an initial value te1 0 and te2 0.
  • the motor 143 scans the slider 141 in a direction perpendicular to the track.
  • the light receiving elements 120b and 120c output detection signals te1 and te2 according to the displacement in the direction perpendicular to the track.
  • the correction value calculation circuit 162 calculates correction values a and b such that the tracking signal TE crosses zero at a position where the positional deviation from the track becomes zero. At this time, the correction value calculation circuit 162 determines the correction values a and b so as to satisfy the relationship of the above formula (5). When the correction value a satisfies the above equation (6), a tracking signal TE having a signal amplitude “2” is obtained.
  • the initial values te1 0 and te2 0 are constant values regardless of the presence or absence of off-track as shown in FIG. 41 because the phase difference with respect to the positional deviation from the track is ⁇ radians. Therefore, the yawing signal calculation circuit 151 can always generate the yawing signal YE2 regardless of the arrangement of the off-track or metal antennas 128a, 128b, and 128c.
  • the first addition circuit 155a adds the initial value te1 0 and the initial value te2 0 .
  • the second addition circuit 155b adds the detection signal te1 and the detection signal te2.
  • the difference circuit 156 subtracts the addition value (te1 0 + te2 0 ) of the initial value te1 0 and the initial value te2 0 from the addition value (te1 + te2) of the detection signal te1 and the detection signal te2, thereby obtaining the yawing signal YE2 calculate.
  • the second control circuit 157 controls the piezo elements 144a and 144b based on the yawing signal YE2.
  • the piezoelectric elements 144 a and 144 b rotate the slider 141 in a plane parallel to the surface of the disk 101.
  • the distance between the metal antennas 128b and 128c in the direction perpendicular to the track is maintained at half the tracking period Tp.
  • the first difference circuit 163a subtracts the detection signal te0 from the detection signal te1 and outputs it to the weighted difference circuit 164.
  • the second difference circuit 163b subtracts the detection signal te0 from the detection signal te2, and outputs the result to the weighted difference circuit 164.
  • the weighted difference circuit 164 is calculated by the correction value calculation circuit 162 from a value obtained by multiplying the correction value a calculated by the correction value calculation circuit 162 by the subtraction value (te1-te0) calculated by the first difference circuit 163a.
  • the tracking signal TE is zero-crossed at the track position regardless of the distance between the metal antennas 128b and 128c in the direction perpendicular to the track, and the positional deviation from the track is the tracking period Tp. It becomes the maximum value or the minimum value when it is 1/4.
  • the tracking signal TE can be generated using the metal antennas 128b and 128c separated by an arbitrary distance in the direction perpendicular to the track.
  • the motor 143 moves the slider 141 in a direction perpendicular to the track in accordance with the tracking signal TE calculated by the tracking signal calculation circuit 161.
  • the motor 143 moves the slider 141 in a direction perpendicular to the track to adjust the track position.
  • the tracking signal TE calculated by the weighted difference circuit 164 is output to the control circuit 165.
  • the control circuit 165 drives the motor 143 according to the tracking signal TE to move the slider 141 in a direction perpendicular to the track.
  • the recording or reproducing metal antenna 128a can be constantly and accurately tracked with respect to the fine particles 102.
  • the tracking signal TE and the yawing signals YE1 and YE2 are generated based on the detection signals te0, te1 and te2 from the light receiving elements 120a, 120b and 120c, but the detection signals te0, te1 and te2 May be removed by a low-pass filter, and high-frequency components of the tracking signal TE and yawing signals YE1 and YE2 may be removed by a low-pass filter.
  • the scanning step of scanning the holding element in the direction perpendicular to the track, the change in the resonance state of each of the plurality of resonance elements is individually detected, and the plurality of resonance elements
  • a rotating step of rotating in a plane parallel to the surface For this reason, the distance in the direction perpendicular to the tracks of the plurality of resonance elements can be adjusted to half the tracking period Tp.
  • the tracking method includes a yawing signal calculation step for calculating a yawing signal from the sum of a plurality of detection signals, and a holding element is rotated in a plane parallel to the surface of the information recording medium according to the yawing signal.
  • a rotation step for this reason, it is possible to correct the track angle change caused by the eccentricity of the information recording medium or the movement of the holding element by the motor 143, and always keep the distance in the direction perpendicular to the track of the plurality of resonance elements at half the tracking period Tp. Can do.
  • the tracking method includes a correction value calculation step for calculating a correction value from a plurality of detection signals, and a tracking signal calculation for calculating a difference between the products of the plurality of detection signals and the correction value as a tracking signal. Steps. Thereby, a tracking signal can be stably generated using a plurality of resonant elements arranged at an arbitrary distance.
  • An optical information device is an optical information device for recording or reproducing information on an information recording medium having a track, and a light source, light from the light source is incident thereon, and the information recording medium is mutually connected.
  • a plurality of resonant elements that change the resonance state according to the distance from the track, and the positions of the plurality of resonant elements are shifted in a direction perpendicular to the track, and between the plurality of resonant elements A holding element that holds the distance fixed, a first detection element that individually detects a change in the resonance state of each of the plurality of resonance elements, and the resonance state that is detected by the first detection element
  • a tracking signal calculation circuit for calculating a tracking signal based on the change of the tracking signal, and the holding element in the track according to the tracking signal calculated by the tracking signal calculation circuit Comprising a first moving element that moves in a straight direction, the.
  • the holding element is arranged by shifting the position of the plurality of resonance elements in a direction perpendicular to the track, and holds the distance between the plurality of resonance elements fixed at a constant value.
  • the first detection element individually detects a change in the resonance state of each of the plurality of resonance elements.
  • the tracking signal calculation circuit calculates a tracking signal based on a change in the resonance state detected by the first detection element.
  • the first moving element moves the holding element in a direction perpendicular to the track in accordance with the tracking signal calculated by the tracking signal calculation circuit.
  • the positions of the plurality of resonance elements are shifted in the direction perpendicular to the track, and the distance between the plurality of resonance elements is fixed and held constant.
  • the relative position between the element and the track does not change. Therefore, stable and highly accurate tracking that depends only on the displacement from the track position can be performed.
  • the detection signal since a change in the resonance state of each of the plurality of resonance elements is individually detected and a tracking signal is calculated based on the detected change in the resonance state, the detection signal has an optical constant around the plurality of resonance elements.
  • a tracking signal having a high degree of modulation can be obtained with respect to a minute positional deviation from the track, which reacts sensitively to changes. Therefore, stable and highly accurate tracking can be performed.
  • the optical information apparatus may further include a second moving element that moves the plurality of resonant elements in a direction perpendicular to a surface of the information recording medium, and the second moving element includes the holding element and the holding element. It is preferable that the distance between the information recording medium and the holding element is kept constant by the force of the airflow flowing between the information recording medium.
  • the second moving element moves the plurality of resonant elements in a direction perpendicular to the surface of the information recording medium.
  • the second moving element keeps the distance between the information recording medium and the holding element constant by the force of the airflow flowing between the holding element and the information recording medium.
  • the distance between the information recording medium and the holding element is kept constant by the force of the airflow flowing between the holding element and the information recording medium, a plurality of resonance elements and the information recording medium can be recorded with a simple configuration.
  • the distance to the medium can be kept constant.
  • the optical information apparatus may further include a second moving element that moves the plurality of resonant elements in a direction perpendicular to a surface of the information recording medium, and the second moving element includes the holding element and the holding element. It is preferable to contact the information recording medium.
  • the second moving element moves the plurality of resonant elements in a direction perpendicular to the surface of the information recording medium.
  • the second moving element brings the holding element and the information recording medium into contact with each other. Therefore, the distance between the plurality of resonance elements and the information recording medium can be easily controlled.
  • the plurality of resonance elements may be detected in accordance with a second detection element that detects a distance between the plurality of resonance elements and the information recording medium, and a detection signal from the second detection element. It is preferable to further include a second moving element that moves the plurality of resonant elements in a direction perpendicular to the surface of the information recording medium so that the distance between the element and the information recording medium is constant.
  • the second detection element detects the distance between the plurality of resonance elements and the information recording medium.
  • the second moving element has a plurality of resonant elements placed on the surface of the information recording medium such that distances between the plurality of resonant elements and the information recording medium are constant according to a detection signal from the second detecting element. Move in a direction perpendicular to.
  • the distance between the plurality of resonance elements and the information recording medium is detected, the distance between the plurality of resonance elements and the information recording medium can be controlled with higher accuracy.
  • the first detection element includes a plurality of light receiving elements
  • the optical information device includes a plurality of waveguides that guide light from the plurality of resonance elements to the plurality of light receiving elements. It is preferable to further comprise.
  • the first detection element includes a plurality of light receiving elements.
  • the plurality of waveguides guide light from the plurality of resonance elements to the plurality of light receiving elements. Therefore, it is possible to reliably detect a change in the resonance state of each of the plurality of resonance elements.
  • the light source includes a plurality of light sources that emit light having different wavelengths, and the plurality of resonance elements determine a frequency of light emitted from each of the plurality of light sources as a resonance frequency.
  • the first detection element includes a plurality of light receiving elements, and the optical information device separates the plurality of lights having different frequencies from the plurality of resonance elements, and It is preferable to further include an optical element that guides each of the light beams to the corresponding light receiving elements.
  • the light source includes a plurality of light sources that emit light having different wavelengths.
  • the plurality of resonance elements are formed in a shape or material having a resonance frequency that is the frequency of light emitted from each of the plurality of light sources.
  • the first detection element includes a plurality of light receiving elements.
  • the optical element separates a plurality of lights having different frequencies from the plurality of resonance elements, and guides each of the plurality of lights to a corresponding plurality of light receiving elements.
  • the individual resonance states of the plurality of resonance elements are detected using the difference in wavelength, it is not necessary to integrate the light source, the first detection element, and the plurality of resonance elements in a minute region, and the optical information device Can be easily manufactured.
  • the first detection element includes a plurality of light receiving elements arranged in a range in which near-field light generated from the plurality of resonance elements can be detected.
  • the plurality of light receiving elements are arranged in a range in which the near field light generated from the plurality of resonance elements can be detected, so that the near field light generated from the plurality of resonance elements can be individually detected. And a highly accurate and highly efficient tracking signal can be obtained.
  • the track is preferably defined by fine particles arranged in a line. According to this configuration, stable and highly accurate tracking can be performed on the fine particles arranged in a row.
  • the track is preferably defined by a groove. According to this configuration, stable and highly accurate tracking can be performed on the groove.
  • the distance between the plurality of resonant elements in the direction perpendicular to the track is half of the track pitch.
  • the tracking signal is maximum or minimum at a position where the positional deviation from the track is a quarter of the track pitch, and becomes zero at a position where the positional deviation from the track is half the track pitch.
  • the positional deviation from the track can be easily detected.
  • the polarization direction of incident light incident on the plurality of resonance elements from the light source is a direction perpendicular to the surface of the information recording medium.
  • the plurality of resonance elements can be held perpendicular to the surface of the information recording medium, and the light source and the plurality of resonance elements can be arranged in a plane parallel to the surface of the information recording medium.
  • the size of the optical device in the direction perpendicular to the surface of the information recording medium can be reduced.
  • the polarization direction of incident light incident on the plurality of resonant elements from the light source is a direction parallel to the surface of the information recording medium. According to this configuration, it is not necessary to hold the plurality of resonance elements perpendicular to the surface of the information recording medium, and thus the holding element can be easily manufactured.
  • the holding element is arranged by shifting the positions of the plurality of resonance elements in the longitudinal direction of the track.
  • the position in the longitudinal direction of the track between the plurality of resonance elements is shifted by more than the thickness in the longitudinal direction of the track of one resonance element of the plurality of resonance elements.
  • it is.
  • the position in the longitudinal direction of the track between the plurality of resonance elements is shifted by more than the thickness in the longitudinal direction of the track of one resonance element among the plurality of resonance elements. The interaction between them can be further suppressed.
  • the polarization direction of incident light incident on the plurality of resonance elements from the light source is a direction parallel to the surface of the information recording medium and a direction parallel to the track.
  • the position in the longitudinal direction of the track between the plurality of resonance elements is shifted more than the length in the longitudinal direction of the track of one resonance element of the plurality of resonance elements.
  • the polarization direction of the incident light incident on the plurality of resonance elements from the light source is parallel to the surface of the information recording medium and parallel to the track.
  • the position in the longitudinal direction of the track between the plurality of resonance elements is shifted by more than the length in the longitudinal direction of the track of one resonance element of the plurality of resonance elements. Therefore, the position in the longitudinal direction of the track between the plurality of resonance elements is shifted by more than the length in the longitudinal direction of the track of one resonance element among the plurality of resonance elements. The action can be further suppressed.
  • a yawing signal representing an inclination of the holding element in a plane parallel to the surface of the information recording medium based on a change in the resonance state detected by the first detection element. It is preferable to further include a yawing signal calculation circuit for calculating, and a rotation element for rotating the holding element in a plane parallel to the surface of the information recording medium according to the yawing signal calculated by the yawing signal calculation circuit. .
  • the yawing signal calculation circuit calculates a yawing signal that represents the inclination of the holding element in a plane parallel to the surface of the information recording medium, based on the change in the resonance state detected by the first detection element. To do.
  • the rotating element rotates the holding element in a plane parallel to the surface of the information recording medium in accordance with the yawing signal calculated by the yawing signal calculation circuit.
  • the distance in the direction perpendicular to the tracks of the plurality of resonance elements is kept constant against the eccentricity of the information recording medium or the inclination of the track generated by moving the holding element in the direction perpendicular to the track. Therefore, stable tracking can be performed.
  • the first detection element outputs a plurality of detection signals representing changes in the resonance state of each of the plurality of resonance elements
  • the yawing signal calculation circuit includes the plurality of detection signals.
  • the phase difference with respect to the displacement amount of the signal in the direction perpendicular to the track is calculated, and the rotating element rotates the holding element in a plane parallel to the surface of the information recording medium so that the phase difference becomes ⁇ radians. It is preferable to make it.
  • the first detection element outputs a plurality of detection signals representing changes in the resonance state of each of the plurality of resonance elements.
  • the yawing signal calculation circuit calculates a phase difference with respect to a displacement amount in a direction perpendicular to the track of the plurality of detection signals.
  • the rotating element rotates the holding element in a plane parallel to the surface of the information recording medium so that the phase difference is ⁇ radians.
  • the phase difference with respect to the displacement amount in the direction perpendicular to the track of the plurality of detection signals is ⁇ radians
  • the distance in the direction perpendicular to the track of the plurality of detection signals is half the track pitch. Misalignment can be easily detected.
  • the first detection element outputs a plurality of detection signals representing changes in the resonance states of the plurality of resonance elements
  • the tracking signal calculation circuit includes the first detection element. It is preferable to calculate a difference between the plurality of detection signals output by the detection element as the tracking signal.
  • the first detection element outputs a plurality of detection signals representing changes in the resonance state of each of the plurality of resonance elements.
  • the tracking signal calculation circuit calculates a difference between a plurality of detection signals output by the first detection element as a tracking signal.
  • the tracking signal can be generated with a simple configuration.
  • the first detection element outputs a plurality of detection signals representing changes in the resonance state of each of the plurality of resonance elements
  • the tracking signal calculation circuit includes the plurality of detection signals. Based on the signal, a correction value for correcting the positional deviation of the plurality of resonance elements from the track is calculated, and a difference between the plurality of detection signals corrected based on the calculated correction value is used as the tracking signal. It is preferable to calculate.
  • the first detection element outputs a plurality of detection signals representing changes in the resonance state of each of the plurality of resonance elements.
  • the tracking signal calculation circuit calculates a correction value for correcting the positional deviation from the track of the plurality of resonance elements based on the plurality of detection signals, and the difference between the plurality of detection signals corrected based on the calculated correction value. Is calculated as a tracking signal.
  • the distance between one of the plurality of resonance elements and the center of the track is different from the distance between the other resonance element of the plurality of resonance elements and the center of the track.
  • an accurate tracking signal can be generated.
  • a tracking method is a tracking method in an optical information apparatus that records or reproduces information on an information recording medium having a track, and interacts with the information recording medium, at a distance from the track.
  • a light incident step for causing light from a light source to enter a plurality of resonance elements whose resonance states change in response, a detection step for individually detecting a change in the resonance state of each of the plurality of resonance elements, and detection in the detection step
  • a tracking signal calculation step for calculating a tracking signal based on the change in the resonance state, and positions of the plurality of resonance elements perpendicular to the track according to the tracking signal calculated in the tracking signal calculation step. Displaced in the direction, and the distance between the plurality of resonance elements is fixed and held constant Comprising a moving step, the moving the retaining element in a direction perpendicular to the track that.
  • the light incident step light from the light source is incident on the plurality of resonance elements that interact with the recording medium and change the resonance state according to the distance from the track.
  • the detection step a change in the resonance state of each of the plurality of resonance elements is individually detected.
  • the tracking signal calculation step the tracking signal is calculated based on the change in the resonance state detected in the detection step.
  • the movement step according to the tracking signal calculated in the tracking signal calculation step, the positions of the plurality of resonance elements are shifted in the direction perpendicular to the track, and the distance between the plurality of resonance elements is fixed to be constant.
  • the holding element to be held is moved in a direction perpendicular to the track.
  • the positions of the plurality of resonance elements are shifted in the direction perpendicular to the track, and the distance between the plurality of resonance elements is fixed and held constant.
  • the relative position between the element and the track does not change. Therefore, stable and highly accurate tracking that depends only on the displacement from the track position can be performed.
  • the detection signal since a change in the resonance state of each of the plurality of resonance elements is individually detected and a tracking signal is calculated based on the detected change in the resonance state, the detection signal has an optical constant around the plurality of resonance elements.
  • a tracking signal having a high degree of modulation can be obtained with respect to a minute positional deviation from the track, which reacts sensitively to changes. Therefore, stable and highly accurate tracking can be performed.
  • the optical information device and the tracking method according to the present invention enable high-precision tracking control in an optical information device that records or reproduces information at a high density exceeding the diffraction limit. This is useful for realizing an optical information device.
  • Such a high-density and large-capacity optical information device can be applied to many uses such as an optical disc player, an optical disc recorder, a computer, and a data server.

Abstract

According to the present invention a plurality of metal antennas (108b, 108c) onto which light is irradiated from semiconductor laser elements (107b, 107c) mutually operate with a disc (101) such that a resonance state changes in accordance with the distance from a track. A slider (104) arranges the plurality of metal antennas (108b, 108c) by displacing the position of the metal antennas in a direction orthogonal to the track while constantly fixing and maintaining the distance between the plurality of metal antennas (108b, 108c). Light-receiving elements (110b, 110c) separately detect each change in the resonance state of the plurality of metal antennas (108b, 108c). An operation amplifier (111) operates a tracking signal on the basis of the detected change in the resonance state. An actuator (106) moves the slider (104) in the direction orthogonal to the track in accordance with the operated tracking signal.

