WO2012126361A1 - 一种信号检测的方法及装置 - Google Patents

一种信号检测的方法及装置 Download PDF

Info

Publication number
WO2012126361A1
WO2012126361A1 PCT/CN2012/072684 CN2012072684W WO2012126361A1 WO 2012126361 A1 WO2012126361 A1 WO 2012126361A1 CN 2012072684 W CN2012072684 W CN 2012072684W WO 2012126361 A1 WO2012126361 A1 WO 2012126361A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
channel estimation
signals
discontinuous
algorithm
Prior art date
Application number
PCT/CN2012/072684
Other languages
English (en)
French (fr)
Inventor
戴晓明
黄琛
唐胜志
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2012126361A1 publication Critical patent/WO2012126361A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels

Definitions

  • the present invention relates to the field of communications, and in particular to a method and apparatus for signal detection. Background technique
  • MIMO Multiple-Input Multiple-Output
  • OFDM Orthogonal Frequency Division Multiplexing
  • MIMO signals based on layered space-time coding are synchronously transmitted and received on each antenna.
  • the receiving end of such a synchronously transmitted MIMO signal requires signal detection.
  • the detection algorithm includes the following types: one is the ideal maximum likelihood estimation (ML) detection algorithm, and the other is a more standard linear detection algorithm, such as zero-forcing (ZF) algorithm, minimum mean square error (MMSE) algorithm.
  • ZF zero-forcing
  • MMSE minimum mean square error
  • detection algorithms based on interference cancellation such as the Successive interference cancellation (SIC) algorithm.
  • the signal detection process mainly uses the above detection algorithm to perform inverse and multiplication operations on channel estimation information corresponding to each resource unit (Resourse Element, RE). Obviously, such a complicated calculation for each RE is computationally intensive and affects the efficiency of signal detection. Summary of the invention
  • Embodiments of the present invention provide a method and apparatus for signal detection, which are used to implement a process of tube signal detection, and reduce the complexity of signal detection.
  • a method of signal detection includes the following steps:
  • a channel estimation polynomial of the intermediate signal is obtained according to a channel estimation polynomial of the two signals by using an interpolation algorithm for an intermediate signal between the two signals;
  • a signal detection result of the intermediate signal is obtained according to a channel estimation polynomial of the intermediate signal.
  • a device for signal detection comprising:
  • a channel estimation module configured to separately perform channel estimation on two discontinuous signals to obtain a channel estimation value
  • a constructing module configured to use, for each of the two signals, a channel estimation using the signal according to the signal detection algorithm a value constructing a channel estimation polynomial of the signal
  • An interpolation module configured to obtain, by using an interpolation algorithm, a channel estimation polynomial of the intermediate signal according to a channel estimation polynomial of the two signals for an intermediate signal between the two signals;
  • a detecting module configured to obtain a signal detection result of the intermediate signal according to a channel estimation polynomial of the intermediate signal.
  • the plurality of discontinuous signals are detected by using an existing signal detection algorithm, and the signals between the discontinuous signals are detected by using an interpolation algorithm and a detection intermediate value of the discontinuous signals, because interpolation
  • the complexity of the algorithm is much lower than that of the signal detection algorithm, so the implementation process of the tube signal detection reduces the complexity of signal detection.
  • FIG. 1 is a flow chart of a main method for signal detection in an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for performing signal detection by using a linear interpolation algorithm and a detection intermediate value of a discontinuous signal in a frequency domain according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for performing signal detection by using a linear interpolation algorithm and a detection intermediate value of a discontinuous signal in a time domain according to an embodiment of the present invention
  • FIG. 4 is a structural diagram of a device in an embodiment of the present invention.
  • FIG. 5 is a simulation effect diagram of an embodiment of the present invention. detailed description
