WO2012126869A1 - Verfahren zur hydrierung von nitrilen - Google Patents
Verfahren zur hydrierung von nitrilen Download PDFInfo
- Publication number
- WO2012126869A1 WO2012126869A1 PCT/EP2012/054755 EP2012054755W WO2012126869A1 WO 2012126869 A1 WO2012126869 A1 WO 2012126869A1 EP 2012054755 W EP2012054755 W EP 2012054755W WO 2012126869 A1 WO2012126869 A1 WO 2012126869A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- reactor
- hydrogenation
- hydrogen
- less
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C209/00—Preparation of compounds containing amino groups bound to a carbon skeleton
- C07C209/44—Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
- C07C209/48—Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of nitriles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C209/00—Preparation of compounds containing amino groups bound to a carbon skeleton
- C07C209/44—Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
- C07C209/52—Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of imines or imino-ethers
Definitions
- the present invention relates to a process for the hydrogenation of nitriles with hydrogen in the presence of a catalyst which is used in the form of small moldings.
- Another object of the present invention is a process for the preparation of secondary products of isophorone diamine (IPDA) or ⁇ , ⁇ -dimethylaminopropylamine (DMAPA) from amines according to the invention.
- IPDA isophorone diamine
- DMAPA ⁇ , ⁇ -dimethylaminopropylamine
- the hydrogenation of nitriles is generally carried out by catalytic hydrogenation on noble metals, such as Pt, Pd or rhodium, or Co and Ni catalysts (see, for example, "Amines, Alipathic", Ullmann's Encyclopedia of Industrial Chemistry, Published Online: 15 JUN 2000 , DOI: 10.1002 / 14356007.a02_001).
- noble metals such as Pt, Pd or rhodium, or Co and Ni catalysts
- the process is usually carried out in suspension mode or in a fixed bed reactor.
- the catalyst used In the suspension mode of operation, the catalyst used must be separated off from the reaction mixture in order to enable an economical process. The separation is associated with procedural effort.
- EP-449089 discloses the hydrogenation of isophorone nitrile to isophorone diamine at 250 bar and WO 2007/128803 describes the hydrogenation of N, N-dimethylaminopropionitrile (DMAPN) to ⁇ , ⁇ -dimethylaminopropylamine (DMAPA) at 180 bar.
- DMAPN N, N-dimethylaminopropionitrile
- DMAPA ⁇ , ⁇ -dimethylaminopropylamine
- the object of the present invention was to provide a fixed-bed process for the hydrogenation of organic nitrile compounds which permits the use of hydrogenation catalysts, in particular of catalysts containing Cu, Co and Ni, under milder reaction conditions, ie in particular lower pressures and / or temperatures. allows.
- a further object of the present invention was to provide a fixed-bed process in which high yields and selectivities in the nitrile hydrogenation can be achieved and which, moreover, is economical to implement.
- nitriles are hydrogenated.
- aliphatic mono-, di- and / or trinitriles linear or branched
- aliphatic mono-, di- and / or trinitriles linear or branched
- aliphatic mono-, di- and / or trinitriles linear or branched
- aliphatic mono-, di- and / or trinitriles linear or branched
- aliphatic mono-, di- and / or trinitriles linear or branched
- having 1 to 30, in particular 2 to 18 or 2 to 8 carbon atoms or cycloaliphatic mono and dinitriles having 6 to 20, in particular 6 to 12, carbon atoms or aliphatic , beta- or omega-aminonitriles or alkoxynitriles having from 1 to 30, in particular from 2 to 8, carbon atoms are used in the process according to the invention.
- the abovementioned mono-, di- or trinitriles can be monosubstituted or polysubstituted.
- Particularly preferred mononitriles are acetonitrile for the production of ethylamines, propionitrile for the preparation of propylamines, butyronitrile for the preparation of butylamines, lauronitrile for the production of laurylamine, stearylnitrile for the preparation of stearylamine, N, N-dimethylaminopropionitrile (DMAPN) for the preparation of ⁇ , ⁇ Dimethylaminopropylamine (DMAPA) and benzonitrile to produce benzylamine.
- DMAPN N, N-dimethylaminopropionitrile
- DMAPA Dimethylaminopropylamine
- Particularly preferred dinitriles are adiponitrile (ADN) for the preparation of hexamethylenediamine (HMD) and / or 6-aminocapronitrile (ACN), 2-methylglutarodinitrile for the preparation of 2-methylglutarodiamine, succinonitrile for the preparation of 1, 4-butanediamine and suberonitrile for the preparation of octamethylenediamine.
- ADN adiponitrile
- HMD hexamethylenediamine
- ACN 6-aminocapronitrile
- 2-methylglutarodinitrile for the preparation of 2-methylglutarodiamine
- succinonitrile for the preparation of 1, 4-butanediamine
- suberonitrile for the preparation of octamethylenediamine.
- Particularly preferred cyclic nitriles are isophorone nitrilimine (I PN I) and or isophorone nitrile (IPN) for the preparation of isophoronediamine and isophthalonitrile for the preparation of meta-xylylenediamine.
- I PN I isophorone nitrilimine
- IPN isophorone nitrile
- Particularly preferred ⁇ -aminonitriles are aminopropionitrile for preparing 1,3-diamino-propane or addition products of alkylamines, alkyldiamines or alkanolamines to acrylonitrile.
- addition products of ethylenediamine and acrylonitrile can be converted to the corresponding diamines.
- 3- [2-aminoethyl] amino] propionitrile can be 3- (2-aminoethyl) aminopropylamine and 3,3 '- (ethylenediimino) bispropionitrile or 3- [2- (3-aminopropylamino) ethylamino] -propionitrile to N, N'-bis (3-aminopropyl) ethylenediamine.
- Particularly preferred ⁇ -aminonitriles are aminocapronitrile for the preparation of hexamethylenediamine.
- ⁇ -nitriles are iminodiacetonitrile (IDAN) for the preparation of diethylenetriamine and aminoacetonitrile (AAN) for the preparation of ethylenediamine (EDA) and diethylenetriamine (DETA).
- IDAN iminodiacetonitrile
- AAN aminoacetonitrile
- EDA ethylenediamine
- DETA diethylenetriamine
- a preferred trinitrile is trisacetonitrile.