Description

光情報装置及びトラッキング方法Optical information apparatus and tracking method
 本発明は、トラックを有する情報記録媒体に情報を記録または再生する光情報装置、及び光情報装置のトラッキング方法に関するものである。 The present invention relates to an optical information apparatus for recording or reproducing information on an information recording medium having a track, and a tracking method for the optical information apparatus.
 近年、光情報記録の分野で近接場光を応用して光の回折限界を超えた高密度光記録又は高密度光再生を行う技術が注目されている。近接場光を用いて記録の高密度化を達成する方法として、特許文献1に記載されている従来の技術について図面を用いて説明する。図50は、従来技術における近接場光ヘッドの構成を示す上面図であり、図51は、従来技術における近接場光ヘッドの構成を示す側面図である。 Recently, in the field of optical information recording, attention has been paid to a technique for performing high-density optical recording or high-density optical reproduction exceeding the diffraction limit of light by applying near-field light. As a method for achieving high recording density using near-field light, the conventional technique described in Patent Document 1 will be described with reference to the drawings. FIG. 50 is a top view showing the configuration of the near-field optical head in the prior art, and FIG. 51 is a side view showing the configuration of the near-field optical head in the prior art.
 図50及び図51において、近接場光ヘッドは、光源802、光源802の放射光LBを透過するプリズム803、及び放射光LBの入射により近接場光NLを発生する散乱体804を備える。放熱材805は、光源802に固定され、光源802で発生した熱を放熱する。また、検出素子806は、光ディスク801からの再生光を検出する。光源802、プリズム803、散乱体804、放熱材805及び検出素子806は、スライダ807により保持されている。スライダ807は、光ディスク801と散乱体804との間の距離が一定になるように、サスペンション808により保持されている。 50 and 51, the near-field light head includes a light source 802, a prism 803 that transmits the emitted light LB of the light source 802, and a scatterer 804 that generates near-field light NL when the emitted light LB enters. The heat dissipation material 805 is fixed to the light source 802 and dissipates heat generated by the light source 802. The detection element 806 detects reproduction light from the optical disc 801. A light source 802, a prism 803, a scatterer 804, a heat dissipation material 805, and a detection element 806 are held by a slider 807. The slider 807 is held by a suspension 808 so that the distance between the optical disc 801 and the scatterer 804 is constant.
 散乱体804から発生する近接場光NLによって、相変化材料である光ディスク801の結晶相をアモルファス相に変化させることにより、記録マークが形成され、情報が光ディスク801に記録される。一方、情報の再生は、近接場光NLが光ディスク801により散乱される割合は、記録マークの有無により変化するので、光ディスク801から戻ってくる散乱光の強度変化を検出することにより、情報が光ディスク801から再生される。 The near-field light NL generated from the scatterer 804 changes the crystal phase of the optical disk 801, which is a phase change material, to an amorphous phase, thereby forming a recording mark and recording information on the optical disk 801. On the other hand, in the reproduction of information, since the rate at which the near-field light NL is scattered by the optical disk 801 changes depending on the presence or absence of a recording mark, the information is detected by detecting the intensity change of the scattered light returning from the optical disk 801. Playback starts from 801.
 特許文献1によると、光源802、プリズム803、散乱体804、放熱材805及び検出素子806は、スライダ807に保持されて、いわゆる近接場光プローブスライダを構成する。そのため、きわめて小型化を図った上で、光ディスク801に近接場光NLを用いて高密度に情報を記録または再生する近接場光ヘッド装置を実現できる。 According to Patent Document 1, the light source 802, the prism 803, the scatterer 804, the heat radiation member 805, and the detection element 806 are held by the slider 807 to form a so-called near-field optical probe slider. Therefore, it is possible to realize a near-field optical head device that records or reproduces information on the optical disc 801 with high density by using the near-field light NL while achieving a very small size.
 上記のように近接場光を利用して回折限界を超えた高密度光記録又は高密度光再生を行う技術が徐々に具体化されつつある。しかしながら、こうした近接場光ヘッド装置の実用化には記録又は再生技術だけでなく、数十nmサイズのトラックに対してトラッキングを行う高精度なトラッキング技術が必要になる。 As described above, techniques for performing high-density optical recording or high-density optical reproduction exceeding the diffraction limit using near-field light are gradually being embodied. However, the practical application of such a near-field optical head device requires not only a recording or reproducing technique but also a highly accurate tracking technique for tracking a track of several tens of nanometers.
 高精度なトラッキングを行う方法として、特許文献2に記載されている従来の技術について図面を用いて説明する。図52は、従来技術における高密度プローブメモリー再生装置の構成を示す概略図であり、図53は、従来技術におけるプローブの取り付け状態及び変形状態を示す要部斜視図である。 The conventional technique described in Patent Document 2 will be described with reference to the drawings as a method for performing high-precision tracking. FIG. 52 is a schematic diagram showing a configuration of a high-density probe memory reproducing device in the prior art, and FIG. 53 is a perspective view of a principal part showing a probe attachment state and a deformation state in the conventional technology.
 図52において、情報記録媒体901は、トラック状に形成された記録部902を含む。情報記録媒体901は、回転素子903によって回転される。複数のプローブ904は、スライダ905及びサスペンション906によって、1つの記録部902に対して接触可能な範囲に保持されている。複数のプローブ904の位置は、記録部902と接触することによって図53に示すように変化する。サスペンション906は、駆動素子907によって保持され、トラックに垂直な方向に駆動される。 52, an information recording medium 901 includes a recording unit 902 formed in a track shape. The information recording medium 901 is rotated by a rotating element 903. The plurality of probes 904 are held by a slider 905 and a suspension 906 in a range where they can come into contact with one recording unit 902. The positions of the plurality of probes 904 change as shown in FIG. 53 by contacting the recording unit 902. The suspension 906 is held by a driving element 907 and is driven in a direction perpendicular to the track.
 図示しない光源からの入射光908が複数のプローブ904に照射される。複数の検出素子910は、複数のプローブ904からの反射光909を検出する。これにより、複数のプローブ904の変位が検出される。演算回路911は、複数の検出素子910から得られた複数の検出情報に基づいて再生信号及びトラッキング信号を計算して出力する。トラッキング信号は、駆動素子907に入力される。駆動素子907は、トラッキング信号に応じてサスペンション906を駆動する。これにより、複数のプローブ904のトラッキングが行われる。 Incident light 908 from a light source (not shown) is applied to the plurality of probes 904. The plurality of detection elements 910 detect reflected light 909 from the plurality of probes 904. Thereby, the displacement of the plurality of probes 904 is detected. The arithmetic circuit 911 calculates and outputs a reproduction signal and a tracking signal based on a plurality of detection information obtained from the plurality of detection elements 910. The tracking signal is input to the drive element 907. The drive element 907 drives the suspension 906 according to the tracking signal. Thereby, tracking of the plurality of probes 904 is performed.
 しかしながら、従来の複数のプローブを用いたトラッキング方法では、プローブが記録部を検出するためには、記録部との相互作用によりプローブの位置が変位しなければならない。そのため、複数のプローブと記録部との相対的な位置が変化してしまい、検出信号は、複数のプローブと記録部との間のトラックに垂直な方向の距離のみを反映していないという問題を有していた。 However, in the conventional tracking method using a plurality of probes, in order for the probe to detect the recording portion, the position of the probe must be displaced by the interaction with the recording portion. Therefore, the relative positions of the plurality of probes and the recording unit are changed, and the detection signal does not reflect only the distance in the direction perpendicular to the track between the plurality of probes and the recording unit. Had.
国際公開第2007/111304号International Publication No. 2007/111304 特開平9-161338号公報JP-A-9-161338
 本発明は、上記の問題を解決するためになされたもので、安定かつ高精度なトラッキングを行うことができる光情報装置及びトラッキング方法を提供することを目的とするものである。 The present invention has been made to solve the above-described problems, and an object thereof is to provide an optical information device and a tracking method capable of performing stable and highly accurate tracking.
 本発明の一局面に係る光情報装置は、トラックを有する情報記録媒体に情報を記録又は再生する光情報装置であって、光源と、前記光源からの光が入射し、前記情報記録媒体と相互作用し、前記トラックからの距離に応じて共鳴状態が変化する複数の共鳴素子と、前記複数の共鳴素子の位置を前記トラックに垂直な方向にずらして配置し、かつ前記複数の共鳴素子間の距離を一定に固定して保持する保持素子と、前記複数の共鳴素子の各々の共鳴状態の変化を個別に検出する第1の検出素子と、前記第1の検出素子によって検出された前記共鳴状態の変化に基づいてトラッキング信号を演算するトラッキング信号演算回路と、前記トラッキング信号演算回路によって演算された前記トラッキング信号に応じて前記保持素子を前記トラックに垂直な方向に移動させる第1の移動素子と、を備える。 An optical information device according to one aspect of the present invention is an optical information device for recording or reproducing information on an information recording medium having a track, and a light source, light from the light source is incident thereon, and the information recording medium is mutually connected. A plurality of resonant elements that change the resonance state according to the distance from the track, and the positions of the plurality of resonant elements are shifted in a direction perpendicular to the track, and between the plurality of resonant elements A holding element that holds the distance fixed, a first detection element that individually detects a change in the resonance state of each of the plurality of resonance elements, and the resonance state that is detected by the first detection element A tracking signal calculation circuit for calculating a tracking signal based on the change of the tracking signal, and the holding element in the track according to the tracking signal calculated by the tracking signal calculation circuit Comprising a first moving element that moves in a straight direction, the.
 この構成によれば、複数の共鳴素子は、光源からの光が入射し、情報記録媒体と相互作用し、トラックからの距離に応じて共鳴状態が変化する。保持素子は、複数の共鳴素子の位置をトラックに垂直な方向にずらして配置し、かつ複数の共鳴素子間の距離を一定に固定して保持する。第1の検出素子は、複数の共鳴素子の各々の共鳴状態の変化を個別に検出する。トラッキング信号演算回路は、第1の検出素子によって検出された共鳴状態の変化に基づいてトラッキング信号を演算する。第1の移動素子は、トラッキング信号演算回路によって演算されたトラッキング信号に応じて保持素子をトラックに垂直な方向に移動させる。 According to this configuration, light from the light source enters the plurality of resonance elements, interacts with the information recording medium, and the resonance state changes according to the distance from the track. The holding element is arranged by shifting the position of the plurality of resonance elements in a direction perpendicular to the track, and holds the distance between the plurality of resonance elements fixed at a constant value. The first detection element individually detects a change in the resonance state of each of the plurality of resonance elements. The tracking signal calculation circuit calculates a tracking signal based on a change in the resonance state detected by the first detection element. The first moving element moves the holding element in a direction perpendicular to the track in accordance with the tracking signal calculated by the tracking signal calculation circuit.
 本発明によれば、複数の共鳴素子の位置がトラックに垂直な方向にずらして配置され、かつ複数の共鳴素子間の距離が一定に固定されて保持されるので、情報記録媒体との相互作用により複数の共鳴素子とトラックとの相対的な位置が変化することがない。そのため、トラック位置からの変位にのみ依存した安定かつ高精度なトラッキングを行うことができる。 According to the present invention, the positions of the plurality of resonance elements are shifted in the direction perpendicular to the track, and the distance between the plurality of resonance elements is held constant, so that the interaction with the information recording medium is possible. Thus, the relative positions of the plurality of resonance elements and the tracks do not change. Therefore, stable and highly accurate tracking that depends only on the displacement from the track position can be performed.
 また、複数の共鳴素子の各々の共鳴状態の変化が個別に検出され、検出された共鳴状態の変化に基づいてトラッキング信号が演算されるので、検出信号が複数の共鳴素子の周辺の光学定数の変化に敏感に反応し、トラックからの微小な位置ずれに対して変調度の高いトラッキング信号が得られる。そのため、安定かつ高精度なトラッキングを行うことができる。 In addition, since a change in the resonance state of each of the plurality of resonance elements is individually detected and a tracking signal is calculated based on the detected change in the resonance state, the detection signal has an optical constant around the plurality of resonance elements. A tracking signal having a high degree of modulation can be obtained with respect to a minute positional deviation from the track, which reacts sensitively to changes. Therefore, stable and highly accurate tracking can be performed.
 本発明の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
本発明の実施の形態1における光情報装置の構成を示す概略図である。It is the schematic which shows the structure of the optical information apparatus in Embodiment 1 of this invention. 図1に示すスライダの構成を示す斜視図である。It is a perspective view which shows the structure of the slider shown in FIG. 図1に示すスライダの構成を示す側面図である。It is a side view which shows the structure of the slider shown in FIG. 図1に示すスライダの構成を示す上面図である。It is a top view which shows the structure of the slider shown in FIG. 本発明の実施の形態1における金属アンテナを示す拡大図である。It is an enlarged view which shows the metal antenna in Embodiment 1 of this invention. (A)は、本発明の実施の形態1における金属アンテナのトラックからの距離に対する近接場光強度の変化を示すグラフであり、(B)は、複数の受光素子からの複数の検出信号の強度変化を示すグラフであり、(C)は、オペアンプにより出力されるトラッキング信号の強度変化を示すグラフである。(A) is a graph which shows the change of the near-field light intensity with respect to the distance from the track | truck of the metal antenna in Embodiment 1 of this invention, (B) is the intensity | strength of several detection signals from several light receiving elements. It is a graph which shows a change, (C) is a graph which shows the intensity | strength change of the tracking signal output by an operational amplifier. 本発明の実施の形態1の変形例におけるスライダの駆動方法について説明するための図である。It is a figure for demonstrating the drive method of the slider in the modification of Embodiment 1 of this invention. 本発明の実施の形態1におけるトラッキング方法について説明するためのフローチャートである。It is a flowchart for demonstrating the tracking method in Embodiment 1 of this invention. 本発明の実施の形態2における光情報装置の構成を示す概略図である。It is the schematic which shows the structure of the optical information apparatus in Embodiment 2 of this invention. 図9に示すスライダの構成を示す斜視図である。It is a perspective view which shows the structure of the slider shown in FIG. 図9に示すスライダの構成を示す側面図である。It is a side view which shows the structure of the slider shown in FIG. 図9に示すスライダの構成を示す上面図である。FIG. 10 is a top view showing the configuration of the slider shown in FIG. 9. (A)は、本発明の実施の形態2における金属アンテナのトラックからの距離に対する金属アンテナからの反射光強度の変化を示すグラフであり、(B)は、トラッキング用の複数の受光素子からの複数の検出信号の強度変化を示すグラフであり、(C)は、オペアンプにより出力されるトラッキング信号の強度変化を示すグラフである。(A) is a graph which shows the change of the reflected light intensity from a metal antenna with respect to the distance from the track of the metal antenna in Embodiment 2 of this invention, (B) is from several light receiving elements for tracking. It is a graph which shows the intensity | strength change of a some detection signal, (C) is a graph which shows the intensity | strength change of the tracking signal output by an operational amplifier. 本発明の実施の形態2の第1の変形例におけるスライダを示す上面図である。It is a top view which shows the slider in the 1st modification of Embodiment 2 of this invention. 本発明の実施の形態2の第2の変形例におけるスライダを示す上面図である。It is a top view which shows the slider in the 2nd modification of Embodiment 2 of this invention. 本発明の実施の形態1及び2の変形例におけるスライダの構成を示す図である。It is a figure which shows the structure of the slider in the modification of Embodiment 1 and 2 of this invention. 本発明の実施の形態1及び2において、四角平板形状である金属アンテナを示す図である。In Embodiment 1 and 2 of this invention, it is a figure which shows the metal antenna which is a square plate shape. 本発明の実施の形態1及び2において、円板形状である金属アンテナを示す図である。In Embodiment 1 and 2 of this invention, it is a figure which shows the metal antenna which is a disk shape. 本発明の実施の形態1及び2において、プローブ形状である金属アンテナを示す図である。In Embodiment 1 and 2 of this invention, it is a figure which shows the metal antenna which is a probe shape. 本発明の実施の形態3における光情報装置の構成を示す概略図である。It is the schematic which shows the structure of the optical information apparatus in Embodiment 3 of this invention. 図20に示す複数の金属アンテナの構成を示す斜視図である。It is a perspective view which shows the structure of the some metal antenna shown in FIG. 図20に示す複数の金属アンテナの構成を示す上面図である。It is a top view which shows the structure of the some metal antenna shown in FIG. (A)は、本発明の実施の形態3における金属アンテナのトラックからの距離に対する金属アンテナからの散乱光強度の変化を示すグラフであり、(B)は、トラッキング用の複数の受光素子からの複数の検出信号の強度変化を示すグラフであり、(C)は、オペアンプにより出力されるトラッキング信号の強度変化を示すグラフである。(A) is a graph which shows the change of the scattered light intensity from a metal antenna with respect to the distance from the track | truck of the metal antenna in Embodiment 3 of this invention, (B) is from several light receiving elements for tracking. It is a graph which shows the intensity | strength change of a some detection signal, (C) is a graph which shows the intensity | strength change of the tracking signal output by an operational amplifier. 本発明の実施の形態3において、扇板形状である金属アンテナを示す図である。In Embodiment 3 of this invention, it is a figure which shows the metal antenna which is a fan-plate shape. 本発明の実施の形態3において、ボウタイ形状である金属アンテナを示す図である。In Embodiment 3 of this invention, it is a figure which shows the metal antenna which is a bowtie shape. 本発明の実施の形態3において、ナノビーク形状である金属アンテナを示す図である。In Embodiment 3 of this invention, it is a figure which shows the metal antenna which is a nano beak shape. 本発明の実施の形態3においてトラッキング用の金属アンテナを近づけて配置する例を示す図である。It is a figure which shows the example which arrange | positions the metal antenna for tracking close in Embodiment 3 of this invention. 本発明の実施の形態3において、トラッキング用の金属アンテナの向きを異ならせて配置する例を示す図である。In Embodiment 3 of this invention, it is a figure which shows the example arrange | positioned by changing the direction of the metal antenna for tracking. 本発明の実施の形態3において、記録又は再生用の金属アンテナとトラッキング用の金属アンテナとの向きが互いに直交するように配置する例を示す図である。In Embodiment 3 of this invention, it is a figure which shows the example arrange | positioned so that the direction of the metal antenna for recording or reproduction | regeneration and the metal antenna for tracking may mutually orthogonally cross. 本発明の実施の形態4における光情報装置の構成を示す概略図である。It is the schematic which shows the structure of the optical information apparatus in Embodiment 4 of this invention. 本発明の実施の形態4における光情報装置の構成を示す上面図である。It is a top view which shows the structure of the optical information apparatus in Embodiment 4 of this invention. 図30に示すスライダの構成を示す斜視図である。It is a perspective view which shows the structure of the slider shown in FIG. 図30に示すスライダの構成を示す側面図である。It is a side view which shows the structure of the slider shown in FIG. 図30に示すスライダの構成を示す上面図である。FIG. 31 is a top view showing the configuration of the slider shown in FIG. 30. 図30に示すヨーイング信号演算回路の構成を示す図である。It is a figure which shows the structure of the yawing signal calculating circuit shown in FIG. P1=P2=Tp/4の場合におけるトラック角度変化について説明するための概念図である。It is a conceptual diagram for demonstrating the track angle change in the case of P1 = P2 = Tp / 4. P1=P2=Tp/4の場合におけるトラックからの位置ずれに対する複数の検出信号の強度変化を示す図である。It is a figure which shows the intensity | strength change of the some detection signal with respect to the position shift from a track | truck in the case of P1 = P2 = Tp / 4. P1=P2=Tp/4の場合におけるトラック中心と複数の金属アンテナの先端との距離に対する複数の検出信号の強度変化を示す図である。It is a figure which shows the intensity | strength change of several detection signals with respect to the distance of the track | truck center and the front-end | tip of several metal antenna in the case of P1 = P2 = Tp / 4. P1=P2=Tp/4の場合におけるトラック角度変化に対する複数の検出信号の複数の初期値からの変化量とヨーイング信号の変化とを示す図である。It is a figure which shows the variation | change_quantity from the some initial value of the some detection signal with respect to track angle change in the case of P1 = P2 = Tp / 4, and the change of a yawing signal. P1≠P2の場合におけるトラック角度変化について説明するための概念図である。It is a conceptual diagram for demonstrating the track angle change in the case of P1 <= P2. P1≠P2の場合におけるトラックからの位置ずれに対する複数の検出信号の強度変化を示す図である。It is a figure which shows the intensity | strength change of several detection signals with respect to the position shift from a track | truck in the case of P1 <= P2. P1≠P2の場合におけるトラック中心と複数の金属アンテナの先端との距離に対する複数の検出信号の強度変化を示す図である。It is a figure which shows the intensity | strength change of several detection signals with respect to the distance of the track center and the front-end | tip of several metal antenna in the case of P1 <= P2. P1≠P2の場合におけるトラック角度変化に対する複数の検出信号の複数の初期値の平均からの変化量とヨーイング信号の変化とを示す図である。It is a figure which shows the variation | change_quantity from the average of several initial value of several detection signal with respect to track angle change in the case of P1 <= P2, and the change of a yawing signal. P1≠P2の場合におけるトラック中心と複数の金属アンテナの先端の中点との距離に対するヨーイング信号の感度を示す図である。It is a figure which shows the sensitivity of the yawing signal with respect to the distance of the track center in the case of P1 <= P2 and the center point of the front-end | tip of several metal antenna. 図30に示すトラッキング信号演算回路の構成を示す図である。It is a figure which shows the structure of the tracking signal calculating circuit shown in FIG. (A)は、トラックからの位置ずれに対する検出信号te1と検出信号te0との差分に補正値aを重み付けした信号(a×(te1-te0))及び検出信号te2と検出信号te0との差分に補正値bを重み付けした信号(b×(te2-te0))の強度変化を示すグラフであり、(B)は、トラックからの位置ずれに対するトラッキング信号の強度変化を示すグラフである。(A) shows a signal (a × (te1−te0)) obtained by weighting the difference between the detection signal te1 and the detection signal te0 with respect to the positional deviation from the track and the difference between the detection signal te2 and the detection signal te0. 7 is a graph showing a change in intensity of a signal (b × (te2-te0)) weighted with a correction value b, and (B) is a graph showing a change in intensity of the tracking signal with respect to a positional deviation from the track. 本発明の実施の形態4において、金属アンテナの別の配置例について説明するための示す図である。In Embodiment 4 of this invention, it is a figure shown for demonstrating another example of arrangement | positioning of a metal antenna. 本発明の実施の形態4において、金属アンテナのさらに別の配置例について説明するための示す図である。In Embodiment 4 of this invention, it is a figure for demonstrating another example of arrangement | positioning of a metal antenna. 本発明の実施の形態4におけるトラッキング方法について説明するためのフローチャートである。It is a flowchart for demonstrating the tracking method in Embodiment 4 of this invention. 従来技術における近接場光ヘッドの構成を示す上面図である。It is a top view which shows the structure of the near-field optical head in a prior art. 従来技術における近接場光ヘッドの構成を示す側面図である。It is a side view which shows the structure of the near-field optical head in a prior art. 従来技術における高密度プローブメモリー再生装置の構成を示す概略図である。It is the schematic which shows the structure of the high-density probe memory reproducing | regenerating apparatus in a prior art. 従来技術におけるプローブの取り付け状態及び変形状態を示す要部斜視図である。It is a principal part perspective view which shows the attachment state and deformation | transformation state of the probe in a prior art.
 以下本発明の実施の形態について、図面を参照しながら説明する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiments are examples embodying the present invention, and do not limit the technical scope of the present invention.
 (実施の形態1)
 図1は、本発明の実施の形態1における光情報装置の構成を示す概略図である。図2は、図1に示すスライダの構成を示す斜視図であり、図3は、図1に示すスライダの構成を示す側面図であり、図4は、図1に示すスライダの構成を示す上面図である。
(Embodiment 1)
FIG. 1 is a schematic diagram showing a configuration of an optical information device according to Embodiment 1 of the present invention. 2 is a perspective view showing the configuration of the slider shown in FIG. 1, FIG. 3 is a side view showing the configuration of the slider shown in FIG. 1, and FIG. 4 is a top view showing the configuration of the slider shown in FIG. FIG.
 図1~図4において、光情報装置は、半導体レーザ素子107a,107b,107c、金属アンテナ108a,108b,108c、導波路109a,109b,109c、受光素子110a,110b,110c、モータ103、スライダ104、サスペンション105、アクチュエータ106及びオペアンプ111を備える。 1 to 4, the optical information device includes semiconductor laser elements 107a, 107b, 107c, metal antennas 108a, 108b, 108c, waveguides 109a, 109b, 109c, light receiving elements 110a, 110b, 110c, a motor 103, and a slider 104. A suspension 105, an actuator 106, and an operational amplifier 111.
 図1において、情報記録媒体であるディスク101は、情報が記録または再生される相変化材料で構成された微粒子102が列状に配置されたトラック112を有している。ディスク101は、ディスク101を保持して回転させるモータ103により回転される。微粒子102を構成する相変化材料としては、例えば、Ge、Sb、Te、Bi、Tb、Fe又はCoなどの合金からなる材料が考えられる。 In FIG. 1, a disc 101 as an information recording medium has a track 112 in which fine particles 102 made of a phase change material on which information is recorded or reproduced are arranged in a line. The disk 101 is rotated by a motor 103 that holds and rotates the disk 101. As the phase change material constituting the fine particles 102, for example, a material made of an alloy such as Ge, Sb, Te, Bi, Tb, Fe, or Co can be considered.
 ディスク101上には共鳴素子を保持する保持素子としてのスライダ104が配置されている。保持素子であるスライダ104は、複数の共鳴素子(金属アンテナ108b及び108c)の位置をトラック112に垂直な方向にずらして配置し、かつ複数の共鳴素子間の距離を一定に固定して保持する。スライダ104は、ばね素子としてのサスペンション105により常にディスク101と接するように押し付けられる。サスペンション105は、複数の共鳴素子をディスク101の表面に垂直な方向に移動させる第2の移動素子としても働く。 On the disk 101, a slider 104 is disposed as a holding element that holds the resonance element. The slider 104, which is a holding element, is arranged by shifting the positions of the plurality of resonance elements ( metal antennas 108b and 108c) in the direction perpendicular to the track 112, and holding the distance between the plurality of resonance elements fixed at a constant value. . The slider 104 is always pressed against the disk 101 by a suspension 105 as a spring element. The suspension 105 also functions as a second moving element that moves a plurality of resonance elements in a direction perpendicular to the surface of the disk 101.
 サスペンション105は、第1の移動素子としてのアクチュエータ106によってトラック112に垂直な方向に移動される。これにより、スライダ104は、トラック112に垂直な方向に移動される。すなわち、第1の移動素子であるアクチュエータ106は、トラッキング信号に応じて保持素子(スライダ104)をトラック112に垂直な方向に移動させる。ディスク101が回転されることにより、スライダ104は、ディスク101上を滑走しながら走査する。 The suspension 105 is moved in a direction perpendicular to the track 112 by an actuator 106 as a first moving element. As a result, the slider 104 is moved in a direction perpendicular to the track 112. That is, the actuator 106 as the first moving element moves the holding element (slider 104) in a direction perpendicular to the track 112 in accordance with the tracking signal. As the disk 101 is rotated, the slider 104 scans while sliding on the disk 101.
 以上のように、本実施の形態1の光情報装置においては、複数の共鳴素子を情報記録媒体の表面に垂直な方向に移動させる第2の移動素子は、サスペンション105(ばね素子)を含んでいる。このとき、サスペンション105は、スライダ104とディスク101とを接触させる。 As described above, in the optical information device according to the first embodiment, the second moving element that moves the plurality of resonant elements in the direction perpendicular to the surface of the information recording medium includes the suspension 105 (spring element). Yes. At this time, the suspension 105 brings the slider 104 and the disk 101 into contact with each other.
 図2、図3及び図4において、半導体レーザ素子107a、107b及び107cは、光源を示す。本実施の形態では、光源としては、例えば半導体レーザ素子を用いる。半導体レーザ素子107a、107b及び107cから出射される光の偏光方向はディスク101の表面に対して垂直な方向である。 2, 3, and 4, semiconductor laser elements 107 a, 107 b, and 107 c indicate light sources. In the present embodiment, for example, a semiconductor laser element is used as the light source. The polarization direction of the light emitted from the semiconductor laser elements 107 a, 107 b and 107 c is a direction perpendicular to the surface of the disk 101.
 また、金属アンテナ108a、108b及び108cは、半導体レーザ素子107a、107b及び107cからの光によりプラズモン共鳴を励起する共鳴素子である。共鳴素子である金属アンテナ108b及び108cは、ディスク101と相互作用しトラック112からの距離に応じて、共鳴状態が変化する。 The metal antennas 108a, 108b, and 108c are resonance elements that excite plasmon resonance by light from the semiconductor laser elements 107a, 107b, and 107c. The metal antennas 108b and 108c, which are resonance elements, interact with the disk 101, and the resonance state changes according to the distance from the track 112.
 スライダ104には、トラッキング用の金属アンテナ108b及び108cが、記録又は再生用の金属アンテナ108aを中心にして、トラック112に垂直な方向に並んで配置される。金属アンテナ108b及び108cは、金属アンテナ108aからトラック112に垂直な方向にそれぞれ距離Pだけ離れた位置に配置される。距離Pは、トラッキング周期(トラックピッチ)Tpの4分の1である。このとき、金属アンテナ108bと金属アンテナ108cとの間のトラック112に垂直な方向の距離(2P)は、トラッキング周期Tpの2分の1に固定される。 On the slider 104, tracking metal antennas 108b and 108c are arranged side by side in a direction perpendicular to the track 112 with the recording or reproduction metal antenna 108a as the center. The metal antennas 108b and 108c are disposed at positions separated from the metal antenna 108a by a distance P in the direction perpendicular to the track 112, respectively. The distance P is a quarter of the tracking period (track pitch) Tp. At this time, the distance (2P) in the direction perpendicular to the track 112 between the metal antenna 108b and the metal antenna 108c is fixed to one half of the tracking period Tp.
 3つの半導体レーザ素子107a、107b及び107cから照射された光は、光を導く光学素子としての3つの導波路109a、109b及び109cによりそれぞれ個別に3つの金属アンテナ108a、108b及び108cに導かれ、プラズモン共鳴を励起する。3つの導波路109a、109b及び109cは、導波モード結合を抑制するために互いに非平行に配置される。導波路109a、109b及び109cは、金属アンテナ108a、108b及び108cから離れるにつれて、導波路109aと導波路109bとの間の距離及び導波路109aと導波路109cとの間の距離が広がるように配置されている。 The light emitted from the three semiconductor laser elements 107a, 107b and 107c is individually guided to the three metal antennas 108a, 108b and 108c by the three waveguides 109a, 109b and 109c as optical elements for guiding the light, Excites plasmon resonance. The three waveguides 109a, 109b and 109c are arranged non-parallel to each other in order to suppress waveguide mode coupling. The waveguides 109a, 109b, and 109c are arranged so that the distance between the waveguide 109a and the waveguide 109b and the distance between the waveguide 109a and the waveguide 109c increase as the distance from the metal antennas 108a, 108b, and 108c increases. Has been.
 金属アンテナ108a、108b及び108cの頂点部分には、それぞれ検出素子としての受光素子110a、110b及び110cが取り付けられている。受光素子110a、110b及び110cは、金属アンテナ108a、108b及び108cから発生する近接場光の強度を個別に検出する。すなわち、第1の検出素子である受光素子110b及び110cは、複数の共鳴素子(金属アンテナ108b及び108c)の各々の共鳴状態の変化を、個別に検出する。 Light receiving elements 110a, 110b, and 110c as detection elements are attached to the apex portions of the metal antennas 108a, 108b, and 108c, respectively. The light receiving elements 110a, 110b and 110c individually detect the intensity of near-field light generated from the metal antennas 108a, 108b and 108c. That is, the light receiving elements 110b and 110c, which are first detection elements, individually detect changes in the resonance states of the plurality of resonance elements ( metal antennas 108b and 108c).
 以上のように、本実施の形態1の光情報装置においては、複数の共鳴素子の各々の共鳴状態の変化を個別に検出して出力する第1の検出素子は、複数の共鳴素子(金属アンテナ108b及び108c)から発生する近接場光を検出可能な範囲に配置された複数の受光素子110b及び110cを含む。 As described above, in the optical information device according to the first embodiment, the first detection element that individually detects and outputs the change in the resonance state of each of the plurality of resonance elements is the plurality of resonance elements (metal antennas). 108b and 108c) includes a plurality of light receiving elements 110b and 110c arranged in a range in which near-field light generated from 108b and 108c) can be detected.
 金属アンテナ108a、108b及び108cの形状は、例えば図5に示すような金、銀、銅、チタン、アルミ又はクロムなどの三角平板形状である。図5において、金属アンテナ108aは三角形の頂点が微粒子102の表面に最も近接するように配置されており、プラズモン共鳴が励起されることにより三角形の頂点近傍に強い近接場光が発生する。2つの金属粒子間の相互作用は、金属粒子間の距離が数十nm以下であるときに顕著に現れ、数nmでさらに顕著になる(Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,L.Gunnarsson et.al.,J.Phys.Chem.B,2005,109,1079-1087)。つまり、金属アンテナ108aと微粒子102の表面との距離は、数十nm以下であることが好ましく、数nmであることがより好ましい。なお、図5では特に図示していないが、金属アンテナ108b及び108cについても金属アンテナ108aと同様に配置され、三角形の頂点近傍に強い近接場光が発生する。 The shape of the metal antennas 108a, 108b and 108c is a triangular flat plate shape such as gold, silver, copper, titanium, aluminum or chrome as shown in FIG. In FIG. 5, the metal antenna 108a is arranged so that the vertex of the triangle is closest to the surface of the fine particle 102, and strong near-field light is generated in the vicinity of the vertex of the triangle when plasmon resonance is excited. The interaction between two metal particles appears prominently when the distance between the metal particles is several tens of nanometers or less, and becomes more prominent at a few nanometers (Confined plasmas in nanofabricated particulates: experimental observers. interactions, L. Gunnarsson et.al., J. Phys. Chem. B, 2005, 109, 1079-1087). That is, the distance between the metal antenna 108a and the surface of the fine particle 102 is preferably several tens of nm or less, and more preferably several nm. Although not specifically shown in FIG. 5, the metal antennas 108b and 108c are also arranged in the same manner as the metal antenna 108a, and strong near-field light is generated near the apex of the triangle.
 図6(A)は、金属アンテナ108a、108b及び108cのトラック112からの距離に対する近接場光強度の変化を示すグラフである。図6(B)は、受光素子110bからの検出信号te1及び受光素子110cからの検出信号te2の強度変化を示すグラフである。図6(C)は、オペアンプ111により出力される検出信号te1と検出信号te2との差であるトラッキング信号TEの強度変化を示すグラフである。 FIG. 6A is a graph showing a change in near-field light intensity with respect to the distance from the track 112 of the metal antennas 108a, 108b, and 108c. FIG. 6B is a graph showing changes in the intensity of the detection signal te1 from the light receiving element 110b and the detection signal te2 from the light receiving element 110c. FIG. 6C is a graph showing a change in intensity of the tracking signal TE, which is the difference between the detection signal te1 and the detection signal te2 output from the operational amplifier 111.
 一般に、プラズモン共鳴の共鳴条件は、共鳴素子の周囲の媒質の誘電率に大きく依存する。そのため、金属アンテナ108a、108b及び108cの形状を、半導体レーザ素子107a、107b及び107cの光の周波数に対して微粒子102上にてプラズモン共鳴条件が満たされるように設計すれば、発生する近接場光強度は、図6(A)のように、トラック位置(トラック112からの距離がトラッキング周期Tpと一致する位置)で最大となり、トラック112からの距離がトラッキング周期Tpの半分となる位置で最小となる。 In general, the resonance condition of plasmon resonance greatly depends on the dielectric constant of the medium around the resonance element. Therefore, if the shape of the metal antennas 108a, 108b and 108c is designed so that the plasmon resonance condition is satisfied on the fine particle 102 with respect to the frequency of light of the semiconductor laser elements 107a, 107b and 107c, the generated near-field light is generated. As shown in FIG. 6A, the intensity is maximum at the track position (position where the distance from the track 112 coincides with the tracking period Tp) and minimum at the position where the distance from the track 112 is half the tracking period Tp. Become.
 受光素子110aの検出信号は、再生信号として出力される。受光素子110b及び110cの検出信号te1及びte2は、トラッキング信号演算回路として機能するオペアンプ111に入力される。すなわち、受光素子110b及び110cは、複数の共鳴素子(金属アンテナ108b及び108c)の各々の共鳴状態の変化を表す検出信号te1及びte2を出力する。オペアンプ111は、受光素子110b及び110cによって出力された検出信号te1と検出信号te2とのレベル差をトラッキング信号TEとして演算する。このように、トラッキング信号演算回路であるオペアンプ111は、受光素子110b及び110cによって検出された複数の共鳴素子(金属アンテナ108b及び108c)の各々の共鳴状態の変化に基づいてトラッキング信号TEを演算する。 The detection signal of the light receiving element 110a is output as a reproduction signal. The detection signals te1 and te2 of the light receiving elements 110b and 110c are input to the operational amplifier 111 that functions as a tracking signal calculation circuit. In other words, the light receiving elements 110b and 110c output detection signals te1 and te2 representing changes in the resonance states of the plurality of resonance elements ( metal antennas 108b and 108c). The operational amplifier 111 calculates a level difference between the detection signal te1 and the detection signal te2 output by the light receiving elements 110b and 110c as the tracking signal TE. As described above, the operational amplifier 111 serving as the tracking signal calculation circuit calculates the tracking signal TE based on the change in the resonance state of each of the plurality of resonance elements ( metal antennas 108b and 108c) detected by the light receiving elements 110b and 110c. .
 本実施の形態1では、トラッキング用の金属アンテナ108b及び108cは、記録又は再生用の金属アンテナ108aに対してそれぞれトラック112に垂直な方向に、トラッキング周期Tpの4分の1だけ離して設置されている。そのため、検出信号te1と検出信号te2との差を最大とすることができ、高精度なトラッキング信号TEを得ることができる。 In the first embodiment, the tracking metal antennas 108b and 108c are set apart from the recording or reproducing metal antenna 108a by a quarter of the tracking period Tp in the direction perpendicular to the track 112, respectively. ing. Therefore, the difference between the detection signal te1 and the detection signal te2 can be maximized, and a highly accurate tracking signal TE can be obtained.
 出力されたトラッキング信号TEはアクチュエータ106に入力される。アクチュエータ106は、トラッキング信号TEに対応してスライダ104をトラック112に垂直な方向に駆動する。かかる構成により、記録又は再生用の金属アンテナ108aを微粒子102に対して、安定かつ高精度にトラッキングすることができる。 The output tracking signal TE is input to the actuator 106. The actuator 106 drives the slider 104 in a direction perpendicular to the track 112 in response to the tracking signal TE. With this configuration, the recording or reproducing metal antenna 108a can be stably and accurately tracked with respect to the fine particles 102.
 このように、本実施の形態1では、金属アンテナ108a、108b及び108cがディスク101の表面に対して垂直に配置されており、ディスク101の表面に対して垂直な偏光の光でプラズモン共鳴が励起される。このため、金属アンテナ108a、108b及び108cと相互作用するディスク101上の面積が狭くなり、高い分解能を得ることができる。 As described above, in the first embodiment, the metal antennas 108a, 108b, and 108c are arranged perpendicular to the surface of the disk 101, and the plasmon resonance is excited by the polarized light perpendicular to the surface of the disk 101. Is done. For this reason, the area on the disk 101 which interacts with the metal antennas 108a, 108b and 108c is reduced, and high resolution can be obtained.
 また、本実施の形態1では、複数の導波路109a、109b及び109cを用いて半導体レーザ素子107a、107b及び107cからの光が個別に金属アンテナ108a、108b及び108cに入射する。そして、金属アンテナ108a、108b及び108cに取り付けられた受光素子110a、110b及び110cでそれぞれの金属アンテナ108a、108b及び108cの近接場光強度が個別に直接検出される。このため、高精度で高効率なトラッキング信号を得ることができる。 In the first embodiment, light from the semiconductor laser elements 107a, 107b, and 107c is individually incident on the metal antennas 108a, 108b, and 108c using the plurality of waveguides 109a, 109b, and 109c. The near-field light intensity of each of the metal antennas 108a, 108b, and 108c is directly detected individually by the light receiving elements 110a, 110b, and 110c attached to the metal antennas 108a, 108b, and 108c. For this reason, a highly accurate and highly efficient tracking signal can be obtained.
 また、本実施の形態1では、金属アンテナ108a、108b及び108cと微粒子102とのディスク101の表面に垂直な方向の距離を変化させることがない。このため、トラック112に垂直な方向の変位にのみ依存した安定かつ高精度なトラッキング信号を得ることができる。 In the first embodiment, the distance between the metal antennas 108a, 108b and 108c and the fine particles 102 in the direction perpendicular to the surface of the disk 101 is not changed. Therefore, a stable and highly accurate tracking signal that depends only on the displacement in the direction perpendicular to the track 112 can be obtained.
 また、本実施の形態1では、スライダ104がディスク101上を滑走する。このため、金属アンテナ108a、108b及び108cとディスク101の表面との距離を複雑な構成を用いずに常に一定値に保つことができる。このため、安定したトラッキングを行うことができる。 In the first embodiment, the slider 104 slides on the disk 101. For this reason, the distance between the metal antennas 108a, 108b and 108c and the surface of the disk 101 can always be kept constant without using a complicated configuration. For this reason, stable tracking can be performed.
 なお、本実施の形態1では、情報記録媒体としてディスクを用いているが、スライダ104がディスク全域を移動する構成であればよく、情報記録媒体の形状は円形に限定されない。 In Embodiment 1, a disk is used as the information recording medium. However, the slider 104 may be configured to move over the entire area of the disk, and the shape of the information recording medium is not limited to a circle.
 また、本実施の形態1では、ディスク101をモータ103で回転させて、スライダ104がディスク101上を走査する構成としているが、スライダが情報記録媒体全域を移動する構成であればよい。図7は、本発明の実施の形態1の変形例におけるスライダの駆動方法について説明するための図である。図7に示すように、本実施の形態1の変形例における光情報装置は、スライダ104をトラック112に垂直な方向に移動させる駆動素子114と、スライダ104をトラック112に平行な方向に移動させる駆動素子115とを備える。情報記録媒体113は、例えばカード状であり、所定の位置に固定される。スライダ104は、固定された情報記録媒体113上を駆動素子114,115によって駆動され、情報記録媒体113上全域を走査する。このような構成であっても、本発明の主旨が損なわれるものではない。 In the first embodiment, the disk 101 is rotated by the motor 103 and the slider 104 scans the disk 101. However, the slider may be configured to move over the entire information recording medium. FIG. 7 is a diagram for explaining a slider driving method in a modification of the first embodiment of the present invention. As shown in FIG. 7, the optical information device in the modification of the first embodiment moves the slider 104 in a direction perpendicular to the track 112 and the slider 104 moves in a direction parallel to the track 112. And a drive element 115. The information recording medium 113 has a card shape, for example, and is fixed at a predetermined position. The slider 104 is driven on the fixed information recording medium 113 by driving elements 114 and 115 to scan the entire area of the information recording medium 113. Even with such a configuration, the gist of the present invention is not impaired.
 なお、本実施の形態1において、ディスク101が情報記録媒体の一例に相当し、半導体レーザ素子107b,107cが光源の一例に相当し、金属アンテナ108b,108cが複数の共鳴素子の一例に相当し、スライダ104が保持素子の一例に相当し、受光素子110b,110cが第1の検出素子及び複数の受光素子の一例に相当し、オペアンプ111がトラッキング信号演算回路の一例に相当し、アクチュエータ106が第1の移動素子の一例に相当し、サスペンション105が第2の移動素子の一例に相当し、導波路109b,109cが複数の導波路の一例に相当する。 In the first embodiment, the disk 101 corresponds to an example of an information recording medium, the semiconductor laser elements 107b and 107c correspond to an example of a light source, and the metal antennas 108b and 108c correspond to an example of a plurality of resonance elements. The slider 104 corresponds to an example of a holding element, the light receiving elements 110b and 110c correspond to an example of a first detection element and a plurality of light receiving elements, the operational amplifier 111 corresponds to an example of a tracking signal arithmetic circuit, and the actuator 106 The suspension 105 corresponds to an example of a first moving element, the suspension 105 corresponds to an example of a second moving element, and the waveguides 109b and 109c correspond to an example of a plurality of waveguides.
 次に、本発明の実施の形態1におけるトラッキング方法について実施の形態1における光情報装置を用いて説明する。 Next, the tracking method in the first embodiment of the present invention will be described using the optical information device in the first embodiment.
 図8は、本発明の実施の形態1におけるトラッキング方法について説明するためのフローチャートである。 FIG. 8 is a flowchart for explaining the tracking method according to the first embodiment of the present invention.
 図8のフローチャートに沿って実施の形態1におけるトラッキング方法を説明する。 The tracking method in the first embodiment will be described along the flowchart of FIG.
 まず、第1のステップ301において、光源である半導体レーザ素子107a、107b及び107cは、光を出射し、金属アンテナ108a、108b及び108cに光を入射させてプラズモン共鳴を励起する。金属アンテナ108a、108b及び108cは、微粒子102上でプラズモン共鳴条件が満たされるように設計されている。プラズモン共鳴は、トラックからの位置ずれが大きくなるにつれて弱まる。 First, in the first step 301, the semiconductor laser elements 107a, 107b, and 107c, which are light sources, emit light, and enter the metal antennas 108a, 108b, and 108c to excite plasmon resonance. The metal antennas 108 a, 108 b and 108 c are designed so that the plasmon resonance condition is satisfied on the fine particle 102. Plasmon resonance weakens as the positional deviation from the track increases.
 次に、第2のステップ302において、受光素子110a、110b及び110cは、金属アンテナ108a、108b及び108cの共鳴状態の変化を個別に検出し、再生信号、検出信号te1及び検出信号te2を出力する。プラズモン共鳴により発生する近接場光の強度はプラズモン共鳴が強いほど大きくなる。このため、受光素子110a、110b及び110cは、金属アンテナ108a、108b及び108cの周辺に発生する近接場光の強度を個別に検出することで、個々の金属アンテナ108a、108b及び108cの共鳴状態の変化を検出することができる。 Next, in the second step 302, the light receiving elements 110a, 110b, and 110c individually detect changes in the resonance state of the metal antennas 108a, 108b, and 108c, and output a reproduction signal, a detection signal te1, and a detection signal te2. . The intensity of near-field light generated by plasmon resonance increases as the plasmon resonance increases. For this reason, the light receiving elements 110a, 110b, and 110c individually detect the intensity of near-field light generated around the metal antennas 108a, 108b, and 108c, so that the resonance states of the individual metal antennas 108a, 108b, and 108c are detected. Changes can be detected.
 プラズモン共鳴により発生する近接場光の強度は、トラックからの距離に対して図6(A)のような変化を示し、トラック位置で最大値となり、トラック位置からトラッキング周期Tpの半分だけ離れた位置で最小値となる。実施の形態1では、トラッキング用の金属アンテナ108b及び108cは、記録又は再生用の金属アンテナ108aに対してそれぞれトラックに垂直な方向(トラッキング方向)に、トラッキング周期Tpの4分の1だけ離して設置されている。そのため、受光素子110b及び110cは、図6(B)に示すような検出信号te1及びte2を得る。 The intensity of the near-field light generated by plasmon resonance shows a change as shown in FIG. 6A with respect to the distance from the track, becomes a maximum value at the track position, and is a position away from the track position by half of the tracking period Tp. Becomes the minimum value. In the first embodiment, the tracking metal antennas 108b and 108c are separated from the recording or reproduction metal antenna 108a by a quarter of the tracking period Tp in a direction perpendicular to the track (tracking direction). is set up. Therefore, the light receiving elements 110b and 110c obtain detection signals te1 and te2 as shown in FIG.
 次に、第3のステップ303において、演算回路であるオペアンプ111は、受光素子110b及び110cによって検出された共鳴状態の変化に基づいてトラッキング信号TEを演算する。オペアンプ111は、検出信号te1と検出信号te2との差をトラッキング信号TEとして演算する。受光素子110b及び110cからの検出信号te1及びte2は、オペアンプ111に入力される。オペアンプ111は、検出信号te1と検出信号te2との差を増幅し、トラッキング信号TEとして出力する。 Next, in the third step 303, the operational amplifier 111 as an arithmetic circuit calculates the tracking signal TE based on the change in the resonance state detected by the light receiving elements 110b and 110c. The operational amplifier 111 calculates the difference between the detection signal te1 and the detection signal te2 as the tracking signal TE. Detection signals te1 and te2 from the light receiving elements 110b and 110c are input to the operational amplifier 111. The operational amplifier 111 amplifies the difference between the detection signal te1 and the detection signal te2 and outputs it as a tracking signal TE.