  • the discontinuous correlated signals are detected by using an existing signal detection algorithm, and the signals between the discontinuous signals are calculated by using an interpolation algorithm and a detection intermediate value of the discontinuous signals. Detection, because the complexity of the interpolation algorithm is much lower than the signal detection algorithm, it can reduce the implementation process of signal detection and reduce the complexity of signal detection.
  • the main method of signal detection in this embodiment is as follows:
  • Step 101 Perform channel estimation on two discontinuous correlated signals to obtain channel estimation values.
  • Step 102 Construct, for each of the two discontinuous signals, a channel estimation polynomial of the signal according to a signal estimation algorithm using a channel estimate of the signal.
  • Step 103 Obtain a channel estimation polynomial of the intermediate signal according to a channel estimation polynomial of the two discontinuous signals for an intermediate signal between the two discontinuous signals.
  • the channel estimation polynomial is a portion other than the received signal among the detection results obtained by the signal detection using the signal detection algorithm.
  • Rt is the signal of the kth subcarrier on the nth OFDM symbol.
  • Step 104 Obtain a detection result of the intermediate signal according to a channel estimation polynomial of the intermediate signal.
  • the two signals that are discontinuous in this embodiment are two signals that are discontinuous in the time domain, or two signals that are discontinuous in the frequency domain.
  • the interpolation algorithm includes a linear interpolation algorithm and the like. The implementation process is described in detail below through several embodiments.
  • the method for performing signal detection by using the linear interpolation algorithm and the detection intermediate value of the discontinuous signal in the frequency domain in this embodiment is as follows:
  • Step 201 Perform signal detection on the l ⁇ m+l subcarrier signal on the nth symbol by using a signal detection algorithm, and obtain a channel estimation polynomial and a detection result of the l ⁇ m+l subcarrier signal.
  • the signal detection algorithm includes a zero forcing (ZF) algorithm and a minimum mean square error (MMSE) algorithm, and the like, and any algorithm for detecting a signal is applicable to the present embodiment.
  • the channel estimation polynomial can be expressed as: P k ' n ,, k ⁇ m + l , is the channel estimation polynomial of the kth subcarrier signal on the nth symbol, and 2m-1 is the number of subcarriers of the two signal intervals.
  • Step 202 Perform signal detection on the k+l ⁇ k+m subcarrier signal on the nth symbol by using a signal detection algorithm, and obtain a channel estimation polynomial and a detection result of the k+l ⁇ k+m subcarrier signal.
  • Step 203 Perform channel estimation on the k (k>m+l) subcarrier signal on the nth symbol.
  • channel estimation is also performed on the l ⁇ m+1 subcarrier signal and the k+l ⁇ k+m subcarrier signal, so the process of channel estimation for the k signal in step 203 can be
  • the process of channel estimation for the l ⁇ m+l subcarrier signal and the k+l ⁇ k+m subcarrier signal is performed synchronously, or in the order of the received signals.
  • Step 204 Obtain a channel estimation polynomial of the k subcarrier signal according to a channel estimation polynomial of the km subcarrier signal and the k+m subcarrier signal by using a linear interpolation algorithm.
  • Step 205 Using a signal detection algorithm, The detection result of the k subcarrier signal is obtained from the channel estimation polynomial of the k subcarrier signal. The result of the test is P k '") r *.
  • the method for performing signal detection by using the linear interpolation algorithm and the detection intermediate value of the discontinuous signal in the time domain in this embodiment is as follows:
  • Step 301 Perform signal detection on the kth subcarrier signal on the signal by using a signal detection algorithm to obtain a channel estimation polynomial and a detection result of the kth subcarrier signal.
  • the signal detection algorithm includes a zero forcing (ZF) algorithm and a minimum mean square error (MMSE) algorithm, and the like, and any algorithm for detecting a signal is applicable to the present embodiment.
  • ZF zero forcing
  • MMSE minimum mean square error
  • the first k The channel estimation polynomial of the subcarrier signals can be expressed as: ⁇ ( ⁇ .
  • Step 302 Perform signal detection on the kth subcarrier signal by using a signal detection algorithm to obtain a channel estimation polynomial ( ⁇ ' and a detection result of the kth subcarrier signal.