- DMAPN ⁇ , ⁇ -dimethylaminopropionitrile
- ADN adiponitrile
- HMD hexamethylenediamine
- 6-ACN 6-aminocapronitrile
- ⁇ , ⁇ -dimethylaminopropionitrile is used for the preparation of ⁇ , ⁇ -dimethylaminopropylamine (DMAPA) in the process according to the invention.
- DMAPN ⁇ , ⁇ -dimethylaminopropionitrile
- isophorone is used for the preparation of isophorone diamine in the process of the invention and in a particularly particularly preferred embodiment, adiponitrile (ADN) for the production of hexamethylenediamine (HMD) or for the preparation of 6-aminocapronitrile (6-ACN) and HMD used.
- ADN adiponitrile
- hydrogen or a hydrogen-containing gas may be used.
- the hydrogen is generally used technically pure.
- the hydrogen may also be in the form of a hydrogen-containing gas, i. in admixtures with other inert gases, such as nitrogen, helium, neon, argon or carbon dioxide are used.
- inert gases such as nitrogen, helium, neon, argon or carbon dioxide are used.
- reformer effluents, refinery gases, etc. can be used as the hydrogen-containing gases, if and insofar as these gases do not contain any contact poisons for the hydrogenation catalysts used, for example CO.
- pure hydrogen or essentially pure hydrogen in the process, for example hydrogen having a content of more than 99% by weight of hydrogen, preferably more than 99.9% by weight of hydrogen, particularly preferably more than 99.99 Wt .-% hydrogen, in particular more than 99.999 wt .-% hydrogen.
- the hydrogenation may optionally be carried out with the addition of ammonia.
- Pure ammonia is preferably used in the process, preferably ammonia with a content of more than 99% by weight of ammonia and particularly preferably more than 99.9% by weight of ammonia
- Catalysts which can be used as catalysts for hydrogenating the nitrile function to the corresponding amine are, in particular, one or more elements of subgroup 8 of the Periodic Table (Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt), preferably Fe, Co, Ni, Ru or Rh, more preferably Co or Ni, in particular Co.
- Another preferred active component is Cu.
- the abovementioned catalysts can be doped in the customary manner with promoters, for example with chromium, iron, cobalt, manganese, molybdenum, titanium, tin, metals of the alkali metal group, metals of the alkaline earth metal group and / or phosphorus.
- promoters for example with chromium, iron, cobalt, manganese, molybdenum, titanium, tin, metals of the alkali metal group, metals of the alkaline earth metal group and / or phosphorus.
- so-called skeletal catalysts also referred to as Raney® type, hereinafter also referred to as: Raney catalyst
- Raney catalyst which are obtained by leaching (activation) of an alloy of hydrogenation-active metal and a further component (preferably Al) may preferably be used.
- Preference is given to using Raney nickel catalysts or Raney cobalt catalysts.
- catalysts preference is furthermore given to using Pd or Pt supported catalysts.
- Preferred support materials are activated carbon, Al2O3, ⁇ 2, ZrÜ2 and S1O2.
- catalysts are used in the process according to the invention, which are prepared by reduction of so-called catalyst precursors.
- the catalyst precursor contains an active material which contains one or more catalytically active components, optionally promoters and optionally a carrier material.
- the catalytically active components are oxygen-containing compounds of the abovementioned metals, for example their metal oxides or hydroxides, such as CoO, NiO, CuO and / or their mixed oxides.
- catalytically active components is used for the abovementioned oxygen-containing metal compounds, but is not intended to imply that these oxygen-containing compounds are already catalytically active per se.
- the catalytically active components have a catalytic activity in the reaction according to the invention only after the reduction has taken place.
- 10 wt .-% oxygen-containing compounds of aluminum and / or manganese calculated as Al2O3 or MnÜ2 contains, for example, in loc. cit, page 8, disclosed catalyst with the Composition 31, 5 wt .-% Zr0 2 , 50 wt .-% NiO, 17 wt .-% CuO and 1, 5 wt .-% M0O3, or in EP-A-963 975 disclosed oxide mixtures prior to the reduction with hydrogen 22 to 40% by weight ZrO 2, 1 to 30% by weight oxygen-containing compounds of copper, calculated as CuO, 15 to 50% by weight oxygen-containing compounds of nickel, calculated as NiO, the molar Ni: Cu Ratio is greater than 1, 15 to 50 wt .-% oxygen-containing compounds of cobalt, calculated as CoO, 0 to 10 wt .-% oxygen-containing compounds of aluminum and / or manganese, calculated as Al2O3 or MnÜ2, and fertilize no oxygen-containing compounds of molybdenum, for example,
- the catalysts or catalyst precursors are preferably used in the form of shaped bodies in the process according to the invention.
- Shaped bodies of any desired geometry or shape are suitable as shaped bodies.
- Preferred forms are tablets, rings, cylinders, star strands, wagon wheels or balls, particularly preferred are tablets, rings, cylinders, balls or star strands. Very particularly preferred is the strand form.
- the diameter of the spherical shape according to the invention is 4 mm or less, preferably 3 mm or less and particularly preferably 2.5 mm or less.
- the diameter of spheres is preferably in the range of 0.5 to 4 mm, more preferably 1 to 3 mm and most preferably 1, 5 to 2.5 mm.
- the ratio of length: diameter is preferably in the range from 1: 1 to 14: 1, more preferably in the range from 1: 1 to 10: 1 and most preferably in the range from 1: 1 to 6: 1.
- the diameter of the strands or cylinders is according to the invention 3 mm or less, and more preferably 2.5 mm or less.
- the diameter of the strands or cylinders is preferably in the range 0.5 to 3 mm, more preferably 1 to 2.5 mm and most preferably 1, 5 to 2.5 mm.
- the height h of the tablet is 4 mm or less, more preferably 3 mm or less and most preferably 2.5 mm or less.
- the height h of the tablet is preferably in the range of 0.5 to 4 mm, more preferably 1 to 3 mm, and most preferably 1 to 5 to 2.5 mm.
- the ratio of height h (or thickness) of the tablet to the diameter D of the tablet is preferably 1: 1 to 1: 2.5, more preferably 1: 1 to 1: 2 and most preferably 1: 1 to 1: 2.