 実施の形態1の構成では、トラッキング用の金属アンテナ108b及び108cは、記録又は再生用の金属アンテナ108aに対してそれぞれトラックに垂直な方向に、トラッキング周期Tpの4分の1だけ離して設置されている。このため、トラッキング信号TEは、トラックからの位置ずれがトラッキング周期Tpの4分の1となる位置で最大又は最小の値となり、トラックからの位置ずれがトラッキング周期Tpの2分の1となる位置で0となる。 In the configuration of the first embodiment, the tracking metal antennas 108b and 108c are installed apart from the recording or reproducing metal antenna 108a by a quarter of the tracking period Tp in the direction perpendicular to the track. ing. For this reason, the tracking signal TE has a maximum or minimum value at a position where the positional deviation from the track becomes a quarter of the tracking period Tp, and a position where the positional deviation from the track becomes a half of the tracking period Tp. 0.
 次に、第4のステップ304において、アクチュエータ106は、オペアンプ111によって演算されたトラッキング信号TEに応じて、スライダ104をトラックに垂直な方向に移動させる。オペアンプ111によって演算されたトラッキング信号TEは、アクチュエータ106へ出力される。アクチュエータ106は、トラッキング信号TEに応じてサスペンション105を駆動してスライダ104をトラックに垂直な方向に移動させる。 Next, in the fourth step 304, the actuator 106 moves the slider 104 in a direction perpendicular to the track in accordance with the tracking signal TE calculated by the operational amplifier 111. The tracking signal TE calculated by the operational amplifier 111 is output to the actuator 106. The actuator 106 drives the suspension 105 according to the tracking signal TE to move the slider 104 in a direction perpendicular to the track.
 実施の形態1では、トラッキング信号TEが正の値の場合、アクチュエータ106は、スライダ104が金属アンテナ108bの方へ移動するようにサスペンション105を駆動する。また、トラッキング信号TEが負の値の場合、アクチュエータ106は、スライダ104が金属アンテナ108cの方へ移動するようにサスペンション105を駆動する。 In Embodiment 1, when the tracking signal TE is a positive value, the actuator 106 drives the suspension 105 so that the slider 104 moves toward the metal antenna 108b. If the tracking signal TE is a negative value, the actuator 106 drives the suspension 105 so that the slider 104 moves toward the metal antenna 108c.
 上記第2のステップ302乃至第4のステップ304の処理が繰り返されることにより、記録又は再生用の金属アンテナ108aを微粒子102に対して常に安定かつ高精度にトラッキングさせることができる。 By repeating the processing from the second step 302 to the fourth step 304, the recording or reproducing metal antenna 108a can be constantly and accurately tracked with respect to the fine particles 102.
 なお、本実施の形態1では、オペアンプ111は、受光素子110b及び110cからの検出信号te1及びte2の差を増幅してトラッキング信号TEを作成しているが、光情報装置は、オペアンプ111とアクチュエータ106との間にローパスフィルタを設け、ローパスフィルタは、オペアンプ111からの出力の高周波成分を除去して、検出信号te1及びte2の差の平均値をトラッキング信号TEとして出力してもよい。 In the first embodiment, the operational amplifier 111 amplifies the difference between the detection signals te1 and te2 from the light receiving elements 110b and 110c to create the tracking signal TE. However, the optical information device includes the operational amplifier 111 and the actuator. A low-pass filter may be provided between the low-pass filter 106 and the low-pass filter may remove the high-frequency component output from the operational amplifier 111 and output an average value of the difference between the detection signals te1 and te2 as the tracking signal TE.
 以上のように、本実施の形態1のトラッキング方法は、トラックを有する情報記録媒体に情報を記録又は再生する光情報装置におけるトラッキング方法であって、情報記録媒体と相互作用し、トラックからの距離に応じて共鳴状態が変化する複数の共鳴素子に光源からの光を入射させる光入射ステップと、複数の共鳴素子の各々の共鳴状態の変化を個別に検出する検出ステップと、検出ステップにおいて検出された共鳴状態の変化に基づいてトラッキング信号を演算するトラッキング信号演算ステップと、トラッキング信号演算ステップにおいて演算されたトラッキング信号に応じて、複数の共鳴素子の位置をトラックに垂直な方向にずらして配置し、かつ複数の共鳴素子間の距離を一定に固定して保持する保持素子をトラックに垂直な方向に移動させる移動ステップと、を包含する。 As described above, the tracking method according to the first embodiment is a tracking method in an optical information device that records or reproduces information on an information recording medium having a track, and interacts with the information recording medium, and is a distance from the track. Detected in a detection step for detecting a change in the resonance state of each of the plurality of resonance elements, and a detection step for detecting the change in the resonance state of each of the plurality of resonance elements. The tracking signal calculation step for calculating the tracking signal based on the change in the resonance state, and the positions of the plurality of resonance elements are shifted in the direction perpendicular to the track according to the tracking signal calculated in the tracking signal calculation step. The holding element that holds the fixed distance between the plurality of resonant elements is fixed to the one perpendicular to the track. Comprising a moving step of moving, to.
 このように、トラックからの距離に応じて共鳴状態の変化する複数の共鳴素子の位置がトラックに垂直な方向にずらして配置され、かつ複数の共鳴素子間の距離が一定に固定されて保持される。これにより、相互作用により複数の共鳴素子とトラック上の情報記録位置との相対的な位置が変化することがない。このため、トラック位置からの変位にのみ依存した安定かつ高精度なトラッキング信号を得ることができる。さらに、共鳴状態は共鳴素子周辺の光学定数の変化に敏感に反応する。このため、トラック上の情報記録状態が表面形状変化を伴わない情報記録状態であっても安定かつ高精度にトラッキングすることができる。 As described above, the positions of the plurality of resonance elements whose resonance states change according to the distance from the track are shifted in the direction perpendicular to the track, and the distance between the plurality of resonance elements is fixed and held constant. The As a result, the relative position between the plurality of resonance elements and the information recording position on the track does not change due to the interaction. For this reason, a stable and highly accurate tracking signal depending only on the displacement from the track position can be obtained. Furthermore, the resonance state is sensitive to changes in the optical constants around the resonance element. For this reason, even if the information recording state on the track is an information recording state not accompanied by a change in surface shape, tracking can be performed stably and with high accuracy.
 また、本実施の形態1のトラッキング方法では、複数の共鳴素子の共鳴状態の変化が複数の受光素子によって個別に検出され、検出信号の差がトラッキング信号として出力される。これにより、検出信号が共鳴素子周辺の光学定数の変化に敏感に反応し、微小なトラックからの位置ずれに対して変調度の高いトラッキング信号が得られる。このため、安定かつ高精度なトラッキング信号を得ることができる。 Further, in the tracking method of the first embodiment, the change in the resonance state of the plurality of resonance elements is individually detected by the plurality of light receiving elements, and the difference between the detection signals is output as a tracking signal. As a result, the detection signal reacts sensitively to changes in the optical constants around the resonant element, and a tracking signal having a high degree of modulation with respect to a positional deviation from a minute track can be obtained. For this reason, a stable and highly accurate tracking signal can be obtained.
 (実施の形態2)
 次に、本発明の実施の形態2における光情報装置について説明する。
(Embodiment 2)
Next, an optical information device according to Embodiment 2 of the present invention will be described.
 図9は、本発明の実施の形態2における光情報装置の構成を示す概略図である。図10は、図9に示すスライダの構成を示す斜視図であり、図11は、図9に示すスライダの構成を示す側面図であり、図12は、図9に示すスライダの構成を示す上面図である。図9~図12において、図1~図4と同じ構成要素については同じ符号を用い、説明を省略する。 FIG. 9 is a schematic diagram showing the configuration of the optical information device according to the second embodiment of the present invention. 10 is a perspective view showing the configuration of the slider shown in FIG. 9, FIG. 11 is a side view showing the configuration of the slider shown in FIG. 9, and FIG. 12 is a top view showing the configuration of the slider shown in FIG. FIG. 9 to 12, the same components as those in FIGS. 1 to 4 are denoted by the same reference numerals, and description thereof is omitted.
 図9~図12において、光情報装置は、半導体レーザ素子107a,107b,107c、金属アンテナ128a,128b,128c、導波路129a,129b,129c、受光素子120a,120b,120c、モータ103、スライダ124、サスペンション125、アクチュエータ106、オペアンプ111及びエアスライダ132を備える。 9 to 12, the optical information device includes semiconductor laser elements 107a, 107b, and 107c, metal antennas 128a, 128b, and 128c, waveguides 129a, 129b, and 129c, light receiving elements 120a, 120b, and 120c, a motor 103, and a slider 124. A suspension 125, an actuator 106, an operational amplifier 111, and an air slider 132.
 図9において、トラック状に並んだ微粒子102を有するディスク101がモータ103に固定されて保持されている。 In FIG. 9, a disk 101 having fine particles 102 arranged in a track shape is fixed to and held by a motor 103.
 また、保持素子としてのスライダ124は、共鳴素子としての金属アンテナ128a、128b及び128cの位置をトラック112に垂直な方向にずらして配置し、金属アンテナ128a、128b及び128c間の距離を一定に固定して保持する。 The slider 124 as a holding element is arranged by shifting the positions of the metal antennas 128a, 128b and 128c as resonance elements in the direction perpendicular to the track 112, and the distance between the metal antennas 128a, 128b and 128c is fixed. And hold.
 共鳴素子である金属アンテナ128b及び128cは、半導体レーザ素子107b及び107cからの光が入射し、ディスク101と相互作用し、トラック112からの距離に応じて、共鳴状態が変化する。 Metal antennas 128b and 128c, which are resonant elements, receive light from semiconductor laser elements 107b and 107c, interact with disk 101, and the resonance state changes according to the distance from track 112.
 エアスライダ132は、金属アンテナ128a、128b及び128cをディスク101の表面に垂直な方向に移動させる。サスペンション125は、ばね素子で構成される。スライダ124とエアスライダ132とは、サスペンション125によってディスク101に対向して保持されている。ハードディスクドライブに採用されるフライングヘッドと同様の技術を用いてスライダ124とディスク101との距離が一定になるように保たれている。 The air slider 132 moves the metal antennas 128a, 128b, and 128c in a direction perpendicular to the surface of the disk 101. The suspension 125 is composed of a spring element. The slider 124 and the air slider 132 are held facing the disk 101 by the suspension 125. The distance between the slider 124 and the disk 101 is kept constant by using a technique similar to that of a flying head employed in a hard disk drive.
 以上のように、本実施の形態2の光情報装置においては、複数の共鳴素子を情報記録媒体の表面に垂直な方向に移動させる第2の移動素子は、サスペンション125(ばね素子)を含んでいる。このとき、サスペンション125は、スライダ104及びエアスライダ132とディスク101との間を流れる気流の力により、ディスク101とスライダ104及びエアスライダ132との間の距離を一定に保持する。 As described above, in the optical information device according to the second embodiment, the second moving element that moves the plurality of resonant elements in the direction perpendicular to the surface of the information recording medium includes the suspension 125 (spring element). Yes. At this time, the suspension 125 keeps the distance between the disk 101, the slider 104, and the air slider 132 constant by the force of the airflow flowing between the slider 104 and the air slider 132 and the disk 101.
 サスペンション125は、アクチュエータ106によってトラック112に垂直な方向に駆動される。これにより、第1の移動素子であるアクチュエータ106は、トラッキング信号に応じて保持素子(スライダ124)をトラック112に垂直な方向に移動させる。ディスク101が回転されることにより、スライダ124は、ディスク101上を走査する。 The suspension 125 is driven in a direction perpendicular to the track 112 by the actuator 106. As a result, the actuator 106 serving as the first moving element moves the holding element (slider 124) in a direction perpendicular to the track 112 in accordance with the tracking signal. As the disk 101 is rotated, the slider 124 scans the disk 101.
 金属アンテナ128a、128b及び128cは、実施の形態1における金属アンテナ108a、108b及び108cと同様に、例えば金、銀、銅、チタン、アルミ又はクロムなどの三角平板で構成される。金属アンテナ128a、128b及び128cは、三角形の頂点が微粒子102の表面に最も近接するように配置され、プラズモン共鳴が励起されることにより三角形の頂点近傍に強い近接場光が発生する。また、金属アンテナ108a、108b及び108cと同様に、金属アンテナ128a、128b及び128cと微粒子102の表面との距離は、数十nm以下であることが好ましく、数nmであることがより好ましい。 Similarly to the metal antennas 108a, 108b, and 108c in the first embodiment, the metal antennas 128a, 128b, and 128c are formed of triangular plates such as gold, silver, copper, titanium, aluminum, or chrome. The metal antennas 128a, 128b, and 128c are arranged so that the apex of the triangle is closest to the surface of the fine particle 102, and strong near-field light is generated near the apex of the triangle when plasmon resonance is excited. Similarly to the metal antennas 108a, 108b and 108c, the distance between the metal antennas 128a, 128b and 128c and the surface of the fine particles 102 is preferably several tens of nm or less, and more preferably several nm.
 図10~図12において、スライダ124は、トラック112の長手方向の端面にトラック112に垂直な方向に階段状の段差を有する。本実施の形態2では、階段状の端面は、トラック112の長手方向に位置の異なる3つの面を有する。 10 to 12, the slider 124 has a stepped step in the direction perpendicular to the track 112 on the end surface of the track 112 in the longitudinal direction. In the second embodiment, the stepped end face has three faces that are different in position in the longitudinal direction of the track 112.
 導波路129a、129b及び129cは、半導体レーザ素子107a、107b及び107cからの光を金属アンテナ128a、128b及び128cに個別に導く。また、導波路129a、129b及び129cは、金属アンテナ128a、128b及び128cからの反射光を受光素子120a、120b及び120cに個別に導く。受光素子120a、120b及び120cは、半導体レーザ素子107a、107b及び107cの近傍にそれぞれ配置されている。 The waveguides 129a, 129b and 129c individually guide light from the semiconductor laser elements 107a, 107b and 107c to the metal antennas 128a, 128b and 128c. The waveguides 129a, 129b and 129c individually guide the reflected light from the metal antennas 128a, 128b and 128c to the light receiving elements 120a, 120b and 120c. The light receiving elements 120a, 120b and 120c are arranged in the vicinity of the semiconductor laser elements 107a, 107b and 107c, respectively.
 また、受光素子120a、120b及び120cは、金属アンテナ128a、128b及び128cの各々の共鳴状態の変化を個別に検出する。受光素子120a、120b及び120cは、複数の導波路129a、129b及び129cにそれぞれ1つずつ取り付けられており、金属アンテナ128a、128b及び128cからの反射光をそれぞれ個別に検出する。 The light receiving elements 120a, 120b, and 120c individually detect changes in the resonance states of the metal antennas 128a, 128b, and 128c. Each of the light receiving elements 120a, 120b, and 120c is attached to each of the plurality of waveguides 129a, 129b, and 129c, and individually detects the reflected light from the metal antennas 128a, 128b, and 128c.
 以上のように、本実施の形態2の光情報装置においては、複数の共鳴素子の各々の共鳴状態の変化を個別に検出して出力する第1の検出素子は、複数の受光素子120b及び120cを含み、光情報装置は、複数の共鳴素子(金属アンテナ128b及び128c)からの光を複数の受光素子120b及び120cに導く複数の導波路129b及び129cを備える。 As described above, in the optical information device according to the second embodiment, the first detection elements that individually detect and output changes in the resonance states of the plurality of resonance elements are the plurality of light receiving elements 120b and 120c. The optical information device includes a plurality of waveguides 129b and 129c that guide light from the plurality of resonance elements ( metal antennas 128b and 128c) to the plurality of light receiving elements 120b and 120c.
 スライダ124の階段状の端面には、それぞれ1つずつ合計3つの金属アンテナ128a、128b及び128cが固定されている。複数の導波路129a、129b及び129cにより導かれた半導体レーザ素子107a、107b及び107cからの光によりプラズモン共鳴が励起される。 A total of three metal antennas 128a, 128b, and 128c are fixed to the stepped end face of the slider 124, one each. Plasmon resonance is excited by light from the semiconductor laser elements 107a, 107b, and 107c guided by the plurality of waveguides 129a, 129b, and 129c.
 なお、2つの金属粒子間の相互作用は、金属粒子間の距離が数十nm以下であるときに顕著に現れる(Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,L.Gunnarsson et.al.,J.Phys.Chem.B,2005,109,1079-1087)。そのため、金属アンテナ128aと金属アンテナ128bとの間のトラックの長手方向の段差及び金属アンテナ128aと金属アンテナ128cとの間のトラックの長手方向の段差の大きさLは、数十nm以上とする。これにより、金属アンテナ128a、128b及び128c間での相互作用を抑制することができ、金属アンテナ128a、128b及び128cの形状の自由度が高くなる。 In addition, the interaction between two metal particles appears prominently when the distance between the metal particles is several tens of nanometers or less (Confined plasmas in nanofabricated partialspars: experiential severinstrands. Al., J. Phys. Chem. B, 2005, 109, 1079-1087). Therefore, the length L in the longitudinal direction of the track between the metal antenna 128a and the metal antenna 128b and the length L in the longitudinal direction of the track between the metal antenna 128a and the metal antenna 128c are set to several tens of nm or more. Thereby, the interaction between the metal antennas 128a, 128b and 128c can be suppressed, and the degree of freedom of the shape of the metal antennas 128a, 128b and 128c is increased.
 一方、トラッキング用の金属アンテナ128b及び128cは、記録又は再生用の金属アンテナ128aを中心にして、トラック112に垂直な方向に配置される。金属アンテナ128b及び128cは、金属アンテナ128aからトラック112に垂直な方向にそれぞれ距離Pだけ離れた位置に配置される。距離Pは、トラッキング周期(トラックピッチ)Tpの4分の1である。このとき、金属アンテナ128bと金属アンテナ128cとの間のトラック112に垂直な方向の距離(2P)は、トラッキング周期Tpの2分の1に固定される。 On the other hand, the tracking metal antennas 128b and 128c are arranged in a direction perpendicular to the track 112 with the recording or reproduction metal antenna 128a as the center. The metal antennas 128b and 128c are disposed at positions separated from the metal antenna 128a by a distance P in a direction perpendicular to the track 112, respectively. The distance P is a quarter of the tracking period (track pitch) Tp. At this time, the distance (2P) in the direction perpendicular to the track 112 between the metal antenna 128b and the metal antenna 128c is fixed to one half of the tracking period Tp.
 図13(A)は、金属アンテナ128a、128b及び128cのトラックからの距離に対する金属アンテナ128a、128b及び128cからの反射光強度の変化を示すグラフである。図13(B)は、トラッキング用の受光素子120b及び120cからの検出信号te1及びte2の強度変化を示すグラフである。図13(C)は、オペアンプ111により出力される検出信号te1と検出信号te2との差であるトラッキング信号TEの強度変化を示すグラフである。 FIG. 13A is a graph showing changes in the intensity of reflected light from the metal antennas 128a, 128b, and 128c with respect to the distance from the track of the metal antennas 128a, 128b, and 128c. FIG. 13B is a graph showing changes in the intensity of the detection signals te1 and te2 from the light receiving elements 120b and 120c for tracking. FIG. 13C is a graph showing a change in intensity of the tracking signal TE, which is the difference between the detection signal te1 and the detection signal te2 output from the operational amplifier 111.
 金属アンテナ128a、128b及び128cは、微粒子102と相互作用し、微粒子102と一体となってプラズモン共鳴する。金属アンテナ128a、128b及び128cと微粒子102との共鳴状態は、金属アンテナ128a、128b及び128c及び微粒子102の設計によって変化する。このため、設計次第で、プラズモン共鳴により金属アンテナ128a、128b及び128cからの反射光強度が増加する場合もあれば、プラズモン共鳴により金属アンテナ128a、128b及び128cからの反射光強度が減少する場合もある。本実施の形態2では、金属アンテナ128a、128b及び128cからの反射光強度が微粒子102との共鳴により減少する場合を一例として示している。 The metal antennas 128 a, 128 b and 128 c interact with the fine particles 102 and plasmon resonate together with the fine particles 102. The resonance state between the metal antennas 128a, 128b, and 128c and the fine particles 102 varies depending on the design of the metal antennas 128a, 128b, and 128c and the fine particles 102. For this reason, depending on the design, the reflected light intensity from the metal antennas 128a, 128b, and 128c may increase due to plasmon resonance, or the reflected light intensity from the metal antennas 128a, 128b, and 128c may decrease due to plasmon resonance. is there. In the second embodiment, the case where the reflected light intensity from the metal antennas 128a, 128b, and 128c decreases due to resonance with the fine particles 102 is shown as an example.
 プラズモン共鳴の共鳴状態は、金属アンテナ128a、128b及び128cと微粒子102との距離に敏感に反応する。このため、金属アンテナ128a、128b及び128cからの反射光強度は、図13(A)に示すように、トラック位置(トラック112からの距離がトラッキング周期Tpと一致する位置)で最小となり、トラック112からの距離がトラッキング周期Tpの半分となる位置で最大となる。 The resonance state of plasmon resonance reacts sensitively to the distance between the metal antennas 128a, 128b and 128c and the fine particles 102. For this reason, the reflected light intensity from the metal antennas 128a, 128b and 128c is minimized at the track position (position where the distance from the track 112 coincides with the tracking period Tp) as shown in FIG. Is the maximum at a position where the distance from is half the tracking period Tp.
 受光素子120b及び120cの検出信号te1及びte2は、トラッキング信号演算回路として機能するオペアンプ111に入力される。オペアンプ111は、検出信号te1と検出信号te2との差をトラッキング信号TEとして出力する。このように、トラッキング信号演算回路であるオペアンプ111は、複数の共鳴素子(金属アンテナ128b及び128c)の各々の共鳴状態の変化に基づいてトラッキング信号TEを得る。 The detection signals te1 and te2 of the light receiving elements 120b and 120c are input to the operational amplifier 111 that functions as a tracking signal calculation circuit. The operational amplifier 111 outputs the difference between the detection signal te1 and the detection signal te2 as the tracking signal TE. As described above, the operational amplifier 111 serving as the tracking signal calculation circuit obtains the tracking signal TE based on the change in the resonance state of each of the plurality of resonance elements ( metal antennas 128b and 128c).
 本実施の形態2では、トラッキング用の金属アンテナ128b及び128cは、記録又は再生用の金属アンテナ128aに対してそれぞれトラック112に垂直な方向に、トラッキング周期Tpの4分の1だけ離して設置されている。そのため、図13(B)及び図13(C)に示すように、検出信号te1と検出信号te2との差を最大にすることができ、高精度なトラッキング信号TEを得ることができる。 In the second embodiment, the tracking metal antennas 128b and 128c are set apart from the recording or reproducing metal antenna 128a by a quarter of the tracking period Tp in the direction perpendicular to the track 112, respectively. ing. Therefore, as shown in FIGS. 13B and 13C, the difference between the detection signal te1 and the detection signal te2 can be maximized, and a highly accurate tracking signal TE can be obtained.
 出力されたトラッキング信号TEはアクチュエータ106に入力される。アクチュエータ106は、トラッキング信号TEに対応してスライダ124をトラック112に垂直な方向に駆動する。かかる構成により、記録又は再生用の金属アンテナ128aを微粒子102に対して、安定かつ高精度にトラッキングすることができる。 The output tracking signal TE is input to the actuator 106. The actuator 106 drives the slider 124 in a direction perpendicular to the track 112 in response to the tracking signal TE. With this configuration, the recording or reproducing metal antenna 128a can be stably and accurately tracked with respect to the fine particles 102.
 なお、本実施の形態2において、金属アンテナ128b,128cが複数の共鳴素子の一例に相当し、スライダ124が保持素子の一例に相当し、受光素子120b,120cが第1の検出素子及び複数の受光素子の一例に相当し、サスペンション125が第2の移動素子の一例に相当し、導波路129b,129cが複数の導波路の一例に相当する。 In the second embodiment, the metal antennas 128b and 128c correspond to an example of a plurality of resonance elements, the slider 124 corresponds to an example of a holding element, and the light receiving elements 120b and 120c include the first detection element and the plurality of resonance elements. The suspension 125 corresponds to an example of a light receiving element, the suspension 125 corresponds to an example of a second moving element, and the waveguides 129b and 129c correspond to an example of a plurality of waveguides.
 このように、本実施の形態2では、ハードディスクドライブに採用されるフライングヘッドと同様の技術を用いている。これにより、スライダ124とディスク101とが接触することなく、スライダ124は、ディスク101上の数nm~数十nmの位置においてディスク101を走査することができる。そのため、ディスク101及びスライダ124がそれぞれ磨耗を起こさずに精密なギャップ制御を行うことができる。 Thus, in the second embodiment, the same technology as that of the flying head employed in the hard disk drive is used. Thus, the slider 124 can scan the disk 101 at a position of several nm to several tens of nm on the disk 101 without the slider 124 and the disk 101 coming into contact with each other. Therefore, precise gap control can be performed without causing the disk 101 and the slider 124 to wear.
 また、本実施の形態2では、金属アンテナ128a、128b及び128cは、それぞれトラックの長手方向にずらして配置される。すなわち、スライダ124は、金属アンテナ128b及び128cの位置をトラックの長手方向にずらして配置する。これにより、隣接する金属アンテナ128a、128b及び128cの間の相互作用を抑制でき、金属アンテナ128a、128b及び128cの形状の自由度が高くなる。 In the second embodiment, the metal antennas 128a, 128b, and 128c are arranged so as to be shifted in the longitudinal direction of the track. That is, the slider 124 is arranged by shifting the positions of the metal antennas 128b and 128c in the longitudinal direction of the track. Thereby, the interaction between the adjacent metal antennas 128a, 128b, and 128c can be suppressed, and the degree of freedom of the shape of the metal antennas 128a, 128b, and 128c is increased.
 さらに、光源(半導体レーザ素子107b及び107c)から複数の共鳴素子(金属アンテナ128b及び128c)に入射する入射光の偏光方向は、ディスク101の表面に垂直な方向であることが好ましい。また、複数の共鳴素子(金属アンテナ128b及び金属アンテナ128c)のトラックの長手方向の位置は、複数の共鳴素子(金属アンテナ128b又は128c)のうちの1つの共鳴素子のトラックの長手方向の厚さ以上にずれていても良い。これにより、複数の共鳴素子間の相互作用をより抑制できる。 Furthermore, it is preferable that the polarization direction of incident light incident on the plurality of resonant elements ( metal antennas 128 b and 128 c) from the light source ( semiconductor laser elements 107 b and 107 c) is a direction perpendicular to the surface of the disk 101. Also, the longitudinal position of the track of the plurality of resonance elements (metal antenna 128b and metal antenna 128c) is the thickness in the longitudinal direction of the track of one resonance element of the plurality of resonance elements ( metal antenna 128b or 128c). It may be shifted as described above. Thereby, the interaction between a plurality of resonant elements can be further suppressed.
 さらに、本実施の形態2では、近接場光ではなく反射光が検出される。これにより、金属アンテナ128a、128b及び128cの直近に微小な受光素子110a、110b及び110cを作製する必要がなくなり、光情報装置の作製が容易になる。 Furthermore, in the second embodiment, reflected light is detected instead of near-field light. This eliminates the need to fabricate minute light receiving elements 110a, 110b, and 110c in the immediate vicinity of the metal antennas 128a, 128b, and 128c, and facilitates fabrication of the optical information device.
 また、本実施の形態2では、受光素子120a、120b及び120cは、金属アンテナ128a、128b及び128cと相互作用することがない。このため、効率よく金属アンテナ128a、128b及び128cとディスク101とを相互作用させることができ、効率よくトラッキング及び情報の記録又は再生を行うことができる。 In the second embodiment, the light receiving elements 120a, 120b, and 120c do not interact with the metal antennas 128a, 128b, and 128c. For this reason, the metal antennas 128a, 128b, and 128c and the disk 101 can be efficiently interacted, and tracking and information recording or reproduction can be performed efficiently.
 なお、本実施の形態2では、半導体レーザ素子及び受光素子のペアが、1本の導波路に対して隣接して配置されているが、例えば、Y字導波路を用いてもよい。この場合、Y字導波路の一方に半導体レーザ素子を配置し、他方に受光素子を配置してもよい。このように、光の出射位置と反射光の検出位置とを分離する構成にしても、本発明の主旨が損なわれるものではない。 In the second embodiment, a pair of a semiconductor laser element and a light receiving element is disposed adjacent to one waveguide, but for example, a Y-shaped waveguide may be used. In this case, a semiconductor laser element may be disposed on one side of the Y-shaped waveguide, and a light receiving element may be disposed on the other side. Thus, even if it is the structure which isolate | separates the light emission position and the detection position of reflected light, the main point of this invention is not impaired.
 また、本実施の形態2では、スライダ124の端面に階段状の段差が形成され、各段に金属アンテナ128a、128b及び128cが配置されているが、本発明は特にこれに限定されない。金属アンテナ128a、128b及び128cは、互いに相互作用しないように、トラックの長手方向にずれて配置されていればよい。図14は、本発明の実施の形態2の第1の変形例におけるスライダを示す上面図であり、図15は、本発明の実施の形態2の第2の変形例におけるスライダを示す上面図である。例えば、図14又は図15に示すように、スライダ124の端面は、凸形状又は凹形状であってもよい。金属アンテナ128a、128b及び128cは、トラックの長手方向にずれて配置される。 In the second embodiment, a stepped step is formed on the end surface of the slider 124, and the metal antennas 128a, 128b, and 128c are arranged on each step. However, the present invention is not particularly limited to this. The metal antennas 128a, 128b, and 128c only need to be shifted in the longitudinal direction of the track so as not to interact with each other. FIG. 14 is a top view showing the slider in the first modification of the second embodiment of the present invention, and FIG. 15 is a top view showing the slider in the second modification of the second embodiment of the present invention. is there. For example, as shown in FIG. 14 or FIG. 15, the end surface of the slider 124 may be convex or concave. The metal antennas 128a, 128b and 128c are arranged so as to be shifted in the longitudinal direction of the track.
 また、本実施の形態2では、スライダ124とエアスライダ132とは別々の構成としているが、本発明は特にこれに限定されず、スライダ124を大きくしてもよい。スライダ124は、ディスク101の表面に垂直な方向にスライダ124を移動させるエアスライダの機能を兼ね備えてもよい。この場合も、本発明の主旨が損なわれるものではない。 In the second embodiment, the slider 124 and the air slider 132 are configured separately, but the present invention is not particularly limited to this, and the slider 124 may be enlarged. The slider 124 may also have the function of an air slider that moves the slider 124 in a direction perpendicular to the surface of the disk 101. Also in this case, the gist of the present invention is not impaired.
 また、実施の形態1及び2では、アクチュエータ106でサスペンション105(又は125)をトラックに垂直な方向に駆動する構成としているが、本発明は特にこれに限定されない。図16は、本発明の実施の形態1及び2の変形例におけるスライダの構成を示す図である。図16に示すように、光情報装置は、実施の形態1及び2のアクチュエータ106の代わりにモータ116を備える。モータ116は、ディスク101の表面に平行な面内において、当該モータ116を中心としてサスペンション105(125)を回転させる。このように、モータ116は、サスペンション105(又は125)をアームとして回転させ、ハードディスクドライブのようにスライダ104(又は124)をトラックに垂直な方向に駆動してもよい。 In the first and second embodiments, the suspension 105 (or 125) is driven in the direction perpendicular to the track by the actuator 106, but the present invention is not particularly limited to this. FIG. 16 is a diagram showing a configuration of a slider in a modification of the first and second embodiments of the present invention. As shown in FIG. 16, the optical information apparatus includes a motor 116 instead of the actuator 106 according to the first and second embodiments. The motor 116 rotates the suspension 105 (125) around the motor 116 in a plane parallel to the surface of the disk 101. As described above, the motor 116 may rotate the suspension 105 (or 125) as an arm and drive the slider 104 (or 124) in a direction perpendicular to the track like a hard disk drive.
 また、実施の形態1及び2では、情報を記録又は再生するために相変化材料で構成された微粒子を用いているが、本発明は特にこれに限定されない。光情報装置が、例えばROM(Read Only Memory)装置のような再生のみを行う光情報装置である場合は、微粒子の代わりに、凹凸形状のピットを用いてもよく、又は金属パターンなどを用いてもよい。 In Embodiments 1 and 2, fine particles composed of a phase change material are used for recording or reproducing information, but the present invention is not particularly limited to this. When the optical information device is an optical information device that performs only reproduction, such as a ROM (Read Only Memory) device, for example, an uneven pit may be used instead of fine particles, or a metal pattern or the like may be used. Also good.
 また、実施の形態1及び2では、金属アンテナの形状は三角平板形状であるが、金属アンテナの形状は上記の例に特に限定されず、例えば三角平板形状以外にも図17~図19に示すような形状も考えられる。金属アンテナの形状は、微粒子上でプラズモン共鳴し、トラックからの距離に応じて効率よくプラズモン共鳴状態が変化するものであれば、特に限定されるものではない。 In Embodiments 1 and 2, the shape of the metal antenna is a triangular plate shape. However, the shape of the metal antenna is not particularly limited to the above example, and examples other than the triangular plate shape are shown in FIGS. Such a shape is also conceivable. The shape of the metal antenna is not particularly limited as long as plasmon resonance occurs on the fine particles and the plasmon resonance state efficiently changes according to the distance from the track.
 図17は、本発明の実施の形態1及び2において、四角平板形状である金属アンテナを示す図であり、図18は、本発明の実施の形態1及び2において、円板形状である金属アンテナを示す図であり、図19は、本発明の実施の形態1及び2において、プローブ形状である金属アンテナを示す図である。 FIG. 17 is a diagram showing a metal antenna having a square plate shape in the first and second embodiments of the present invention, and FIG. 18 is a metal antenna having a disk shape in the first and second embodiments of the present invention. FIG. 19 is a diagram showing a metal antenna having a probe shape in the first and second embodiments of the present invention.
 図17のように、金属アンテナ117の形状が四角平板形状である場合、金属アンテナ117は上下対称であるため三角平板形状と比較して解析が容易である。また、図18のように、金属アンテナ118の形状が円板形状である場合、パターンの作製が三角平板形状に比べて容易である。また、図19のように、金属アンテナ119の形状がプローブ形状である場合、より効率的にプローブの先端に近接場光を発生させることができる。 As shown in FIG. 17, when the shape of the metal antenna 117 is a rectangular flat plate shape, the metal antenna 117 is vertically symmetric, so that the analysis is easier than the triangular flat plate shape. Further, as shown in FIG. 18, when the shape of the metal antenna 118 is a disc shape, the pattern can be easily produced as compared with the triangular plate shape. Further, as shown in FIG. 19, when the shape of the metal antenna 119 is a probe shape, near-field light can be generated more efficiently at the tip of the probe.
 また、実施の形態1及び2では、2つのトラッキング用の金属アンテナを備え、当該2つの金属アンテナは、トラックに垂直な方向にトラッキング周期Tpの2分の1だけずらして配置される。しかしながら、金属アンテナの本数及び配置方法は、トラック位置において複数のトラッキング用の金属アンテナからの検出信号の差が0となり、トラックからの位置ずれに応じて検出信号の差が得られるものであればよい。トラッキング用の金属アンテナの本数及び配置方法は、本実施の形態1及び2として示した構成に特に限定されるものではない。 In the first and second embodiments, two tracking metal antennas are provided, and the two metal antennas are arranged so as to be shifted by a half of the tracking period Tp in a direction perpendicular to the track. However, as long as the number of metal antennas and the arrangement method are such that the difference in detection signals from a plurality of metal antennas for tracking is zero at the track position and the difference in detection signals can be obtained according to the positional deviation from the track. Good. The number of metal antennas for tracking and the arrangement method are not particularly limited to the configurations shown as the first and second embodiments.
 また、実施の形態1及び2では、導波モード結合を抑制するために複数の導波路109a~109c(129a~129c)は互いに非平行に配置されるが、導波モード結合が起こらない構成であれば、複数の導波路109a~109c(129a~129c)は互いに平行に配置してもよく、これにより、本発明の主旨が損なわれるものではない。 In the first and second embodiments, the plurality of waveguides 109a to 109c (129a to 129c) are arranged non-parallel to each other in order to suppress the waveguide mode coupling. However, the waveguide mode coupling does not occur. If so, the plurality of waveguides 109a to 109c (129a to 129c) may be arranged in parallel to each other, and this does not impair the gist of the present invention.
 また、実施の形態1及び2では、半導体レーザ素子107a~107c、金属アンテナ108a~108c(128a~128c)及び受光素子110a~110c(120a~120c)はスライダ104(124)の端面に配置されるが、本発明は特にこれに限定されない。スライダ104(124)の上面又はスライダ104(124)の内部にこれらの素子を配置したり、ワンチップにこれらの素子を集積化して作製したりしてもよい。 In the first and second embodiments, the semiconductor laser elements 107a to 107c, the metal antennas 108a to 108c (128a to 128c), and the light receiving elements 110a to 110c (120a to 120c) are disposed on the end face of the slider 104 (124). However, the present invention is not particularly limited to this. These elements may be arranged on the upper surface of the slider 104 (124) or inside the slider 104 (124), or these elements may be integrated on a single chip.
 また、実施の形態1及び2では、光情報装置は、3つの光源(半導体レーザ素子107a~107c)を備えているが、光情報装置は、1つの光源を備え、1つの光源からの光を導波路により3方向に分離して、金属アンテナに光を入射させてもよい。また、光情報装置は、記録又は再生用の光源とトラッキング用の光源とを1つずつ備え、トラッキング用の光源のみからの光をY字導波路で2方向に分離して、2つの金属アンテナに光を入射させてもよい。これらにより、本発明の主旨が損なわれるものではない。 In the first and second embodiments, the optical information device includes three light sources (semiconductor laser elements 107a to 107c). However, the optical information device includes one light source and emits light from one light source. The light may be incident on the metal antenna after being separated in three directions by a waveguide. Further, the optical information device includes one light source for recording or reproduction and one light source for tracking, and separates light from only the light source for tracking in two directions by a Y-shaped waveguide, thereby providing two metal antennas. Light may be incident on. These do not impair the gist of the present invention.
 (実施の形態3)
 次に、本発明の実施の形態3における光情報装置について説明する。
(Embodiment 3)
Next, an optical information device according to Embodiment 3 of the present invention will be described.
 図20は、本発明の実施の形態3における光情報装置の構成を示す概略図である。図21は、図20に示す複数の金属アンテナの構成を示す斜視図であり、図22は、図20に示す複数の金属アンテナの構成を示す上面図である。図20~図22において、図1~図4と同じ構成要素については同じ符号を用い、説明を省略する。 FIG. 20 is a schematic diagram showing the configuration of the optical information device according to the third embodiment of the present invention. 21 is a perspective view showing the configuration of the plurality of metal antennas shown in FIG. 20, and FIG. 22 is a top view showing the configuration of the plurality of metal antennas shown in FIG. 20 to 22, the same components as those in FIGS. 1 to 4 are denoted by the same reference numerals, and description thereof is omitted.
 図20において、光情報装置は、半導体レーザ素子202a,202b,202c,202d、金属アンテナ228a,228b,228c、レンズ203,204,205,206,207、ハーフミラー208,209、ダイクロイックミラー210、4分の1波長板211、検光子212、遮光板213、回折格子214、受光素子215a,215b,215c,215d、ソリッドイマージョンレンズ216、レンズホルダ217、アクチュエータ218及びオペアンプ111を備える。 20, the optical information device includes semiconductor laser elements 202a, 202b, 202c, 202d, metal antennas 228a, 228b, 228c, lenses 203, 204, 205, 206, 207, half mirrors 208, 209, dichroic mirrors 210, 4 A half-wave plate 211, an analyzer 212, a light shielding plate 213, a diffraction grating 214, light receiving elements 215a, 215b, 215c, and 215d, a solid immersion lens 216, a lens holder 217, an actuator 218, and an operational amplifier 111 are provided.
 図20において、ディスク221は、情報が列状に記録されたトラックを有する情報記録媒体である。ディスク221には、トラックとして機能するグルーブ201が形成されており、情報は、グルーブ201上に記録されている。 In FIG. 20, a disk 221 is an information recording medium having tracks on which information is recorded in a line. A groove 201 functioning as a track is formed on the disk 221, and information is recorded on the groove 201.
 半導体レーザ素子202a、202b、202c及び202dの出力波長は、それぞれ異なっている。本実施の形態3では、半導体レーザ素子202a、202b、202c及び202dは、それぞれ例えば780nm、630nm、830nm及び400nmの波長の光を出射する。半導体レーザ素子202a、202b、202c及び202dからの光の偏光は直線偏光である。半導体レーザ素子202aは、情報を記録又は再生するための光源として用いられ、半導体レーザ素子202b及び202cは、トラッキング用の光源として用いられ、半導体レーザ素子202dは、ギャップ検出用の光源として用いられる。 The output wavelengths of the semiconductor laser elements 202a, 202b, 202c and 202d are different from each other. In the third embodiment, the semiconductor laser elements 202a, 202b, 202c, and 202d emit light having wavelengths of 780 nm, 630 nm, 830 nm, and 400 nm, respectively. The polarization of light from the semiconductor laser elements 202a, 202b, 202c and 202d is linearly polarized light. The semiconductor laser element 202a is used as a light source for recording or reproducing information, the semiconductor laser elements 202b and 202c are used as light sources for tracking, and the semiconductor laser element 202d is used as a light source for gap detection.
 金属アンテナ228a、228b及び228cは、それぞれ半導体レーザ素子202a、202b及び202cからの光によりプラズモン共鳴を励起する共鳴素子である。金属アンテナ228a、228b及び228cは、例えば金、銀、銅、チタン、アルミ又はクロムなどの材料で構成される。また、図21に示すように、金属アンテナ228a、228b及び228cの形状は、三角平板形状である。金属アンテナ228a、228b及び228cは、三角形状の面がディスク221の表面に平行になるように配置されている。金属アンテナ228a、228b及び228cには、偏光方向が、ディスク221の表面に平行であり、かつトラックの長手方向に平行である光が入射する。これにより、金属アンテナ228a、228b及び228cにおいてプラズモン共鳴が励起され、三角形の頂点近傍に強い近接場光が発生する。 The metal antennas 228a, 228b, and 228c are resonance elements that excite plasmon resonance by light from the semiconductor laser elements 202a, 202b, and 202c, respectively. The metal antennas 228a, 228b, and 228c are made of a material such as gold, silver, copper, titanium, aluminum, or chromium. Further, as shown in FIG. 21, the metal antennas 228a, 228b, and 228c have a triangular flat plate shape. The metal antennas 228 a, 228 b, and 228 c are arranged so that the triangular surface is parallel to the surface of the disk 221. Light having a polarization direction parallel to the surface of the disk 221 and parallel to the longitudinal direction of the track is incident on the metal antennas 228a, 228b, and 228c. As a result, plasmon resonance is excited in the metal antennas 228a, 228b, and 228c, and strong near-field light is generated near the apex of the triangle.
 共鳴素子である金属アンテナ228b及び228cは、ディスク221と相互作用し、トラック(グルーブ201)からの距離に応じて、共鳴状態が変化する。金属アンテナ228a、228b及び228cは、それぞれ半導体レーザ素子202a、202b及び202cからの出射光に対してトラック中心上で最大のプラズモン共鳴が得られるように、それぞれ形状又は材質が異なる。 The metal antennas 228b and 228c, which are resonance elements, interact with the disk 221, and the resonance state changes according to the distance from the track (groove 201). The metal antennas 228a, 228b and 228c have different shapes or materials so that the maximum plasmon resonance can be obtained on the track center with respect to the light emitted from the semiconductor laser elements 202a, 202b and 202c, respectively.
 また、図22に示すように、トラッキング用の金属アンテナ228b及び228cは、記録又は再生用の金属アンテナ228aを中心にして、トラックに垂直な方向に位置をずらして配置される。金属アンテナ228b及び228cは、金属アンテナ228aからトラック112に垂直な方向にそれぞれ距離Pだけ離れた位置に配置される。距離Pは、トラッキング周期(トラックピッチ)Tpの4分の1である。このとき、金属アンテナ228bと金属アンテナ228cとの間のトラックに垂直な方向の距離(2P)は、トラッキング周期Tpの2分の1に固定される。 Also, as shown in FIG. 22, the tracking metal antennas 228b and 228c are arranged with their positions shifted in the direction perpendicular to the track with the recording or reproduction metal antenna 228a as the center. The metal antennas 228b and 228c are disposed at positions separated from the metal antenna 228a by a distance P in a direction perpendicular to the track 112, respectively. The distance P is a quarter of the tracking period (track pitch) Tp. At this time, the distance (2P) in the direction perpendicular to the track between the metal antenna 228b and the metal antenna 228c is fixed to one half of the tracking period Tp.
 一方、金属アンテナ228a及び228bは、複数の金属アンテナが互いに相互作用することを避けるために金属アンテナ228aの頂点と金属アンテナ228bの底辺とがトラックの長手方向に重ならないように、トラックの長手方向にずらして配置されている。同様に、金属アンテナ228a及び228cは、金属アンテナ228aの底辺と金属アンテナ228cの頂点とがトラックの長手方向に重ならないように、トラックの長手方向にずらして配置されている。半導体レーザ素子202a、202b及び202cの偏光方向は、共鳴周波数の異なる共鳴素子として機能する金属アンテナ228a、228b及び228cの共鳴方向と一致するようにする。 On the other hand, the metal antennas 228a and 228b are arranged so that the apex of the metal antenna 228a and the base of the metal antenna 228b do not overlap with the longitudinal direction of the track in order to avoid a plurality of metal antennas from interacting with each other. It is arranged to shift to. Similarly, the metal antennas 228a and 228c are arranged so as to be shifted in the longitudinal direction of the track so that the bottom of the metal antenna 228a and the apex of the metal antenna 228c do not overlap with the longitudinal direction of the track. The polarization directions of the semiconductor laser elements 202a, 202b, and 202c are made to coincide with the resonance directions of the metal antennas 228a, 228b, and 228c that function as resonance elements having different resonance frequencies.
 以上のように、本実施の形態3の光情報装置においては、光源(半導体レーザ素子202b及び202c)から複数の共鳴素子(金属アンテナ228b及び228c)に入射する入射光の偏光方向は、ディスク221の表面に対して平行な方向かつトラックに対して平行な方向である。このとき、複数の共鳴素子(金属アンテナ228b及び228c)の間のトラックの長手方向の位置は、複数の共鳴素子のうちの1つの共鳴素子のトラックの長手方向の長さ以上にずれている。 As described above, in the optical information device according to the third embodiment, the polarization direction of incident light incident on the plurality of resonance elements ( metal antennas 228b and 228c) from the light source ( semiconductor laser elements 202b and 202c) is the disk 221. The direction parallel to the surface of the track and the direction parallel to the track. At this time, the position in the longitudinal direction of the track between the plurality of resonance elements ( metal antennas 228b and 228c) is shifted more than the length in the longitudinal direction of the track of one resonance element of the plurality of resonance elements.
 また、図20において、ダイクロイックミラー210は、波長500nm以下の光を反射する。4分の1波長板211は、半導体レーザ素子202dからの光に対し、直線偏光を円偏光に変換する。検光子212は、半導体レーザ素子202dからの光の偏光方向と同じ偏光方向の光を透過する。遮光板213は、中央部分の光を遮光して周辺部分の光のみを透過する。回折格子214は、金属アンテナ228aからの反射光を受光素子215aへ回折させ、金属アンテナ228bからの反射光を受光素子215bへ回折させ、金属アンテナ228cからの反射光を受光素子215cへ回折させる。 In FIG. 20, the dichroic mirror 210 reflects light having a wavelength of 500 nm or less. The quarter-wave plate 211 converts linearly polarized light into circularly polarized light with respect to the light from the semiconductor laser element 202d. The analyzer 212 transmits light having the same polarization direction as that of the light from the semiconductor laser element 202d. The light shielding plate 213 shields light at the central portion and transmits only light at the peripheral portion. The diffraction grating 214 diffracts the reflected light from the metal antenna 228a to the light receiving element 215a, diffracts the reflected light from the metal antenna 228b to the light receiving element 215b, and diffracts the reflected light from the metal antenna 228c to the light receiving element 215c.
 受光素子215a、215b及び215cは金属アンテナ228a、228b及び228cの各々の共鳴状態の変化を個別に検出して、検出信号を出力する。受光素子215a、215b及び215cは、それぞれ金属アンテナ228a、228b及び228cからの散乱光を個別に検出する。 The light receiving elements 215a, 215b, and 215c individually detect changes in the resonance states of the metal antennas 228a, 228b, and 228c, and output detection signals. The light receiving elements 215a, 215b and 215c individually detect scattered light from the metal antennas 228a, 228b and 228c, respectively.
 受光素子215dは、金属アンテナ228a、228b及び228cと、ディスク221との距離を検出する。受光素子215dは、金属アンテナ228a、228b及び228cと、ディスク221との距離を表すギャップ信号GTを出力する。 The light receiving element 215d detects the distance between the metal antennas 228a, 228b and 228c and the disk 221. The light receiving element 215d outputs a gap signal GT indicating the distance between the metal antennas 228a, 228b, and 228c and the disk 221.
 ソリッドイマージョンレンズ216の底面には、金属アンテナ228a、228b及び228cが形成される。ソリッドイマージョンレンズ216は、金属アンテナ228a、228b及び228cを保持する保持素子として機能する。保持素子であるソリッドイマージョンレンズ216は、複数の共鳴素子(金属アンテナ228b及び228c)の位置を、トラックに垂直な方向にずらして配置し、かつ複数の共鳴素子間の距離を一定に固定して保持する。 Metal antennas 228a, 228b and 228c are formed on the bottom surface of the solid immersion lens 216. The solid immersion lens 216 functions as a holding element that holds the metal antennas 228a, 228b, and 228c. The solid immersion lens 216, which is a holding element, is arranged by shifting the positions of a plurality of resonance elements ( metal antennas 228b and 228c) in a direction perpendicular to the track and fixing the distance between the plurality of resonance elements constant. Hold.
 レンズホルダ217は、ソリッドイマージョンレンズ216及びレンズ207を保持し、ソリッドイマージョンレンズ216とレンズ207との位置を相対的に固定する。 The lens holder 217 holds the solid immersion lens 216 and the lens 207, and relatively fixes the positions of the solid immersion lens 216 and the lens 207.
