WO2012124690A1 - Active matrix substrate and method for manufacturing active matrix substrate - Google Patents

Active matrix substrate and method for manufacturing active matrix substrate Download PDF

Info

Publication number
WO2012124690A1
WO2012124690A1 PCT/JP2012/056411 JP2012056411W WO2012124690A1 WO 2012124690 A1 WO2012124690 A1 WO 2012124690A1 JP 2012056411 W JP2012056411 W JP 2012056411W WO 2012124690 A1 WO2012124690 A1 WO 2012124690A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
electrode
auxiliary capacitance
interlayer insulating
active matrix
Prior art date
Application number
PCT/JP2012/056411
Other languages
French (fr)
Japanese (ja)
Inventor
雅貴 山中
堀田 和重
牧田 直樹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2013504739A priority Critical patent/JPWO2012124690A1/en
Publication of WO2012124690A1 publication Critical patent/WO2012124690A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • H01L29/78627Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile with a significant overlap between the lightly doped drain and the gate electrode, e.g. GOLDD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile

Definitions

  • the present invention relates to an active matrix substrate used for a display device or the like.
  • a display device such as a liquid crystal display device, an organic EL (Electro Luminescence) display device, a flexible display device, or an electronic book has a thin film transistor (hereinafter also referred to as “TFT”) as a switching element of each pixel.
  • TFT thin film transistor
  • an active matrix substrate also referred to as “TFT substrate”.
  • the active matrix substrate includes a plurality of data lines, a plurality of gate lines, a plurality of TFTs arranged at intersections thereof, a pixel electrode for applying a voltage to a light modulation layer such as a liquid crystal layer, and an applied voltage.
  • a pixel electrode for applying a voltage to a light modulation layer such as a liquid crystal layer, and an applied voltage.
  • Auxiliary capacitance wiring, auxiliary capacitance electrodes, and the like are formed to hold the voltage for a longer time.
  • FIG. 14A shows a cross-sectional configuration of the TFT region in the active matrix substrate of Patent Document 1
  • FIG. 14B shows a cross-sectional configuration of the auxiliary capacitance (additional capacitance) region.
  • channel regions 12a and 12b formed on an insulating substrate 11, source electrodes 23, and a TFT region of the active matrix substrate The drain electrode 24a, the channel layers 12a and 12b, the source electrode 23, the gate insulating film 13 formed so as to cover the drain electrode 24a, the gate electrodes 3a and 3b formed on the gate insulating film 13, and the second A first interlayer insulating film 14 and a second interlayer insulating film 17 formed on the first interlayer insulating film 14 are disposed.
  • the source bus wiring 2 and the metal layer 10 are disposed between the first interlayer insulating film 14 and the second interlayer insulating film 17, and the pixel electrode 4 is disposed on the second interlayer insulating film 17.
  • the source bus wiring 2 and the metal layer 10 are connected to the source electrode 23 and the drain electrode 24a through contact holes formed in the first interlayer insulating film 14 and the gate insulating film 13, respectively.
  • the pixel electrode 4 is connected to the metal layer 10 through a contact hole formed in the second interlayer insulating film 17.
  • the additional capacitor electrode 6 and the first interlayer insulating film 14 formed on the gate insulating film 13 and the second interlayer insulating film 17 formed on the first interlayer insulating film 14 are disposed.
  • the metal layer 10 is disposed between the first interlayer insulating film 14 and the second interlayer insulating film 17, and the pixel electrode 4 is disposed on the second interlayer insulating film 17.
  • the metal layer 10 is connected to the capacitor lower electrode 5 via a contact hole formed in the first interlayer insulating film 14 and the gate insulating film 13, and the pixel electrode 4 is connected via a contact hole in the second interlayer insulating film 17. Are connected to the metal layer 10.
  • Patent Document 1 an additional capacitor is formed between the capacitor lower electrode 5 and the additional capacitor electrode 6 and an additional capacitor is also formed between the metal layer 10 and the additional capacitor electrode 6 due to the above configuration. Therefore, it is said that a necessary capacity can be obtained with a small area and an aperture ratio of a display area can be improved.
  • FIG. 15 shows a cross-sectional configuration of an example of an active matrix substrate used in a liquid crystal display device.
  • the active matrix substrate 200 includes a semiconductor layer 214, a gate insulating layer 216, a first interlayer insulating layer 218, a second interlayer insulating layer 219, and a pixel electrode 220 that are sequentially stacked on the substrate 201. I have.
  • the semiconductor layer 214 is made of, for example, crystalline silicon
  • the gate insulating layer 216 and the first interlayer insulating layer 218 are made of, for example, silicon nitride
  • the second interlayer insulating layer 219 is made of, for example, an organic insulating material
  • the pixel electrode 220 is For example, it is made of ITO (Indium Tin Oxide).
  • the semiconductor layer 214 in the TFT portion 203 of the active matrix substrate 200 includes the channel portion 230, the Si (n ⁇ ) portions 231 and 232 that are in contact with both ends of the channel portion 230, and the respective channel portions 230 of the Si (n ⁇ ) portions 231 and 232.
  • Si (n +) portions 233 and 234 are in contact with the opposite side.
  • a scanning line extends over the gate insulating layer 216 above the channel portion 230, and a part of the scanning line becomes the gate electrode 240.
  • Contact holes are formed in the first interlayer insulating layer 218 on each of the Si (n +) portions 233 and 234, and a source electrode 243 and a drain electrode 244 are formed so as to fill the contact holes. Lower portions of the source electrode 243 and the drain electrode 244 are in contact with the Si (n +) portions 233 and 234, respectively. Si (n +) portions 233 and 234 function as contact portions for the source electrode 243 and the drain electrode 244, respectively.
  • the upper part of the source electrode 243 is connected to a signal line 246 extending on the first interlayer insulating layer 218.
  • a contact hole is formed in the second interlayer insulating layer 219 above the drain electrode 244, and the pixel electrode 220 is in contact with the drain electrode 244 through the contact hole.
  • the semiconductor layer 214 is composed of an Si (n ⁇ ) portion 237, and an auxiliary capacitance electrode (upper layer electrode) 245 is formed on the gate insulating layer 216.
  • the Si (n ⁇ ) portion 237 below the auxiliary capacitance electrode 245 functions as the auxiliary capacitance lower electrode (lower layer electrode) 239, and is constituted by the auxiliary capacitance electrode 245, the auxiliary capacitance lower electrode 239, and the gate insulating layer 216 between the two electrodes.
  • a storage capacitor is formed.
  • the gate insulating layer 216 can be formed very thin with a dielectric. Therefore, even if the area occupied by the auxiliary capacitance electrode 245 and the auxiliary capacitance lower electrode 239 (area occupied in the substrate surface) is reduced, a relatively large auxiliary capacitance can be obtained, the pixel density is increased, and the aperture ratio is improved. Can be achieved.
  • capacitance is formed between the capacitor lower electrode 5 and the additional capacitor electrode 6 and between the metal layer 10 and the additional capacitor electrode 6.
  • a signal line is disposed on the interlayer insulating layer
  • a scanning line is disposed below the interlayer insulating layer.
  • the interlayer insulating layer functions as an insulation between the two lines. Is responsible. Therefore, the thickness of the interlayer insulating layer is several times to 10 times that of the gate insulating layer.
  • the present invention has been made in view of the above, and provides a high-definition and high-luminance display device while ensuring a sufficient auxiliary capacity, or an active device that can be suitably used for such a display device.
  • An object is to provide a matrix substrate.
  • An active matrix substrate includes a semiconductor layer, an insulating layer formed on the semiconductor layer, an auxiliary capacitance electrode formed on the insulating layer, and a first electrode formed on the auxiliary capacitance electrode.
  • a first interlayer insulating layer; a recess formed in the first interlayer insulating layer above the storage capacitor electrode; a storage capacitor upper electrode formed on a bottom surface of the recess; and the storage capacitor upper electrode A second interlayer insulating layer formed; and a pixel electrode formed on the second interlayer insulating layer.
  • a layer made of silicon oxide is disposed between the upper surface of the auxiliary capacitance electrode and the auxiliary capacitance upper electrode, and the distance from the upper surface of the auxiliary capacitance electrode to the lower surface of the auxiliary capacitance upper electrode is 10 nm. It is 100 nm or less.
  • a layer made of silicon nitride is disposed between the upper surface of the auxiliary capacitance electrode and the auxiliary capacitance upper electrode, and the distance from the upper surface of the auxiliary capacitance electrode to the lower surface of the auxiliary capacitance upper electrode is 10 nm. It is 200 nm or less.
  • the auxiliary capacitor upper electrode and the semiconductor layer are electrically connected via a contact hole formed in the insulating layer and the first interlayer insulating layer, and the auxiliary capacitor upper electrode The pixel electrode is electrically connected through a contact hole formed in the second interlayer insulating layer.
  • the semiconductor layer includes a storage capacitor lower electrode made of a semiconductor doped with an impurity and formed under the storage capacitor electrode.
  • an additional insulating layer is formed on the auxiliary capacitance electrode, the upper surface of the auxiliary capacitance electrode is in contact with the lower surface of the additional insulating layer, and the lower surface of the auxiliary capacitance upper electrode is the additional insulating layer. It is in contact with the top surface.
  • the additional insulating layer is made of silicon nitride, and the first interlayer insulating layer is made of silicon oxide.
  • the manufacturing method of the active matrix substrate according to the present invention includes a step of forming a semiconductor layer, a step of forming an insulating layer on the semiconductor layer, a step of forming an auxiliary capacitance electrode on the insulating layer, and the auxiliary Forming a first interlayer insulating layer on the capacitor electrode; forming a recess in the first interlayer insulating layer above the auxiliary capacitor electrode; and forming an auxiliary capacitor upper electrode on the bottom surface of the recess A step of forming a second interlayer insulating layer on the storage capacitor upper electrode, and a step of forming a pixel electrode on the second interlayer insulating layer.
  • a layer made of silicon oxide is formed between the upper surface of the auxiliary capacitance electrode and the auxiliary capacitance upper electrode, and the distance from the upper surface of the auxiliary capacitance electrode to the bottom surface of the recess is 10 nm or more and 100 nm or less.
  • the recess is formed in the first interlayer insulating layer.
  • a layer made of silicon nitride is formed between the upper surface of the auxiliary capacitor electrode and the upper electrode of the auxiliary capacitor, and the distance from the upper surface of the auxiliary capacitor electrode to the bottom surface of the recess is 10 nm or more and 200 nm or less.
  • the recess is formed in the first interlayer insulating layer.
  • the step of forming the recess includes a step of forming a resist on the first interlayer insulating layer, a step of forming an opening of the resist above the auxiliary capacitance electrode, and the step of forming the resist. Selectively etching the first interlayer insulating layer under the opening.
  • the step of forming the recess includes a step of forming a resist on the first interlayer insulating layer, a first window, and a plurality of second windows having a higher light transmittance than the first window. And a step of irradiating the resist with light through the first window and the plurality of second windows, and removing the resist irradiated with light. Forming a recess and a plurality of openings in the resist; and selectively etching the first interlayer insulating layer through the resist to form the first interlayer insulating layer on the auxiliary capacitance electrode. Forming a recess, and forming a contact hole leading to the semiconductor layer under the opening of the resist.
  • the manufacturing method includes a step of doping impurities into the semiconductor layer, and in the step of forming the auxiliary capacitance electrode, the auxiliary capacitance electrode is formed on the semiconductor layer doped with the impurity. Is done.
  • the manufacturing method includes a step of forming an additional insulating layer on the auxiliary capacitance electrode, and the additional insulating layer is used as an etching stopper in the step of forming the recess in the first interlayer insulating layer. Then, the first interlayer insulating layer is etched so that the additional insulating layer is exposed at the bottom surface of the recess.
  • the additional insulating layer is formed from silicon nitride, and the first interlayer insulating layer is formed from silicon oxide.
  • a large auxiliary capacitance can be formed between the auxiliary capacitance electrode and the auxiliary capacitance upper electrode, a display device with high display quality can be provided.
  • a large auxiliary capacitance can be obtained with an electrode having a small occupied area, so that a high-definition display device can be provided.
  • an auxiliary capacitance can be formed between the auxiliary capacitance electrode and the semiconductor layer, so that a display device with higher display quality or higher A fine display device can be provided.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of an active matrix substrate 100 according to Embodiment 1 of the present invention. It is the perspective view which represented typically the structure of the liquid crystal display device 1000 by Embodiment 1 of this invention.
  • FIG. 2 is a plan view schematically showing a configuration of a pixel region in an active matrix substrate 100 according to Embodiment 1.
  • 2 is a circuit diagram illustrating a configuration of a pixel of an active matrix substrate 100 according to Embodiment 1.
  • FIGS. 4A to 4G are cross-sectional views illustrating a method for manufacturing the active matrix substrate 100 according to the first embodiment. It is sectional drawing which represented typically the structure of the active matrix substrate 100 by Embodiment 2 of this invention.
  • FIGS. 4A to 4D are cross-sectional views illustrating a method for manufacturing the active matrix substrate 100 according to the second embodiment.
  • FIGS. 5A to 5F are cross-sectional views illustrating a method for manufacturing the active matrix substrate 100 according to the third embodiment. It is sectional drawing which represented typically the structure of the active matrix substrate 100 by Embodiment 4 of this invention.
  • 6 is a circuit diagram illustrating a configuration of a pixel of an active matrix substrate 100 according to Embodiment 4.
  • FIGS. 8A to 8F are cross-sectional views illustrating a method for manufacturing the active matrix substrate 100 according to the fourth embodiment.
  • FIGS. 9A to 9D are cross-sectional views illustrating a method for manufacturing the active matrix substrate 100 according to the fifth embodiment.
  • 5E to 5G are cross-sectional views illustrating a method for manufacturing the active matrix substrate 100 according to the fifth embodiment.
  • (A) And (b) is sectional drawing showing the structure of the active-matrix board
  • FIG. It is sectional drawing which represented typically the structure of the active matrix substrate 200 of a reference example.
  • the active matrix substrate of the present invention can be used as an active matrix substrate for various display devices such as liquid crystal display devices and organic EL display devices.
  • display devices such as liquid crystal display devices and organic EL display devices.
  • known components can basically be used for components other than the active matrix substrate described below, such as the counter substrate and peripheral wiring.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of the active matrix substrate 100 according to the first embodiment.
  • an active matrix substrate 100 includes a semiconductor layer 114, a gate insulating layer (also simply referred to as an insulating layer) 116, a first interlayer insulating layer 118, and a second interlayer insulating layer that are sequentially stacked on the substrate 101. 119 and a pixel electrode 120.
  • the semiconductor layer 114 is made of, for example, crystalline silicon or polysilicon
  • the gate insulating layer 116 and the first interlayer insulating layer 118 are made of, for example, silicon nitride
  • the second interlayer insulating layer 119 is made of, for example, an organic insulating material.
  • the electrode 120 is made of, for example, ITO.
  • a plurality of pixels are formed on the active matrix substrate 100, and each pixel has a TFT portion 103 in which a TFT 125 is formed and a Cs portion 105 in which an auxiliary capacitor 150 is formed.
  • the semiconductor layer 114 of the TFT 125 in the TFT unit 103 includes a channel unit 130, Si (n ⁇ ) units 131 and 132 in contact with both ends of the channel unit 130, and the Si (n ⁇ ) units 131 and 132 on the opposite side to the channel unit 130.
  • Si (n +) portions 133 and 134 are in contact with the end portions.
  • a scanning line extends on the gate insulating layer 116 above the channel portion 130, and a part of the scanning line becomes a gate electrode 140.
  • Contact holes are formed in the first interlayer insulating layer 118 on each of the Si (n +) portions 133 and 134, and a source electrode 143 and a drain electrode 144 are formed so as to fill the contact holes. Lower portions of the source electrode 143 and the drain electrode 144 are in contact with Si (n +) portions 133 and 134, respectively. Si (n +) portions 133 and 134 function as contact portions for the source electrode 143 and the drain electrode 144, respectively.
  • the upper part of the source electrode 143 is connected to a signal line 146 extending over the first interlayer insulating layer 118.
  • a contact hole is formed in the second interlayer insulating layer 119 above the drain electrode 144, and the pixel electrode 120 is in contact with the drain electrode 144 through the contact hole.
  • the semiconductor layer 114 is composed of an Si (n ⁇ ) portion 137, and an auxiliary capacitance electrode 145 is formed on the gate insulating layer 116.
  • the Si (n ⁇ ) parts 131, 132, and 137 are semiconductor layers whose resistance is reduced by doping impurities.
  • the Si (n ⁇ ) portion 137 below the auxiliary capacitance electrode 145 functions as the auxiliary capacitance lower electrode 139.
  • the auxiliary capacitance lower electrode 139 may be formed of a Si (n +) semiconductor.
  • a recess 160 is formed in the first interlayer insulating layer 118 above the auxiliary capacitance electrode 145.
  • a storage capacitor upper electrode 149 is formed on the bottom surface of the recess 160.
  • the distance d from the upper surface of the auxiliary capacitance electrode 145 to the lower surface of the auxiliary capacitance upper electrode 149 (or the bottom surface of the recess 160) is 10 nm or more and 100 nm or less when the first interlayer insulating layer 118 is made of silicon oxide. In this case, it is 10 nm or more and 200 nm or less.
  • the auxiliary capacitance upper electrode 149 is a part of the metal layer 147 formed on the upper surface of the first interlayer insulating layer 118.
  • the metal layer 147 is connected to the drain electrode 144 on the first interlayer insulating layer 118 and is connected to the pixel electrode 120 through a contact hole formed in the second interlayer insulating layer 119.
  • the auxiliary capacitance upper electrode 149 and the auxiliary capacitance lower electrode 139 are electrically connected through the metal layer 147, the drain electrode 144 filling the contact hole formed in the gate insulating layer 116 and the first interlayer insulating layer 118, and the semiconductor layer 114. It is connected.
  • the auxiliary capacitor upper electrode 149 and the pixel electrode 120 are electrically connected through a contact hole formed in the metal layer 147 and the second interlayer insulating layer 119.
  • a capacitance is formed by the auxiliary capacitance electrode 145, the auxiliary capacitance lower electrode 139, and the gate insulating layer 116 between both electrodes, and the first interlayer insulation between the auxiliary capacitance electrode 145, the auxiliary capacitance upper electrode 149, and both electrodes.
  • a capacitor is also formed by the layer 118, and the sum of these two capacitors becomes the auxiliary capacitor 150 of each pixel. Since the gate insulating layer 116 is very thin and has a thickness of 10 nm to 100 nm, a large capacitance can be formed between the auxiliary capacitance electrode 145 and the auxiliary capacitance lower electrode 139.
  • the recess 160 is formed in the first interlayer insulating layer 118, the distance between the auxiliary capacitance electrode 145 and the auxiliary capacitance upper electrode 149 can be reduced, so that a large capacitance is also present between these two electrodes. Can be formed.
  • auxiliary capacitor 150 having a large capacity in each pixel as compared with the conventional active matrix substrate.
  • the first interlayer insulating layer 118 other than the recess 160 is formed to a sufficient thickness, a large capacity can be obtained. Therefore, an active matrix substrate that can realize both display quality and reliability at a high level is provided. It becomes possible to provide. Furthermore, even if the area occupied by the auxiliary capacitance electrode 145, the auxiliary capacitance lower electrode 139, and the auxiliary capacitance upper electrode 149 is reduced, a relatively large auxiliary capacitance can be obtained, so that the pixel density is increased and the aperture ratio is improved. Can be achieved.
  • FIG. 2 is a perspective view schematically showing the configuration of the liquid crystal display device 1000 according to the present invention.
  • the liquid crystal display device 1000 includes an active matrix substrate 100 according to an embodiment of the present invention as its TFT substrate.
  • FIG. 3 is a plan view schematically showing an arrangement configuration of pixels in the active matrix substrate 100, and
  • FIG. 4 is a circuit diagram showing a circuit configuration of each pixel.
  • the liquid crystal display device 1000 includes an active matrix substrate 100 and a counter substrate 500 facing each other with a liquid crystal layer interposed therebetween, and polarizing plates attached to the outer surfaces of the active matrix substrate 100 and the counter substrate 500. 510 and 520 and a backlight unit 530 for emitting display light.
  • the counter substrate 500 includes a color filter and a common electrode.
  • the color filter includes an R (red) filter, a G (green) filter, and a B (blue) filter, each of which is arranged corresponding to a pixel.
  • the counter substrate 500 may correspond to a display method of four primary colors or more.
  • the common electrode is formed so as to cover the plurality of pixel electrodes 120 with the liquid crystal layer interposed therebetween. In accordance with the potential difference applied between the common electrode and each pixel electrode 120, the liquid crystal between both electrodes is aligned for each pixel, and display is performed.
  • a plurality of scanning lines (gate bus lines) 141 and a plurality of signal lines (data bus lines) 146 are arranged on the active matrix substrate 100 so as to be orthogonal to each other.
  • a TFT 125 is formed for each pixel 110 near the intersection of the scanning line 141 and the signal line 146.
  • the pixel 110 is defined as a region delimited by a center line between two adjacent scanning lines 141 and two adjacent signal lines 146.
  • Each pixel 110 is provided with a pixel electrode 120 that is electrically connected to the drain electrode 144 of the TFT 125.
  • a storage capacitor line 142 extends in parallel with the scanning line 141 between two adjacent scanning lines 141.
  • the scanning line 141 and the signal line 146 are respectively connected to the scanning line driving circuit 540 and the signal line driving circuit 550 shown in FIG.
  • a scanning signal for switching on / off of the TFT 125 is supplied from the scanning line driving circuit 540 to the scanning line 141 according to control by the control circuit 560, and signal line driving is performed to the signal line 146 according to control by the control circuit 560.
  • a display signal (voltage applied to the pixel electrode 120) is supplied from the circuit 550.
  • a display capacitor is formed between the pixel electrode 120 and the counter electrode 170 of the counter substrate 500 facing each other with the liquid crystal layer 180 interposed therebetween.
  • the pixel electrode 120, the auxiliary capacitor lower electrode 139, and the auxiliary capacitor upper electrode 149 have the same potential as the drain electrode of the TFT 125, and the same reference potential as that of the counter electrode 170 is applied to the auxiliary capacitor electrode 145 through the auxiliary capacitor line 142. It is done.
  • the capacitance formed between the auxiliary capacitance electrode 145 and the auxiliary capacitance lower electrode 139 and between the auxiliary capacitance electrode 145 and the auxiliary capacitance upper electrode 149 functions as an auxiliary capacitance for maintaining the display capacitance. .
  • the capacity Cs of the auxiliary capacity 150 is expressed by the following formula.
  • Cs1 is a capacitance formed between the auxiliary capacitance electrode 145 and the auxiliary capacitance upper electrode 149
  • Cs2 is a capacitance formed between the auxiliary capacitance electrode 145 and the auxiliary capacitance lower electrode 139.
  • A represents the occupied area in the substrate surface of the auxiliary capacitance electrode 145
  • ⁇ 1 is the dielectric constant of the first interlayer insulating layer 118
  • d 1 is the distance d between the auxiliary capacitance electrode 145 and the auxiliary capacitance upper electrode 149
  • ⁇ 2 represents the dielectric constant of the gate insulating layer 116
  • d 2 represents the distance between the auxiliary capacitance electrode 145 and the auxiliary capacitance lower electrode 139 (the thickness of the gate insulating layer 116).
  • the first interlayer insulating layer 118 is formed of the same material as the gate insulating layer 116 and the distance d between the auxiliary capacitance electrode 145 and the auxiliary capacitance upper electrode 149 is the same as the thickness of the gate insulating layer 116, From the equation, it is possible to obtain twice the capacitance Cs compared to the case where the auxiliary capacitance upper electrode 149 is not formed. Alternatively, the area A occupied by the auxiliary capacitance electrode 145 can be halved in order to obtain the same capacitance Cs.
  • the relative dielectric constants ⁇ r1 and ⁇ r2 of both materials are about 7.0 and about 3.9, respectively, so ⁇ 1 and ⁇ 2 are about 7.0 * ⁇ 0 and about 3.9 * ⁇ 0 , respectively ( ⁇ 0 : dielectric constant of vacuum). Therefore, when the thickness d 1 of the first interlayer insulating layer 118 under the recess 160 is substantially equal to the thickness d 2 of the gate insulating layer 116, the capacitance is about three times that when the auxiliary capacitance upper electrode 149 is not formed. Cs can be obtained. Alternatively, in order to obtain the same capacitance Cs, the area occupied by the auxiliary capacitance electrode 145 can be reduced to about 3.
  • the thickness of the gate insulating layer 116 made of silicon oxide is 10 to 100 nm in order to obtain a larger capacity (for example, twice that of the case where only the gate insulating film is used) while functioning as an insulating layer. It is more preferable that the thickness is 30 to 80 nm. The optimum thickness of the gate insulating layer 116 is about 50 nm.
  • the thickness d of the first interlayer insulating layer 118 under the recess 160 is set to For example, the thickness is preferably 10 to 100 nm, more preferably 30 to 80 nm. The optimum value of thickness d is about 50 nm.
  • the thickness d of the first interlayer insulating layer 118 under the recess 160 is preferably 10 to 200 nm, for example, and preferably 30 to 160 nm. Practically more preferable.
  • the optimum thickness d is about 100 nm.
  • FIGS. 5A to 5G are cross-sectional views schematically showing a method for manufacturing the active matrix substrate 100. 5A to 5G also show the manufacturing process of the driver TFT portion 107 included in the active matrix substrate 100.
  • the driver TFT portion 107 is a driver TFT formation region arranged in a peripheral region outside the display region composed of a plurality of pixels 110.
  • the driver TFT includes TFTs formed in the peripheral region such as the TFT of the scanning line driver circuit 540 and the TFT of the signal line driver circuit 550 shown in FIG.
  • a base film (not shown) is formed on a substrate 101 such as a glass substrate, and a semiconductor layer 114 made of crystalline silicon or polysilicon is laminated thereon.
  • the base film is, for example, a multilayer film of a silicon nitride film and a silicon oxide film.
  • the semiconductor layer 114 can be obtained by depositing amorphous silicon and then crystallizing or polysiliconizing the amorphous silicon by a known technique such as irradiation with an excimer laser or the like.
  • the semiconductor layer 114 is patterned by photolithography to selectively leave the semiconductor layer 114 in the TFT portion 103, the Cs portion 105, and the driver TFT portion 107. Thereafter, a gate insulating layer 116 is formed so as to cover the semiconductor layer 114, and the structure shown in FIG. After the gate insulating layer 116 is formed, a low-concentration p-type impurity 190 is ion-implanted into the remaining semiconductor layer 114 through the gate insulating layer 116 from above.
  • the region of the TFT portion 103 and the region of the driver TFT portion 107 that becomes the channel portion 330 of the driver TFT are covered with a resist 185, and an n-type impurity 191 such as phosphorus is applied from above. Dope. Thereby, the semiconductor layer 114 in a region not covered with the resist 185 becomes a Si (n ⁇ ) semiconductor portion.
  • a metal layer is formed on the gate insulating layer 116 by sputtering or CVD.
  • the material of the metal layer it is desirable to use any of refractory metals W, Ta, Ti, Mo or alloy materials thereof.
  • the metal layer is patterned by photolithography to obtain the auxiliary capacitance electrode 145 of the Cs portion 105, the gate electrode 140 of the TFT portion 103, and the gate electrode 340 of the driver TFT portion 107 as shown in FIG. .
  • the scanning line 141 and the auxiliary capacitance line 142 not shown here are also formed at the same time.
  • the semiconductor layer 114 is doped with an n-type impurity 191 such as phosphorus using the auxiliary capacitance electrode 145, the gate electrode 140, and the gate electrode 340 as a mask. As a result, a TFT channel portion 130 in the TFT portion 103 is obtained.
  • the n-type impurity is further selectively doped to obtain the semiconductor layer 114 of the TFT portion 103 and the driver TFT portion 107 as shown in FIG. That is, in the TFT portion 103, the channel portion 130 under the gate electrode 140, the Si (n ⁇ ) portions 131 and 132 in contact with both ends of the channel portion 130, and the outer ends of the Si (n ⁇ ) portions 131 and 132, respectively. Si (n +) portions 133 and 134 are formed. In the driver TFT portion 107, the channel portion 330 below the gate electrode 340, the Si (n ⁇ ) portions 331 and 332 in contact with both ends of the channel portion 330, and the outer ends of the Si (n ⁇ ) portions 331 and 332, respectively.
  • Si (n +) portions 333 and 334 in contact are formed. Further, the semiconductor layer 114 of the Cs portion 105 becomes the Si (n ⁇ ) portion 137, and a portion below the auxiliary capacitance electrode 145 among them becomes the auxiliary capacitance lower electrode 139.
  • a step of selectively doping the semiconductor layer 114 with a p-type impurity is added, so that one of the TFTs of the TFT portion 103 and the driver TFT portion 107 is a P-type TFT and the other is an N-type TFT. It is also possible to change the threshold voltage of both TFTs by changing the concentration of doped impurities.
  • Both TFTs of the TFT portion 103 and the driver TFT portion 107 may be P-type TFTs.
  • both the N-type TFT and the P-type TFT may be included in the plurality of TFTs formed in the driver TFT portion 107. All of the plurality of TFTs in the driver TFT unit 107 may be N-type TFTs, and all of them may be P-type TFTs.
  • silicon nitride is laminated on the gate insulating layer 116 so as to cover the auxiliary capacitance electrode 145, the gate electrode 140, and the gate electrode 340, thereby obtaining the first interlayer insulating layer 118.
  • a resist 185 is applied on the first interlayer insulating layer 118, and the resist 185 on the auxiliary capacitance electrode 145 is removed to form an opening, thereby obtaining a stacked structure shown in FIG.
  • the first interlayer insulating layer 118 under the opening of the resist 185 is selectively etched to form a recess 160 above the auxiliary capacitance electrode 145. Thereafter, the resist 185 is removed to obtain a stacked structure shown in FIG. Thereafter, although not shown, the first interlayer insulating layer 118 and the gate insulating layer 116 are selectively removed by photolithography, and the Si (n +) portions 133, 134, 333, and 334 are respectively removed. A contact hole is formed on top.
  • a metal layer is stacked on the first interlayer insulating layer 118.
  • the metal layer has, for example, a three-layer structure of Ti / Al / Ti.
  • the metal layer may have a two-layer structure such as Al / Ti, Cu / Ti, Cu / Mo (molybdenum), or a single-layer structure using one of these metals.
  • the metal layer is patterned by photolithography to obtain the auxiliary capacitor upper electrode 149, the metal layer 147, the source electrodes 143 and 343, and the drain electrodes 144 and 344, as shown in FIG. At this time, a signal line 146 not shown here is also formed at the same time.
  • a second interlayer insulating layer 119 functioning as a planarizing film is stacked on the first interlayer insulating layer 118, and a contact hole is formed in the second interlayer insulating layer 119 above the drain electrode 144.
  • ITO is stacked on the second interlayer insulating layer 119 and patterned by photolithography to form the pixel electrode 120, whereby the active matrix substrate 100 shown in FIG. 5G is completed.
  • the active matrix substrate 100 formed in this way in addition to the capacitance between the auxiliary capacitance electrode 145 and the auxiliary capacitance lower electrode 139, a capacitance is also formed between the auxiliary capacitance electrode 145 and the auxiliary capacitance upper electrode 149. Therefore, the auxiliary capacitor 150 having a larger capacity can be formed for each pixel.
  • the auxiliary capacitor upper electrode 149 is formed on the bottom surface of the recess 160, a large capacity can be obtained even if the first interlayer insulating layer 118 other than the recess 160 is formed to a sufficient thickness. Therefore, an active matrix substrate excellent in both display quality and reliability can be provided.
  • auxiliary capacitance electrode 145 since a relatively large auxiliary capacitance can be obtained even if the area occupied by the auxiliary capacitance electrode 145 is reduced, it is possible to increase the density of the pixels and improve the aperture ratio. Furthermore, since the auxiliary capacitor upper electrode 149 is formed in the same manufacturing process as the source electrode 143, the drain electrode 144, etc., a large auxiliary capacity can be obtained without complicating the manufacturing process. Further, according to the active matrix substrate 100, since the first interlayer insulating layer 118 having a sufficient thickness is formed at a portion where the signal line and the scanning line intersect, a sufficient insulating function between the two lines is ensured, A large auxiliary capacity can be ensured without degrading the signal quality of both lines.
  • FIG. 6 is a cross-sectional view schematically showing the configuration of the active matrix substrate 100 according to the second embodiment.
  • the active matrix substrate 100 according to the second embodiment includes a semiconductor layer 114, a gate insulating layer 116, an additional insulating layer 117, a first interlayer insulating layer 118, and a second interlayer sequentially stacked on the substrate 101.
  • An insulating layer 119 and a pixel electrode 120 are provided.
  • the additional insulating layer 117 is formed on the gate insulating layer 116 so as to cover the auxiliary capacitance electrode 145 and the gate electrode 140.
  • a recess 160 is formed in the first interlayer insulating layer 118 above the auxiliary capacitance electrode 145.
  • the space between the auxiliary capacitance electrode 145 and the auxiliary capacitance upper electrode 149 is filled with the additional insulating layer 117. That is, the upper surface of the auxiliary capacitance electrode 145 is in contact with the lower surface of the additional insulating layer 117, and the lower surface of the auxiliary capacitance upper electrode 149 is in contact with the upper surface of the additional insulating layer 117.
  • a distance d between the upper surface of the auxiliary capacitance electrode 145 and the lower surface of the auxiliary capacitance upper electrode 149 (the bottom surface of the recess 160) corresponds to the thickness of the additional insulating layer 117 between the two electrodes.
  • the additional insulating layer 117 is made of, for example, silicon nitride, and the first interlayer insulating layer 118 is made of, for example, silicon oxide.
  • the additional insulating layer 117 serves as an etching stopper.
  • the distance d (or the thickness of the additional insulating layer 117) from the upper surface of the auxiliary capacitance electrode 145 to the lower surface of the auxiliary capacitance upper electrode 149 is 10 nm or more and 200 nm or less.
  • the distance d is more preferably 60 to 160 nm, and the optimum value is about 100 nm.
  • 7A to 7D are cross-sectional views schematically showing a method for manufacturing the active matrix substrate 100 according to the second embodiment. 7A to 7D also show a manufacturing process of the driver TFT portion 107 included in the active matrix substrate 100. FIG.
  • the laminated structure shown in FIG. 7A is obtained through steps similar to the manufacturing steps of the first embodiment shown in FIGS. 5A to 5C. Thereafter, the semiconductor layer 114 is doped with an n-type impurity to obtain the semiconductor layer 114 having the structure shown in FIG. 7B including the Si (n +) portions 133, 134, 333, and 334.
  • silicon nitride is stacked on the gate insulating layer 116 so as to cover the auxiliary capacitance electrode 145, the gate electrode 140, and the gate electrode 340 to form an additional insulating layer 117, and silicon oxide is stacked thereon.
  • a first interlayer insulating layer 118 is obtained.
  • a resist 185 is applied on the first interlayer insulating layer 118, and the resist 185 on the auxiliary capacitance electrode 145 is removed to form an opening, thereby obtaining a stacked structure shown in FIG. 7B.
  • the first interlayer insulating layer 118 under the opening of the resist 185 is etched to form a recess 160 above the auxiliary capacitance electrode 145.
  • silicon nitride can function as an etching stopper by using an etchant that exhibits an etching rate lower than that of silicon oxide.
  • the resist 185 is removed to obtain a laminated structure shown in FIG.
  • the first interlayer insulating layer 118, the additional insulating layer 117, and the gate insulating layer 116 are selectively removed by photolithography, and Si (n +) portions 133, 134, 333 are removed. , And 334 are formed on each of the contact holes.
  • a metal layer is stacked on the first interlayer insulating layer 118 and patterned by photolithography, and as shown in FIG. 7D, the auxiliary capacitor upper electrode 149, the metal layer 147, the source electrode 143, and 343 and drain electrodes 144 and 344 are obtained. At this time, a signal line 146 not shown here is also formed at the same time.
  • a second interlayer insulating layer 119 is stacked on the first interlayer insulating layer 118, and a contact hole is formed in the second interlayer insulating layer 119 on the drain electrode 144.
  • ITO is laminated on the second interlayer insulating layer 119 and patterned by photolithography to form the pixel electrode 120, thereby completing the active matrix substrate 100 shown in FIG. 7D.
  • the additional insulating layer 117 serves as an etching stopper when forming the recess 160, the recess 160 having a uniform depth for a plurality of pixels without strictly controlling the etching time. Can be formed. Thereby, it is possible to provide a high-quality display in which variation in luminance among a plurality of pixels is suppressed.
  • FIG. 3 is cross-sectional views schematically showing a method for manufacturing the active matrix substrate 100 according to the third embodiment. Since the cross-sectional configuration of the active matrix substrate 100 according to the third embodiment is basically the same as that of the second embodiment, the illustration is omitted here, and only the manufacturing method will be described.
  • the laminated structure shown in FIG. 8A is obtained through the same process as the manufacturing process of the first embodiment shown in FIGS. 5A to 5C. Thereafter, the semiconductor layer 114 is doped with n-type impurities to obtain the semiconductor layer 114 including Si (n +) portions 133, 134, 333, and 334.
  • silicon nitride is stacked on the gate insulating layer 116 so as to cover the auxiliary capacitance electrode 145, the gate electrode 140, and the gate electrode 340 to form an additional insulating layer 117, and silicon oxide is stacked thereon.
  • a first interlayer insulating layer 118 is obtained.
  • a resist 185 is applied on the first interlayer insulating layer 118.
  • a mask 187 is disposed above the resist 185.
  • the mask 187 is a gray-tone mask, and in order to perform halftone exposure, a first window (semi-transmissive portion) 188 that exhibits a low light transmittance and a second window (a light transmittance that is higher than the first window 188). Total transmission part) 189. Portions other than the first window 188 and the second window 189 of the mask 187 are light shielding portions that do not substantially transmit light.
  • the first window 188 is disposed above the auxiliary capacitance electrode 145, and the second window 189 is disposed above each of the Si (n +) portions 133, 134, 333, and 334.
  • the first interlayer insulating layer 118 is selectively etched through the resist 185 to form a recess in the first interlayer insulating layer 118 under the opening 186 as shown in FIG. At this time, the first interlayer insulating layer 118 other than under the opening 186 is left without being etched.
  • the entire resist 185 is thinned by ashing the resist 185 with oxygen plasma or the like, and the first interlayer insulating layer 118 is exposed at the bottom of the recess 184. At this time, a portion of the resist 185 other than the recess 184 and the opening 186 is left, and the first interlayer insulating layer 118 therebelow is not exposed. Thereafter, etching is performed again, and as shown in FIG. 8E, a recess 160 of the first interlayer insulating layer 118 is formed above the auxiliary capacitance electrode 145, and Si (n +) portions 133, 134, 333, And a contact hole leading to 334 is formed.
  • the additional insulating layer 117 is used as an etching stopper, the additional insulating layer 117 is exposed at the bottom of the recess 160.
  • the contact hole is formed through the first interlayer insulating layer 118, the additional insulating layer 117, and the gate insulating layer 116. Thereafter, the resist 185 is removed.
  • a metal layer is stacked on the first interlayer insulating layer 118 and patterned by a photolithography method to form an auxiliary capacitor upper electrode 149, a metal layer 147, source electrodes 143 and 343, and a drain. Electrodes 144 and 344 are obtained. Thereafter, a second interlayer insulating layer 119 is stacked on the first interlayer insulating layer 118, and a contact hole is formed in the second interlayer insulating layer 119 on the drain electrode 144. Next, ITO is laminated on the second interlayer insulating layer 119 and patterned by photolithography to form the pixel electrode 120, whereby the active matrix substrate 100 shown in FIG. 8F is completed.
  • the additional insulating layer 117 serves as an etching stopper when forming the recess 160, the recess 160 having a uniform depth for a plurality of pixels without strictly controlling the etching time. Can be formed. Thereby, it is possible to provide a high-quality display in which variation in luminance among a plurality of pixels is suppressed. Further, by using halftone exposure, the recess 160 and the contact hole can be formed in the first interlayer insulating layer 118 with one resist, so that the manufacturing efficiency can be improved and the manufacturing cost can be reduced.
  • the halftone exposure used here can be applied to the manufacturing method of the first embodiment.
  • FIG. 9 is a cross-sectional view schematically showing the configuration of the active matrix substrate 100 according to Embodiment 4
  • FIG. 10 is a circuit diagram showing the configuration of the pixels in the active matrix substrate 100.
  • the active matrix substrate 100 includes a semiconductor layer 114, a gate insulating layer 116, an additional insulating layer 117, a first interlayer insulating layer 118, a second interlayer insulating layer 119, and a pixel electrode, which are sequentially stacked on the substrate 101. 120.
  • the additional insulating layer 117 is formed on the gate insulating layer 116 so as to cover the auxiliary capacitance electrode 145 and the gate electrode 140. Similar to the second embodiment, the concave portion 160 of the first interlayer insulating layer 118 is formed above the auxiliary capacitance electrode 145, and the additional insulating layer 117 is exposed at the bottom of the concave portion 160. In the fourth embodiment, the Cs portion 105 does not include the semiconductor layer 114, and no auxiliary capacitance lower electrode is formed. Therefore, the auxiliary capacitor 150 includes the auxiliary capacitor electrode 145, the auxiliary capacitor upper electrode 149, and the additional insulating layer 117 between the two electrodes. Other configurations are basically the same as those of the second embodiment.
  • auxiliary capacitor 150 Even in such a configuration of the auxiliary capacitor 150, by forming the recess 160, the distance between the auxiliary capacitor electrode 145 and the auxiliary capacitor upper electrode 149 can be shortened, so that a relatively large auxiliary capacitor can be obtained. Can do. Further, by using a member having a high dielectric constant for the additional insulating layer 117, a larger auxiliary capacitance can be obtained.
  • a configuration in which the concave portion 160 is formed without forming the additional insulating layer 117 as in the first embodiment is also included in the fourth embodiment.
  • FIGS. 11A to 11F are cross-sectional views schematically showing a method for manufacturing the active matrix substrate 100 according to the fourth embodiment.
  • a base film (not shown) is formed on the substrate 101, and a semiconductor layer 114 made of crystalline silicon or polysilicon is stacked thereon.
  • the semiconductor layer 114 is patterned by photolithography, and the semiconductor layer 114 is selectively left in the TFT portion 103 and the driver TFT portion 107. At this time, the semiconductor layer 114 is not left in the Cs portion 105.
  • a gate insulating layer 116 is formed so as to cover the semiconductor layer 114, and p-type impurities 190 are ion-implanted into the remaining semiconductor layer 114 as shown in FIG.
  • a resist 185 is formed above the region of the TFT portion 103 and the region of the driver TFT portion 107 that becomes the channel portion 330 of the driver TFT, and the n-type impurity 191 is applied from above. Dope. Thereby, the semiconductor layer 114 in the region not covered with the resist 185 in the driver TFT portion 107 becomes the Si (n ⁇ ) semiconductor portion.
  • a metal layer is formed on the gate insulating layer 116, and is patterned by photolithography.
  • the auxiliary capacitance electrode 145 of 105, the gate electrode 140 of the TFT portion 103, and the gate electrode 340 of the driver TFT portion 107 are obtained.
  • the semiconductor layer 114 is doped with an n-type impurity using the auxiliary capacitance electrode 145, the gate electrode 140, and the gate electrode 340 as a mask. As a result, a TFT channel portion 130 in the TFT portion 103 is obtained.
  • an additional insulating layer 117 is stacked so as to cover the auxiliary capacitance electrode 145, the gate electrode 140, and the gate electrode 340, and the first interlayer insulating layer 118 is stacked thereon.
  • a resist 185 is applied on the first interlayer insulating layer 118, and the resist 185 on the auxiliary capacitance electrode 145 is removed to form an opening, thereby obtaining a stacked structure shown in FIG.
  • the first interlayer insulating layer 118 under the opening of the resist 185 is etched to form a recess 160 above the auxiliary capacitance electrode 145 as shown in FIG.
  • the additional insulating layer 117 functions as an etching stopper.
  • the storage capacitor upper electrode 149, the metal layer 147, the source electrodes 143 and 343, and the drain electrodes 144 and 344 are formed as in the second embodiment, and the second interlayer insulation is formed thereon.
  • the layer 119 and the pixel electrode 120 are sequentially formed to complete the active matrix substrate 100 shown in FIG.
  • FIGS. 13 (e) to (g) are cross-sectional views schematically showing a method for manufacturing the active matrix substrate 100 according to the fifth embodiment. Since the cross-sectional configuration of the active matrix substrate 100 according to the fifth embodiment is basically the same as that of the fourth embodiment, the illustration is omitted here, and only the manufacturing method will be described.
  • the semiconductor layer 114 is stacked on the substrate 101 by the same method as in the fourth embodiment, and is patterned by photolithography to leave the semiconductor layer 114 of the TFT portion 103 and the driver TFT portion 107. At this time, the semiconductor layer 114 is not left in the Cs portion 105.
  • a gate insulating layer 116 so as to cover the semiconductor layer 114, a low-concentration p-type impurity 190 is ion-implanted into the remaining semiconductor layer 114 as shown in FIG.
  • a metal layer is formed on the gate insulating layer 116 and patterned by photolithography, and as shown in FIG. 12B, the auxiliary capacitance electrode 145 of the Cs portion 105 and the gate electrode of the TFT portion 103 are formed. 140 and the gate electrode 340 of the driver TFT portion 107 are obtained. However, at this time, the auxiliary capacitor electrode 145, the gate electrode 140, and the gate electrode 340 are formed so that the width thereof is wider than the final width. Thereafter, the semiconductor layer 114 is doped with an n-type impurity 191 such as phosphorus from above without removing the resist 185 left on the storage capacitor electrode 145, the gate electrode 140, and the gate electrode 340. Thereby, the semiconductor layer 114 in a region not covered with the resist 185 becomes a Si (n +) semiconductor portion.
  • the auxiliary capacitor electrode 145, the gate electrode 140, and the gate electrode 340 are side-etched by, for example, wet etching to reduce the width of these electrodes. Since the resist 185 is left, these electrodes are not etched from the top by side etching, but only from the side surface, and the width is reduced as shown in FIG.
  • the resist 185 is removed, and the semiconductor layer 114 is doped with an n-type impurity 191 using the auxiliary capacitance electrode 145, the gate electrode 140, and the gate electrode 340 as a mask. Accordingly, the channel portion 130, Si (n ⁇ ) portions 131 and 132, Si (n +) portions 133 and 134 in the TFT portion 103, and the channel portion 330, Si (n ⁇ ) portions 331 and 332 in the driver TFT portion 107, Si (n +) portions 333 and 334 are completed.
  • a recess 184 is formed in the resist 185 above 145, and an opening 186 is formed in the resist 185 above the Si (n +) portions 133, 134, 333, and 334.
  • a depression is formed in the first interlayer insulating layer below the opening 186, the first interlayer insulating layer 118 under the recess 184 is left without being etched.
  • etching is performed again, and as shown in FIG. A recess 160 is formed in one interlayer insulating layer 118, and contact holes that lead to Si (n +) portions 133, 134, 333, and 334 are formed.
  • the additional insulating layer 117 is used as an etching stopper.
  • a metal layer is stacked on the first interlayer insulating layer 118 and patterned by photolithography to obtain the auxiliary capacitor upper electrode 149, the metal layer 147, the source electrodes 143 and 343, and the drain electrodes 144 and 344.
  • a second interlayer insulating layer 119 is stacked on the first interlayer insulating layer 118, and a contact hole is formed in the second interlayer insulating layer 119 on the drain electrode 144.
  • ITO is laminated on the second interlayer insulating layer 119 and patterned by photolithography to form the pixel electrode 120, whereby the active matrix substrate 100 shown in FIG. 13G is completed.
  • the additional insulating layer 117 serves as an etching stopper when forming the recess 160, a uniform depth is provided to a plurality of pixels without strictly controlling the etching time.
  • the concave portion 160 can be formed. Thereby, it is possible to provide a high-quality display in which variation in luminance among a plurality of pixels is suppressed. Further, by using halftone exposure, the recess 160 and the contact hole can be formed in the first interlayer insulating layer 118 with one resist, so that the manufacturing efficiency can be improved and the manufacturing cost can be reduced.
  • N-type TFTs are formed in both the TFT portion 103 and the driver TFT portion 107.
  • a P-type TFT is formed in the driver TFT portion 107, an additional photolithography step and a p-type impurity doping step for the semiconductor layer 114 are required. According to the above manufacturing method, such a step is performed. There is no need to add, and manufacturing efficiency is improved.
  • the auxiliary process is performed while the resist 185 is left between the two doping steps of the n-type impurity 191.
  • Wet etching is performed on the capacitor electrode 145, the gate electrode 140, and the gate electrode 340.
  • a photolithography step is only required once.
  • the (n +) parts 333 and 334 can be completed with few steps and with high production efficiency.
  • the present invention can be suitably used for various display devices such as liquid crystal display devices, organic EL display devices, and flexible displays.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Liquid Crystal (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

This active matrix substrate is provided with: a semiconductor layer (114); an insulating layer (116) that is formed on the semiconductor layer (114); an auxiliary capacitor electrode (145) that is formed on the insulating layer (116); a first interlayer insulating layer (118) that is formed on the auxiliary capacitor electrode (145); a recessed portion (160) that is formed in the first interlayer insulating layer (118) above the auxiliary capacitor electrode (145); an auxiliary capacitor upper electrode (149) that is formed on the bottom surface of the recessed portion (160); a second interlayer insulating layer (119) that is formed on the auxiliary capacitor upper electrode (149); and a pixel electrode (120) that is formed on the second interlayer insulating layer (119). Consequently, an auxiliary capacitor can have a larger capacity and a smaller size, so that a high-quality and high-precision display can be provided.

Description

アクティブマトリクス基板およびアクティブマトリクス基板の製造方法Active matrix substrate and method of manufacturing active matrix substrate
 本発明は、表示装置等に用いられるアクティブマトリクス基板に関する。 The present invention relates to an active matrix substrate used for a display device or the like.
 液晶表示装置、有機EL(Electro Luminescence)表示装置、フレキシブル表示装置、電子ブック等の表示装置は、一般に、各画素のスイッチング素子として薄膜トランジスタ(Thin Film Transistor;以下、「TFT」とも呼ぶ)が形成されたアクティブマトリクス基板(「TFT基板」とも呼ぶ)を備えている。 Generally, a display device such as a liquid crystal display device, an organic EL (Electro Luminescence) display device, a flexible display device, or an electronic book has a thin film transistor (hereinafter also referred to as “TFT”) as a switching element of each pixel. And an active matrix substrate (also referred to as “TFT substrate”).
 アクティブマトリクス基板には、複数のデータライン、複数のゲートライン、これらの交差部にそれぞれ配置された複数のTFT、液晶層などの光変調層に電圧を印加するための画素電極、印加された電圧をより長時間保持するための補助容量配線および補助容量電極などが形成されている。 The active matrix substrate includes a plurality of data lines, a plurality of gate lines, a plurality of TFTs arranged at intersections thereof, a pixel electrode for applying a voltage to a light modulation layer such as a liquid crystal layer, and an applied voltage. Auxiliary capacitance wiring, auxiliary capacitance electrodes, and the like are formed to hold the voltage for a longer time.
 アクティブマトリクス基板の一例が特許文献1に記載されている。図14(a)は、特許文献1のアクティブマトリクス基板におけるTFT領域の断面構成を表しており、図14(b)は補助容量(付加容量)領域の断面構成を表している。 An example of an active matrix substrate is described in Patent Document 1. FIG. 14A shows a cross-sectional configuration of the TFT region in the active matrix substrate of Patent Document 1, and FIG. 14B shows a cross-sectional configuration of the auxiliary capacitance (additional capacitance) region.
 特許文献1の記載によれば、図14(a)に示すように、このアクティブマトリクス基板のTFT領域には、絶縁性基板11の上に形成されたチャネル層12a、12b、ソース電極23、およびドレイン電極24aと、チャネル層12a、12b、ソース電極23、およびドレイン電極24aを覆うように形成されたゲート絶縁膜13と、ゲート絶縁膜13の上に形成されたゲート電極3a、3b、および第1層間絶縁膜14と、第1層間絶縁膜14の上に形成された第2層間絶縁膜17が配置されている。第1層間絶縁膜14と第2層間絶縁膜17との間にはソースバス配線2および金属層10が配置され、第2層間絶縁膜17の上には画素電極4が配置されている。ソースバス配線2および金属層10は、第1層間絶縁膜14およびゲート絶縁膜13に形成されたコンタクトホールを介して、それぞれソース電極23およびドレイン電極24aに接続されている。画素電極4は第2層間絶縁膜17に形成されたコンタクトホールを介して金属層10に接続されている。 According to the description in Patent Document 1, as shown in FIG. 14A, channel regions 12a and 12b formed on an insulating substrate 11, source electrodes 23, and a TFT region of the active matrix substrate, The drain electrode 24a, the channel layers 12a and 12b, the source electrode 23, the gate insulating film 13 formed so as to cover the drain electrode 24a, the gate electrodes 3a and 3b formed on the gate insulating film 13, and the second A first interlayer insulating film 14 and a second interlayer insulating film 17 formed on the first interlayer insulating film 14 are disposed. The source bus wiring 2 and the metal layer 10 are disposed between the first interlayer insulating film 14 and the second interlayer insulating film 17, and the pixel electrode 4 is disposed on the second interlayer insulating film 17. The source bus wiring 2 and the metal layer 10 are connected to the source electrode 23 and the drain electrode 24a through contact holes formed in the first interlayer insulating film 14 and the gate insulating film 13, respectively. The pixel electrode 4 is connected to the metal layer 10 through a contact hole formed in the second interlayer insulating film 17.
 図14(b)に示すように、補助容量領域には、絶縁性基板11の上に形成された容量用下部電極5と、容量用下部電極5を覆うように形成されたゲート絶縁膜13と、ゲート絶縁膜13の上に形成された付加容量電極6および第1層間絶縁膜14と、第1層間絶縁膜14の上に形成された第2層間絶縁膜17が配置されている。第1層間絶縁膜14と第2層間絶縁膜17との間には金属層10が配置され、第2層間絶縁膜17の上には画素電極4が配置されている。金属層10は第1層間絶縁膜14およびゲート絶縁膜13に形成されたコンタクトホールを介して容量用下部電極5に接続されており、画素電極4は第2層間絶縁膜17のコンタクトホールを介して金属層10に接続されている。 As shown in FIG. 14B, in the auxiliary capacitance region, a capacitor lower electrode 5 formed on the insulating substrate 11 and a gate insulating film 13 formed so as to cover the capacitor lower electrode 5 The additional capacitor electrode 6 and the first interlayer insulating film 14 formed on the gate insulating film 13 and the second interlayer insulating film 17 formed on the first interlayer insulating film 14 are disposed. The metal layer 10 is disposed between the first interlayer insulating film 14 and the second interlayer insulating film 17, and the pixel electrode 4 is disposed on the second interlayer insulating film 17. The metal layer 10 is connected to the capacitor lower electrode 5 via a contact hole formed in the first interlayer insulating film 14 and the gate insulating film 13, and the pixel electrode 4 is connected via a contact hole in the second interlayer insulating film 17. Are connected to the metal layer 10.
 特許文献1では、上記の構成により、容量用下部電極5と付加容量電極6との間に付加容量が形成されると共に、金属層10と付加容量電極6との間にも付加容量が形成されるため、小さな面積で必要な容量を得ることができ、表示面積の開口率を向上させることができるとされている。 In Patent Document 1, an additional capacitor is formed between the capacitor lower electrode 5 and the additional capacitor electrode 6 and an additional capacitor is also formed between the metal layer 10 and the additional capacitor electrode 6 due to the above configuration. Therefore, it is said that a necessary capacity can be obtained with a small area and an aperture ratio of a display area can be improved.
特開平4-291240号公報JP-A-4-291240
 近年、例えば液晶表示装置について考えた場合、スマートフォンなどの急速な普及に伴って、液晶パネルの更なる高精細化が望まれている。高精細化を進める際に問題となるのが、画素サイズの縮小に伴う画素開口率の低下である。高い開口率を維持するためには、遮光部材の配置面積を小さくする必要があり、画素内に形成される補助容量(Cs)のサイズ(補助容量の形成に寄与する電極面積)も小さくする必要がある。しかし、補助容量のサイズが小さくなると、補助容量の容量も小さくなりTFTから液晶に印加された電圧の保持能力が低下する。 In recent years, for example, when considering a liquid crystal display device, with the rapid spread of smartphones and the like, higher definition of liquid crystal panels is desired. A problem in promoting high definition is a decrease in the pixel aperture ratio accompanying the reduction in pixel size. In order to maintain a high aperture ratio, it is necessary to reduce the arrangement area of the light shielding member, and it is also necessary to reduce the size of the auxiliary capacitance (Cs) formed in the pixel (electrode area contributing to the formation of the auxiliary capacitance). There is. However, when the size of the auxiliary capacitor is reduced, the capacity of the auxiliary capacitor is also reduced, and the holding ability of the voltage applied from the TFT to the liquid crystal is lowered.
 図15に、液晶表示装置に用いられるアクティブマトリクス基板の一例の断面構成を示す。図15に示すように、アクティブマトリクス基板200は、基板201の上に順次積層された半導体層214、ゲート絶縁層216、第1層間絶縁層218、第2層間絶縁層219、および画素電極220を備えている。半導体層214は、例えば結晶質シリコンからなり、ゲート絶縁層216および第1層間絶縁層218は、例えば窒化シリコンからなり、第2層間絶縁層219は、例えば有機絶縁材料からなり、画素電極220は例えばITO(Indium Tin Oxide)からなる。 FIG. 15 shows a cross-sectional configuration of an example of an active matrix substrate used in a liquid crystal display device. As shown in FIG. 15, the active matrix substrate 200 includes a semiconductor layer 214, a gate insulating layer 216, a first interlayer insulating layer 218, a second interlayer insulating layer 219, and a pixel electrode 220 that are sequentially stacked on the substrate 201. I have. The semiconductor layer 214 is made of, for example, crystalline silicon, the gate insulating layer 216 and the first interlayer insulating layer 218 are made of, for example, silicon nitride, the second interlayer insulating layer 219 is made of, for example, an organic insulating material, and the pixel electrode 220 is For example, it is made of ITO (Indium Tin Oxide).
 アクティブマトリクス基板200のTFT部203における半導体層214は、チャネル部230、チャネル部230両端に接するSi(n-)部231および232、Si(n-)部231および232それぞれのチャネル部230とは反対側に接するSi(n+)部233および234を有している。チャネル部230上方のゲート絶縁層216の上には、走査線が延びており、走査線の一部がゲート電極240となる。 The semiconductor layer 214 in the TFT portion 203 of the active matrix substrate 200 includes the channel portion 230, the Si (n−) portions 231 and 232 that are in contact with both ends of the channel portion 230, and the respective channel portions 230 of the Si (n−) portions 231 and 232. Si (n +) portions 233 and 234 are in contact with the opposite side. A scanning line extends over the gate insulating layer 216 above the channel portion 230, and a part of the scanning line becomes the gate electrode 240.
 Si(n+)部233および234それぞれの上の第1層間絶縁層218にはコンタクトホールが形成されており、それらのコンタクトホールを埋めるように、ソース電極243およびドレイン電極244が形成されている。ソース電極243およびドレイン電極244の下部は、それぞれSi(n+)部233および234に接している。Si(n+)部233および234は、それぞれソース電極243およびドレイン電極244に対するコンタクト部として機能する。 Contact holes are formed in the first interlayer insulating layer 218 on each of the Si (n +) portions 233 and 234, and a source electrode 243 and a drain electrode 244 are formed so as to fill the contact holes. Lower portions of the source electrode 243 and the drain electrode 244 are in contact with the Si (n +) portions 233 and 234, respectively. Si (n +) portions 233 and 234 function as contact portions for the source electrode 243 and the drain electrode 244, respectively.
 ソース電極243の上部は、第1層間絶縁層218の上を延びる信号線246に接続されている。ドレイン電極244の上の第2層間絶縁層219にはコンタクトホールが形成されており、このコンタクトホールを介して画素電極220がドレイン電極244に接している。 The upper part of the source electrode 243 is connected to a signal line 246 extending on the first interlayer insulating layer 218. A contact hole is formed in the second interlayer insulating layer 219 above the drain electrode 244, and the pixel electrode 220 is in contact with the drain electrode 244 through the contact hole.
 アクティブマトリクス基板200のCs部205においては、半導体層214はSi(n-)部237で構成され、ゲート絶縁層216の上には補助容量電極(上層電極)245が形成されている。補助容量電極245の下のSi(n-)部237は補助容量下部電極(下層電極)239として機能し、補助容量電極245、補助容量下部電極239、および両電極の間のゲート絶縁層216によって補助容量が形成される。 In the Cs portion 205 of the active matrix substrate 200, the semiconductor layer 214 is composed of an Si (n−) portion 237, and an auxiliary capacitance electrode (upper layer electrode) 245 is formed on the gate insulating layer 216. The Si (n−) portion 237 below the auxiliary capacitance electrode 245 functions as the auxiliary capacitance lower electrode (lower layer electrode) 239, and is constituted by the auxiliary capacitance electrode 245, the auxiliary capacitance lower electrode 239, and the gate insulating layer 216 between the two electrodes. A storage capacitor is formed.
 ゲート絶縁層216は、誘電体によって非常に薄く形成することが可能である。したがって、補助容量電極245および補助容量下部電極239の占有面積(基板面内において占める面積)を小さくしても、比較的大きな補助容量を得ることができ、画素の高密度化、開口率の向上を図ることができる。 The gate insulating layer 216 can be formed very thin with a dielectric. Therefore, even if the area occupied by the auxiliary capacitance electrode 245 and the auxiliary capacitance lower electrode 239 (area occupied in the substrate surface) is reduced, a relatively large auxiliary capacitance can be obtained, the pixel density is increased, and the aperture ratio is improved. Can be achieved.
 しかし、近年、表示装置に対する小型化、高精細化、高輝度化の要求はますます強くなってきている。小型化、高精細化を高輝度化と両立させるためには、補助容量の占有面積を更に小さくして、画素を更に小型化、高開口率化する必要があるが、同時に十分な補助容量を確保する必要もあるため、占有面積の縮小には限界がある。 However, in recent years, there has been an increasing demand for smaller, higher definition, and higher brightness display devices. In order to achieve both downsizing and high definition with high brightness, it is necessary to further reduce the area occupied by the auxiliary capacitor, further downsize the pixel and increase the aperture ratio. Since it is also necessary to ensure, there is a limit to the reduction of the occupied area.
 特許文献1のアクティブマトリクス基板では、容量用下部電極5と付加容量電極6との間、および金属層10と付加容量電極6との間に容量が形成されるとされている。しかし、層間絶縁層の上には信号線が配置され、層間絶縁層の下には走査線が配置されており、信号線と走査線が交わる部位において、層間絶縁層は両線間の絶縁機能を担っている。そのため、層間絶縁層の厚さはゲート絶縁層に比べて数倍~10倍程度の厚さを有している。また、信号線および走査線の信号品質を向上させるためには、層間絶縁層を厚くして両線間の寄生容量を低減させる必要がある。したがって、特許文献1のアクティブマトリクス基板においては、金属層10と付加容量電極6との間の距離を大きくする必要があり、金属層10と付加容量電極6との間に十分な補助容量を形成することができない。 In the active matrix substrate of Patent Document 1, capacitance is formed between the capacitor lower electrode 5 and the additional capacitor electrode 6 and between the metal layer 10 and the additional capacitor electrode 6. However, a signal line is disposed on the interlayer insulating layer, and a scanning line is disposed below the interlayer insulating layer. At the portion where the signal line and the scanning line intersect, the interlayer insulating layer functions as an insulation between the two lines. Is responsible. Therefore, the thickness of the interlayer insulating layer is several times to 10 times that of the gate insulating layer. In addition, in order to improve the signal quality of the signal line and the scanning line, it is necessary to increase the thickness of the interlayer insulating layer to reduce the parasitic capacitance between the two lines. Therefore, in the active matrix substrate of Patent Document 1, it is necessary to increase the distance between the metal layer 10 and the additional capacitance electrode 6, and a sufficient auxiliary capacitance is formed between the metal layer 10 and the additional capacitance electrode 6. Can not do it.
 本発明は、上記に鑑みてなされたものであり、十分な補助容量を確保するとともに、高精彩かつ高輝度な表示装置を提供すること、または、そのような表示装置に好適に用いられ得るアクティブマトリクス基板を提供することを目的とする。 The present invention has been made in view of the above, and provides a high-definition and high-luminance display device while ensuring a sufficient auxiliary capacity, or an active device that can be suitably used for such a display device. An object is to provide a matrix substrate.
 本発明によるアクティブマトリクス基板は、半導体層と、前記半導体層の上に形成された絶縁層と、前記絶縁層の上に形成された補助容量電極と、前記補助容量電極の上に形成された第1層間絶縁層と、前記補助容量電極の上方の前記第1層間絶縁層に形成された凹部と、前記凹部の底面の上に形成された補助容量上部電極と、前記補助容量上部電極の上に形成された第2層間絶縁層と、前記第2層間絶縁層の上に形成された画素電極と、を備えている。 An active matrix substrate according to the present invention includes a semiconductor layer, an insulating layer formed on the semiconductor layer, an auxiliary capacitance electrode formed on the insulating layer, and a first electrode formed on the auxiliary capacitance electrode. A first interlayer insulating layer; a recess formed in the first interlayer insulating layer above the storage capacitor electrode; a storage capacitor upper electrode formed on a bottom surface of the recess; and the storage capacitor upper electrode A second interlayer insulating layer formed; and a pixel electrode formed on the second interlayer insulating layer.
 ある実施形態では、前記補助容量電極の上面と前記補助容量上部電極との間に酸化シリコンからなる層が配置され、前記補助容量電極の上面から前記補助容量上部電極の下面までの距離が、10nm以上100nm以下である。 In one embodiment, a layer made of silicon oxide is disposed between the upper surface of the auxiliary capacitance electrode and the auxiliary capacitance upper electrode, and the distance from the upper surface of the auxiliary capacitance electrode to the lower surface of the auxiliary capacitance upper electrode is 10 nm. It is 100 nm or less.
 ある実施形態では、前記補助容量電極の上面と前記補助容量上部電極との間に窒化シリコンからなる層が配置され、前記補助容量電極の上面から前記補助容量上部電極の下面までの距離が、10nm以上200nm以下である。 In one embodiment, a layer made of silicon nitride is disposed between the upper surface of the auxiliary capacitance electrode and the auxiliary capacitance upper electrode, and the distance from the upper surface of the auxiliary capacitance electrode to the lower surface of the auxiliary capacitance upper electrode is 10 nm. It is 200 nm or less.
 ある実施形態では、前記補助容量上部電極と前記半導体層とが、前記絶縁層および前記第1層間絶縁層に形成されたコンタクトホールを介して電気的に接続されており、前記補助容量上部電極と前記画素電極とが、前記第2層間絶縁層に形成されたコンタクトホールを介して電気的に接続されている。 In one embodiment, the auxiliary capacitor upper electrode and the semiconductor layer are electrically connected via a contact hole formed in the insulating layer and the first interlayer insulating layer, and the auxiliary capacitor upper electrode The pixel electrode is electrically connected through a contact hole formed in the second interlayer insulating layer.
 ある実施形態では、前記半導体層が、前記補助容量電極の下部に形成され、不純物をドープした半導体からなる補助容量下部電極を含む。 In one embodiment, the semiconductor layer includes a storage capacitor lower electrode made of a semiconductor doped with an impurity and formed under the storage capacitor electrode.
 ある実施形態では、前記補助容量電極の上に追加絶縁層が形成されており、前記補助容量電極の上面が前記追加絶縁層の下面と接し、前記補助容量上部電極の下面が前記追加絶縁層の上面と接している。 In one embodiment, an additional insulating layer is formed on the auxiliary capacitance electrode, the upper surface of the auxiliary capacitance electrode is in contact with the lower surface of the additional insulating layer, and the lower surface of the auxiliary capacitance upper electrode is the additional insulating layer. It is in contact with the top surface.
 ある実施形態では、前記追加絶縁層が窒化シリコンからなり、前記第1層間絶縁層が酸化シリコンからなる。 In one embodiment, the additional insulating layer is made of silicon nitride, and the first interlayer insulating layer is made of silicon oxide.
 本発明によるアクティブマトリクス基板の製造方法は、半導体層を形成する工程と、前記半導体層の上に絶縁層を形成する工程と、前記絶縁層の上に補助容量電極を形成する工程と、前記補助容量電極の上に第1層間絶縁層を形成する工程と、前記補助容量電極の上方の前記第1層間絶縁層に凹部を形成する工程と、前記凹部の底面の上に補助容量上部電極を形成する工程と、前記補助容量上部電極の上に第2層間絶縁層を形成する工程と、前記第2層間絶縁層の上に画素電極を形成する工程と、を含んでいる。 The manufacturing method of the active matrix substrate according to the present invention includes a step of forming a semiconductor layer, a step of forming an insulating layer on the semiconductor layer, a step of forming an auxiliary capacitance electrode on the insulating layer, and the auxiliary Forming a first interlayer insulating layer on the capacitor electrode; forming a recess in the first interlayer insulating layer above the auxiliary capacitor electrode; and forming an auxiliary capacitor upper electrode on the bottom surface of the recess A step of forming a second interlayer insulating layer on the storage capacitor upper electrode, and a step of forming a pixel electrode on the second interlayer insulating layer.
 ある実施形態では、前記補助容量電極の上面と前記補助容量上部電極との間に酸化シリコンからなる層が形成され、前記補助容量電極の上面から前記凹部の底面までの距離が、10nm以上100nm以下となるように、前記第1層間絶縁層に前記凹部が形成される。 In one embodiment, a layer made of silicon oxide is formed between the upper surface of the auxiliary capacitance electrode and the auxiliary capacitance upper electrode, and the distance from the upper surface of the auxiliary capacitance electrode to the bottom surface of the recess is 10 nm or more and 100 nm or less. Thus, the recess is formed in the first interlayer insulating layer.
 ある実施形態では、前記補助容量電極の上面と前記補助容量上部電極との間に窒化シリコンからなる層が形成され、前記補助容量電極の上面から前記凹部の底面までの距離が、10nm以上200nm以下となるように、前記第1層間絶縁層に前記凹部が形成される。 In one embodiment, a layer made of silicon nitride is formed between the upper surface of the auxiliary capacitor electrode and the upper electrode of the auxiliary capacitor, and the distance from the upper surface of the auxiliary capacitor electrode to the bottom surface of the recess is 10 nm or more and 200 nm or less. Thus, the recess is formed in the first interlayer insulating layer.
 ある実施形態では、前記凹部を形成する工程は、前記第1層間絶縁層の上にレジストを形成する工程と、前記補助容量電極の上方に前記レジストの開口を形成する工程と、前記レジストの前記開口の下の前記第1層間絶縁層を選択的にエッチングする工程と、を含む。 In one embodiment, the step of forming the recess includes a step of forming a resist on the first interlayer insulating layer, a step of forming an opening of the resist above the auxiliary capacitance electrode, and the step of forming the resist. Selectively etching the first interlayer insulating layer under the opening.
 ある実施形態では、前記凹部を形成する工程は、前記第1層間絶縁層の上にレジストを形成する工程と、第1窓と、前記第1窓よりも光透過率の高い複数の第2窓とを有するマスクを前記レジストの上方に配置する工程と、前記第1窓および前記複数の第2窓を介して前記レジストに光を照射する工程と、光を照射された前記レジストを除去して、前記レジストに窪みと複数の開口とを形成する工程と、前記レジストを介して前記第1層間絶縁層を選択的にエッチングして、前記補助容量電極の上に前記第1層間絶縁層の前記凹部を形成するとともに、前記レジストの前記開口の下に前記半導体層に通じるコンタクトホールを形成する工程と、を含む。 In one embodiment, the step of forming the recess includes a step of forming a resist on the first interlayer insulating layer, a first window, and a plurality of second windows having a higher light transmittance than the first window. And a step of irradiating the resist with light through the first window and the plurality of second windows, and removing the resist irradiated with light. Forming a recess and a plurality of openings in the resist; and selectively etching the first interlayer insulating layer through the resist to form the first interlayer insulating layer on the auxiliary capacitance electrode. Forming a recess, and forming a contact hole leading to the semiconductor layer under the opening of the resist.
 ある実施形態では、上記製造方法は前記半導体層に不純物をドープする工程を含み、前記補助容量電極を形成する工程において、前記補助容量電極が、前記不純物をドープされた前記半導体層の上に形成される。 In one embodiment, the manufacturing method includes a step of doping impurities into the semiconductor layer, and in the step of forming the auxiliary capacitance electrode, the auxiliary capacitance electrode is formed on the semiconductor layer doped with the impurity. Is done.
 ある実施形態では、上記製造方法は前記補助容量電極の上に追加絶縁層を形成する工程を含み、前記第1層間絶縁層に前記凹部を形成する工程において、前記追加絶縁層をエッチングストッパとして用いて、前記凹部の底面に前記追加絶縁層が露出するように前記第1層間絶縁層がエッチングされる。 In one embodiment, the manufacturing method includes a step of forming an additional insulating layer on the auxiliary capacitance electrode, and the additional insulating layer is used as an etching stopper in the step of forming the recess in the first interlayer insulating layer. Then, the first interlayer insulating layer is etched so that the additional insulating layer is exposed at the bottom surface of the recess.
 ある実施形態では、前記追加絶縁層が窒化シリコンから形成され、前記第1層間絶縁層が酸化シリコンから形成される。 In one embodiment, the additional insulating layer is formed from silicon nitride, and the first interlayer insulating layer is formed from silicon oxide.
 本発明によれば、補助容量電極と補助容量上部電極との間に大きな補助容量を形成することができるので、表示品質の高い表示装置を提供することができる。また、本発明によれば、大きな補助容量を占有領域の小さな電極で得ることができるので、高精細な表示装置を提供することができる。また、補助容量電極と補助容量上部電極から得られる補助容量に加えて、補助容量電極と半導体層との間にも補助容量を形成することができるので、より表示品質の高い表示装置またはより高精細な表示装置を提供することができる。 According to the present invention, since a large auxiliary capacitance can be formed between the auxiliary capacitance electrode and the auxiliary capacitance upper electrode, a display device with high display quality can be provided. In addition, according to the present invention, a large auxiliary capacitance can be obtained with an electrode having a small occupied area, so that a high-definition display device can be provided. In addition to the auxiliary capacitance obtained from the auxiliary capacitance electrode and the auxiliary capacitance upper electrode, an auxiliary capacitance can be formed between the auxiliary capacitance electrode and the semiconductor layer, so that a display device with higher display quality or higher A fine display device can be provided.
本発明の実施形態1によるアクティブマトリクス基板100の構成を模式的に表した断面図である。1 is a cross-sectional view schematically showing a configuration of an active matrix substrate 100 according to Embodiment 1 of the present invention. 本発明の実施形態1による液晶表示装置1000の構成を模式的に表した斜視図である。It is the perspective view which represented typically the structure of the liquid crystal display device 1000 by Embodiment 1 of this invention. 実施形態1によるアクティブマトリクス基板100における画素領域の構成を模式的に表した平面図である。FIG. 2 is a plan view schematically showing a configuration of a pixel region in an active matrix substrate 100 according to Embodiment 1. 実施形態1によるアクティブマトリクス基板100の画素の構成を表した回路図である。2 is a circuit diagram illustrating a configuration of a pixel of an active matrix substrate 100 according to Embodiment 1. FIG. (a)~(g)は、実施形態1によるアクティブマトリクス基板100の製造方法を表した断面図である。FIGS. 4A to 4G are cross-sectional views illustrating a method for manufacturing the active matrix substrate 100 according to the first embodiment. 本発明の実施形態2によるアクティブマトリクス基板100の構成を模式的に表した断面図である。It is sectional drawing which represented typically the structure of the active matrix substrate 100 by Embodiment 2 of this invention. (a)~(d)は、実施形態2によるアクティブマトリクス基板100の製造方法を表した断面図である。FIGS. 4A to 4D are cross-sectional views illustrating a method for manufacturing the active matrix substrate 100 according to the second embodiment. (a)~(f)は、実施形態3によるアクティブマトリクス基板100の製造方法を表した断面図である。FIGS. 5A to 5F are cross-sectional views illustrating a method for manufacturing the active matrix substrate 100 according to the third embodiment. 本発明の実施形態4によるアクティブマトリクス基板100の構成を模式的に表した断面図である。It is sectional drawing which represented typically the structure of the active matrix substrate 100 by Embodiment 4 of this invention. 実施形態4によるアクティブマトリクス基板100の画素の構成を表した回路図である。6 is a circuit diagram illustrating a configuration of a pixel of an active matrix substrate 100 according to Embodiment 4. FIG. (a)~(f)は、実施形態4によるアクティブマトリクス基板100の製造方法を表した断面図である。FIGS. 8A to 8F are cross-sectional views illustrating a method for manufacturing the active matrix substrate 100 according to the fourth embodiment. (a)~(d)は、実施形態5によるアクティブマトリクス基板100の製造方法を表した断面図である。FIGS. 9A to 9D are cross-sectional views illustrating a method for manufacturing the active matrix substrate 100 according to the fifth embodiment. (e)~(g)は、実施形態5によるアクティブマトリクス基板100の製造方法を表した断面図である。FIGS. 5E to 5G are cross-sectional views illustrating a method for manufacturing the active matrix substrate 100 according to the fifth embodiment. (a)および(b)は、特許文献1に記載されたアクティブマトリクス基板の構成を表した断面図である。(A) And (b) is sectional drawing showing the structure of the active-matrix board | substrate described in patent document 1. FIG. 参考例のアクティブマトリクス基板200の構成を模式的に表した断面図である。It is sectional drawing which represented typically the structure of the active matrix substrate 200 of a reference example.
 以下、図面を参照しながら、本発明の実施形態によるアクティブマトリクス基板を説明する。ただし、本発明の範囲は以下の実施形態に限られるものではない。本発明のアクティブマトリクス基板は、液晶表示装置、有機EL表示装置など、各種の表示装置のアクティブマトリクス基板として用いられ得る。本発明によるアクティブマトリクス基板を表示装置に用いる場合、その対向基板、周辺配線など、以下に説明するアクティブマトリクス基板以外の構成要素には、基本的に公知の構成要素が用いられ得る。 Hereinafter, an active matrix substrate according to an embodiment of the present invention will be described with reference to the drawings. However, the scope of the present invention is not limited to the following embodiments. The active matrix substrate of the present invention can be used as an active matrix substrate for various display devices such as liquid crystal display devices and organic EL display devices. When the active matrix substrate according to the present invention is used in a display device, known components can basically be used for components other than the active matrix substrate described below, such as the counter substrate and peripheral wiring.
 (実施形態1)
 図1は、実施形態1によるアクティブマトリクス基板100の構成を模式的に表した断面図である。図1に示すように、アクティブマトリクス基板100は、基板101の上に順次積層された半導体層114、ゲート絶縁層(単に絶縁層とも呼ぶ)116、第1層間絶縁層118、第2層間絶縁層119、および画素電極120を備えている。半導体層114は、例えば結晶質シリコンまたはポリシリコンからなり、ゲート絶縁層116および第1層間絶縁層118は、例えば窒化シリコンからなり、第2層間絶縁層119は、例えば有機絶縁材料からなり、画素電極120は例えばITOからなる。
(Embodiment 1)
FIG. 1 is a cross-sectional view schematically showing the configuration of the active matrix substrate 100 according to the first embodiment. As shown in FIG. 1, an active matrix substrate 100 includes a semiconductor layer 114, a gate insulating layer (also simply referred to as an insulating layer) 116, a first interlayer insulating layer 118, and a second interlayer insulating layer that are sequentially stacked on the substrate 101. 119 and a pixel electrode 120. The semiconductor layer 114 is made of, for example, crystalline silicon or polysilicon, the gate insulating layer 116 and the first interlayer insulating layer 118 are made of, for example, silicon nitride, and the second interlayer insulating layer 119 is made of, for example, an organic insulating material. The electrode 120 is made of, for example, ITO.
 アクティブマトリクス基板100には複数の画素が形成されており、各画素は、TFT125が形成されたTFT部103と、補助容量150が形成されたCs部105とを有している。 A plurality of pixels are formed on the active matrix substrate 100, and each pixel has a TFT portion 103 in which a TFT 125 is formed and a Cs portion 105 in which an auxiliary capacitor 150 is formed.
 TFT部103におけるTFT125の半導体層114は、チャネル部130、チャネル部130両端に接するSi(n-)部131および132、Si(n-)部131および132それぞれのチャネル部130とは反対側の端部に接するSi(n+)部133および134を有している。チャネル部130の上方のゲート絶縁層116の上には、走査線が延びており、走査線の一部がゲート電極140となっている。 The semiconductor layer 114 of the TFT 125 in the TFT unit 103 includes a channel unit 130, Si (n−) units 131 and 132 in contact with both ends of the channel unit 130, and the Si (n−) units 131 and 132 on the opposite side to the channel unit 130. Si (n +) portions 133 and 134 are in contact with the end portions. A scanning line extends on the gate insulating layer 116 above the channel portion 130, and a part of the scanning line becomes a gate electrode 140.
 Si(n+)部133および134それぞれの上の第1層間絶縁層118にはコンタクトホールが形成されており、それらのコンタクトホールを埋めるように、ソース電極143およびドレイン電極144が形成されている。ソース電極143およびドレイン電極144の下部は、それぞれSi(n+)部133および134に接している。Si(n+)部133および134は、それぞれソース電極143およびドレイン電極144に対するコンタクト部として機能する。 Contact holes are formed in the first interlayer insulating layer 118 on each of the Si (n +) portions 133 and 134, and a source electrode 143 and a drain electrode 144 are formed so as to fill the contact holes. Lower portions of the source electrode 143 and the drain electrode 144 are in contact with Si (n +) portions 133 and 134, respectively. Si (n +) portions 133 and 134 function as contact portions for the source electrode 143 and the drain electrode 144, respectively.
 ソース電極143の上部は、第1層間絶縁層118の上を延びる信号線146に接続されている。ドレイン電極144の上の第2層間絶縁層119にはコンタクトホールが形成されており、このコンタクトホールを介して画素電極120がドレイン電極144に接している。 The upper part of the source electrode 143 is connected to a signal line 146 extending over the first interlayer insulating layer 118. A contact hole is formed in the second interlayer insulating layer 119 above the drain electrode 144, and the pixel electrode 120 is in contact with the drain electrode 144 through the contact hole.
 Cs部105においては、半導体層114はSi(n-)部137で構成され、ゲート絶縁層116の上には補助容量電極145が形成されている。Si(n-)部131、132、137は、不純物をドープすることにより低抵抗化された半導体層である。補助容量電極145の下のSi(n-)部137は補助容量下部電極139として機能する。補助容量下部電極139をSi(n+)半導体にて形成することもあり得る。 In the Cs portion 105, the semiconductor layer 114 is composed of an Si (n−) portion 137, and an auxiliary capacitance electrode 145 is formed on the gate insulating layer 116. The Si (n−) parts 131, 132, and 137 are semiconductor layers whose resistance is reduced by doping impurities. The Si (n−) portion 137 below the auxiliary capacitance electrode 145 functions as the auxiliary capacitance lower electrode 139. The auxiliary capacitance lower electrode 139 may be formed of a Si (n +) semiconductor.
 補助容量電極145の上方の第1層間絶縁層118には凹部160が形成されている。凹部160の底面には補助容量上部電極149が形成されている。補助容量電極145の上面から補助容量上部電極149の下面(あるいは凹部160の底面)までの距離dは、第1層間絶縁層118が酸化シリコンからなる場合、10nm以上100nm以下であり、窒化シリコンからなる場合、10nm以上200nm以下である。 A recess 160 is formed in the first interlayer insulating layer 118 above the auxiliary capacitance electrode 145. A storage capacitor upper electrode 149 is formed on the bottom surface of the recess 160. The distance d from the upper surface of the auxiliary capacitance electrode 145 to the lower surface of the auxiliary capacitance upper electrode 149 (or the bottom surface of the recess 160) is 10 nm or more and 100 nm or less when the first interlayer insulating layer 118 is made of silicon oxide. In this case, it is 10 nm or more and 200 nm or less.
 補助容量上部電極149は第1層間絶縁層118の上面に形成された金属層147の一部である。金属層147は第1層間絶縁層118の上でドレイン電極144に接続されており、第2層間絶縁層119に形成されたコンタクトホールを介して画素電極120に接続されている。補助容量上部電極149と補助容量下部電極139は、金属層147、ゲート絶縁層116および第1層間絶縁層118に形成されたコンタクトホールを埋めるドレイン電極144、および半導体層114を介して電気的に接続されている。また、補助容量上部電極149と画素電極120は、金属層147および第2層間絶縁層119に形成されたコンタクトホールを介して電気的に接続されている。 The auxiliary capacitance upper electrode 149 is a part of the metal layer 147 formed on the upper surface of the first interlayer insulating layer 118. The metal layer 147 is connected to the drain electrode 144 on the first interlayer insulating layer 118 and is connected to the pixel electrode 120 through a contact hole formed in the second interlayer insulating layer 119. The auxiliary capacitance upper electrode 149 and the auxiliary capacitance lower electrode 139 are electrically connected through the metal layer 147, the drain electrode 144 filling the contact hole formed in the gate insulating layer 116 and the first interlayer insulating layer 118, and the semiconductor layer 114. It is connected. The auxiliary capacitor upper electrode 149 and the pixel electrode 120 are electrically connected through a contact hole formed in the metal layer 147 and the second interlayer insulating layer 119.
 補助容量電極145、補助容量下部電極139、および両電極の間のゲート絶縁層116によって容量が形成されるとともに、補助容量電極145、補助容量上部電極149、および両電極の間の第1層間絶縁層118によっても容量が形成され、これら2つの容量を合わせたものが各画素の補助容量150となる。ゲート絶縁層116は非常に薄く、その厚さは10nm以上100nm以下であるため、補助容量電極145と補助容量下部電極139との間に大きな容量を形成することができる。また、第1層間絶縁層118に凹部160が形成されることから、補助容量電極145と補助容量上部電極149との間の距離も小さくすることができるので、これら両電極の間にも大きな容量を形成することができる。 A capacitance is formed by the auxiliary capacitance electrode 145, the auxiliary capacitance lower electrode 139, and the gate insulating layer 116 between both electrodes, and the first interlayer insulation between the auxiliary capacitance electrode 145, the auxiliary capacitance upper electrode 149, and both electrodes. A capacitor is also formed by the layer 118, and the sum of these two capacitors becomes the auxiliary capacitor 150 of each pixel. Since the gate insulating layer 116 is very thin and has a thickness of 10 nm to 100 nm, a large capacitance can be formed between the auxiliary capacitance electrode 145 and the auxiliary capacitance lower electrode 139. In addition, since the recess 160 is formed in the first interlayer insulating layer 118, the distance between the auxiliary capacitance electrode 145 and the auxiliary capacitance upper electrode 149 can be reduced, so that a large capacitance is also present between these two electrodes. Can be formed.
 したがって、従来のアクティブマトリクス基板に比べて、大きな容量の補助容量150を各画素に形成することが可能となる。また、凹部160以外の第1層間絶縁層118を十分な厚さに形成したとしても、大きな容量を得ることができるので、表示品質および信頼性の両方を高いレベルで実現し得るアクティブマトリクス基板を提供することが可能となる。さらに、補助容量電極145、補助容量下部電極139、および補助容量上部電極149の占有面積を小さくしても、比較的大きな補助容量を得ることができるので、画素の高密度化、開口率の向上を図ることができる。 Therefore, it is possible to form the auxiliary capacitor 150 having a large capacity in each pixel as compared with the conventional active matrix substrate. In addition, even if the first interlayer insulating layer 118 other than the recess 160 is formed to a sufficient thickness, a large capacity can be obtained. Therefore, an active matrix substrate that can realize both display quality and reliability at a high level is provided. It becomes possible to provide. Furthermore, even if the area occupied by the auxiliary capacitance electrode 145, the auxiliary capacitance lower electrode 139, and the auxiliary capacitance upper electrode 149 is reduced, a relatively large auxiliary capacitance can be obtained, so that the pixel density is increased and the aperture ratio is improved. Can be achieved.
 図2は、本発明による液晶表示装置1000の構成を模式的に表した斜視図である。液晶表示装置1000は、そのTFT基板として本発明の実施形態によるアクティブマトリクス基板100を備えている。図3は、アクティブマトリクス基板100における画素の配置構成を模式的に表した平面図であり、図4は、各画素の回路構成を表した回路図である。 FIG. 2 is a perspective view schematically showing the configuration of the liquid crystal display device 1000 according to the present invention. The liquid crystal display device 1000 includes an active matrix substrate 100 according to an embodiment of the present invention as its TFT substrate. FIG. 3 is a plan view schematically showing an arrangement configuration of pixels in the active matrix substrate 100, and FIG. 4 is a circuit diagram showing a circuit configuration of each pixel.
 図2に示すように、液晶表示装置1000は、液晶層を挟んで互いに対向するアクティブマトリクス基板100および対向基板500と、アクティブマトリクス基板100および対向基板500のそれぞれの外面に貼り付けられた偏光板510および520と、表示用の光を出射するバックライトユニット530とを備えている。 As shown in FIG. 2, the liquid crystal display device 1000 includes an active matrix substrate 100 and a counter substrate 500 facing each other with a liquid crystal layer interposed therebetween, and polarizing plates attached to the outer surfaces of the active matrix substrate 100 and the counter substrate 500. 510 and 520 and a backlight unit 530 for emitting display light.
 対向基板500は、カラーフィルタおよび共通電極を備えている。カラーフィルタは、3原色表示の場合、それぞれが画素に対応して配置されたR(赤)フィルタ、G(緑)フィルタ、およびB(青)フィルタを含む。対向基板500を4原色以上の表示方式に対応させてもよい。共通電極は、液晶層を挟んで複数の画素電極120を覆うように形成されている。共通電極と各画素電極120との間に与えられる電位差に応じて両電極の間の液晶が画素毎に配向し、表示がなされる。 The counter substrate 500 includes a color filter and a common electrode. In the case of displaying three primary colors, the color filter includes an R (red) filter, a G (green) filter, and a B (blue) filter, each of which is arranged corresponding to a pixel. The counter substrate 500 may correspond to a display method of four primary colors or more. The common electrode is formed so as to cover the plurality of pixel electrodes 120 with the liquid crystal layer interposed therebetween. In accordance with the potential difference applied between the common electrode and each pixel electrode 120, the liquid crystal between both electrodes is aligned for each pixel, and display is performed.
 図3および図4に示すように、アクティブマトリクス基板100には、複数の走査線(ゲートバスライン)141と複数の信号線(データバスライン)146とが、互いに直交するように配置されており、走査線141と信号線146との交点付近にはTFT125が画素110毎に形成されている。ここでは、画素110を、隣り合う2つの走査線141と隣り合う2つの信号線146との中心線によって区切られた領域として定義する。各画素110には、TFT125のドレイン電極144に電気的に接続された画素電極120が配置されている。隣り合う2つの走査線141の間には補助容量線142が走査線141と平行に延びている。 As shown in FIGS. 3 and 4, a plurality of scanning lines (gate bus lines) 141 and a plurality of signal lines (data bus lines) 146 are arranged on the active matrix substrate 100 so as to be orthogonal to each other. A TFT 125 is formed for each pixel 110 near the intersection of the scanning line 141 and the signal line 146. Here, the pixel 110 is defined as a region delimited by a center line between two adjacent scanning lines 141 and two adjacent signal lines 146. Each pixel 110 is provided with a pixel electrode 120 that is electrically connected to the drain electrode 144 of the TFT 125. A storage capacitor line 142 extends in parallel with the scanning line 141 between two adjacent scanning lines 141.
 走査線141及び信号線146は、それぞれ、図2に示す走査線駆動回路540および信号線駆動回路550に接続されている。走査線141には、制御回路560による制御に応じて走査線駆動回路540からTFT125のオン-オフを切り替える走査信号が供給され、信号線146には、制御回路560による制御に応じて信号線駆動回路550から表示信号(画素電極120への印加電圧)が供給される。 The scanning line 141 and the signal line 146 are respectively connected to the scanning line driving circuit 540 and the signal line driving circuit 550 shown in FIG. A scanning signal for switching on / off of the TFT 125 is supplied from the scanning line driving circuit 540 to the scanning line 141 according to control by the control circuit 560, and signal line driving is performed to the signal line 146 according to control by the control circuit 560. A display signal (voltage applied to the pixel electrode 120) is supplied from the circuit 550.
 図4に示すように、液晶層180を挟んで対向する画素電極120と対向基板500の対向電極170との間には表示容量が形成される。画素電極120、補助容量下部電極139、および補助容量上部電極149は、TFT125のドレイン電極と同電位であり、補助容量電極145には補助容量線142を介して対向電極170と同じ基準電位が与えられる。この構成により、補助容量電極145と補助容量下部電極139との間、および補助容量電極145と補助容量上部電極149との間に形成される容量は、表示容量を保つための補助容量として機能する。 As shown in FIG. 4, a display capacitor is formed between the pixel electrode 120 and the counter electrode 170 of the counter substrate 500 facing each other with the liquid crystal layer 180 interposed therebetween. The pixel electrode 120, the auxiliary capacitor lower electrode 139, and the auxiliary capacitor upper electrode 149 have the same potential as the drain electrode of the TFT 125, and the same reference potential as that of the counter electrode 170 is applied to the auxiliary capacitor electrode 145 through the auxiliary capacitor line 142. It is done. With this configuration, the capacitance formed between the auxiliary capacitance electrode 145 and the auxiliary capacitance lower electrode 139 and between the auxiliary capacitance electrode 145 and the auxiliary capacitance upper electrode 149 functions as an auxiliary capacitance for maintaining the display capacitance. .
 補助容量150の容量Csは次の式で表される。
 Cs=Cs1+Cs2=ε1*A/d1+ε2*A/d2
The capacity Cs of the auxiliary capacity 150 is expressed by the following formula.
Cs = Cs1 + Cs2 = ε 1 * A / d 1 + ε 2 * A / d 2
 ここで、Cs1は補助容量電極145と補助容量上部電極149との間に形成される容量、Cs2は補助容量電極145と補助容量下部電極139との間に形成される容量である。Aは、補助容量電極145の基板面内における占有面積を表し、ε1は第1層間絶縁層118の誘電率、d1は補助容量電極145と補助容量上部電極149との間の距離d、ε2はゲート絶縁層116の誘電率、d2は補助容量電極145と補助容量下部電極139との間の距離(ゲート絶縁層116の厚さ)を表している。 Here, Cs1 is a capacitance formed between the auxiliary capacitance electrode 145 and the auxiliary capacitance upper electrode 149, and Cs2 is a capacitance formed between the auxiliary capacitance electrode 145 and the auxiliary capacitance lower electrode 139. A represents the occupied area in the substrate surface of the auxiliary capacitance electrode 145, ε 1 is the dielectric constant of the first interlayer insulating layer 118, d 1 is the distance d between the auxiliary capacitance electrode 145 and the auxiliary capacitance upper electrode 149, ε 2 represents the dielectric constant of the gate insulating layer 116, and d 2 represents the distance between the auxiliary capacitance electrode 145 and the auxiliary capacitance lower electrode 139 (the thickness of the gate insulating layer 116).
 例えば、第1層間絶縁層118をゲート絶縁層116と同じ材料で形成し、補助容量電極145と補助容量上部電極149との間の距離dをゲート絶縁層116の厚さと同じにした場合、上記式より、補助容量上部電極149を形成しない場合に比べて、2倍の容量Csを得ることができる。あるいは同じ容量Csを得るために、補助容量電極145の占有面積Aを半分にすることができる。 For example, when the first interlayer insulating layer 118 is formed of the same material as the gate insulating layer 116 and the distance d between the auxiliary capacitance electrode 145 and the auxiliary capacitance upper electrode 149 is the same as the thickness of the gate insulating layer 116, From the equation, it is possible to obtain twice the capacitance Cs compared to the case where the auxiliary capacitance upper electrode 149 is not formed. Alternatively, the area A occupied by the auxiliary capacitance electrode 145 can be halved in order to obtain the same capacitance Cs.
 また、例えば、第1層間絶縁層118を窒化シリコン(Si34)で形成し、ゲート絶縁層116を酸化シリコン(SiO2)で形成した場合、両材料の比誘電率εr1およびεr2はそれぞれ約7.0および約3.9であるので、ε1およびε2はそれぞれ約7.0*ε0および約3.9*ε0となる(ε0:真空の誘電率)。したがって凹部160の下の第1層間絶縁層118の厚さd1をゲート絶縁層116の厚さd2とほぼ等しくした場合、補助容量上部電極149を形成しない場合に比べて約3倍の容量Csを得ることができる。あるいは同じ容量Csを得るために、補助容量電極145の占有面積を約1/3にまで小さくすることができる。 For example, when the first interlayer insulating layer 118 is formed of silicon nitride (Si 3 N 4 ) and the gate insulating layer 116 is formed of silicon oxide (SiO 2 ), the relative dielectric constants ε r1 and ε r2 of both materials Are about 7.0 and about 3.9, respectively, so ε 1 and ε 2 are about 7.0 * ε 0 and about 3.9 * ε 0 , respectively (ε 0 : dielectric constant of vacuum). Therefore, when the thickness d 1 of the first interlayer insulating layer 118 under the recess 160 is substantially equal to the thickness d 2 of the gate insulating layer 116, the capacitance is about three times that when the auxiliary capacitance upper electrode 149 is not formed. Cs can be obtained. Alternatively, in order to obtain the same capacitance Cs, the area occupied by the auxiliary capacitance electrode 145 can be reduced to about 3.
 絶縁層としての機能を果たした上でより大きな容量(例えば、ゲート絶縁膜のみで構成する場合の2倍)を得るために、酸化シリコンによるゲート絶縁層116の厚さは10~100nmであることが好ましく、30~80nmであることが実用的により好ましい。最適なゲート絶縁層116の厚さは約50nmである。第1層間絶縁層118を酸化シリコンで形成した場合、絶縁層としての機能を果たした上でより大きな容量を得るためには、凹部160の下の第1層間絶縁層118の厚さdを、例えば10~100nmとすることが好ましく、30~80nmとすることが実用的により好ましい。最適な厚さdの値は約50nmである。 The thickness of the gate insulating layer 116 made of silicon oxide is 10 to 100 nm in order to obtain a larger capacity (for example, twice that of the case where only the gate insulating film is used) while functioning as an insulating layer. It is more preferable that the thickness is 30 to 80 nm. The optimum thickness of the gate insulating layer 116 is about 50 nm. When the first interlayer insulating layer 118 is formed of silicon oxide, in order to obtain a larger capacity while functioning as an insulating layer, the thickness d of the first interlayer insulating layer 118 under the recess 160 is set to For example, the thickness is preferably 10 to 100 nm, more preferably 30 to 80 nm. The optimum value of thickness d is about 50 nm.
 第1層間絶縁層118を窒化シリコンで形成した場合には、凹部160の下の第1層間絶縁層118の厚さdは、例えば10~200nmであることが好ましく、30~160nmとすることが実用的により好ましい。最適な厚さdの値は約100nmである。 When the first interlayer insulating layer 118 is formed of silicon nitride, the thickness d of the first interlayer insulating layer 118 under the recess 160 is preferably 10 to 200 nm, for example, and preferably 30 to 160 nm. Practically more preferable. The optimum thickness d is about 100 nm.
 次に、アクティブマトリクス基板100の製造方法を説明する。 Next, a method for manufacturing the active matrix substrate 100 will be described.
 図5(a)~(g)はアクティブマトリクス基板100の製造方法を模式的に表した断面図である。なお、図5(a)~(g)には、アクティブマトリクス基板100に含まれるドライバTFT部107の製造工程も示している。ドライバTFT部107は、複数の画素110からなる表示領域の外側の周辺領域に配置されたドライバTFTの形成領域である。ドライバTFTには、図2に示した走査線駆動回路540のTFT、信号線駆動回路550のTFTなど、周辺領域に形成されるTFTが含まれる。 FIGS. 5A to 5G are cross-sectional views schematically showing a method for manufacturing the active matrix substrate 100. 5A to 5G also show the manufacturing process of the driver TFT portion 107 included in the active matrix substrate 100. The driver TFT portion 107 is a driver TFT formation region arranged in a peripheral region outside the display region composed of a plurality of pixels 110. The driver TFT includes TFTs formed in the peripheral region such as the TFT of the scanning line driver circuit 540 and the TFT of the signal line driver circuit 550 shown in FIG.
 まず、ガラス基板等の基板101の上に、図示しない下地膜を成膜し、その上に結晶質シリコンまたはポリシリコンによる半導体層114を積層する。下地膜は、例えば窒化シリコン膜と酸化シリコン膜の多層膜である。半導体層114は、アモルファスシリコンを成膜した後、アモルファスシリコンを、エキシマレーザ等を照射するなど公知の技術によって結晶化またはポリシリコン化することによって得られる。 First, a base film (not shown) is formed on a substrate 101 such as a glass substrate, and a semiconductor layer 114 made of crystalline silicon or polysilicon is laminated thereon. The base film is, for example, a multilayer film of a silicon nitride film and a silicon oxide film. The semiconductor layer 114 can be obtained by depositing amorphous silicon and then crystallizing or polysiliconizing the amorphous silicon by a known technique such as irradiation with an excimer laser or the like.
 次に、フォトリソグラフィ法によって半導体層114をパターニングして、TFT部103、Cs部105、およびドライバTFT部107に選択的に半導体層114を残す。その後、半導体層114を覆うようにゲート絶縁層116を成膜して、図5(a)に示す構造を得る。ゲート絶縁層116の成膜後には、上方からゲート絶縁層116を介して、残された半導体層114に低濃度のp型不純物190がイオン注入される。 Next, the semiconductor layer 114 is patterned by photolithography to selectively leave the semiconductor layer 114 in the TFT portion 103, the Cs portion 105, and the driver TFT portion 107. Thereafter, a gate insulating layer 116 is formed so as to cover the semiconductor layer 114, and the structure shown in FIG. After the gate insulating layer 116 is formed, a low-concentration p-type impurity 190 is ion-implanted into the remaining semiconductor layer 114 through the gate insulating layer 116 from above.
 次に、図5(b)に示すように、TFT部103の領域、およびドライバTFT部107におけるドライバTFTのチャネル部330となる領域をレジスト185で覆い、上方からリンなどのn型不純物191をドープする。これにより、レジスト185で覆われない領域の半導体層114がSi(n-)半導体部となる。 Next, as shown in FIG. 5B, the region of the TFT portion 103 and the region of the driver TFT portion 107 that becomes the channel portion 330 of the driver TFT are covered with a resist 185, and an n-type impurity 191 such as phosphorus is applied from above. Dope. Thereby, the semiconductor layer 114 in a region not covered with the resist 185 becomes a Si (n−) semiconductor portion.
 続いて、レジスト185を除去した後、ゲート絶縁層116の上にスパッタ法またはCVD法などを用いて金属層を成膜する。金属層の材料には、高融点金属のW、Ta、Ti、Moまたはその合金材料のいずれかを用いることが望ましい。 Subsequently, after removing the resist 185, a metal layer is formed on the gate insulating layer 116 by sputtering or CVD. As the material of the metal layer, it is desirable to use any of refractory metals W, Ta, Ti, Mo or alloy materials thereof.
 その後金属層をフォトリソグラフィ法によりパターニングして、図5(c)に示すように、Cs部105の補助容量電極145、TFT部103のゲート電極140、およびドライバTFT部107のゲート電極340を得る。このとき、ここには図示していない走査線141および補助容量線142も同時に形成される。その後、補助容量電極145、ゲート電極140、およびゲート電極340をマスクとして、半導体層114にリンなどのn型不純物191をドープする。これによりTFT部103におけるTFTのチャネル部130が得られる。 Thereafter, the metal layer is patterned by photolithography to obtain the auxiliary capacitance electrode 145 of the Cs portion 105, the gate electrode 140 of the TFT portion 103, and the gate electrode 340 of the driver TFT portion 107 as shown in FIG. . At this time, the scanning line 141 and the auxiliary capacitance line 142 not shown here are also formed at the same time. After that, the semiconductor layer 114 is doped with an n-type impurity 191 such as phosphorus using the auxiliary capacitance electrode 145, the gate electrode 140, and the gate electrode 340 as a mask. As a result, a TFT channel portion 130 in the TFT portion 103 is obtained.
 その後、さらに選択的にn型不純物のドープを行って、図5(d)に示すようにTFT部103およびドライバTFT部107の半導体層114を得る。すなわち、TFT部103においては、ゲート電極140の下のチャネル部130、チャネル部130両端に接するSi(n-)部131および132、ならびにSi(n-)部131および132それぞれの外端に接するSi(n+)部133および134が形成される。また、ドライバTFT部107においては、ゲート電極340の下のチャネル部330、チャネル部330両端に接するSi(n-)部331および332、ならびにSi(n-)部331および332それぞれの外端に接するSi(n+)部333および334が形成される。また、Cs部105の半導体層114はSi(n-)部137となり、そのうちの補助容量電極145の下の部分が補助容量下部電極139となる。 Thereafter, the n-type impurity is further selectively doped to obtain the semiconductor layer 114 of the TFT portion 103 and the driver TFT portion 107 as shown in FIG. That is, in the TFT portion 103, the channel portion 130 under the gate electrode 140, the Si (n−) portions 131 and 132 in contact with both ends of the channel portion 130, and the outer ends of the Si (n−) portions 131 and 132, respectively. Si (n +) portions 133 and 134 are formed. In the driver TFT portion 107, the channel portion 330 below the gate electrode 340, the Si (n−) portions 331 and 332 in contact with both ends of the channel portion 330, and the outer ends of the Si (n−) portions 331 and 332, respectively. Si (n +) portions 333 and 334 in contact are formed. Further, the semiconductor layer 114 of the Cs portion 105 becomes the Si (n−) portion 137, and a portion below the auxiliary capacitance electrode 145 among them becomes the auxiliary capacitance lower electrode 139.
 なお別途、半導体層114に対して選択的にp型不純物をドープする工程を加えて、TFT部103およびドライバTFT部107のTFTの一方をP型TFTとし、他方をN型TFTとすることや、ドープされる不純物の濃度を変えて両TFTの閾値電圧を異ならせることも行ない得る。TFT部103およびドライバTFT部107のTFTの両方をP型TFTとしてもよい。また、ドライバTFT部107に形成される複数のTFTにN型TFTとP型TFTの両方を含ませてもよい。ドライバTFT部107の複数のTFTの全てをN型TFTとしてもよく、その全てをP型TFTとしてもよい。 Separately, a step of selectively doping the semiconductor layer 114 with a p-type impurity is added, so that one of the TFTs of the TFT portion 103 and the driver TFT portion 107 is a P-type TFT and the other is an N-type TFT. It is also possible to change the threshold voltage of both TFTs by changing the concentration of doped impurities. Both TFTs of the TFT portion 103 and the driver TFT portion 107 may be P-type TFTs. Further, both the N-type TFT and the P-type TFT may be included in the plurality of TFTs formed in the driver TFT portion 107. All of the plurality of TFTs in the driver TFT unit 107 may be N-type TFTs, and all of them may be P-type TFTs.
 その後、補助容量電極145、ゲート電極140、およびゲート電極340を覆うように、ゲート絶縁層116の上に例えば窒化シリコンを積層して、第1層間絶縁層118を得る。次に、第1層間絶縁層118の上にレジスト185を塗布し、補助容量電極145の上のレジスト185を除去して開口を形成し、図5(d)に示す積層構造を得る。 Thereafter, for example, silicon nitride is laminated on the gate insulating layer 116 so as to cover the auxiliary capacitance electrode 145, the gate electrode 140, and the gate electrode 340, thereby obtaining the first interlayer insulating layer 118. Next, a resist 185 is applied on the first interlayer insulating layer 118, and the resist 185 on the auxiliary capacitance electrode 145 is removed to form an opening, thereby obtaining a stacked structure shown in FIG.
 続いて、レジスト185の開口の下の第1層間絶縁層118を選択的にエッチングして、補助容量電極145の上方に凹部160を形成する。その後、レジスト185を除去して、図5(e)に示す積層構造を得る。このあと、図示を省略しているが、フォトリソグラフィ法により第1層間絶縁層118およびゲート絶縁層116を選択的に除去して、Si(n+)部133、134、333、および334のそれぞれの上にコンタクトホールが形成される。 Subsequently, the first interlayer insulating layer 118 under the opening of the resist 185 is selectively etched to form a recess 160 above the auxiliary capacitance electrode 145. Thereafter, the resist 185 is removed to obtain a stacked structure shown in FIG. Thereafter, although not shown, the first interlayer insulating layer 118 and the gate insulating layer 116 are selectively removed by photolithography, and the Si (n +) portions 133, 134, 333, and 334 are respectively removed. A contact hole is formed on top.
 次に、第1層間絶縁層118の上に金属層を積層する。金属層は、例えばTi/Al/Tiの3層構成である。金属層を、Al/Ti、Cu/Ti、Cu/Mo(モリブデン)等の2層構成としてもよく、これらの金属の1つを用いた単層構成としてもよい。その後、金属層をフォトリソグラフィ法によってパターニングして、図5(f)に示すように、補助容量上部電極149、金属層147、ソース電極143および343、ならびにドレイン電極144および344を得る。このとき、ここには図示していない信号線146も同時に形成される。 Next, a metal layer is stacked on the first interlayer insulating layer 118. The metal layer has, for example, a three-layer structure of Ti / Al / Ti. The metal layer may have a two-layer structure such as Al / Ti, Cu / Ti, Cu / Mo (molybdenum), or a single-layer structure using one of these metals. Thereafter, the metal layer is patterned by photolithography to obtain the auxiliary capacitor upper electrode 149, the metal layer 147, the source electrodes 143 and 343, and the drain electrodes 144 and 344, as shown in FIG. At this time, a signal line 146 not shown here is also formed at the same time.
 次に、第1層間絶縁層118の上に平坦化膜として機能する第2層間絶縁層119を積層し、ドレイン電極144の上の第2層間絶縁層119にコンタクトホールを形成する。その後、第2層間絶縁層119の上にITOを積層し、フォトリソグラフィ法によりパターニングして画素電極120を形成し、図5(g)に示すアクティブマトリクス基板100が完成する。 Next, a second interlayer insulating layer 119 functioning as a planarizing film is stacked on the first interlayer insulating layer 118, and a contact hole is formed in the second interlayer insulating layer 119 above the drain electrode 144. Thereafter, ITO is stacked on the second interlayer insulating layer 119 and patterned by photolithography to form the pixel electrode 120, whereby the active matrix substrate 100 shown in FIG. 5G is completed.
 このようにして形成されたアクティブマトリクス基板100では、補助容量電極145と補助容量下部電極139との間の容量に加えて、補助容量電極145と補助容量上部電極149との間にも容量が形成されるので、より大きな容量の補助容量150を画素毎に形成することができる。また、補助容量上部電極149が凹部160の底面に形成されるため、凹部160以外の第1層間絶縁層118を十分な厚さに形成したとしても、大きな容量を得ることができる。よって、表示品質および信頼性の両方に優れたアクティブマトリクス基板を提供することができる。また、補助容量電極145の占有面積を小さくしても比較的大きな補助容量を得ることができるので、画素の高密度化、開口率の向上を図ることができる。さらに、補助容量上部電極149は、ソース電極143、ドレイン電極144等と同じ製造工程にて形成されるので、製造工程を複雑化することなく大きな補助容量を得ることができる。また、アクティブマトリクス基板100によれば、信号線と走査線が交わる部位には、十分な厚さの第1層間絶縁層118が形成されるため、両線間の絶縁機能を十分に確保し、両線の信号品質を低下させることなく、大きな補助容量を確保することができる。 In the active matrix substrate 100 formed in this way, in addition to the capacitance between the auxiliary capacitance electrode 145 and the auxiliary capacitance lower electrode 139, a capacitance is also formed between the auxiliary capacitance electrode 145 and the auxiliary capacitance upper electrode 149. Therefore, the auxiliary capacitor 150 having a larger capacity can be formed for each pixel. In addition, since the auxiliary capacitor upper electrode 149 is formed on the bottom surface of the recess 160, a large capacity can be obtained even if the first interlayer insulating layer 118 other than the recess 160 is formed to a sufficient thickness. Therefore, an active matrix substrate excellent in both display quality and reliability can be provided. In addition, since a relatively large auxiliary capacitance can be obtained even if the area occupied by the auxiliary capacitance electrode 145 is reduced, it is possible to increase the density of the pixels and improve the aperture ratio. Furthermore, since the auxiliary capacitor upper electrode 149 is formed in the same manufacturing process as the source electrode 143, the drain electrode 144, etc., a large auxiliary capacity can be obtained without complicating the manufacturing process. Further, according to the active matrix substrate 100, since the first interlayer insulating layer 118 having a sufficient thickness is formed at a portion where the signal line and the scanning line intersect, a sufficient insulating function between the two lines is ensured, A large auxiliary capacity can be ensured without degrading the signal quality of both lines.
 次に、本発明による他の実施形態(実施形態2~5)を説明する。以下の説明においては、実施形態1と同じ構成要素には同じ参照番号を付け、その詳細な説明を省略する。実施形態2~5において説明する部分以外は、基本的に実施形態1と同じであり、同じ構成要素からは同様の効果を得ることができる。 Next, other embodiments (embodiments 2 to 5) according to the present invention will be described. In the following description, the same reference numerals are assigned to the same components as those in the first embodiment, and detailed descriptions thereof are omitted. The parts other than those described in the second to fifth embodiments are basically the same as those in the first embodiment, and the same effects can be obtained from the same components.
 (実施形態2)
 図6は、実施形態2によるアクティブマトリクス基板100の構成を模式的に示す断面図である。図6に示すように、実施形態2によるアクティブマトリクス基板100は、基板101の上に順次積層された半導体層114、ゲート絶縁層116、追加絶縁層117、第1層間絶縁層118、第2層間絶縁層119、および画素電極120を備えている。
(Embodiment 2)
FIG. 6 is a cross-sectional view schematically showing the configuration of the active matrix substrate 100 according to the second embodiment. As shown in FIG. 6, the active matrix substrate 100 according to the second embodiment includes a semiconductor layer 114, a gate insulating layer 116, an additional insulating layer 117, a first interlayer insulating layer 118, and a second interlayer sequentially stacked on the substrate 101. An insulating layer 119 and a pixel electrode 120 are provided.
 追加絶縁層117は、補助容量電極145およびゲート電極140を覆うようにゲート絶縁層116の上に形成されている。実施形態1と同様、補助容量電極145の上方の第1層間絶縁層118には凹部160が形成されている。ただし、実施形態2においては、補助容量電極145と補助容量上部電極149との間は追加絶縁層117で埋められている。つまり、補助容量電極145の上面は追加絶縁層117の下面と接し、補助容量上部電極149の下面は追加絶縁層117の上面と接している。補助容量電極145の上面と補助容量上部電極149の下面(凹部160の底面)との間の距離dは、両電極間の追加絶縁層117の厚さに相当する。 The additional insulating layer 117 is formed on the gate insulating layer 116 so as to cover the auxiliary capacitance electrode 145 and the gate electrode 140. As in the first embodiment, a recess 160 is formed in the first interlayer insulating layer 118 above the auxiliary capacitance electrode 145. However, in the second embodiment, the space between the auxiliary capacitance electrode 145 and the auxiliary capacitance upper electrode 149 is filled with the additional insulating layer 117. That is, the upper surface of the auxiliary capacitance electrode 145 is in contact with the lower surface of the additional insulating layer 117, and the lower surface of the auxiliary capacitance upper electrode 149 is in contact with the upper surface of the additional insulating layer 117. A distance d between the upper surface of the auxiliary capacitance electrode 145 and the lower surface of the auxiliary capacitance upper electrode 149 (the bottom surface of the recess 160) corresponds to the thickness of the additional insulating layer 117 between the two electrodes.
 追加絶縁層117は、例えば窒化シリコンからなり、第1層間絶縁層118は、例えば酸化シリコンからなる。第1層間絶縁層118をエッチングして凹部160を形成する場合、追加絶縁層117はエッチングストッパの役割を果たす。 The additional insulating layer 117 is made of, for example, silicon nitride, and the first interlayer insulating layer 118 is made of, for example, silicon oxide. When the recess 160 is formed by etching the first interlayer insulating layer 118, the additional insulating layer 117 serves as an etching stopper.
 補助容量電極145の上面から補助容量上部電極149の下面までの距離d(あるいは追加絶縁層117の厚さ)は、10nm以上200nm以下である。距離dは60~160nmであることがより好ましく、その最適な値は約100nmである。 The distance d (or the thickness of the additional insulating layer 117) from the upper surface of the auxiliary capacitance electrode 145 to the lower surface of the auxiliary capacitance upper electrode 149 is 10 nm or more and 200 nm or less. The distance d is more preferably 60 to 160 nm, and the optimum value is about 100 nm.
 次に、アクティブマトリクス基板100の製造方法を説明する。 Next, a method for manufacturing the active matrix substrate 100 will be described.
 図7(a)~(d)は、実施形態2によるアクティブマトリクス基板100の製造方法を模式的に表した断面図である。図7(a)~(d)には、アクティブマトリクス基板100に含まれるドライバTFT部107の製造工程も示している。 7A to 7D are cross-sectional views schematically showing a method for manufacturing the active matrix substrate 100 according to the second embodiment. 7A to 7D also show a manufacturing process of the driver TFT portion 107 included in the active matrix substrate 100. FIG.
 まず、図5(a)~(c)に示した実施形態1の製造工程と同様の工程を経て、図7(a)に示す積層構造を得る。その後、半導体層114にn型不純物をドープして、Si(n+)部133、134、333、および334を含む、図7(b)に示す構成の半導体層114を得る。 First, the laminated structure shown in FIG. 7A is obtained through steps similar to the manufacturing steps of the first embodiment shown in FIGS. 5A to 5C. Thereafter, the semiconductor layer 114 is doped with an n-type impurity to obtain the semiconductor layer 114 having the structure shown in FIG. 7B including the Si (n +) portions 133, 134, 333, and 334.
 次に、補助容量電極145、ゲート電極140、およびゲート電極340を覆うように、ゲート絶縁層116の上に例えば窒化シリコンを積層して追加絶縁層117とし、その上に酸化シリコンを積層して第1層間絶縁層118を得る。その後、第1層間絶縁層118の上にレジスト185を塗布し、補助容量電極145の上のレジスト185を除去して開口を形成し、図7(b)に示す積層構造を得る。 Next, for example, silicon nitride is stacked on the gate insulating layer 116 so as to cover the auxiliary capacitance electrode 145, the gate electrode 140, and the gate electrode 340 to form an additional insulating layer 117, and silicon oxide is stacked thereon. A first interlayer insulating layer 118 is obtained. Thereafter, a resist 185 is applied on the first interlayer insulating layer 118, and the resist 185 on the auxiliary capacitance electrode 145 is removed to form an opening, thereby obtaining a stacked structure shown in FIG. 7B.
 続いて、レジスト185の開口の下の第1層間絶縁層118をエッチングして、補助容量電極145の上方に凹部160を形成する。このとき、窒化シリコンに対して酸化シリコンよりも低いエッチングレートを示すエッチャントを用いることにより、窒化シリコンをエッチングストッパとして機能させることができる。その後、レジスト185を除去して、図7(c)に示す積層構造を得る。このあと、図示を省略しているが、フォトリソグラフィ法により第1層間絶縁層118、追加絶縁層117、およびゲート絶縁層116を選択的に除去して、Si(n+)部133、134、333、および334のそれぞれの上にコンタクトホールが形成される。 Subsequently, the first interlayer insulating layer 118 under the opening of the resist 185 is etched to form a recess 160 above the auxiliary capacitance electrode 145. At this time, silicon nitride can function as an etching stopper by using an etchant that exhibits an etching rate lower than that of silicon oxide. Thereafter, the resist 185 is removed to obtain a laminated structure shown in FIG. Thereafter, although not shown, the first interlayer insulating layer 118, the additional insulating layer 117, and the gate insulating layer 116 are selectively removed by photolithography, and Si (n +) portions 133, 134, 333 are removed. , And 334 are formed on each of the contact holes.
 次に、第1層間絶縁層118の上に金属層を積層し、フォトリソグラフィ法によってパターニングして、図7(d)に示すように、補助容量上部電極149、金属層147、ソース電極143および343、ならびにドレイン電極144および344を得る。このとき、ここには図示していない信号線146も同時に形成される。 Next, a metal layer is stacked on the first interlayer insulating layer 118 and patterned by photolithography, and as shown in FIG. 7D, the auxiliary capacitor upper electrode 149, the metal layer 147, the source electrode 143, and 343 and drain electrodes 144 and 344 are obtained. At this time, a signal line 146 not shown here is also formed at the same time.
 その後、第1層間絶縁層118の上に第2層間絶縁層119を積層し、ドレイン電極144の上の第2層間絶縁層119にコンタクトホールを形成する。その後、第2層間絶縁層119の上にITOを積層し、フォトリソグラフィ法によりパターニングして画素電極120を形成して、図7(d)に示すアクティブマトリクス基板100が完成する。 Thereafter, a second interlayer insulating layer 119 is stacked on the first interlayer insulating layer 118, and a contact hole is formed in the second interlayer insulating layer 119 on the drain electrode 144. Thereafter, ITO is laminated on the second interlayer insulating layer 119 and patterned by photolithography to form the pixel electrode 120, thereby completing the active matrix substrate 100 shown in FIG. 7D.
 この製造方法によれば、追加絶縁層117が凹部160を形成する際のエッチングストッパの役割を果たすので、エッチング時間を厳密に管理することなく、複数の画素に対して均一な深さの凹部160を形成することができる。これにより、複数の画素間における輝度のばらつきが抑えられた、高品質の表示を提供することが可能となる。 According to this manufacturing method, since the additional insulating layer 117 serves as an etching stopper when forming the recess 160, the recess 160 having a uniform depth for a plurality of pixels without strictly controlling the etching time. Can be formed. Thereby, it is possible to provide a high-quality display in which variation in luminance among a plurality of pixels is suppressed.
 (実施形態3)
 図8(a)~(f)は、実施形態3によるアクティブマトリクス基板100の製造方法を模式的に示す断面図である。実施形態3によるアクティブマトリクス基板100の断面構成は実施形態2のものと基本的に同じであるので、ここでは図示を省略し、製造方法のみを説明する。
(Embodiment 3)
8A to 8F are cross-sectional views schematically showing a method for manufacturing the active matrix substrate 100 according to the third embodiment. Since the cross-sectional configuration of the active matrix substrate 100 according to the third embodiment is basically the same as that of the second embodiment, the illustration is omitted here, and only the manufacturing method will be described.
 まず、図5(a)~(c)に示した実施形態1の製造工程と同様の工程を経て、図8(a)に示す積層構造を得る。その後、半導体層114にn型不純物をドープして、Si(n+)部133、134、333、および334を含む半導体層114を得る。 First, the laminated structure shown in FIG. 8A is obtained through the same process as the manufacturing process of the first embodiment shown in FIGS. 5A to 5C. Thereafter, the semiconductor layer 114 is doped with n-type impurities to obtain the semiconductor layer 114 including Si (n +) portions 133, 134, 333, and 334.
 次に、補助容量電極145、ゲート電極140、およびゲート電極340を覆うように、ゲート絶縁層116の上に例えば窒化シリコンを積層して追加絶縁層117とし、その上に酸化シリコンを積層して第1層間絶縁層118を得る。その後、第1層間絶縁層118の上にレジスト185を塗布する。 Next, for example, silicon nitride is stacked on the gate insulating layer 116 so as to cover the auxiliary capacitance electrode 145, the gate electrode 140, and the gate electrode 340 to form an additional insulating layer 117, and silicon oxide is stacked thereon. A first interlayer insulating layer 118 is obtained. Thereafter, a resist 185 is applied on the first interlayer insulating layer 118.
 次に、図8(b)に示すように、レジスト185の上方にマスク187を配置する。マスク187はグレートーンマスクであり、ハーフトーン露光を行なうために、低い光透過率を示す第1窓(半透過部)188と、第1窓188よりも高い光透過率を示す第2窓(全透過部)189を含む。マスク187の第1窓188および第2窓189以外の部分は、実質的に光を透過させない遮光部である。第1窓188は補助容量電極145の上方に配置され、第2窓189はSi(n+)部133、134、333、および334それぞれの上方に配置される。 Next, as shown in FIG. 8B, a mask 187 is disposed above the resist 185. The mask 187 is a gray-tone mask, and in order to perform halftone exposure, a first window (semi-transmissive portion) 188 that exhibits a low light transmittance and a second window (a light transmittance that is higher than the first window 188). Total transmission part) 189. Portions other than the first window 188 and the second window 189 of the mask 187 are light shielding portions that do not substantially transmit light. The first window 188 is disposed above the auxiliary capacitance electrode 145, and the second window 189 is disposed above each of the Si (n +) portions 133, 134, 333, and 334.
 次に、マスク187の上方から光が照射され、第1窓188を透過した光によって補助容量電極145の上方のレジスト185が露光され、第2窓189を透過した光によってSi(n+)部133、134、333、および334の上方のレジスト185が露光される。その後、露光された部分のレジスト185が除去され、図8(c)に示すように、補助容量電極145の上方のレジスト185に凹部(窪み)184が形成されるとともに、Si(n+)部133、134、333、および334の上方のレジスト185に開口186が形成される。 Next, light is irradiated from above the mask 187, the resist 185 above the auxiliary capacitance electrode 145 is exposed by the light transmitted through the first window 188, and the Si (n +) portion 133 is exposed by the light transmitted through the second window 189. , 134, 333, and 334 are exposed. Thereafter, the exposed portion of the resist 185 is removed, and as shown in FIG. 8C, a recess (depression) 184 is formed in the resist 185 above the auxiliary capacitance electrode 145, and an Si (n +) portion 133 is formed. , 134, 333, and 334, openings 186 are formed in the resist 185.
 次に、レジスト185を介して第1層間絶縁層118を選択的にエッチングし、図8(d)に示すように、開口186の下に第1層間絶縁層118の窪みが形成される。このとき、開口186の下以外の第1層間絶縁層118はエッチングされることなく残される。 Next, the first interlayer insulating layer 118 is selectively etched through the resist 185 to form a recess in the first interlayer insulating layer 118 under the opening 186 as shown in FIG. At this time, the first interlayer insulating layer 118 other than under the opening 186 is left without being etched.
 次に、レジスト185を酸素プラズマ等でアッシングすることにより、レジスト185全体を薄くして、凹部184の底に第1層間絶縁層118を露出させる。このとき、凹部184および開口186以外の部分のレジスト185は残され、その下の第1層間絶縁層118は露出しない。その後、再度エッチングを行い、図8(e)に示すように、補助容量電極145の上方に第1層間絶縁層118の凹部160が形成されるとともに、Si(n+)部133、134、333、および334に通じるコンタクトホールが形成される。 Next, the entire resist 185 is thinned by ashing the resist 185 with oxygen plasma or the like, and the first interlayer insulating layer 118 is exposed at the bottom of the recess 184. At this time, a portion of the resist 185 other than the recess 184 and the opening 186 is left, and the first interlayer insulating layer 118 therebelow is not exposed. Thereafter, etching is performed again, and as shown in FIG. 8E, a recess 160 of the first interlayer insulating layer 118 is formed above the auxiliary capacitance electrode 145, and Si (n +) portions 133, 134, 333, And a contact hole leading to 334 is formed.
 ここでも、実施形態2と同様、追加絶縁層117はエッチングストッパとして用いられるため、凹部160の底部には追加絶縁層117が露出する。コンタクトホールは第1層間絶縁層118、追加絶縁層117、およびゲート絶縁層116を貫通して形成される。その後、レジスト185は除去される。 Here, as in the second embodiment, since the additional insulating layer 117 is used as an etching stopper, the additional insulating layer 117 is exposed at the bottom of the recess 160. The contact hole is formed through the first interlayer insulating layer 118, the additional insulating layer 117, and the gate insulating layer 116. Thereafter, the resist 185 is removed.
 次に、実施形態2と同様、第1層間絶縁層118の上に金属層を積層し、フォトリソグラフィ法によってパターニングして、補助容量上部電極149、金属層147、ソース電極143および343、ならびにドレイン電極144および344を得る。その後、第1層間絶縁層118の上に第2層間絶縁層119を積層し、ドレイン電極144の上の第2層間絶縁層119にコンタクトホールを形成する。次に、第2層間絶縁層119の上にITOを積層し、フォトリソグラフィ法によりパターニングして画素電極120を形成し、図8(f)に示すアクティブマトリクス基板100が完成する。 Next, as in the second embodiment, a metal layer is stacked on the first interlayer insulating layer 118 and patterned by a photolithography method to form an auxiliary capacitor upper electrode 149, a metal layer 147, source electrodes 143 and 343, and a drain. Electrodes 144 and 344 are obtained. Thereafter, a second interlayer insulating layer 119 is stacked on the first interlayer insulating layer 118, and a contact hole is formed in the second interlayer insulating layer 119 on the drain electrode 144. Next, ITO is laminated on the second interlayer insulating layer 119 and patterned by photolithography to form the pixel electrode 120, whereby the active matrix substrate 100 shown in FIG. 8F is completed.
 この製造方法によれば、追加絶縁層117が凹部160を形成する際のエッチングストッパの役割を果たすので、エッチング時間を厳密に管理することなく、複数の画素に対して均一な深さの凹部160を形成することができる。これにより、複数の画素間における輝度のばらつきが抑えられた、高品質の表示を提供することが可能となる。また、ハーフトーン露光を利用することにより、1枚のレジストで第1層間絶縁層118に凹部160およびコンタクトホールを形成することができるので、製造効率の向上および製造コストの低減が可能となる。なお、ここで用いたハーフトーン露光は、実施形態1の製造方法に適用することも可能である。 According to this manufacturing method, since the additional insulating layer 117 serves as an etching stopper when forming the recess 160, the recess 160 having a uniform depth for a plurality of pixels without strictly controlling the etching time. Can be formed. Thereby, it is possible to provide a high-quality display in which variation in luminance among a plurality of pixels is suppressed. Further, by using halftone exposure, the recess 160 and the contact hole can be formed in the first interlayer insulating layer 118 with one resist, so that the manufacturing efficiency can be improved and the manufacturing cost can be reduced. The halftone exposure used here can be applied to the manufacturing method of the first embodiment.
 (実施形態4)
 図9は、実施形態4によるアクティブマトリクス基板100の構成を模式的に示す断面図であり、図10はアクティブマトリクス基板100における画素の構成を表す回路図である。
(Embodiment 4)
FIG. 9 is a cross-sectional view schematically showing the configuration of the active matrix substrate 100 according to Embodiment 4, and FIG. 10 is a circuit diagram showing the configuration of the pixels in the active matrix substrate 100.
 実施形態4によるアクティブマトリクス基板100は、基板101の上に順次積層された半導体層114、ゲート絶縁層116、追加絶縁層117、第1層間絶縁層118、第2層間絶縁層119、および画素電極120を備えている。 The active matrix substrate 100 according to the fourth embodiment includes a semiconductor layer 114, a gate insulating layer 116, an additional insulating layer 117, a first interlayer insulating layer 118, a second interlayer insulating layer 119, and a pixel electrode, which are sequentially stacked on the substrate 101. 120.
 追加絶縁層117は、補助容量電極145およびゲート電極140を覆うようにゲート絶縁層116の上に形成されている。実施形態2と同様、補助容量電極145の上方には第1層間絶縁層118の凹部160が形成されており、凹部160の底部には追加絶縁層117が露出している。実施形態4においては、Cs部105には半導体層114は含まれず、補助容量下部電極は形成されない。よって、補助容量150は補助容量電極145と補助容量上部電極149と、両電極の間の追加絶縁層117によって構成される。それ以外の構成は、実施形態2と基本的に同じである。 The additional insulating layer 117 is formed on the gate insulating layer 116 so as to cover the auxiliary capacitance electrode 145 and the gate electrode 140. Similar to the second embodiment, the concave portion 160 of the first interlayer insulating layer 118 is formed above the auxiliary capacitance electrode 145, and the additional insulating layer 117 is exposed at the bottom of the concave portion 160. In the fourth embodiment, the Cs portion 105 does not include the semiconductor layer 114, and no auxiliary capacitance lower electrode is formed. Therefore, the auxiliary capacitor 150 includes the auxiliary capacitor electrode 145, the auxiliary capacitor upper electrode 149, and the additional insulating layer 117 between the two electrodes. Other configurations are basically the same as those of the second embodiment.
 このような補助容量150の構成であっても、凹部160を形成することにより、補助容量電極145と補助容量上部電極149との距離を短くすることができるので、比較的大きな補助容量を得ることができる。また、追加絶縁層117に高誘電率の部材を用いることにより、より大きな補助容量を得ることができる。なお実施形態1のように、追加絶縁層117を形成せずに凹部160を形成する構成も実施形態4に含まれるものとする。 Even in such a configuration of the auxiliary capacitor 150, by forming the recess 160, the distance between the auxiliary capacitor electrode 145 and the auxiliary capacitor upper electrode 149 can be shortened, so that a relatively large auxiliary capacitor can be obtained. Can do. Further, by using a member having a high dielectric constant for the additional insulating layer 117, a larger auxiliary capacitance can be obtained. A configuration in which the concave portion 160 is formed without forming the additional insulating layer 117 as in the first embodiment is also included in the fourth embodiment.
 次に、実施形態4によるアクティブマトリクス基板100の製造方法を説明する。 Next, a method for manufacturing the active matrix substrate 100 according to Embodiment 4 will be described.
 図11(a)~(f)は、実施形態4によるアクティブマトリクス基板100の製造方法を模式的に表した断面図である。 FIGS. 11A to 11F are cross-sectional views schematically showing a method for manufacturing the active matrix substrate 100 according to the fourth embodiment.
 まず、基板101の上に、実施形態1と同様、図示しない下地膜を成膜し、その上に結晶質シリコンまたはポリシリコンによる半導体層114を積層する。次に、フォトリソグラフィ法によって半導体層114をパターニングして、TFT部103およびドライバTFT部107に選択的に半導体層114を残す。このとき、Cs部105には半導体層114は残されない。 First, as in the first embodiment, a base film (not shown) is formed on the substrate 101, and a semiconductor layer 114 made of crystalline silicon or polysilicon is stacked thereon. Next, the semiconductor layer 114 is patterned by photolithography, and the semiconductor layer 114 is selectively left in the TFT portion 103 and the driver TFT portion 107. At this time, the semiconductor layer 114 is not left in the Cs portion 105.
 その後、半導体層114を覆うようにゲート絶縁層116を成膜して、図11(a)に示すように、残された半導体層114にp型不純物190がイオン注入される。 Thereafter, a gate insulating layer 116 is formed so as to cover the semiconductor layer 114, and p-type impurities 190 are ion-implanted into the remaining semiconductor layer 114 as shown in FIG.
 次に、図11(b)に示すように、TFT部103の領域、およびドライバTFT部107におけるドライバTFTのチャネル部330となる領域の上方にレジスト185を形成し、上方からn型不純物191をドープする。これにより、ドライバTFT部107におけるレジスト185で覆われない領域の半導体層114がSi(n-)半導体部となる。 Next, as shown in FIG. 11B, a resist 185 is formed above the region of the TFT portion 103 and the region of the driver TFT portion 107 that becomes the channel portion 330 of the driver TFT, and the n-type impurity 191 is applied from above. Dope. Thereby, the semiconductor layer 114 in the region not covered with the resist 185 in the driver TFT portion 107 becomes the Si (n−) semiconductor portion.
 続いて、レジスト185を除去した後、実施形態1と同様、ゲート絶縁層116の上に金属層を成膜し、フォトリソグラフィ法によりパターニングして、図11(c)に示すように、Cs部105の補助容量電極145、TFT部103のゲート電極140、およびドライバTFT部107のゲート電極340を得る。その後、補助容量電極145、ゲート電極140、およびゲート電極340をマスクとして、半導体層114にn型不純物をドープする。これによりTFT部103におけるTFTのチャネル部130が得られる。 Subsequently, after removing the resist 185, as in the first embodiment, a metal layer is formed on the gate insulating layer 116, and is patterned by photolithography. As shown in FIG. The auxiliary capacitance electrode 145 of 105, the gate electrode 140 of the TFT portion 103, and the gate electrode 340 of the driver TFT portion 107 are obtained. Thereafter, the semiconductor layer 114 is doped with an n-type impurity using the auxiliary capacitance electrode 145, the gate electrode 140, and the gate electrode 340 as a mask. As a result, a TFT channel portion 130 in the TFT portion 103 is obtained.
 その後、実施形態2と同様、補助容量電極145、ゲート電極140、およびゲート電極340を覆うように追加絶縁層117を積層し、その上に第1層間絶縁層118を積層する。次に、第1層間絶縁層118の上にレジスト185を塗布し、補助容量電極145の上のレジスト185を除去して開口を形成し、図11(d)に示す積層構造を得る。 Thereafter, as in the second embodiment, an additional insulating layer 117 is stacked so as to cover the auxiliary capacitance electrode 145, the gate electrode 140, and the gate electrode 340, and the first interlayer insulating layer 118 is stacked thereon. Next, a resist 185 is applied on the first interlayer insulating layer 118, and the resist 185 on the auxiliary capacitance electrode 145 is removed to form an opening, thereby obtaining a stacked structure shown in FIG.
 続いて、レジスト185の開口の下の第1層間絶縁層118をエッチングして、図11(e)に示すように、補助容量電極145の上方に凹部160を形成する。このとき、実施形態2と同様、追加絶縁層117はエッチングストッパとして機能する。 Subsequently, the first interlayer insulating layer 118 under the opening of the resist 185 is etched to form a recess 160 above the auxiliary capacitance electrode 145 as shown in FIG. At this time, as in the second embodiment, the additional insulating layer 117 functions as an etching stopper.
 次に、レジスト185を除去した後、実施形態2と同様に、補助容量上部電極149、金属層147、ソース電極143および343、ならびにドレイン電極144および344を形成し、その上に第2層間絶縁層119、画素電極120を順次形成して、図11(f)に示すアクティブマトリクス基板100が完成する。 Next, after removing the resist 185, the storage capacitor upper electrode 149, the metal layer 147, the source electrodes 143 and 343, and the drain electrodes 144 and 344 are formed as in the second embodiment, and the second interlayer insulation is formed thereon. The layer 119 and the pixel electrode 120 are sequentially formed to complete the active matrix substrate 100 shown in FIG.
 (実施形態5)
 図12(a)~(d)および図13(e)~(g)は、実施形態5によるアクティブマトリクス基板100の製造方法を模式的に示す断面図である。実施形態5によるアクティブマトリクス基板100の断面構成は実施形態4のものと基本的に同じであるので、ここでは図示を省略し、製造方法のみを説明する。
(Embodiment 5)
12 (a) to 12 (d) and FIGS. 13 (e) to (g) are cross-sectional views schematically showing a method for manufacturing the active matrix substrate 100 according to the fifth embodiment. Since the cross-sectional configuration of the active matrix substrate 100 according to the fifth embodiment is basically the same as that of the fourth embodiment, the illustration is omitted here, and only the manufacturing method will be described.
 まず、基板101の上に、実施形態4と同様の方法によって半導体層114を積層し、フォトリソグラフィ法によってパターニングして、TFT部103およびドライバTFT部107の半導体層114を残す。このとき、Cs部105には半導体層114は残されない。次に、半導体層114を覆うようにゲート絶縁層116を成膜した後、図12(a)に示すように、残された半導体層114に低濃度のp型不純物190がイオン注入される。 First, the semiconductor layer 114 is stacked on the substrate 101 by the same method as in the fourth embodiment, and is patterned by photolithography to leave the semiconductor layer 114 of the TFT portion 103 and the driver TFT portion 107. At this time, the semiconductor layer 114 is not left in the Cs portion 105. Next, after forming a gate insulating layer 116 so as to cover the semiconductor layer 114, a low-concentration p-type impurity 190 is ion-implanted into the remaining semiconductor layer 114 as shown in FIG.
 次に、ゲート絶縁層116の上に金属層を成膜し、フォトリソグラフィ法によりパターニングして、図12(b)に示すように、Cs部105の補助容量電極145、TFT部103のゲート電極140、およびドライバTFT部107のゲート電極340を得る。ただしこのとき、補助容量電極145、ゲート電極140、およびゲート電極340は、その幅が最終的な幅よりも広くなるように形成される。その後、補助容量電極145、ゲート電極140、およびゲート電極340の上に残されたレジスト185を除去することなく、上方から半導体層114にリンなどのn型不純物191をドープする。これにより、レジスト185で覆われない領域の半導体層114がSi(n+)半導体部となる。 Next, a metal layer is formed on the gate insulating layer 116 and patterned by photolithography, and as shown in FIG. 12B, the auxiliary capacitance electrode 145 of the Cs portion 105 and the gate electrode of the TFT portion 103 are formed. 140 and the gate electrode 340 of the driver TFT portion 107 are obtained. However, at this time, the auxiliary capacitor electrode 145, the gate electrode 140, and the gate electrode 340 are formed so that the width thereof is wider than the final width. Thereafter, the semiconductor layer 114 is doped with an n-type impurity 191 such as phosphorus from above without removing the resist 185 left on the storage capacitor electrode 145, the gate electrode 140, and the gate electrode 340. Thereby, the semiconductor layer 114 in a region not covered with the resist 185 becomes a Si (n +) semiconductor portion.
 次に、補助容量電極145、ゲート電極140、およびゲート電極340を、例えばウェットエッチングによってサイドエッチングして、これらの電極の幅を減少させる。レジスト185が残されていることから、サイドエッチングによって、これらの電極は上部から削られることはなく、側面からのみ削られ、図12(c)に示すように、幅が減少する。 Next, the auxiliary capacitor electrode 145, the gate electrode 140, and the gate electrode 340 are side-etched by, for example, wet etching to reduce the width of these electrodes. Since the resist 185 is left, these electrodes are not etched from the top by side etching, but only from the side surface, and the width is reduced as shown in FIG.
 次に、図12(d)に示すように、レジスト185を除去し、補助容量電極145、ゲート電極140、およびゲート電極340をマスクとして、半導体層114にn型不純物191をドープする。これにより、TFT部103におけるチャネル部130、Si(n-)部131および132、Si(n+)部133および134、ならびにドライバTFT部107におけるチャネル部330、Si(n-)部331および332、Si(n+)部333および334が完成する。 Next, as shown in FIG. 12D, the resist 185 is removed, and the semiconductor layer 114 is doped with an n-type impurity 191 using the auxiliary capacitance electrode 145, the gate electrode 140, and the gate electrode 340 as a mask. Accordingly, the channel portion 130, Si (n−) portions 131 and 132, Si (n +) portions 133 and 134 in the TFT portion 103, and the channel portion 330, Si (n−) portions 331 and 332 in the driver TFT portion 107, Si (n +) portions 333 and 334 are completed.
 次に、実施形態3において図8(b)および(c)を用いて説明したものと同様の方法により、ハーフトーン露光およびエッチングを行なって、図13(e)に示すように、補助容量電極145の上方のレジスト185に凹部184が形成されるとともに、Si(n+)部133、134、333、および334の上方のレジスト185に開口186が形成される。開口186の下方の第1層間絶縁層には窪みが形成されるが、凹部184の下の第1層間絶縁層118はエッチングされることなく残される。 Next, halftone exposure and etching are performed by the same method as described with reference to FIGS. 8B and 8C in the third embodiment, and as shown in FIG. A recess 184 is formed in the resist 185 above 145, and an opening 186 is formed in the resist 185 above the Si (n +) portions 133, 134, 333, and 334. Although a depression is formed in the first interlayer insulating layer below the opening 186, the first interlayer insulating layer 118 under the recess 184 is left without being etched.
 次に、図8(d)を用いて説明したものと同様の方法によりレジスト185をアッシングした後、再度エッチングを行って、図13(f)に示すように、補助容量電極145の上方に第1層間絶縁層118の凹部160を形成するとともに、Si(n+)部133、134、333、および334に通じるコンタクトホールが形成される。このとき、追加絶縁層117はエッチングストッパとして用いられる。 Next, after ashing the resist 185 by the same method as that described with reference to FIG. 8D, etching is performed again, and as shown in FIG. A recess 160 is formed in one interlayer insulating layer 118, and contact holes that lead to Si (n +) portions 133, 134, 333, and 334 are formed. At this time, the additional insulating layer 117 is used as an etching stopper.
 次に、第1層間絶縁層118の上に金属層を積層し、フォトリソグラフィ法によってパターニングして、補助容量上部電極149、金属層147、ソース電極143および343、ならびにドレイン電極144および344を得る。その後、第1層間絶縁層118の上に第2層間絶縁層119を積層し、ドレイン電極144の上の第2層間絶縁層119にコンタクトホールを形成する。次に、第2層間絶縁層119の上にITOを積層し、フォトリソグラフィ法によりパターニングして画素電極120を形成し、図13(g)に示すアクティブマトリクス基板100が完成する。 Next, a metal layer is stacked on the first interlayer insulating layer 118 and patterned by photolithography to obtain the auxiliary capacitor upper electrode 149, the metal layer 147, the source electrodes 143 and 343, and the drain electrodes 144 and 344. . Thereafter, a second interlayer insulating layer 119 is stacked on the first interlayer insulating layer 118, and a contact hole is formed in the second interlayer insulating layer 119 on the drain electrode 144. Next, ITO is laminated on the second interlayer insulating layer 119 and patterned by photolithography to form the pixel electrode 120, whereby the active matrix substrate 100 shown in FIG. 13G is completed.
 実施形態5の製造方法によれば、追加絶縁層117が凹部160を形成する際のエッチングストッパの役割を果たすので、エッチング時間を厳密に管理することなく、複数の画素に対して均一な深さの凹部160を形成することができる。これにより、複数の画素間における輝度のばらつきが抑えられた、高品質の表示を提供することが可能となる。また、ハーフトーン露光を利用することにより、1枚のレジストで第1層間絶縁層118に凹部160およびコンタクトホールを形成することができるので、製造効率の向上および製造コストの低減が可能となる。 According to the manufacturing method of the fifth embodiment, since the additional insulating layer 117 serves as an etching stopper when forming the recess 160, a uniform depth is provided to a plurality of pixels without strictly controlling the etching time. The concave portion 160 can be formed. Thereby, it is possible to provide a high-quality display in which variation in luminance among a plurality of pixels is suppressed. Further, by using halftone exposure, the recess 160 and the contact hole can be formed in the first interlayer insulating layer 118 with one resist, so that the manufacturing efficiency can be improved and the manufacturing cost can be reduced.
 また、実施形態5の製造方法によれば、TFT部103およびドライバTFT部107の両方にN型TFTが形成される。ドライバTFT部107にP型TFTを形成する場合には、追加のフォトリソグラフィ工程および半導体層114に対するp型不純物のドープ工程が必要となるが、上記の製造方法によれば、そのような工程を追加する必要がなく、製造効率が向上する。 Further, according to the manufacturing method of Embodiment 5, N-type TFTs are formed in both the TFT portion 103 and the driver TFT portion 107. When a P-type TFT is formed in the driver TFT portion 107, an additional photolithography step and a p-type impurity doping step for the semiconductor layer 114 are required. According to the above manufacturing method, such a step is performed. There is no need to add, and manufacturing efficiency is improved.
 また、実施形態5の製造方法によれば、図12(b)~(d)を用いて説明したように、n型不純物191の2回のドープ工程の間に、レジスト185を残したまま補助容量電極145、ゲート電極140、およびゲート電極340に対してウェットエッチングが施される。n型不純物191の2回のドープ工程の間に、フォトリソグラフィ工程は1度しか必要とされない。したがって、TFT部103におけるチャネル部130、Si(n-)部131および132、Si(n+)部133および134、ならびにドライバTFT部107におけるチャネル部330、Si(n-)部331および332、Si(n+)部333および334を、少ない工程で製造効率よく完成させることができる。 Further, according to the manufacturing method of the fifth embodiment, as described with reference to FIGS. 12B to 12D, the auxiliary process is performed while the resist 185 is left between the two doping steps of the n-type impurity 191. Wet etching is performed on the capacitor electrode 145, the gate electrode 140, and the gate electrode 340. Between the two doping steps of the n-type impurity 191, a photolithography step is only required once. Therefore, the channel portion 130, Si (n−) portions 131 and 132, Si (n +) portions 133 and 134 in the TFT portion 103, and the channel portion 330, Si (n−) portions 331 and 332 in the driver TFT portion 107, Si The (n +) parts 333 and 334 can be completed with few steps and with high production efficiency.
 本発明は、液晶表示装置、有機EL表示装置、フレキシブルディスプレイなど、多種の表示装置に好適に用いられ得る。 The present invention can be suitably used for various display devices such as liquid crystal display devices, organic EL display devices, and flexible displays.
 100、200  アクティブマトリクス基板
 101、201  基板
 103、203  TFT部
 105、205  Cs部
 107  ドライバTFT部
 110  画素
 114、214  半導体層
 116、216  ゲート絶縁層
 117  追加絶縁層
 118、218  第1層間絶縁層
 119、219  第2層間絶縁層
 120、220  画素電極
 125  TFT
 130、230、330  チャネル部
 131、132、137、231、232、237  Si(n-)部
 133、134、233、234  Si(n+)部
 139、239  補助容量下部電極
 140、240、340  ゲート電極
 141  走査線
 142  補助容量線
 143、243  ソース電極
 144、244  ドレイン電極
 145、245  補助容量電極
 146、246  信号線
 147  金属層
 149  補助容量上部電極
 150  補助容量
 160、184  凹部
 170  対向電極
 180  液晶
 185  レジスト
 186  開口
 188  第1窓
 189  第2窓
 187  マスク
 190  p型不純物
 191  n型不純物
 500  対向基板
 510、520  偏光板
 530  バックライトユニット
 540  走査線駆動回路
 550  信号線駆動回路
 560  制御部
 1000  液晶表示装置
100, 200 Active matrix substrate 101, 201 Substrate 103, 203 TFT unit 105, 205 Cs unit 107 Driver TFT unit 110 Pixel 114, 214 Semiconductor layer 116, 216 Gate insulating layer 117 Additional insulating layer 118, 218 First interlayer insulating layer 119 219 Second interlayer insulating layer 120, 220 Pixel electrode 125 TFT
130, 230, 330 Channel portion 131, 132, 137, 231, 232, 237 Si (n−) portion 133, 134, 233, 234 Si (n +) portion 139, 239 Auxiliary capacitance lower electrode 140, 240, 340 Gate electrode 141 Scan line 142 Auxiliary capacitance line 143, 243 Source electrode 144, 244 Drain electrode 145, 245 Auxiliary capacitance electrode 146, 246 Signal line 147 Metal layer 149 Auxiliary capacitance upper electrode 150 Auxiliary capacitance 160, 184 Recess 170 Counter electrode 180 Liquid crystal 185 Resist 186 opening 188 first window 189 second window 187 mask 190 p-type impurity 191 n-type impurity 500 counter substrate 510 520 polarizing plate 530 backlight unit 540 scanning line driving circuit 550 signal line driving circuit 56 Control unit 1000 a liquid crystal display device

Claims (15)

  1.  半導体層と、
     前記半導体層の上に形成された絶縁層と、
     前記絶縁層の上に形成された補助容量電極と、
     前記補助容量電極の上に形成された第1層間絶縁層と、
     前記補助容量電極の上方の前記第1層間絶縁層に形成された凹部と、
     前記凹部の底面の上に形成された補助容量上部電極と、
     前記補助容量上部電極の上に形成された第2層間絶縁層と、
     前記第2層間絶縁層の上に形成された画素電極と、を備えたアクティブマトリクス基板。
    A semiconductor layer;
    An insulating layer formed on the semiconductor layer;
    An auxiliary capacitance electrode formed on the insulating layer;
    A first interlayer insulating layer formed on the auxiliary capacitance electrode;
    A recess formed in the first interlayer insulating layer above the auxiliary capacitance electrode;
    A storage capacitor upper electrode formed on the bottom surface of the recess;
    A second interlayer insulating layer formed on the auxiliary capacitor upper electrode;
    An active matrix substrate comprising: a pixel electrode formed on the second interlayer insulating layer.
  2.  前記補助容量電極の上面と前記補助容量上部電極との間に酸化シリコンからなる層が配置され、
     前記補助容量電極の上面から前記補助容量上部電極の下面までの距離が、10nm以上100nm以下である、請求項1に記載のアクティブマトリクス基板。
    A layer made of silicon oxide is disposed between the upper surface of the auxiliary capacitance electrode and the upper electrode of the auxiliary capacitance,
    2. The active matrix substrate according to claim 1, wherein a distance from an upper surface of the auxiliary capacitance electrode to a lower surface of the auxiliary capacitance upper electrode is 10 nm or more and 100 nm or less.
  3.  前記補助容量電極の上面と前記補助容量上部電極との間に窒化シリコンからなる層が配置され、
     前記補助容量電極の上面から前記補助容量上部電極の下面までの距離が、10nm以上200nm以下である、請求項1に記載のアクティブマトリクス基板。
    A layer made of silicon nitride is disposed between the upper surface of the auxiliary capacitance electrode and the auxiliary capacitance upper electrode,
    2. The active matrix substrate according to claim 1, wherein a distance from an upper surface of the auxiliary capacitance electrode to a lower surface of the auxiliary capacitance upper electrode is 10 nm or more and 200 nm or less.
  4.  前記補助容量上部電極と前記半導体層とが、前記絶縁層および前記第1層間絶縁層に形成されたコンタクトホールを介して電気的に接続されており、
     前記補助容量上部電極と前記画素電極とが、前記第2層間絶縁層に形成されたコンタクトホールを介して電気的に接続されている、請求項1から3のいずれかに記載のアクティブマトリクス基板。
    The auxiliary capacitor upper electrode and the semiconductor layer are electrically connected via a contact hole formed in the insulating layer and the first interlayer insulating layer,
    4. The active matrix substrate according to claim 1, wherein the auxiliary capacitor upper electrode and the pixel electrode are electrically connected through a contact hole formed in the second interlayer insulating layer. 5.
  5.  前記半導体層が、前記補助容量電極の下部に形成され、不純物をドープした半導体からなる補助容量下部電極を含む、請求項1から4のいずれかに記載のアクティブマトリクス基板。 The active matrix substrate according to any one of claims 1 to 4, wherein the semiconductor layer includes an auxiliary capacitance lower electrode made of a semiconductor doped with an impurity and formed under the auxiliary capacitance electrode.
  6.  前記補助容量電極の上に追加絶縁層が形成されており、
     前記補助容量電極の上面が前記追加絶縁層の下面と接し、前記補助容量上部電極の下面が前記追加絶縁層の上面と接している、請求項1に記載のアクティブマトリクス基板。
    An additional insulating layer is formed on the auxiliary capacitance electrode,
    2. The active matrix substrate according to claim 1, wherein an upper surface of the auxiliary capacitance electrode is in contact with a lower surface of the additional insulating layer, and a lower surface of the auxiliary capacitance upper electrode is in contact with an upper surface of the additional insulating layer.
  7.  前記追加絶縁層が窒化シリコンからなり、前記第1層間絶縁層が酸化シリコンからなる、請求項6に記載のアクティブマトリクス基板。 The active matrix substrate according to claim 6, wherein the additional insulating layer is made of silicon nitride, and the first interlayer insulating layer is made of silicon oxide.
  8.  半導体層を形成する工程と、
     前記半導体層の上に絶縁層を形成する工程と、
     前記絶縁層の上に補助容量電極を形成する工程と、
     前記補助容量電極の上に第1層間絶縁層を形成する工程と、
     前記補助容量電極の上方の前記第1層間絶縁層に凹部を形成する工程と、
     前記凹部の底面の上に補助容量上部電極を形成する工程と、
     前記補助容量上部電極の上に第2層間絶縁層を形成する工程と、
     前記第2層間絶縁層の上に画素電極を形成する工程と、を含むアクティブマトリクス基板の製造方法。
    Forming a semiconductor layer;
    Forming an insulating layer on the semiconductor layer;
    Forming an auxiliary capacitance electrode on the insulating layer;
    Forming a first interlayer insulating layer on the auxiliary capacitance electrode;
    Forming a recess in the first interlayer insulating layer above the auxiliary capacitance electrode;
    Forming a storage capacitor upper electrode on the bottom surface of the recess;
    Forming a second interlayer insulating layer on the auxiliary capacitor upper electrode;
    Forming a pixel electrode on the second interlayer insulating layer. A method of manufacturing an active matrix substrate.
  9.  前記補助容量電極の上面と前記補助容量上部電極との間に酸化シリコンからなる層が形成され、
     前記補助容量電極の上面から前記凹部の底面までの距離が、10nm以上100nm以下となるように、前記第1層間絶縁層に前記凹部が形成される、請求項8に記載のアクティブマトリクス基板の製造方法。
    A layer made of silicon oxide is formed between the upper surface of the auxiliary capacitance electrode and the auxiliary capacitance upper electrode,
    9. The manufacturing of the active matrix substrate according to claim 8, wherein the recess is formed in the first interlayer insulating layer so that a distance from an upper surface of the auxiliary capacitance electrode to a bottom surface of the recess is not less than 10 nm and not more than 100 nm. Method.
  10.  前記補助容量電極の上面と前記補助容量上部電極との間に窒化シリコンからなる層が形成され、
     前記補助容量電極の上面から前記凹部の底面までの距離が、10nm以上200nm以下となるように、前記第1層間絶縁層に前記凹部が形成される、請求項8に記載のアクティブマトリクス基板の製造方法。
    A layer made of silicon nitride is formed between the upper surface of the auxiliary capacitance electrode and the auxiliary capacitance upper electrode,
    9. The manufacturing of the active matrix substrate according to claim 8, wherein the recess is formed in the first interlayer insulating layer so that a distance from an upper surface of the auxiliary capacitance electrode to a bottom surface of the recess is 10 nm or more and 200 nm or less. Method.
  11.  前記凹部を形成する工程は、
     前記第1層間絶縁層の上にレジストを形成する工程と、
     前記補助容量電極の上方に前記レジストの開口を形成する工程と、
     前記レジストの前記開口の下の前記第1層間絶縁層を選択的にエッチングする工程と、を含む、請求項8から10のいずれかに記載のアクティブマトリクス基板の製造方法。
    The step of forming the recess includes
    Forming a resist on the first interlayer insulating layer;
    Forming the resist opening above the auxiliary capacitance electrode;
    The method for manufacturing an active matrix substrate according to claim 8, further comprising: selectively etching the first interlayer insulating layer under the opening of the resist.
  12.  前記凹部を形成する工程は、
     前記第1層間絶縁層の上にレジストを形成する工程と、
     第1窓と、前記第1窓よりも光透過率の高い複数の第2窓とを有するマスクを前記レジストの上方に配置する工程と、
     前記第1窓および前記複数の第2窓を介して前記レジストに光を照射する工程と、
     光を照射された前記レジストを除去して、前記レジストに窪みと複数の開口とを形成する工程と、
     前記レジストを介して前記第1層間絶縁層を選択的にエッチングして、前記補助容量電極の上に前記第1層間絶縁層の前記凹部を形成するとともに、前記レジストの前記開口の下に前記半導体層に通じるコンタクトホールを形成する工程と、を含む、請求項8から10のいずれかに記載のアクティブマトリクス基板の製造方法。
    The step of forming the recess includes
    Forming a resist on the first interlayer insulating layer;
    Disposing a mask having a first window and a plurality of second windows having a higher light transmittance than the first window above the resist;
    Irradiating the resist with light through the first window and the plurality of second windows;
    Removing the resist irradiated with light, forming a recess and a plurality of openings in the resist;
    The first interlayer insulating layer is selectively etched through the resist to form the concave portion of the first interlayer insulating layer on the auxiliary capacitance electrode, and the semiconductor under the opening of the resist The method for manufacturing an active matrix substrate according to claim 8, further comprising: forming a contact hole that communicates with the layer.
  13.  前記半導体層に不純物をドープする工程を含み、
     前記補助容量電極を形成する工程において、前記補助容量電極が、前記不純物をドープされた前記半導体層の上に形成される、請求項8から12のいずれかに記載のアクティブマトリクス基板の製造方法。
    Doping the semiconductor layer with impurities,
    The method of manufacturing an active matrix substrate according to claim 8, wherein in the step of forming the auxiliary capacitance electrode, the auxiliary capacitance electrode is formed on the semiconductor layer doped with the impurity.
  14.  前記補助容量電極の上に追加絶縁層を形成する工程を含み、
     前記第1層間絶縁層に前記凹部を形成する工程において、前記追加絶縁層をエッチングストッパとして用いて、前記凹部の底面に前記追加絶縁層が露出するように前記第1層間絶縁層がエッチングされる、請求項8に記載のアクティブマトリクス基板の製造方法。
    Forming an additional insulating layer on the auxiliary capacitance electrode;
    In the step of forming the recess in the first interlayer insulating layer, the first interlayer insulating layer is etched using the additional insulating layer as an etching stopper so that the additional insulating layer is exposed on the bottom surface of the recess. A method for manufacturing an active matrix substrate according to claim 8.
  15.  前記追加絶縁層が窒化シリコンから形成され、前記第1層間絶縁層が酸化シリコンから形成される、請求項14に記載のアクティブマトリクス基板の製造方法。 15. The method of manufacturing an active matrix substrate according to claim 14, wherein the additional insulating layer is formed from silicon nitride, and the first interlayer insulating layer is formed from silicon oxide.
PCT/JP2012/056411 2011-03-15 2012-03-13 Active matrix substrate and method for manufacturing active matrix substrate WO2012124690A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013504739A JPWO2012124690A1 (en) 2011-03-15 2012-03-13 Active matrix substrate and method of manufacturing active matrix substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011056799 2011-03-15
JP2011-056799 2011-03-15

Publications (1)

Publication Number Publication Date
WO2012124690A1 true WO2012124690A1 (en) 2012-09-20

Family

ID=46830757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056411 WO2012124690A1 (en) 2011-03-15 2012-03-13 Active matrix substrate and method for manufacturing active matrix substrate

Country Status (2)

Country Link
JP (1) JPWO2012124690A1 (en)
WO (1) WO2012124690A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073037A (en) * 2011-09-28 2013-04-22 Seiko Epson Corp Electro-optic device, manufacturing method thereof, and electronic apparatus
CN103928462A (en) * 2014-02-26 2014-07-16 友达光电股份有限公司 Active substrate and display panel
JP2016014852A (en) * 2014-07-03 2016-01-28 上海和輝光電有限公司Everdisplay Optronics (Shanghai) Limited Polycrystal silicon display substrate and method for manufacturing the same
JP2019165082A (en) * 2018-03-19 2019-09-26 株式会社リコー Display element and manufacturing method therefor, display element, and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08255875A (en) * 1995-01-17 1996-10-01 Semiconductor Energy Lab Co Ltd Fabrication of semiconductor integrated circuit
JP2000131711A (en) * 1998-10-23 2000-05-12 Toshiba Corp Flat display device and its manufacture
JP2002318554A (en) * 2001-04-24 2002-10-31 Hitachi Ltd Image display device and manufacturing method therefor
JP2005274984A (en) * 2004-03-25 2005-10-06 Hitachi Displays Ltd Display device and display device manufacturing method
JP2008275937A (en) * 2007-04-27 2008-11-13 Mitsubishi Electric Corp Thin film transistor array substrate, manufacturing method thereof, and display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08255875A (en) * 1995-01-17 1996-10-01 Semiconductor Energy Lab Co Ltd Fabrication of semiconductor integrated circuit
JP2000131711A (en) * 1998-10-23 2000-05-12 Toshiba Corp Flat display device and its manufacture
JP2002318554A (en) * 2001-04-24 2002-10-31 Hitachi Ltd Image display device and manufacturing method therefor
JP2005274984A (en) * 2004-03-25 2005-10-06 Hitachi Displays Ltd Display device and display device manufacturing method
JP2008275937A (en) * 2007-04-27 2008-11-13 Mitsubishi Electric Corp Thin film transistor array substrate, manufacturing method thereof, and display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073037A (en) * 2011-09-28 2013-04-22 Seiko Epson Corp Electro-optic device, manufacturing method thereof, and electronic apparatus
CN103928462A (en) * 2014-02-26 2014-07-16 友达光电股份有限公司 Active substrate and display panel
JP2016014852A (en) * 2014-07-03 2016-01-28 上海和輝光電有限公司Everdisplay Optronics (Shanghai) Limited Polycrystal silicon display substrate and method for manufacturing the same
JP2019165082A (en) * 2018-03-19 2019-09-26 株式会社リコー Display element and manufacturing method therefor, display element, and system
JP7139636B2 (en) 2018-03-19 2022-09-21 株式会社リコー DISPLAY ELEMENT AND MANUFACTURING METHOD THEREOF, DISPLAY DEVICE, AND SYSTEM

Also Published As

Publication number Publication date
JPWO2012124690A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
JP5044273B2 (en) Thin film transistor array substrate, manufacturing method thereof, and display device
US8957418B2 (en) Semiconductor device and display apparatus
TWI418909B (en) Flat panel display device and method of manufacturing the same
US6356318B1 (en) Active-matrix liquid crystal display having storage capacitors of area smaller than that of pixel electrodes
JP5384088B2 (en) Display device
KR101855259B1 (en) Organic Light Emitting Diode Display Device And Manufacturing Method Thereof
JP2010044348A (en) Liquid crystal display and method of driving the same
JP5253686B2 (en) Active matrix substrate, display device, and method of manufacturing active matrix substrate
KR20160056487A (en) Large Area Transparent Organic Light Emitting Diode Display
US8111340B2 (en) Display apparatus
JP2006258923A (en) Liquid crystal display device and its manufacturing method
WO2012124690A1 (en) Active matrix substrate and method for manufacturing active matrix substrate
JP2006317867A (en) Thin film transistor board and liquid crystal display panel
KR20140013166A (en) Organic light emitting diode display and method of manufacturing the same
JP5241966B2 (en) Semiconductor device, TFT substrate, and semiconductor device and TFT substrate manufacturing method
WO2010103676A1 (en) Active matrix substrate, display panel, display device, and electronic device
TWI553835B (en) Active substrate and display panel
TW200530664A (en) Semiconductor device, semiconductor device array substrate and method of manufacturing the same
JP6436333B2 (en) Display device
CN109496281B (en) Display device with touch panel
KR100605437B1 (en) Array substrate and flat panel display
JP5498892B2 (en) THIN FILM TRANSISTOR, DISPLAY DEVICE EQUIPPED WITH THE SAME, AND METHOD FOR PRODUCING THEM
JP5090693B2 (en) Display device and manufacturing method thereof
JP2008218626A (en) Tft array substrate and manufacturing method therefor
JP2010078632A (en) Display and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12758223

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013504739

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12758223

Country of ref document: EP

Kind code of ref document: A1