- the surface and the volume of the shaped body result from the geometric dimensions of the shaped body according to the known mathematical formulas.
- the volume can also be calculated using the following method, where:
- the internal porosity of the molded article determines (e.g., via measurement of water uptake in [ml / g cat] at room temperature and 1 bar total pressure),
- the surface can also be calculated theoretically by the following method, in which one defines an envelope of the molding, the curve radii max. 5 ⁇ is (in order not to take the inner pore surface by "penetration" of the envelope in the pores) and the moldings as intimately touched (no cut surface with the support) . This would vividly correspond to a very thin film, which is placed around the molding and then creates a vacuum from the inside, so that the film lays as close as possible to the molding.
- the molding used preferably has a bulk density (according to EN ISO 6) in the range from 0.1 to 3 kg / l, preferably from 1.5 to 2.5 kg / l and particularly preferably from 1.7 to 2.2 kg / l
- moldings are used in the process according to the invention, which are produced by impregnation (impregnation) of support materials which have above-mentioned geometry or which are deformed after impregnation to the moldings having the abovementioned geometry.
- carrier materials are carbon, such as graphite, carbon black, graphene, carbon nanotubes and / or activated carbon, aluminum oxide (gamma, delta, theta, alpha, kappa, chi or mixtures thereof), silicon dioxide, zirconium dioxide, zeolites, aluminosilicates or mixtures thereof consideration.
- the impregnation of the abovementioned support materials can be carried out by the usual methods (A.B. Stiles, Catalyst Manufacture - Laboratory and Commercial Preparations, Marcel Dekker, New York, 1983), for example by applying a metal salt solution in one or more impregnation stages.
- Suitable metal salts are, as a rule, water-soluble metal salts, such as the nitrates, acetates or chlorides of the corresponding catalytically active components or doping elements, such as co-nitrate or co-chloride.
- the impregnated support material is usually dried and optionally calcined.
- the calcination is generally carried out at temperatures between 300 and 800 ° C, preferably 350 to 600 ° C, especially at 450 to 550 ° C.
- the impregnation can also be carried out by the so-called "incipient wetness method", in which the support material is moistened to the maximum saturation with the impregnation solution in accordance with its water absorption capacity.
- the impregnation can also be done in supernatant solution.
- multistage impregnation methods it is expedient to dry between individual impregnation steps and, if appropriate, to calcine.
- the multi-step impregnation is advantageous to apply when the carrier material is to be applied in a larger amount with metal salts.
- the impregnation can take place simultaneously with all metal salts or in any order of the individual metal salts in succession.
- carrier materials are used which already have the preferred geometry of the shaped bodies described above.
- carrier materials which are present as powder or grit, and to subject impregnated carrier materials to a shaping.
- the impregnated and dried or calcined support material can be conditioned.
- the conditioning can be done, for example, by adjusting the impregnated carrier material by grinding to a certain particle size.
- the conditioned, impregnated carrier material can be mixed with molding aids, such as graphite, or stearic acid, and further processed into shaped bodies.
- molding aids such as graphite, or stearic acid
- Common methods of shaping are described, for example, in Ullmann [Ullmann's Encyclopedia Electronic Release 2000, Chapter: “Catalysis and Catalysts", pages 28-32] and by Ertl et al. [Ertl, Knözinger, Weitkamp, Handbook of Heterogenous Catalysis, VCH Weinheim, 1997, pages 98 ff].
- Common methods of molding include extrusion, tableting, i. mechanical compression or pelleting, i. Compacting by circular and / or rotating movements.
- After conditioning or shaping is usually a tempering.
- the temperatures during the heat treatment usually correspond to the temperatures during the calcination.
- molded articles are used in the process according to the invention, which are prepared by a co-precipitation (mixed precipitation) of all their components and the thus precipitated catalyst precursors are subjected to shaping.
- the liquid used is usually water.
- a soluble compound of the active components are usually the corresponding metal salts, such as the nitrates, sulfates, acetates or chlorides, the above-mentioned metals into consideration.
- Water-soluble compounds of Ti, Al, Zr, Si, etc. for example the water-soluble nitrates, sulfates, acetates or chlorides of these elements, are generally used as the soluble compounds of a carrier material.
- Water-soluble compounds of the doping elements for example the water-soluble nitrates, sulfates, acetates or chlorides of these elements, are generally used as the soluble compounds of the doping elements.
- the shaped bodies can be produced by precipitation.
- Precipitation is understood as meaning a preparation method in which a sparingly soluble or insoluble carrier material is suspended in a liquid and subsequently soluble compounds, such as soluble metal salts, are added to the corresponding metal oxides, which are then precipitated onto the suspended carrier by addition of a precipitating agent (eg be in EP-A2-1 106 600, page 4, and AB Stiles, Catalyst Manufacture, Marcel Dekker, Inc., 1983, page 15).
- a precipitating agent eg be in EP-A2-1 106 600, page 4, and AB Stiles, Catalyst Manufacture, Marcel Dekker, Inc., 1983, page 15).
- heavy or insoluble support materials are for example carbon compounds such as graphite, carbon black and / or activated carbon, alumina (gamma, delta, theta, alpha, kappa, chi or mixtures thereof), silica, zirconia, zeolites, aluminosilicates or mixtures thereof into consideration ,
- the carrier material is usually present as a powder or grit.
- Suitable soluble compounds are the abovementioned soluble compounds of the active components or of the doping elements.
- the soluble compounds are precipitated by addition of a precipitant as sparingly or insoluble, basic salts.
- the precipitants used are preferably bases, in particular mineral bases, such as alkali metal bases.
- bases in particular mineral bases, such as alkali metal bases.
- precipitants are sodium carbonate, sodium hydroxide, potassium carbonate or potassium hydroxide.
- ammonium salts for example ammonium halides, ammonium carbonate, ammonium hydroxide or ammonium carboxylates.
- the precipitation reactions may e.g. at temperatures of 20 to 100 ° C, especially 30 to 90 ° C, in particular at 50 to 70 ° C, are performed.