 アクチュエータ218は、受光素子215dから出力されたギャップ信号GT及びオペアンプ111から出力されたトラッキング信号TEに基づいて、レンズホルダ217をトラックに垂直な方向及びディスク221の表面に垂直な方向に移動させる。すなわち、第1の移動素子であるアクチュエータ218は、トラッキング信号TEに応じて保持素子(ソリッドイマージョンレンズ216)をトラックに垂直な方向に移動させる。また、アクチュエータ218は、受光素子215dからの検出信号(ギャップ信号GT)に応じて、複数の共鳴素子(金属アンテナ228b及び228c)とディスク221との間の距離が一定になるように、複数の共鳴素子(金属アンテナ228b及び228c)をディスク221の表面に垂直な方向に移動させる。 The actuator 218 moves the lens holder 217 in the direction perpendicular to the track and the direction perpendicular to the surface of the disk 221 based on the gap signal GT output from the light receiving element 215d and the tracking signal TE output from the operational amplifier 111. That is, the actuator 218 as the first moving element moves the holding element (solid immersion lens 216) in a direction perpendicular to the track in accordance with the tracking signal TE. In addition, the actuator 218 has a plurality of resonance elements ( metal antennas 228b and 228c) and a plurality of the plurality of resonance elements ( metal antennas 228b and 228c) so that the distance between the disk 221 is constant according to the detection signal (gap signal GT) from the light receiving element 215d. The resonant elements ( metal antennas 228b and 228c) are moved in a direction perpendicular to the surface of the disk 221.
 本実施の形態3においては、レンズ204、ハーフミラー209及びレンズ207などが、複数の共鳴素子(金属アンテナ228b及び228c)に、光源(半導体レーザ素子202b及び202c)からの光を導く光学素子として機能する。 In the third embodiment, the lens 204, the half mirror 209, the lens 207, and the like are optical elements that guide light from the light sources ( semiconductor laser elements 202b and 202c) to a plurality of resonance elements ( metal antennas 228b and 228c). Function.
 なお、本実施の形態3において、ディスク221が情報記録媒体の一例に相当し、半導体レーザ素子202b,202cが光源及び複数の光源の一例に相当し、金属アンテナ228b,228cが複数の共鳴素子の一例に相当し、ソリッドイマージョンレンズ216が保持素子の一例に相当し、受光素子215b,215cが第1の検出素子及び複数の受光素子の一例に相当し、アクチュエータ218が第1の移動素子及び第2の移動素子の一例に相当し、受光素子215dが第2の検出素子の一例に相当し、回折格子214が光学素子の一例に相当する。 In the third embodiment, the disk 221 corresponds to an example of an information recording medium, the semiconductor laser elements 202b and 202c correspond to examples of a light source and a plurality of light sources, and the metal antennas 228b and 228c include a plurality of resonance elements. The solid immersion lens 216 corresponds to an example of a holding element, the light receiving elements 215b and 215c correspond to an example of a first detection element and a plurality of light receiving elements, and the actuator 218 corresponds to an example of a first moving element and a first moving element. The light receiving element 215d corresponds to an example of a second detection element, and the diffraction grating 214 corresponds to an example of an optical element.
 ここで、本実施の形態3における光情報装置の動作について説明する。まず、本実施の形態3における光情報装置のギャップ検出方法について説明する。 Here, the operation of the optical information apparatus in the third embodiment will be described. First, the gap detection method of the optical information device in the third embodiment will be described.
 半導体レーザ素子202dから出射された光は、レンズ203によりコリメートされ、ハーフミラー208を透過する。ハーフミラー208を透過した光は、4分の1波長板211により円偏光に変換され、ダイクロイックミラー210により反射される。ダイクロイックミラー210により反射された光は、レンズ207とソリッドイマージョンレンズ216とにより集光される。 The light emitted from the semiconductor laser element 202d is collimated by the lens 203 and passes through the half mirror 208. The light transmitted through the half mirror 208 is converted into circularly polarized light by the quarter wave plate 211 and reflected by the dichroic mirror 210. The light reflected by the dichroic mirror 210 is collected by the lens 207 and the solid immersion lens 216.
 ディスク221とソリッドイマージョンレンズ216との間の距離が遠い場合には、開口数NAの高い成分の光は、ソリッドイマージョンレンズ216の底面で全反射される。ソリッドイマージョンレンズ216の底面で全反射された光は、レンズ207を透過した後、ダイクロイックミラー210で反射され、再び4分の1波長板211を透過する。全反射された光は、全反射前に比べて、反射面に垂直な偏光の光と反射面に平行な偏光の光との位相がずれる。そのため、再び4分の1波長板211を透過した光は、半導体レーザ素子202dの出射光と同じ偏光の光を含む。4分の1波長板211を透過した光は、ハーフミラー208で反射され、検光子212によって半導体レーザ素子202dの出射光と同じ偏光の光だけが透過され、レンズ205により受光素子215dに集光される。 When the distance between the disk 221 and the solid immersion lens 216 is long, the component light having a high numerical aperture NA is totally reflected on the bottom surface of the solid immersion lens 216. The light totally reflected by the bottom surface of the solid immersion lens 216 is transmitted through the lens 207, is reflected by the dichroic mirror 210, and is transmitted through the quarter-wave plate 211 again. Totally reflected light is out of phase with polarized light perpendicular to the reflecting surface and polarized light parallel to the reflecting surface as compared to before total reflection. Therefore, the light transmitted through the quarter-wave plate 211 again includes light having the same polarization as the light emitted from the semiconductor laser element 202d. The light transmitted through the quarter-wave plate 211 is reflected by the half mirror 208, and only the light having the same polarization as that emitted from the semiconductor laser element 202 d is transmitted by the analyzer 212, and condensed by the lens 205 onto the light receiving element 215 d. Is done.
 一方、全反射ではない反射によりソリッドイマージョンレンズ216の底面で反射されて戻ってくる開口数NAの低い成分の光は、反射面に垂直な偏光の光と反射面に平行な偏光の光との位相差が変化しない。そのため、4分の1波長板211を2度透過した光の偏光方向は、半導体レーザ素子202dから出射された光の偏光方向に対して90度傾いた状態になる。その結果、4分の1波長板211を透過した光は、検光子212により遮光される。 On the other hand, light with a component having a low numerical aperture NA, which is reflected by the bottom surface of the solid immersion lens 216 due to reflection that is not total reflection, returns between polarized light perpendicular to the reflecting surface and polarized light parallel to the reflecting surface. The phase difference does not change. Therefore, the polarization direction of the light transmitted through the quarter-wave plate 211 twice is inclined by 90 degrees with respect to the polarization direction of the light emitted from the semiconductor laser element 202d. As a result, the light transmitted through the quarter-wave plate 211 is blocked by the analyzer 212.
 ソリッドイマージョンレンズ216とディスク221との間の距離が、光の波長の半分程度まで近づくと、ソリッドイマージョンレンズ216の底面に発生する近接場光とディスク221とが相互作用する。その結果、開口数NAの高い成分の光がソリッドイマージョンレンズ216の底面で全反射されずにディスク221内に結合する。このため、ソリッドイマージョンレンズ216底面における全反射光の強度は、ソリッドイマージョンレンズ216とディスク221との間の距離が短くなるにつれて弱くなる。前述した構成により、受光素子215dは、ソリッドイマージョンレンズ216の底面にて全反射される光の強度を検出することによってギャップ信号GTを生成し、アクチュエータ218に出力する。アクチュエータ218は、入力されたギャップ信号GTに基づいてギャップ制御を行う。 When the distance between the solid immersion lens 216 and the disk 221 approaches about half of the wavelength of the light, the near-field light generated on the bottom surface of the solid immersion lens 216 and the disk 221 interact. As a result, light having a high numerical aperture NA is coupled into the disk 221 without being totally reflected by the bottom surface of the solid immersion lens 216. For this reason, the intensity of the totally reflected light on the bottom surface of the solid immersion lens 216 becomes weaker as the distance between the solid immersion lens 216 and the disk 221 becomes shorter. With the above-described configuration, the light receiving element 215 d generates a gap signal GT by detecting the intensity of light totally reflected on the bottom surface of the solid immersion lens 216, and outputs the gap signal GT to the actuator 218. The actuator 218 performs gap control based on the input gap signal GT.
 このように、本実施の形態3の光情報装置においては、アクチュエータ218は、複数の共鳴素子(金属アンテナ228b及び228c)をディスク221の表面に垂直な方向に移動させる。このとき、本実施の形態3の光情報装置においては、アクチュエータ218は、複数の共鳴素子(金属アンテナ228b及び228c)とディスク221との間の距離を検出する第2の検出素子(受光素子215d)からの検出信号に応じて、複数の共鳴素子(金属アンテナ228b及び228c)とディスク221との間の距離が一定になるように、複数の共鳴素子(金属アンテナ228b及び228c)をディスク221の表面に垂直な方向に移動させる。 As described above, in the optical information device according to the third embodiment, the actuator 218 moves the plurality of resonance elements ( metal antennas 228b and 228c) in a direction perpendicular to the surface of the disk 221. At this time, in the optical information device according to the third embodiment, the actuator 218 has a second detection element (light receiving element 215d) that detects the distance between the plurality of resonance elements ( metal antennas 228b and 228c) and the disk 221. ), The plurality of resonance elements ( metal antennas 228b and 228c) are placed on the disk 221 so that the distance between the plurality of resonance elements ( metal antennas 228b and 228c) and the disk 221 is constant. Move in a direction perpendicular to the surface.
 続いて、本実施の形態3における光情報装置のトラッキング検出方法および情報の記録又は再生方法について説明する。 Subsequently, a tracking detection method and an information recording or reproducing method of the optical information device according to the third embodiment will be described.
 半導体レーザ素子202a、202b及び202cから出射された光は、レンズ204によりコリメートされ、ハーフミラー209で反射される。ハーフミラー209で反射された光は、ダイクロイックミラー210を透過し、レンズ207とソリッドイマージョンレンズ216とにより集光される。集光された光は、ソリッドイマージョンレンズ216の底面に形成された金属アンテナ228a、228b及び228cに入射し、対応する金属アンテナ228a、228b及び228cにプラズモン共鳴を励起する。励起されたプラズモン共鳴は、それぞれ対応する波長の散乱光を発生する。 The light emitted from the semiconductor laser elements 202a, 202b and 202c is collimated by the lens 204 and reflected by the half mirror 209. The light reflected by the half mirror 209 passes through the dichroic mirror 210 and is collected by the lens 207 and the solid immersion lens 216. The condensed light is incident on metal antennas 228a, 228b, and 228c formed on the bottom surface of the solid immersion lens 216, and excites plasmon resonance in the corresponding metal antennas 228a, 228b, and 228c. Each excited plasmon resonance generates scattered light having a corresponding wavelength.
 散乱光は、ソリッドイマージョンレンズ216とレンズ207とによってコリメートされ、ダイクロイックミラー210を透過する。ダイクロイックミラー210を透過した散乱光は、ハーフミラー209を透過した後、遮光板213を透過する。遮光板213の中央部分は遮光されており、反射された入射光を含む中央部分の光が遮光されることで、周辺部分を形成している散乱光のみが透過する。遮光板213を透過した散乱光は回折格子214により、波長ごとに異なる角度に回折され、レンズ206によって、それぞれに対応する受光素子215a、215b及び215cに集光される。受光素子215a、215b及び215cは、金属アンテナ228a、228b及び228cからの散乱光を検出する。 The scattered light is collimated by the solid immersion lens 216 and the lens 207 and passes through the dichroic mirror 210. The scattered light that has passed through the dichroic mirror 210 passes through the light shielding plate 213 after passing through the half mirror 209. The central portion of the light shielding plate 213 is shielded from light, and only the scattered light forming the peripheral portion is transmitted by shielding the central portion light including the reflected incident light. The scattered light transmitted through the light shielding plate 213 is diffracted by the diffraction grating 214 at different angles for each wavelength, and is condensed by the lens 206 onto the corresponding light receiving elements 215a, 215b, and 215c. The light receiving elements 215a, 215b, and 215c detect scattered light from the metal antennas 228a, 228b, and 228c.
 以上のように、本実施の形態3においては、光源は、それぞれ波長の異なる光を出射する複数の光源(半導体レーザ素子202b及び202c)を含む。また、複数の共鳴素子(金属アンテナ228b及び228c)は、複数の光源(半導体レーザ素子202b及び202c)のそれぞれから出射された光の周波数を共鳴周波数とする形状または材質で形成される。このとき、複数の共鳴素子(金属アンテナ228b及び228c)の各々の共鳴状態の変化を個別に検出して出力する第1の検出素子は、複数の受光素子215b及び215cと、複数の共鳴素子からの周波数の異なる複数の光を分離して、複数の光のそれぞれを対応する複数の受光素子215b及び215cに導く光学素子(回折格子214)とを含む。 As described above, in the third embodiment, the light source includes a plurality of light sources ( semiconductor laser elements 202b and 202c) that emit light having different wavelengths. The plurality of resonance elements ( metal antennas 228b and 228c) are formed in a shape or material having the resonance frequency as the frequency of light emitted from each of the plurality of light sources ( semiconductor laser elements 202b and 202c). At this time, the first detection element that individually detects and outputs the change in the resonance state of each of the plurality of resonance elements ( metal antennas 228b and 228c) includes the plurality of light receiving elements 215b and 215c and the plurality of resonance elements. And an optical element (diffraction grating 214) that separates the plurality of lights having different frequencies and guides each of the plurality of lights to the corresponding light receiving elements 215b and 215c.
 図23(A)は、金属アンテナ228a、228b及び228cのトラックからの距離に対する金属アンテナ228a、228b及び228cからの散乱光強度の変化を示すグラフである。図23(B)は、トラッキング用の受光素子215b及び215cからの検出信号te1及びte2の強度変化を示すグラフである。図23(C)は、オペアンプ111により出力されるトラッキング信号TEの強度変化を示すグラフである。 FIG. 23A is a graph showing changes in scattered light intensity from the metal antennas 228a, 228b and 228c with respect to the distance from the track of the metal antennas 228a, 228b and 228c. FIG. 23B is a graph showing intensity changes of the detection signals te1 and te2 from the tracking light receiving elements 215b and 215c. FIG. 23C is a graph showing a change in intensity of the tracking signal TE output from the operational amplifier 111.
 金属アンテナ228a、228b及び228cからの散乱光強度は、図23(A)に示すように、トラック位置(グルーブ201からの距離がトラッキング周期Tpと一致する位置)で最大となり、トラック(グルーブ201)からの距離がトラッキング周期Tpの半分となる位置で最小となる。受光素子215aの検出信号は再生信号として利用される。 As shown in FIG. 23A, the scattered light intensity from the metal antennas 228a, 228b, and 228c becomes maximum at the track position (position where the distance from the groove 201 coincides with the tracking period Tp), and the track (groove 201). Is the minimum at a position where the distance from is half the tracking period Tp. The detection signal of the light receiving element 215a is used as a reproduction signal.
 受光素子215b及び215cの検出信号te1及びte2は、図23(B)のように変化し、トラッキング信号演算回路として機能するオペアンプ111に入力される。オペアンプ111は、トラックからの距離に対して検出信号te1と検出信号te2との差をトラッキング信号TEとして図23(C)に示すように出力する。このように、トラッキング信号演算回路であるオペアンプ111は、複数の共鳴素子(金属アンテナ228b及び228c)の各々の共鳴状態の変化に基づいてトラッキング信号TEを演算する。 The detection signals te1 and te2 of the light receiving elements 215b and 215c change as shown in FIG. 23B and are input to the operational amplifier 111 that functions as a tracking signal arithmetic circuit. The operational amplifier 111 outputs the difference between the detection signal te1 and the detection signal te2 with respect to the distance from the track as a tracking signal TE as shown in FIG. As described above, the operational amplifier 111 serving as the tracking signal calculation circuit calculates the tracking signal TE based on the change in the resonance state of each of the plurality of resonance elements ( metal antennas 228b and 228c).
 本実施の形態3では、トラッキング用の金属アンテナ228b及び228cは、記録又は再生用の金属アンテナ228aに対してそれぞれトラックに垂直な方向に、トラッキング周期Tpの4分の1だけ離して設置している。そのため、検出信号te1と検出信号te2との差を最大にすることができ、高精度なトラッキング信号TEを得ることができる。 In the third embodiment, the tracking metal antennas 228b and 228c are set apart from the recording or reproduction metal antenna 228a by a quarter of the tracking period Tp in the direction perpendicular to the track. Yes. Therefore, the difference between the detection signal te1 and the detection signal te2 can be maximized, and a highly accurate tracking signal TE can be obtained.
 このように、本実施の形態3では、波長の違いを利用して金属アンテナ228a、228b及び228cの個々の共鳴状態が検出される。このため、光源、第1の検出素子、導波路及び複数の共鳴素子を微小領域に集積化する必要がなく、光情報装置の作製が容易である。 As described above, in the third embodiment, the individual resonance states of the metal antennas 228a, 228b, and 228c are detected using the difference in wavelength. For this reason, it is not necessary to integrate the light source, the first detection element, the waveguide, and the plurality of resonance elements in a minute region, and the production of the optical information device is easy.
 また、本実施の形態3では、金属アンテナ228a、228b及び228cは、ディスク221の表面に対して平行になるように配置し、ディスク221の表面に平行な偏光方向を持つ入射光でプラズモン共鳴を励起する。このため、金属アンテナ228a、228b及び228cをディスク221の表面に対して垂直に保持する必要がなく、作製が容易である。 In the third embodiment, the metal antennas 228a, 228b, and 228c are arranged so as to be parallel to the surface of the disk 221, and plasmon resonance is performed by incident light having a polarization direction parallel to the surface of the disk 221. Excited. For this reason, it is not necessary to hold the metal antennas 228a, 228b, and 228c perpendicular to the surface of the disk 221, and the manufacturing is easy.
 また、本実施の形態3では、ディスク221にグルーブ201が形成されている。このため、微粒子を配列した情報記録媒体と比較して大きなトラッキング信号が得られる。 In the third embodiment, the groove 201 is formed on the disk 221. Therefore, a large tracking signal can be obtained as compared with an information recording medium in which fine particles are arranged.
 さらに、本実施の形態3では、反射光の強度の変化を検出することによりギャップ制御が行われる。このため、従来の光ピックアップに用いられていた技術からの応用が容易であると同時に、リムーバブルな情報記録媒体への応用も可能である。 Furthermore, in the third embodiment, gap control is performed by detecting a change in the intensity of reflected light. For this reason, the application from the technique used in the conventional optical pickup is easy, and at the same time, the application to a removable information recording medium is also possible.
 なお、本実施の形態3では、情報記録媒体としてグルーブを有するディスクを用いているが、グルーブを形成する代わりに実施の形態1及び2で用いた、列状に配置された微粒子を用いても良い。 In the third embodiment, a disk having a groove is used as the information recording medium. However, instead of forming the groove, the fine particles arranged in rows used in the first and second embodiments may be used. good.
 また、本実施の形態3では、金属アンテナの形状は三角平板形状であるが、金属アンテナの形状は上記の例に特に限定されず、例えば三角平板形状以外にも図24~図26に示すような形状であってもよい。金属アンテナの形状は、トラック上でプラズモン共鳴し、トラックからの距離に応じて効率よくプラズモン共鳴状態が変化するものであれば、特に限定されるものではない。 In the third embodiment, the shape of the metal antenna is a triangular plate shape. However, the shape of the metal antenna is not particularly limited to the above example, and for example, as shown in FIGS. It may be a simple shape. The shape of the metal antenna is not particularly limited as long as plasmon resonance occurs on the track and the plasmon resonance state efficiently changes according to the distance from the track.
 図24は、本発明の実施の形態3において、扇板形状である金属アンテナを示す図であり、図25は、本発明の実施の形態3において、ボウタイ形状である金属アンテナを示す図であり、図26は、本発明の実施の形態3において、ナノビーク形状である金属アンテナを示す図である。 FIG. 24 is a diagram showing a fan-shaped metal antenna in Embodiment 3 of the present invention, and FIG. 25 is a diagram showing a bow-tie metal antenna in Embodiment 3 of the present invention. FIG. 26 is a diagram showing a metal antenna having a nanobeak shape in the third embodiment of the present invention.
 図24のように、金属アンテナ117の形状が扇板形状である場合、三角平板形状に比べて底辺部分での寄生光の影響が緩和される。また、図25のように、金属アンテナ117の形状がボウタイ形状である場合、金属アンテナの頂点が向かい合っている部分において、三角平板形状と比べて効率よく近接場光を発生させることができる。また、図26のように、金属アンテナ117の形状がナノビーク形状である場合、三次元的に近接場光を集光させることができ、効率よく近接場光を発生させることができる。 As shown in FIG. 24, when the shape of the metal antenna 117 is a fan shape, the influence of the parasitic light at the bottom side portion is reduced as compared with the triangular plate shape. In addition, as shown in FIG. 25, when the shape of the metal antenna 117 is a bow tie shape, near-field light can be generated more efficiently in the portion where the apexes of the metal antenna face each other than the triangular plate shape. Further, as shown in FIG. 26, when the shape of the metal antenna 117 is a nano-beek shape, the near-field light can be condensed three-dimensionally and the near-field light can be generated efficiently.
 また、本実施の形態3では、記録又は再生用の金属アンテナ228aは、2つのトラッキング用の金属アンテナ228b及び228cのトラックの長手方向の間に配置されているが、本発明は特にこれに限定されず、図27~図29に示すような配置であってもよい。 In the third embodiment, the recording or reproducing metal antenna 228a is disposed between the two tracking metal antennas 228b and 228c in the longitudinal direction of the track. However, the present invention is particularly limited to this. Instead, the arrangement shown in FIGS. 27 to 29 may be used.
 図27は、本発明の実施の形態3においてトラッキング用の金属アンテナを近づけて配置する例を示す図であり、図28は、本発明の実施の形態3において、トラッキング用の金属アンテナの向きを異ならせて配置する例を示す図であり、図29は、本発明の実施の形態3において、記録又は再生用の金属アンテナとトラッキング用の金属アンテナとの向きが互いに直交するように配置する例を示す図である。 FIG. 27 is a diagram showing an example in which the tracking metal antenna is arranged close to the third embodiment of the present invention, and FIG. 28 shows the direction of the tracking metal antenna in the third embodiment of the present invention. FIG. 29 is a diagram showing an example of disposing differently, and FIG. 29 is an example of disposing the recording or reproducing metal antenna and the tracking metal antenna so that the directions thereof are orthogonal to each other in the third embodiment of the present invention. FIG.
 例えば、図27に示すように、記録又は再生用の金属アンテナ228aは独立して配置され、トラッキング用の金属アンテナ228b及び228cが互いに近づくように配置してもよい。図27のような構成では、トラッキング用の金属アンテナ228b及び228cの相対距離が近づくため、トラッキング精度が向上する。 For example, as shown in FIG. 27, the recording or reproducing metal antenna 228a may be arranged independently, and the tracking metal antennas 228b and 228c may be arranged so as to approach each other. In the configuration as shown in FIG. 27, since the relative distance between the tracking metal antennas 228b and 228c is closer, the tracking accuracy is improved.
 また、本実施の形態3では、トラッキング用の金属アンテナ228b及び228cは全て同じ向きに配置されているが、図28に示すように、トラッキング用の金属アンテナ228b及び228cの向きをトラックの長手方向に対して互いに対向させて、トラッキング用の金属アンテナ228b及び228cのトラックの長手方向の互いの頂点の位置が近づくように配置してもよい。図28のような構成では、トラッキング用の金属アンテナ228b及び228cのトラックの長手方向の検出位置が一致しているため、トラッキング精度が向上する。 In the third embodiment, the tracking metal antennas 228b and 228c are all arranged in the same direction. However, as shown in FIG. 28, the tracking metal antennas 228b and 228c are oriented in the longitudinal direction of the track. The tracking metal antennas 228b and 228c may be arranged so that the positions of the vertices in the longitudinal direction of the tracks approach each other. In the configuration shown in FIG. 28, the tracking metal antennas 228b and 228c have the same detection position in the longitudinal direction of the track, so that tracking accuracy is improved.
 また、本実施の形態3では、金属アンテナ228b及び228cの共鳴状態を散乱光の波長の違いを用いて分離しているが、図29に示すように、記録又は再生用の金属アンテナ228aとトラッキング用の金属アンテナ228b及び228cとの向きが互いに直交するように配置してもよい。すなわち、トラッキング用の金属アンテナ228b及び228cが、トラックに垂直な方向に互いに対向するように配置され、記録又は再生用の金属アンテナ228aの散乱光とトラッキング用の金属アンテナ228b及び228cの散乱光とを偏光方向の違いを用いて分離しても良い。図29のような構成を用いれば、波長の異なる光を出射する光源の数を減らすことができる。 In the third embodiment, the resonance states of the metal antennas 228b and 228c are separated using the difference in the wavelength of the scattered light. However, as shown in FIG. 29, the recording or reproducing metal antenna 228a and the tracking are separated. The metal antennas 228b and 228c may be arranged so that their directions are orthogonal to each other. That is, the tracking metal antennas 228b and 228c are arranged so as to face each other in the direction perpendicular to the track, and the scattered light of the recording or reproducing metal antenna 228a and the scattered light of the tracking metal antennas 228b and 228c May be separated using a difference in polarization direction. If the configuration as shown in FIG. 29 is used, the number of light sources that emit light having different wavelengths can be reduced.
 以上、実施の形態1、実施の形態2及び実施の形態3において説明した光情報装置の主な構成を下記に示す。 The main configuration of the optical information apparatus described in the first embodiment, the second embodiment, and the third embodiment is described below.
 実施の形態1、実施の形態2及び実施の形態3において説明した光情報装置は、トラックを有する情報記録媒体に情報を記録又は再生する光情報装置であって、光源と、光源からの光が入射し、情報記録媒体と相互作用し、トラックからの距離に応じて共鳴状態が変化する複数の共鳴素子と、複数の共鳴素子の位置をトラックに垂直な方向にずらして配置し、かつ複数の共鳴素子間の距離を一定に固定して保持する保持素子と、複数の共鳴素子の各々の共鳴状態の変化を個別に検出する第1の検出素子と、第1の検出素子によって検出された共鳴状態の変化に基づいてトラッキング信号を演算するトラッキング信号演算回路と、トラッキング信号演算回路によって演算されたトラッキング信号に応じて保持素子をトラックに垂直な方向に移動させる第1の移動素子と、を備えている。 The optical information device described in the first embodiment, the second embodiment, and the third embodiment is an optical information device that records or reproduces information on an information recording medium having a track, and includes a light source and light from the light source. A plurality of resonant elements that are incident, interact with the information recording medium, and whose resonance states change according to the distance from the track; and positions of the plurality of resonant elements are shifted in a direction perpendicular to the track; A holding element that holds the distance between the resonance elements fixed at a fixed level, a first detection element that individually detects a change in the resonance state of each of the plurality of resonance elements, and a resonance detected by the first detection element A tracking signal calculation circuit that calculates a tracking signal based on a change in state, and a holding element is moved in a direction perpendicular to the track according to the tracking signal calculated by the tracking signal calculation circuit. And a, a first moving element to be.
 以上のように、トラックからの距離に応じて共鳴状態の変化する複数の共鳴素子の位置がトラックに垂直な方向にずらして配置され、かつ複数の共鳴素子間の距離が一定に固定されて保持される。これにより、相互作用により複数の共鳴素子とトラック上の情報記録位置との相対的な位置が変化することがない。このため、トラック位置からの変位にのみ依存した安定かつ高精度なトラッキング信号を得ることができる。さらに、共鳴状態は共鳴素子周辺の光学定数の変化に敏感に反応する。このため、トラック上の情報記録状態が表面形状変化を伴わない情報記録状態であっても安定かつ高精度にトラッキングすることができる。 As described above, the positions of the plurality of resonance elements whose resonance states change according to the distance from the track are shifted in the direction perpendicular to the track, and the distances between the plurality of resonance elements are fixedly held. Is done. As a result, the relative position between the plurality of resonance elements and the information recording position on the track does not change due to the interaction. For this reason, a stable and highly accurate tracking signal depending only on the displacement from the track position can be obtained. Furthermore, the resonance state is sensitive to changes in the optical constants around the resonance element. For this reason, even if the information recording state on the track is an information recording state not accompanied by a change in surface shape, tracking can be performed stably and with high accuracy.
 また、光情報装置は、複数の共鳴素子の共鳴状態の変化が複数の受光素子によって個別に検出され、検出信号の差がトラッキング信号として出力される。これにより、検出信号が共鳴素子周辺の光学定数の変化に敏感に反応し、微小なトラックからの位置ずれに対して変調度の高いトラッキング信号が得られる。このため、安定かつ高精度なトラッキング信号を得ることができる。 Further, in the optical information device, the change in the resonance state of the plurality of resonance elements is individually detected by the plurality of light receiving elements, and the difference between the detection signals is output as a tracking signal. As a result, the detection signal reacts sensitively to changes in the optical constants around the resonant element, and a tracking signal having a high degree of modulation with respect to a positional deviation from a minute track can be obtained. For this reason, a stable and highly accurate tracking signal can be obtained.
 (実施の形態4)
 次に、本発明の実施の形態4における光情報装置について説明する。
(Embodiment 4)
Next, an optical information device according to Embodiment 4 of the present invention will be described.
 図30は、本発明の実施の形態4における光情報装置の構成を示す概略図であり、図31は、本発明の実施の形態4における光情報装置の構成を示す上面図である。図32は、図30に示すスライダの構成を示す斜視図であり、図33は、図30に示すスライダの構成を示す側面図であり、図34は、図30に示すスライダの構成を示す上面図である。図30~図34において、図1~図4、図9~図12と同じ構成要素については同じ符号を用い、説明を省略する。 FIG. 30 is a schematic diagram showing the configuration of the optical information apparatus in the fourth embodiment of the present invention, and FIG. 31 is a top view showing the configuration of the optical information apparatus in the fourth embodiment of the present invention. 32 is a perspective view showing the configuration of the slider shown in FIG. 30, FIG. 33 is a side view showing the configuration of the slider shown in FIG. 30, and FIG. 34 is a top view showing the configuration of the slider shown in FIG. FIG. 30 to 34, the same components as those in FIGS. 1 to 4 and FIGS. 9 to 12 are denoted by the same reference numerals, and description thereof is omitted.
 図30~図34において、光情報装置は、半導体レーザ素子107a,107b,107c、金属アンテナ128a,128b,128c、導波路129a,129b,129c、受光素子120a,120b,120c、モータ103、エアスライダ132、スライダ141、サスペンション142、モータ143、ピエゾ素子144a,144b、ヨーイング信号演算回路151及びトラッキング信号演算回路161を備える。 30 to 34, the optical information device includes semiconductor laser elements 107a, 107b, 107c, metal antennas 128a, 128b, 128c, waveguides 129a, 129b, 129c, light receiving elements 120a, 120b, 120c, a motor 103, an air slider. 132, a slider 141, a suspension 142, a motor 143, piezo elements 144a and 144b, a yawing signal calculation circuit 151, and a tracking signal calculation circuit 161.
 図30及び図31において、トラック状に並んだ微粒子102を有するディスク101がモータ103に固定されて保持されている。 30 and 31, a disk 101 having fine particles 102 arranged in a track shape is fixed and held by a motor 103.
 また、保持素子としてのスライダ141は、共鳴素子としての金属アンテナ128a、128b及び128cの位置をトラック112に垂直な方向にずらして配置し、金属アンテナ128a、128b及び128c間の距離を一定に固定して保持する。 The slider 141 as a holding element is arranged by shifting the positions of the metal antennas 128a, 128b and 128c as resonance elements in the direction perpendicular to the track 112, and the distance between the metal antennas 128a, 128b and 128c is fixed. And hold.
 共鳴素子である金属アンテナ128a、128b及び128cは、半導体レーザ素子107b及び107cからの光が入射し、ディスク101と相互作用し、トラック112からの距離に応じて、共鳴状態が変化する。実施の形態4における金属アンテナ128a、128b及び128cは、実施の形態1における金属アンテナ108a、108b及び108cと同様に、例えば金、銀、銅、チタン、アルミ又はクロムなどの材料で構成される。また、金属アンテナ128a、128b及び128cの形状は、三角平板形状である。金属アンテナ128a、128b及び128cは、三角形の1つの頂点が微粒子102の表面に最も近接するように配置され、プラズモン共鳴が励起されることにより三角形の頂点近傍に強い近接場光が発生する。また、実施の形態1における金属アンテナ108a、108b及び108cと同様に、実施の形態4における金属アンテナ128a、128b及び128cと微粒子102の表面との距離は数十nm以下であることが好ましく、数nmであることがより好ましい。 Metal antennas 128a, 128b, and 128c, which are resonance elements, receive light from semiconductor laser elements 107b and 107c, interact with disk 101, and the resonance state changes according to the distance from track 112. Similarly to the metal antennas 108a, 108b, and 108c in the first embodiment, the metal antennas 128a, 128b, and 128c in the fourth embodiment are made of a material such as gold, silver, copper, titanium, aluminum, or chromium. The metal antennas 128a, 128b, and 128c are triangular flat plate shapes. The metal antennas 128a, 128b, and 128c are arranged so that one vertex of the triangle is closest to the surface of the fine particle 102, and strong near-field light is generated near the vertex of the triangle when plasmon resonance is excited. Similarly to the metal antennas 108a, 108b, and 108c in the first embodiment, the distance between the metal antennas 128a, 128b, and 128c in the fourth embodiment and the surface of the fine particles 102 is preferably several tens of nm or less. More preferably, it is nm.
 なお、図32~図34の例では、金属アンテナ128aと金属アンテナ128bとの間の距離P1は、金属アンテナ128aと金属アンテナ128cとの間の距離P2よりも大きくなっている。 In the example of FIGS. 32 to 34, the distance P1 between the metal antenna 128a and the metal antenna 128b is larger than the distance P2 between the metal antenna 128a and the metal antenna 128c.
 実施の形態2で述べたように、金属アンテナ128a、128b及び128cは微粒子102と相互作用し、一体となってプラズモン共鳴する。金属アンテナ128a、128b及び128cと微粒子102との共鳴状態は、金属アンテナ128a、128b及び128c及び微粒子102の設計によって変化する。このため、設計次第で、プラズモン共鳴により金属アンテナ128a、128b及び128cからの反射光強度が増加する場合もあれば、プラズモン共鳴により金属アンテナ128a、128b及び128cからの反射光強度が減少する場合もある。本実施の形態4では、金属アンテナ128a、128b及び128cからの反射光強度が微粒子102との共鳴により減少する場合を一例として示している。 As described in the second embodiment, the metal antennas 128a, 128b, and 128c interact with the microparticles 102 and plasmon resonate together. The resonance state between the metal antennas 128a, 128b, and 128c and the fine particles 102 varies depending on the design of the metal antennas 128a, 128b, and 128c and the fine particles 102. For this reason, depending on the design, the reflected light intensity from the metal antennas 128a, 128b, and 128c may increase due to plasmon resonance, or the reflected light intensity from the metal antennas 128a, 128b, and 128c may decrease due to plasmon resonance. is there. In the fourth embodiment, the case where the reflected light intensity from the metal antennas 128a, 128b, and 128c decreases due to resonance with the fine particles 102 is shown as an example.
 プラズモン共鳴の共鳴状態は、金属アンテナ128a、128b及び128cと微粒子102との距離に敏感に反応する。このため、金属アンテナ128a、128b及び128cからの反射光強度は、実施の形態2の図13(A)に示すように、トラック位置(トラック112からの距離がトラッキング周期Tpと一致する位置)で最小となり、トラック112からの距離がトラッキング周期Tpの半分となる位置で最大となる。 The resonance state of plasmon resonance reacts sensitively to the distance between the metal antennas 128a, 128b and 128c and the fine particles 102. Therefore, the reflected light intensity from the metal antennas 128a, 128b, and 128c is the track position (position where the distance from the track 112 coincides with the tracking period Tp) as shown in FIG. 13A of the second embodiment. It becomes the minimum and becomes the maximum at the position where the distance from the track 112 becomes half of the tracking period Tp.
 エアスライダ132は、金属アンテナ128a、128b及び128cをディスク101の表面に垂直な方向に移動させる。サスペンション142は、ばね素子で構成される。スライダ141とエアスライダ132とは、サスペンション142によってディスク101に対向して保持されている。ハードディスクドライブに採用されるフライングヘッドと同様の技術を用いてスライダ141とディスク101との距離が一定になるように保たれている。 The air slider 132 moves the metal antennas 128a, 128b, and 128c in a direction perpendicular to the surface of the disk 101. The suspension 142 is composed of a spring element. The slider 141 and the air slider 132 are held facing the disk 101 by a suspension 142. The distance between the slider 141 and the disk 101 is kept constant by using a technique similar to that of a flying head employed in a hard disk drive.
 以上のように、本実施の形態4の光情報装置においては、複数の共鳴素子を情報記録媒体の表面に垂直な方向に移動させる第2の移動素子は、サスペンション125(ばね素子)を含んでいる。このとき、サスペンション125は、スライダ104及びエアスライダ132とディスク101との間を流れる気流の力により、ディスク101とスライダ104及びエアスライダ132との間の距離を一定に保持する。 As described above, in the optical information device according to the fourth embodiment, the second moving element that moves the plurality of resonant elements in the direction perpendicular to the surface of the information recording medium includes the suspension 125 (spring element). Yes. At this time, the suspension 125 keeps the distance between the disk 101, the slider 104, and the air slider 132 constant by the force of the airflow flowing between the slider 104 and the air slider 132 and the disk 101.
 サスペンション142は、モータ143によって回転される。これにより、第1の移動素子であるモータ143は、トラッキング信号に応じて保持素子(スライダ141)をトラック112に垂直な方向に移動させる。ディスク101が回転されることにより、スライダ141は、ディスク101上を走査する。 The suspension 142 is rotated by a motor 143. As a result, the motor 143 as the first moving element moves the holding element (slider 141) in a direction perpendicular to the track 112 in accordance with the tracking signal. As the disk 101 is rotated, the slider 141 scans the disk 101.
 ヨーイング信号演算回路151は、受光素子120b及び120cによって検出された共鳴状態の変化に基づいて、ディスク101の表面に平行な面内におけるスライダ141の傾きを表すヨーイング信号を演算する。ヨーイング信号演算回路151は、金属アンテナ128b及び128cの共鳴状態の変化を表す検出信号te1及びte2に基づいてヨーイング信号を生成する。 The yawing signal calculation circuit 151 calculates a yawing signal that represents the inclination of the slider 141 in a plane parallel to the surface of the disk 101 based on the change in the resonance state detected by the light receiving elements 120b and 120c. The yawing signal calculation circuit 151 generates a yawing signal based on the detection signals te1 and te2 representing changes in the resonance state of the metal antennas 128b and 128c.
 ピエゾ素子144a及び144bは、サスペンション142に組み込まれている。ピエゾ素子144a及び144bは、互いに逆位相に伸縮してスライダ141をディスク101の表面に平行な面内で回転させる。回転素子であるピエゾ素子144a及び144bは、ヨーイング信号に応じてスライダ141をディスク101の表面に平行な面内で回転させ、金属アンテナ128b及び128cのトラックに垂直な方向の相対距離を一定に保つ。 The piezo elements 144a and 144b are incorporated in the suspension 142. The piezo elements 144 a and 144 b expand and contract in opposite phases to rotate the slider 141 in a plane parallel to the surface of the disk 101. Piezo elements 144a and 144b, which are rotating elements, rotate the slider 141 in a plane parallel to the surface of the disk 101 according to the yawing signal, and keep the relative distance in the direction perpendicular to the tracks of the metal antennas 128b and 128c constant. .
 すなわち、ピエゾ素子144a及び144bは、金属アンテナ128bからトラックの中心を通る線へ下ろした垂線の長さと、金属アンテナ128cからトラックの中心を通る線へ下ろした垂線の長さとの和が一定となるように、スライダ141をディスク101の表面に平行な面内で回転させる。 That is, in the piezo elements 144a and 144b, the sum of the length of the perpendicular line extending from the metal antenna 128b to the line passing through the center of the track and the length of the perpendicular line extending from the metal antenna 128c to the line passing through the center of the track is constant. As described above, the slider 141 is rotated in a plane parallel to the surface of the disk 101.
 トラッキング信号演算回路161は、複数の検出信号に基づいて、金属アンテナ128bからトラックのトラックからの位置ずれを補正するための補正値を演算し、演算した補正値に基づいて補正した複数の検出信号の差をトラッキング信号として演算する。トラッキング信号演算回路161は、金属アンテナ128a、128b及び128cの共鳴状態の変化を表す検出信号te0、te1及びte2に基づいてトラッキング信号を生成する。モータ143は、トラッキング信号に応じてスライダ141をトラック112に垂直な方向に移動させる。 The tracking signal calculation circuit 161 calculates a correction value for correcting the positional deviation of the track from the track from the metal antenna 128b based on the plurality of detection signals, and the plurality of detection signals corrected based on the calculated correction value. Is calculated as a tracking signal. The tracking signal calculation circuit 161 generates a tracking signal based on the detection signals te0, te1, and te2 representing changes in the resonance state of the metal antennas 128a, 128b, and 128c. The motor 143 moves the slider 141 in a direction perpendicular to the track 112 in accordance with the tracking signal.
 図32~図34において、スライダ141は、トラックの長手方向の端面にトラック112に垂直な方向に階段状の段差を有する。本実施の形態4では、階段状の端面は、トラックの長手方向に位置の異なる3つの面を有する。 32 to 34, the slider 141 has a stepped step in the direction perpendicular to the track 112 on the end face in the longitudinal direction of the track. In the fourth embodiment, the step-like end face has three faces whose positions are different in the longitudinal direction of the track.
 導波路129a、129b及び129cは、半導体レーザ素子107a、107b及び107cからの光を金属アンテナ128a、128b及び128cに個別に導く。また、導波路129a、129b及び129cは、金属アンテナ128a、128b及び128cからの反射光を受光素子120a、120b及び120cに個別に導く。受光素子120a、120b及び120cは、半導体レーザ素子107a、107b及び107cの近傍にそれぞれ配置されている。 The waveguides 129a, 129b and 129c individually guide light from the semiconductor laser elements 107a, 107b and 107c to the metal antennas 128a, 128b and 128c. The waveguides 129a, 129b and 129c individually guide the reflected light from the metal antennas 128a, 128b and 128c to the light receiving elements 120a, 120b and 120c. The light receiving elements 120a, 120b and 120c are arranged in the vicinity of the semiconductor laser elements 107a, 107b and 107c, respectively.
 また、受光素子120a、120b及び120cは、金属アンテナ128a、128b及び128cの各々の共鳴状態の変化を個別に検出する。受光素子120a、120b及び120cは、複数の導波路129a、129b及び129cにそれぞれ1つずつ取り付けられており、金属アンテナ128a、128b及び128cからの反射光をそれぞれ個別に検出する。 The light receiving elements 120a, 120b, and 120c individually detect changes in the resonance states of the metal antennas 128a, 128b, and 128c. Each of the light receiving elements 120a, 120b, and 120c is attached to each of the plurality of waveguides 129a, 129b, and 129c, and individually detects the reflected light from the metal antennas 128a, 128b, and 128c.
 以上のように、本実施の形態4の光情報装置においては、複数の共鳴素子の各々の共鳴状態の変化を個別に検出して出力する第1の検出素子は、複数の受光素子120a、120b及び120cを含み、光情報装置は、複数の共鳴素子からの光を複数の受光素子に導く複数の導波路129a、129b及び129cを備える。 As described above, in the optical information device according to the fourth embodiment, the first detection elements that individually detect and output changes in the resonance states of the plurality of resonance elements are the plurality of light receiving elements 120a and 120b. The optical information device includes a plurality of waveguides 129a, 129b, and 129c that guide light from the plurality of resonance elements to the plurality of light receiving elements.
 スライダ141の階段状の端面には、それぞれ1つずつ合計3つの金属アンテナ128a、128b及び128cが固定されている。複数の導波路129a、129b及び129cにより導かれた半導体レーザ素子107a、107b及び107cからの光によりプラズモン共鳴が励起される。 A total of three metal antennas 128a, 128b, and 128c are fixed to the stepped end face of the slider 141, one each. Plasmon resonance is excited by light from the semiconductor laser elements 107a, 107b, and 107c guided by the plurality of waveguides 129a, 129b, and 129c.
 なお、2つの金属粒子間の相互作用は、金属粒子間の距離が数十nm以下であるときに顕著に現れる(Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,L.Gunnarsson et.al.,J.Phys.Chem.B,2005,109,1079-1087)。そのため、金属アンテナ128aと金属アンテナ128bとの間のトラックの長手方向の段差及び金属アンテナ128aと金属アンテナ128cとの間のトラックの長手方向の段差の大きさLは、数十nm以上とする。これにより、金属アンテナ128a、128b及び128c間での相互作用を抑制することができ、金属アンテナ128a、128b及び128cの形状の自由度が高くなる。 In addition, the interaction between two metal particles appears prominently when the distance between the metal particles is several tens of nanometers or less (Confined plasmas in nanofabricated partialspars: experiential severinstrands. Al., J. Phys. Chem. B, 2005, 109, 1079-1087). Therefore, the length L in the longitudinal direction of the track between the metal antenna 128a and the metal antenna 128b and the length L in the longitudinal direction of the track between the metal antenna 128a and the metal antenna 128c are set to several tens of nm or more. Thereby, the interaction between the metal antennas 128a, 128b and 128c can be suppressed, and the degree of freedom of the shape of the metal antennas 128a, 128b and 128c is increased.
 一方、トラッキング用の金属アンテナ128b及び128cは、記録又は再生用の金属アンテナ128aを中心にして、トラックに垂直な方向に配置される。金属アンテナ128b及び128cは、金属アンテナ128aからトラック112に垂直な方向にそれぞれ任意の距離P1及びP2だけ離れた位置に配置される。 On the other hand, the tracking metal antennas 128b and 128c are arranged in a direction perpendicular to the track with the recording or reproduction metal antenna 128a as the center. The metal antennas 128b and 128c are arranged at positions separated from the metal antenna 128a by arbitrary distances P1 and P2 in a direction perpendicular to the track 112, respectively.
 図35は、図30に示すヨーイング信号演算回路151の構成を示す図である。ヨーイング信号演算回路151は、位相比較回路152、第1の制御回路153、第1のサンプリングホールド回路154a、第2のサンプリングホールド回路154b、第1の加算回路155a、第2の加算回路155b、差分回路156、第2の制御回路157及びスイッチ158を備える。 FIG. 35 is a diagram showing the configuration of the yawing signal calculation circuit 151 shown in FIG. The yawing signal operation circuit 151 includes a phase comparison circuit 152, a first control circuit 153, a first sampling hold circuit 154a, a second sampling hold circuit 154b, a first addition circuit 155a, a second addition circuit 155b, and a difference. A circuit 156, a second control circuit 157, and a switch 158 are provided.
 なお、図35では、金属アンテナ128aの先端位置171aがトラックの中心上にある場合の金属アンテナ128bの先端位置171b及び金属アンテナ128cの先端位置171cの位置ずれを示している。また、図35では、金属アンテナ128bの先端位置171b及び金属アンテナ128cの先端位置171cから検出信号te1及びte2が出力されているように記載しているが、実際には、検出信号te1及びte2は、受光素子120b及び120cから出力される。 Note that FIG. 35 shows a positional shift between the tip position 171b of the metal antenna 128b and the tip position 171c of the metal antenna 128c when the tip position 171a of the metal antenna 128a is on the center of the track. In FIG. 35, the detection signals te1 and te2 are described as being output from the tip position 171b of the metal antenna 128b and the tip position 171c of the metal antenna 128c. Are output from the light receiving elements 120b and 120c.
 位相比較回路152は、検出信号te1及びte2の位相を比較し、検出信号te1及びte2の位相差を第1のヨーイング信号YE1として出力する。第1の制御回路153は、第1のヨーイング信号YE1がπラジアンとなるようにピエゾ素子144a及び144bを駆動する信号を出力する。 The phase comparison circuit 152 compares the phases of the detection signals te1 and te2, and outputs the phase difference between the detection signals te1 and te2 as the first yawing signal YE1. The first control circuit 153 outputs a signal for driving the piezo elements 144a and 144b so that the first yawing signal YE1 becomes π radians.
 第1のサンプリングホールド回路154aは、ヨーイング信号YE1がπラジアンとなった際の検出信号te1の値を初期値te1として記憶して出力する。また、第2のサンプリングホールド回路154bは、ヨーイング信号YE1がπラジアンとなった際の検出信号te2の値を初期値te2として記憶して出力する。 The first sample and hold circuit 154a stores and outputs the value of the detection signal te1 when yawing signal YE1 becomes π radians as an initial value te1 0. The second sample and hold circuit 154b, and outputs the stored value of the detection signal te2 when yawing signal YE1 becomes π radians as an initial value te2 0.
 第1の加算回路155aは、初期値te1と初期値te2との和を算出して出力する。第2の加算回路155bは、検出信号te1と検出信号te2との和を算出して出力する。差分回路156は、検出信号te1と検出信号te2との加算値(te1+te2)から、初期値te1と初期値te2との加算値(te1+te2)を減算し、ヨーイング信号YE2として出力する。 The first addition circuit 155a calculates and outputs the sum of the initial value te1 0 and the initial value te2 0 . The second addition circuit 155b calculates and outputs the sum of the detection signal te1 and the detection signal te2. The difference circuit 156 subtracts the addition value (te1 0 + te2 0 ) of the initial value te1 0 and the initial value te2 0 from the addition value (te1 + te2) of the detection signal te1 and the detection signal te2, and outputs the result as the yawing signal YE2. .
 第2の制御回路157は、金属アンテナ128b及び128cの間のトラックに垂直な方向の距離がトラッキング周期Tpの半分に保たれるように、ヨーイング信号YE2に応じてピエゾ素子144a及び144bを駆動する駆動信号を出力する。 The second control circuit 157 drives the piezo elements 144a and 144b according to the yawing signal YE2 so that the distance in the direction perpendicular to the track between the metal antennas 128b and 128c is maintained at half of the tracking period Tp. A drive signal is output.
 スイッチ158は、ピエゾ素子144a,144bとの接続先を、第1の制御回路153と、第2の制御回路157とのいずれかに切り替える。 The switch 158 switches the connection destination of the piezo elements 144a and 144b to either the first control circuit 153 or the second control circuit 157.