  • Step 303 Perform channel estimation on the kth subcarrier signal on the nth symbol.
  • channel estimation of the kth subcarrier signal and the upper kth subcarrier signal on A is also required, so in step 303, channel estimation is performed on the kth subcarrier signal on the nth symbol.
  • the process may be performed in synchronization with the process of channel estimation for the kth subcarrier signal, or in the order of the symbols.
  • the symbol of a column of pilots before the nth symbol is a symbol of a column of pilots after the nth symbol.
  • Step 304 Using a linear interpolation algorithm, obtain a channel estimation polynomial of the kth subcarrier signal on the nth symbol according to a channel estimation polynomial of the kth subcarrier signal on ⁇ ⁇ and ⁇ 2 .
  • Step 305 Obtain a detection result of the k signal according to a channel estimation polynomial of the k signal by using a signal detection algorithm.
  • the result of the test is (", ⁇ ).
  • the apparatus for signal detection in this embodiment includes: a channel estimation module 401, a construction module 402, an interpolation module 403, and a detection module 404.
  • the channel estimation module 401 is configured to separately perform channel estimation on two discontinuous correlated signals to obtain channel estimation values.
  • the two discontinuous signals are two signals that are discontinuous in the time domain, or two signals that are discontinuous in the frequency domain.
  • the constructing module 402 is configured to construct a channel estimation polynomial of the signal for each of the two discontinuous signals based on the channel estimation value of the signal.
  • the signal detection algorithm includes a zero-forcing ZF algorithm and a minimum mean square error MMSE algorithm.
  • the interpolation module 403 is configured to obtain a channel estimation polynomial of the intermediate signal based on the channel estimation polynomial of the two consecutive signals for the intermediate signal between the two discontinuous signals.
  • Interpolation algorithms include linear interpolation algorithms and the like.
  • the interpolation module 403 utilizes linear interpolation.
  • the detecting module 404 is configured to obtain a detection result of the intermediate signal according to a channel estimation polynomial of the intermediate signal.
  • the plurality of discontinuous signals are detected by using an existing signal detection algorithm, and the signals between the discontinuous signals are detected by using an interpolation algorithm and a detection intermediate value of the discontinuous signals, because interpolation Algorithmic
  • the simulation environment is: 20M -50PRB-1X8RX-SCME-B-120KM/H-MCS28, which means that 50 physical resource blocks (PRBs) are simulated under 20M bandwidth, using 1 transmit antenna and 8
  • the receiving antenna the simulated channel is a dedicated channel mobile extended B type (SCME-B) channel, the transmission rate is 120 km/h, and the modulation and coding mode is MCS28.
  • Line 501 is the result of detecting the signal detection algorithm for all signals by the prior art.
  • Line 502 is the result of detecting the partial signal interpolation algorithm in the embodiment of the present invention. Obviously, line 501 and line 502 are substantially coincident. It is shown that the signal detection performance of the embodiment of the present invention is close to the prior art, and the complexity is significantly reduced.
  • the two discontinuous signals are two signals that are discontinuous in the time domain, or two signals that are not continuous in the frequency domain.
  • the embodiments of the present invention provide detailed implementation manners for the two situations, are more flexible, and have a wide application environment, and can be applied to multiple wireless communication systems, and are not limited to the time division-long-term evolution (TD-LTE) used herein. ) System.
  • TD-LTE time division-long-term evolution
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present invention is in the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) in which computer usable program code is embodied.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory include instructions.
  • the manufacturing device, the instruction device implements the functions specified in one or more blocks of a flow or a flow and/or a block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请公开了一种信号检测的方法,用于简化信号检测的实现过程,降低信号检测的复杂度。所述方法包括:对不连续的两个信号分别进行信道估计,获得信道估计值;针对所述两个信号中的每个信号,根据信号检测算法用该信号的信道估计值构造该信号的信道估计多项式;针对所述两个信号之间的中间信号,利用插值算法,根据所述两个信号的信道估计多项式得到该中间信号的信道估计多项式;根据所述中间信号的信道估计多项式获得该中间信号的信号检测结果。本发明还公开了用于实现所述方法的装置。