- the precipitates obtained in the precipitation reactions are generally chemically ununiform and generally contain mixtures of the oxides, oxide hydrates, hydroxides, carbonates and / or bicarbonates of the metals used. It may prove beneficial for the filterability of the precipitates when they are aged, i. if left for some time after precipitation, possibly in heat or by passing air through it.
- the precipitates obtained by these precipitation processes are usually processed by washing, drying, calcining and conditioning.
- the precipitates are generally dried at 80 to 200 ° C, preferably 100 to 150 ° C, and then calcined.
- the calcination is generally carried out at temperatures between 300 and 800 ° C, preferably 350 to 600 ° C, especially at 450 to 550 ° C.
- the powdery catalyst precursors obtained by precipitation reactions are usually conditioned.
- the conditioning can be carried out, for example, by adjusting the precipitation catalyst by grinding to a specific particle size.
- the catalyst precursor obtained by precipitation reactions can be mixed with molding aids, such as graphite or stearic acid, and further processed into shaped bodies.
- Common methods of molding include extrusion, tableting, i. mechanical pressing or pelleting, i. Compacting by circular and / or rotating movements.
- After conditioning or shaping is usually a tempering.
- the temperatures during the heat treatment usually correspond to the temperatures during the calcination.
- Shaped bodies which have been produced by impregnation or precipitation generally contain the catalytically active components after calcination, generally in the form of their oxygen-containing compounds, for example their metal oxides or hydroxides, such as CoO, NiO, CuO and / or their mixed oxides (catalyst precursor).
- their oxygen-containing compounds for example their metal oxides or hydroxides, such as CoO, NiO, CuO and / or their mixed oxides (catalyst precursor).
- the catalyst precursors prepared by impregnation or precipitation as described above are generally reduced after calcination.
- the reduction usually converts the catalyst precursor into its catalytically active form.
- the reduction of the catalyst precursor can be carried out at elevated temperature in a moving or stationary reduction furnace.
- the reducing agent used is usually hydrogen or a gas containing hydrogen.
- the hydrogen is generally used technically pure.
- the hydrogen may also be in the form of a hydrogen-containing gas, i. in admixtures with other inert gases, such as nitrogen, helium, neon, argon or carbon dioxide are used.
- the hydrogen stream can also be recycled as recycle gas into the reduction, possibly mixed with fresh hydrogen and, if appropriate, after removal of water by condensation.
- the reduction of the catalyst precursor is preferably carried out in a reactor in which the shaped bodies are arranged as a fixed bed. Particular preference is given to reducing the catalytic torvorierirs in the same reactor in which the subsequent reaction of the nitriles with hydrogen.
- the reduction of the catalyst precursor can take place in a fluidized bed reactor in the fluidized bed.
- the reduction of the catalyst precursor is generally carried out at reduction temperatures of 50 to 600 ° C, in particular from 100 to 500 ° C, particularly preferably from 150 to 450 ° C.
- the hydrogen partial pressure is generally from 1 to 300 bar, in particular from 1 to 200 bar, more preferably from 1 to 100 bar, wherein the pressure data here and below relate to the absolute measured pressure.
- the duration of the reduction is preferably 1 to 20 hours, and more preferably 5 to 15 hours.
- a solvent may be supplied to remove any water of reaction formed and / or, for example, to heat the reactor faster and / or to be able to dissipate the heat better during the reduction can.
- the solvent can also be supplied supercritically.
- Suitable solvents can be used the solvents described above. Preferred solvents are water; Ethers, such as methyl tert-butyl ether, ethyl tert-butyl ether, dioxane or tetrahydrofuran. Particularly preferred are water or tetrahydrofuran.
- Suitable suitable solvents are also suitable mixtures.
- the resulting shaped article can be handled after reduction under inert conditions.
- the molded article may be handled and stored under an inert gas such as nitrogen or under an inert liquid, for example, an alcohol, water or the product of the respective reaction, for which the catalyst is used. If necessary, the catalyst must then be freed from the inert liquid before the start of the actual reaction.
- the storage of the catalyst under inert substances allows uncomplicated and safe handling and storage of the molding.
- the shaped body can also be brought into contact with an oxygen-containing gas stream such as air or a mixture of air with nitrogen.
- an oxygen-containing gas stream such as air or a mixture of air with nitrogen.
- the passivated molding generally has a protective oxide layer. Through this protective oxide layer, the handling and storage of the catalyst is simplified, so that, for example, the incorporation of the passivated molded body is simplified in the reactor.
- a passivated molding is preferably reduced before contacting with the starting materials as described above by treating the passivated catalyst with hydrogen or a gas containing hydrogen.
- the reduction conditions generally correspond to the reduction conditions, which are used in the reduction of the catalyst precursors. Activation typically removes the protective passivation layer.
- the inventive method is preferably carried out in a reactor in which the catalyst is arranged as a fixed bed.
- the fixed-bed arrangement comprises a catalyst charge in the proper sense, i. loose, supported or unsupported moldings, which are preferably in the geometry or shape described above.
- the moldings are introduced into the reactor.
- a grid base or a gas- and liquid-permeable sheet is usually used, on which the shaped bodies rest.
- the shaped bodies can be surrounded by an inert material both at the inlet and at the outlet of the reactor.
- the inert material used is generally moldings which have a similar geometry to the previously described catalyst moldings, but are inert in the reaction, e.g. Pall rings, balls of an inert material (e.g., ceramic, steatite, aluminum).
- the shaped bodies can also be mixed with inert material and introduced as a mixture into the reactor.
- the catalyst bed (molding + optionally inert material) preferably has a bulk density (according to EN ISO 6) in the range of 0.1 to 3 kg / l, preferably from 1, 5 to 2.5 kg / l and particularly preferably 1, 7 to 2.2 kg / l.
- the differential pressure across the bed is preferably less than 1000 mbar / m, preferably less than 800 mbar / m and particularly preferably less than 700 mbar / m.
- the differential pressure across the bed in the range of 10 to 1000 mbar / m, preferably 50 to 800 mbar / m, more preferably 100 to 700 mbar / m and in particular in the range of 200 to 500 mbar / m.
- the differential pressure results from the pressure measured above the catalyst bed and the pressure measured below the catalyst bed.
- the differential pressure results from the pressure measured below the catalyst bed and the pressure measured above the catalyst bed.