 次に、ヨーイング信号を用いた制御シーケンスを説明する。ヨーイング信号を用いた制御シーケンスは、ヨーイング信号YE1を用いて金属アンテナ128a及び128bの間のトラックに垂直な方向の距離がトラッキング周期Tpの半分になるように、スライダ141の傾きを調節する第1のステップと、ヨーイング信号YE2を用いて金属アンテナ128a及び128bの間のトラックに垂直な方向の距離がトラッキング周期Tpの半分になるように、スライダ141の傾きを保つ第2のステップとを含む。 Next, the control sequence using the yawing signal will be described. The control sequence using the yawing signal is a first control that uses the yawing signal YE1 to adjust the inclination of the slider 141 so that the distance between the metal antennas 128a and 128b in the direction perpendicular to the track is half the tracking period Tp. And a second step of maintaining the tilt of the slider 141 so that the distance in the direction perpendicular to the track between the metal antennas 128a and 128b becomes half the tracking period Tp using the yawing signal YE2.
 第1のステップにおいて、まず、モータ143は、スライダ141をトラックに垂直な方向に微少量走査させる。金属アンテナ128b及び128cの共鳴強度に対応した検出信号te1及びte2は、図13(A)に示すように、トラック112からの距離に対して周期的に変化する。検出信号te1及びte2は、位相比較回路152に入力される。位相比較回路152は、検出信号te1の位相と検出信号te2の位相とを比較し、2つの検出信号の位相差をヨーイング信号YE1として出力する。 In the first step, first, the motor 143 scans the slider 141 in a small amount in the direction perpendicular to the track. The detection signals te1 and te2 corresponding to the resonance intensities of the metal antennas 128b and 128c periodically change with respect to the distance from the track 112, as shown in FIG. The detection signals te1 and te2 are input to the phase comparison circuit 152. The phase comparison circuit 152 compares the phase of the detection signal te1 with the phase of the detection signal te2, and outputs the phase difference between the two detection signals as the yawing signal YE1.
 第1の制御回路153は、位相比較回路152から出力されるヨーイング信号YE1がπラジアンとなるように、ピエゾ素子144a及び144bを駆動する駆動信号を出力する。このとき、スイッチ158は、第1の制御回路153と、ピエゾ素子144a及び144bとを接続する。2つの検出信号の位相差がπラジアンとなっているとき、金属アンテナ128b及び128cのトラックに垂直な方向の距離は、トラッキング周期Tpの半分となる。 The first control circuit 153 outputs a drive signal for driving the piezo elements 144a and 144b so that the yawing signal YE1 output from the phase comparison circuit 152 becomes π radians. At this time, the switch 158 connects the first control circuit 153 and the piezo elements 144a and 144b. When the phase difference between the two detection signals is π radians, the distance in the direction perpendicular to the tracks of the metal antennas 128b and 128c is half of the tracking period Tp.
 金属アンテナ128b及び128cの間のトラックに垂直な方向の距離がトラッキング周期Tpの半分になるように、スライダ141の傾きを調整した後、モータ143は、スライダ141のトラックに垂直な方向への走査を終了する。第1のサンプリングホールド回路154aは、ヨーイング信号YE1がπラジアンとなった際の検出信号te1の値をサンプリングし、初期値te1として記憶する。また、第2のサンプリングホールド回路154bは、ヨーイング信号YE1がπラジアンとなった際の検出信号te2の値をサンプリングし、初期値te2として記憶する。 After adjusting the tilt of the slider 141 so that the distance in the direction perpendicular to the track between the metal antennas 128b and 128c is half of the tracking period Tp, the motor 143 scans in the direction perpendicular to the track of the slider 141. Exit. The first sample and hold circuit 154a samples the value of the detection signal te1 when yawing signal YE1 becomes π radians, is stored as an initial value te1 0. The second sample and hold circuit 154b samples the value of the detection signal te2 when yawing signal YE1 becomes π radians, is stored as an initial value te2 0.
 続いて、第2のステップにおいて、まず、第1のサンプリングホールド回路154aは、検出信号te1の初期値te1を出力し、第2のサンプリングホールド回路154bは、検出信号te2の初期値te2を出力する。第1の加算回路155aは、初期値te1と初期値te2とを加算する。第1の加算回路155aは、基準値として常に2つの初期値te1及びte2の和(te1+te2)を出力する。 Subsequently, in a second step, firstly, the first sample and hold circuit 154a outputs an initial value te1 0 of the detection signal te1, the second sample and hold circuit 154b sets the initial value te2 0 of the detection signal te2 Output. The first addition circuit 155a adds the initial value te1 0 and the initial value te2 0 . The first addition circuit 155a always outputs the sum (te1 0 + te2 0 ) of two initial values te1 0 and te2 0 as a reference value.
 一方、第2の加算回路155bは、検出信号te1と検出信号te2とを加算する。第2の加算回路155bは、検出信号te1及びte2の和(te1+te2)を出力する。差分回路156は、検出信号te1と検出信号te2との加算値から、初期値te1と初期値te2との加算値を減算し、ヨーイング信号YE2(YE2=(te1+te2)-(te1+te2))として出力する。ヨーイング信号YE2は、検出信号te1及びte2の和の初期値からの変化量を示す。 On the other hand, the second addition circuit 155b adds the detection signal te1 and the detection signal te2. The second addition circuit 155b outputs the sum (te1 + te2) of the detection signals te1 and te2. The difference circuit 156 subtracts the addition value of the initial value te1 0 and the initial value te2 0 from the addition value of the detection signal te1 and the detection signal te2, and the yawing signal YE2 (YE2 = (te1 + te2) − (te1 0 + te2 0). )). The yawing signal YE2 indicates the amount of change from the initial value of the sum of the detection signals te1 and te2.
 第2の制御回路157は、金属アンテナ128b及び128cの間のトラック112に垂直な方向の距離がトラッキング周期Tpの半分に保たれるように、ヨーイング信号YE2に応じてピエゾ素子144a及び144bを駆動する駆動信号を出力する。このとき、スイッチ158は、第2の制御回路157と、ピエゾ素子144a及び144bとを接続する。 The second control circuit 157 drives the piezo elements 144a and 144b according to the yawing signal YE2 so that the distance in the direction perpendicular to the track 112 between the metal antennas 128b and 128c is maintained at half of the tracking period Tp. Drive signal to output. At this time, the switch 158 connects the second control circuit 157 and the piezo elements 144a and 144b.
 次に、ヨーイング信号YE2の生成原理について、金属アンテナ128bとトラック中心との間のトラックに垂直な方向の距離P1と、金属アンテナ128cとトラック中心との間のトラックに垂直な方向の距離P2とが、ともにトラッキング周期Tpの1/4となる(P1=P2=Tp/4)場合について、図36~図39を用いて説明する。 Next, regarding the generation principle of the yawing signal YE2, the distance P1 in the direction perpendicular to the track between the metal antenna 128b and the track center, and the distance P2 in the direction perpendicular to the track between the metal antenna 128c and the track center, However, the case where both are 1/4 of the tracking period Tp (P1 = P2 = Tp / 4) will be described with reference to FIGS.
 図36は、P1=P2=Tp/4の場合におけるトラック角度変化について説明するための概念図である。図36に示すように、ディスク101の偏心又はモータ143とサスペンション142とを用いたトラックに垂直な方向への移動によりトラック角度が変化すると、金属アンテナ128a、128b及び128cのトラックに垂直な方向の距離が変化する。すなわち、金属アンテナ128aの先端位置171aを中心にしてトラックが反時計回りに傾くことにより、金属アンテナ128bの先端位置171bとトラック中心との間の距離P1は、大きくなり、金属アンテナ128cの先端位置171cとトラック中心との間の距離P2は、大きくなる。 FIG. 36 is a conceptual diagram for explaining the track angle change in the case of P1 = P2 = Tp / 4. As shown in FIG. 36, when the track angle changes due to the eccentricity of the disk 101 or the movement in the direction perpendicular to the track using the motor 143 and the suspension 142, the direction perpendicular to the track of the metal antennas 128a, 128b and 128c. The distance changes. That is, when the track is tilted counterclockwise about the tip position 171a of the metal antenna 128a, the distance P1 between the tip position 171b of the metal antenna 128b and the track center is increased, and the tip position of the metal antenna 128c is increased. The distance P2 between 171c and the track center is increased.
 図37は、P1=P2=Tp/4の場合におけるトラックからの位置ずれに対する検出信号te1及びte2の強度変化を示す図である。それぞれの検出信号te1及びte2の初期値はte1及びte2である。トラックの角度に変化がない場合には、検出信号te1及び検出信号te2のトラック位置ずれに対する位相差がπラジアンであるため、2つの検出信号の和(te1+te2)はトラックからの位置ずれによらず一定値(te1+te2)となる。このため、トラックからの位置ずれに関わらずヨーイング信号YE2の基準値として、初期値te1及びte2の和(te1+te2)を用いることができる。 FIG. 37 is a diagram showing intensity changes of the detection signals te1 and te2 with respect to the positional deviation from the track in the case of P1 = P2 = Tp / 4. The initial values of the detection signals te1 and te2 are te1 0 and te2 0 , respectively. When there is no change in the track angle, the phase difference of the detection signal te1 and the detection signal te2 with respect to the track position shift is π radians. It becomes a constant value (te1 0 + te2 0 ). For this reason, the sum (te1 0 + te2 0 ) of the initial values te1 0 and te2 0 can be used as the reference value of the yawing signal YE2 regardless of the positional deviation from the track.
 図38は、P1=P2=Tp/4の場合におけるトラック中心と金属アンテナ128b及び128cの先端との距離に対する検出信号te1及びte2の強度変化を示す図である。トラックにずれがない状態では、P1=P2=Tp/4であるため、検出信号te1及びte2の強度は、白丸印で表される値となる。 FIG. 38 is a diagram showing changes in the intensity of the detection signals te1 and te2 with respect to the distance between the track center and the tips of the metal antennas 128b and 128c when P1 = P2 = Tp / 4. In a state where there is no deviation in the track, since P1 = P2 = Tp / 4, the intensities of the detection signals te1 and te2 are values represented by white circles.
 トラックが時計回り(cw)に回転した場合は、金属アンテナ128b及び128cは共にトラック中心に近づき、検出信号te1及びte2の強度は、図38中のcw方向へシフトして、白四角印で表される値となる。このため、時計回りにトラックの角度が変化した場合には、検出信号te1及びte2は共に減少する。 When the track is rotated clockwise (cw), both the metal antennas 128b and 128c approach the track center, and the intensity of the detection signals te1 and te2 is shifted in the cw direction in FIG. It becomes the value to be. For this reason, when the track angle changes clockwise, the detection signals te1 and te2 both decrease.
 逆に、トラックが反時計回り(ccw)に回転した場合は、金属アンテナ128b及び128cは共にトラック中心から遠ざかり、検出信号te1及びte2の強度は、図38中のccw方向へシフトして、白三角印で表される値となる。このため、反時計回り(ccw)にトラックの角度が変化した場合には、検出信号te1及びte2は共に増加する。 Conversely, when the track rotates counterclockwise (ccw), both the metal antennas 128b and 128c move away from the track center, and the intensity of the detection signals te1 and te2 shifts in the ccw direction in FIG. The value is represented by a triangle. For this reason, when the track angle changes counterclockwise (ccw), both the detection signals te1 and te2 increase.
 図39は、P1=P2=Tp/4の場合におけるトラック角度変化に対する検出信号te1及びte2の初期値te1及びte2からの変化量とヨーイング信号YE2(YE2=(te1+te2)-(te1+te2))の変化とを示す図である。 Figure 39 is, P1 = P2 = Tp / 4 of variation and yawing signal from the initial value te1 0 and te2 0 of the detection signal te1 and te2 for the track angle changes when YE2 (YE2 = (te1 + te2 ) - (te1 0 + te2 It is a figure which shows the change of 0 )).
 ヨーイング信号YE2は、原点でゼロクロスする誤差信号となっている。また、基準値として用いる初期値te1及びte2の和(te1+te2)は、トラックからの位置ずれに対して変化しない。そのため、トラックから外れた状態であってもヨーイング信号YE2を生成することができる。ヨーイング信号YE2に基づいて、スライダ141の傾きが制御されることで、金属アンテナ128b及び128c間のトラックに垂直な方向の距離は、トラッキング周期Tpの半分に保つことができる。 The yawing signal YE2 is an error signal that zero-crosses at the origin. Further, the sum (te1 0 + te2 0 ) of the initial values te1 0 and te2 0 used as the reference value does not change with respect to the positional deviation from the track. For this reason, the yawing signal YE2 can be generated even when the track is off the track. By controlling the tilt of the slider 141 based on the yawing signal YE2, the distance in the direction perpendicular to the track between the metal antennas 128b and 128c can be maintained at half the tracking period Tp.
 次に、ヨーイング信号YE2の生成原理について、金属アンテナ128bとトラック中心との間のトラックに垂直な方向の距離P1と、金属アンテナ128cとトラック中心との間のトラックに垂直な方向の距離P2とが異なる(P1≠P2)場合について、図40~図44を用いて説明する。 Next, regarding the generation principle of the yawing signal YE2, the distance P1 in the direction perpendicular to the track between the metal antenna 128b and the track center, and the distance P2 in the direction perpendicular to the track between the metal antenna 128c and the track center, Are different (P1 ≠ P2) will be described with reference to FIGS.
 図40は、P1≠P2の場合におけるトラック角度変化について説明するための概念図である。3つの金属アンテナ128a、128b及び128cが正確に一直線に並んでいない場合、図40に示すようなアンバランスな配置になりえる。図40に示すように、ディスク101の偏心又はモータ143とサスペンション142とを用いたトラックに垂直な方向への移動によりトラック角度が変化すると、金属アンテナ128a、128b及び128cのトラックに垂直な方向の距離が変化する。すなわち、金属アンテナ128aの先端位置171aを中心にしてトラックが反時計回りに傾くことにより、金属アンテナ128bの先端位置171bとトラック中心との間の距離P1は、大きくなり、金属アンテナ128cの先端位置171cとトラック中心との間の距離P2は、大きくなる。 FIG. 40 is a conceptual diagram for explaining the track angle change in the case of P1 ≠ P2. If the three metal antennas 128a, 128b, and 128c are not accurately aligned, an unbalanced arrangement as shown in FIG. 40 can be obtained. As shown in FIG. 40, when the track angle changes due to the eccentricity of the disk 101 or the movement in the direction perpendicular to the track using the motor 143 and the suspension 142, the direction perpendicular to the track of the metal antennas 128a, 128b and 128c. The distance changes. That is, when the track is tilted counterclockwise about the tip position 171a of the metal antenna 128a, the distance P1 between the tip position 171b of the metal antenna 128b and the track center is increased, and the tip position of the metal antenna 128c is increased. The distance P2 between 171c and the track center is increased.
 図41は、P1≠P2の場合におけるトラックからの位置ずれに対する検出信号te1及びte2の強度変化を示す図である。それぞれの検出信号te1及びte2の初期値はte1とte2である。トラックの角度に変化がない場合には、検出信号te1及び検出信号te2のトラック位置ずれに対する位相差がπラジアンであるため、2つの検出信号の平均((te1+te2)/2)はトラックからの位置ずれによらず一定値((te1+te2)/2)となる。このため、トラックからの位置ずれに関わらずヨーイング信号YE2の基準値として、初期値te1及びte2の和(te1+te2)を用いることができる。 FIG. 41 is a diagram showing changes in the intensity of the detection signals te1 and te2 with respect to the positional deviation from the track when P1 ≠ P2. The initial values of the detection signals te1 and te2 are te1 0 and te2 0 , respectively. When there is no change in the track angle, the phase difference of the detection signal te1 and the detection signal te2 with respect to the track position deviation is π radians, so the average of the two detection signals ((te1 + te2) / 2) It becomes a constant value ((te1 0 + te2 0 ) / 2) regardless of the deviation. For this reason, the sum (te1 0 + te2 0 ) of the initial values te1 0 and te2 0 can be used as the reference value of the yawing signal YE2 regardless of the positional deviation from the track.
 図42は、P1≠P2の場合におけるトラック中心と金属アンテナ128b及び128cの先端との距離に対する検出信号te1及びte2の強度変化を示す図である。トラックにずれがない状態では、検出信号te1及びte2の強度は、白丸印で表される値となる。 FIG. 42 is a diagram showing changes in the intensity of the detection signals te1 and te2 with respect to the distance between the track center and the tips of the metal antennas 128b and 128c when P1 ≠ P2. In a state where there is no deviation in the track, the strengths of the detection signals te1 and te2 are values represented by white circles.
 トラックが時計回り(cw)に回転した場合は、検出信号te1及びte2の強度は、図42中のcw方向へシフトして、白四角印で表される値となる。逆に、トラックが反時計回り(ccw)に回転した場合は、検出信号te1及びte2の強度は、図42中のccw方向へシフトして、白三角印で表される値となる。 When the track rotates clockwise (cw), the intensity of the detection signals te1 and te2 shifts in the cw direction in FIG. 42 and becomes a value represented by a white square mark. Conversely, when the track rotates counterclockwise (ccw), the intensity of the detection signals te1 and te2 shifts in the ccw direction in FIG. 42 and becomes a value represented by a white triangle.
 図43は、P1≠P2の場合におけるトラック角度変化に対する検出信号te1及びte2の初期値の平均((te1+te2)/2)からの変化量とヨーイング信号YE2(YE2=(te1+te2)-(te1+te2))の変化とを示す図である。 FIG. 43 shows the amount of change from the average ((te1 0 + te2 0 ) / 2) of the initial values of the detection signals te1 and te2 with respect to the track angle change in the case of P1 ≠ P2, and the yawing signal YE2 (YE2 = (te1 + te2) − ( te1 0 + te2 0 )).
 トラック中心と金属アンテナ128b及び128cの中点とに位置ずれがある場合、検出信号te1及びte2のトラック角度変化に対する位相は、それぞれ逆方向に等量だけシフトする。このとき、ヨーイング信号YE2(YE2=(te1+te2)-(te1+te2))は、正及び負に等位相ずれた2つの信号の合成信号となる。このため、ヨーイング信号YE2は、常に原点でゼロクロスする誤差信号となり、P1≠P2の場合でもヨーイング信号YE2を生成することができる。 When there is a positional shift between the track center and the midpoints of the metal antennas 128b and 128c, the phases of the detection signals te1 and te2 with respect to changes in the track angle are shifted by the same amount in the opposite direction. At this time, the yawing signal YE2 (YE2 = (te1 + te2) − (te1 0 + te2 0 )) is a composite signal of two signals that are shifted in phase by positive and negative. Therefore, the yawing signal YE2 is always an error signal that crosses zero at the origin, and the yawing signal YE2 can be generated even when P1 ≠ P2.
 また、基準値として用いる初期値te1及びte2の和(te1+te2)は、トラックからの位置ずれに対して変化しない。そのため、トラックから外れた状態であってもヨーイング信号YE2を生成することができる。 Further, the sum (te1 0 + te2 0 ) of the initial values te1 0 and te2 0 used as the reference value does not change with respect to the positional deviation from the track. For this reason, the yawing signal YE2 can be generated even when the track is off the track.
 図44は、P1≠P2の場合におけるトラック中心と金属アンテナ128b及び128cの先端の中点との距離に対するヨーイング信号YE2の感度を示す図である。トラック角度変化が0の状態におけるヨーイング信号YE2のトラック角度変化に対する感度は、図44のように変化する。ヨーイング信号YE2の感度は、トラック中心と金属アンテナ128b及び128c先端の中点とが一致する場合に最大となり、トラック中心と金属アンテナ128b及び128c先端の中点との距離がTp/4となる場合に0となる。ヨーイング信号YE2に基づいて、スライダ141の傾きが制御されることで、P1≠P2の場合でも金属アンテナ128b及び128c間のトラックに垂直な方向の距離は、トラッキング周期Tpの半分に保つことができる。 FIG. 44 is a diagram showing the sensitivity of the yawing signal YE2 with respect to the distance between the track center and the midpoints of the tips of the metal antennas 128b and 128c when P1 ≠ P2. The sensitivity of the yawing signal YE2 to the change in the track angle when the change in the track angle is 0 changes as shown in FIG. The sensitivity of the yawing signal YE2 is maximum when the track center and the midpoint of the tips of the metal antennas 128b and 128c coincide, and the distance between the track center and the midpoint of the tips of the metal antennas 128b and 128c is Tp / 4. 0. By controlling the tilt of the slider 141 based on the yawing signal YE2, the distance in the direction perpendicular to the track between the metal antennas 128b and 128c can be kept at half the tracking period Tp even when P1 ≠ P2. .
 以上のように、本実施の形態4の光情報装置において、ヨーイング信号演算回路151は、共鳴素子の共鳴状態の変化に基づいてヨーイング信号を得る。また、ピエゾ素子144a及び144bは、ヨーイング信号に応じて保持素子(スライダ141)を情報記録媒体の表面に平行な面内で回転させる。 As described above, in the optical information device according to the fourth embodiment, the yawing signal calculation circuit 151 obtains a yawing signal based on the change in the resonance state of the resonance element. The piezo elements 144a and 144b rotate the holding element (slider 141) in a plane parallel to the surface of the information recording medium according to the yawing signal.
 図45は、図30に示すトラッキング信号演算回路161の構成を示す図である。トラッキング信号演算回路161は、補正値演算回路162、第1の差分回路163a、第2の差分回路163b、重み付き差分回路164及び制御回路165を備える。 45 is a diagram showing a configuration of the tracking signal arithmetic circuit 161 shown in FIG. The tracking signal calculation circuit 161 includes a correction value calculation circuit 162, a first difference circuit 163a, a second difference circuit 163b, a weighted difference circuit 164, and a control circuit 165.
 なお、図45では、金属アンテナ128aの先端位置171aがトラックの中心上にある場合の金属アンテナ128bの先端位置171b及び金属アンテナ128cの先端位置171cの位置ずれを示している。また、図45では、金属アンテナ128aの先端位置171a、金属アンテナ128bの先端位置171b及び金属アンテナ128cの先端位置171cから検出信号te0、te1及びte2が出力されているように記載しているが、実際には、検出信号te0、te1及びte2は、受光素子120a、120b及び120cから出力される。 Note that FIG. 45 shows a positional shift between the tip position 171b of the metal antenna 128b and the tip position 171c of the metal antenna 128c when the tip position 171a of the metal antenna 128a is on the center of the track. In FIG. 45, the detection signals te0, te1, and te2 are output from the tip position 171a of the metal antenna 128a, the tip position 171b of the metal antenna 128b, and the tip position 171c of the metal antenna 128c. Actually, the detection signals te0, te1, and te2 are output from the light receiving elements 120a, 120b, and 120c.
 まず、モータ143は、スライダ141をトラックに垂直な方向に走査する。金属アンテナ128a、128b及び128cの共鳴強度に対応した検出信号te0、te1及びte2は、図13(A)に示すように、トラックからの距離に対して周期的に変化する。検出信号te0、te1及びte2は、補正値演算回路162に入力される。補正値演算回路162は、検出信号te0、te1及びte2に基づいて補正値a及びbを決定する。なお、補正値a及びbの決定方法については後で述べる。補正値が決定された後、モータ143は、トラックに垂直な方向へのスライダ141の走査を停止する。 First, the motor 143 scans the slider 141 in a direction perpendicular to the track. The detection signals te0, te1, and te2 corresponding to the resonance intensities of the metal antennas 128a, 128b, and 128c periodically change with respect to the distance from the track, as shown in FIG. The detection signals te0, te1 and te2 are input to the correction value calculation circuit 162. The correction value calculation circuit 162 determines correction values a and b based on the detection signals te0, te1, and te2. A method for determining the correction values a and b will be described later. After the correction value is determined, the motor 143 stops scanning the slider 141 in the direction perpendicular to the track.
 第1の差分回路163aは、検出信号te1と検出信号te0との差分(te1-te0)を生成し、重み付き差分回路164に出力する。また、第2の差分回路163bは、検出信号te2と検出信号te0との差分(te2-te0)を生成し、重み付き差分回路164に出力する。 The first difference circuit 163a generates a difference (te1-te0) between the detection signal te1 and the detection signal te0 and outputs the difference to the weighted difference circuit 164. The second difference circuit 163b generates a difference (te2−te0) between the detection signal te2 and the detection signal te0 and outputs the difference to the weighted difference circuit 164.
 重み付き差分回路164は、補正値演算回路162によって決定された補正値a及びb、第1の差分回路163aによって算出された差分、及び第2の差分回路163bによって算出された差分を用いて、トラッキング信号TE(TE=a×(te1-te0)-b×(te2-te0))を生成する。 The weighted difference circuit 164 uses the correction values a and b determined by the correction value calculation circuit 162, the difference calculated by the first difference circuit 163a, and the difference calculated by the second difference circuit 163b. A tracking signal TE (TE = a × (te1-te0) −b × (te2-te0)) is generated.
 制御回路165は、トラッキング信号TEに基づいて金属アンテナ128aをトラッキングするようにモータ143を制御する制御信号を出力する。 The control circuit 165 outputs a control signal for controlling the motor 143 so as to track the metal antenna 128a based on the tracking signal TE.
 次に、補正値a及びbの決定方法について説明する。検出信号te0、te1及びte2が、トラックからの位置ずれ量xに対してそれぞれ下記の式(1)~(3)のように変化すると仮定する。 Next, a method for determining the correction values a and b will be described. It is assumed that the detection signals te0, te1, and te2 change according to the following equations (1) to (3) with respect to the positional deviation amount x from the track.
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
 なお、上記の式(1)~(3)において、xは、トラックからの位置ずれ量を表し、αは、検出信号te1の検出信号te0に対する位相差を表し、βは、検出信号te2の検出信号te0に対する位相差を表し、γは、オフセットを表す。 In the above equations (1) to (3), x represents the amount of positional deviation from the track, α represents the phase difference of the detection signal te1 from the detection signal te0, and β represents the detection of the detection signal te2. The phase difference with respect to the signal te0 is represented, and γ represents an offset.
 検出信号te0、te1及びte2を上記の式(1)~(3)のように表すと、トラッキング信号TEは下記の式(4)のように表される。 When the detection signals te0, te1 and te2 are expressed as the above formulas (1) to (3), the tracking signal TE is expressed as the following formula (4).
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
 トラックからの位置ずれ量xが0(x=0)のときにトラッキング信号TEがゼロクロスするためには、上記の式(4)の右辺の第一項の係数が0となればよい。つまり、補正値a及びbは、下記の式(5)の関係を満たせばよい。 In order for the tracking signal TE to zero-cross when the positional deviation amount x from the track is 0 (x = 0), the coefficient of the first term on the right side of the above equation (4) may be 0. That is, the correction values a and b may satisfy the relationship of the following formula (5).
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
 補正値a及びbが上記の式(5)の条件を満たす場合、上記の式(4)の右辺の第一項の係数が0となるので、トラッキング信号TEは、上記の式(4)の右辺の第二項のみで表される。このとき、トラッキング信号TEの信号振幅は、上記の式(4)の右辺の第二項の係数により決まる。補正値演算回路162は、補正値aを下記の式(6)に基づいて決定することにより、上記の式(4)の右辺の第二項の係数は“2”となり、信号振幅が“2”のトラッキング信号TEが得られる。 When the correction values a and b satisfy the condition of the above equation (5), the coefficient of the first term on the right side of the above equation (4) is 0, so that the tracking signal TE is expressed by the above equation (4). It is represented only by the second term on the right side. At this time, the signal amplitude of the tracking signal TE is determined by the coefficient of the second term on the right side of the above equation (4). The correction value calculation circuit 162 determines the correction value a based on the following equation (6), whereby the coefficient of the second term on the right side of the above equation (4) is “2” and the signal amplitude is “2”. "Is obtained.
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
 このように、補正値a及びbが決定されることで、任意の位置に配置され、トラックに垂直な方向の距離P1及びP2がP1≠P2となる金属アンテナ128a、128b及び128cについて、金属アンテナ128a、128b及び128cをトラックに垂直な方向の距離P1及びP2がP1=P2=Tp/4となるように配置した場合と同様のトラッキング信号TEを生成することができる。 As described above, by determining the correction values a and b, the metal antennas 128a, 128b, and 128c that are arranged at arbitrary positions and that have distances P1 and P2 in the direction perpendicular to the track satisfying P1 ≠ P2 are used. It is possible to generate a tracking signal TE similar to the case where 128a, 128b and 128c are arranged such that the distances P1 and P2 in the direction perpendicular to the track are P1 = P2 = Tp / 4.
 図46(A)は、トラックからの位置ずれに対する検出信号te1と検出信号te0との差分に補正値aを重み付けした信号(a×(te1-te0))及び検出信号te2と検出信号te0との差分に補正値bを重み付けした信号(b×(te2-te0))の強度変化を示すグラフである。a×(te1-te0)の強度及びb×(te2-te0)の強度は、それぞれトラックからの位置ずれに対してトラッキング周期Tpで周期的に変化し、補正値a及びbによってトラックからの位置ずれが0となる位置で互いに等しい値となる。 FIG. 46A shows a signal (a × (te1−te0)) obtained by weighting the difference between the detection signal te1 and the detection signal te0 with respect to the positional deviation from the track and the detection signal te2 and the detection signal te0. It is a graph which shows the intensity | strength change of the signal (bx (te2-te0)) which weighted the difference with the correction value b. The intensity of a × (te1-te0) and the intensity of b × (te2-te0) periodically change in the tracking period Tp with respect to the positional deviation from the track, and the position from the track by the correction values a and b. At positions where the deviation is 0, the values are equal to each other.
 図46(B)は、トラックからの位置ずれに対するトラッキング信号TEの強度変化を示すグラフである。トラッキング信号TEは、トラックからの位置ずれが0のときにゼロクロスし、トラックからの位置ずれに比例する。トラッキング信号TEに基づいてモータ143が制御されてトラッキングが行われる。かかる構成により、記録又は再生用の金属アンテナ128aを微粒子102に対して、安定かつ高精度にトラッキングすることができる。 FIG. 46B is a graph showing a change in intensity of the tracking signal TE with respect to a positional deviation from the track. The tracking signal TE is zero-crossed when the positional deviation from the track is zero, and is proportional to the positional deviation from the track. Tracking is performed by controlling the motor 143 based on the tracking signal TE. With this configuration, the recording or reproducing metal antenna 128a can be stably and accurately tracked with respect to the fine particles 102.
 なお、本実施の形態4において、半導体レーザ素子107a,107b,107cが光源の一例に相当し、金属アンテナ128a,128b,128cが複数の共鳴素子の一例に相当し、スライダ141が保持素子の一例に相当し、受光素子120a,120b,120cが第1の検出素子及び複数の受光素子の一例に相当し、モータ103が第1の移動素子の一例に相当し、サスペンション142が第2の移動素子の一例に相当し、トラッキング信号演算回路161がトラッキング信号演算回路の一例に相当し、ヨーイング信号演算回路151がヨーイング信号演算回路の一例に相当し、ピエゾ素子144a,144bが回転素子の一例に相当する。 In the fourth embodiment, the semiconductor laser elements 107a, 107b, and 107c correspond to an example of a light source, the metal antennas 128a, 128b, and 128c correspond to an example of a plurality of resonance elements, and the slider 141 is an example of a holding element. The light receiving elements 120a, 120b, and 120c correspond to an example of the first detection element and the plurality of light receiving elements, the motor 103 corresponds to an example of the first moving element, and the suspension 142 corresponds to the second moving element. The tracking signal calculation circuit 161 corresponds to an example of a tracking signal calculation circuit, the yawing signal calculation circuit 151 corresponds to an example of a yawing signal calculation circuit, and the piezo elements 144a and 144b correspond to an example of a rotation element. To do.
 このように、本実施の形態4では、ハードディスクドライブに採用されるフライングヘッドと同様の技術を用いることで、スライダ141とディスク101とが接触することなく、スライダ141は、ディスク101上の数nm~数十nmの位置においてディスク101を走査することができる。そのため、ディスク101及びスライダ141がそれぞれ磨耗を起こさずに精密なギャップ制御を行うことができる。 As described above, in the fourth embodiment, by using the same technique as the flying head employed in the hard disk drive, the slider 141 and the disk 101 are not in contact with each other, and the slider 141 is several nm on the disk 101. The disk 101 can be scanned at a position of ˜tens of nm. Therefore, precise gap control can be performed without causing the disk 101 and the slider 141 to wear.
 また、本実施の形態4では、金属アンテナ128a、128b及び128cは、それぞれトラックの長手方向にずらして配置される。すなわち、スライダ141は、金属アンテナ128a、128b及び128cの位置をトラックの長手方向にずらして配置する。これにより、隣接する金属アンテナ128a、128b及び128cの間の相互作用を抑制でき、金属アンテナ128a、128b及び128cの形状の自由度が高くなる。 In the fourth embodiment, the metal antennas 128a, 128b, and 128c are arranged so as to be shifted in the longitudinal direction of the track. That is, the slider 141 is arranged by shifting the positions of the metal antennas 128a, 128b and 128c in the longitudinal direction of the track. Thereby, the interaction between the adjacent metal antennas 128a, 128b, and 128c can be suppressed, and the degree of freedom of the shape of the metal antennas 128a, 128b, and 128c is increased.
 さらに、複数の共鳴素子(金属アンテナ128a、128b及び金属アンテナ128c)のトラックの長手方向の位置ずれが、複数の共鳴素子(金属アンテナ128a、128b又は金属アンテナ128c)のうちの1つの共鳴素子のトラックの長手方向の厚さ以上にずれていても良い。これにより、複数の共鳴素子間の相互作用をより抑制できる。 Further, the positional deviation in the longitudinal direction of the tracks of the plurality of resonance elements ( metal antennas 128a, 128b and metal antenna 128c) is caused by the resonance of one resonance element of the plurality of resonance elements ( metal antenna 128a, 128b or metal antenna 128c). It may be shifted beyond the thickness in the longitudinal direction of the track. Thereby, the interaction between a plurality of resonant elements can be further suppressed.
 また、本実施の形態4では、近接場光ではなく反射光が検出される。これにより、金属アンテナ128a、128b及び128cの直近に微小な受光素子110a、110b及び110cを作製する必要がなくなり、光情報装置の作製が容易になる。 In the fourth embodiment, reflected light is detected instead of near-field light. This eliminates the need to fabricate minute light receiving elements 110a, 110b, and 110c in the immediate vicinity of the metal antennas 128a, 128b, and 128c, and facilitates fabrication of the optical information device.
 また、本実施の形態4では、受光素子120a、120b及び120cは、金属アンテナ128a、128b及び128cと相互作用することがない。このため、効率よく金属アンテナ128a、128b及び128cとディスク101とを相互作用させることができ、効率よくトラッキング及び情報の記録又は再生を行うことができる。 In the fourth embodiment, the light receiving elements 120a, 120b, and 120c do not interact with the metal antennas 128a, 128b, and 128c. For this reason, the metal antennas 128a, 128b, and 128c and the disk 101 can be efficiently interacted, and tracking and information recording or reproduction can be performed efficiently.
 また、本実施の形態4では、ヨーイング信号演算回路151により、共鳴素子の共鳴状態の変化に基づいてヨーイング信号が生成され、ピエゾ素子144a及び144bにより、ヨーイング信号に応じてスライダ141(保持素子)をディスク101の表面に平行な面内で回転させる。このため、ディスク101の偏心又はモータ143とサスペンション142とを用いたトラックに垂直な方向への移動によるトラック角度変化に対して、共鳴素子(金属アンテナ128b及び128c)のトラックに垂直な方向の距離が一定に保持される。したがって、安定したトラッキングを行うことができる。 In the fourth embodiment, a yawing signal calculation circuit 151 generates a yawing signal based on a change in the resonance state of the resonance element, and piezoelectric elements 144a and 144b use slider 141 (holding element) according to the yawing signal. Is rotated in a plane parallel to the surface of the disk 101. Therefore, the distance in the direction perpendicular to the track of the resonant elements ( metal antennas 128b and 128c) with respect to the change in the track angle due to the eccentricity of the disk 101 or the movement in the direction perpendicular to the track using the motor 143 and the suspension 142. Is held constant. Therefore, stable tracking can be performed.
 また、本実施の形態4では、トラッキング信号演算回路161は、検出信号te0、te1及びte2から補正値a及びbを演算し、検出信号の差分値(te1-te0)と補正値aとの積と、検出信号の差分値(te2-te0)と補正値bとの積との差をトラッキング信号TEとして出力する。このため、記録又は再生用の金属アンテナ128aから任意の距離に配置されたトラッキング用の金属アンテナ128b及び128cを用いてトラッキング信号を得ることができる。したがって、金属アンテナ128a、128b及び128cのそれぞれの間隔に対する制約がなくなり、光情報装置の作製が容易となる。 In the fourth embodiment, the tracking signal calculation circuit 161 calculates the correction values a and b from the detection signals te0, te1 and te2, and the product of the difference value (te1-te0) of the detection signal and the correction value a. And the difference between the product of the difference value (te2-te0) of the detection signal and the correction value b is output as the tracking signal TE. Therefore, a tracking signal can be obtained using the tracking metal antennas 128b and 128c arranged at an arbitrary distance from the recording or reproducing metal antenna 128a. Therefore, there are no restrictions on the distances between the metal antennas 128a, 128b, and 128c, and the fabrication of the optical information device is facilitated.
 なお、本実施の形態4では、半導体レーザ素子及び受光素子のペアが、1本の導波路に対して隣接して配置されているが、例えば、Y字導波路を用いてもよい。この場合、Y字導波路の一方に半導体レーザ素子を配置し、他方に受光素子を配置してもよい。このように、光の出射位置と反射光の検出位置とを分離する構成にしても、本発明の主旨が損なわれるものではない。 In the fourth embodiment, the pair of the semiconductor laser element and the light receiving element is disposed adjacent to one waveguide, but for example, a Y-shaped waveguide may be used. In this case, a semiconductor laser element may be disposed on one side of the Y-shaped waveguide, and a light receiving element may be disposed on the other side. Thus, even if it is the structure which isolate | separates the light emission position and the detection position of reflected light, the main point of this invention is not impaired.
 また、本実施の形態4では、スライダ141の端面に階段状の段差が形成され、各段に金属アンテナ128a、128b及び128cが配置されているが、本発明は特にこれに限定されない。金属アンテナ128a、128b及び128cは、互いに相互作用しないように、トラックの長手方向にずれて配置されていればよい。例えば、図14及び図15に示すように、スライダ141の端面は、凸形状又は凹形状であってもよい。金属アンテナ128a、128b及び128cは、トラックの長手方向にずれて配置される。 In the fourth embodiment, a stepped step is formed on the end surface of the slider 141, and the metal antennas 128a, 128b, and 128c are arranged on each step. However, the present invention is not particularly limited to this. The metal antennas 128a, 128b, and 128c only need to be shifted in the longitudinal direction of the track so as not to interact with each other. For example, as shown in FIGS. 14 and 15, the end surface of the slider 141 may be convex or concave. The metal antennas 128a, 128b and 128c are arranged so as to be shifted in the longitudinal direction of the track.
 また、本実施の形態4では、スライダ141とエアスライダ132とは別々の構成としているが、本発明は特にこれに限定されず、スライダ141を大きくしてもよい。スライダ141は、ディスク101の表面に垂直な方向にスライダ141を移動させるエアスライダの機能を兼ね備えてもよい。この場合も、本発明の主旨が損なわれるものではない。 In the fourth embodiment, the slider 141 and the air slider 132 are configured separately, but the present invention is not particularly limited to this, and the slider 141 may be enlarged. The slider 141 may also have the function of an air slider that moves the slider 141 in a direction perpendicular to the surface of the disk 101. Also in this case, the gist of the present invention is not impaired.
 また、実施の形態4では、モータ143とサスペンション142とを用いてスライダ141をトラックに垂直な方向に移動させているが、実施の形態1及び2のようにモータ143の代わりにアクチュエータを用いて、サスペンション142をトラックに垂直な方向に移動させてもよい。 In the fourth embodiment, the slider 141 is moved in the direction perpendicular to the track using the motor 143 and the suspension 142. However, as in the first and second embodiments, an actuator is used instead of the motor 143. The suspension 142 may be moved in a direction perpendicular to the track.
 また、実施の形態4では、情報を記録又は再生するために相変化材料で構成された微粒子を用いているが、本発明は特にこれに限定されない。光情報装置が、例えばROM装置のような再生のみを行う光情報装置である場合は、微粒子の代わりに、凹凸形状のピットを用いてもよく、又は金属パターンなどを用いてもよい。 In the fourth embodiment, fine particles made of a phase change material are used for recording or reproducing information, but the present invention is not particularly limited to this. When the optical information device is an optical information device that performs only reproduction, such as a ROM device, for example, uneven pits may be used instead of fine particles, or metal patterns may be used.
 また、実施の形態4では、金属アンテナの形状は三角平板形状であるが、金属アンテナの形状は上記の例に特に限定されず、例えば三角平板形状以外にも図17~図19に示すような形状も考えられる。金属アンテナの形状は、微粒子上でプラズモン共鳴し、トラックからの距離に応じて効率よくプラズモン共鳴状態が変化するものであれば、特に限定されるものではない。図17のように、金属アンテナ117の形状が四角平板形状である場合、金属アンテナ117は上下対称であるため三角平板形状と比較して解析が容易である。また、図18のように、金属アンテナ118の形状が円板形状である場合、パターンの作製が三角平板形状に比べて容易である。また、図19のように、金属アンテナ119の形状がプローブ形状である場合、より効率的にプローブの先端に近接場光を発生させることができる。 In the fourth embodiment, the shape of the metal antenna is a triangular plate shape. However, the shape of the metal antenna is not particularly limited to the above example. For example, as shown in FIGS. A shape is also conceivable. The shape of the metal antenna is not particularly limited as long as plasmon resonance occurs on the fine particles and the plasmon resonance state efficiently changes according to the distance from the track. As shown in FIG. 17, when the shape of the metal antenna 117 is a square flat plate shape, the metal antenna 117 is vertically symmetric, so that the analysis is easier than the triangular flat plate shape. Further, as shown in FIG. 18, when the shape of the metal antenna 118 is a disc shape, the pattern can be easily produced as compared with the triangular plate shape. Further, as shown in FIG. 19, when the shape of the metal antenna 119 is a probe shape, near-field light can be generated more efficiently at the tip of the probe.
 また、実施の形態4では、2つのトラッキング用の金属アンテナを備えているが、金属アンテナの本数及び配置方法は、トラック位置において複数のトラッキング用の金属アンテナからの検出信号の差が0となり、トラックからの位置ずれに応じて検出信号の差が得られるものであればよい。トラッキング用の金属アンテナの本数及び配置方法は、本実施の形態4で示した構成に特に限定されるものではない。 In the fourth embodiment, two tracking metal antennas are provided. However, in the number and arrangement method of the metal antennas, the difference between detection signals from a plurality of tracking metal antennas is 0 at the track position. What is necessary is just to be able to obtain a difference in detection signal according to the positional deviation from the track. The number of metal antennas for tracking and the arrangement method are not particularly limited to the configuration shown in the fourth embodiment.
 また、実施の形態4では、導波モード結合を抑制するために複数の導波路129a~129cは互いに非平行に配置されるが、導波モード結合が起こらない構成であれば、複数の導波路129a~129cを互いに平行に配置してもよく、これにより、本発明の主旨が損なわれるものではない。 In the fourth embodiment, the plurality of waveguides 129a to 129c are arranged non-parallel to each other in order to suppress the waveguide mode coupling. However, if the waveguide mode coupling does not occur, the plurality of waveguides 129a to 129c may be arranged parallel to each other, and this does not impair the gist of the present invention.
 また、実施の形態4では、半導体レーザ素子107a~107c、金属アンテナ128a~128c及び受光素子120a~120cはスライダ141の端面に配置されるが、本発明は特にこれに限定されない。スライダ141の上面又はスライダ141の内部にこれらの素子を配置したり、ワンチップにこれらの素子を集積化して作製したりしてもよい。 In the fourth embodiment, the semiconductor laser elements 107a to 107c, the metal antennas 128a to 128c, and the light receiving elements 120a to 120c are arranged on the end face of the slider 141, but the present invention is not particularly limited to this. These elements may be arranged on the upper surface of the slider 141 or inside the slider 141, or these elements may be integrated on a single chip.
 また、実施の形態4では、光情報装置は、3つの光源(半導体レーザ素子107a~107c)を備えているが、光情報装置は、1つの光源を備え、1つの光源からの光を導波路により3方向に分離して、金属アンテナに光を入射させてもよい。また、光情報装置は、記録又は再生用の光源とトラッキング用の光源とを1つずつ備え、トラッキング用の光源のみからの光をY字導波路で2方向に分離して、2つの金属アンテナに光を入射させてもよい。これらにより、本発明の主旨が損なわれるものではない。 In the fourth embodiment, the optical information device includes three light sources (semiconductor laser elements 107a to 107c). However, the optical information device includes one light source and guides light from one light source to the waveguide. The light may be incident on the metal antenna after being separated in three directions. Further, the optical information device includes one light source for recording or reproduction and one light source for tracking, and separates light from only the light source for tracking in two directions by a Y-shaped waveguide, thereby providing two metal antennas. Light may be incident on. These do not impair the gist of the present invention.
 また、実施の形態4では、スライダ141をディスク101の表面に平行な面内で回転させる回転素子として2つのピエゾ素子144a,144bを用いているが、スライダ141がディスク101の表面に平行な面内で回転する構成であれば、どのような駆動素子を用いてもよい。例えば、モータを用いて機械的に駆動する構成、静電気力又は磁力を用いて駆動する構成、熱膨張を利用して駆動する構成などが考えられる。 In the fourth embodiment, two piezo elements 144a and 144b are used as rotating elements for rotating the slider 141 in a plane parallel to the surface of the disk 101. However, the slider 141 is a surface parallel to the surface of the disk 101. Any driving element may be used as long as it is configured to rotate inside. For example, a configuration that mechanically drives using a motor, a configuration that drives using electrostatic force or magnetic force, a configuration that uses thermal expansion, and the like can be considered.
 また、実施の形態4において、図47及び図48に示すように、金属アンテナ128aと金属アンテナ128bとのトラックに垂直な方向の距離及び金属アンテナ128aと金属アンテナ128cとのトラックに垂直な方向の距離がトラッキング周期Tp以上であっても良い。 In Embodiment 4, as shown in FIGS. 47 and 48, the distance in the direction perpendicular to the track between the metal antenna 128a and the metal antenna 128b and the direction in the direction perpendicular to the track between the metal antenna 128a and the metal antenna 128c. The distance may be longer than the tracking period Tp.
 図47は、本発明の実施の形態4において、金属アンテナ128a、128b及び128cの別の配置例について説明するための示す図であり、図48は、本発明の実施の形態4において、金属アンテナ128a、128b及び128cのさらに別の配置例について説明するための示す図である。 FIG. 47 is a diagram for explaining another arrangement example of the metal antennas 128a, 128b, and 128c in the fourth embodiment of the present invention, and FIG. 48 is a diagram illustrating the metal antenna in the fourth embodiment of the present invention. It is a figure shown for demonstrating another example of arrangement | positioning of 128a, 128b, and 128c.
 図47に示すように、金属アンテナ128aの先端位置171aと金属アンテナ128bの先端位置171bとのトラックに垂直な方向の距離P及び金属アンテナ128aの先端位置171aと金属アンテナ128cの先端位置171cとのトラックに垂直な方向の距離Pは、ともにトラッキング周期Tp以上であっても良い。 As shown in FIG. 47, the distance P in the direction perpendicular to the track between the tip position 171a of the metal antenna 128a and the tip position 171b of the metal antenna 128b and the tip position 171a of the metal antenna 128a and the tip position 171c of the metal antenna 128c. Both the distances P in the direction perpendicular to the track may be equal to or longer than the tracking period Tp.
 また、図48に示すように、金属アンテナ128aの先端位置171aと金属アンテナ128bの先端位置171bとのトラックに垂直な方向の距離P1が、トラッキング周期Tp以上であり、金属アンテナ128aの先端位置171aと金属アンテナ128cの先端位置171cとのトラックに垂直な方向の距離P2が、トラッキング周期Tpより短くても良い。なお、距離P1が、トラッキング周期Tpより短く、距離P2が、トラッキング周期Tp以上であっても良い。 As shown in FIG. 48, the distance P1 in the direction perpendicular to the track between the tip position 171a of the metal antenna 128a and the tip position 171b of the metal antenna 128b is equal to or longer than the tracking period Tp, and the tip position 171a of the metal antenna 128a. And the distance P2 in the direction perpendicular to the track between the tip end position 171c of the metal antenna 128c and the tracking period Tp may be shorter. The distance P1 may be shorter than the tracking period Tp, and the distance P2 may be longer than the tracking period Tp.
 また、実施の形態4では、検出信号te1と検出信号te2との加算値(te1+te2)から、初期値te1と初期値te2との加算値(te1+te2)を減算することにより、ヨーイング信号YE2を生成しているが、トラックからの位置ずれ又は金属アンテナ128a、128b及び128cのトラックに垂直な方向の距離P1及びP2に応じて、生成したヨーイング信号YE2に適当な整数を掛けてヨーイング信号YE2の感度が常に一定になるように調節してもよい。 In the fourth embodiment, yawing is performed by subtracting the addition value (te1 0 + te2 0 ) of the initial value te1 0 and the initial value te2 0 from the addition value (te1 + te2) of the detection signal te1 and the detection signal te2. Although the signal YE2 is generated, the generated yawing signal YE2 is multiplied by an appropriate integer according to the positional deviation from the track or the distances P1 and P2 in the direction perpendicular to the track of the metal antennas 128a, 128b and 128c. The sensitivity of the signal YE2 may be adjusted so as to be always constant.
 また、実施の形態4では、検出信号te0、te1及びte2は、上記の式(1)~(3)のように仮定しているが、検出信号te0、te1及びte2が上記の式(1)~(3)のように単純な式で表されない場合は、信号処理により検出信号te0、te1及びte2から上記の式(1)~(3)で表される成分だけを取り出して利用したり、生成したトラッキング信号TEから信号処理によりトラックからの位置ずれに対してトラッキング周期Tpで変化する成分のみ取り出して利用したりしてもよい。 In the fourth embodiment, the detection signals te0, te1, and te2 are assumed as in the above equations (1) to (3), but the detection signals te0, te1, and te2 are in the above equation (1). When it is not represented by a simple expression as in (3), only the components represented by the above expressions (1) to (3) are extracted from the detection signals te0, te1 and te2 by signal processing and used. Only a component that changes in the tracking period Tp with respect to the positional deviation from the track may be extracted from the generated tracking signal TE and used.
 次に、本発明の実施の形態4におけるトラッキング方法について実施の形態4における光情報装置を用いて説明する。 Next, a tracking method according to the fourth embodiment of the present invention will be described using the optical information device according to the fourth embodiment.
 図49は、本発明の実施の形態4におけるトラッキング方法について説明するためのフローチャートである。 FIG. 49 is a flowchart for explaining the tracking method according to the fourth embodiment of the present invention.
