WO2012124605A1 - Ni3Si系金属間化合物を含有する水素製造用触媒、当該触媒を活性化させる方法、当該触媒を用いた水素製造方法及び装置 - Google Patents

Ni3Si系金属間化合物を含有する水素製造用触媒、当該触媒を活性化させる方法、当該触媒を用いた水素製造方法及び装置 Download PDF

Info

Publication number
WO2012124605A1
WO2012124605A1 PCT/JP2012/055984 JP2012055984W WO2012124605A1 WO 2012124605 A1 WO2012124605 A1 WO 2012124605A1 JP 2012055984 W JP2012055984 W JP 2012055984W WO 2012124605 A1 WO2012124605 A1 WO 2012124605A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
methanol
intermetallic compound
hydrogen production
reaction
Prior art date
Application number
PCT/JP2012/055984
Other languages
English (en)
French (fr)
Inventor
泰幸 金野
隆幸 高杉
Original Assignee
公立大学法人大阪府立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪府立大学 filed Critical 公立大学法人大阪府立大学
Priority to CA2828585A priority Critical patent/CA2828585C/en
Priority to JP2013504694A priority patent/JP5900894B2/ja
Priority to CN201280013307.4A priority patent/CN103459019B/zh
Priority to KR1020137025363A priority patent/KR20140046409A/ko
Priority to EP12757826.8A priority patent/EP2687289A4/en
Priority to US14/001,696 priority patent/US9833773B2/en
Publication of WO2012124605A1 publication Critical patent/WO2012124605A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0081Preparation by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a catalyst for hydrogen production containing a Ni 3 Si intermetallic compound containing a Ni 3 Si intermetallic compound, a method for activating this catalyst, and a hydrogen production method and apparatus using this catalyst.
  • Hydrogen is attracting attention as a fuel for fuel cells.
  • hydrocarbons C n H m
  • methane hydrocarbons
  • the former method for producing hydrogen from methanol mainly uses a methanol decomposition reaction represented by formula (1) and a methanol steam reforming reaction represented by formula (2).
  • a methanol decomposition reaction represented by formula (1) a methanol steam reforming reaction represented by formula (2).
  • CH 3 OH ⁇ 2H 2 + CO (1) CH 3 OH + H 2 O ⁇ 3H 2 + CO 2 Formula (2)
  • the latter method for producing hydrogen from hydrocarbons utilizes a steam reforming reaction of hydrocarbons.
  • This steam reforming reaction of hydrocarbon shown in Formula (3) is a reaction between hydrocarbon and steam.
  • a catalyst in which a metal powder such as platinum (Pt), copper (Cu), nickel (Ni) is supported on a support such as alumina is used.
  • a metal powder such as platinum (Pt), copper (Cu), nickel (Ni) is supported on a support such as alumina.
  • the alumina carrier has a low thermal conductivity, so the hydrogen production apparatus using this carrier also has a low load response. For this reason, a catalyst having good heat conductivity and heat resistance is required.
  • Ni 3 Al which is an intermetallic compound, exhibits catalytic activity for the decomposition reaction of methanol, and based on this finding, a hydrogen catalyst comprising Ni 3 Al foil has been proposed.
  • a hydrogen catalyst comprising Ni 3 Al foil has been proposed.
  • Patent Document 1 a Ni 3 (Si, Ti) intermetallic compound having heat resistant and high strength characteristics exhibits a catalytic function, and the intermetallic compound exhibits high conversion efficiency to hydrogen.
  • the present invention has been made in view of such circumstances, and provides a catalyst exhibiting high thermal load responsiveness and high activity for methanol decomposition reaction or hydrocarbon steam reforming reaction.
  • Ni 3 Si-based intermetallic compound (Ni 3 Si intermetallic also include compounds) for hydrogen production catalyst containing is provided.
  • the present inventors have found that the Ni 3 Si-based intermetallic compound catalyzes not only the decomposition reaction of methanol but also the steam reforming reaction of hydrocarbons, particularly in the decomposition reaction of methanol.
  • the present inventors have found that the Ni 3 Si intermetallic compound having the above composition exhibits high catalytic activity. Further, in the methanol decomposition reaction, when the Ni 3 Si-based intermetallic compound comes into contact with gaseous methanol in a high temperature environment, the activity for hydrocarbon steam reforming reaction is enhanced, and in the hydrocarbon steam reforming reaction, It has been found that it exhibits high catalytic activity.
  • the catalyst of the present invention exhibits a catalytic action for methanol decomposition reaction or hydrocarbon steam reforming reaction.
  • the Ni 3 Si intermetallic compound constituting the hydrogen production catalyst of the present invention has a higher thermal conductivity than alumina used as a catalyst support used when producing hydrogen gas from hydrocarbon gas. Therefore, the hydrogen production catalyst of the present invention has fast startability and excellent load responsiveness.
  • the Ni 3 Si intermetallic compound constituting the hydrogen production catalyst of the present invention has high strength as an alloy, and its shape can be freely designed by metal working. Accordingly, the hydrogen production catalyst of the present invention can have various shapes depending on the reaction apparatus.
  • Ni 3 Si-based intermetallic compound constituting the hydrogen production catalyst of the present invention has catalytic activity in both methanol decomposition reaction and hydrocarbon steam reforming reaction, and can be used for both. .
  • “to” includes end points.
  • FIG. 2 is a Ni—Si binary phase diagram for explaining a Ni 3 Si intermetallic compound constituting the catalyst of the present invention. It is a conceptual diagram for demonstrating the structure of the hydrogen production apparatus which concerns on one Embodiment of this invention. It is a conceptual diagram for demonstrating the structure of the hydrogen production apparatus which concerns on other embodiment of this invention. It is a conceptual diagram showing the shape of the catalyst of Ni 3 Si-based intermetallic compounds produced in effect verification experiment 1. (1) shows the shape of the produced catalyst, and (2) shows the arrangement of the catalyst in the reaction tube (the arrangement is random). It is a block diagram which shows the fixed bed flow-type catalyst reaction apparatus used by the methanol decomposition
  • FIG. 3 is a schematic cross-sectional view of a catalyst structure used in effect verification experiment 2.
  • FIG. 4 is an exploded view of a laminated unit included in a catalyst structure used in effect demonstration experiment 2.
  • the hydrogen production catalyst according to the present invention contains a Ni 3 Si intermetallic compound.
  • the Ni 3 Si intermetallic compound constituting this catalyst will be described from the viewpoint of composition.
  • the Ni 3 Si intermetallic compound is preferably Si: 10.0 to 28.0 atomic%, the balance being Ni and inevitable.
  • B 0 to 500 ppm by weight, more preferably Si: 22.0 to 24.0 atomic%, with the balance being Ni and unavoidable impurities.
  • B 25 to 500 ppm by weight.
  • Ni 3 Si intermetallic compound constituting the catalyst will be described from the viewpoint of the structure.
  • the Ni 3 Si intermetallic compound includes at least a ⁇ 1 phase.
  • FIG. 1 is a Ni—Si binary phase diagram for illustrating the Ni 3 Si intermetallic compound constituting the catalyst of the present invention.
  • beta 1 is Ni 3 Si cubic (L1 2 crystal structure)
  • beta 2 is a monoclinic Ni 3 Si ( ⁇ 3 has the crystal structure is unknown
  • Ni 3 Si is the To transform itself).
  • is a hexagonal crystal of Ni 5 Si 2 .
  • the Ni 3 Si intermetallic compound according to the catalyst of the present invention is an intermetallic compound containing Ni 3 Si ( ⁇ 1 phase) shown in FIG. 1 as an active ingredient. Therefore, in addition to Ni 3 Si ( ⁇ 1 phase), an intermetallic compound containing another phase may be used.
  • an intermetallic compound in which a Ni solid solution phase and Ni 3 Si ( ⁇ 1 phase) coexist may be used, and the Ni 3 Si-based intermetallic compound may be Ni 3 Si ( ⁇ 1 phase) and Ni 5. It may be an intermetallic compound in which Si 3 ( ⁇ phase) coexists.
  • the Ni 3 Si-based intermetallic compound may be an intermetallic compound substantially composed of only Ni 3 Si ( ⁇ 1 phase).
  • Ni 3 Si intermetallic compound will be described in terms of both composition and structure.
  • the Ni 3 Si intermetallic compound is composed of (1) Ni 3 Si ( ⁇ 1 phase), (2) Ni 3 Si ( ⁇ 1 phase) and Ni solid solution phase, (3) Ni 3 Si ( ⁇ 1 phase) and Ni 5 Si 3 ( ⁇ phase) (ie, (1) to (3 Ni 3 Si-based intermetallic compound is composed of Si: 10.0 to 28.0 atomic%, the balance is composed of Ni and inevitable impurities. B: 0 to 500 ppm by weight.
  • Ni 3 Si-based intermetallic compound is composed of Si: 10.0 to 28.0 atomic%, the balance is composed of Ni and inevitable impurities.
  • B 0 to 500 ppm by weight.
  • Ni 3 Si-based intermetallic compound when the Ni 3 Si-based intermetallic compound is substantially composed only of Ni 3 Si ( ⁇ 1 phase), the Ni 3 Si-based intermetallic compound has Si: 22.0 to The content of B is 0 to 500 ppm by weight with respect to the total weight of the composition composed of 24.0 at%, the balance being Ni and inevitable impurities. Also, when described elements Ni 3 Si-based intermetallic compound constituting the catalyst contains, as it follows.
  • the Si content is 10.0 to 28.0 atomic%, preferably 22.0 to 24.0 atomic%.
  • the Ni 3 Si-based intermetallic compound contains the active ingredient Ni 3 Si ( ⁇ 1 phase) or is substantially composed only of Ni 3 Si ( ⁇ 1 phase).
  • the specific content of Si is, for example, 10.0, 10.5, 11.0, 12.0, 14.0, 16.0, 18.0, 20.0, 21.0, 21.5. 22.0, 22.5, 23.0, 23.5, 24.0, 24.5, 25.0, 26.0, 27.0, 27.5 or 28.0 atomic%.
  • the range of the Si content may be between any two of the numerical values exemplified here.
  • the Ni content is, for example, 72.0 to 90.0 atomic%, preferably 76.0 to 78.0 atomic%.
  • Specific contents of Ni are, for example, 72.0, 72.5, 73.0, 74.0, 75.0, 75.5, 76.0, 76.5, 77.0, 77.5. 78.0, 78.5, 79.0, 80.0, 82.0, 84.0, 86.0, 88.0, 89.0, 89.5 or 90.0 atomic%.
  • the range of the Ni content may be between any two of the numerical values exemplified here.
  • the Ni content shown here is the balance, and this content may be the content of Ni and inevitable impurities.
  • the content of each of the above elements is appropriately adjusted so that the total content of Si and Ni is 100 atomic%.
  • the content of B is 0 to 500 ppm by weight, for example, 25 to 100 ppm by weight.
  • the specific content of B is, for example, 25, 40, 50, 60, 75, 100, 150, 200, 300, 400, or 500 ppm by weight.
  • the range of the B content may be between any two of the numerical values exemplified here.
  • the catalyst composed of the Ni 3 Si-based intermetallic compound will be described in terms of its form and mode.
  • the form contained in the carrier for example, the Ni 3 Si-based intermetallic compound powder or granular material is another substance. Distributed form).
  • the catalyst of the present invention is preferably in the form of only the Ni 3 Si intermetallic compound. For example, an ingot in which the metal having the composition described above is dissolved and solidified is cut and polished, and a catalyst in a plate-like body or a cube made only of the Ni 3 Si intermetallic compound may be used.
  • the prepared sample of ingot is cut and processed into a desired shape. For example, it is processed into a plate shape.
  • the resulting Ni 3 Si-based intermetallic compounds an etching treatment with at least one of acid and alkali.
  • the Ni 3 Si-based intermetallic compound is etched with at least one of acid and alkali, the surface oxide film and the like can be removed, and the surface shape, surface area, and composition are controlled by dissolving Ni and Si. .
  • the Ni 3 Si intermetallic compound etched with at least one of acid and alkali exhibits a high catalytic action, and the catalytic performance of the Ni 3 Si intermetallic compound can be activated by this treatment.
  • this etching process is at least one of an acid and an alkali
  • the etching process may be performed with either an acid or an alkali
  • the etching process may be performed with an acid
  • the etching process may be performed with an alkali.
  • etching is performed with an HCl solution and an HNO 3 solution, or etching is performed with an NaOH solution.
  • etching may be performed with a solution containing HCl and HNO 3 and etching with a NaOH solution.
  • the etching process of a solution containing HCl and HNO 3 has a processing temperature of about 20 ° C. and a processing time (etching time) of 1 hour or less.
  • the etching treatment of the NaOH solution is, for example, a treatment temperature of 10 ° C. to 90 ° C. and a treatment time (etching time) of 1 hour or more.
  • Ni 3 Si-based intermetallic compound prior to use as a catalyst, if necessary, may be the Ni 3 Si-based intermetallic compound by contacting gaseous methanol by a decomposition reaction of methanol.
  • the Ni 3 Si intermetallic compound according to the present invention exhibits a catalytic action for methanol decomposition reaction and hydrocarbon steam reforming reaction as it is, and particularly in the methanol decomposition reaction, the Ni 3 Si intermetallic compound having the above composition Shows catalytic action in a short time and also shows high catalytic activity.
  • the Ni 3 Si intermetallic compound constituting the catalyst of the present invention is brought into contact with gaseous methanol at a high temperature (eg, 580 ° C.), for example, the activity of the hydrocarbon for the steam reforming reaction is enhanced, In the steam reforming reaction of hydrocarbons, a catalytic action is exhibited in a short time and a high catalytic efficiency is exhibited.
  • the above-mentioned treatment is preferably performed on the catalyst for the steam reforming reaction of hydrocarbon (for example, methane).
  • the temperature for the hydrogen production treatment is preferably 520 ° C. to 650 ° C., and the treatment time is 0.5 to 48 hours. (580 ° C is an example and is not limited to this temperature)
  • the catalyst for hydrogen production can be produced by the above steps.
  • the hydrogen production catalyst according to the present invention is used for production of hydrogen as follows.
  • the production of hydrogen is based on a decomposition reaction of methanol or a steam reforming reaction of hydrocarbon.
  • the decomposition reaction of methanol is a reaction of CH 3 OH ⁇ 2H 2 + CO shown in the above formula (1)
  • the steam reforming reaction of hydrocarbon is C n H m + nH 2 O shown in the above formula (3).
  • ⁇ nCO + (n + m / 2) H 2 reaction for example, the steam reforming reaction of methane is CH 4 + H 2 O ⁇ CO + 3H 2 .
  • Hydrogen production by the decomposition reaction of methanol is performed, for example, by heating the above catalyst to a high temperature of 580 ° C. and contacting the heated catalyst with gaseous methanol. Thereby, the decomposition reaction of methanol occurs and hydrogen can be produced from methanol.
  • the heating temperature of the catalyst in the methanol decomposition reaction is preferably 520 ° C. to 650 ° C. (580 ° C. is an example). Specifically, it is 520, 540, 560, 580, 600, 620, 640, 650 degreeC, for example.
  • gaseous methanol can be obtained by heating liquid methanol.
  • the flow rate of liquid methanol is, for example, 0.01 to 1 mL / min for a 5 mm square cubic catalyst.
  • gaseous methanol is preferably brought into contact with the catalyst together with a carrier gas.
  • carrier gas is not specifically limited, Preferably it is inert gas, such as nitrogen.
  • the gas obtained by the decomposition reaction is a mixed gas containing at least hydrogen and carbon monoxide.
  • the method for separating hydrogen from the mixed gas is not particularly limited. In one example, hydrogen can be separated by passing the mixed gas through a hydrogen permeation filter.
  • Hydrocarbon production by a steam reforming reaction of hydrocarbons is performed by heating the above catalyst to a temperature of 700 ° C. or higher and contacting the heated catalyst with a gas comprising hydrocarbons and steam.
  • the steam reforming reaction of the hydrocarbon occurs, and hydrogen can be produced from the hydrocarbon.
  • the hydrocarbon is, for example, methane.
  • the reaction to which this catalyst is applied is a steam reforming reaction of methane.
  • the hydrocarbon may be ethane, propane, or butane.
  • the natural gas which has these gases as a main component may be sufficient.
  • the catalyst used for the hydrocarbon steam reforming reaction contains a Ni 3 Si-based intermetallic compound. Etching is performed with at least one of an acid and an alkali as necessary, but preferably a hydrogen production process is performed in which the Ni 3 Si-based intermetallic compound is brought into contact with gaseous methanol. (For example, the Ni 3 Si intermetallic compound is brought into contact with gaseous methanol at a high temperature of 580 ° C.) Since the catalyst activity is high, the catalyst activity is higher. A lot of hydrogen can be produced.
  • the heating temperature of the catalyst in the hydrocarbon steam reforming reaction is 700 ° C. or more as described above, and preferably 800 to 900 ° C. Specifically, this temperature is 800,810,820,830,840,850,860,870,880,890 or 900 degreeC, for example. This temperature may be within a range between any two of the numerical values exemplified herein. As shown in FIG. 1, since the active ingredient Ni 3 Si ( ⁇ 1 phase) is present at about 1040 ° C. or lower, the upper limit temperature is about 1040 ° C.
  • the space velocity SV space velocity is, for example, 500 h ⁇ 1 .
  • hydrogen is obtained by the steam reforming reaction of methane such as CH 4 + H 2 O ⁇ CO + 3H 2. It is a mixed gas containing carbon. Therefore, in the case of the hydrocarbon steam reforming reaction, it is preferable to separate hydrogen from the mixed gas using a hydrogen permeation filter.
  • FIG. 2 is a conceptual diagram for explaining a configuration of a hydrogen production apparatus according to an embodiment of the present invention
  • FIG. 3 is a diagram for explaining a configuration of a hydrogen production apparatus according to another embodiment of the present invention. It is a conceptual diagram.
  • the hydrogen production apparatus according to the present embodiment includes the catalyst 1 for the Ni 3 Si intermetallic compound described above (the catalyst for hydrogen production (Ni 3 Si intermetallic compound) 1), and the catalyst. 1 is provided with a heating unit 3 for heating 1 and a methanol supply unit 5 for supplying gaseous methanol to the catalyst 1.
  • the structure of the heating part 3 is not specifically limited, For example, an aluminum block furnace can be used for the heating part 3.
  • the heating unit 3 is configured to be able to heat the catalyst 1 to 580 ° C., for example.
  • the configuration of the methanol supply unit 5 is not particularly limited as long as it can supply gaseous methanol to the catalyst 1.
  • the methanol supply unit 5 includes a methanol storage unit 7 that stores liquid methanol. And a pump 9 for sending liquid methanol from the methanol storage section 7 and an evaporator 11 for evaporating the liquid methanol to form gaseous methanol.
  • the evaporator 11 may be connected to a carrier gas supply unit 13 that supplies a carrier gas that transports the gasified methanol toward the catalyst 1. Further, a hydrogen permeation filter 15 may be disposed downstream of the catalyst 1. In this case, hydrogen can be separated by passing this filter through a mixed gas produced by decomposing methanol.
  • a reaction tube for example, a stainless tube or a quartz tube.
  • the hydrogen production apparatus includes a Ni 1 Si intermetallic compound catalyst 1 (hydrogen production catalyst (Ni 3 Si intermetallic compound) 1) described above.
  • a heating unit 3 that heats the catalyst 1
  • a water vapor supply unit 6 that supplies water vapor to the catalyst 1
  • a methane gas supply unit 14 that supplies methane gas to the catalyst 1.
  • the configuration of the water vapor supply unit 6 is not particularly limited as long as it can supply water vapor.
  • the water vapor supply unit 6 includes a water supply unit 8 for supplying water and water supplied. And an evaporator 11 that generates water vapor by evaporating the water vapor.
  • the steam supply unit 6 is connected to a reaction tube (for example, a stainless tube or a quartz tube) in which the hydrogen production catalyst 1 is accommodated together with the methane gas supply unit 14.
  • This apparatus has the same configuration as the apparatus shown in FIG. By using this apparatus, the method for producing hydrogen by the above-described steam reforming reaction of hydrocarbons (in this embodiment, the steam reforming reaction of methane) can be easily carried out.
  • the steam reforming reaction of hydrocarbon differs in the reaction temperature from the chemical reaction of the apparatus of FIG. 2, it is good to comprise a heating part so that it can heat to 700 degreeC or more, for example.
  • Ni and Si ingots (purity 99.9% by weight) and B were weighed so as to have the composition shown in Table 1, and this ingot was dissolved by a vacuum induction melting (VIM) method to obtain about 8 kg. A sample made of an ingot was produced.
  • VIM vacuum induction melting
  • the content is displayed in both atomic% and weight% for the same example.
  • the content of B is a weight ratio (wt.%) To the total weight of the alloy having a composition of Ni and Si having a total composition of 100 atomic%.
  • FIG. 5 is a configuration diagram showing the fixed bed flow type catalytic reaction apparatus used in the methanol decomposition test.
  • N 2 gas is in the block furnace via MFC (mass flow rate controller), and methanol (indicated as MeOH in the methanol container in FIG. 5) is in the block furnace via the liquid feed pump. It is supplied to the stainless steel tube.
  • the stainless steel pipe is provided with a Raschig ring part (MeOH vaporization part) and an Ni 3 Si cubic sample (see FIG. 4 (2)), and methanol is vaporized in the Raschig ring part.
  • the vaporized methanol is decomposed by touching a Ni 3 Si cubic sample, and this apparatus is configured such that gas generated by the decomposition is discharged through a cooling unit.
  • the diameter of the stainless steel tube was 34 mm, and a Ni 3 Si cubic sample was filled to a height of 20 mm (referred to as a packed bed, and the filling rate of the packed bed was 0.56).
  • the total gas flow rate was adjusted with a basic flow rate of 690 ml / min (when the total gas flow rate was 690 ml / min, the flow rate per surface area of the catalyst was 337 cm 3 ⁇ h ⁇ 1 ⁇ cm ⁇ 2 , and the space velocity (SV ) Is about 2270 h ⁇ 1 .)
  • the gas generated by the decomposition is once cooled in the cooling section, and the easily condensed components in the gas are stored in the trap.
  • the condensate was collected every 1 hour or 2 hours, and the methanol concentration was measured by gas chromatography (GC) to obtain a methanol recovery amount (liquid analysis).
  • GC gas chromatography
  • each component concentration of H 2 , CO, CO 2 , CH 4 and methanol was measured, and the selectivity of each component was calculated. (Gas analysis).
  • the amount of methanol was calculated by adding the results of liquid analysis and gas analysis.
  • FIG. 5 shows the apparatus configuration in the case of the methanol decomposition test
  • the apparatus includes a methanol storage container, a liquid feed pump, a Raschig ring part (MeOH vaporization part), and an N 2 gas (carrier gas) supply part.
  • a steam supply unit and a methane gas supply unit are connected to a stainless steel tube, and steam and methane are supplied to a catalyst (Ni 3 Si cubic sample shown in FIG. 5) in the stainless steel tube.
  • a catalyst Ni 3 Si cubic sample shown in FIG. 5
  • P is a pressure gauge
  • MFC is a mass flow controller
  • TC is a thermocouple
  • GC-TCD gas chromatography
  • the etched Ni 3 Si cubic sample was placed in a stainless steel tube and subjected to reduction treatment at 600 ° C. for 1 hour (after flowing H 2 and N 2 and the H 2 concentration was 85 vol%), and then methane.
  • a steam reforming test was conducted. The conditions for the methane steam reforming test were as follows.
  • SV and temperature 800 ° C.
  • the reaction time is from 0 to 4 hours and 1500h -1, until later 6 hours from 4 hours 800 ° C. and 500h -1, 700 ° C. and 500h until later 7 hours from 6 hours -1, it was 600 ° C. and 500h -1, 8 hours later than 7 hours.
  • SV and temperature were adjusted with progress of time.
  • FIG. 6 is a graph showing the relationship between the reaction time and the methane conversion rate, showing the results of a methane steam reforming test.
  • the dotted line area is the measurement point where SV and temperature are 800 ° C. and 1500 h ⁇ 1
  • the alternate long and short dash line area is the measurement point where SV and temperature are 800 ° C. and 500 h ⁇ 1
  • the dashed line area is The SV and temperature are 700 ° C. and 500 h ⁇ 1 at the measurement points
  • the two-dot chain region indicates the SV and the temperature is 600 ° C. and 500 h ⁇ 1 .
  • Methanol decomposition test test using catalyst after etching treatment
  • a methanol decomposition test was also performed using the produced Ni 3 Si cubic sample.
  • Methanolysis test like the steam reforming test of methane, an etching processing on the Ni 3 Si cubic samples was carried out using Ni 3 Si cubic samples etching process has been performed. The conditions for the etching treatment were the same as those described in the methane steam reforming test.
  • the etched Ni 3 Si cubic sample was placed in a stainless steel tube and heated to 600 ° C., and in this state, the hydrogen concentration was 85 vol. % For 1 hour to reduce the surface of the Ni 3 Si cubic sample.
  • the supply of hydrogen is stopped, the temperature is adjusted so that the temperature of the Ni 3 Si cubic sample at the upper end in the stainless steel tube is 580 ° C., and then only nitrogen is flowed at a flow rate of 30 ml / min for 30 minutes.
  • the hydrogen inside the apparatus was replaced with nitrogen.
  • FIG. 7 is a graph showing the relationship between the reaction time, methanol conversion rate, and H 2 / CO ratio, showing the results of the methanol decomposition test.
  • the methanol conversion is indicated by rhombuses (“(1) MeOH conversion” in FIG. 7), and the H 2 / CO ratio is indicated by squares (“(2) H 2 / CO” in FIG. 7). ing. As shown by the arrows in FIG. 7, the left axis is the methanol conversion, and the right axis is the H 2 / CO ratio.
  • Ni 3 Si exhibits catalytic activity in the decomposition reaction of methanol, and the catalytic activity is very high. It can also be seen that the methanol conversion rate of 100% is reached in 1 hour after the methanol decomposition reaction, and high catalyst efficiency is exhibited in a short time. Until the test was completed in 21 hours, a methanol conversion of 92.3 to 100% was exhibited, and the decomposition reaction of methanol was stably performed. From this test, it was found that Ni 3 Si shows high activity for the decomposition reaction of methanol.
  • Methane steam reforming test (test using catalyst after methanol decomposition test) Further, by using the Ni 3 Si cubic samples after methanolysis test was carried out steam reforming test of methane. That is, the test of the above (2) and pre-processing for the Ni 3 Si cubic sample was steam reforming test of methane using a Ni 3 Si cubic samples the preprocessed.
  • the conditions of the methanol decomposition test are the same as the “methanol decomposition test (test using the catalyst after the etching process)” in (2) above, and the conditions of the steam reforming test of methane are not after the etching process.
  • FIG. 8 is a graph showing the relationship between the reaction time and the methane conversion rate, showing the results of a methane steam reforming test after the methanol decomposition test.
  • the methane conversion rate was 98.3 to 99.3% for 10 to 24 hours.
  • Ni 3 Si after the methanol decomposition test has a greatly improved methane conversion rate and improved catalyst efficiency than Ni 3 Si after the etching treatment. I understand.
  • Ni 3 Si cubic sample exhibits catalytic activity for the steam reforming reaction of methane and the decomposition reaction of methanol. It was also demonstrated that the Ni 3 Si cubic sample significantly improved the catalytic activity for the steam reforming reaction of methane when methanol decomposition reaction was applied as a pretreatment.
  • FIG. 9 is a schematic cross-sectional view of the catalyst structure (reaction apparatus) used in Effect Verification Experiment 2.
  • FIG. 10 is an exploded view of the laminated unit included in the catalyst structure
  • FIG. 11 is a schematic view of a plurality of laminated disk-like members as viewed from the lamination direction.
  • the catalyst structure has a structure in which a plurality of stacked units 20 are stacked as shown in FIG.
  • the laminated unit 20 has a structure in which a plurality of disk-like members 15 a and 15 b made of Ni 3 Si are laminated, and the first plate member 16 and the second plate member 17 sandwich them.
  • the laminated unit 20 has a structure in which first disk-like members 15a and second disk-like members 15b having different shapes are alternately laminated.
  • the shape of the first disk-like member 15a and the shape of the second disk-like member 15b are such that the reaction gas is likely to come into contact with the surfaces of the disk-like members 15a and 15b as shown in FIGS.
  • the shape is such that a flow path is formed.
  • a method for a methanol decomposition test using a structure in which disk-shaped members made of Ni 3 Si are stacked as a catalyst will be described.
  • Ni 3 Si ingots having the compositions shown in Tables 1 and 2 were produced in the same manner as in the effect demonstration experiment 1.
  • a disk-shaped member having a hole was produced from this Ni 3 Si ingot by an electric discharge machining method.
  • the disk-like member has a large hole in the center and a plurality of small holes so as to surround the large hole.
  • Two types of first and second disk members 15a and 15b having different small hole positions were produced. The small holes are formed so that the positions of the small holes included in the respective members are shifted when the first disk-shaped member 15a and the second disk-shaped member 15b are stacked adjacent to each other.
  • FIG. 12A is a photograph of the produced first disk-shaped member 15a
  • FIG. 12B is a photograph of the produced second disk-shaped member 15b.
  • the manufactured first disk-shaped member 15a and second disk-shaped 15b were subjected to an etching process in the same manner as in the effect demonstration experiment 1.
  • FIGS. 13A to 13D are photographs for explaining the manufacturing process of the catalyst structure.
  • the first and second disk-shaped members 15a and 15b were alternately stacked on the second plate member 17 using bolts, and a total of 10 disk-shaped members were stacked.
  • a first plate member 16 was laminated thereon.
  • a photograph at this time is shown in FIG.
  • the first and second disk-shaped members 15a and 15b were alternately stacked on the first plate member 16, and a total of 10 disk-shaped members were stacked.
  • the photograph at this time is FIG.
  • the second plate member 17 was laminated, and the laminated body was fixed with bolts and nuts, thereby producing the catalyst structure shown in FIG.
  • the catalyst structure had a diameter of 30.1 mm and a length of 10.5 mm.
  • Ni 3 Si-intermetallic compound by using such a catalyst structure as compared to Ni 3 Si intermetallic compounds in the cubic sample catalyst effect Experiment 1 was cubic shape of 5mm square, the catalyst per packed volume The geometric surface area increased by a factor of 1.5.
  • the prepared two catalyst structures were installed together with Raschig rings in a quartz tube having a diameter of 41 mm and a length of 1000 mm, and this quartz tube was replaced with a stainless steel tube in which a cubic sample in a block furnace shown in FIG. A methanol decomposition test was performed. Since two catalyst structures were installed, the sample volume was 15.34 ml.
  • the catalyst performance test was performed for 24 hours, and the concentration of the component gas was measured by sampling the analysis gas at 30 minute intervals, 1 hour intervals, or 2 hour intervals.
  • the supply gas in the catalyst performance test was supplied as shown in Table 3.
  • the test results of the catalyst performance test are shown in Tables 4 and 5.
  • the methanol conversion rate (methanol decomposition rate) shown in Table 5 was calculated by converting the reaction product gas composition shown in Table 4 into the amount of product gas based on nitrogen gas.
  • the Ni 3 Si catalyst structure has an activity as high as 83% in methanol conversion 6 hours after the start of the reaction. Moreover, in the demonstration experiment 2, although the methanol conversion rate showed a decreasing tendency after 12 hours from the start of the reaction, the methanol conversion rate was 49% even after 24 hours.
  • Effectiveness demonstration experiment 3 In order to compare with the effect demonstration experiment 2, as the effect demonstration experiment 3, a methanol decomposition test was performed using a cubic sample of about 5 mm square as a catalyst. The cubic sample catalyst was produced by the same method as described in the effect demonstration experiment 1. In effect demonstration experiment 3, a methanol decomposition test was performed using the same apparatus and method as in effect demonstration experiment 2, except that a cubic sample catalyst was used instead of the catalyst structure.
  • Table 6 shows the methanol conversion measured in the effect demonstration experiment 2 using the catalyst structure and the methanol conversion measured in the effect demonstration experiment 3 using the cubic sample catalyst. Compared to 6 hours after the start of the reaction, the methanol conversion rate in the effect demonstration experiment 3 is 41%, whereas the methanol conversion rate in the effect demonstration experiment 2 is 83%, and the catalyst structure is compared with the cubic sample catalyst. It was revealed that the activity was twice as high. In the effect demonstration experiment 3, the methanol conversion rate reached a stable maximum value around 6 hours after the start of the reaction.
  • the methanol conversion rate showed a decreasing trend around 12 hours after the start of the reaction
  • the methanol conversion of 49% was higher than the 41% shown in the demonstration experiment 3 even at 24 hours after the start of the reaction. Showed the rate.
  • the methanol conversion rate of 69% was obtained even when averaged over 24 hours, which was about 1.7 times better than the methanol conversion rate shown in the effect demonstration experiment 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

メタノールの分解反応又は炭化水素の水蒸気改質反応について短時間で触媒作用を示す触媒を提供する。本発明によればNi3Si系金属間化合物を含有する水素製造用触媒が提供される。

Description

Ni3Si系金属間化合物を含有する水素製造用触媒、当該触媒を活性化させる方法、当該触媒を用いた水素製造方法及び装置
 本発明は、Ni3Si金属間化合物を含有する、Ni3Si系金属間化合物を含有する水素製造用触媒、この触媒を活性化させる方法、この触媒を用いた水素製造方法及び装置に関する。
 燃料電池の燃料として水素が注目されている。その製造方法には様々なものがあるが、その中でも、メタノール又はメタン等の炭化水素(Cnm)から水素を製造する方法が広く知られている。
 前者のメタノールから水素を製造する方法は、主として式(1)に示すメタノールの分解反応と、式(2)に示すメタノールの水蒸気改質反応を利用している。
 CH3OH→2H2+CO・・・・・式(1)
 CH3OH+H2O→3H2+CO2・・・・・式(2)
 また、後者の炭化水素(Cnm)から水素を製造する方法は、炭化水素の水蒸気改質反応を利用している。式(3)に示すこの炭化水素の水蒸気改質反応は、炭化水素と水蒸気との反応である。
 Cnm+nH2O→nCO+(n+m/2)H2・・・・・式(3)
 これらの水素を製造する方法では、例えば、アルミナ等の担体に白金(Pt)、銅(Cu)、ニッケル(Ni)等の金属粉末を担体した触媒が用いられている。しかし、約250℃以上の温度で反応するメタノールの分解反応の場合、アルミナ担体は熱伝導率が低いので、この担体を用いた水素製造装置は負荷応答性も低い。このため、熱伝導率がよく耐熱性のある触媒が求められている。
 このような背景のなか、金属間化合物であるNi3Alがメタノールの分解反応に対して触媒活性を示すことが示され、この知見に基づき、Ni3Al箔からなる水素触媒が提案されている(例えば、特許文献1を参照)。また、耐熱高強度特性を有するNi3(Si,Ti)金属間化合物が触媒機能を示し、その金属間化合物が水素への高い変換効率を示すことが報告されている(例えば、特許文献2を参照)。
特開2007-75799号公報 特開2009-28583号公報
 しかし、従来の水素製造用触媒は、その触媒作用に改良の余地がある。例えば、メタノールの分解反応又は炭化水素の水蒸気改質反応について、高い触媒活性を示す触媒が望まれている。
 本発明はこのような事情に鑑みてなされたものであり、メタノールの分解反応又は炭化水素の水蒸気改質反応について熱負荷応答性に優れ,高い活性を示す触媒を提供するものである。
 本発明によれば、Ni3Si系金属間化合物(Ni3Si金属間化合物も含まれる)を含有する水素製造用触媒が提供される。
 本発明者らは,鋭意研究を行った結果,上記Ni3Si系金属間化合物が、メタノールの分解反応のみならず炭化水素の水蒸気改質反応にも触媒作用を示し、特にメタノールの分解反応において、上記組成のNi3Si系金属間化合物が高い触媒活性を示すことを見出した。また、メタノールの分解反応において、高温環境で前記Ni3Si系金属間化合物がガス状のメタノールに接触すると、炭化水素の水蒸気改質反応に対する活性が強化され、炭化水素の水蒸気改質反応において、高い触媒活性を示すことを見出した。
 このように、この発明の触媒は、メタノールの分解反応又は炭化水素の水蒸気改質反応に触媒作用を示す。
 また、本発明の水素製造用触媒を構成するNi3Si系金属間化合物は、炭化水素ガスから水素ガスを製造する際に用いられる触媒の担体として使用されるアルミナよりも高い熱伝導率を有するため、本発明の水素製造用触媒は、速い起動性と優れた負荷応答性を有している。
 また、本発明の水素製造用触媒を構成するNi3Si系金属間化合物は、合金として高い強度を有し、金属加工によりその形状を自由に設計することができる。このことにより、本発明の水素製造用触媒は、反応装置に応じて様々な形状を有することができる。
 さらに、本発明の水素製造用触媒を構成するNi3Si系金属間化合物は、メタノールの分解反応および炭化水素の水蒸気改質反応の両方に触媒活性を有し、この両方に使用することができる。
 なお,本明細書において,「~」は,端の点を含む。
本発明の触媒を構成するNi3Si系金属間化合物を説明するためのNi-Si二元系状態図である。 本発明の一実施形態に係る水素製造装置の構成を説明するための概念図である。 本発明の他の実施形態に係る水素製造装置の構成を説明するための概念図である。 効果検証実験1で作製したNi3Si系金属間化合物の触媒の形状を示す概念図である。(1)が作製した触媒の形状を示し、(2)が反応管内の触媒の配置(配置はランダムである)を示す。 メタノール分解試験で用いた固定床流通式触媒反応装置を示す構成図である。 メタンの水蒸気改質試験の結果を示す、反応時間とメタン転化率との関係を示すグラフである。 メタノール分解試験の結果を示す、反応時間とメタノール転化率及びH2/CO比率との関係を示すグラフである。 メタノール分解試験後の触媒を用いたメタンの水蒸気改質試験の結果を示す、反応時間とメタン転化率との関係を示すグラフである。 効果実証実験2で用いた触媒構造体の概略断面図である。 効果実証実験2で用いた触媒構造体に含まれる積層ユニットの分解図である。 効果実証実験2で用いた触媒構造体に含まれる積層された複数のディスク状部材を積層方向から見た概略図である。 (a)は作製した第1ディスク状部材の写真であり、(b)は、作製した第2ディスク状部材の写真である。 効果実証実験2で用いた触媒構造体の製造工程を説明するための写真である。
(触媒の構成)
 本発明に係る水素製造用触媒は、Ni3Si系金属間化合物を含有する。この触媒を構成するNi3Si系金属間化合物を組成の観点から説明すると、上記Ni3Si系金属間化合物は、好ましくは、Si:10.0~28.0原子%,残部がNi及び不可避的不純物からなる組成の合計重量に対してB:0~500重量ppmを含み、より好ましくは、Si:22.0~24.0原子%,残部がNi及び不可避的不純物からなる組成の合計重量に対してB:25~500重量ppmを含む。
 また、この触媒を構成するNi3Si系金属間化合物を組織の観点から説明すると、上記Ni3Si系金属間化合物は、少なくともβ1相を含む。
 図を用いて、より具体的に説明する。図1は、本発明の触媒を構成するNi3Si系金属間化合物を説明するためのNi-Si二元系状態図である。図1において、β1はNi3Siの立方晶(L12結晶構造)、β2はNi3Siの単斜晶である(β3はその結晶構造が不明であるが、Ni3Siは同素変態する)。また、γはNi5Si2の六方晶である。
 本発明の触媒に係るNi3Si系金属間化合物とは、図1に示すNi3Si(β1相)を活性成分とし、これを含有する金属間化合物である。従って、Ni3Si(β1相)のほか、他の相を含有する金属間化合物であってもよい。例えば、Ni固溶体相とNi3Si(β1相)とが共存する金属間化合物であってもよいし、また、Ni3Si系金属間化合物は、Ni3Si(β1相)とNi5Si3(γ相)とが共存する金属間化合物であってもよい。当然ながら、Ni3Si系金属間化合物は、実質的にNi3Si(β1相)のみから構成される金属間化合物であってもよい。
 上記Ni3Si系金属間化合物をその組成及び組織の両者で説明すると、図1に示すように、Ni3Si系金属間化合物が、(1)Ni3Si(β1相)、(2)Ni3Si(β1相)とNi固溶体相、(3)Ni3Si(β1相)とNi5Si3(γ相)のいずれかの相で構成される(すなわち(1)~(3)から選択される1つの相状態で構成される)場合、Ni3Si系金属間化合物は、Si:10.0~28.0原子%,残部がNi及び不可避的不純物からなる組成の合計重量に対してB:0~500重量ppmを含む。
 また、図1に示すように、Ni3Si系金属間化合物が実質的にNi3Si(β1相)のみで構成される場合、Ni3Si系金属間化合物は、Si:22.0~24.0原子%,残部がNi及び不可避的不純物からなる組成の合計重量に対してB:0~500重量ppmを含む。
 また、上記触媒を構成するNi3Si系金属間化合物が含有する元素で説明すると、以下のようになる。
 まず、Siの含有量は,10.0~28.0原子%であり,好ましくは22.0~24.0原子%である。このような範囲であれば、Ni3Si系金属間化合物は、活性成分のNi3Si(β1相)が含有されるか、又は実質的にNi3Si(β1相)のみから構成される。
 Siの具体的な含有量は,例えば,10.0,10.5,11.0,12.0,14.0,16.0,18.0,20.0,21.0,21.5,22.0,22.5,23.0,23.5,24.0,24.5,25.0,26.0,27.0,27.5又は28.0原子%である。Siの含有量の範囲は,ここで例示した数値の何れか2つの間であってもよい。
 また、Niの含有量は,例えば,72.0~90.0原子%であり、好ましくは76.0~78.0原子%である。Niの具体的な含有量は,例えば,72.0,72.5,73.0,74.0,75.0,75.5,76.0,76.5,77.0,77.5,78.0,78.5,79.0,80.0,82.0,84.0,86.0,88.0,89.0,89.5又は90.0原子%である。Niの含有量の範囲は,ここで例示した数値の何れか2つの間であってもよい。
 なお、ここに示したNiの含有量は残部であり、この含有量がNi及び不可避的不純物の含有量であってもよい。
 ここで、これら上記各元素の含有量は,Si及びNiの含有量の合計が100原子%になるように適宜調整される。
 また、Bの含有量は,0~500重量ppm、例えば、25~100重量ppmである。Bの具体的な含有量は,例えば,25,40,50,60,75,100,150,200,300,400又は500重量ppmである。Bの含有量の範囲は,ここで例示した数値の何れか2つの間であってもよい。
 上記Ni3Si系金属間化合物で構成される触媒は、その形体、態様で説明すると、例えば担体に含まれる形態(例えば、上記Ni3Si系金属間化合物の粉末、粉粒体が他の物質に分散されて配置された形態)である。
 また、触媒全体が金属間化合物であれば、熱伝導性が高くなり、短時間で触媒作用を示すようになる(例えば、セラミックス担体を用いた場合よりも熱伝導性に優れ、熱負荷応答性に優れる)ので、本発明の触媒は、好ましくは上記Ni3Si系金属間化合物のみからなる形態である。例えば、上記で説明した組成となる地金を溶解、凝固させた鋳塊を切削、研磨し、上記Ni3Si系金属間化合物のみからなる板状体や立方体等での触媒でもよい。
(触媒の製造方法)
 次に、本発明に係る水素製造用触媒の製造方法を説明する。
 まず、Si:10.0~28.0原子%,残部が主成分としてのNi及び不可避的不純物からなる組成の合計重量に対してB:0~500重量ppmを含むNi3Si系金属間化合物を鋳造する。すなわち、上記で説明した組成となるように地金等を秤量し、アーク溶解炉や真空誘導溶解炉等で溶解・鋳造し、鋳塊からなる試料を作製する。
 次に、作製された鋳塊からなる試料を切断して所望の形状に加工する。例えば、板状の形状に加工する。
 そして、触媒として使用する前に、必要に応じて、得られたNi3Si系金属間化合物を、酸及びアルカリの少なくともいずれかでエッチング処理する。上記Ni3Si系金属間化合物を酸及びアルカリの少なくともいずれかでエッチング処理すると、表面の酸化膜等が取り除くことができ、またNi,Siが溶けることにより表面形状・表面積や組成が制御される。このため、酸及びアルカリの少なくともいずれかでエッチング処理されたNi3Si系金属間化合物は、高い触媒作用を示し、この処理により上記Ni3Si系金属間化合物の触媒性能を活性化できる。
 ここで、このエッチング処理は、酸及びアルカリの少なくともいずれかであるので、酸又はアルカリのいずれか一方でエッチング処理してもよいし、酸でエッチング処理し、かつアルカリでエッチング処理してもよい。
 具体的には、例えば、HCl溶液及びHNO3溶液でエッチング処理したり、NaOH溶液でエッチング処理したりする。またHCl及びHNO3が含まれる溶液でエッチング処理し、かつNaOH溶液でエッチング処理してもよい。
 例えば、HCl及びHNO3が含まれる溶液のエッチング処理は、処理温度が約20℃で、処理時間(エッチング時間)が1時間以下である。また、NaOH溶液のエッチング処理は、例えば、処理温度が10℃~90℃で、処理時間(エッチング時間)が1時間以上である。
 また、触媒として使用する前に、必要に応じて、上記Ni3Si系金属間化合物をガス状のメタノールに接触させてメタノールの分解反応をさせてもよい。本発明に係るNi3Si系金属間化合物は、そのままでもメタノールの分解反応及び炭化水素の水蒸気改質反応に触媒作用を示し、特にメタノールの分解反応において、上記組成のNi3Si系金属間化合物が短時間で触媒作用を示すと共に、高い触媒活性を示す。しかし、本発明の触媒を構成するNi3Si系金属間化合物を、例えば、高温(例:580℃)でガス状のメタノールに接触させると、炭化水素の水蒸気改質反応に対する活性が強化され、炭化水素の水蒸気改質反応において短時間で触媒作用を示すと共に、高い触媒効率を示すようになる。このため、炭化水素(例えば、メタン)の水蒸気改質反応用の触媒には、好ましくは上記の処理(言い換えると、メタノールの分解反応)を施すとよい。
 ここで、上記水素の製造処理の温度は、好ましくは520℃~650℃で、その処理時間は0.5時間~48時間である。(580℃は例示であり、この温度に限定されない)
 以上の工程により水素製造用触媒が製造できる。
 次に、本発明に係る水素製造用触媒の使用方法を説明する。本発明に係る水素製造用触媒は、次のように水素の製造に使用される。
 ここで、水素の製造は、メタノールの分解反応又は炭化水素の水蒸気改質反応による。メタノールの分解反応は、上記(1)式に示す、CH3OH→2H2+CO の反応であり、炭化水素の水蒸気改質反応は、上記(3)式に示す、Cnm+nH2O→nCO+(n+m/2)H2の反応である。例えば、メタンの水蒸気改質反応は、CH4+H2O→CO+3H2である。
(メタノールの分解反応による水素製造方法)
 メタノールの分解反応による水素製造は、例えば、上記の触媒を580℃の高温に加熱し、加熱された触媒にガス状のメタノールを接触させて行う。これにより、メタノールの分解反応が起こり、メタノールから水素を製造できる。
 このメタノールの分解反応における触媒の加熱温度は、好ましくは520℃~650℃である(580℃は例示である)。具体的には、例えば、520、540、560、580、600、620、640、650℃である。
 また、ガス状のメタノールは、液体状のメタノールを加熱することによって得られる。液体状のメタノールの流量は、例えば、5ミリ角の立方体形状の触媒に対して、0.01~1mL/minである。
 また、ガス状のメタノールは、好ましくはキャリアガスとともに触媒に接触させる。キャリアガスの種類は特に限定されないが、好ましくは窒素等の不活性ガスである。
 メタノールの分解反応の場合、CH3OH→2H2+COという反応によってメタノールが分解されることによって水素を得るので、分解反応によって得られるガスは少なくとも水素と一酸化炭素を含む混合ガスである。混合ガスからの水素の分離方法は特に限定されないが、一例では、混合ガスに水素透過フィルターを通過させることによって水素を分離できる。
(炭化水素の水蒸気改質反応による水素製造方法)
 一方、炭化水素の水蒸気改質反応による水素製造は、上記の触媒を700℃以上の温度に加熱し、加熱された触媒に炭化水素及び水蒸気からなるガスを接触させて行う。これにより、炭化水素の水蒸気改質反応が起こり、炭化水素から水素を製造できる。
 ここで、炭化水素は、例えばメタンであり、メタンの場合、この触媒を適用する反応はメタンの水蒸気改質反応となる。そのほか、炭化水素は、エタン、プロパン、ブタンでもよい。また、これらのガスを主成分とする天然ガスであってもよい。
 炭化水素の水蒸気改質反応に用いる触媒は、上記で説明したように、Ni3Si系金属間化合物を含有する。必要に応じて、酸及びアルカリの少なくともいずれかでエッチング処理されるが、好ましくは、前記Ni3Si系金属間化合物をガス状のメタノールに接触させる水素の製造処理が施される。(例えば、580℃の高温で、前記Ni3Si系金属間化合物をガス状のメタノールに接触させる処理が施される。)このような処理が施された触媒であれば触媒活性が高いのでより多くの水素を製造できる。
 炭化水素の水蒸気改質反応における触媒の加熱温度は、例えば、炭化水素がメタンである場合、上記で説明したように700℃以上であり、好ましくは、800~900℃である。この温度は、具体的には、例えば、800,810,820,830、840,850,860,870,880,890又は900℃である。この温度は、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 なお、図1に示すように、活性成分のNi3Si(β1相)が約1040℃以下で存在するため、上限温度は約1040℃である。
 炭化水素及び水蒸気からなるガスは、例えば、炭化水素がメタンの場合、メタンに対する水蒸気の体積比が3.0(S/C=3.0)で供給する。その空間速度SV(space velocity)は、例えば、500h-1である。
 炭化水素の水蒸気改質反応の場合、例えばCH4+H2O→CO+3H2というメタンの水蒸気改質反応により水素を得るので、得られるガスは、メタノールの分解反応と同様に、少なくとも水素と一酸化炭素を含む混合ガスである。従って、炭化水素の水蒸気改質反応の場合も、水素透過フィルターを用いて混合ガスから水素を分離するとよい。
(水素製造装置)
 次に、図2及び図3を用いて、本発明の実施形態に係る水素製造装置について説明する。図2は、本発明の一実施形態に係る水素製造装置の構成を説明するための概念図であり、図3は、本発明の他の実施形態に係る水素製造装置の構成を説明するための概念図である。
 図2に示されるように、本実施形態の水素製造装置は、上記で説明したNi3Si系金属間化合物の触媒1(水素製造用触媒(Ni3Si系金属間化合物)1)と、触媒1を加熱する加熱部3と、触媒1に対してガス状メタノールを供給するメタノール供給部5とを備えている。
 加熱部3の構成は、特に限定されないが、一例では、加熱部3には、アルミニウムブロック炉を用いることができる。加熱部3は、例えば、580℃に触媒1を加熱することができるように構成される。
 メタノール供給部5は、触媒1に対してガス状のメタノールを供給できるものであればその構成は特に限定されないが、一例では、メタノール供給部5は、液体状のメタノールを収容するメタノール収容部7と、メタノール収容部7から液体状のメタノールを送り出すポンプ9と、液体状のメタノールを蒸発させてガス状のメタノールにする蒸発器11を備える。蒸発器11には、ガス化されたメタノールを触媒1に向けて搬送するキャリアガスを供給するキャリアガス供給部13が接続されていてもよい。
 さらに、触媒1よりも下流側には水素透過フィルター15が配置されていてもよい。この場合、メタノールが分解されて生成される混合ガスにこのフィルターを通過させることによって水素を分離できる。
 以上のような装置を用いることにより、上記のメタノールの分解反応による水素の製造方法を容易に実施できる。
 なお、図2において、触媒1は反応管(例えば、ステンレス管や石英チューブ)に収容される。
 また、図3に示されるように、他の実施形態の水素製造装置は、上記で説明したNi3Si系金属間化合物の触媒1(水素製造用触媒(Ni3Si系金属間化合物)1)と、触媒1を加熱する加熱部3と、触媒1に対して水蒸気を供給する水蒸気供給部6と、触媒1に対してメタンガスを供給するメタンガス供給部14とを備えている。
 ここで、水蒸気供給部6は、水蒸気を供給できるものであれば、その構成は特に限定されないが、一例を挙げると、水蒸気供給部6は、水を供給する給水部8と、供給された水を蒸発させて水蒸気を発生させる蒸発器11とを備える。また、水蒸気供給部6は、メタンガス供給部14とともに水素製造用触媒1が収容された反応管(例えば、ステンレス管や石英チューブ)に接続される。
 この装置は、図2に示される装置とその他の構成は同じである。この装置を用いることにより上記の炭化水素の水蒸気改質反応(この形態の場合、メタンの水蒸気改質反応)による水素の製造方法を容易に実施できる。
 なお、炭化水素の水蒸気改質反応は、図2の装置の化学反応と反応温度が異なるので、例えば、加熱部は700℃以上に加熱できるように構成するとよい。
(効果実証実験1)
 本発明の水素製造用触媒を用いて、メタンの水蒸気改質反応及びメタノールの分解反応を行い、水素を製造することによって本発明の水素製造用触媒が高い触媒活性を示すことを実証した。
 まず、表1に示す組成になるようにNi,Siの地金(それぞれ純度99.9重量%)とBを秤量し、この地金を真空誘導溶解(VIM)法により溶解して約8kgの鋳塊からなる試料を作製した。
Figure JPOXMLDOC01-appb-T000001
 ここで、表1では同じ実施例について原子%と重量%の両方で含有量を表示している。また、Bの含有量は、Ni及びSiの合計100原子%の組成をもつ合金の総重量に対する重量割合(wt.%)である。
 作製された鋳塊の組成を分析したところ、表2に示すように、ほぼ目標どおりの組成であった。
Figure JPOXMLDOC01-appb-T000002
 ここで、表3におけるNiの欄の「Bal.」は残部であることを示す。
 次に、作製された鋳塊を放電加工法によって切り出し、約5mm角のキュービックサンプル(Ni3Siキュービックサンプルともいう)を作製した(図4(1)参照)。そして、作製されたキュービックサンプルを触媒として用いてメタンの水蒸気改質試験又はメタノール分解試験を行った。これらの試験で用いた装置を図5に示す。図5は、メタノール分解試験で用いた固定床流通式触媒反応装置を示す構成図である。
 図5に示すように、この装置では、N2ガスがMFC(質量流量コントローラ)を、メタノール(図5ではメタノール収容容器にMeOHと記載)が送液ポンプをそれぞれ経由してブロック炉内にあるステンレス管に供給されている。ステンレス管には、ラシヒリング部(MeOH気化部)とNi3Siキュービックサンプル(図4(2)参照)とが配され、ラシヒリング部でメタノールが気化される。また、気化されたメタノールはNi3Siキュービックサンプルに触れて分解され、この装置は、分解により発生したガスが冷却部を経て排出されるように構成されている。
 また、この装置において、ステンレス管は直径34mmとし、Ni3Siキュービックサンプルを高さ20mmに充填した(充填層といい、充填層の充填率は0.56である)。ガスの総流量は690ml/minを基本流量として調整した(ガスの総流量が690ml/minのとき、触媒の表面積あたりの流量は337cm3・h-1・cm-2であり、空間速度(SV)は約2270h-1である。)
 また、図5に示すように、分解により発生したガスは冷却部で一旦冷却され、ガス中の易凝縮分がトラップに溜められる。この実験では、その凝縮液を1時間又は2時間おきに回収し、ガスクロマトグラフィー(GC)でメタノール濃度を測定し、メタノール回収量を得た(液分析)。また、ドライになったガス(冷却部から排出されたガス)の成分分析により、H2,CO,CO2,CH4及びメタノールのそれぞれの成分濃度を測定し、各成分の選択率を計算した(ガス分析)。メタノールは液分析及びガス分析の結果を足し合わせることでその量を算出した。
 ここで、図5はメタノール分解試験の場合における装置構成を示しているので、メタノール収容容器と送液ポンプとラシヒリング部(MeOH気化部)と、N2ガス(キャリアガス)の供給部とを備えているが、メタンの水蒸気改質試験の場合は、ステンレス管に水蒸気供給部及びメタンガス供給部を接続し、ステンレス管内の触媒(図5に示すNi3Siキュービックサンプル)に水蒸気及びメタンを供給する。
 なお、図5において「P」は圧力計(pressure gauge)、「MFC」は質量流量コントローラ、「TC」は熱電対(thermocouple)、「GC-TCD」はガスクロマトグラフィーである。
(1)メタンの水蒸気改質試験(エッチング処理後の触媒を用いた試験)
 まず、Ni3Siキュービックサンプルをエッチング処理した。エッチング処理は、次の手順で行った。
(i)酸エッチングを行う。(HCl及びHNO3が体積比で3:1の比で混合された溶液にサンプルを20分浸す。)
(ii)水洗後、エタノール洗浄して温風乾燥する。
(iii)アルカリエッチングを行う。(20wt.%のNaOH溶液(蒸留水希薄)にサンプルを80℃、5時間浸す)
(iv)水洗後、エタノール洗浄して温風乾燥する。
 次に、エッチング処理されたNi3Siキュービックサンプルをステンレス管内に配置して600℃1時間の還元処理をした後(H2及びN2を流し、H2濃度は85vol%とした後)、メタンの水蒸気改質試験を行った。
 メタンの水蒸気改質試験の条件は、次のような条件とした。
・S/C=3.0(すなわち体積比でH2O/CH4=3.0)
・SV(space velocity)=1500h-1(0.0≦t≦4.0時間)又は500h-1(4.0<t≦7.7時間)
・温度:800℃(0.0≦t≦6.0時間)、700℃(6.0<t≦7.0時間)、600℃(7.0<t≦7.7時間)
・触媒充填量:17.6ml
・ガス流量(1500h-1):CH4=440Nml/min,H2O=1319Nml/min
・触媒の配置:エッチング処理された触媒を反応管内にランダムに配置した。
 ここで、SV及び温度は、反応時間が0~4時間まで800℃及び1500h-1、4時間より後で6時間まで800℃及び500h-1、6時間より後で7時間まで700℃及び500h-1、7時間より後で8時間まで600℃及び500h-1、とした。このように時間の経過とともにSV及び温度を調整した。
 そして、ステンレス管からの排出ガスの成分をガスクロマトグラフで測定した。測定は0.5時間ごとに行った。
 その結果を図6に示す。図6は、メタンの水蒸気改質試験の結果を示す、反応時間とメタン転化率との関係を示すグラフである。図6において、点線の領域は、SV及び温度が800℃及び1500h-1である測定点、一点鎖線の領域は、SV及び温度が800℃及び500h-1である測定点、破線の領域は、SV及び温度が700℃及び500h-1である測定点、二点鎖線の領域は、SV及び温度が600℃及び500h-1である測定点、を示している。
 図6に示されるように、Ni3Siがメタンの水蒸気改質反応に触媒活性を示すことがわかる。すなわち、SV=1500h-1ではメタン転化率が低いものの(0.5時間~4時間で5.6~7.9%)、SV=500h-1までSVを下げると、メタン転化率が16%にまで上昇し(4.5時間で24.2%となり、5.5時間又は6時間で16.5%)、温度を下げるとメタン転化率が低下していることがわかる。Ni3SiキュービックサンプルはSVに対する感度があり、かつ温度によりメタン転化率に差があるので、Ni3Siキュービックサンプルがメタンの水蒸気改質反応に対して触媒活性をもつことが推測される。
(2)メタノール分解試験(エッチング処理後の触媒を用いた試験)
 また、作製されたNi3Siキュービックサンプルを用いて、メタノール分解試験も行った。メタノール分解試験も、メタンの水蒸気改質試験と同様に、Ni3Siキュービックサンプルにエッチング処理を施し、エッチング処理が施されたNi3Siキュービックサンプルを用いて実施した。エッチング処理の条件は上記のメタンの水蒸気改質試験で説明した条件と同じにした。
 まず、エッチング処理されたNi3Siキュービックサンプルをステンレス管内に配置して600℃に加熱し、その状態で水素濃度85vol.%で1時間流して、Ni3Siキュービックサンプルの表面の還元処理を行った。
 次に、水素の供給を停止させ、ステンレス管内の上端におけるNi3Siキュービックサンプルの温度が580℃になるように温度を調節し、その後、窒素のみを流量30ml/分で30分流して、反応装置内部の水素を窒素で置換した。
 次に、ポンプの作用により液体状のメタノールをメタノール収容容器からステンレス管内のラシヒリング部(MeOH気化部)に供給し、ラシヒリング部で気化させてガス化した。このガス状のメタノールを窒素(キャリアガスとして機能する。)と共にステンレス管内のNi3Siキュービックサンプルと接触させた(図5参照)。そして、上記で説明したように、ステンレス管からの排出ガスの成分をガスクロマトグラフで測定した。測定は0.5時間ごとに行った。
 その結果を図7に示す。図7は、メタノール分解試験の結果を示す、反応時間とメタノール転化率及びH2/CO比率との関係を示すグラフである。図7において、メタノール転化率を菱形印(図7の「(1)MeOH転化率」)で示し、H2/CO比率を四角印(図7の「(2)H2/CO」)で示している。図7の矢印が示すように、左軸がメタノール転化率であり、右軸がH2/CO比率である。
 図7に示されるように、Ni3Siがメタノールの分解反応に触媒活性を示し、その触媒活性は非常に高いことがわかる。また、メタノールの分解反応を行ってから1時間で100%のメタノール転化率に達し、短時間で高い触媒効率を示すことがわかる。21時間で試験を終了させるまで、92.3~100%のメタノール転化率を示し、メタノールの分解反応は安定して行われた。この試験から、Ni3Siはメタノールの分解反応に対して高活性を示すことが判明した。
(3)メタンの水蒸気改質試験(メタノール分解試験後の触媒を用いた試験)
 また、メタノール分解試験後のNi3Siキュービックサンプルを用いて、メタンの水蒸気改質試験を行った。すなわち、上記(2)の試験をNi3Siキュービックサンプルに対する前処理とし、この前処理が施されたNi3Siキュービックサンプルを用いてメタンの水蒸気改質試験を行った。
 ここで、メタノール分解試験の条件は、上記(2)の「メタノール分解試験(エッチング処理後の触媒を用いた試験)」と同じにし、メタンの水蒸気改質試験の条件は、エッチング処理後ではなくメタノール分解試験後に行うことを除いて、(1)の「メタンの水蒸気改質試験(エッチング処理後の触媒を用いた試験)」とほぼ同じにした。以下にそのメタンの水蒸気改質試験の条件を示す。
・S/C=3.0(すなわち体積比でH2O/CH4=3.0)
・SV(space velocity)=500h-1(0.0≦t≦24.0時間),1500h-1(24.0<t≦25.5時間),2000h-1(25.5<t≦27.2時間),2500h-1(27.2<t≦28.5時間),3000h-1(28.5<t≦29.6時間),500h-1(29.6<t≦30.7時間),
・温度:700℃(0.0≦t≦3.0時間)、800℃(3.0<t≦5.5時間)、900℃(5.5<t≦30.7時間)
・触媒充填量:17.6ml
・ガス流量(1500h-1):CH4=440Nml/min,H2O=1319Nml/min
・触媒の配置:メタノール分解試験後の触媒を反応管内にランダムに配置した。
 ここで、上記のように、時間の経過とともにSV及び温度を調整した。
 その結果を図8に示す。図8はメタノール分解試験後のメタンの水蒸気改質試験の結果を示す、反応時間とメタン転化率との関係を示すグラフである。
 図8を参照すると、メタノール分解試験後のNi3Siは、メタンの水蒸気改質反応に対して高い触媒活性を示すことがわかる。700℃の反応で41.8~47.4%、800℃の反応で54.1~74.5%、900℃の反応で78.8~99.3%(SV=500h-1のとき。なお10~24時間では98.3~99.3%)のメタン転化率を示した。図6の結果と比較するとわかるように、メタノール分解試験後のNi3Siは、エッチング処理された後のNi3Siよりも、メタン転化率が大幅に向上し、触媒効率が良くなっていることがわかる。
 以上の試験から、Ni3Siキュービックサンプルが、メタンの水蒸気改質反応及びメタノールの分解反応に対し触媒活性を示すことが実証された。また、Ni3Siキュービックサンプルは、メタノールの分解反応を前処理として施すと、メタンの水蒸気改質反応に対する触媒活性が大幅に向上することも実証された。
(効果実証実験2)
 効果実証実験1では、約5mm角のキュービックサンプルを触媒として用いてメタンの水蒸気改質試験およびメタノール分解試験を行ったが、効果実証実験2では、穴を有するディスク状部材を積層した構造体を触媒として、メタノール分解試験を行った。
 図9は、効果実証実験2で用いた触媒構造体(反応装置)の概略断面図である。また、図10は、触媒構造体に含まれる積層ユニットの分解図であり、図11は、積層された複数のディスク状部材を積層方向から見た概略図である。
 触媒構造体は、図9に示したように複数の積層ユニット20が積層された構造を有している。例えば、図9では、4つの積層ユニット20が積層されている。積層ユニット20は、図10に示したように、Ni3Siからなるディスク状部材15a、15bが複数積層され、それを第1板部材16および第2板部材17が挟む構造をしている。また、積層ユニット20は、形状の異なる第1ディスク状部材15aと第2ディスク状部材15bが交互に積層された構造を有する。第1ディスク状部材15aの形状と第2ディスク状部材15bの形状は、図9、図11に示すように反応ガスがディスク状部材15a、15bの表面に接触する確率が高くなるような反応ガス流路を形成するような形状とした。
 以下、Ni3Siからなるディスク状部材を積層した構造体を触媒として用いたメタノール分解試験の方法について説明する。
 まず、効果実証実験1と同様の方法で、表1、2に示す組成を有するNi3Si鋳塊を作製した。このNi3Si鋳塊を放電加工法により、穴を有するディスク状部材を作製した。ディスク状部材は図9~11に示したように、中央に大きな穴を有し、この大きな穴を取り囲むように小さな穴を複数有している。この小さな穴の位置が異なる2種類の第1ディスク状部材15a、第2ディスク状部材15bを作製した。なお、この小さな穴は、第1ディスク状部材15aと第2ディスク状部材15bを隣接して積層した場合に、それぞれの部材に含まれる小さな穴の位置がずれるように形成した。図12(a)は、作製した第1ディスク状部材15aの写真であり、図12(b)は、作製した第2ディスク状部材15bの写真である。また、作製した第1ディスク状部材15a、第2ディスク状15bは、効果実証実験1と同様の方法で、エッチング処理を施した。
 次に、第1および第2ディスク状部材15a、15bを用いて触媒構造体を作製した。図13(a)~(d)は、触媒構造体の製造工程を説明するための写真である。
 まず、ボルトを利用して第2板部材17上に第1および第2ディスク状部材15a、15bを交互に積層し、合計10枚のディスク状部材を積層した。この上に第1板部材16を積層した。この時点での写真が図13(a)である。その後、第1板部材16の上に第1および第2ディスク状部材15a、15bを交互に積層し、合計10枚のディスク状部材を積層した。この時点での写真が図13(c)である。その上に、第2板部材17を積層し、ボルトとナットで積層体を固定することにより、図13(d)に示した触媒構造体を作製した。触媒構造体は、直径30.1mm、長さ10.5mmとした。
 なお、Ni3Si金属間化合物をこのような触媒構造体とすることにより、Ni3Si金属間化合物を5mm角の立方体形状とした効果実証実験1のキュービックサンプル触媒に比べ、充填体積当たりの触媒の幾何学的表面積が1.5倍に増加した。
 作製した2つの触媒構造体を直径41mm、長さ1000mmの石英管中にラシヒリングと共に設置し、この石英管を図5に示したブロック炉中のキュービックサンプルを設置したステンレス管と入れ替えて設置し、メタノール分解試験を行った。なお、触媒構造体を2つ設置したので試料容積は15.34mlとなった。
(i) 水素還元処理
Ni3Siディスク状部材15の表面の還元処理を行った。具体的には、空間速度(SV)820/hrで窒素ガスを石英管に流通させ、触媒構造体を室温から500℃まで12℃/minで昇温し、500℃(触媒構造体下端の温度)で1時間保持した。その後、流通ガスを空間速度960/hrの14%水素ガス(窒素希釈)に切り換え500℃で1時間保持した。その後、流通ガスを窒素ガスに切り換えて30分保持した。この後、流通ガスの水素ガスを分析したところ、水素ガス濃度が0.1%以下であった。
(ii) 触媒性能試験
 その後、窒素ガス流通下で触媒構造体を580℃(触媒構造体下端の温度)まで昇温し、その後、触媒性能試験を行った。触媒性能試験では、触媒構造体に窒素ガスで希釈されたメタノールを供給し、反応生成ガスである水素ガス(H2)、窒素ガス(N2)、メタンガス(CH4)、一酸化炭素ガス(CO)、二酸化炭素ガス(CO2)の各ガスの濃度を測定した。なお、分析ガスは、メタノールなどを回収する氷浴の後の流路からサンプリングした。測定されなかった成分をメタノール(CH3OH)他とした。なお、触媒性能試験は、24時間行い、30分間隔、1時間間隔または2時間間隔で分析ガスをサンプリングし成分ガスの濃度を測定した。
 触媒性能試験における供給ガスは表3に示す条件のように供給した。
 また、触媒性能試験の試験結果を表4、表5に示す。
 なお、表5に示したメタノール転化率(メタノール分解率)は、表4に示した反応生成ガス組成を窒素ガスを基準に生成ガス量に変換し、算出した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 これらの試験結果から、Ni3Si触媒構造体は、反応開始後6時間におけるメタノール転化率が83%もの高い活性を有することが明らかになった。また、効果実証実験2では、反応開始後12時間以降にメタノール転化率は減少傾向を示したが、24時間後でも49%のメタノール転化率を示した。
(効果実証実験3)
 効果実証実験2と比較するために、効果実証実験3として、約5mm角のキュービックサンプルを触媒として用いてメタノール分解試験を行った。キュービックサンプル触媒は、効果実証実験1に記載の方法と同様の方法で作製した。また、効果実証実験3では、触媒構造体の代わりにキュービックサンプル触媒を用いたこと以外は、効果実証実験2と同様の装置および方法でメタノール分解試験を行った。
 触媒構造体を用いた効果実証実験2において測定されたメタノール転化率と、キュービックサンプル触媒を用いた効果実証実験3において測定されたメタノール転化率とを表6に示す。反応開始後6時間で比較すると、効果実証実験3におけるメタノール転化率が41%であるのに対して、効果実証実験2におけるメタノール転化率が83%であり、触媒構造体はキュービックサンプル触媒に比べ2倍もの高活性を有することが明らかになった。なお、効果実証実験3では、反応開始後6時間前後でメタノール転化率は安定最高値となった。
 一方、効果実証実験2では、反応開始後12時間前後にメタノール転化率は減少傾向を示したが、反応開始後24時間においても効果実証実験3で示した41%よりも高い49%のメタノール転化率を示した。また、24時間平均でも69%のメタノール転化率を示し、効果実証実験3で示したメタノール転化率に比べて約1.7倍の良好な転化率を示した。
Figure JPOXMLDOC01-appb-T000006
1 Ni3Si系金属間化合物の触媒
3 加熱部
5 メタノール供給部
6 水蒸気供給部
7 メタノール収容部
8 給水部
9 ポンプ
11 蒸発器
13 キャリアガス供給部
15, 15a, 15b ディスク状部材
16 第1板部材
17 第2板部材
20 積層ユニット

Claims (10)

  1. Ni3Si系金属間化合物を含有する水素製造用触媒。
  2. 前記Ni3Si系金属間化合物は、Siが10.0~28.0原子%,残部が主成分としてのNi及び不可避的不純物からなる組成の合計重量に対してB:0~500重量ppmを含む請求項1に記載の触媒。
  3. 前記Ni3Si系金属間化合物は、少なくともL12結晶構造のβ1相を含む請求項1又は2に記載の触媒。
  4. 前記Ni3Si系金属間化合物は、ガス状のメタノールに接触させる活性化処理され、炭化水素からの水素製造に使用される請求項1~3のいずれか1つに記載の触媒。
  5. 請求項1~3のいずれか1つの触媒からなる複数のディスク状部材を備え、
    各ディスク状部材は、複数の貫通孔を有し、
    前記複数のディスク状部材は、隣接する2つのディスク状部材が有する貫通孔がずれるように積層された反応装置。
  6. 請求項1~3のいずれか1つに記載の触媒または請求項5に記載の反応装置を用いてメタノール又は炭化水素から水素を製造する方法。
  7. 請求項4に記載の触媒を700℃以上の温度に加熱し、加熱された前記触媒に炭化水素及び水蒸気からなるガスを接触させることにより炭化水素から水素を製造する方法。
  8. 請求項1~3のいずれか1つに記載の触媒または請求項5に記載の反応装置と、前記触媒を加熱する加熱部と、前記触媒にメタノール又は炭化水素を供給する供給部を備える水素製造装置。
  9. 請求項4に記載の触媒と、前記触媒を加熱する加熱部と、前記触媒に炭化水素を供給する供給部を備える水素製造装置。
  10. Siが10.0~28.0原子%,残部が主成分としてのNi及び不可避的不純物からなる組成の合計重量に対してB:0~500重量ppmを含む溶湯を凝固させてNi3Si系金属間化合物を作製する工程と、
    作製されたNi3Si系金属間化合物をガス状のメタノールに接触させて前記Ni3Si系金属間化合物にメタノールの分解反応をさせて活性化する工程とを備える炭化水素からの水素製造用触媒を活性化させる方法。
PCT/JP2012/055984 2011-03-14 2012-03-08 Ni3Si系金属間化合物を含有する水素製造用触媒、当該触媒を活性化させる方法、当該触媒を用いた水素製造方法及び装置 WO2012124605A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2828585A CA2828585C (en) 2011-03-14 2012-03-08 Hydrogen production catalyst containing ni3si-based intermetallic compound, method for activating the catalyst, and hydrogen production method and device using the catalyst
JP2013504694A JP5900894B2 (ja) 2011-03-14 2012-03-08 Ni3Si系金属間化合物を含有する水素製造用触媒、当該触媒を活性化させる方法、当該触媒を用いた水素製造方法及び装置
CN201280013307.4A CN103459019B (zh) 2011-03-14 2012-03-08 含有Ni3Si基金属间化合物的制氢催化剂、活化该催化剂的方法及用该催化剂制氢的方法和装置
KR1020137025363A KR20140046409A (ko) 2011-03-14 2012-03-08 Ni3Si계 금속간 화합물을 함유하는 수소 제조용 촉매, 당해 촉매를 활성화시키는 방법, 당해 촉매를 사용한 수소 제조방법 및 장치
EP12757826.8A EP2687289A4 (en) 2011-03-14 2012-03-08 HYDROGEN PRODUCTION CATALYST CONTAINING AN INTERMETALLIC COMPOUND BASED ON Ni3Si, METHOD OF ACTIVATION THEREOF, AND PROCESS FOR PRODUCING HYDROGEN AND DEVICE FOR USING THE CATALYST
US14/001,696 US9833773B2 (en) 2011-03-14 2012-03-08 Hydrogen production catalyst containing Ni3Si-based intermetallic compound, method for activating the catalyst, and hydrogen production method and device using the catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-055626 2011-03-14
JP2011055626 2011-03-14

Publications (1)

Publication Number Publication Date
WO2012124605A1 true WO2012124605A1 (ja) 2012-09-20

Family

ID=46830678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055984 WO2012124605A1 (ja) 2011-03-14 2012-03-08 Ni3Si系金属間化合物を含有する水素製造用触媒、当該触媒を活性化させる方法、当該触媒を用いた水素製造方法及び装置

Country Status (8)

Country Link
US (1) US9833773B2 (ja)
EP (1) EP2687289A4 (ja)
JP (1) JP5900894B2 (ja)
KR (1) KR20140046409A (ja)
CN (1) CN103459019B (ja)
CA (1) CA2828585C (ja)
TW (1) TW201242661A (ja)
WO (1) WO2012124605A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4321478A1 (en) 2022-08-12 2024-02-14 Bp P.L.C. Production of syngas from carbon dioxide through methanol
EP4321596A1 (en) 2022-08-12 2024-02-14 Bp P.L.C. Fischer-tropsch production of hydrocarbons from carbon dioxide through methanol
EP4321597A1 (en) 2022-08-12 2024-02-14 Bp P.L.C. Fischer-tropsch production of hydrocarbons from methanol
EP4321598A1 (en) 2022-08-12 2024-02-14 Bp P.L.C. Fischer-tropsch production of hydrocarbons from carbon dioxide through methanol

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54125195A (en) * 1978-03-20 1979-09-28 Texaco Development Corp Method of steam reforming nonaromatic hydrocarbon materials
JPS62183542U (ja) * 1986-05-13 1987-11-21
JP2007075799A (ja) 2005-09-16 2007-03-29 National Institute For Materials Science 水素製造用触媒とその製造方法
JP2009028583A (ja) 2007-07-24 2009-02-12 Osaka Prefecture Univ Ni3(Si,Ti)系金属間化合物からなるメタノールからの水素製造用触媒,水素製造方法、水素製造装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4507401A (en) * 1983-04-01 1985-03-26 At&T Bell Laboratories Intermetallic catalyst preparation
US4612407A (en) * 1983-04-01 1986-09-16 At&T Laboratories Aliphatic aromatization with intemetallic Group VIII-IIIA, IVA catalyst
CN1611623A (zh) * 2003-10-30 2005-05-04 中国科学院兰州化学物理研究所 镍硅基金属间化合物复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54125195A (en) * 1978-03-20 1979-09-28 Texaco Development Corp Method of steam reforming nonaromatic hydrocarbon materials
JPS62183542U (ja) * 1986-05-13 1987-11-21
JP2007075799A (ja) 2005-09-16 2007-03-29 National Institute For Materials Science 水素製造用触媒とその製造方法
JP2009028583A (ja) 2007-07-24 2009-02-12 Osaka Prefecture Univ Ni3(Si,Ti)系金属間化合物からなるメタノールからの水素製造用触媒,水素製造方法、水素製造装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
C.T.LIU ET AL.: "Environmental embrittlement and grain-boundary fracture in Ni3Si", SCRIPTA METALL., vol. 25, no. 8, August 1991 (1991-08-01), pages 1933 - 1937, XP024181040 *
G.LU ET AL.: "The bonding features and environmental embrittlement of L12 intermetallic compounds", MATER. LETT., vol. 24, no. 1/3, June 1995 (1995-06-01), pages 103 - 107, XP004067068 *
See also references of EP2687289A4
TAKAYUKI TAKASUGI: "Basic Research to Develop Dual Multi-phase Intermetallic Alloys as Next- generation Type Heat Resistant Materials", JAPAN SOCIETY FOR THE PROMOTION OF SCIENCE HOMEPAGE, 10 April 2011 (2011-04-10), XP055142368, Retrieved from the Internet <URL:http://www.jsps.go.jp/j-grantsinaid/12_kiban/hyouka23/shinchoku_gaiyo/03/summary28takasugi.pdf> *
YASUYUKI KANENO: "Development of high temperature structural intermetallic alloys having catalytic ability for hydrogen generation", DATABASE OF GRANTS-IN-AID FOR SCIENTIFIC RESEARCH, 27 May 2011 (2011-05-27), XP055142360, Retrieved from the Internet <URL:http://kaken.nii.ac.jp/pdf/2010/seika/jsps/24403/20560657seika.pdf> *

Also Published As

Publication number Publication date
KR20140046409A (ko) 2014-04-18
CA2828585C (en) 2015-06-16
US9833773B2 (en) 2017-12-05
CN103459019B (zh) 2016-04-27
US20130330263A1 (en) 2013-12-12
JPWO2012124605A1 (ja) 2014-07-24
CN103459019A (zh) 2013-12-18
EP2687289A1 (en) 2014-01-22
JP5900894B2 (ja) 2016-04-06
CA2828585A1 (en) 2012-09-20
TW201242661A (en) 2012-11-01
EP2687289A4 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
Burkhanov et al. Palladium-based alloy membranes for separation of high purity hydrogen from hydrogen-containing gas mixtures
El Hawa et al. Application of a Pd–Ru composite membrane to hydrogen production in a high temperature membrane reactor
García-García et al. High purity hydrogen production by low temperature catalytic ammonia decomposition in a multifunctional membrane reactor
Shu et al. Catalytic palladium‐based membrane reactors: A review
JP5081368B2 (ja) 酸化炭化水素からの低温水素生成
JP5900894B2 (ja) Ni3Si系金属間化合物を含有する水素製造用触媒、当該触媒を活性化させる方法、当該触媒を用いた水素製造方法及び装置
JP2007099528A (ja) 高純度水素の製造方法
Huang et al. Hydrogen transport through the V-Cr-Al alloys: Hydrogen solution, permeation and thermal-stability
US20140134100A1 (en) Hydrogen storage system by catalytic dehydrogenation of amines
Didenko et al. Hydrogen flux through the membrane based on the Pd–In–Ru foil
JP2007182336A (ja) 水素発生方法
JP2009520660A5 (ja)
JP4991175B2 (ja) 水素製造方法および水素製造装置
El-Shafie et al. Comparative study on the numerical simulation of hydrogen separation through palladium and palladium–copper membranes
JP2005200245A (ja) 窒素製造装置、アンモニア合成システム及び窒素製造方法並びにアンモニア合成方法
JP2012519658A (ja) 脂肪族1級アミン又はジアミンからの水素の放出及び回収
JP4918646B2 (ja) Ni3(Si,Ti)系金属間化合物からなるメタノールからの水素製造用触媒,水素製造方法、水素製造装置
Ma et al. Identification of PdPt alloys for preferential C 6 olefin hydrogenation over aromatic hydrocarbons through density functional theory and microkinetic modeling
Kojima et al. Intermetallic Catalysts Consisting of Early 3d Transition Metals and p-Block Metals for Ammonia Decomposition
Lukyanov Obtaining ultra-pure hydrogen for fuel cells in the reactors with membrane separation
JP2012523441A (ja) 水素化触媒としての規則化コバルト−アルミニウムおよび鉄−アルミニウム金属間化合物
JP2009220082A (ja) Lpg用水蒸気改質触媒の製造方法及びlpg用水蒸気改質触媒
JP2010201302A (ja) メタンの水蒸気改質触媒
JP5187845B2 (ja) メタノール分解触媒
JP2009291742A (ja) 水素透過部材及びこれを用いた水素生成反応器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280013307.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757826

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013504694

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14001696

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2828585

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137025363

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012757826

Country of ref document: EP