- Suitable fixed-bed reactors are described, for example, in the article "Fixed-Bed Reactors" (Ulmann's Encyclopedia of Industrial Chemistry, Published Online: 15 JUN 2000, DOI:
- the process is preferably carried out in a shaft reactor, shell-and-tube reactor or tubular reactor.
- the process is particularly preferably carried out in a tubular reactor.
- the reactors can each be used as a single reactor, as a series of individual reactors and / or in the form of two or more parallel reactors.
- the particular reactor design and operation of the reaction may vary depending on the hydrogenation process to be performed, the required reaction times, and the nature of the catalyst employed.
- the ratio of height to diameter of the reactor, in particular of the tubular reactor is preferably 1: 1 to 500: 1, more preferably 2: 1 to 100: 1 and particularly preferably 5: 1 to 50: 1.
- the flow direction of the reactants is usually from top to bottom or from bottom to top.
- the flow direction of the reactants (starting materials, hydrogen, possibly liquid ammonia) from top to bottom through the reactor.
- the catalyst loading in continuous operation is typically from 0.01 to 10, preferably from 0.2 to 5, particularly preferably from 0.2 to 4 kg of starting material per liter of catalyst per hour.
- the cross-sectional loading is in the range from 5 kg / (m 2 s) to 50 kg / (m 2 s), preferably 8 to 25 kg / (m 2 s), particularly preferably 10 to 20 kg / (m 2 s), and more preferably 12 to 18 kg / (m 2 s).
- Q is the mass flow rate [kg / s] and A is the cross-sectional area of the empty column [m 2 ].
- the mass flow Q is in turn defined as the sum of the masses of all feed educt streams and recycle streams.
- Hydrogen, cycle gases and possibly added inert gases are not used to calculate the flow mass, since hydrogen, cycle gases and inert gases are usually present in the gas phase under the usual hydrogenation conditions.
- a portion of the discharge (partial discharge) from the hydrogenation reactor is returned to the reactor as recycle stream (recycle stream).
- the circulating stream can be fed to the reactor separately or, more preferably, it can be mixed with the starting materials fed and recycled together with it to the reactor.
- the ratio of recycle stream to feedstock stream is preferably in the range from 0.5: 1 to 250: 1, more preferably in the range from 1: 1 to 200: 1, and most preferably in the range from 2: 1 to 180: 1. If no ammonia is fed into the process, the ratio of recycle stream to feedstock stream is preferably in the upper range of the above ranges.
- the ratio of recycle stream to feed stream fed is preferably in the lower range of the abovementioned ranges.
- high cross-sectional loads can be achieved if the reaction is carried out in a slender-type reactor, in particular in a tubular reactor of a slim design.
- the ratio of height to diameter of the reactor therefore, as described above, is preferably in the range from 1: 1 to 500: 1, more preferably in the range from 2: 1 to 100: 1 and particularly preferably in the range from 5: 1 to 50 :1.
- the hydrogenation is generally carried out at a pressure of 1 to 200 bar, in particular from 5 to 150 bar, preferably from 10 to 100 bar and particularly preferably from 15 to 95 bar. Most preferably, the hydrogenation is carried out at a pressure of less than 95 bar as a low pressure method.
- the temperature is usually in a range 25 to 300 ° C, in particular from 50 to 200 ° C, preferably from 70 to 150 ° C, particularly preferably from 80 to 140 ° C.
- the reaction conditions are preferably chosen so that the nitriles used and any added liquids and optionally supplied ammonia are generally present in the liquid phase and only the hydrogen or inert gases used under the reaction conditions mentioned in the gas phase.
- the molar ratio of hydrogen to nitrile used is generally 2: 1 to 25: 1, preferably 2.01: 1 to 10: 1.
- the hydrogen can be recycled as cycle gas in the reaction.
- the hydrogenation can be carried out with the addition of ammonia.
- ammonia is used in molar ratios to the nitrile group in the ratio of 0.5: 1 to 100: 1, preferably 2: 1 to 20: 1.
- the preferred embodiment is a method in which no ammonia is added.
- the reaction can be carried out in bulk or in a liquid.
- the hydrogenation is preferably carried out in the presence of a liquid.
- Suitable liquids are, for example, C 1 - to C 4 -alcohols, such as methanol or ethanol, C 4 - to C 12 -dialkyl ethers, such as diethyl ether or tert-butylmethyl ether, or cyclic C 4 - to C 12 ethers, such as tetrahydrofuran or dioxane, or hydrocarbons, such as pentane, Hexane, heptane, octane, cyclohexane or toluene.
- Suitable liquids may also be mixtures of the abovementioned liquids.
- the liquid is a product of the hydrogenation.
- the reaction can also be carried out in the presence of water.
- the water content should not be more than 10% by weight, preferably less than 5% by weight, particularly preferably less than 3% by weight, based on the mass of the liquid used, in order to leach and / or wash off the compounds to avoid the alkali, alkaline earth and / or rare earth metals as far as possible.
- the activity and / or selectivity of the catalysts according to the invention can decrease with increasing service life. Accordingly, a process for the regeneration of the catalysts according to the invention has been found, in which the catalyst is treated with a liquid.
- the treatment of the catalyst with a liquid should lead to the removal of any adhering compounds which block active sites of the catalyst.
- the treatment of the catalyst with a liquid can be carried out by stirring the catalyst in a liquid or by washing the catalyst in the liquid, after treatment, the liquid can be separated by filtration or decanting together with the detached impurities from the catalyst.
- Suitable liquids are generally the product of the hydrogenation, water or an organic solvent, preferably ethers, alcohols or amides.
- the treatment of the catalyst with liquid may be carried out in the presence of hydrogen or a gas containing hydrogen.
- This regeneration can be carried out at elevated temperature, usually from 20 to 250 ° C. It is also possible to dry the used catalyst and oxidize adhering organic compounds with air to volatile compounds such as CO2. Before further use of the catalyst in the hydrogenation of this must be activated after oxidation, as a rule, as described above.
- the catalyst may be contacted with a soluble compound of the catalytically active components.
- the contacting can be carried out in such a way that the catalyst is impregnated or moistened with a water-soluble compound of the catalytically active component.