 図49のフローチャートに沿って実施の形態4におけるトラッキング方法を説明する。 A tracking method according to the fourth embodiment will be described with reference to the flowchart of FIG.
 まず、第1のステップ321において、光源である半導体レーザ素子107a、107b及び107cは、光を出射し、複数の共鳴素子である金属アンテナ128a、128b及び128cに光を入射させてプラズモン共鳴を励起する。金属アンテナ128a、128b及び128cは、微粒子102上でプラズモン共鳴条件が満たされるように設計されている。プラズモン共鳴は、トラックからの位置ずれが大きくなるにつれて弱まる。 First, in the first step 321, the semiconductor laser elements 107a, 107b, and 107c that are light sources emit light, and light is incident on the metal antennas 128a, 128b, and 128c that are a plurality of resonance elements to excite plasmon resonance. To do. The metal antennas 128 a, 128 b, and 128 c are designed so that the plasmon resonance condition is satisfied on the fine particle 102. Plasmon resonance weakens as the positional deviation from the track increases.
 次に、第2のステップ322において、受光素子110a、110b及び110cは、金属アンテナ128a、128b及び128cの共鳴状態の変化を個別に検出し、検出信号te0、te1及びte2を出力する。金属アンテナ128a、128b及び128cは、プラズモン共鳴が励起されると、金属アンテナ128a、128b及び128cからの反射光強度が低下するように設計されている。 Next, in the second step 322, the light receiving elements 110a, 110b and 110c individually detect changes in the resonance state of the metal antennas 128a, 128b and 128c, and output detection signals te0, te1 and te2. The metal antennas 128a, 128b, and 128c are designed such that the intensity of reflected light from the metal antennas 128a, 128b, and 128c decreases when plasmon resonance is excited.
 このため、金属アンテナ128a、128b及び128cからの反射光強度を受光素子120a、120b及び120cで個別に検出することで、個々の金属アンテナ128a、128b及び128cの共鳴状態の変化を検出することができる。金属アンテナ128a、128b及び128cからの反射光強度は、トラックからの距離に対して図13(A)のような変化を示し、トラック位置で最小値となり、トラック位置からトラッキング周期Tpの半分だけ離れた位置で最大値となる。 Therefore, by detecting the reflected light intensity from the metal antennas 128a, 128b, and 128c individually by the light receiving elements 120a, 120b, and 120c, it is possible to detect changes in the resonance state of the individual metal antennas 128a, 128b, and 128c. it can. The reflected light intensity from the metal antennas 128a, 128b, and 128c changes as shown in FIG. 13A with respect to the distance from the track, becomes a minimum value at the track position, and is separated from the track position by half of the tracking period Tp. The maximum value at the position.
 次に、第3のステップ323において、モータ143は、スライダ141をトラックに垂直な方向に微少量だけ走査する。受光素子120b及び120cは、トラックに垂直な方向の変位に応じて、検出信号te1及びte2を出力する。 Next, in the third step 323, the motor 143 scans the slider 141 by a small amount in the direction perpendicular to the track. The light receiving elements 120b and 120c output detection signals te1 and te2 according to the displacement in the direction perpendicular to the track.
 次に、第4のステップ324において、位相比較回路152は、検出信号te1及びte2のトラックに垂直な方向の変位量に対する位相差をヨーイング信号YE1として演算する。 Next, in the fourth step 324, the phase comparison circuit 152 calculates the phase difference with respect to the displacement amount in the direction perpendicular to the track of the detection signals te1 and te2 as the yawing signal YE1.
 次に、第5のステップ325において、第1の制御回路153は、ヨーイング信号YE1に基づいて、検出信号te1及びte2の位相差がπラジアンとなるように、ピエゾ素子144a及び144bを制御する。ピエゾ素子144a及び144bは、スライダ141をディスク101の表面に平行な面内で回転させる。検出信号te1及びte2は、トラックに垂直な方向の変位量に対してトラッキング周期Tpで変化する。そのため、検出信号te1及びte2の位相差がπラジアンとなるとき、金属アンテナ128b及び128cの間のトラックに垂直な方向の距離はトラッキング周期Tpの半分となる。そして、第1のサンプリングホールド回路154a及び第2のサンプリングホールド回路154bは、ヨーイング信号YE1がπラジアンとなったときの検出信号te1及びte2の値を初期値te1及びte2として記憶する。 Next, in the fifth step 325, the first control circuit 153 controls the piezo elements 144a and 144b based on the yawing signal YE1 so that the phase difference between the detection signals te1 and te2 becomes π radians. The piezoelectric elements 144 a and 144 b rotate the slider 141 in a plane parallel to the surface of the disk 101. The detection signals te1 and te2 change with the tracking period Tp with respect to the displacement amount in the direction perpendicular to the track. Therefore, when the phase difference between the detection signals te1 and te2 is π radians, the distance in the direction perpendicular to the track between the metal antennas 128b and 128c is half the tracking period Tp. Then, the first sample and hold circuit 154a and the second sample and hold circuit 154b stores a value of the detection signal te1 and te2 when yawing signal YE1 becomes π radians as an initial value te1 0 and te2 0.
 次に、第6のステップ326において、モータ143は、スライダ141をトラックに垂直な方向に走査する。受光素子120b及び120cは、トラックに垂直な方向の変位に応じて、検出信号te1及びte2を出力する。 Next, in a sixth step 326, the motor 143 scans the slider 141 in a direction perpendicular to the track. The light receiving elements 120b and 120c output detection signals te1 and te2 according to the displacement in the direction perpendicular to the track.
 次に、第7のステップ327において、補正値演算回路162は、トラックからの位置ずれが0となる位置においてトラッキング信号TEがゼロクロスするような補正値a及びbを演算する。このとき、補正値演算回路162は、上記の式(5)の関係を満たすように、補正値a及びbを決定する。補正値aが上記の式(6)を満たす場合、信号振幅が“2”となるトラッキング信号TEが得られる。 Next, in a seventh step 327, the correction value calculation circuit 162 calculates correction values a and b such that the tracking signal TE crosses zero at a position where the positional deviation from the track becomes zero. At this time, the correction value calculation circuit 162 determines the correction values a and b so as to satisfy the relationship of the above formula (5). When the correction value a satisfies the above equation (6), a tracking signal TE having a signal amplitude “2” is obtained.
 次に、第8のステップ328において、ヨーイング信号演算回路151は、検出信号te1及びte2の和の初期値te1及びte2の和(te1+te2)からの変化量をヨーイング信号YE2(YE2=(te1+te2)-(te1+te2))として演算する。初期値te1及びte2は、トラックからの位置ずれに対する位相差がπラジアンであるため、図41に示したように、オフトラックの有無に関わらず一定値となる。このため、ヨーイング信号演算回路151は、オフトラック又は金属アンテナ128a、128b及び128cの配置に関わらず、常にヨーイング信号YE2を生成することができる。 Next, in an eighth step 328, the yawing signal calculation circuit 151 calculates the amount of change from the sum (te1 0 + te2 0 ) of the initial values te1 0 and te2 0 of the sum of the detection signals te1 and te2 as the yawing signal YE2 (YE2 = (Te1 + te2) − (te1 0 + te2 0 )) The initial values te1 0 and te2 0 are constant values regardless of the presence or absence of off-track as shown in FIG. 41 because the phase difference with respect to the positional deviation from the track is π radians. Therefore, the yawing signal calculation circuit 151 can always generate the yawing signal YE2 regardless of the arrangement of the off-track or metal antennas 128a, 128b, and 128c.
 なお、具体的には、第1の加算回路155aは、初期値te1と初期値te2とを加算する。第2の加算回路155bは、検出信号te1と検出信号te2とを加算する。差分回路156は、検出信号te1と検出信号te2との加算値(te1+te2)から、初期値te1と初期値te2との加算値(te1+te2)を減算することにより、ヨーイング信号YE2を算出する。 Specifically, the first addition circuit 155a adds the initial value te1 0 and the initial value te2 0 . The second addition circuit 155b adds the detection signal te1 and the detection signal te2. The difference circuit 156 subtracts the addition value (te1 0 + te2 0 ) of the initial value te1 0 and the initial value te2 0 from the addition value (te1 + te2) of the detection signal te1 and the detection signal te2, thereby obtaining the yawing signal YE2 calculate.
 次に、第9のステップ329において、第2の制御回路157は、ヨーイング信号YE2に基づいてピエゾ素子144a及び144bを制御する。ピエゾ素子144a及び144bは、スライダ141をディスク101の表面に平行な面内で回転させる。これにより、金属アンテナ128b及び128cの間のトラックに垂直な方向の距離が、トラッキング周期Tpの半分に保たれる。 Next, in the ninth step 329, the second control circuit 157 controls the piezo elements 144a and 144b based on the yawing signal YE2. The piezoelectric elements 144 a and 144 b rotate the slider 141 in a plane parallel to the surface of the disk 101. As a result, the distance between the metal antennas 128b and 128c in the direction perpendicular to the track is maintained at half the tracking period Tp.
 次に、第10のステップ330において、第1の差分回路163aは、検出信号te1から検出信号te0を減算し、重み付き差分回路164へ出力する。第2の差分回路163bは、検出信号te2から検出信号te0を減算し、重み付き差分回路164へ出力する。重み付き差分回路164は、補正値演算回路162によって算出された補正値aを第1の差分回路163aによって算出された減算値(te1-te0)に乗算した値から、補正値演算回路162によって算出された補正値bを第1の差分回路163aによって算出された減算値(te2-te0)に乗算した値を減算し、トラッキング信号TE(TE=a×(te1-te0)-b×(te2-te0))を演算する。 Next, in the tenth step 330, the first difference circuit 163a subtracts the detection signal te0 from the detection signal te1 and outputs it to the weighted difference circuit 164. The second difference circuit 163b subtracts the detection signal te0 from the detection signal te2, and outputs the result to the weighted difference circuit 164. The weighted difference circuit 164 is calculated by the correction value calculation circuit 162 from a value obtained by multiplying the correction value a calculated by the correction value calculation circuit 162 by the subtraction value (te1-te0) calculated by the first difference circuit 163a. A value obtained by multiplying the corrected value b by the subtraction value (te2-te0) calculated by the first difference circuit 163a is subtracted, and the tracking signal TE (TE = a × (te1-te0) −b × (te2- te0)) is calculated.
 トラッキング信号TEは、図46(B)に示したように、金属アンテナ128b及び128cの間のトラックに垂直な方向の距離に関わらず、トラック位置においてゼロクロスし、トラックからの位置ずれがトラッキング周期Tpの1/4であるときに最大値又は最小値となる。補正値a及びbを用いてトラッキング信号TEが生成されることで、トラックに垂直な方向に任意の距離だけ離れた金属アンテナ128b及び128cを用いてトラッキング信号TEを生成することができる。 As shown in FIG. 46B, the tracking signal TE is zero-crossed at the track position regardless of the distance between the metal antennas 128b and 128c in the direction perpendicular to the track, and the positional deviation from the track is the tracking period Tp. It becomes the maximum value or the minimum value when it is 1/4. By generating the tracking signal TE using the correction values a and b, the tracking signal TE can be generated using the metal antennas 128b and 128c separated by an arbitrary distance in the direction perpendicular to the track.
 次に、第11のステップ331において、モータ143は、トラッキング信号演算回路161によって演算されたトラッキング信号TEに応じて、スライダ141をトラックに垂直な方向に移動させる。モータ143は、スライダ141をトラックに垂直な方向に移動させ、トラック位置を調節する。重み付き差分回路164によって演算されたトラッキング信号TEは、制御回路165へ出力される。制御回路165は、トラッキング信号TEに応じてモータ143を駆動してスライダ141をトラックに垂直な方向に移動させる。 Next, in an eleventh step 331, the motor 143 moves the slider 141 in a direction perpendicular to the track in accordance with the tracking signal TE calculated by the tracking signal calculation circuit 161. The motor 143 moves the slider 141 in a direction perpendicular to the track to adjust the track position. The tracking signal TE calculated by the weighted difference circuit 164 is output to the control circuit 165. The control circuit 165 drives the motor 143 according to the tracking signal TE to move the slider 141 in a direction perpendicular to the track.
 上記第8のステップ328乃至第11のステップ331の処理が繰り返されることにより、記録又は再生用の金属アンテナ128aを微粒子102に対して常に安定かつ高精度にトラッキングさせることができる。 By repeating the processes of the eighth step 328 to the eleventh step 331, the recording or reproducing metal antenna 128a can be constantly and accurately tracked with respect to the fine particles 102.
 なお、本実施の形態4では、受光素子120a、120b及び120cからの検出信号te0、te1及びte2に基づいてトラッキング信号TE及びヨーイング信号YE1及びYE2が生成されるが、検出信号te0、te1及びte2の高周波成分をローパスフィルタにより除去してもよく、また、トラッキング信号TE、ヨーイング信号YE1及びYE2の高周波成分をローパスフィルタにより除去してもよい。 In the fourth embodiment, the tracking signal TE and the yawing signals YE1 and YE2 are generated based on the detection signals te0, te1 and te2 from the light receiving elements 120a, 120b and 120c, but the detection signals te0, te1 and te2 May be removed by a low-pass filter, and high-frequency components of the tracking signal TE and yawing signals YE1 and YE2 may be removed by a low-pass filter.
 以上のように、実施の形態4のトラッキング方法は、保持素子をトラックに垂直な方向に走査する走査ステップと、複数の共鳴素子の各々の共鳴状態の変化を個別に検出し、複数の共鳴素子の各々の共鳴状態の変化を表す複数の検出信号を出力する検出ステップと、複数の検出信号のトラックに垂直な方向の変位量に対する位相差がπラジアンとなるように保持素子を情報記録媒体の表面に平行な面内で回転させる回転ステップと、を包含する。このため、複数の共鳴素子のトラックに垂直な方向の距離をトラッキング周期Tpの半分に調節することができる。 As described above, in the tracking method according to the fourth embodiment, the scanning step of scanning the holding element in the direction perpendicular to the track, the change in the resonance state of each of the plurality of resonance elements is individually detected, and the plurality of resonance elements A detecting step for outputting a plurality of detection signals representing changes in the respective resonance states of the plurality of detection signals; A rotating step of rotating in a plane parallel to the surface. For this reason, the distance in the direction perpendicular to the tracks of the plurality of resonance elements can be adjusted to half the tracking period Tp.
 また、実施の形態4のトラッキング方法は、複数の検出信号の和からヨーイング信号を演算するヨーイング信号演算ステップと、ヨーイング信号に応じて保持素子を情報記録媒体の表面に平行な面内で回転させる回転ステップと、を包含する。このため、情報記録媒体の偏心又はモータ143による保持素子の移動によって起こるトラック角度変化を補正することができ、複数の共鳴素子のトラックに垂直な方向の距離を常にトラッキング周期Tpの半分に保つことができる。 The tracking method according to the fourth embodiment includes a yawing signal calculation step for calculating a yawing signal from the sum of a plurality of detection signals, and a holding element is rotated in a plane parallel to the surface of the information recording medium according to the yawing signal. A rotation step. For this reason, it is possible to correct the track angle change caused by the eccentricity of the information recording medium or the movement of the holding element by the motor 143, and always keep the distance in the direction perpendicular to the track of the plurality of resonance elements at half the tracking period Tp. Can do.
 また、実施の形態4のトラッキング方法は、複数の検出信号から補正値を演算する補正値演算ステップと、複数の検出信号のそれぞれと補正値との積の差をトラッキング信号として演算するトラッキング信号演算ステップと、を包含する。これにより、任意の距離を隔てて配置された複数の共鳴素子を用いて、安定にトラッキング信号を生成することができる。 In addition, the tracking method according to the fourth embodiment includes a correction value calculation step for calculating a correction value from a plurality of detection signals, and a tracking signal calculation for calculating a difference between the products of the plurality of detection signals and the correction value as a tracking signal. Steps. Thereby, a tracking signal can be stably generated using a plurality of resonant elements arranged at an arbitrary distance.
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。 The specific embodiments described above mainly include inventions having the following configurations.
 本発明の一局面に係る光情報装置は、トラックを有する情報記録媒体に情報を記録又は再生する光情報装置であって、光源と、前記光源からの光が入射し、前記情報記録媒体と相互作用し、前記トラックからの距離に応じて共鳴状態が変化する複数の共鳴素子と、前記複数の共鳴素子の位置を前記トラックに垂直な方向にずらして配置し、かつ前記複数の共鳴素子間の距離を一定に固定して保持する保持素子と、前記複数の共鳴素子の各々の共鳴状態の変化を個別に検出する第1の検出素子と、前記第1の検出素子によって検出された前記共鳴状態の変化に基づいてトラッキング信号を演算するトラッキング信号演算回路と、前記トラッキング信号演算回路によって演算された前記トラッキング信号に応じて前記保持素子を前記トラックに垂直な方向に移動させる第1の移動素子と、を備える。 An optical information device according to one aspect of the present invention is an optical information device for recording or reproducing information on an information recording medium having a track, and a light source, light from the light source is incident thereon, and the information recording medium is mutually connected. A plurality of resonant elements that change the resonance state according to the distance from the track, and the positions of the plurality of resonant elements are shifted in a direction perpendicular to the track, and between the plurality of resonant elements A holding element that holds the distance fixed, a first detection element that individually detects a change in the resonance state of each of the plurality of resonance elements, and the resonance state that is detected by the first detection element A tracking signal calculation circuit for calculating a tracking signal based on the change of the tracking signal, and the holding element in the track according to the tracking signal calculated by the tracking signal calculation circuit Comprising a first moving element that moves in a straight direction, the.
 この構成によれば、複数の共鳴素子は、光源からの光が入射し、情報記録媒体と相互作用し、トラックからの距離に応じて共鳴状態が変化する。保持素子は、複数の共鳴素子の位置をトラックに垂直な方向にずらして配置し、かつ複数の共鳴素子間の距離を一定に固定して保持する。第1の検出素子は、複数の共鳴素子の各々の共鳴状態の変化を個別に検出する。トラッキング信号演算回路は、第1の検出素子によって検出された共鳴状態の変化に基づいてトラッキング信号を演算する。第1の移動素子は、トラッキング信号演算回路によって演算されたトラッキング信号に応じて保持素子をトラックに垂直な方向に移動させる。 According to this configuration, light from the light source enters the plurality of resonance elements, interacts with the information recording medium, and the resonance state changes according to the distance from the track. The holding element is arranged by shifting the position of the plurality of resonance elements in a direction perpendicular to the track, and holds the distance between the plurality of resonance elements fixed at a constant value. The first detection element individually detects a change in the resonance state of each of the plurality of resonance elements. The tracking signal calculation circuit calculates a tracking signal based on a change in the resonance state detected by the first detection element. The first moving element moves the holding element in a direction perpendicular to the track in accordance with the tracking signal calculated by the tracking signal calculation circuit.
 したがって、複数の共鳴素子の位置がトラックに垂直な方向にずらして配置され、かつ複数の共鳴素子間の距離が一定に固定されて保持されるので、情報記録媒体との相互作用により複数の共鳴素子とトラックとの相対的な位置が変化することがない。そのため、トラック位置からの変位にのみ依存した安定かつ高精度なトラッキングを行うことができる。 Accordingly, the positions of the plurality of resonance elements are shifted in the direction perpendicular to the track, and the distance between the plurality of resonance elements is fixed and held constant. The relative position between the element and the track does not change. Therefore, stable and highly accurate tracking that depends only on the displacement from the track position can be performed.
 また、複数の共鳴素子の各々の共鳴状態の変化が個別に検出され、検出された共鳴状態の変化に基づいてトラッキング信号が演算されるので、検出信号が複数の共鳴素子の周辺の光学定数の変化に敏感に反応し、トラックからの微小な位置ずれに対して変調度の高いトラッキング信号が得られる。そのため、安定かつ高精度なトラッキングを行うことができる。 In addition, since a change in the resonance state of each of the plurality of resonance elements is individually detected and a tracking signal is calculated based on the detected change in the resonance state, the detection signal has an optical constant around the plurality of resonance elements. A tracking signal having a high degree of modulation can be obtained with respect to a minute positional deviation from the track, which reacts sensitively to changes. Therefore, stable and highly accurate tracking can be performed.
 また、上記の光情報装置において、前記複数の共鳴素子を前記情報記録媒体の表面に垂直な方向に移動させる第2の移動素子をさらに備え、前記第2の移動素子は、前記保持素子と前記情報記録媒体との間を流れる気流の力により、前記情報記録媒体と前記保持素子との間の距離を一定に保持することが好ましい。 The optical information apparatus may further include a second moving element that moves the plurality of resonant elements in a direction perpendicular to a surface of the information recording medium, and the second moving element includes the holding element and the holding element. It is preferable that the distance between the information recording medium and the holding element is kept constant by the force of the airflow flowing between the information recording medium.
 この構成によれば、第2の移動素子は、複数の共鳴素子を情報記録媒体の表面に垂直な方向に移動させる。第2の移動素子は、保持素子と情報記録媒体との間を流れる気流の力により、情報記録媒体と保持素子との間の距離を、一定に保持する。 According to this configuration, the second moving element moves the plurality of resonant elements in a direction perpendicular to the surface of the information recording medium. The second moving element keeps the distance between the information recording medium and the holding element constant by the force of the airflow flowing between the holding element and the information recording medium.
 したがって、保持素子と情報記録媒体との間を流れる気流の力により、情報記録媒体と保持素子との間の距離は、一定に保持されるので、簡易な構成により、複数の共鳴素子と情報記録媒体との間の距離を一定に保持することができる。 Accordingly, since the distance between the information recording medium and the holding element is kept constant by the force of the airflow flowing between the holding element and the information recording medium, a plurality of resonance elements and the information recording medium can be recorded with a simple configuration. The distance to the medium can be kept constant.
 また、上記の光情報装置において、前記複数の共鳴素子を前記情報記録媒体の表面に垂直な方向に移動させる第2の移動素子をさらに備え、前記第2の移動素子は、前記保持素子と前記情報記録媒体とを接触させることが好ましい。 The optical information apparatus may further include a second moving element that moves the plurality of resonant elements in a direction perpendicular to a surface of the information recording medium, and the second moving element includes the holding element and the holding element. It is preferable to contact the information recording medium.
 この構成によれば、第2の移動素子は、複数の共鳴素子を情報記録媒体の表面に垂直な方向に移動させる。第2の移動素子は、保持素子と情報記録媒体とを接触させる。したがって、複数の共鳴素子と情報記録媒体との間の距離を容易に制御することができる。 According to this configuration, the second moving element moves the plurality of resonant elements in a direction perpendicular to the surface of the information recording medium. The second moving element brings the holding element and the information recording medium into contact with each other. Therefore, the distance between the plurality of resonance elements and the information recording medium can be easily controlled.
 また、上記の光情報装置において、前記複数の共鳴素子と前記情報記録媒体との距離を検出する第2の検出素子と、前記第2の検出素子からの検出信号に応じて、前記複数の共鳴素子と前記情報記録媒体との間の距離が一定になるように、前記複数の共鳴素子を前記情報記録媒体の表面に垂直な方向に移動させる第2の移動素子とをさらに備えることが好ましい。 In the optical information device, the plurality of resonance elements may be detected in accordance with a second detection element that detects a distance between the plurality of resonance elements and the information recording medium, and a detection signal from the second detection element. It is preferable to further include a second moving element that moves the plurality of resonant elements in a direction perpendicular to the surface of the information recording medium so that the distance between the element and the information recording medium is constant.
 この構成によれば、第2の検出素子は、複数の共鳴素子と情報記録媒体との距離を検出する。第2の移動素子は、第2の検出素子からの検出信号に応じて、複数の共鳴素子と情報記録媒体との間の距離が一定になるように、複数の共鳴素子を情報記録媒体の表面に垂直な方向に移動させる。 According to this configuration, the second detection element detects the distance between the plurality of resonance elements and the information recording medium. The second moving element has a plurality of resonant elements placed on the surface of the information recording medium such that distances between the plurality of resonant elements and the information recording medium are constant according to a detection signal from the second detecting element. Move in a direction perpendicular to.
 したがって、複数の共鳴素子と情報記録媒体との距離が検出されるので、複数の共鳴素子と情報記録媒体との間の距離をより高精度に制御することができる。 Therefore, since the distance between the plurality of resonance elements and the information recording medium is detected, the distance between the plurality of resonance elements and the information recording medium can be controlled with higher accuracy.
 また、上記の光情報装置において、前記第1の検出素子は、複数の受光素子を含み、前記光情報装置は、前記複数の共鳴素子からの光を前記複数の受光素子に導く複数の導波路をさらに備えることが好ましい。 In the above optical information device, the first detection element includes a plurality of light receiving elements, and the optical information device includes a plurality of waveguides that guide light from the plurality of resonance elements to the plurality of light receiving elements. It is preferable to further comprise.
 この構成によれば、第1の検出素子は、複数の受光素子を含む。そして、複数の導波路は、複数の共鳴素子からの光を複数の受光素子に導く。したがって、複数の共鳴素子の各々の共鳴状態の変化を確実に検出することができる。 According to this configuration, the first detection element includes a plurality of light receiving elements. The plurality of waveguides guide light from the plurality of resonance elements to the plurality of light receiving elements. Therefore, it is possible to reliably detect a change in the resonance state of each of the plurality of resonance elements.
 また、上記の光情報装置において、前記光源は、それぞれ波長の異なる光を出射する複数の光源を含み、前記複数の共鳴素子は、前記複数の光源のそれぞれから出射された光の周波数を共鳴周波数とする形状又は材質で形成され、前記第1の検出素子は、複数の受光素子を含み、前記光情報装置は、前記複数の共鳴素子からの周波数の異なる複数の光を分離して、前記複数の光のそれぞれを対応する前記複数の受光素子に導く光学素子をさらに備えることが好ましい。 Further, in the above optical information device, the light source includes a plurality of light sources that emit light having different wavelengths, and the plurality of resonance elements determine a frequency of light emitted from each of the plurality of light sources as a resonance frequency. The first detection element includes a plurality of light receiving elements, and the optical information device separates the plurality of lights having different frequencies from the plurality of resonance elements, and It is preferable to further include an optical element that guides each of the light beams to the corresponding light receiving elements.
 この構成によれば、光源は、それぞれ波長の異なる光を出射する複数の光源を含む。複数の共鳴素子は、複数の光源のそれぞれから出射された光の周波数を共鳴周波数とする形状又は材質で形成される。第1の検出素子は、複数の受光素子を含む。光学素子は、複数の共鳴素子からの周波数の異なる複数の光を分離して、複数の光のそれぞれを対応する複数の受光素子に導く。 According to this configuration, the light source includes a plurality of light sources that emit light having different wavelengths. The plurality of resonance elements are formed in a shape or material having a resonance frequency that is the frequency of light emitted from each of the plurality of light sources. The first detection element includes a plurality of light receiving elements. The optical element separates a plurality of lights having different frequencies from the plurality of resonance elements, and guides each of the plurality of lights to a corresponding plurality of light receiving elements.
 したがって、波長の違いを利用して複数の共鳴素子の個々の共鳴状態が検出されるので、光源、第1の検出素子及び複数の共鳴素子を微小領域に集積化する必要がなく、光情報装置を容易に作製することができる。 Accordingly, since the individual resonance states of the plurality of resonance elements are detected using the difference in wavelength, it is not necessary to integrate the light source, the first detection element, and the plurality of resonance elements in a minute region, and the optical information device Can be easily manufactured.
 また、上記の光情報装置において、前記第1の検出素子は、前記複数の共鳴素子から発生する近接場光を検出可能な範囲に配置された複数の受光素子を含むことが好ましい。 In the above optical information device, it is preferable that the first detection element includes a plurality of light receiving elements arranged in a range in which near-field light generated from the plurality of resonance elements can be detected.
 この構成によれば、複数の受光素子は、複数の共鳴素子から発生する近接場光を検出可能な範囲に配置されるので、複数の共鳴素子から発生する近接場光を個別に検出することができ、高精度で高効率なトラッキング信号を得ることができる。 According to this configuration, the plurality of light receiving elements are arranged in a range in which the near field light generated from the plurality of resonance elements can be detected, so that the near field light generated from the plurality of resonance elements can be individually detected. And a highly accurate and highly efficient tracking signal can be obtained.
 また、上記の光情報装置において、前記トラックは、列状に配置された微粒子により規定されることが好ましい。この構成によれば、列状に配置された微粒子に対して、安定かつ高精度なトラッキングを行うことができる。 In the above optical information device, the track is preferably defined by fine particles arranged in a line. According to this configuration, stable and highly accurate tracking can be performed on the fine particles arranged in a row.
 また、上記の光情報装置において、前記トラックは、グルーブにより規定されることが好ましい。この構成によれば、グルーブに対して、安定かつ高精度なトラッキングを行うことができる。 In the above optical information device, the track is preferably defined by a groove. According to this configuration, stable and highly accurate tracking can be performed on the groove.
 また、上記の光情報装置において、前記複数の共鳴素子間の前記トラックに垂直な方向の距離は、トラックピッチの半分であることが好ましい。 In the above optical information device, it is preferable that the distance between the plurality of resonant elements in the direction perpendicular to the track is half of the track pitch.
 この構成によれば、トラッキング信号は、トラックからの位置ずれがトラックピッチの4分の1となる位置で最大又は最小となり、トラックからの位置ずれがトラックピッチの半分となる位置で0となるので、トラックからの位置ずれを容易に検出することができる。 According to this configuration, the tracking signal is maximum or minimum at a position where the positional deviation from the track is a quarter of the track pitch, and becomes zero at a position where the positional deviation from the track is half the track pitch. The positional deviation from the track can be easily detected.
 また、上記の光情報装置において、前記光源から前記複数の共鳴素子に入射する入射光の偏光方向は、前記情報記録媒体の表面に垂直な方向であることが好ましい。 In the above optical information device, it is preferable that the polarization direction of incident light incident on the plurality of resonance elements from the light source is a direction perpendicular to the surface of the information recording medium.
 この構成によれば、複数の共鳴素子を情報記録媒体の表面に対して垂直に保持し、情報記録媒体の表面に対して平行な面内に光源及び複数の共鳴素子を配置することができるので、情報記録媒体の表面に垂直な方向の光学装置の大きさを小さくすることができる。 According to this configuration, the plurality of resonance elements can be held perpendicular to the surface of the information recording medium, and the light source and the plurality of resonance elements can be arranged in a plane parallel to the surface of the information recording medium. The size of the optical device in the direction perpendicular to the surface of the information recording medium can be reduced.
 また、上記の光情報装置において、前記光源から前記複数の共鳴素子に入射する入射光の偏光方向は、前記情報記録媒体の表面に対して平行な方向であることが好ましい。この構成によれば、複数の共鳴素子を情報記録媒体の表面に対して垂直に保持する必要がないので、保持素子を容易に作製することができる。 In the above optical information device, it is preferable that the polarization direction of incident light incident on the plurality of resonant elements from the light source is a direction parallel to the surface of the information recording medium. According to this configuration, it is not necessary to hold the plurality of resonance elements perpendicular to the surface of the information recording medium, and thus the holding element can be easily manufactured.
 また、上記の光情報装置において、前記保持素子は、前記複数の共鳴素子の位置を前記トラックの長手方向にずらして配置することが好ましい。 In the optical information device, it is preferable that the holding element is arranged by shifting the positions of the plurality of resonance elements in the longitudinal direction of the track.
 この構成によれば、複数の共鳴素子の位置がトラックの長手方向にずらして配置されるので、複数の共鳴素子間での相互作用を抑制することができ、複数の共鳴素子の形状の自由度を高くすることができる。 According to this configuration, since the positions of the plurality of resonance elements are shifted in the longitudinal direction of the track, the interaction between the plurality of resonance elements can be suppressed, and the degree of freedom in the shape of the plurality of resonance elements Can be high.
 また、上記の光情報装置において、前記複数の共鳴素子間の前記トラックの長手方向の位置は、前記複数の共鳴素子のうちの1つの共鳴素子の前記トラックの長手方向の厚さ以上にずれていることが好ましい。 In the above optical information device, the position in the longitudinal direction of the track between the plurality of resonance elements is shifted by more than the thickness in the longitudinal direction of the track of one resonance element of the plurality of resonance elements. Preferably it is.
 この構成によれば、複数の共鳴素子間のトラックの長手方向の位置は、複数の共鳴素子のうちの1つの共鳴素子のトラックの長手方向の厚さ以上にずれているので、複数の共鳴素子間での相互作用をより抑制することができる。 According to this configuration, the position in the longitudinal direction of the track between the plurality of resonance elements is shifted by more than the thickness in the longitudinal direction of the track of one resonance element among the plurality of resonance elements. The interaction between them can be further suppressed.
 また、上記の光情報装置において、前記光源から前記複数の共鳴素子に入射する入射光の偏光方向は、前記情報記録媒体の表面に対して平行な方向かつ前記トラックに対して平行な方向であり、前記複数の共鳴素子間の前記トラックの長手方向の位置は、前記複数の共鳴素子のうちの1つの共鳴素子の前記トラックの長手方向の長さ以上にずれていることが好ましい。 In the optical information device, the polarization direction of incident light incident on the plurality of resonance elements from the light source is a direction parallel to the surface of the information recording medium and a direction parallel to the track. Preferably, the position in the longitudinal direction of the track between the plurality of resonance elements is shifted more than the length in the longitudinal direction of the track of one resonance element of the plurality of resonance elements.
 この構成によれば、光源から複数の共鳴素子に入射する入射光の偏光方向は、情報記録媒体の表面に対して平行な方向かつトラックに対して平行な方向である。複数の共鳴素子間のトラックの長手方向の位置は、複数の共鳴素子のうちの1つの共鳴素子のトラックの長手方向の長さ以上にずれている。したがって、複数の共鳴素子間のトラックの長手方向の位置は、複数の共鳴素子のうちの1つの共鳴素子のトラックの長手方向の長さ以上にずれているので、複数の共鳴素子間での相互作用をより抑制することができる。 According to this configuration, the polarization direction of the incident light incident on the plurality of resonance elements from the light source is parallel to the surface of the information recording medium and parallel to the track. The position in the longitudinal direction of the track between the plurality of resonance elements is shifted by more than the length in the longitudinal direction of the track of one resonance element of the plurality of resonance elements. Therefore, the position in the longitudinal direction of the track between the plurality of resonance elements is shifted by more than the length in the longitudinal direction of the track of one resonance element among the plurality of resonance elements. The action can be further suppressed.
 また、上記の光情報装置において、前記第1の検出素子によって検出された前記共鳴状態の変化に基づいて、前記情報記録媒体の表面に平行な面内における前記保持素子の傾きを表すヨーイング信号を演算するヨーイング信号演算回路と、前記ヨーイング信号演算回路によって演算された前記ヨーイング信号に応じて前記保持素子を前記情報記録媒体の表面に平行な面内で回転させる回転素子とをさらに備えることが好ましい。 Further, in the optical information device, a yawing signal representing an inclination of the holding element in a plane parallel to the surface of the information recording medium based on a change in the resonance state detected by the first detection element. It is preferable to further include a yawing signal calculation circuit for calculating, and a rotation element for rotating the holding element in a plane parallel to the surface of the information recording medium according to the yawing signal calculated by the yawing signal calculation circuit. .
 この構成によれば、ヨーイング信号演算回路は、第1の検出素子によって検出された共鳴状態の変化に基づいて、情報記録媒体の表面に平行な面内における保持素子の傾きを表すヨーイング信号を演算する。回転素子は、ヨーイング信号演算回路によって演算されたヨーイング信号に応じて保持素子を情報記録媒体の表面に平行な面内で回転させる。 According to this configuration, the yawing signal calculation circuit calculates a yawing signal that represents the inclination of the holding element in a plane parallel to the surface of the information recording medium, based on the change in the resonance state detected by the first detection element. To do. The rotating element rotates the holding element in a plane parallel to the surface of the information recording medium in accordance with the yawing signal calculated by the yawing signal calculation circuit.
 したがって、情報記録媒体の偏心又は保持素子をトラックに垂直な方向へ移動させることによって発生するトラックの傾きに対して、複数の共鳴素子のトラックに垂直な方向の距離が一定に保持される。したがって、安定したトラッキングを行うことができる。 Therefore, the distance in the direction perpendicular to the tracks of the plurality of resonance elements is kept constant against the eccentricity of the information recording medium or the inclination of the track generated by moving the holding element in the direction perpendicular to the track. Therefore, stable tracking can be performed.
 また、上記の光情報装置において、前記第1の検出素子は、前記複数の共鳴素子の各々の共鳴状態の変化を表す複数の検出信号を出力し、前記ヨーイング信号演算回路は、前記複数の検出信号の前記トラックに垂直な方向の変位量に対する位相差を演算し、前記回転素子は、前記位相差がπラジアンとなるように前記保持素子を前記情報記録媒体の表面に平行な面内で回転させることが好ましい。 In the optical information device, the first detection element outputs a plurality of detection signals representing changes in the resonance state of each of the plurality of resonance elements, and the yawing signal calculation circuit includes the plurality of detection signals. The phase difference with respect to the displacement amount of the signal in the direction perpendicular to the track is calculated, and the rotating element rotates the holding element in a plane parallel to the surface of the information recording medium so that the phase difference becomes π radians. It is preferable to make it.
 この構成によれば、第1の検出素子は、複数の共鳴素子の各々の共鳴状態の変化を表す複数の検出信号を出力する。ヨーイング信号演算回路は、複数の検出信号のトラックに垂直な方向の変位量に対する位相差を演算する。回転素子は、位相差がπラジアンとなるように保持素子を情報記録媒体の表面に平行な面内で回転させる。 According to this configuration, the first detection element outputs a plurality of detection signals representing changes in the resonance state of each of the plurality of resonance elements. The yawing signal calculation circuit calculates a phase difference with respect to a displacement amount in a direction perpendicular to the track of the plurality of detection signals. The rotating element rotates the holding element in a plane parallel to the surface of the information recording medium so that the phase difference is π radians.
 したがって、複数の検出信号のトラックに垂直な方向の変位量に対する位相差がπラジアンとなる場合、複数の検出信号のトラックに垂直な方向の距離は、トラックピッチの半分となるので、トラックからの位置ずれを容易に検出することができる。 Therefore, when the phase difference with respect to the displacement amount in the direction perpendicular to the track of the plurality of detection signals is π radians, the distance in the direction perpendicular to the track of the plurality of detection signals is half the track pitch. Misalignment can be easily detected.
 また、上記の光情報装置において、前記第1の検出素子は、前記複数の共鳴素子の各々の共鳴状態の変化を表す複数の検出信号を出力し、前記トラッキング信号演算回路は、前記第1の検出素子によって出力された前記複数の検出信号の差を前記トラッキング信号として演算することが好ましい。 In the optical information device, the first detection element outputs a plurality of detection signals representing changes in the resonance states of the plurality of resonance elements, and the tracking signal calculation circuit includes the first detection element. It is preferable to calculate a difference between the plurality of detection signals output by the detection element as the tracking signal.
 この構成によれば、第1の検出素子は、複数の共鳴素子の各々の共鳴状態の変化を表す複数の検出信号を出力する。トラッキング信号演算回路は、第1の検出素子によって出力された複数の検出信号の差をトラッキング信号として演算する。 According to this configuration, the first detection element outputs a plurality of detection signals representing changes in the resonance state of each of the plurality of resonance elements. The tracking signal calculation circuit calculates a difference between a plurality of detection signals output by the first detection element as a tracking signal.
 したがって、複数の検出信号の差がトラッキング信号として演算されるので、簡単な構成により、トラッキング信号を生成することができる。 Therefore, since a difference between a plurality of detection signals is calculated as a tracking signal, the tracking signal can be generated with a simple configuration.
 また、上記の光情報装置において、前記第1の検出素子は、前記複数の共鳴素子の各々の共鳴状態の変化を表す複数の検出信号を出力し、前記トラッキング信号演算回路は、前記複数の検出信号に基づいて、前記複数の共鳴素子の前記トラックからの位置ずれを補正するための補正値を演算し、演算した前記補正値に基づいて補正した前記複数の検出信号の差を前記トラッキング信号として演算することが好ましい。 In the optical information device, the first detection element outputs a plurality of detection signals representing changes in the resonance state of each of the plurality of resonance elements, and the tracking signal calculation circuit includes the plurality of detection signals. Based on the signal, a correction value for correcting the positional deviation of the plurality of resonance elements from the track is calculated, and a difference between the plurality of detection signals corrected based on the calculated correction value is used as the tracking signal. It is preferable to calculate.
 この構成によれば、第1の検出素子は、複数の共鳴素子の各々の共鳴状態の変化を表す複数の検出信号を出力する。トラッキング信号演算回路は、複数の検出信号に基づいて、複数の共鳴素子のトラックからの位置ずれを補正するための補正値を演算し、演算した補正値に基づいて補正した複数の検出信号の差をトラッキング信号として演算する。 According to this configuration, the first detection element outputs a plurality of detection signals representing changes in the resonance state of each of the plurality of resonance elements. The tracking signal calculation circuit calculates a correction value for correcting the positional deviation from the track of the plurality of resonance elements based on the plurality of detection signals, and the difference between the plurality of detection signals corrected based on the calculated correction value. Is calculated as a tracking signal.
 したがって、複数の共鳴素子のうちの一の共鳴素子とトラックの中心との間の距離と、複数の共鳴素子のうちの他の共鳴素子とトラックの中心との間の距離とが異なる場合であっても、複数の共鳴素子のトラックからの位置ずれが補正されるので、正確なトラッキング信号を生成することができる。 Therefore, the distance between one of the plurality of resonance elements and the center of the track is different from the distance between the other resonance element of the plurality of resonance elements and the center of the track. However, since the positional deviation from the track of the plurality of resonance elements is corrected, an accurate tracking signal can be generated.
 本発明の他の局面に係るトラッキング方法は、トラックを有する情報記録媒体に情報を記録又は再生する光情報装置におけるトラッキング方法であって、前記情報記録媒体と相互作用し、前記トラックからの距離に応じて共鳴状態が変化する複数の共鳴素子に光源からの光を入射させる光入射ステップと、前記複数の共鳴素子の各々の共鳴状態の変化を個別に検出する検出ステップと、前記検出ステップにおいて検出された前記共鳴状態の変化に基づいてトラッキング信号を演算するトラッキング信号演算ステップと、前記トラッキング信号演算ステップにおいて演算された前記トラッキング信号に応じて、前記複数の共鳴素子の位置を前記トラックに垂直な方向にずらして配置し、かつ前記複数の共鳴素子間の距離を一定に固定して保持する保持素子をトラックに垂直な方向に移動させる移動ステップと、を包含する。 A tracking method according to another aspect of the present invention is a tracking method in an optical information apparatus that records or reproduces information on an information recording medium having a track, and interacts with the information recording medium, at a distance from the track. A light incident step for causing light from a light source to enter a plurality of resonance elements whose resonance states change in response, a detection step for individually detecting a change in the resonance state of each of the plurality of resonance elements, and detection in the detection step A tracking signal calculation step for calculating a tracking signal based on the change in the resonance state, and positions of the plurality of resonance elements perpendicular to the track according to the tracking signal calculated in the tracking signal calculation step. Displaced in the direction, and the distance between the plurality of resonance elements is fixed and held constant Comprising a moving step, the moving the retaining element in a direction perpendicular to the track that.
 この構成によれば、光入射ステップにおいて、記録媒体と相互作用し、トラックからの距離に応じて共鳴状態が変化する複数の共鳴素子に光源からの光が入射される。検出ステップにおいて、複数の共鳴素子の各々の共鳴状態の変化が個別に検出される。トラッキング信号演算ステップにおいて、検出ステップで検出された共鳴状態の変化に基づいてトラッキング信号が演算される。移動ステップにおいて、トラッキング信号演算ステップで演算されたトラッキング信号に応じて、複数の共鳴素子の位置をトラックに垂直な方向にずらして配置し、かつ複数の共鳴素子間の距離を一定に固定して保持する保持素子がトラックに垂直な方向に移動される。 According to this configuration, in the light incident step, light from the light source is incident on the plurality of resonance elements that interact with the recording medium and change the resonance state according to the distance from the track. In the detection step, a change in the resonance state of each of the plurality of resonance elements is individually detected. In the tracking signal calculation step, the tracking signal is calculated based on the change in the resonance state detected in the detection step. In the movement step, according to the tracking signal calculated in the tracking signal calculation step, the positions of the plurality of resonance elements are shifted in the direction perpendicular to the track, and the distance between the plurality of resonance elements is fixed to be constant. The holding element to be held is moved in a direction perpendicular to the track.
 したがって、複数の共鳴素子の位置がトラックに垂直な方向にずらして配置され、かつ複数の共鳴素子間の距離が一定に固定されて保持されるので、情報記録媒体との相互作用により複数の共鳴素子とトラックとの相対的な位置が変化することがない。そのため、トラック位置からの変位にのみ依存した安定かつ高精度なトラッキングを行うことができる。 Accordingly, the positions of the plurality of resonance elements are shifted in the direction perpendicular to the track, and the distance between the plurality of resonance elements is fixed and held constant. The relative position between the element and the track does not change. Therefore, stable and highly accurate tracking that depends only on the displacement from the track position can be performed.
 また、複数の共鳴素子の各々の共鳴状態の変化が個別に検出され、検出された共鳴状態の変化に基づいてトラッキング信号が演算されるので、検出信号が複数の共鳴素子の周辺の光学定数の変化に敏感に反応し、トラックからの微小な位置ずれに対して変調度の高いトラッキング信号が得られる。そのため、安定かつ高精度なトラッキングを行うことができる。 In addition, since a change in the resonance state of each of the plurality of resonance elements is individually detected and a tracking signal is calculated based on the detected change in the resonance state, the detection signal has an optical constant around the plurality of resonance elements. A tracking signal having a high degree of modulation can be obtained with respect to a minute positional deviation from the track, which reacts sensitively to changes. Therefore, stable and highly accurate tracking can be performed.
 なお、発明を実施するための形態の項においてなされた具体的な実施態様または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と特許請求事項との範囲内で、種々変更して実施することができるものである。 It should be noted that the specific embodiments or examples made in the section for carrying out the invention are merely to clarify the technical contents of the present invention, and are limited to such specific examples. The present invention should not be interpreted in a narrow sense, and various modifications can be made within the spirit and scope of the present invention.
 本発明に係る光情報装置及びトラッキング方法は、回折限界を超えて高密度に情報を記録又は再生する光情報装置において、高精度にトラッキング制御を行うことが可能になり、高密度かつ大容量の光情報装置の実現に有用である。こうした高密度かつ大容量の光情報装置は、光ディスクプレーヤ、光ディスクレコーダ、コンピュータ及びデータサーバなど多くの用途に応用できる。 The optical information device and the tracking method according to the present invention enable high-precision tracking control in an optical information device that records or reproduces information at a high density exceeding the diffraction limit. This is useful for realizing an optical information device. Such a high-density and large-capacity optical information device can be applied to many uses such as an optical disc player, an optical disc recorder, a computer, and a data server.