Description

一种信号检测的方法及装置 本申请要求在 2011年 03月 21 日提交中国专利局、 申请号为 201110067978.6、发明名 称为"一种信号检测的方法及装置 "的中国专利申请的优先权, 其全部内容通过引用结合在 本申请中。 技术领域
本发明涉及通信领域, 特别是涉及信号检测的方法及装置。 背景技术
随着全球范围内手机用户数的迅猛增长和新型无线多媒体业务的不断涌现,如何在有 限的频谱资源上满足人们不断增长的宽带无线多媒体业务需求,成为新一代无线通信系统 即长期演进 ( Long Term Evolution , LTE ) 系统亟待解决的核心问题。 多输入多输出 (Multiple-Input Multiple-Output, MIMO)技术能够显著地提高无线通信系统的传输速率。 正 交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)技术能够有效地对抗频率 选择性衰落, 减小信道均衡复杂性。 二者相结合的 MIMO-OFDM技术充分利用空、 时、 频资源, 能够满足 LTE系统的需求。
传统的基于分层空时编码的 MIMO信号,在各个天线上同步发射和接收。 这种同步发 射 MIMO信号的接收端需要进行信号检测。检测算法包含以下几类:一是理想的最大似然 估计(Maximumlike—lihood, ML )检测算法, 二是较为标准的线性检测算法, 如迫零 (ZF) 算法、 最小均方误差 (MMSE)算法, 三是基于千扰消除的检测算法, 如串行千扰消除 ( Successive interference cancellation, SIC ) 算法。
信号检测过程主要是利用如上检测算法对每个资源单元(Resourse Element, RE ) (最 小资源单位)对应的信道估计信息进行求逆以及乘法运算。 显然, 对每个 RE进行如此复杂 的计算, 其计算量较大, 影响信号检测的效率。 发明内容
本发明实施例提供一种信号检测的方法及装置, 用于筒化信号检测的实现过程 , 降低 信号检测的复杂度。
一种信号检测的方法, 包括以下步骤:
对不连续的两个信号分别进行信道估计, 获得信道估计值;
针对所述两个信号中的每个信号, 根据信号检测算法使用该信号的信道估计值构造该 信号的信道估计多项式; 针对所述两个信号之间的中间信号, 利用插值算法, 根据所述两个信号的信道估计多 项式得到该中间信号的信道估计多项式;
根据所述中间信号的信道估计多项式获得该中间信号的信号检测结果。
一种用于信号检测的装置, 包括:
信道估计模块, 用于对不连续的两个信号分别进行信道估计, 获得信道估计值; 构造模块, 用于针对所述两个信号中的每个信号, 根据信号检测算法使用该信号的信 道估计值构造该信号的信道估计多项式;
插值模块, 用于针对所述两个信号之间的中间信号, 利用插值算法, 根据所述两个信 号的信道估计多项式得到该中间信号的信道估计多项式;
检测模块, 用于根据所述中间信号的信道估计多项式获得该中间信号的信号检测结 果。
本发明实施例对不连续的多个信号釆用现有的信号检测算法进行检测, 对该不连续的 信号之间的信号, 利用插值算法和不连续的信号的检测中间值进行检测, 由于插值算法的 复杂度远低于信号检测算法, 因此筒化信号检测的实现过程, 降低信号检测的复杂度。 附图说明
图 1为本发明实施例中信号检测的主要方法流程图;
图 2为本发明实施例中利用线性插值算法和频域上不连续信号的检测中间值进行信号 检测的方法流程图;
图 3为本发明实施例中利用线性插值算法和时域上不连续信号的检测中间值进行信号 检测的方法流程图;
图 4为本发明实施例中装置的结构图;
图 5为本发明实施例中仿真效果图。 具体实施方式
本发明实施例对不连续的具有相关性的多个信号釆用现有的信号检测算法进行检测, 对该不连续的信号之间的信号, 利用插值算法和不连续的信号的检测中间值进行检测, 由 于插值算法的复杂度远低于信号检测算法, 因此可以筒化信号检测的实现过程, 降低信号 检测的复杂度。
参见图 1 , 本实施例中信号检测的主要方法流程如下:
步骤 101 : 对不连续的具有相关性的两个信号分别进行信道估计, 获得信道估计值。 步骤 102: 针对不连续的两个信号中的每个信号, 根据信号检测算法使用该信号的信 道估计值构造该信号的信道估计多项式。 步骤 103 : 针对不连续的两个信号之间的中间信号, 利用插值算法, 根据不连续的两 个信号的信道估计多项式得到该中间信号的信道估计多项式。 本实施例中信道估计多项式 为利用信号检测算法进行信号检测得到的检测结果中除接收信号以外的部分。 以 ZF检测 算法为例, 对第 n个 OFDM (正交频分复用)符号(以下筒称符号)上第 k子载波信号的 检测结果 ^ = H V H^r , = Wi^ , 其中 为信道估计值, W为信道估计多项式, () Η 表示共轭转置, () ―1表示矩阵的逆。 r„t为第 η个 OFDM符号上第 k子载波的信号。
步骤 104: 根据中间信号的信道估计多项式获得中间信号的检测结果。
本实施例中不连续的两个信号为时域上不连续的两个信号, 或为频域上不连续的两个 信号。 以及, 插值算法包括线性插值算法等。 下面通过几个实施例来详细介绍实现过程。
参见图 2 , 本实施例中利用线性插值算法和频域上不连续信号的检测中间值进行信号 检测的方法流程如下:
步骤 201 : 利用信号检测算法对第 n个符号上 l~m+l子载波信号进行信号检测, 获得 l~m+l子载波信号的信道估计多项式和检测结果。 信号检测算法包括迫零 ( ZF )算法和最 小均方误差 (MMSE ) 算法等, 任何用于检测信号的算法均适用于本实施例。 其中, 信道 估计多项式可表示为: P k'n、, k≤m + l , 为第 n个符号上第 k个子载波信号的信道 估计多项式, 2m-l为两个信号间隔的子载波数。
步骤 202: 利用信号检测算法对第 n个符号上 k+l~k+m子载波信号进行信号检测, 获 得 k+l~k+m子载波信号的信道估计多项式和检测结果。
步骤 203 : 对第 n个符号上 k ( k>m+l )子载波信号进行信道估计。 在步骤 201和 202 信号检测过程中, 也需要对 l~m+l子载波信号和 k+l~k+m子载波信号进行信道估计, 因 此步骤 203中对 k信号进行信道估计的过程可以与对 l~m+l子载波信号和 k+l~k+m子载 波信号进行信道估计的过程同步进行, 或者按照接收信号的先后顺序进行。
步骤 204: 利用线性插值算法, 根据 k-m子载波信号和 k+m子载波信号的信道估计多 项式获得 k 子载波信号的信道估计多项式。 k 信号的信道估计多项式可表示为 P(k, n) =^ P(k - m, n) + ^ P (k + m, n), k > m + l 0 步骤 205 : 利用信号检测算法, 根据 k子载波信号的信道估计多项式获得 k子载波信 号的检测结果。 检测结果为 P k' ") r*。
参见图 3 , 本实施例中利用线性插值算法和时域上不连续信号的检测中间值进行信号 检测的方法流程如下:
步骤 301 : 利用信号检测算法对 Α上第 k个子载波信号进行信号检测, 获得 上第 k 个子载波信号的信道估计多项式和检测结果。 信号检测算法包括迫零 ( ZF )算法和最小均 方误差 (MMSE ) 算法等, 任何用于检测信号的算法均适用于本实施例。 其中, 上第 k 个子载波信号的信道估计多项式可表示为: ^(ΑΆ。
步骤 302: 利用信号检测算法对 上第 k个子载波信号进行信号检测, 获得 上第 k 个子载波信号的信道估计多项式 (^' 和检测结果。
步骤 303 : 对第 n个符号上第 k个子载波信号进行信道估计。 在步骤 301和 302信号 检测过程中,也需要对 A上第 k个子载波信号和 上第 k个子载波信号进行信道估计, 因 此步骤 303中对第 n个符号上第 k个子载波信号进行信道估计的过程可以与对 和 上第 k个子载波信号进行信道估计的过程同步进行,或者按照符号的先后顺序进行。其中, 为 第 n个符号之前的一列导频所在的符号, 为第 n个符号之后的一列导频所在的符号。
步骤 304: 利用线性插值算法, 根据 ρλ和 ρ2上第 k个子载波信号的信道估计多项式获 得第 n个符号上第 k个子载波信号的信道估计多项式。 第 n个符号上第 k个子载波信号的 信道估计多项式可表示为 W(n, k) = w2 (p2 , k)。
Figure imgf000006_0001
步骤 305 : 利用信号检测算法, 根据 k信号的信道估计多项式获得 k信号的检测结果。 检测结果为 (",^) 。
以上描述了信号检测的实现过程, 该过程可由装置实现, 下面对该装置的内部结构和 功能进行介绍。
参见图 4 , 本实施例中用于信号检测的装置包括: 信道估计模块 401、 构造模块 402、 插值模块 403和检测模块 404。
信道估计模块 401用于对不连续的具有相关性的两个信号分别进行信道估计, 获得信 道估计值。不连续的两个信号为时域上不连续的两个信号,或为频域上不连续的两个信号。
构造模块 402用于针对不连续的两个信号中的每个信号, 根据信号检测算法使用该信 号的信道估计值构造该信号的信道估计多项式。 信号检测算法包括迫零 ZF算法和最小均 方误差 MMSE算法。
插值模块 403用于针对不连续的两个信号之间的中间信号, 利用插值算法, 根据不连 续的两个信号的信道估计多项式得到该中间信号的信道估计多项式。 插值算法包括线性 插值算法等。 不连续的两个信号为频域上不连续的两个信号时, 插值模块 403利用线性插
P(k, n) k≤m + \
值算法, 通过公式 P( t, «) = 1 1 获得中间信号的信道估
-P(k - m, n) +—P (k + m, n) k > m + l
2 ' ' 2
计多项式, 该中间信号为第 n个符号上第 k个子载波信号, P ( 为第 n个符号上第 k个 子载波信号的信道估计多项式, 2m-l 为所述两个信号间隔的子载波数。 不连续的两个信 号为时域上不连续的两个信号时, 插值模块 403 利用线性插值算法, 通过公式 W(n, k) = (p2, k)获得中间信号的信道估计多项式, 该中间信号
Figure imgf000007_0001
为第 n个符号上第 k个子载波信号, ^和 ^为不连续的两个信号, 为第 n个符号之前 的一列导频所在的 OFDM符号, 为第 n个符号之后的一列导频所在的 OFDM符号。 检测模块 404用于根据中间信号的信道估计多项式获得中间信号的检测结果。
本发明实施例对不连续的多个信号釆用现有的信号检测算法进行检测, 对该不连续的 信号之间的信号, 利用插值算法和不连续的信号的检测中间值进行检测, 由于插值算法的 可
Figure imgf000007_0002
所 示, 仿真环境为: 20M -50PRB-1X8RX-SCME-B-120KM/H-MCS28, 意思是在 20M带宽下 对 50个物理资源块( PRB )进行仿真, 釆用 1根发射天线和 8根接收天线, 仿真的信道为 专用信道移动扩展 B类型 (SCME-B )信道, 传输速率釆用 120千米每小时, 调制编码方 式釆用 MCS28。线 501为通过现有技术,对所有信号都釆用信号检测算法进行检测的结果, 线 502为本发明实施例中对部分信号釆用插值算法进行检测的结果, 显然线 501与线 502 基本重合, 说明本发明实施例的信号检测性能与现有技术接近, 而复杂度明显降低。 不连 续的两个信号为时域上不连续的两个信号, 或为频域上不连续的两个信号。 本发明实施例 针对这两种情况分别提供了详细的实现方式, 实现更灵活, 应用环境广泛, 可应用于多种 无线通信系统, 而不局限于本文所使用的时分-长期演进(TD-LTE ) 系统。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序产 品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实 施例的形式。 而且, 本发明可釆用在一个或多个其中包含有计算机可用程序代码的计算机 可用存储介盾 (包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形 式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产品的流程图 和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或方框图中的每一流 程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机 程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品, 该指令装置实现在流程图一个流程或多个流程和 /或方框图一个方框或多个 方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和 /或方框图一个 方框或多个方框中指定的功能的步骤。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和 范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种信号检测的方法, 其特征在于, 包括以下步骤:
对不连续的两个信号分别进行信道估计, 获得信道估计值;
针对所述两个信号中每个信号, 根据信号检测算法使用该信号的信道估计值构造该信 号的信道估计多项式;
针对所述两个信号之间的中间信号, 利用插值算法, 根据所述两个信号的信道估计多 项式得到该中间信号的信道估计多项式;
根据所述中间信号的信道估计多项式获得该中间信号的信号检测结果。
2、 如权利要求 1 所述的方法, 其特征在于, 不连续的两个信号为时域上不连续的两 个信号, 或为频域上不连续的两个信号。
3、 如权利要求 1或 2所述的方法, 其特征在于, 插值算法包括线性插值算法。
4、 如权利要求 3 所述的方法, 其特征在于, 不连续的两个信号为频域上不连续的两 个信号时, 利用插值算法, 根据所述两个信号的信道估计多项式得到该中间信号的信道 估 计 多 项 式 的 步 骤 包 括 : 利 用 线 性 插 值 算 法 , 通 过 公 式
P(k, n) k≤m + \
1 1 获得中间信号的信道估计多项式, 该中间
~P{^ - fn, n) +—P (k + m,n) k > m + \ 信号为第 n个正交频分复用 OFDM符号上第 k个子载波信号, 为第 n个 OFDM符 号上第 k个子载波信号的信道估计多项式, 2m-l为所述两个信号间隔的子载波数; 或者, 不连续的两个信号为时域上不连续的两个信号时, 利用插值算法, 根据所述两个信 号的信道估计多项式得到该中间信号的信道估计多项式的步骤包括: 利用线性插值算 法, 通过公式 W(", k) = (p2 , A)获得中间信号的信道估计多项
Figure imgf000009_0001
式, 该中间信号为第 n个 OFDM符号上第 k个子载波信号, ^为不连续的两个信号中一 个信号的信道估计多项式, w2为不连续的两个信号中另一个信号的信道估计多项式, A 为第 n个符号之前的一列导频所在的 OFDM符号, 为第 n个符号之后的一列导频所在 的 OFDM符号。
5、 如权利要求 1所述的方法, 其特征在于, 信号检测算法为迫零 ZF算法或最小均方 误差 MMSE算法。
6、 一种用于信号检测的装置, 其特征在于, 包括:
信道估计模块, 用于对不连续的两个信号分别进行信道估计, 获得信道估计值; 构造模块, 用于针对所述两个信号中的每个信号, 根据信号检测算法使用该信号的信 道估计值构造该信号的信道估计多项式;
插值模块, 用于针对所述两个信号之间的中间信号, 利用插值算法, 根据所述两个信 号的信道估计多项式得到该中间信号的信道估计多项式;
检测模块, 用于根据所述中间信号的信道估计多项式获得该中间信号的信号检测结 果。
7、 如权利要求 6 所述的装置, 其特征在于, 不连续的两个信号为时域上不连续的两 个信号, 或为频域上不连续的两个信号。
8、 如权利要求 6或 7所述的装置, 其特征在于, 插值算法包括线性插值算法。
9、 如权利要求 8 所述的装置, 其特征在于, 不连续的两个信号为频域上不连续的两 个 信 号 时 , 插 值 模 块 利 用 线 性 插 值 算 法 , 通 过 公 式
P(k, n) k≤m + l
1 1 获得中间信号的信道估计多项式, 该中间
~P{^ - fn, n) +—P (k + m, n) k > m + \ 信号为第 n个 OFDM符号上第 k个子载波信号, 为第 n个 OFDM符号上第 k个子 载波信号的信道估计多项式, 2m-l为所述两个信号间隔的子载波数; 或者,
不连续的两个信号为时域上不连续的两个信号时, 插值模块利用线性插值算法, 通 过公式 获得中间信号的信道估计多项式, 该中
Figure imgf000010_0001
间信号为第 n个 OFDM符号上第 k个子载波信号, ^为不连续的两个信号中一个信号的 信道估计多项式, w2为不连续的两个信号中另一个信号的信道估计多项式, A为第 n个 符号之前的一列导频所在的 OFDM符号, A为第 n个符号之后的一列导频所在的 OFDM 符号。
10、 如权利要求 6所述的装置, 其特征在于, 信号检测算法为迫零 ZF算法或最小均 方误差 MMSE算法。
PCT/CN2012/072684 2011-03-21 2012-03-21 一种信号检测的方法及装置 WO2012126361A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110067978.6 2011-03-21
CN 201110067978 CN102148779B (zh) 2011-03-21 2011-03-21 一种信号检测的方法及装置

Publications (1)

Publication Number Publication Date
WO2012126361A1 true WO2012126361A1 (zh) 2012-09-27

Family

ID=44422787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072684 WO2012126361A1 (zh) 2011-03-21 2012-03-21 一种信号检测的方法及装置

Country Status (2)

Country Link
CN (1) CN102148779B (zh)
WO (1) WO2012126361A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148779B (zh) * 2011-03-21 2013-07-24 电信科学技术研究院 一种信号检测的方法及装置
CN103944846B (zh) * 2013-01-17 2017-04-12 展讯通信(上海)有限公司 正交频分复用系统及其信道估计方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101056293A (zh) * 2006-04-13 2007-10-17 中兴通讯股份有限公司 一种正交频分复用系统的半盲信道估计方法
WO2010085890A1 (en) * 2009-01-30 2010-08-05 Wi-Lan Inc. Wireless local area network using tv white space spectrum and long term evolution system architecture
CN102148779A (zh) * 2011-03-21 2011-08-10 电信科学技术研究院 一种信号检测的方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4448633B2 (ja) * 2001-08-31 2010-04-14 富士通株式会社 移動体通信端末
CN101166171B (zh) * 2007-07-18 2010-09-15 电子科技大学 一种ofdm系统时变信道估计方法
CN101588335B (zh) * 2008-05-19 2012-07-04 三星电子株式会社 利用信道相关性的mimo检测方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101056293A (zh) * 2006-04-13 2007-10-17 中兴通讯股份有限公司 一种正交频分复用系统的半盲信道估计方法
WO2010085890A1 (en) * 2009-01-30 2010-08-05 Wi-Lan Inc. Wireless local area network using tv white space spectrum and long term evolution system architecture
CN102148779A (zh) * 2011-03-21 2011-08-10 电信科学技术研究院 一种信号检测的方法及装置

Also Published As

Publication number Publication date
CN102148779B (zh) 2013-07-24
CN102148779A (zh) 2011-08-10

Similar Documents

Publication Publication Date Title
JP5122428B2 (ja) 移動通信システム、受信装置及び方法
Petropulu et al. Blind OFDM channel estimation through simple linear precoding
WO2011035594A1 (zh) 正交频分复用-多输入多输出系统的解调方法及解调器
Wu et al. An advanced receiver for universal filtered multicarrier
Lin et al. Linear precoding assisted blind channel estimation for OFDM systems
TW201442470A (zh) 正交分頻多工系統內之區塊時域通道估計
JP2009507400A (ja) 無線通信装置
JP2011151803A (ja) 送信機及び受信機を含むネットワークにおいてシンボルを通信するための方法
JP5579626B2 (ja) マルチアンテナOFDMシステムにおいて巡回遅延(cyclicdelays)を選択するための方法およびシステム
JP4388077B2 (ja) 有効なチャネルの評価のための装置および方法ならびにパイロットシーケンスを提供するための装置および方法
WO2013091546A1 (en) Communications terminal, apparatus, and method for detecting rank indication
CN101807954A (zh) 上行多用户时域同步频分多址接入方法
Liu et al. Preamble-based channel estimation for OQAM/FBMC systems with delay diversity
CN102045285A (zh) 信道估计方法、装置以及通信系统
WO2013155908A1 (zh) 一种re检测方法及装置
TWI448116B (zh) 最佳化通道估測之正交分頻多工系統及最佳化正交分頻多工系統通道估測之方法
WO2012106963A1 (zh) 干扰和噪声消除方法及装置
Li et al. A generalized analytical solution to channel estimation with intersymbol interference cancelation and co-channel interference cancelation for single input single output/multiple input single output digital terrestrial multimedia broadcasting systems
Bhoyar et al. Leaky least mean square (LLMS) algorithm for channel estimation in BPSK-QPSK-PSK MIMO-OFDM system
WO2011143859A1 (zh) 一种解调方法及装置
WO2012126361A1 (zh) 一种信号检测的方法及装置
US20170272281A1 (en) Method and apparatus for attenuating interference or cancelling interference in filter bank multicarrier system
WO2012045244A1 (zh) 低复杂度高性能的信道估计方法及装置
Fan et al. Channel Estimation and Interference Cancellation for OFDM Systems Based on Total Least Squares Solution.
CN105991489A (zh) 利用频域过采样来实现信道均衡的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12760912

Country of ref document: EP

Kind code of ref document: A1