- the advantage of the present invention is that the inventive method allows the hydrogenation of nitriles in high selectivity and yield. In addition, the formation of undesirable by-products is reduced.
- the present invention enables an economical hydrogenation process.
- the inventive method allows the production of
- IPNA isophorone nitrilamine
- Isophorone diamine serves as an intermediate for the preparation of curing agents for epoxy resins and coatings (e.g., 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate) and is itself used directly as a curing agent.
- Other applications include coatings with excellent anti-corrosion properties for metals and adhesive compounds. It is also used in the production of non-crystalline specialty polyamides, as chain extenders in polyurethanes and as an intermediate for the production of dyes.
- the present invention also relates to a process for the preparation of curing agents for epoxy resins and coatings, Spezialpolyamiden, polyurethanes and dyes, characterized in that one prepared in a first stage isophorone diamine from isophorone nitrile imine according to claim 1 and obtained in the first stage isophorone diamine in a second Stage for the production of hardeners for epoxy resins and coatings, special polyamides, polyurethanes and dyes.
- the secondary products may also have advantageous properties.
- the process according to the invention is likewise preferred for the preparation of 3- (dimethylamino) propylamine (DMAPA).
- DMAPA 3- (dimethylamino) propylamine
- the method according to the invention makes it possible to reduce the content of bis-DMAPA.
- it is used, for example, for the production of surface-active substances, soaps, cosmetics, shampoos, hygiene products, detergents and crop protection agents.
- DMAPA is also used for water treatment and as a polymerization catalyst for PU and epoxy.
- the present invention also relates to a process for the preparation of surface-active substances, soaps, cosmetics, shampoos, hygiene products, detergents and pesticides, characterized in that in a first stage DMAPA prepared from 3- (dimethylamino) propionitrile according to claim 1 and the in the first stage DMAPA used in a second stage for the production of surfactants, soaps, cosmetics, shampoos, hygiene products, detergents and pesticides. Due to the low content of bis-DMAPA, the secondary products may also have advantageous properties.
- the invention is illustrated by the following examples:
- the catalyst loading is reported as the quotient of educt mass in the feed and the product of catalyst volume and time.
- Catalyst load educt mass / (volume of catalyst ⁇ reaction time).
- the unit of the catalyst load is expressed in [kg domestic product E / (lh)].
- the yield of product A (P) results from the area percent of the product signal.
- a (P) F% (P), wherein the area percent F% (i) of a starting material (F% (E)), product (F% (P)), a by-product (F% (N)) or quite generally a substance i (F% (i)), from the quotient of the area F (i) below the signal of the substance i and the total area
- the selectivity of the educt S (E) is calculated as the quotient of product yield A (P) and reactant conversion U (E):
- the catalyst used was a cobalt catalyst having a strand diameter of 2 mm or
- the reaction was carried out in two continuously operated tubular reactors connected in series.
- the imination of the IPN with ammonia to imine in the first reactor at 60 ° C to Ti0 2 (75 ml_) was performed.
- the feed amount of IPN was 84 g / h, the NH 3 - amount of 180 g / h.
- the discharge of the imination reactor was passed together with hydrogen to the second reactor (first hydrogenation reactor).
- the temperature of the second reactor was adjusted to 90 ° C.
- the amount of hydrogen supplied was 88 L / h.
- the catalyst used in the first hydrogenation reactor was 348 g of the cobalt catalyst having a strand diameter of 2 mm or 4 mm, and 173 g in the second hydrogenation reactor.
- the discharge of the first hydrogenation reactor was partly returned to the reactor inlet of the first hydrogenation reactor (2500 g / h) with the aid of a recycle pump after a high-pressure separator. Both hydrogenation reactors were flowed from the top, the imination reactor from below. The system pressure was 80 bar.
- Table 1 shows analysis results of the plant when operating with the two different shaped bodies. Table V.
- the reaction was carried out in a bottom-flow through tubular reactor (internal diameter 0.5 cm, length 1 m) with liquid recycling in the presence of hydrogen and ammonia.
- the catalysts used were the abovementioned cobalt catalysts with a
- Diameter of 2 mm used.
- 29 g (bulk density 2.08 g / ml, ie catalyst volume is 14 ml) of the reduced-passivated cobalt catalyst were introduced into the reactor and incubated for 12 hours at 280 ° C. (1 bar) and in a stream of hydrogen (25 ⁇ l / h) activated. Subsequently, the reactor was cooled to 120 ° C, pressed with hydrogen to 180 bar and started up with DM APA. It was set a hydrogen flow of 50 Nl / h and an ammonia feed of 20 - 22 g / h. A liquid recirculation of 55 g / h was set. The feed amount of DM APN was 26 g / h. The conversion of DM APN was> 99.9%, the amount of formed
- Bis-DMAPA was 0.6-0.8%. Subsequently, the pressure was lowered to 85 bar and the temperature lowered to 80 ° C. With an approximately equal conversion of> 99.9%, 0.6 - 0.8% of bis-DMAPA were also obtained in the reaction effluent. After a running time of about 1000 h, the temperature was increased to 85 ° C and the amount of hydrogen reduced to 30 Nl / h. Turnover was> 99.8%, resulting in 0.8 - 0.9%