Claims (20)

  1.  トラックを有する情報記録媒体に情報を記録又は再生する光情報装置であって、
     光源と、
     前記光源からの光が入射し、前記情報記録媒体と相互作用し、前記トラックからの距離に応じて共鳴状態が変化する複数の共鳴素子と、
     前記複数の共鳴素子の位置を前記トラックに垂直な方向にずらして配置し、かつ前記複数の共鳴素子間の距離を一定に固定して保持する保持素子と、
     前記複数の共鳴素子の各々の共鳴状態の変化を個別に検出する第1の検出素子と、
     前記第1の検出素子によって検出された前記共鳴状態の変化に基づいてトラッキング信号を演算するトラッキング信号演算回路と、
     前記トラッキング信号演算回路によって演算された前記トラッキング信号に応じて前記保持素子を前記トラックに垂直な方向に移動させる第1の移動素子と、
    を備えることを特徴とする光情報装置。
    An optical information device for recording or reproducing information on an information recording medium having a track,
    A light source;
    A plurality of resonance elements that receive light from the light source, interact with the information recording medium, and change a resonance state according to a distance from the track;
    A holding element that displaces the positions of the plurality of resonance elements in a direction perpendicular to the track, and holds a fixed distance between the plurality of resonance elements; and
    A first detection element for individually detecting a change in resonance state of each of the plurality of resonance elements;
    A tracking signal calculation circuit that calculates a tracking signal based on a change in the resonance state detected by the first detection element;
    A first moving element that moves the holding element in a direction perpendicular to the track according to the tracking signal calculated by the tracking signal calculation circuit;
    An optical information device comprising:
  2.  前記複数の共鳴素子を前記情報記録媒体の表面に垂直な方向に移動させる第2の移動素子をさらに備え、
     前記第2の移動素子は、前記保持素子と前記情報記録媒体との間を流れる気流の力により、前記情報記録媒体と前記保持素子との間の距離を一定に保持することを特徴とする請求項1に記載の光情報装置。
    A second moving element for moving the plurality of resonant elements in a direction perpendicular to the surface of the information recording medium;
    The second moving element is configured to maintain a constant distance between the information recording medium and the holding element by a force of an airflow flowing between the holding element and the information recording medium. Item 4. The optical information device according to Item 1.
  3.  前記複数の共鳴素子を前記情報記録媒体の表面に垂直な方向に移動させる第2の移動素子をさらに備え、
     前記第2の移動素子は、前記保持素子と前記情報記録媒体とを接触させることを特徴とする請求項1に記載の光情報装置。
    A second moving element for moving the plurality of resonant elements in a direction perpendicular to the surface of the information recording medium;
    The optical information apparatus according to claim 1, wherein the second moving element brings the holding element and the information recording medium into contact with each other.
  4.  前記複数の共鳴素子と前記情報記録媒体との距離を検出する第2の検出素子と、
     前記第2の検出素子からの検出信号に応じて、前記複数の共鳴素子と前記情報記録媒体との間の距離が一定になるように、前記複数の共鳴素子を前記情報記録媒体の表面に垂直な方向に移動させる第2の移動素子とをさらに備えることを特徴とする請求項1に記載の光情報装置。
    A second detection element for detecting a distance between the plurality of resonance elements and the information recording medium;
    The plurality of resonance elements are perpendicular to the surface of the information recording medium so that distances between the plurality of resonance elements and the information recording medium are constant according to a detection signal from the second detection element. The optical information apparatus according to claim 1, further comprising a second moving element that moves in a specific direction.
  5.  前記第1の検出素子は、複数の受光素子を含み、
     前記光情報装置は、前記複数の共鳴素子からの光を前記複数の受光素子に導く複数の導波路をさらに備えることを特徴とする請求項1~4のいずれかに記載の光情報装置。
    The first detection element includes a plurality of light receiving elements,
    The optical information device according to any one of claims 1 to 4, further comprising a plurality of waveguides for guiding light from the plurality of resonance elements to the plurality of light receiving elements.
  6.  前記光源は、それぞれ波長の異なる光を出射する複数の光源を含み、
     前記複数の共鳴素子は、前記複数の光源のそれぞれから出射された光の周波数を共鳴周波数とする形状又は材質で形成され、
     前記第1の検出素子は、複数の受光素子を含み、
     前記光情報装置は、前記複数の共鳴素子からの周波数の異なる複数の光を分離して、前記複数の光のそれぞれを対応する前記複数の受光素子に導く光学素子をさらに備えることを特徴とする請求項1~4のいずれかに記載の光情報装置。
    The light source includes a plurality of light sources that emit light having different wavelengths,
    The plurality of resonance elements are formed of a shape or material having a resonance frequency as a frequency of light emitted from each of the plurality of light sources,
    The first detection element includes a plurality of light receiving elements,
    The optical information device further includes an optical element that separates a plurality of lights having different frequencies from the plurality of resonant elements and guides each of the plurality of lights to the corresponding plurality of light receiving elements. The optical information device according to any one of claims 1 to 4.
  7.  前記第1の検出素子は、前記複数の共鳴素子から発生する近接場光を検出可能な範囲に配置された複数の受光素子を含むことを特徴とする請求項1~4のいずれかにに記載の光情報装置。 The first detection element includes a plurality of light receiving elements arranged in a range in which near-field light generated from the plurality of resonance elements can be detected. Optical information device.
  8.  前記トラックは、列状に配置された微粒子により規定されることを特徴とする請求項1~7のいずれかに記載の光情報装置。 8. The optical information device according to claim 1, wherein the track is defined by fine particles arranged in a line.
  9.  前記トラックは、グルーブにより規定されることを特徴とする請求項1~7のいずれかに記載の光情報装置。 8. The optical information device according to claim 1, wherein the track is defined by a groove.
  10.  前記複数の共鳴素子間の前記トラックに垂直な方向の距離は、トラックピッチの半分であることを特徴とする請求項1~9のいずれかに記載の光情報装置。 10. The optical information device according to claim 1, wherein a distance between the plurality of resonance elements in a direction perpendicular to the track is a half of a track pitch.
  11.  前記光源から前記複数の共鳴素子に入射する入射光の偏光方向は、前記情報記録媒体の表面に垂直な方向であることを特徴とする請求項1~10のいずれかに記載の光情報装置。 11. The optical information device according to claim 1, wherein a polarization direction of incident light incident on the plurality of resonance elements from the light source is a direction perpendicular to a surface of the information recording medium.
  12.  前記光源から前記複数の共鳴素子に入射する入射光の偏光方向は、前記情報記録媒体の表面に対して平行な方向であることを特徴とする請求項1~10のいずれかに記載の光情報装置。 The optical information according to any one of claims 1 to 10, wherein a polarization direction of incident light incident on the plurality of resonance elements from the light source is a direction parallel to a surface of the information recording medium. apparatus.
  13.  前記保持素子は、前記複数の共鳴素子の位置を前記トラックの長手方向にずらして配置することを特徴とする請求項1~12のいずれかに記載の光情報装置。 The optical information device according to any one of claims 1 to 12, wherein the holding element is arranged by shifting positions of the plurality of resonance elements in a longitudinal direction of the track.
  14.  前記複数の共鳴素子間の前記トラックの長手方向の位置は、前記複数の共鳴素子のうちの1つの共鳴素子の前記トラックの長手方向の厚さ以上にずれていることを特徴とする請求項11記載の光情報装置。 12. The position in the longitudinal direction of the track between the plurality of resonance elements is shifted by more than the thickness in the longitudinal direction of the track of one resonance element of the plurality of resonance elements. The optical information device described.
  15.  前記光源から前記複数の共鳴素子に入射する入射光の偏光方向は、前記情報記録媒体の表面に対して平行な方向かつ前記トラックに対して平行な方向であり、
     前記複数の共鳴素子間の前記トラックの長手方向の位置は、前記複数の共鳴素子のうちの1つの共鳴素子の前記トラックの長手方向の長さ以上にずれていることを特徴とする請求項12記載の光情報装置。
    The polarization direction of incident light incident on the plurality of resonance elements from the light source is a direction parallel to the surface of the information recording medium and a direction parallel to the track,
    The position in the longitudinal direction of the track between the plurality of resonance elements is shifted by more than the length of the resonance direction of one of the plurality of resonance elements in the longitudinal direction of the track. The optical information device described.
  16.  前記第1の検出素子によって検出された前記共鳴状態の変化に基づいて、前記情報記録媒体の表面に平行な面内における前記保持素子の傾きを表すヨーイング信号を演算するヨーイング信号演算回路と、
     前記ヨーイング信号演算回路によって演算された前記ヨーイング信号に応じて前記保持素子を前記情報記録媒体の表面に平行な面内で回転させる回転素子とをさらに備えることを特徴とする請求項1~15のいずれかに記載の光情報装置。
    A yawing signal calculation circuit for calculating a yawing signal representing the inclination of the holding element in a plane parallel to the surface of the information recording medium based on the change in the resonance state detected by the first detection element;
    16. A rotating element that further rotates the holding element in a plane parallel to the surface of the information recording medium according to the yawing signal calculated by the yawing signal calculation circuit. The optical information device according to any one of the above.
  17.  前記第1の検出素子は、前記複数の共鳴素子の各々の共鳴状態の変化を表す複数の検出信号を出力し、
     前記ヨーイング信号演算回路は、前記複数の検出信号の前記トラックに垂直な方向の変位量に対する位相差を演算し、
     前記回転素子は、前記位相差がπラジアンとなるように前記保持素子を前記情報記録媒体の表面に平行な面内で回転させることを特徴とする請求項16記載の光情報装置。
    The first detection element outputs a plurality of detection signals representing changes in the resonance state of each of the plurality of resonance elements,
    The yawing signal calculation circuit calculates a phase difference with respect to a displacement amount in a direction perpendicular to the track of the plurality of detection signals,
    17. The optical information device according to claim 16, wherein the rotating element rotates the holding element in a plane parallel to the surface of the information recording medium so that the phase difference is π radians.
  18.  前記第1の検出素子は、前記複数の共鳴素子の各々の共鳴状態の変化を表す複数の検出信号を出力し、
     前記トラッキング信号演算回路は、前記第1の検出素子によって出力された前記複数の検出信号の差を前記トラッキング信号として演算することを特徴とする請求項1~17のいずれかに記載の光情報装置。
    The first detection element outputs a plurality of detection signals representing changes in the resonance state of each of the plurality of resonance elements,
    18. The optical information device according to claim 1, wherein the tracking signal calculation circuit calculates a difference between the plurality of detection signals output by the first detection element as the tracking signal. .
  19.  前記第1の検出素子は、前記複数の共鳴素子の各々の共鳴状態の変化を表す複数の検出信号を出力し、
     前記トラッキング信号演算回路は、前記複数の検出信号に基づいて、前記複数の共鳴素子の前記トラックからの位置ずれを補正するための補正値を演算し、演算した前記補正値に基づいて補正した前記複数の検出信号の差を前記トラッキング信号として演算することを特徴とする請求項1~17のいずれかに記載の光情報装置。
    The first detection element outputs a plurality of detection signals representing changes in the resonance state of each of the plurality of resonance elements,
    The tracking signal calculation circuit calculates a correction value for correcting a positional deviation of the plurality of resonance elements from the track based on the plurality of detection signals, and corrects based on the calculated correction value. The optical information device according to any one of claims 1 to 17, wherein a difference between a plurality of detection signals is calculated as the tracking signal.
  20.  トラックを有する情報記録媒体に情報を記録又は再生する光情報装置におけるトラッキング方法であって、
     前記情報記録媒体と相互作用し、前記トラックからの距離に応じて共鳴状態が変化する複数の共鳴素子に光源からの光を入射させる光入射ステップと、
     前記複数の共鳴素子の各々の共鳴状態の変化を個別に検出する検出ステップと、
     前記検出ステップにおいて検出された前記共鳴状態の変化に基づいてトラッキング信号を演算するトラッキング信号演算ステップと、
     前記トラッキング信号演算ステップにおいて演算された前記トラッキング信号に応じて、前記複数の共鳴素子の位置を前記トラックに垂直な方向にずらして配置し、かつ前記複数の共鳴素子間の距離を一定に固定して保持する保持素子をトラックに垂直な方向に移動させる移動ステップと、
    を包含することを特徴とするトラッキング方法。
    A tracking method in an optical information apparatus for recording or reproducing information on an information recording medium having a track,
    A light incident step for causing light from a light source to enter a plurality of resonance elements that interact with the information recording medium and change a resonance state according to a distance from the track;
    A detection step of individually detecting a change in resonance state of each of the plurality of resonance elements;
    A tracking signal calculation step for calculating a tracking signal based on the change in the resonance state detected in the detection step;
    In accordance with the tracking signal calculated in the tracking signal calculating step, the positions of the plurality of resonance elements are shifted in a direction perpendicular to the track, and the distance between the plurality of resonance elements is fixed. Moving the holding element to move in a direction perpendicular to the track;
    The tracking method characterized by including.
PCT/JP2012/001918 2011-03-22 2012-03-21 Optical information device and tracking method WO2012127854A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-061955 2011-03-22
JP2011061955A JP2014112453A (en) 2011-03-22 2011-03-22 Recording/reproducing device and tracking method thereof