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012800143305A CN103429564A (zh) | 2011-03-22 | 2012-03-19 | 氢化腈类的方法 |
JP2014500342A JP2014516342A (ja) | 2011-03-22 | 2012-03-19 | ニトリルの水素化法 |
BR112013022942A BR112013022942A2 (pt) | 2011-03-22 | 2012-03-19 | processo para hidrogenar nitrilas orgânicas |
EP12710488.3A EP2688862A1 (de) | 2011-03-22 | 2012-03-19 | Verfahren zur hydrierung von nitrilen |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11159126 | 2011-03-22 | ||
EP11159126.9 | 2011-03-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012126869A1 true WO2012126869A1 (de) | 2012-09-27 |
Family
ID=44454709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2012/054755 WO2012126869A1 (de) | 2011-03-22 | 2012-03-19 | Verfahren zur hydrierung von nitrilen |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2688862A1 (de) |
JP (1) | JP2014516342A (de) |
CN (1) | CN103429564A (de) |
BR (1) | BR112013022942A2 (de) |
WO (1) | WO2012126869A1 (de) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8981093B2 (en) | 2012-06-06 | 2015-03-17 | Basf Se | Process for preparing piperazine |
US8987518B2 (en) | 2013-02-28 | 2015-03-24 | Basf Se | Polyamines and process for preparation thereof |
EP3050870A1 (de) | 2015-01-30 | 2016-08-03 | Evonik Degussa GmbH | Verfahren zur Herstellung von 3-Aminomethyl-3,5,5-trimethylcyclohexylamin |
EP3075721A1 (de) | 2015-03-30 | 2016-10-05 | Evonik Degussa GmbH | Verfahren zur Herstellung von 3-Aminomethyl-3,5,5-trimethylcyclohexylamin |
EP3235805A1 (de) | 2016-04-19 | 2017-10-25 | Evonik Degussa GmbH | Kopplung der destillativen aufreinigung mit einem partialkondensator zur vorreinigung von isophorondiamin |
EP3248960A1 (de) | 2016-05-25 | 2017-11-29 | Evonik Degussa GmbH | Destillative aufreinigung eines produktgemisches anfallend bei der isophorondiaminsynthese mit hilfe einer trennwandkolonne |
EP3275858A1 (de) | 2016-07-27 | 2018-01-31 | Evonik Degussa GmbH | Abtrennung von leichtsiedern sowie reduktion des ammoniakgehaltes im isophorondiamin durch partialkondensation |
US9914693B2 (en) | 2013-02-28 | 2018-03-13 | Basf Se | Process for preparing EDA using SO2-free hydrocyanic acid |
EP3406589A1 (de) | 2017-05-23 | 2018-11-28 | Evonik Degussa GmbH | Verfahren zur herstellung von aminoverbindungen aus nitrilverbindungen |
EP3515898B1 (de) | 2016-09-19 | 2020-11-11 | Basf Se | Verfahren zur herstellung von polyaminen ausgehend von dinitrilen und/oder aminonitrilen |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2688861B1 (de) * | 2011-03-22 | 2016-08-17 | Basf Se | Verfahren zur hydrierung von nitrilen |
CN111644196B (zh) * | 2020-06-17 | 2021-02-09 | 山东达民化工股份有限公司 | 一种采用复合催化体系的甲基戊二胺高选择性制备方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0449089A1 (de) | 1990-03-30 | 1991-10-02 | BASF Aktiengesellschaft | Verfahren zur Herstellung von 3-Aminomethyl-3,5,5,-trimethyl-cyclohexylamin |
EP0636409A1 (de) | 1993-07-31 | 1995-02-01 | BASF Aktiengesellschaft | Kobaltkatalysatoren |
EP0696572A1 (de) | 1994-08-08 | 1996-02-14 | Basf Aktiengesellschaft | Verfahren zur Herstellung von Aminen |
EP0742045A1 (de) | 1995-05-09 | 1996-11-13 | Basf Aktiengesellschaft | Kobaltkatalysatoren |
DE19614154C1 (de) * | 1996-04-10 | 1997-09-25 | Basf Ag | Verfahren zur gleichzeitigen Herstellung von 6-Aminocapronitril und Hexamethylendiamin |
EP0963975A1 (de) | 1998-06-12 | 1999-12-15 | Basf Aktiengesellschaft | Verfahren zur Herstellung von Aminen |
EP1106600A2 (de) | 1999-12-06 | 2001-06-13 | Basf Aktiengesellschaft | Verfahren zur Herstellung von Aminen |
WO2006082203A1 (de) * | 2005-02-01 | 2006-08-10 | Basf Aktiengesellschaft | Verfahren zur herstellung von bis(3-aminopropyl)amin (dipropylentriamin, dpta) |
WO2007128803A1 (de) | 2006-05-09 | 2007-11-15 | Basf Se | Verfahren zur herstellung von aminoalkylnitrilen und diaminen aus solchen nitrilen |
-
2012
- 2012-03-19 JP JP2014500342A patent/JP2014516342A/ja active Pending
- 2012-03-19 WO PCT/EP2012/054755 patent/WO2012126869A1/de active Application Filing
- 2012-03-19 BR BR112013022942A patent/BR112013022942A2/pt not_active IP Right Cessation
- 2012-03-19 EP EP12710488.3A patent/EP2688862A1/de not_active Withdrawn
- 2012-03-19 CN CN2012800143305A patent/CN103429564A/zh active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0449089A1 (de) | 1990-03-30 | 1991-10-02 | BASF Aktiengesellschaft | Verfahren zur Herstellung von 3-Aminomethyl-3,5,5,-trimethyl-cyclohexylamin |
EP0636409A1 (de) | 1993-07-31 | 1995-02-01 | BASF Aktiengesellschaft | Kobaltkatalysatoren |
EP0696572A1 (de) | 1994-08-08 | 1996-02-14 | Basf Aktiengesellschaft | Verfahren zur Herstellung von Aminen |
EP0742045A1 (de) | 1995-05-09 | 1996-11-13 | Basf Aktiengesellschaft | Kobaltkatalysatoren |
DE19614154C1 (de) * | 1996-04-10 | 1997-09-25 | Basf Ag | Verfahren zur gleichzeitigen Herstellung von 6-Aminocapronitril und Hexamethylendiamin |
EP0963975A1 (de) | 1998-06-12 | 1999-12-15 | Basf Aktiengesellschaft | Verfahren zur Herstellung von Aminen |
EP1106600A2 (de) | 1999-12-06 | 2001-06-13 | Basf Aktiengesellschaft | Verfahren zur Herstellung von Aminen |
WO2006082203A1 (de) * | 2005-02-01 | 2006-08-10 | Basf Aktiengesellschaft | Verfahren zur herstellung von bis(3-aminopropyl)amin (dipropylentriamin, dpta) |
WO2007128803A1 (de) | 2006-05-09 | 2007-11-15 | Basf Se | Verfahren zur herstellung von aminoalkylnitrilen und diaminen aus solchen nitrilen |
Non-Patent Citations (7)
Title |
---|
"Ullmann's Encyclopedia of Industrial Chemistry", 15 June 2000, article "Amines, Aliphatic" |
"Ullmann's Encyclopedia of Industrial Chemistry", 15 June 2000, article "Fixed-Bed Reactors" |
A. B. STILES: "Catalyst Manufacture - Laboratory and Commercial Preperations", 1983, MARCEL DEKKER |
A. B. STILES: "Catalyst Manufacture", 1983, MARCEL DEKKER, INC., pages: 15 |
ERTL; KNÖZINGER; WEITKAMP: "Handbook of Heterogenoeous Catalysis", 1997, VCH, pages: 98 FF |
See also references of EP2688862A1 * |
ULLMANN: "Ullmann's Encyclopedia Electronic Release", 2000, article "Catalysis and Catalysts", pages: 28 - 32 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8981093B2 (en) | 2012-06-06 | 2015-03-17 | Basf Se | Process for preparing piperazine |
US9914693B2 (en) | 2013-02-28 | 2018-03-13 | Basf Se | Process for preparing EDA using SO2-free hydrocyanic acid |
US8987518B2 (en) | 2013-02-28 | 2015-03-24 | Basf Se | Polyamines and process for preparation thereof |
US10125089B2 (en) | 2015-01-30 | 2018-11-13 | Evonik Degussa Gmbh | Process for preparing 3 aminomethyl-3,5,5-trimethylcyclohexylamine |
WO2016120235A1 (de) | 2015-01-30 | 2016-08-04 | Evonik Degussa Gmbh | Verfahren zur herstellung von 3-aminomethyl-3,5,5-trimethylcyclohexylamin |
EP3050870A1 (de) | 2015-01-30 | 2016-08-03 | Evonik Degussa GmbH | Verfahren zur Herstellung von 3-Aminomethyl-3,5,5-trimethylcyclohexylamin |
EP3075721A1 (de) | 2015-03-30 | 2016-10-05 | Evonik Degussa GmbH | Verfahren zur Herstellung von 3-Aminomethyl-3,5,5-trimethylcyclohexylamin |
EP3235805A1 (de) | 2016-04-19 | 2017-10-25 | Evonik Degussa GmbH | Kopplung der destillativen aufreinigung mit einem partialkondensator zur vorreinigung von isophorondiamin |
US10343975B2 (en) | 2016-04-19 | 2019-07-09 | Evonik Degussa Gmbh | Coupling of distillative purification with a partial condenser for pre-purification of isophoronediamine |
EP3248960A1 (de) | 2016-05-25 | 2017-11-29 | Evonik Degussa GmbH | Destillative aufreinigung eines produktgemisches anfallend bei der isophorondiaminsynthese mit hilfe einer trennwandkolonne |
EP3275858A1 (de) | 2016-07-27 | 2018-01-31 | Evonik Degussa GmbH | Abtrennung von leichtsiedern sowie reduktion des ammoniakgehaltes im isophorondiamin durch partialkondensation |
US10392340B2 (en) | 2016-07-27 | 2019-08-27 | Evonik Degussa Gmbh | Purification of crude isophoronediamine by partial condensation in series with total condensation |
EP3515898B1 (de) | 2016-09-19 | 2020-11-11 | Basf Se | Verfahren zur herstellung von polyaminen ausgehend von dinitrilen und/oder aminonitrilen |
EP3406589A1 (de) | 2017-05-23 | 2018-11-28 | Evonik Degussa GmbH | Verfahren zur herstellung von aminoverbindungen aus nitrilverbindungen |
US10519096B2 (en) | 2017-05-23 | 2019-12-31 | Evonik Degussa Gmbh | Process for preparing amino compounds from nitrile compounds |
Also Published As
Publication number | Publication date |
---|---|
JP2014516342A (ja) | 2014-07-10 |
CN103429564A (zh) | 2013-12-04 |
BR112013022942A2 (pt) | 2016-12-06 |
EP2688862A1 (de) | 2014-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2688862A1 (de) | Verfahren zur hydrierung von nitrilen | |
EP2688861A1 (de) | Verfahren zur hydrierung von nitrilen | |
EP2132165B1 (de) | Verfahren zur herstellung von ethylendiamin | |
EP2465844B1 (de) | Verfahren zur Herstellung und Aufreinigung von 3-Aminopropanol | |
EP2114857B1 (de) | Verfahren zur herstellung von tetraethylenpentaamin | |
EP2018363B1 (de) | Verfahren zur herstellung von aminoalkylnitrilen und diaminen aus solchen nitrilen | |
US9139511B2 (en) | Process for hydrogenating nitriles | |
WO2010089346A2 (de) | Verfahren zur verbesserung der katalytischen aktivität von monolithischen katalysatoren | |
WO2008104553A1 (de) | Verfahren zur herstellung von triethylentetraamin | |
EP3515898B1 (de) | Verfahren zur herstellung von polyaminen ausgehend von dinitrilen und/oder aminonitrilen | |
WO2010089266A2 (de) | Verfahren zur verbesserung der katalytischen aktivität von monolithischen katalysatoren | |
EP2114860A1 (de) | Herstellungsverfahren für ethylenamingemische | |
EP2352719B1 (de) | Verfahren zur herstellung von n,n-substituierten 3-aminopropan-1-olen | |
WO2009027248A1 (de) | Verfahren zur herstellung von aminen aus glycerin | |
WO2010089265A2 (de) | Hydrierkatalysatoren, deren herstellung und verwendung | |
US20120245389A1 (en) | Process for hydrogenating nitriles | |
EP3186221B1 (de) | Verfahren zur herstellung von primären aminen unter verwendung eines kobalt-vollkontaktkatalysators | |
EP2279164B1 (de) | Verfahren zur herstellung von n,n-substituierten-1,3-propandiaminen | |
EP3061743A1 (de) | Verfahren zur Herstellung von primären Aminen unter Verwendung eines Nickel-Festbettkatalysators | |
WO2010012672A2 (de) | Verfahren zur herstellung von diaminen aus lactamen | |
EP3080075B1 (de) | N, n-(bis-2-aminoalkyl)-1,2-alkyldiaminderivate | |
DE10065031A1 (de) | Verfahren zur Herstellung von primären und sekundären Aminen durch Hydrierung von Nitrilen und Imine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12710488 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012710488 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1301005265 Country of ref document: TH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2014500342 Country of ref document: JP Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013022942 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013022942 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130906 |