Publications (1)

Publication Number Publication Date
WO2012127854A1 true WO2012127854A1 (en) 2012-09-27

Family

ID=46879028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001918 WO2012127854A1 (en) 2011-03-22 2012-03-21 Optical information device and tracking method

Country Status (2)

Country Link
JP (1) JP2014112453A (en)
WO (1) WO2012127854A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5994198B2 (en) * 2011-04-14 2016-09-21 パナソニックIpマネジメント株式会社 Optical information apparatus, optical disk drive apparatus, optical information recording apparatus, optical information reproducing apparatus, gap control method, and optical pickup

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09326130A (en) * 1996-06-04 1997-12-16 Sharp Corp Optical waveguide element, its manufacture and optical information recording/reproducing device using it
JP2002133698A (en) * 2000-10-31 2002-05-10 Ricoh Co Ltd Manufacture method of information recording and reproducing apparatus optical element for information recording and reproducing apparatus
JP2003272176A (en) * 2002-03-20 2003-09-26 Fuji Xerox Co Ltd Optical recording medium, recording and reproducing device, and manufacturing method of the optical recording medium
JP2005182895A (en) * 2003-12-18 2005-07-07 Sony Corp Optical head, exposure device, recording and/or reproducing device
JP2006073123A (en) * 2004-09-03 2006-03-16 Ricoh Co Ltd Near-field light slider and near-field light recording/reproducing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09326130A (en) * 1996-06-04 1997-12-16 Sharp Corp Optical waveguide element, its manufacture and optical information recording/reproducing device using it
JP2002133698A (en) * 2000-10-31 2002-05-10 Ricoh Co Ltd Manufacture method of information recording and reproducing apparatus optical element for information recording and reproducing apparatus
JP2003272176A (en) * 2002-03-20 2003-09-26 Fuji Xerox Co Ltd Optical recording medium, recording and reproducing device, and manufacturing method of the optical recording medium
JP2005182895A (en) * 2003-12-18 2005-07-07 Sony Corp Optical head, exposure device, recording and/or reproducing device
JP2006073123A (en) * 2004-09-03 2006-03-16 Ricoh Co Ltd Near-field light slider and near-field light recording/reproducing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5994198B2 (en) * 2011-04-14 2016-09-21 パナソニックIpマネジメント株式会社 Optical information apparatus, optical disk drive apparatus, optical information recording apparatus, optical information reproducing apparatus, gap control method, and optical pickup

Also Published As

Publication number Publication date
JP2014112453A (en) 2014-06-19

Similar Documents

Publication Publication Date Title
US6639686B1 (en) Method of and apparatus for real-time continual nanometer scale position measurement by beam probing as by laser beams and the like of atomic and other undulating surfaces such as gratings or the like relatively moving with respect to the probing beams
EP0915458B1 (en) Optical head and optical disk apparatus
US20070253051A1 (en) Optical Device
JP5068457B2 (en) Optical element
JP4060150B2 (en) Micro-integrated near-field optical recording head and optical recording apparatus using the same
JP2000173093A (en) Optical element and information recording and reproducing apparatus
JP2000331302A (en) Recording/reproducing head, recording/reproducing disk device, and manufacture of magnetic sensor
JP2002050001A (en) Information recording and reproducing head, information recording and reproducing device, tracking device and information recording medium
JP5028526B2 (en) Thermally assisted magnetic head and method of assembling the thermally assisted magnetic head
WO2012127854A1 (en) Optical information device and tracking method
JP2001236685A (en) Optical head, magneto-optical head, disk device, and manufacturing method of optical head
US6704250B1 (en) Near-field magneto-optical head having a magnetic sensor
JP4793323B2 (en) Manufacturing method of plasmon probe, near-field light generator, optically assisted magnetic recording head, optically assisted magnetic recording device, near-field light microscope device, near-field light exposure device, optical recording device
JP6037312B2 (en) Detection device, information reproduction device, drive device, sensor, and detection method
JP2013004148A (en) Optical transmission module, and manufacturing device and manufacturing method thereof
JP3544416B2 (en) Signal reproducing device for magnetic recording medium
JP5994198B2 (en) Optical information apparatus, optical disk drive apparatus, optical information recording apparatus, optical information reproducing apparatus, gap control method, and optical pickup
JPH10172172A (en) Interval detecting method, interval controller, information recording and reproducing device and recording medium
US8780683B2 (en) Information recording medium, tracking method, and optical information apparatus
JP2006073123A (en) Near-field light slider and near-field light recording/reproducing apparatus
JP4169466B2 (en) Recording / reproducing method and recording / reproducing apparatus
US20030206513A1 (en) Optical element, optical head and signal reproducing method
JPH09326130A (en) Optical waveguide element, its manufacture and optical information recording/reproducing device using it
JP2013089270A (en) Optical information recording/reproduction device, and optical information recording method
JP2002074729A (en) Optical pickup device, information reproducing device, and information recording and reproducing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12760017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP