WO2012124430A1 - 太陽電池セルの製法および製造装置と太陽電池モジュールの製法 - Google Patents

太陽電池セルの製法および製造装置と太陽電池モジュールの製法 Download PDF

Info

Publication number
WO2012124430A1
WO2012124430A1 PCT/JP2012/053743 JP2012053743W WO2012124430A1 WO 2012124430 A1 WO2012124430 A1 WO 2012124430A1 JP 2012053743 W JP2012053743 W JP 2012053743W WO 2012124430 A1 WO2012124430 A1 WO 2012124430A1
Authority
WO
WIPO (PCT)
Prior art keywords
forming
substrate
compound semiconductor
ribbon
decompression chamber
Prior art date
Application number
PCT/JP2012/053743
Other languages
English (en)
French (fr)
Inventor
洸人 西井
細川 和人
太一 渡邉
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2012124430A1 publication Critical patent/WO2012124430A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32752Means for moving the material to be treated for moving the material across the discharge
    • H01J37/32761Continuous moving
    • H01J37/3277Continuous moving of continuous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67178Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers vertical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/6776Continuous loading and unloading into and out of a processing chamber, e.g. transporting belts within processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/206Particular processes or apparatus for continuous treatment of the devices, e.g. roll-to roll processes, multi-chamber deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a solar battery cell, a manufacturing apparatus for the solar battery cell, and a method for manufacturing a solar battery module using the solar battery cell.
  • group I elements such as Cu (copper), Ag (silver), etc. [group 11 elements in the new IUPAC, the same applies hereinafter], Al (aluminum), Ga (gallium), In (indium), etc.
  • Group III elements Group 13 elements
  • Group VI elements Group 16 elements
  • chalcopyrite solar cell As this type of chalcopyrite solar cell, a CIS solar cell, a CIGS solar cell, a CIGSS solar cell, a CZTS solar cell, and the like are known, and among them, the compound semiconductor layer is Cu, In, Ga.
  • CIGS solar cells composed of Se and Se have attracted attention among thin-film solar cells because they have excellent solar conversion efficiency (see Patent Document 1).
  • FIG. 4 is a diagram showing a general structure of a CIGS thin film solar cell.
  • the CIGS solar cell has a multi-layer structure as shown in FIG. 4 and is formed on a substrate 1 having heat resistance such as soda lime glass (SLG) or stainless steel (SUS), with molybdenum (Mo), tungsten (W), Metal layer electrode (back electrode 2) made of chromium (Cr), titanium (Ti), etc., compound semiconductor layer (light absorption layer) 3, buffer layer 4, indium tin oxide (ITO), indium zinc oxide (IZO) ) And a surface electrode (transparent electrode layer 5) made of a metal oxide such as zinc oxide (ZnO).
  • SSG soda lime glass
  • SUS stainless steel
  • Mo molybdenum
  • Mo tungsten
  • Metal layer electrode back electrode 2 made of chromium (Cr), titanium (Ti), etc.
  • compound semiconductor layer light absorption layer
  • buffer layer 4 buffer layer 4
  • ITO indium tin oxide
  • Such a CIGS solar cell is manufactured as follows. That is, first, the back electrode (layer) 2 is formed by sputtering (sputtering) on the substrate 1 that has been subjected to pretreatment such as cleaning. Next, the compound semiconductor layer 3 is formed on the back electrode 2. As a method for forming the compound semiconductor layer 3, a selenization method, a non-vacuum process (nanoparticle method), a vacuum deposition method, or the like is used. Next, the buffer layer 4 is formed on the compound semiconductor layer 3 by sputtering or chemical deposition (CBD), and finally, the transparent electrode layer 5 is formed on the buffer layer 4 by sputtering. (See Patent Document 2 etc.).
  • the compound semiconductor layer 3 is vacuum-deposited by heating Cu, In, Ga, and Se, which are vapor deposition materials, in different vapor deposition sources, and using the vaporized vapor of the vapor deposition material.
  • This is a method of forming a film by attaching it to a substrate or the like.
  • This vacuum evaporation method can be formed while controlling the evaporation amount (vapor discharge amount) of each evaporation material, so that optimum composition control with uniform film thickness in the plane direction (vertical, horizontal) of the substrate is possible.
  • a high conversion efficiency of about 20.1% is achieved.
  • the vacuum deposition method of the compound semiconductor layer 3 is to perform deposition (film formation) of each deposition material sequentially using a substantially rectangular substrate, but on the other hand, aiming at increasing the efficiency of this deposition process.
  • a method of forming the compound semiconductor layer 3 by a roll-to-roll process has also been studied (see Patent Document 3).
  • the solar cell obtained by using the batch type vapor deposition method for the formation of the compound semiconductor layer as described above As the size of the substrate (vapor deposition substrate) increases, the center of the vapor deposition source (deposition source) It is known that the film thickness of the compound semiconductor layer and the electrical characteristics thereof vary between the position corresponding to the position immediately above the nozzle) and the periphery thereof, and it is difficult to maintain the uniformity of physical properties. Therefore, the conventional solar cell module has a problem that it is difficult to increase the area of the module while maintaining the quality. In addition, if any one of the solar cells is defective in that time, the entire cell becomes a defective product. Therefore, the conventional method of enlarging the size of the electrode substrate such as a rectangle or square has a manufacturing yield. There is a high possibility of decline.
  • the present applicant has already formed a compound semiconductor layer on a long strip-shaped electrode substrate by using a roll-to-roll process in a vacuum evaporation apparatus, and has a strip-shaped (strip-shaped) solar cell having a predetermined length.
  • the required pressure (degree of vacuum) in each manufacturing (film formation) process such as vapor deposition and sputtering is also applied to the method for manufacturing a solar battery cell according to the above-mentioned application of the present applicant. Since the processing chambers (apparatus) are different from each other, it is necessary to take out the substrate in the middle of manufacture from these chambers and move it to another chamber, and it has been found that there is a time loss between the processes. There is room for improvement here.
  • the time loss between these steps uses a roll-to-roll process for producing the compound semiconductor layer. Needless to say, it's even bigger than the way it was.
  • the present invention has been made in view of such circumstances, and a solar cell manufacturing method and manufacturing apparatus that can efficiently manufacture homogeneous solar cells, and a large-area module with good quality can be manufactured at low cost.
  • the purpose is to provide a battery module manufacturing method.
  • the present invention provides a method for producing a strip-shaped solar battery cell by forming a compound semiconductor layer on a conductive ribbon substrate, and (a) the ribbon substrate.
  • a back electrode forming step for forming a back electrode on the ribbon-like base material; and
  • a transparent conductive layer forming step and (f) a base material recovery step for recovering the ribbon-shaped base material after forming each layer, wherein the ribbon-shaped base material has a plurality of decompression chambers corresponding to the respective steps. While traveling in the chamber, at least the above b) the step of ⁇ (e) is, in 1Pa following respective conditions, the method of the solar cell to be performed in succession in this order as the first aspect.
  • the present invention is an apparatus for producing a strip-shaped solar battery cell by forming a compound semiconductor layer on a conductive ribbon-shaped substrate, the substrate supply means A for feeding the ribbon-shaped substrate, Between the base material collecting means F that winds up the ribbon-like base material after processing, at least a decompression chamber B for forming the back-side electrode on the predetermined surface of the ribbon-like base material, and the back-side electrode A decompression chamber C for forming a compound semiconductor layer for forming a compound semiconductor layer on a predetermined surface, a decompression chamber D for forming a buffer layer for forming a buffer layer made of an oxide semiconductor on the predetermined surface of the compound semiconductor layer, and the buffer A chamber having a transparent conductive layer forming decompression chamber E for forming a transparent conductive layer made of a conductive oxide on a predetermined surface of the layer is provided, and the decompression chambers B to E are connected to the ribbon-like base material. Arranged to be able to travel During the decompression chamber B forming
  • the present invention provides a strip-shaped solar cell obtained by cutting a long strip-shaped solar cell obtained by the method for manufacturing a solar cell according to the first aspect to a predetermined length in the longitudinal direction of the substrate.
  • a plurality of strip-shaped solar cells are arranged in the width direction, and the long side portions adjacent to each other are overlapped to form a transparent conductive layer side electrode on each cell surface and a conductive group on the back surface of the cell.
  • the third gist is a method of manufacturing a solar cell module that forms a large-area solar cell module by electrically connecting the material or the back electrode.
  • the present invention is a roll-to-roll method in which each layer and film constituting a solar cell is continuously formed on a predetermined surface on a long strip (ribbon-like substrate) having a predetermined width while traveling. The process is carried out, whereby a solar cell having a stable quality is obtained at a high speed and in a high yield.
  • the “ribbon shape” and “strip shape” in the present invention is a concept including all long thin plate-like articles including a tape form or a film form, and the thickness of the article is not limited.
  • the “strip shape” means a shape such as an elongated strip or strip obtained by cutting such a long thin plate-shaped article into a predetermined length in the longitudinal direction.
  • solar battery cell refers to a photovoltaic element that converts sunlight into electrical energy
  • “solar battery module” electrically connects and mounts a plurality of solar battery cells. Say things.
  • the method for manufacturing a solar battery cell of the present invention all the film forming processes necessary for manufacturing the solar battery cell are performed by a roll-to-roll process in one chamber where a plurality of decompression chambers are continuously arranged. It is designed to be performed continuously. Therefore, the forming materials and processes vary between the forming steps (b) back electrode forming step, (c) compound semiconductor layer forming step, (d) buffer layer forming step, and (e) transparent conductive layer forming step.
  • the apparatus chamber
  • each thin film in the middle of manufacturing may be oxidized by touching the atmosphere (outside air) or impurities may adhere to the surface of the film or the like. Few. Thereby, the manufacturing method of the photovoltaic cell of this invention can produce a homogeneous photovoltaic cell efficiently.
  • the (b) back electrode forming step is performed by sputtering
  • the (c) compound semiconductor layer forming step is performed by vacuum deposition
  • the (d) buffer layer forming step is performed by sputtering
  • a differential evacuation unit for maintaining each of the decompression chambers at an individual required pressure is disposed between the decompression chambers in the chamber. If the pressure in the decompression chamber used in the layer formation step is 1/100 or less of the pressure in the decompression chamber used in the other steps (b), (d), (e), use it in each step
  • the pressure (vacuum degree) of the decompression chamber is performed by vacuum vapor deposition, and (c) a compound semiconductor layer forming step that requires high vacuum and sputtering under a higher pressure (low vacuum degree) (b) ), (D), and (e), respectively.
  • the film thickness is relatively thick.
  • the required back electrode can be efficiently produced at a high film formation rate, which is preferable.
  • the nozzle of the some vapor deposition source corresponding to each of the some material which comprises the said compound semiconductor layer in the decompression chamber used by the said (c) compound semiconductor layer formation process follows the traveling position of the said ribbon-shaped base material.
  • a metal substrate having a width of 5 to 30 mm is used as the ribbon-shaped substrate, and the compound semiconductor material in each evaporation source is heated and evaporated.
  • the ribbon-like base material is passed through a position where the distance L between the base material and the nozzles of the respective vapor deposition sources is 50 mm or less, the thickness is uniform in the base material width direction.
  • Each material layer having the physical properties can be formed at a high speed. Therefore, the manufacturing method of the solar battery cell of the present invention can stably produce a high-yield strip-shaped solar battery cell having a uniform quality with uniform electrical characteristics in both the width direction and the flow direction of the base material. .
  • steam discharge port in the nozzle of each said vapor deposition source is said ribbon-shaped base.
  • each material layer having a uniform thickness in the width direction of the base material can be made faster.
  • it can be manufactured with a high yield.
  • the compound semiconductor layer is selected from at least one compound semiconductor material selected from the group I element group in the periodic table and the group III element group.
  • a chalcopyrite semiconductor composed of at least one compound semiconductor material and at least one compound semiconductor material selected from the group VI element group, a high quality chalcopyrite thin film solar cell is obtained. Can be manufactured consistently in a roll-to-roll process.
  • the manufacturing apparatus of the photovoltaic cell used for the said manufacturing method is between the base material supply means A which sends out the said ribbon-shaped base material, and the base material collection
  • Each decompression chamber is a separate place A configuration that differential pumping means Z for maintaining the pressure is arranged.
  • the solar cell manufacturing apparatus of the present invention can individually maintain and control the pressure in each of the decompression chambers B to E to a pressure (vacuum degree) suitable for each formation process. It becomes possible. Therefore, the solar cell manufacturing apparatus of the present invention is for forming a transparent conductive layer from the decompression chamber B for forming the back electrode without taking out the long ribbon-shaped substrate once fed into the chamber from the chamber. And continuously passing through the decompression chamber E, the above formation process can be performed consistently under reduced pressure.
  • this solar cell manufacturing apparatus does not take out the ribbon-shaped base material from the decompressed chamber in the course of the formation process, each layer and film constituting the solar cell are in the atmosphere ( This is advantageous in that it is less likely to come into contact with the outside air) or to adhere dust or impurities to the surface of the film.
  • a first sputtering device is disposed in the decompression chamber B for forming the back electrode, and a vacuum deposition device is disposed in the decompression chamber C for forming the compound semiconductor layer.
  • the second sputtering device is disposed in the decompression chamber D for forming the buffer layer, and the third sputtering device is disposed in the decompression chamber E for forming the transparent conductive layer.
  • a chamber having a forming process can be easily configured.
  • a plurality of vapor depositions respectively corresponding to a plurality of materials constituting the compound semiconductor layer as the vacuum vapor deposition apparatus in the decompression chamber C for forming the compound semiconductor layer.
  • the nozzles of the source are arranged in a line along the travel position of the ribbon-shaped substrate, and the distance L between the ribbon-shaped substrate and each deposition source nozzle is set to a predetermined distance (for example, 50 mm) in the decompression chamber C.
  • the following is provided with a base material position stabilization means for traveling in a state maintained at a high speed: each material layer (material layer constituting the compound semiconductor layer) having a uniform film thickness in the base material width direction Can be manufactured stably.
  • a decompression chamber X containing the substrate supply means A is disposed at the upstream inlet in the substrate flow direction in the chamber, and the substrate recovery means F is disposed at the downstream outlet in the chamber flow direction in the chamber.
  • the decompression chamber Y containing the gas is disposed, and the decompression chamber X and the decompression chamber Y are connected to the chamber, respectively, including from the ribbon substrate feeding process to the winding process, All the battery cell manufacturing processes can be performed consistently in a chamber having a decompression chamber individually adjusted to a pressure (degree of vacuum) suitable for the process.
  • a pressure degree of vacuum
  • the strip-shaped solar cell obtained by the method for manufacturing the solar cell is cut into a predetermined length in the longitudinal direction of the base material to produce a strip-shaped solar cell, and this strip-shaped solar cell A plurality of electrodes are arranged in the width direction, and the long side portions adjacent to each other are overlapped, and the transparent conductive layer side electrode on each cell surface is electrically connected to the conductive substrate or back electrode on the back surface of the cell.
  • the solar cell module manufactured by this method has the advantage that the whole is homogeneous and the area can be easily increased. In other words, modules requested by customers, such as solar cell modules and household solar power generation units whose panels are specified (standardized), or solar power generation facilities such as larger solar cell arrays and mega solars It is excellent in that it can flexibly respond to size.
  • FIG. 1 It is a figure which shows schematic structure of the manufacturing apparatus of the photovoltaic cell in embodiment of this invention.
  • (A) is a figure which shows the internal structure of the decompression chamber C for the compound semiconductor layer formation in the chamber of the manufacturing apparatus of the said photovoltaic cell
  • (B) is the opening part of the nozzle of each vapor deposition source in the said decompression chamber C
  • (A) is a top view of the solar cell module in embodiment of this invention
  • (B) is sectional drawing of this solar cell module. It is typical sectional drawing which shows the structure of a CIGS type thin film solar cell.
  • the manufacturing apparatus used for the manufacturing method of the solar battery cell includes a chamber 10 having a plurality of processing decompression chambers (B, C, D, F) connected in a line, and the chamber 10.
  • a base material supply side decompression chamber X provided with an unwinding machine (base material supply means) A for supplying a processing base material (ribbon-like base material 1) and a ribbon-like base material 1 after processing are collected and wound. It comprises a base material recovery side decompression chamber Y equipped with a winder (base material recovery means) F to take.
  • the processing decompression chamber of the chamber 10 is from the unwinding machine A side (upstream side in the base material flow direction (white arrow)) from the decompression chamber B for forming the back electrode and the decompression chamber for forming the compound semiconductor layer.
  • C a decompression chamber D for forming a buffer layer, and a decompression chamber E for forming a transparent conductive layer are arranged in this order, and these decompression chambers B to E are maintained at a required pressure between the processing decompression chambers B to E.
  • Differential exhaust devices (differential exhaust means) Z 1 , Z 2 , and Z 3 are provided, and the ribbon-like substrate 1 is placed between processes (steps) that require different environmental pressures (atmospheres). It can be moved without interruption, and the processing and film formation can be performed continuously. This is a feature of the solar cell manufacturing apparatus of the present invention.
  • the manufacturing method of the photovoltaic cell using the said manufacturing apparatus is (a) The base material supply process which prepares and draws out the elongate ribbon-shaped base material 1 from the unwinding machine A, (b) In the decompression chamber B A back electrode forming step of forming a back electrode 2 by sputtering on one surface of the ribbon-like substrate 1 supplied from the unwinding machine A, and (c) a vacuum on the back electrode 2 in the decompression chamber C. A compound semiconductor layer forming step of forming the compound semiconductor layer 3 by vapor deposition; (d) a buffer layer forming step of forming the buffer layer 4 by sputtering on the compound semiconductor layer 3 in the decompression chamber D; and (e).
  • These decompression chambers B ⁇ Environment of the inner is, the arranged differentially pumped means Z between the decompression chamber B ⁇ E, it is kept separately 1Pa following pressure suitable for each processing. This is a major feature of the method for producing a solar battery cell of the present invention.
  • each process is demonstrated in order of the flow (working) of a base material with the detail of the said manufacturing apparatus based on drawing.
  • the white arrow indicates the flow direction (processing direction) of the long ribbon-shaped substrate 1
  • the solid black arrow indicates the exhaust direction of the air in the decompression chamber.
  • Reference numerals 31 to 36 in the figure denote exhaust ports provided for exhausting the respective decompression chambers.
  • the substrate supply step is wound around a reel or a roll using an unwinder A accommodated in the substrate supply side decompression chamber X.
  • This is a step of feeding the long ribbon-like substrate 1 to a predetermined position in the chamber 10 in accordance with a guide such as a guide roller.
  • the decompression chamber X the unwinding machine A and a guide roller for guiding the traveling position of the ribbon-shaped substrate 1 are arranged, and a back electrode forming later described through a connecting tube 21 is provided. It communicates with the decompression chamber B.
  • the decompression chamber X is provided with an exhaust port 31 connected to a vacuum source (not shown) such as a separately installed vacuum pump.
  • the decompression chamber X has a predetermined pressure. It is supposed to be kept. Since the decompression chamber X communicates with the decompression chamber B for forming the back electrode, the internal pressure is the same as that of the decompression chamber B (for example, 0.6 to 1.0 Pa).
  • the ribbon-shaped substrate 1 As the ribbon-like base material 1 supplied from the base material supply step, a highly conductive metal base material such as stainless steel (SUS), titanium (Ti), aluminum (Al) or the like is used.
  • the ribbon-shaped substrate 1 is long and has a width of 5 to 30 mm and a length of 1 to 100 m (thickness of about 10 to 100 ⁇ m), and is wound around a reel or a roll that can be set in the unwinding machine A. Be prepared.
  • the said ribbon-shaped base material 1 can withstand the tension
  • the reel of the unwinder A is the above-described winder. It is maintained in a state where the F reels are rotated (free state) or a slight brake (back tension) is applied.
  • the back electrode formation step is performed by sputtering on one surface (the lower surface in FIG. 1) of the ribbon-like substrate 1 supplied from the unwinder A in the decompression chamber B of the chamber 10. This is a step of forming (layer) 2.
  • a first sputtering device 11 that holds a material (target) for forming a back electrode, and a substrate such as a guide roller for maintaining a constant distance from the ribbon-like substrate 1 to the target Position stabilizing means (not shown) is arranged, and the ribbon-like substrate 1 is kept at a predetermined distance (L 11 ) with respect to the target holder (indicated by a dotted line in the figure) of the first sputtering apparatus. You can run.
  • a metal material such as Mo (molybdenum), W (tungsten), Cr (chrome), Ti (titanium) is used, and the inside of the decompression chamber B is 0.6 to 1..
  • Mo mobdenum
  • W tungsten
  • Cr chrome
  • Ti titanium
  • the inside of the decompression chamber B is 0.6 to 1..
  • the ribbon-shaped substrate 1 fed from the unwinding machine A is run on the first sputtering apparatus 11 and the back electrode is formed on the surface of the ribbon-shaped substrate 1 by DC sputtering.
  • a layer made of a target material for use (film thickness of about 100 to 1000 nm) is continuously formed.
  • the communication pipe 21 communicating with the decompression chamber X is connected to the upstream side of the decompression chamber B (on the base material supply side and the unwinding machine A side).
  • the decompression chamber B and the decompression chamber C for forming a compound semiconductor layer described later have different required pressures.
  • a differential exhaust device Z 1 for maintaining the above is provided. Then, the ribbon-like substrate 1 on which the back electrode 2 is formed passes through the differential exhaust device Z 1 in that state and is conveyed to the decompression chamber C which is the next step.
  • a plurality of materials are sequentially stacked on the back electrode 2 by vacuum deposition in the decompression chamber C of the chamber 10 to form a compound semiconductor layer. 3 is formed.
  • nozzles of a plurality of deposition sources for forming the compound semiconductor layer (four in this embodiment, 12 to 15; the deposition apparatus main body may be installed outside the decompression chamber.
  • a base material position stabilizing means such as a guide roller for guiding the travel position of the ribbon-like base material 1 is disposed, and is shown in the enlarged view of the decompression chamber C in FIG.
  • the ribbon-like substrate 1 introduced into the decompression chamber C from the decompression chamber B via the differential exhaust device Z 1 has its deposition target surface facing the nozzles 12 to 15 of the deposition source. (Downward), and travels at a predetermined distance L (distances from the nozzles of the respective vapor deposition sources are L 12 , L 13 , L 14 and L 15 ), respectively, from the nozzles 12 , 13 , 14 , 15 of the respective vapor deposition sources. It is configured to be able to. (Hereinafter, the “deposition source nozzle” may be simply referred to as “deposition source”.)
  • the number of vapor deposition sources in the decompression chamber C varies depending on the composition of the compound semiconductor layer 3.
  • the nozzles 12 to 15 of the vapor deposition source are provided with height adjusting means capable of individually controlling the distances L 12 , L 13 , L 14 and L 15 with respect to the ribbon-like substrate 1.
  • the inner cylinder is configured to be movable up and down (up and down).
  • a vapor deposition material, which will be described later, and a heater (not shown) for heating and evaporating the vapor deposition material are disposed inside the vapor deposition source, and a shutter 12a is provided in each upper opening of the nozzle. , 13a, 14a, 15a, etc. are attached.
  • the compound semiconductor layer 3 produced in the present embodiment is a chalcopyrite (chalcopyrite) type compound semiconductor layer made of an I-III-VI group element. Specifically, it is obtained by combining copper (Cu), indium (In), gallium (Ga), selenium (Se), sulfur (S), aluminum (Al), etc., for example, CuInGaSe, CuInGaS, CuInAlSe, CuInAlS, or the like can be formed.
  • the vapor deposition method of the compound semiconductor layer 3 in the decompression chamber C will be specifically described by taking a case of forming a thin film made of Cu (In, Ga) Se 2 (CIGS compound) as an example.
  • each vapor deposition source (12, 13, 14, 15) is sequentially set in each vapor deposition source (12, 13, 14, 15) in accordance with the vapor deposition order (setting of other decompression chambers is also performed. ).
  • the ribbon-like substrate 1 is inserted from the unwinding machine A to the winding machine F through the entire chamber 10 via the decompression chambers B to E, and the working opening of the chamber 10 is opened. All are closed, and a vacuum source (not shown) such as a separately installed vacuum pump is operated to depressurize the decompression chambers B to E for processing and the decompression chambers X and Y for base material operation.
  • the pressure is 1 Pa or less suitable for each processing.
  • the decompression chamber C is decompressed to a vacuum of 10 ⁇ 3 Pa or less suitable for vacuum deposition.
  • the decompression chambers X and B are controlled to 0.6 to 1.0 Pa
  • the decompression chambers D, E, and Y are controlled to 0.2 to 0.5 Pa
  • the pressure in the decompression chamber C (0. 001 Pa or less) is 1/100 or less of the pressure in these decompression chambers B, D, and E.
  • the interior of the decompression chamber C is heated to 300 to 600 ° C. (in this example, 550 ° C. or more), and when the winder F is operated, the decompression chamber B (rear electrode)
  • the ribbon-like substrate 1 with the back electrode 2 formed on the lower surface thereof is supplied to the decompression chamber C via the differential exhaust device Z 1 and the differential exhaust device Z 1 , and a guide roller or the like 2, and travels at an upper position away from the nozzles 12 , 13 , 14 , 15 of the respective vapor deposition sources by a predetermined distance L 12 , L 13 , L 14 , L 15 [FIG. )reference ⁇ .
  • each vapor deposition material set in the vapor deposition source (12, 13, 14, 15) is suitable for evaporation of the material by a heating means (not shown) provided in the vapor deposition source.
  • the temperature for example, first deposition source (Cu) 1150 ° C., second deposition source (In) 950 ° C., third deposition source (Ga) 1000 ° C., fourth deposition source (Se) 200 ° C.
  • the temperature is raised, and the vapor is filled in the vapor deposition sources (nozzles 12, 13, 14, 15).
  • the film thickness of the obtained compound semiconductor layer 3 is preferably in the range of 1.5 to 3.0 ⁇ m from the viewpoint of device characteristics of the solar battery cell.
  • the inner cylinders (height adjusting means) of the nozzles 12, 13, 14, and 15 of the respective vapor deposition sources are moved up and down, and the ribbon
  • the distance L (L 12 , L 13 , L 14 , L 15 ) between the substrate 1 and the nozzles 12 , 13 , 14 , 15 of each vapor deposition source was kept at 50 mm or less (30 mm in this example) for vapor deposition. .
  • the width W of the vapor outlet / the width H of the base material is less than 1, the film thickness of the central portion in the width direction of the compound semiconductor layer formed on the base material and the end portions in the width direction (both side edge portions) The difference from the film thickness exceeds 10% in the thickness ratio, and there is a tendency that a compound semiconductor layer having a uniform film thickness cannot be obtained.
  • the width W of the vapor outlet / the width H of the base material exceeds 1.5, the uniformity of the film thickness in the base material width direction is improved, but the vapor deposition material that is not attached to the base material and is wasted There is a tendency to increase.
  • the ribbon-shaped substrate 1 is moved horizontally at a predetermined position (a fixed height position) in the decompression chamber C, and the inner cylinders of the nozzles 12, 13, 14, and 15 of the respective vapor deposition sources are moved up and down.
  • the distance L (L 12 , L 13 , L 14 , L 15 ) between the ribbon-shaped substrate 1 and the vapor discharge port of the vapor deposition source was set to 50 mm or less.
  • the thickness is preferably 0.1 to 50 mm, and more preferably 1 to 10 mm.
  • the distance L between the ribbon-like substrate 1 and the nozzles 12, 13, 14, and 15 of the vapor deposition source is less than 0.1 mm, the deposition rate of vapor deposition is too high and the compound semiconductor layer 3 having a uniform thickness is formed. There is a tendency not to do.
  • the distance L exceeds 50 mm, since the deposition rate of vapor deposition is low, the product processing speed does not improve, the film thickness of the compound semiconductor layer 3 varies, and the loss of vapor deposition material tends to increase. .
  • amend the scattering amount ( adhesion amount of the vapor deposition material with respect to a base material) of the vapor deposition material of the said base material width direction at the vapor
  • the method of adjusting the distance L between the nozzles 12, 13, 14, 15 of each vapor deposition source and the ribbon-shaped substrate 1 may be other methods, for example, the nozzles 12, 13, 14, 15 of each vapor deposition source.
  • the nozzles 12, 13, 14, 15 of each vapor deposition source By aligning the upper end surface (opening) to the same height, adding a large number of guide rollers for guiding the travel of the ribbon-shaped substrate 1, and changing the position (height) of each of these guide rollers, A method of individually changing the traveling position of the material 1 on the nozzles 12, 13, 14, and 15 of the respective vapor deposition sources may be used.
  • the vapor deposition source (15) used for vapor deposition of the group VI element has a heating temperature (200 ° C.) higher than that of the base material (550 ° C. or higher) to be vapor deposited. Since it is low, thermal interference may occur due to radiant heat caused by the proximity of the base material. In that case, you may attach the thermal interference suppression means for suppressing it in the vapor
  • (D) Buffer Layer Formation Step The subsequent buffer layer formation step is performed on the one surface (lower surface) of the ribbon-like substrate 1 that passes through the decompression chamber C (compound semiconductor layer formation step) in the decompression chamber D of the chamber 10.
  • a substrate such as a second sputtering device 16 for holding a material (target) for forming a buffer layer and a guide roller for maintaining a constant distance from the target of the ribbon-like substrate 1
  • Position stabilizing means (not shown) is arranged, and the ribbon-like substrate 1 with the compound semiconductor layer is a predetermined distance (L 16 ) from the target holder (indicated by a dotted line in the figure) of the second sputtering apparatus 16. It is possible to run while maintaining.
  • the target material for forming the buffer layer a compound having n-type semiconductor characteristics is used. Specific examples thereof include zinc oxide compounds such as ZnO, (Zn, Mg) O, and Zn (O, S). Is given.
  • the buffer layer is formed by applying the compound semiconductor layer-attached ribbon-like substrate 1 that has passed through the differential exhaust device Z 2 on the second sputtering device 16 in a state where the pressure in the decompression chamber D is reduced to 0.2 to 0.5 Pa. And a layer made of the target material for forming the buffer layer (film thickness of about 50 to 200 nm) is continuously formed on the surface of the ribbon-like substrate 1 by DC sputtering.
  • the decompression chamber D and the decompression chamber C in the compound semiconductor layer forming step are separately provided on the upstream side of the decompression chamber D (on the substrate supply side and the unwinder A side).
  • a differential exhaust device Z 2 for maintaining the required pressure is provided.
  • this decompression chamber D and a decompression chamber E for forming a transparent conductive layer (transparent electrode), which will be described later the have been arranged differential exhaust system Z 3 for each maintained at a different required pressure, the ribbon-shaped substrate 1 in which the buffer layer 4 is formed, the differential pumping system Z 3 in that state And is conveyed to the decompression chamber E which is the next process.
  • this buffer layer forming step is performed by consistent vacuum in the chamber 10 in which the decompression chambers are integrally connected by the differential exhaust devices Z 2 and Z 3 .
  • the conventional chemical deposition method (batch type) is used. Compared with the buffer layer formation performed, there is no waiting time or working time between steps, and the processing time can be greatly reduced. Further, it is not necessary to take out the ribbon-like substrate 1 in the middle of processing from the chamber 10, and there is a risk that the thin film in the process of touching the atmosphere (outside air) may deteriorate the quality, or impurities may adhere to the surface of the film. It has the advantage of being less.
  • Transparent conductive layer forming step The next transparent conductive layer forming step is performed on the one surface (lower surface) of the ribbon-like substrate 1 through the reduced pressure chamber D (buffer layer forming step) in the reduced pressure chamber E of the chamber 10. This is a step of forming a transparent conductive layer (transparent electrode) 5 made of a conductive oxide by sputtering similar to the above (d) buffer layer forming step.
  • a base such as a third sputtering device 17 for holding a material (target) for forming a transparent conductive layer and a guide roller for maintaining a constant distance from the target of the ribbon-like substrate 1 is used.
  • Material position stabilizing means (not shown) is arranged, and the ribbon-like substrate 1 with the compound semiconductor layer is a predetermined distance (L 17 ) with respect to the target holder (indicated by a dotted line in the figure) of the third sputtering apparatus 17. ) Can be run while maintaining.
  • a metal oxide having a light transmittance exceeding 80% such as indium tin oxide (ITO), indium zinc oxide (IZO), zinc aluminum oxide (Al: ZnO), or the like is used.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • Al zinc aluminum oxide
  • the ribbon-like substrate 1 with a buffer layer that has passed through the differential exhaust device Z 3 is run on the third sputtering device 17 to perform DC sputtering.
  • a transparent electrode layer (having a film thickness of about 50 to 200 nm) made of the target material for forming the transparent conductive layer is continuously formed on the surface of the ribbon-like substrate 1.
  • the decompression chamber E and the decompression chamber D in the buffer layer forming step are separately provided on the upstream side of the decompression chamber E (on the base material supply side and the unwinding machine A side).
  • differential exhaust system Z 3 for maintaining the required pressure is provided.
  • the downstream side base material winding side and winder F side
  • the downstream side is connected with a communication tube 22 communicating with a decompression chamber Y provided with a winder F described later.
  • the ribbon-like substrate 1 that has been processed is transported to the final substrate recovery step.
  • the base material recovery step is a winding machine in which the ribbon-shaped base material 1 (ribbon-shaped solar battery cell) after the formation of the transparent conductive layer is accommodated in the base material recovery-side decompression chamber Y. This is a step of collecting by winding on a reel or roll using F. Inside the decompression chamber Y, a winder F that can wind the ribbon-shaped substrate 1 at a predetermined speed (line speed), a guide roller that guides the traveling position of the ribbon-shaped substrate 1, and the like Is arranged. Since the decompression chamber Y communicates with the decompression chamber E for forming the transparent conductive layer via the connecting pipe 22, the internal pressure thereof is the same as that of the decompression chamber E (0.2 to 0.5 Pa). It has become.
  • a long solar cell having a width of 5 to 30 mm (base material width) and a length of 1 to 100 m can be obtained.
  • the strip-shaped solar battery cell described later is manufactured by cutting this long strip-shaped solar battery cell into a predetermined length (1 cm to 10 m) in the longitudinal direction of the base material.
  • the manufacturing method of the above-described solar battery cell it is not necessary to take out the base material or the base material after film formation from the apparatus (chamber 10) between the respective forming processes having different forming materials and film forming conditions, and each decompression chamber A There is no work of repeating the pressure reduction and pressurization (release to atmospheric pressure) of ⁇ F, and there is no waiting time (loss time) between processes. Furthermore, there is no possibility that each thin film in the course of production will be oxidized by contact with the atmosphere (outside air) or impurities will adhere to the surface of the film. Thereby, the manufacturing method of the photovoltaic cell in this embodiment can produce a high quality photovoltaic cell efficiently.
  • the group I element (Cu) which comprises a CIGS type
  • the ribbon-like base material 1 is run at a position where the distance L (L 12 , L 13 , L 14 , L 15 ) between the base material 1 and the nozzles 12 , 13 , 14 , 15 of each vapor deposition source is 50 mm or less.
  • the manufacturing method of this photovoltaic cell can form the compound semiconductor layer 3 with the stable physical property with the film thickness uniform in the base-material width direction at high speed.
  • the manufacturing method of the solar battery cell according to the present embodiment stably produces a high-yield band-shaped solar battery cell having a uniform quality with the same electrical characteristics in both the width direction and the flow direction of the base material. It becomes possible.
  • the long strip-shaped solar battery cell obtained in the manufacturing process of the solar battery cell is cut into a predetermined length (base material longitudinal direction) to produce a strip-shaped solar battery cell.
  • Step of cutting the strip solar cell This step is performed by, for example, thermal means such as a laser while feeding out the long strip solar cell (width 5 to 30 mm) wound around a reel or a roll.
  • thermal means such as a laser
  • the strip solar cell is cut in a predetermined dimension in the longitudinal direction (long) of the substrate, and the size of the obtained strip solar cell (6) is determined in the next step.
  • the cutting length is usually 1 cm to 10 m, preferably 2 cm to 2 m (base material longitudinal direction). This cutting length is appropriately changed depending on the housing size of the solar cell module (M) used in the next step.
  • belt-shaped photovoltaic cell is the inspection process which inspects while sending out the said elongate strip
  • the defect site can be easily excised by cutting and removing both sides in the substrate longitudinal direction of the defect site discovered in the inspection process.
  • this defect excision method is excellent in that the loss due to defects of solar cells can be minimized. It is more convenient to perform the inspection process and the defect excision process before cutting the strip-shaped solar cell.
  • the strip-shaped solar cell (6) is individually inspected to excise the defective part. May be.
  • FIG. 3A is a plan view of the solar cell module M in the present embodiment
  • FIG. 3B is a cross-sectional view of the solar cell module M.
  • (H) Assembling step of solar cell module In this step, a plurality of strip-like solar cells 6 having the same length are arranged according to the current value and voltage value required as a module (product) (this embodiment). 3 are connected in series to produce a solar cell module M as shown in FIG. 3A and 3B, 7 is a bonding metal, 41 is a frame, 42 is a back surface support material, 43 is a surface protection material, and 44 is a sealing resin. Further, the frame 41, the back surface support member 42, and the surface protection member 43 form a housing (case) that houses the strip-shaped solar cells 6.
  • the strip solar cells 6 are aligned in the longitudinal direction of the base material, and the width direction of the base material is predetermined with respect to the bottom of the housing as shown in FIG. In a state where the angle is inclined, the respective parts (long side portions) are accommodated so as to overlap each other. Then, the electrode (transparent electrode or transparent conductive layer 5) on the surface of the adjacent strip-shaped solar cell 6 and the electrode on the back surface of the cell (conductive metal ribbon-like substrate 1 or back electrode 2) are joined metal 7 Such a conductive member, conductive tape, adhesive, solder material, or the like is used for electrical connection (in this case, in series) at the overlapping portion.
  • the gap in the housing is filled with a transparent sealing resin 44 or the like in order to protect each strip-like solar cell 6 from moisture, dirt, ultraviolet rays, physical stress, and the like.
  • a solar cell module M as a product is completed through a power generation performance inspection and the like.
  • a terminal board or the like for taking out the electric power (current) generated in each strip-like solar cell 6 to the outside is disposed in the housing of the solar cell module M, and is provided outside the housing. External terminals (not shown) for electrical and physical connection with other solar cell modules M and the like are attached.
  • the size of the solar cell module M is appropriately set depending on the application. For example, the width is about 10 cm to 1 m, and the length is about 50 cm to 2 m.
  • the frame 41 depends on the application of the solar cell. May be omitted.
  • the environment used, etc. as a material which constitutes frame 41, metal, resin, etc. can be used, for example.
  • a material which constitutes frame 41 metal, resin, etc.
  • the back surface support member 42 a metal plate, a resin plate, a fluororesin film, a polyethylene terephthalate (PET) film, or the like can be suitably used.
  • the surface protective material 43 and the sealing resin 44 must be transparent or translucent, and a suitable example of the surface protective material 43 is tempered white plate glass or the like. Preferable examples of these include ethylene vinyl acetate copolymer resin (EVA).
  • EVA ethylene vinyl acetate copolymer resin
  • the solar cell module manufacturing method of this embodiment can efficiently manufacture a large-area solar cell module. Moreover, since the strip-shaped solar battery cell is used as the solar battery cell, the solar battery module or the household solar power generation unit whose panel size is specified (standardized), or larger scale It is advantageous in that it can flexibly respond to module sizes requested by customers, such as solar power generation facilities such as solar array and mega solar.
  • Example 1 Using the solar cell manufacturing apparatus described in the above embodiment (see FIG. 1), a band-shaped solar cell of “Example 1” was manufactured by a roll-to-roll process in a consistent vacuum. Note that the solar battery cell of Example 1 was never taken out of the chamber during its production (formation process), and the following steps were continuously performed according to the procedure described in the above embodiment.
  • the processing conditions are as follows.
  • ⁇ Backside electrode formation process> Decompression chamber B: Indoor pressure 0.8 Pa
  • Back electrode forming material Mo
  • Decompression chamber C indoor pressure 1 ⁇ 10 ⁇ 3 Pa, indoor temperature 550 ° C.
  • Distance (vapor deposition distance) L 30 mm between the vapor discharge port of each vapor deposition source and the substrate running position
  • Decompression chamber D Indoor pressure 0.2 Pa
  • Back electrode forming material Zn (O, S) ZnO 80 wt%, ZnS 20 wt%
  • a buffer layer having a thickness of 100 nm was continuously formed by a sputtering method.
  • Decompression chamber E Indoor pressure 0.4 Pa Back electrode forming material: ITO A transparent conductive layer (transparent electrode) having a thickness of 200 nm was continuously formed by a sputtering method.
  • the ribbon-like substrate was taken out from the downstream opening (newly installed) of the decompression chamber C to the outside of the chamber (second time under atmospheric pressure) and wound up. Furthermore, the base material wound up outside the apparatus is introduced into the chamber from the downstream opening of the decompression chamber C, and under the same conditions as in Example 1, the buffer layer forming step (decompression chamber D) by sputtering and by sputtering. After performing the transparent conductive layer forming step (decompression chamber E), the completed solar battery cell was wound up by the winder F of the apparatus, and the solar battery cell of “Comparative Example 1” was obtained.
  • the other processing conditions are the same as in Example 1 except that the processing is performed twice outside the apparatus (under atmospheric pressure) during processing as described above.
  • Reference Example 1 The solar cell of Reference Example 1 uses a 100 mm square blue plate glass (SLG) substrate as a base material, and sequentially uses a batch type sputtering apparatus and a vacuum deposition apparatus, under the same processing conditions as in Example 1. A solar battery cell was produced. Note that the chambers (working chambers) of the above apparatuses are not connected (communicated), and an operation of taking out the substrate under atmospheric pressure is always included between the processes. In addition, a waiting time for decompressing and pressurizing (opening) each chamber (processing chamber) is generated for each process.
  • SLG blue plate glass
  • the solar cell of Reference Example 1 has a conversion.
  • solar cells having uniform quality can be efficiently manufactured in a short time.
  • the cost per unit area of a photovoltaic cell can be reduced.
  • this solar cell is easy to increase in area and modularization and has a low unit price as described above, so that it can be used for a household solar power generation unit, or a larger solar cell array, mega solar, etc. Suitable for solar power generation facilities.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 均質な太陽電池セルを効率良く作製できる太陽電池セルの製法および製造装置と、品質が良好な大面積のモジュールを低コストで作製できる太陽電池モジュールの製法を提供する。本発明の太陽電池セルの製法は、(a)導電性のリボン状基材を供給する基材供給工程と、(b)基材の上に裏面電極を形成する裏面電極形成工程と、(c)裏面電極の上に化合物半導体層を形成する化合物半導体層形成工程と、(d)化合物半導体層の上に酸化物半導体からなるバッファ層を形成するバッファ層形成工程と、(e)バッファ層の上に導電性酸化物からなる透明導電層を形成する透明導電層形成工程と、上記各層形成後のリボン状基材を回収する基材回収工程とを備え、上記リボン状基材が、上記各工程に対応した複数の減圧室を有するチャンバ内を走行する間に、少なくとも上記(b)~(e)の工程が、それぞれ1Pa以下の条件下において、この順に連続して行われる。

Description

太陽電池セルの製法および製造装置と太陽電池モジュールの製法
 本発明は、太陽電池セルの製法および太陽電池セルの製造装置と、この太陽電池セルを用いた太陽電池モジュールの製法に関するものである。
 近年、電極基板上に、Cu(銅),Ag(銀)等のI族元素〔新IUPACでは第11族元素、以下同じ〕、Al(アルミニウム),Ga(ガリウム),In(インジウム)等のIII族元素〔第13族元素〕、S(硫黄),Se(セレン),Te(テルル)等のVI族元素〔第16族元素〕からなるカルコパイライト型と呼ばれる化合物半導体層(光吸収層)を形成した、薄膜太陽電池の開発が行われている。
 この種のカルコパイライト系太陽電池としては、CIS系太陽電池,CIGS系太陽電池,CIGSS系太陽電池,CZTS系太陽電池等が知られているが、なかでも、化合物半導体層がCu,In,Ga,SeからなるCIGS系太陽電池は、優れた太陽光変換効率を有するため、薄膜太陽電池の中でも注目されている(特許文献1を参照)。
 図4は、CIGS系薄膜太陽電池の一般的な構造を示す図である。
 CIGS系太陽電池は、図4のような多層構造であり、ソーダライムガラス(SLG)やステンレススチール(SUS)のような耐熱性を有する基板1上に、モリブデン(Mo),タングステン(W),クロム(Cr),チタン(Ti)等からなる金属層電極(裏面電極2)と、化合物半導体層(光吸収層)3と、バッファ層4と、酸化インジウム錫(ITO),酸化インジウム亜鉛(IZO),酸化亜鉛(ZnO)等の金属酸化物からなる表面電極(透明電極層5)と積層した構造をとる。
 このようなCIGS系太陽電池の製造は、つぎのようにして行われる。すなわち、まず、洗浄等の前処理を施した基板1上に、スパッタ法(スパッタリング)により、上記裏面電極(層)2を形成する。ついで、この裏面電極2の上に、化合物半導体層3を形成する。この化合物半導体層3の形成方法としては、セレン化法,非真空プロセス(ナノ粒子法)、真空蒸着法等が用いられる。つぎに、上記化合物半導体層3の上に、スパッタ法あるいは化学析出(CBD)法等により、バッファ層4を形成し、最後に、スパッタ法で、上記バッファ層4の上に、透明電極層5を形成する(特許文献2等を参照)。
 上記CIGS系太陽電池の製法のうち、化合物半導体層3の真空蒸着法は、蒸着材料であるCu,In,Ga,Seを、それぞれ別の蒸着源にて加熱し、その蒸着材料の揮発蒸気を基板等に付着させて形成する手法である。この真空蒸着法は、各蒸着材料の蒸発量(蒸気の吐出量)を制御しながら形成することができるため、基板の平面方向(縦,横)に膜厚の揃った最適な組成制御が可能で、小面積の太陽電池セルの作製においては、変換効率が約20.1%という、高い変換効率の達成も報告されている。
 上記化合物半導体層3の真空蒸着法は、略方形状の基板を用いて、バッチ式で各蒸着材料の蒸着(成膜)を順次行うのであるが、一方、この蒸着工程の効率アップを目指して、ロール・トゥ・ロール(Roll to Roll)プロセスにより、上記化合物半導体層3を形成する方法も検討されている(特許文献3を参照)。
特表平10-513606号公報 特開平8-306945号公報 特開2004-218008号公報
 ところで、上記のような、化合物半導体層の形成にバッチ式の蒸着法を用いて得られる太陽電池セルは、基板(蒸着基板)サイズの大形化が進むにつれ、蒸着源の中心(蒸着源のノズル真上)に相当する位置とその周囲とで、上記化合物半導体層の膜厚およびその電気的特性がばらつき、物性の均一性を保つのが困難であることが知られている。そのため、従来の太陽電池モジュールでは、品質を保ちながらモジュールを大面積化することが難しいという問題があった。また、太陽電池セルは、そのうちに1個所でも欠陥があると、セル全体が欠陥品となってしまうため、従来の長方形,正方形等の電極基板のサイズを拡大していく方法では、製造歩留りが低下する可能性が高い。
 そこで、本出願人は既に、真空蒸着装置内でロール・トゥ・ロールプロセスを用いて、長尺の帯状電極基板上に化合物半導体層を形成して所定長さのストリップ状(短冊状)太陽電池セルを多数作製し、これらストリップ状太陽電池セルを幅方向に重ねて電気的に接続することにより、品質が良好な大面積の太陽電池モジュールを低コストで製造する方法を提案している(平成22年2月24日出願 特願2010-39439を参照)。
 しかしながら、本発明者らが実験および試作を重ねたところ、上記本出願人の出願による太陽電池セルの製造方法においても、蒸着,スパッタリング等の各製造(成膜)工程における所要圧力(真空度)と加工チャンバ(装置)が異なることから、これらチャンバから製作途中の基板を取り出し、別のチャンバに移動する作業が必要となるため、工程間の時間的ロスが発生していることが判明した。ここに改良の余地がある。
 なお、前記従来法のような、バッチ式の蒸着法を用いて太陽電池セルを得る方法においては、この工程間の時間的ロスが、上記化合物半導体層の作製にロール・トゥ・ロールプロセスを用いた方法より、さらに大きいことは言うまでもない。
 本発明は、このような事情に鑑みなされたもので、均質な太陽電池セルを効率良く作製できる太陽電池セルの製法および製造装置と、品質が良好な大面積のモジュールを低コストで作製できる太陽電池モジュールの製法の提供をその目的とする。
 上記の目的を達成するため、本発明は、導電性のリボン状基材の上に化合物半導体層を形成して帯状の太陽電池セルを製造する方法であって、(a)上記リボン状基材を供給する基材供給工程と、(b)上記リボン状基材の上に裏面電極を形成する裏面電極形成工程と、(c)上記裏面電極の上に化合物半導体層を形成する化合物半導体層形成工程と、(d)上記化合物半導体層の上に酸化物半導体からなるバッファ層を形成するバッファ層形成工程と、(e)上記バッファ層の上に導電性酸化物からなる透明導電層を形成する透明導電層形成工程と、(f)上記各層形成後のリボン状基材を回収する基材回収工程と、を備え、上記リボン状基材が、上記各工程に対応した複数の減圧室を有するチャンバ内を走行する間に、少なくとも上記(b)~(e)の工程が、それぞれ1Pa以下の条件下において、この順に連続して行われる太陽電池セルの製法を第1の要旨とする。
 また、本発明は、導電性のリボン状基材の上に化合物半導体層を形成して帯状の太陽電池セルを製造する装置であって、上記リボン状基材を送り出す基材供給手段Aと、加工後のリボン状基材を巻き取る基材回収手段Fとの間に、少なくとも、上記リボン状基材の所定面に裏面電極を形成する裏面電極形成用の減圧室Bと、上記裏面電極の所定面に化合物半導体層を形成する化合物半導体層形成用の減圧室Cと、上記化合物半導体層の所定面に酸化物半導体からなるバッファ層を形成するバッファ層形成用の減圧室Dと、上記バッファ層の所定面に導電性酸化物からなる透明導電層を形成する透明導電層形成用の減圧室Eとを有するチャンバが設けられ、これら減圧室B~Eが、上記リボン状基材が連続して走行可能なように配置され、上記減圧室B~Eの各間に、これら各減圧室をそれぞれ個別の所要圧力に保つための差動排気手段Zが配設されている太陽電池セルの製造装置を第2の要旨とする。
 さらに、本発明は、上記第1の要旨に記載の太陽電池セルの製法によって得られた長尺の帯状太陽電池セルを、基材長手方向に所定長さに切断し、ストリップ状の太陽電池セルを作製するとともに、このストリップ状太陽電池セルを幅方向に複数個並べ、互いに隣接する長辺側部どうしを重ね合わせて、これら各セル表面の透明導電層側電極と、セル裏面の導電性基材または裏面電極とを、電気的に接続することにより、大面積の太陽電池モジュールを形成する太陽電池モジュールの製法を第3の要旨とする。
 本発明は、所定幅の帯状長尺物(リボン状基材)を走行させながら、その上の所定面に、太陽電池セルを構成する各層,膜を連続的に形成する、ロール・トゥ・ロールプロセスを行うものであり、それによって、品質の安定した太陽電池セルを、高速かつ高収率で得るようにするものである。なお、本発明における「リボン状」,「帯状」とは、テープ状またはフィルム状等を含む、長尺の薄板状物品すべてを包含する概念であり、その物品の厚みを問わない。また、「ストリップ状」とは、そのような長尺の薄板状物品を長手方向に所定長さに切断した、細長い長片状または短冊状等の形状を意味する。また、本発明において、「太陽電池セル」とは、太陽光を電気エネルギーに変換する光起電力素子をいい、「太陽電池モジュール」とは、複数の太陽電池セルを電気的に接続・実装したものをいう。
 本発明の太陽電池セルの製法によれば、太陽電池セルの作製に必要な成膜過程のすべてが、複数の減圧室が続けて配置された一つのチャンバ内で、ロール・トゥ・ロールプロセスにより連続して行われるようになっている。そのため、上記(b)裏面電極形成工程,(c)化合物半導体層形成工程,(d)バッファ層形成工程,(e)透明導電層形成工程の各形成工程間で、形成材料およびプロセスが変わっても、基材や成膜された基材を装置(チャンバ)から取り出す必要がなく、これらチャンバの減圧-加圧(大気圧下への開放)を繰り返す作業や、工程間の待ち時間(ロスタイム)もない。さらに、各形成工程間で基材をチャンバから取り出す必要がないことから、製造途中の各薄膜が大気(外気)に触れて酸化したり、その膜等の表面に不純物が付着したりするおそれも少ない。これにより、本発明の太陽電池セルの製法は、均質な太陽電池セルを効率良く作製することができる。
 さらに、本発明の太陽電池セルの製法において、上記(b)裏面電極形成工程がスパッタリングにより行われ、上記(c)化合物半導体層形成工程が真空蒸着により行われ、上記(d)バッファ層形成工程がスパッタリングにより行われ、上記(e)透明導電層形成工程がスパッタリングにより行われる場合は、上記各工程を途切れなく連続して行うことができ、上記太陽電池セルをより効率良く作製することが可能になる。
 また、上記太陽電池セルの製法において、上記チャンバ内の各減圧室の間に、これら各減圧室をそれぞれ個別の所要圧力に保つための差動排気手段が配設され、上記(c)化合物半導体層形成工程で使用する減圧室の圧力が、他の(b),(d),(e)の工程で使用する減圧室の圧力の1/100以下になっている場合は、各工程に用いられる減圧室の圧力(真空度)が、真空蒸着により行われ、高真空を必要とする(c)化合物半導体層形成工程と、それより高い圧力(低い真空度)下のスパッタリングにより行われる(b),(d),(e)の各工程とに、それぞれ適したものとなっている。
 さらに、上記(b)裏面電極形成工程で使用する減圧室の圧力が、上記(d),(e)の工程で使用する減圧室の圧力より高くなっている場合は、比較的厚い膜厚を必要とする裏面電極を、高成膜レートで効率よく作製することができ、好ましい。
 そして、上記(c)化合物半導体層形成工程で使用する減圧室内に、上記化合物半導体層を構成する複数の材料にそれぞれ対応する複数の蒸着源のノズルが、上記リボン状基材の走行位置に沿って一列状に配置され、上記(c)化合物半導体層形成工程が、上記リボン状基材として幅5~30mmの金属製基材を用いて、上記各蒸着源内の化合物半導体材料を加熱蒸発させながら、上記リボン状基材を、この基材と上記各蒸着源のノズルとの距離Lが50mm以下になる位置を通過させることにより行われる場合は、基材幅方向に膜厚の揃った、安定した物性の各材料層(化合物半導体層を構成する材料層)を、高速で成膜することが可能になる。したがって、本発明の太陽電池セルの製法は、基材の幅方向にも流れ方向にも電気的特性の揃った一定品質の帯状太陽電池セルを、安定して高収率で作製することができる。
 また、上記構成の(c)化合物半導体層形成工程を備える本発明の太陽電池セルの製法において、上記各蒸着源のノズルにおける蒸気放出口の基材幅方向の開口幅Wが、上記リボン状基材の幅Hに対して、1~1.5倍広くなっている(W/H=1~1.5)場合は、上記基材幅方向に膜厚の揃った各材料層を、より高速でかつ歩留りよく作製することが可能になる。
 そして、本発明の太陽電池セルの製法のなかでも、上記化合物半導体層が、元素周期表におけるI族の元素群から選ばれた少なくとも1種の化合物半導体材料と、III族の元素群から選ばれた少なくとも1種の化合物半導体材料と、VI族の元素群から選ばれた少なくとも1種の化合物半導体材料とからなるカルコパイライト型半導体である場合は、高品質のカルコパイライト系薄膜太陽電池セルを、ロール・トゥ・ロールプロセスで一貫して製造することができる。
 また、上記製法に用いられる太陽電池セルの製造装置は、上記リボン状基材を送り出す基材供給手段Aと、加工後のリボン状基材を巻き取る基材回収手段Fとの間に、少なくとも、上記リボン状基材の所定面に裏面電極を形成する裏面電極形成用の減圧室Bと、上記裏面電極の所定面に化合物半導体層を形成する化合物半導体層形成用の減圧室Cと、上記化合物半導体層の所定面に酸化物半導体からなるバッファ層を形成するバッファ層形成用の減圧室Dと、上記バッファ層の所定面に導電性酸化物からなる透明導電層を形成する透明導電層形成用の減圧室Eとを有するチャンバが設けられ、これら減圧室B~Eが、上記リボン状基材が連続して走行可能なように配置され、上記減圧室B~Eの各間に、これら各減圧室をそれぞれ個別の所要圧力に保つための差動排気手段Zが配設されているという構成をとる。この構成により、本発明の太陽電池セルの製造装置は、チャンバ内の各減圧室B~Eの圧力を、その形成過程ごとに適した圧力(真空度)に、個別に維持・制御することが可能になる。したがって、本発明の太陽電池セルの製造装置は、一度チャンバ内に送り込まれた長尺リボン状の基材を、そのチャンバから取り出すことなく、裏面電極形成用の減圧室Bから透明導電層形成用の減圧室Eにかけて連続で通過させ、上記の形成の過程を減圧下で一貫して行うことができる。
 さらに、この太陽電池セルの製造装置は、上記リボン状基材を、その形成過程の途中で、減圧されたチャンバから取り出さないため、太陽電池セルを構成する各層,膜が、製造中に大気(外気)に触れたり、その膜等の表面に塵芥や不純物等が付着したりするおそれが少ないという点で、有利である。
 そして、本発明の太陽電池セルの製造装置において、上記裏面電極形成用の減圧室B内に第一のスパッタリング装置が配置され、上記化合物半導体層形成用の減圧室C内に真空蒸着装置が配置され、上記バッファ層形成用の減圧室D内に第二のスパッタリング装置が配置され、上記透明導電層形成用の減圧室E内に第三のスパッタリング装置が配置されているものは、上記一貫した形成過程を有するチャンバを容易に構成できる。
 また、本発明の太陽電池セルの製造装置のなかでも、上記化合物半導体層形成用の減圧室C内に、上記真空蒸着装置として、化合物半導体層を構成する複数の材料にそれぞれ対応する複数の蒸着源のノズルが、上記リボン状基材の走行位置に沿って一列状に配置され、この減圧室C内に、上記リボン状基材を各蒸着源のノズルとの距離Lを所定距離(例えば50mm以下)に保った状態で走行させるための基材位置安定手段が設けられているものは、基材幅方向に均一な膜厚の各材料層(化合物半導体層を構成する材料層)を、高速で安定して作製することができる。
 さらに、上記チャンバにおける基材流れ方向の上流側入口に、上記基材供給手段Aを内蔵する減圧室Xが配置され、このチャンバにおける基材流れ方向の下流側出口に、上記基材回収手段Fを内蔵する減圧室Yが配置され、これら減圧室Xと減圧室Yとが、それぞれ上記チャンバに連結されているものは、上記リボン状基材の送り出し工程から巻き取り工程までを含めて、太陽電池セルの製造工程すべてを、その工程に適した圧力(真空度)に個別に調整された減圧室を備えるチャンバ内で、一貫して行うことができる。また、太陽電池セルを構成する各層,膜が、製造中に外気に触れたり、その膜等の表面に塵芥等が付着したりして欠点が生じるおそれを、より低減することができる。
 そして、前記太陽電池セルの製法によって得られた長尺の帯状太陽電池セルを、基材長手方向に所定長さに切断し、ストリップ状の太陽電池セルを作製するとともに、このストリップ状太陽電池セルを幅方向に複数個並べ、互いに隣接する長辺側部どうしを重ね合わせて、これら各セル表面の透明導電層側電極と、セル裏面の導電性基材または裏面電極とを、電気的に接続する方法により作製した太陽電池モジュールは、全体が均質で、大面積化が容易という利点を有する。すなわち、パネルの大きさが規定(規格化)された太陽電池モジュールや家庭用太陽光発電ユニット、あるいは、さらに大規模な太陽電池アレイやメガソーラー等の太陽光発電施設等、顧客の要望するモジュールサイズに、柔軟に対応できるという点で優れる。
本発明の実施形態における太陽電池セルの製造装置の概略構成を示す図である。 (A)は上記太陽電池セルの製造装置のチャンバにおける化合物半導体層形成用の減圧室Cの内部構成を示す図であり、(B)は上記減圧室C内の各蒸着源のノズルの開口部の形状例を示す模式図である。 (A)は本発明の実施形態における太陽電池モジュールの平面図であり、(B)はこの太陽電池モジュールの断面図である。 CIGS系薄膜太陽電池の構造を示す模式的断面図である。
 つぎに、本発明の実施の形態を、図面にもとづいて詳しく説明する。
 本実施形態における太陽電池セルの製法に用いる製造装置は、図1に示すように、一列状に連なる複数の加工用減圧室(B,C,D,F)を有するチャンバ10と、このチャンバ10に加工用の基材(リボン状基材1)を供給する巻出し機(基材供給手段)Aを備える基材供給側減圧室Xと、加工後のリボン状基材1を回収して巻き取る巻取り機(基材回収手段)Fを備える基材回収側減圧室Yとからなる。そして、上記チャンバ10の加工用減圧室は、巻出し機A側〔基材流れ方向(白抜き矢印)の上流側〕から、裏面電極形成用の減圧室B,化合物半導体層形成用の減圧室C,バッファ層形成用の減圧室D,透明導電層形成用の減圧室Eの順に配置され、各加工用減圧室B~Eの間には、これら各減圧室B~Eを所要圧力に保つための差動排気装置(差動排気手段)Z1,Z2,Z3がそれぞれ配設されており、異なる環境圧力(雰囲気)が要求されるプロセス(工程)間でリボン状基材1を途切れずに移動させ、その加工・成膜を連続して行うことができるようになっている。これが、本発明の太陽電池セルの製造装置の特徴である。
 また、上記製造装置を用いた太陽電池セルの製法は、(a)巻出し機Aから長尺のリボン状基材1を準備して繰り出す基材供給工程と、(b)減圧室B内で、上記巻出し機Aから供給されたリボン状基材1の一面に、スパッタリングにより裏面電極2を形成する裏面電極形成工程と、(c)減圧室C内で、上記裏面電極2上に、真空蒸着により化合物半導体層3を形成する化合物半導体層形成工程と、(d)減圧室D内で、上記化合物半導体層3の上にスパッタリングによりバッファ層4を形成するバッファ層形成工程と、(e)上記バッファ層4の一面にスパッタリングにより透明導電層5を形成する透明導電層形成工程と、(f)加工後のリボン状基材1を巻取り機Fに巻き取って回収する基材回収工程とを備え、これら各減圧室B~E内の環境が、各減圧室B~Eの間に配置された差動排気手段Zにより、それぞれの加工に適した1Pa以下の圧力に個別に保たれている。これが、本発明の太陽電池セルの製法の大きな特徴である。
 上記太陽電池セルの製法について、その各工程を、上記製造装置の詳細とともに、図面にもとづいて基材の流れ(加工)順に説明する。なお、工程全体を説明する図1において、白抜き矢印は長尺のリボン状基材1の流れ方向(加工方向)を示し、黒実線矢印は減圧室内の空気の排気方向を示す。また、図中の符号31~36は、各減圧室の排気のために設けられた排気口である。
(a)基材供給工程
 基材供給工程は、図1に示すように、上記基材供給側減圧室Xの中に収容された巻出し機Aを用いて、リールあるいはロール等に巻回された長尺のリボン状基材1を、ガイドローラー等の案内に従ってチャンバ10の所定位置に繰り出す工程である。上記減圧室Xは、その内部に、上記巻出し機Aと、リボン状基材1の走行位置を案内するガイドローラー等とが配置され、連絡管21を介して、後記する裏面電極形成用の減圧室Bと連通している。また、この減圧室Xには、別途設置された真空ポンプ等の真空源(図示省略)に繋がる排気口31が設けられており、他の減圧室と同様、減圧室X内が所定の圧力に保たれるようになっている。なお、この減圧室Xは、上記裏面電極形成用の減圧室Bと連通しているため、その内部の圧力は減圧室Bと同じ(例えば0.6~1.0Pa)になっている。
 上記基材供給工程から供給されるリボン状基材1としては、ステンレススチール(SUS),チタン(Ti),アルミニウム(Al)等、良導電性金属基材が用いられる。このリボン状基材1は、幅5~30mm,長さ1~100m(厚さ約10~100μm)の長尺状で、上記巻出し機Aにセットできるリールやロール等に巻回されて、準備される。なお、上記リボン状基材1は、後記の(c)化合物半導体層形成工程における高温環境での引っ張りに耐え得る、この製法(ロール・トゥ・ロールプロセス)に適した物性、例えば、可とう性,ヤング率,靭性,引張強度等が求められる。
 また、工程中におけるリボン状基材1の走行速度や張力は、基本的に、後記する巻取り機Fの巻取り速度により決定されるため、巻出し機Aのリール等は、上記巻取り機Fのリール等の連れ廻り(フリー状態)か、あるいは、若干のブレーキ(バックテンション)をかけた状態に維持される。
(b)裏面電極形成工程
 裏面電極形成工程は、チャンバ10の減圧室B内で、上記巻出し機Aから供給されたリボン状基材1の一面(図1では下面)に、スパッタリングにより裏面電極(層)2を形成する工程である。上記減圧室Bの中には、裏面電極形成用の材料(ターゲット)を保持する第一スパッタリング装置11と、リボン状基材1のターゲットに対する距離を一定に維持するためのガイドローラー等の基材位置安定手段(図示省略)とが配置されており、上記リボン状基材1が第一スパッタリング装置のターゲットホルダ(図中点線で表示)に対して所定の距離(L11)を保った状態で走行できるようになっている。
 上記裏面電極形成用のターゲット材料としては、Mo(モリブデン),W(タングステン),Cr(クロム),Ti(チタン)等の金属材料が用いられ、上記減圧室B内を0.6~1.0Paに減圧した状態で、巻出し機Aから繰り出されたリボン状基材1を第一スパッタリング装置11上を走行させ、DCスパッタリング法により、このリボン状基材1の表面に、上記裏面電極形成用のターゲット材料からなる層(膜厚約100~1000nm程度)を連続的に形成する。
 なお、上記減圧室Bの上流側(基材供給側でかつ巻出し機A側)には、先に述べたように、上記減圧室Xと連通する連絡管21が接続されているとともに、その下流側(基材巻取側でかつ巻取り機F側)には、図1に示すように、この減圧室Bと後記の化合物半導体層形成用の減圧室Cとをそれぞれ別の所要の圧力に維持するための差動排気装置Z1が配設されている。そして、上記裏面電極2が形成されたリボン状基材1は、その状態で上記差動排気装置Z1を通過し、次工程である減圧室Cに搬送される。
(c)化合物半導体層形成工程
 化合物半導体層形成工程は、チャンバ10の減圧室C内で、上記裏面電極2の上に、真空蒸着により複数の材料(材料層)を順次積層し、化合物半導体層3を形成する工程である。上記減圧室Cの中には、上記化合物半導体層形成用の複数の蒸着源のノズル(本実施形態においては12~15の4つ。なお、蒸着装置本体は、減圧室外に設置される場合もある。)と、リボン状基材1の走行位置を案内するガイドローラー等の基材位置安定手段(図示省略)とが配置されており、図2(A)の減圧室C部拡大図に示すように、上記減圧室Bから差動排気装置Z1を介して減圧室C内に導入されたリボン状基材1が、その蒸着対象面を上記蒸着源のノズル12~15と対面させた状態(下向き)で、各蒸着源のノズル12,13,14,15と所定の距離L(各蒸着源のノズルからの距離はそれぞれL12,L13,L14,L15)離れた位置を走行できるように構成されている。(以下、「蒸着源のノズル」を、単に「蒸着源」と呼ぶ場合もある。)
 なお、減圧室C内の蒸着源の個数は、化合物半導体層3の組成によって増減する。また、上記蒸着源のノズル12~15は、リボン状基材1との距離L12,L13,L14,L15をそれぞれ個別に制御できる高さ調節手段を備えている。例えば、蒸着源のノズル12~15が、図2(A)のような二重の筒状のケーシングである場合、その内筒が上下移動(昇降)可能なように構成されている。そして、蒸着源の内部には、後述する蒸着材料と、この蒸着材料を加熱・蒸発させるための加熱器等(図示省略)が配設されており、そのノズルの上部開口にはそれぞれ、シャッター12a,13a,14a,15a等の蒸発量制御手段が取り付けられている。
 本実施形態で作製する化合物半導体層3は、I-III-VI族元素からなるカルコパイライト(黄銅鉱)型化合物半導体層である。具体的には、銅(Cu),インジウム(In),ガリウム(Ga),セレン(Se),硫黄(S),アルミニウム(Al)等を組み合わせて得られるものであり、例えば、CuInGaSe,CuInGaS,CuInAlSe,CuInAlS等を形成することができる。
 上記減圧室C内における化合物半導体層3の蒸着方法を、Cu(In,Ga)Se2(CIGS系化合物)からなる薄膜を形成する場合を例に、具体的に説明する。
 まず、前準備として、各蒸着源(12,13,14,15)内に、その蒸着順序に合わせてCu,In,Ga,Seの蒸着材料を順次セットする(他の減圧室のセッティングも行う)。蒸着材料のセットが完了したら、リボン状基材1を巻出し機Aから巻取り機Fまで、各減圧室B~Eを経由してチャンバ10全体に挿通させ、このチャンバ10の作業用開口を全て閉じ、別途設置された真空ポンプ等の真空源(図示省略)を作動させて、各加工用の減圧室B~Eおよび基材操作用の減圧室X,Yを減圧する。なお、各減圧室B,C,D,E間には、先に述べた差動排気装置Z1,Z2,Z3が介在配置されているため、それぞれの加工に適した1Pa以下の圧力に個別に制御されている。この減圧室Cは、真空蒸着に適した10-3Pa以下の真空に減圧される。ちなみに、この時、減圧室X,Bは0.6~1.0Pa、減圧室D,E,Yは0.2~0.5Paに制御されており、上記減圧室C内の圧力(0.001Pa以下)は、これら減圧室B,D,Eの圧力の1/100以下になっている。
 チャンバ10の各減圧室の減圧完了後、減圧室C内を300~600℃(この例では550℃以上)まで加温し、上記巻取り機Fを作動させると、上記減圧室B(裏面電極形成工程)および差動排気装置Z1を経由して、その下面に裏面電極2が形成された状態(成膜後)のリボン状基材1が、この減圧室Cに供給され、ガイドローラー等の基材位置安定手段に案内されて、各蒸着源のノズル12,13,14,15から所定距離L12,L13,L14,L15離れた上側の位置を走行する〔図2(A)参照〕。
 また、この減圧室C内では、上記蒸着源(12,13,14,15)内にセットされた各蒸着材料が、蒸着源に備わる加熱手段(図示省略)等により、材料の蒸散に適した温度〔例えば、一番目の蒸着源(Cu)1150℃,二番目の蒸着源(In)950℃,三番目の蒸着源(Ga)1000℃,四番目の蒸着源(Se)200℃〕に予め昇温されており、各蒸着源(ノズル12,13,14,15)の内部にその蒸気が充満した状態になっている。そして、上記裏面電極層付きリボン状基材1を、ガイドローラー等に沿って蒸着源のノズル列の上を走行させた状態で、上記各蒸着源のノズル12,13,14,15の開口部に備えたシャッター12a,13a,14a,15aを開放することにより、走行するリボン状基材1の表面に、各蒸着源のノズル12,13,14,15から加熱蒸散した蒸発材料の蒸気粒子(原子,分子)が順次付着・堆積し、このリボン状基材1の下面に、カルコパイライト系化合物からなる薄膜(化合物半導体層3)が連続して形成される。得られた化合物半導体層3の膜厚は、太陽電池セルの素子特性の観点から、1.5~3.0μmの範囲にあることが望ましい。そして、上記裏面電極2の上に化合物半導体層3が形成された後のリボン状基材1は、減圧室Cと減圧室Dの間に配置された差動排気装置Z2を経由して、この減圧室Cとは異なる雰囲気(圧力)に制御されている減圧室D(後記のバッファ層形成工程)に搬送される。
 なお、上記の例では、図2(B)に示すように、その内筒の上端開口部の幅Wが、長尺のリボン状基材1の幅(H=5~30mm)の1~1.5倍になっている蒸着源のノズル12,13,14,15を用いて、これら各蒸着源のノズル12,13,14,15の上記内筒(高さ調節手段)を昇降させ、リボン状基材1と各蒸着源のノズル12,13,14,15との距離L(L12,L13,L14,L15)を50mm以下(この例では30mm)に保って蒸着を行った。
 このように、蒸着源の蒸気放出口(ノズルの上端開口)の幅Wをリボン状基材1の幅Hの1~1.5倍(W/H=1~1.5)に設定することにより、従来のバッチ式真空蒸着における蒸着距離(約220mm程度)よりも大幅に蒸着源のノズルに近接した距離(50mm以下)でも、基材幅方向に均一な膜厚で高品質な化合物半導体層を、高速かつ高効率で蒸着することが可能になった。なお、蒸気放出口の幅W/基材の幅Hが1未満である場合は、基材上に形成された化合物半導体層の幅方向中央部の膜厚と幅方向端部(両側縁部)の膜厚との差が、厚さ比で10%を超え、均一な膜厚の化合物半導体層を得ることができない傾向がみられる。逆に、蒸気放出口の幅W/基材の幅Hが1.5を超える場合は、基材幅方向の膜厚の均一性は向上するが、基材に付着せず無駄になる蒸着材料が増える傾向がみられる。ちなみに、上記構成を用いた場合、蒸着源のノズルとリボン状基材1との距離Lを30mm(基材の幅H=20mm,蒸気放出口の幅W=30mm,W/H=1.5)にすると、上記バッチ式の真空蒸着法に比べ、成膜速度(形成効率)が50倍以上になることを実験で確認した。
 また、上記例においては、リボン状基材1を減圧室C内の所定位置(一定高さの位置)を水平に走行させ、各蒸着源のノズル12,13,14,15の内筒を昇降させて、このリボン状基材1と蒸着源の蒸気放出口との距離L(L12,L13,L14,L15)を50mm以下としたが、この蒸着距離Lは、成膜速度向上の観点から、具体的には0.1~50mmとするのがよく、さらに好ましくは1~10mmとするのがよい。リボン状基材1と蒸着源のノズル12,13,14,15との距離Lが0.1mm未満の場合は、蒸着の堆積速度が速すぎて、均一な膜厚の化合物半導体層3を形成できない傾向がみられる。逆に、その距離Lが50mmを超える場合は、蒸着の堆積速度が低いため製品加工速度が向上せず、化合物半導体層3の膜厚がばらつくうえ、蒸着材料のロスが増大する傾向がみられる。なお、上記蒸着源の蒸気放出口に、基材幅方向の蒸着材料の飛散量(=基材に対する蒸着材料の付着量)を補正する補正板等を取り付けてもよい。
 なお、各蒸着源のノズル12,13,14,15とリボン状基材1との距離Lを調節する方法は他の方法でもよく、例えば、各蒸着源のノズル12,13,14,15の上端面(開口)を同じ高さに揃え、リボン状基材1の走行を案内するガイドローラーを多数増設して、これらガイドローラーの位置(高さ)をそれぞれ変更することにより、上記リボン状基材1の走行位置を各蒸着源のノズル12,13,14,15上で個々に変更する方法でもよい。
 また、上記のように、VI族元素(上記例においてはSe)の蒸着に使用する蒸着源(15)は、その加熱温度(200℃)が蒸着対象の基材(550℃以上)に比べて低いことから、この基材の近接に起因する輻射熱等により熱干渉が起こる場合がある。その場合は、上記蒸着源の蒸気放出口近傍に、それを抑制するための熱干渉抑制手段を取り付けてもよい。そして、その他の蒸着源の熱により基材の温度が上がり過ぎる場合には、基材を冷やす基材冷却手段等を設けてもよい。
 さらに、上記例では、一つの蒸着物質に対して一つの蒸着源を設ける例をあげたが、一つの蒸着物質に対して複数の蒸着源を組み合わせた蒸着ユニットを対応させれば、三段階法やバイレイヤー法といった、より高品質な化合物半導体層を形成できる方法を採用してもよい。
(d)バッファ層形成工程
 続くバッファ層形成工程は、チャンバ10の減圧室D内で、上記減圧室C(化合物半導体層形成工程)を経由したリボン状基材1の一面(下面)に、前記(b)裏面電極形成工程と同様のスパッタリングによりバッファ層4を形成する工程である。上記減圧室Dの中には、バッファ層形成用の材料(ターゲット)を保持する第二スパッタリング装置16と、リボン状基材1のターゲットに対する距離を一定に維持するためのガイドローラー等の基材位置安定手段(図示省略)とが配置されており、化合物半導体層付きのリボン状基材1が第二スパッタリング装置16のターゲットホルダ(図中点線で表示)に対して所定の距離(L16)を保った状態で走行できるようになっている。
 上記バッファ層形成用のターゲット材料としては、n型半導体特性を有する化合物が用いられ、その具体例としては、ZnO、(Zn,Mg)O、Zn(O,S)等の酸化亜鉛系の化合物があげられる。バッファ層の形成は、減圧室D内を0.2~0.5Paに減圧した状態で、差動排気装置Z2を通過した化合物半導体層付きリボン状基材1を、第二スパッタリング装置16上を走行させ、DCスパッタリング法により、このリボン状基材1の表面に、上記バッファ層形成用のターゲット材料からなる層(膜厚約50~200nm程度)を連続的に形成する。
 なお、上記減圧室Dの上流側(基材供給側でかつ巻出し機A側)には、先に述べたように、この減圧室Dと化合物半導体層形成工程の減圧室Cとをそれぞれ別の所要の圧力に維持するための差動排気装置Z2が配設されている。また、その下流側(基材巻取側でかつ巻取り機F側)には、図1に示すように、この減圧室Dと後記の透明導電層(透明電極)形成用の減圧室Eとをそれぞれ別の所要の圧力に維持するための差動排気装置Z3が配設されており、上記バッファ層4が形成されたリボン状基材1は、その状態で上記差動排気装置Z3を通過し、次工程である減圧室Eに搬送される。
 このバッファ層形成工程は、上記各差動排気装置Z2,Z3により各減圧室が一体に連結されたチャンバ10内で、真空一貫により行われるため、従来の化学析出法(バッチ式)で行われるバッファ層形成に比べ、工程間の待ち時間や作業時間がなく、その加工時間を大幅に短縮することができる。また、加工途中のリボン状基材1をチャンバ10から取り出す必要がなく、製造途中の薄膜が大気(外気)に触れて品質が低下したり、その膜の表面に不純物が付着したりするおそれが少ないという利点を有する。
(e)透明導電層形成工程
 つぎの透明導電層形成工程は、チャンバ10の減圧室E内で、上記減圧室D(バッファ層形成工程)を経由したリボン状基材1の一面(下面)に、上記(d)バッファ層形成工程と同様のスパッタリングにより、導電性酸化物からなる透明導電層(透明電極)5を形成する工程である。上記減圧室Eの中には、透明導電層形成用の材料(ターゲット)を保持する第三スパッタリング装置17と、リボン状基材1のターゲットに対する距離を一定に維持するためのガイドローラー等の基材位置安定手段(図示省略)とが配置されており、化合物半導体層付きのリボン状基材1が第三スパッタリング装置17のターゲットホルダ(図中点線で表示)に対して所定の距離(L17)を保った状態で走行できるようになっている。
 上記透明導電層形成用のターゲット材料としては、酸化インジウム錫(ITO),酸化インジウム亜鉛(IZO),酸化亜鉛アルミニウム(Al:ZnO)等の光透過率が80%を超える金属酸化物が用いられ、減圧室E内を0.2~0.5Paに減圧した状態で、差動排気装置Z3を通過したバッファ層付きリボン状基材1を、第三スパッタリング装置17上を走行させ、DCスパッタリング法により、このリボン状基材1の表面に、上記透明導電層形成用のターゲット材料からなる透明電極層(膜厚約50~200nm程度)を連続的に形成する。
 なお、上記減圧室Eの上流側(基材供給側でかつ巻出し機A側)には、先に述べたように、この減圧室Eとバッファ層形成工程の減圧室Dとをそれぞれ別の所要の圧力に維持するための差動排気装置Z3が配設されている。また、その下流側(基材巻取側でかつ巻取り機F側)には、図1に示すように、後記の巻取り機Fを備える減圧室Yと連通する連絡管22が接続されており、上記加工の終わったリボン状基材1は、最終の基材回収工程へ搬送される。
(f)基材回収工程
 基材回収工程は、上記透明導電層形成後のリボン状基材1(リボン状太陽電池セル)を、基材回収側減圧室Yの中に収容された巻取り機Fを用いて、リールあるいはロール等に巻回して回収する工程である。上記減圧室Yの内部には、上記リボン状基材1を所定の速度(ラインスピード)で巻き取ることのできる巻取り機Fと、リボン状基材1の走行位置を案内するガイドローラー等とが配置されている。なお、この減圧室Yは、連絡管22を介して透明導電層形成用の減圧室Eと連通しているため、その内部の圧力は減圧室Eと同じ(0.2~0.5Pa)になっている。
 以上の各工程を経ることにより、幅5~30mm(基材幅)、長さ1~100mの長尺状の太陽電池セルが得られる。なお、この長尺の帯状太陽電池セルを、基材長手方向に所定長さ(1cm~10m)に切断することにより、後記のストリップ状の太陽電池セルが作製される。
 上記の太陽電池セルの製法によれば、形成材料や成膜条件の異なる各形成工程間で、基材や成膜後の基材を装置(チャンバ10)から取り出す必要がなく、各減圧室A~Fの減圧-加圧(大気圧下への開放)を繰り返す作業や、工程間の待ち時間(ロスタイム)もない。さらに、製造途中の各薄膜が大気(外気)に触れて酸化したり、その膜等の表面に不純物が付着したりするおそれもない。これにより、本実施形態における太陽電池セルの製法は、高品質な太陽電池セルを効率良く作製することができる。
 また、上記太陽電池セルの製法においては、上記(c)化合物半導体層形成工程で使用する減圧室C内に、CIGS系太陽電池を構成するI族元素(Cu)、III族元素(In,Ga)、VI族元素(Se)にそれぞれ対応する蒸着源(12,13,14,15)が、リボン状基材1の走行方向(白抜き矢印)に沿って一列状に配置され、上記リボン状基材1として幅5~30mmの長尺状SUS製基材を用いて、上記各蒸着源(12,13,14,15)内の蒸着材料を加熱蒸発させながら、裏面電極2層が形成済みのリボン状基材1を、この基材1と各蒸着源のノズル12,13,14,15との距離L(L12,L13,L14,L15)が50mm以下となる位置を走行させることにより、カルコパイライト型の化合物半導体層3を形成している。そのため、この太陽電池セルの製法は、基材幅方向に膜厚の揃った、安定した物性の化合物半導体層3を、高速で形成することができる。その結果、本実施形態における太陽電池セルの製法は、基材の幅方向にも流れ方向にも電気的特性の揃った、一定品質の帯状太陽電池セルを、安定して高収率で作製することが可能になる。
 つぎに、上記実施形態の太陽電池セルの製法で得られた帯状太陽電池セルを用いて、大面積の太陽電池モジュールを製造する方法について説明する。
 まず、上記太陽電池セルの製造工程で得られた長尺の帯状太陽電池セルを、所定長さ(基材長手方向)に切断して、ストリップ状の太陽電池セルを作製する。
(g)帯状太陽電池セルの切断工程
 この工程は、リールあるいはロール等に巻き取られている、前記長尺の帯状太陽電池セル(幅5~30mm)を送り出しながら、例えばレーザー等の熱的手段やカッター等の物理的手段を用いて、上記帯状太陽電池セルを基材長手(長尺)方向に所定の寸法で切断し、得られるストリップ状太陽電池セル(6)のサイズを、次工程で加工し易いサイズに揃える工程である。なお、その切断長さは、通常1cm~10m、好ましくは2cm~2m(基材長手方向)である。この切断長さは、次工程で使用される太陽電池モジュール(M)のハウジングサイズにより適宜変更される。
 また、上記帯状太陽電池セルの切断工程は、帯状太陽電池セルの切断前に、上記長尺状の帯状太陽電池セルを送り出しながら検査する検査工程や、この検査工程により見つかったセルの欠陥部位のみを切断して取り除く欠陥切除工程等を備えていてもよい。これらの工程により、検査工程で発見された欠陥部位の基材長手方向両側を、基板幅方向に切断・除去することにより、欠陥部位を容易に切除することができる。また、この欠陥切除方法は、太陽電池セルの欠陥によるロスを最小限に抑えることができる点で優れている。これら検査工程と欠陥切除工程とは、上記帯状太陽電池セルの切断前に行う方が好都合であるが、切断後に、ストリップ状太陽電池セル(6)を個別に検査して、欠陥部位を切除してもよい。
 つぎに、作製されたストリップ状太陽電池セル6を複数個用いて、大面積の太陽電池モジュールMを作製する。図3(A)は本実施形態における太陽電池モジュールMの平面図であり、(B)はこの太陽電池モジュールMの断面図である。
(h)太陽電池モジュールの組立工程
 この工程では、モジュール(製品)として必要とされる電流値および電圧値に応じて、上記長さの揃えられたストリップ状太陽電池セル6を複数(本実施形態においては3個)直列に接続し、図3(A)のような太陽電池モジュールMを作製する。なお、図3(A),(B)において、7は接合金属、41はフレーム、42は裏面支持材、43は表面保護材、44は封止樹脂を示す。また、上記フレーム41,裏面支持材42,表面保護材43により、ストリップ状太陽電池セル6を収容するハウジング(ケース)が形成されている。
 太陽電池モジュールMを組立・作製する工程では、各ストリップ状太陽電池セル6は、基材長手方向を揃え、図3(B)のように、その基材幅方向をハウジングの底部に対して所定の角度傾けた状態で、それぞれの一部(長辺側部)が重なり合うように収容される。そして、隣接するストリップ状太陽電池セル6の表面の電極(透明電極または透明導電層5)と、セル裏面の電極(導電性金属のリボン状基材1または裏面電極2)とが、接合金属7等の導電性部材,導電性を有するテープや接着剤、あるいは、はんだ材料等を用いて、上記重ね合わせ部位で電気的に(この場合は直列に)接続される。
 そして、上記ハウジング内の隙間には、各ストリップ状太陽電池セル6を湿気や汚れ,紫外線,物理的な応力等から保護するために、透明な封止樹脂44等が充填され、その硬化後に、発電性能の検査等を経て、製品としての太陽電池モジュールMが完成する。
 なお、上記太陽電池モジュールMのハウジング内には、各ストリップ状太陽電池セル6で発生する電力(電流)を外部に取り出すための端子盤等(図示省略)が配設され、ハウジングの外部には、他の太陽電池モジュールM等と電気的および物理的に連結するための外部端子(図示省略)等が取り付けられる。
 また、太陽電池モジュールMの大きさは、用途に応じて適宜設定されるが、例えば、その幅は10cm~1m、長さは50cm~2m程度であり、上記フレーム41は、太陽電池の用途によっては省略されることがある。
 用途や使用される環境等に応じて変更されるが、例えば、フレーム41を構成する材料としては、金属や樹脂等を用いることができる。上記裏面支持材42としては、金属板,樹脂板や、フッ素樹脂フィルム,ポリエチレンテレフタレート(PET)フィルム等を好適に採用することができる。また、表面保護材43および封止樹脂44は、透明あるいは半透明であることが必須であり、上記表面保護材43の好適な例としては、強化白板ガラス等があげられ、上記封止樹脂44の好適な例としては、エチレン酢酸ビニル共重合樹脂(EVA)等があげられる。
 以上の工程により、本実施形態の太陽電池モジュールの製法は、大面積の太陽電池モジュールを、効率よく製造することができる。また、その太陽電池セルとして、前記ストリップ状の太陽電池セルを用いていることから、パネルの大きさが規定(規格化)された太陽電池モジュールや家庭用太陽光発電ユニット、あるいは、さらに大規模な太陽電池アレイやメガソーラー等の太陽光発電施設等、顧客の要望するモジュールサイズに、柔軟に対応できるという点で有利である。
 つぎに、実施例について比較例および従来法による参考例と併せて説明する。ただし、本発明は、以下の実施例に限定されるものではない。
[実施例1]
 上記実施の形態に記載の太陽電池セル製造装置を(図1参照)用いて、ロール・トゥ・ロールプロセスにより、真空一貫で、「実施例1」の帯状太陽電池セルを作製した。なお、実施例1の太陽電池セルは、その作製(形成過程)中に一度もチャンバから出さず、上記実施の形態に記載の手順のとおり、下記の工程を連続して行った。加工条件は以下のとおりである。
〈リボン状基材〉SUS430:幅 15mm,厚さ 50μm(JFEスチール社製)
 上記基材を用いて、加工速度(ラインスピード)1m/分で加工を行った。なお、ロール・トゥ・ロールプロセスであるため、下記の各工程におけるラインスピードは同一である。
〈裏面電極形成工程〉
 減圧室B:室内圧力 0.8Pa
 裏面電極形成材料:Mo
 スパッタリング法により膜厚500nmの裏面電極層を連続形成した。
〈化合物半導体層形成工程〉
 減圧室C:室内圧力 1×10-3Pa,室内温度 550℃
 化合物半導体層形成材料:Cu,In,Ga,Se(CIGS系化合物半導体層)
  ただし、その構成比が、(Cu/(Ga+In)=0.85,Ga/(Ga+In)
  =0.3)になるように上記各形成材料を供給した。
  (各蒸着源の加熱温度は、前記実施の形態を参照。)
 各蒸着源の蒸気放出口の基材幅方向の幅(開口幅)W:20mm
 各蒸着源の蒸気放出口と基材走行位置との間の距離(蒸着距離)L:30mm
 上記条件の真空蒸着により総膜厚2.2μmの化合物半導体層を連続形成した。
〈バッファ層形成工程〉
 減圧室D:室内圧力 0.2Pa
 裏面電極形成材料:Zn(O,S) ZnO 80wt%,ZnS 20wt%
 スパッタリング法により膜厚100nmのバッファ層を連続形成した。
〈透明導電層形成工程〉
 減圧室E:室内圧力 0.4Pa
 裏面電極形成材料:ITO
 スパッタリング法により膜厚200nmの透明導電層(透明電極)を連続形成した。
[比較例1]
 上記実施例1に使用した太陽電池セル製造装置(「実施の形態」の装置:図1参照)において、化合物半導体層形成工程(減圧室C)の基材流れ方向前後に、別途開口を設け、スパッタリングによる裏面電極形成(減圧室B)後のリボン状基材を、減圧室Cの上流側開口(新設)から一旦チャンバ外(大気圧下)に搬出して巻き取った。つぎに、装置外に巻き取った基材を、上記減圧室Cの上流側開口からチャンバ(減圧室C)内に導入し、実施例1と同様の条件で真空蒸着により化合物半導体層を形成した後、リボン状基材を、この減圧室Cの下流側開口(新設)から再度チャンバ外(大気圧下 2回目)に搬出して巻き取った。さらに、装置外に巻き取った基材を、上記減圧室Cの下流側開口からチャンバ内に導入し、実施例1と同様の条件で、スパッタリングによるバッファ層形成工程(減圧室D)およびスパッタリングによる透明導電層形成工程(減圧室E)を行った後、完成後の太陽電池セルを装置の巻取り機Fで巻き取り、「比較例1」の太陽電池セルを得た。なお、上記のように加工中に装置外(大気圧下)に二度取り出す以外、その他の加工条件は上記実施例1と同様である。
[参考例1]
 参考例1の太陽電池セルは、基材として100mm角の青板ガラス(SLG)製基板を用い、バッチ式のスパッタリング装置および真空蒸着装置を順次使用して、実施例1と同様の加工条件にて太陽電池セルを作製した。なお、上記各装置のチャンバ(加工室)の間は繋がって(連通して)おらず、各工程の間には、上記基板を大気圧下に取り出す作業が必ず含まれる。また、各工程ごとに、上記各チャンバ(加工室)を減圧-加圧(開放)するための待ち時間等が発生する。
 上記実施例1,比較例1,参考例1の太陽電池セルを用いて、その変換効率を測定した。
<変換効率>
 ソーラシミュレータ(セルテスター 山下電装社製 YSS-150)を用いて、疑似太陽光(AM1.5)を、100mm角以上の照射面積になるように調整して照射し、各実施例1,比較例1,参考例1の太陽電池セルの変換効率ηを測定した。
 上記変換効率の測定において、実施例1の太陽電池セルは変換効率η=14.5%、比較例1の太陽電池セルは変換効率η=12.0%、参考例1の太陽電池セルは変換効率η=10.0%と、本発明の太陽電池セルの製法は、太陽電池セルの性能(変換効率)を低下させることなく、従来例である参考例1に比べ、その生産効率を向上させることができた。
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。
 本発明の太陽電池セルの製法および製造装置によれば、品質の揃った太陽電池セルを、短時間で効率良く製造することができる。これにより、太陽電池セルの単位面積あたりのコストを低減することができる。また、この太陽電池セルは、大面積化およびモジュール化も容易で、しかも上記のように単価も安いことから、家庭用太陽光発電ユニット、あるいは、さらに大規模な太陽電池アレイやメガソーラー等の太陽光発電施設等に適する。
 1 基材
 10 チャンバ
 A 巻出し機
 F 巻取り機
 B~E 減圧室
 X,Y 減圧室
 Z1,Z2,Z3 差動排気装置

Claims (12)

  1.  導電性のリボン状基材の上に化合物半導体層を形成して帯状の太陽電池セルを製造する方法であって、
    (a)上記リボン状基材を供給する基材供給工程と、
    (b)上記リボン状基材の上に裏面電極を形成する裏面電極形成工程と、
    (c)上記裏面電極の上に化合物半導体層を形成する化合物半導体層形成工程と、
    (d)上記化合物半導体層の上に酸化物半導体からなるバッファ層を形成するバッファ層形成工程と、
    (e)上記バッファ層の上に導電性酸化物からなる透明導電層を形成する透明導電層形成工程と、
    (f)上記各層形成後のリボン状基材を回収する基材回収工程と、を備え、
    上記リボン状基材が、上記各工程に対応した複数の減圧室を有するチャンバ内を走行する間に、少なくとも上記(b)~(e)の工程が、それぞれ1Pa以下の条件下において、この順に連続して行われることを特徴とする太陽電池セルの製法。
  2.  上記(b)裏面電極形成工程がスパッタリングにより行われ、上記(c)化合物半導体層形成工程が真空蒸着により行われ、上記(d)バッファ層形成工程がスパッタリングにより行われ、上記(e)透明導電層形成工程がスパッタリングにより行われる、請求項1記載の太陽電池セルの製法。
  3.  上記チャンバ内の各減圧室の間には、これら各減圧室をそれぞれ個別の所要圧力に保つための差動排気手段が配設され、上記(c)化合物半導体層形成工程で使用する減圧室の圧力が、他の(b),(d),(e)の工程で使用する減圧室の圧力の1/100以下になっている請求項2記載の太陽電池セルの製法。
  4.  上記(b)裏面電極形成工程で使用する減圧室の圧力が、上記(d),(e)の工程で使用する減圧室の圧力より高くなっている請求項3記載の太陽電池セルの製法。
  5.  上記(c)化合物半導体層形成工程で使用する減圧室内に、上記化合物半導体層を構成する複数の材料にそれぞれ対応する複数の蒸着源のノズルが、上記リボン状基材の走行位置に沿って一列状に配置され、上記(c)化合物半導体層形成工程が、上記リボン状基材として幅5~30mmの金属製基材を用いて、上記各蒸着源内の化合物半導体材料を加熱蒸発させながら、上記リボン状基材を、この基材と上記各蒸着源のノズルとの距離Lが50mm以下になる位置を通過させることにより行われる請求項2~4のいずれか一項に記載の太陽電池セルの製法。
  6.  上記各蒸着源のノズルにおける蒸気放出口の基材幅方向の開口幅Wが、上記リボン状基材の幅Hに対して、1~1.5倍広くなっている請求項5記載の太陽電池セルの製法。
  7.  上記化合物半導体層が、元素周期表におけるI族の元素群から選ばれた少なくとも1種の化合物半導体材料と、III族の元素群から選ばれた少なくとも1種の化合物半導体材料と、VI族の元素群から選ばれた少なくとも1種の化合物半導体材料とからなるカルコパイライト型半導体である請求項1~6のいずれか一項に記載の太陽電池セルの製法。
  8.  導電性のリボン状基材の上に化合物半導体層を形成して帯状の太陽電池セルを製造する装置であって、
    上記リボン状基材を送り出す基材供給手段Aと、加工後のリボン状基材を巻き取る基材回収手段Fとの間に、少なくとも、
    上記リボン状基材の所定面に裏面電極を形成する裏面電極形成用の減圧室Bと、上記裏面電極の所定面に化合物半導体層を形成する化合物半導体層形成用の減圧室Cと、上記化合物半導体層の所定面に酸化物半導体からなるバッファ層を形成するバッファ層形成用の減圧室Dと、
    上記バッファ層の所定面に導電性酸化物からなる透明導電層を形成する透明導電層形成用の減圧室Eとを有するチャンバが設けられ、
    これら減圧室B~Eが、上記リボン状基材が連続して走行可能なように配置され、上記減圧室B~Eの各間に、これら各減圧室をそれぞれ個別の所要圧力に保つための差動排気手段Zが配設されていることを特徴とする太陽電池セルの製造装置。
  9.  上記裏面電極形成用の減圧室B内に第一のスパッタリング装置が配置され、上記化合物半導体層形成用の減圧室C内に真空蒸着装置が配置され、上記バッファ層形成用の減圧室D内に第二のスパッタリング装置が配置され、上記透明導電層形成用の減圧室E内に第三のスパッタリング装置が配置されている、請求項8記載の太陽電池セルの製造装置。
  10.  上記化合物半導体層形成用の減圧室C内に、上記真空蒸着装置として、化合物半導体層を構成する複数の材料にそれぞれ対応する複数の蒸着源のノズルが、上記リボン状基材の走行位置に沿って一列状に配置され、この減圧室C内に、上記リボン状基材を各蒸着源のノズルとの距離Lを所定距離に保った状態で走行させるための基材位置安定手段が設けられている請求項9記載の太陽電池セルの製造装置。
  11.  上記チャンバにおける基材流れ方向の上流側入口に、上記基材供給手段Aを内蔵する減圧室Xが配置され、このチャンバにおける基材流れ方向の下流側出口に、上記基材回収手段Fを内蔵する減圧室Yが配置され、これら減圧室Xと減圧室Yとが、それぞれ上記チャンバに連結されている請求項8~10のいずれか一項に記載の太陽電池セルの製造装置。
  12.  上記請求項1~7のいずれかに記載の太陽電池セルの製法によって得られた長尺の帯状太陽電池セルを、基材長手方向に所定長さに切断し、ストリップ状の太陽電池セルを作製するとともに、このストリップ状太陽電池セルを幅方向に複数個並べ、互いに隣接する長辺側部どうしを重ね合わせて、これら各セル表面の透明導電層側電極と、セル裏面の導電性基材または裏面電極とを、電気的に接続することにより、大面積の太陽電池モジュールを形成することを特徴とする太陽電池モジュールの製法。
PCT/JP2012/053743 2011-03-16 2012-02-17 太陽電池セルの製法および製造装置と太陽電池モジュールの製法 WO2012124430A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011058572A JP2012195461A (ja) 2011-03-16 2011-03-16 太陽電池セルの製法および製造装置と太陽電池モジュールの製法
JP2011-058572 2011-03-16

Publications (1)

Publication Number Publication Date
WO2012124430A1 true WO2012124430A1 (ja) 2012-09-20

Family

ID=46830507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053743 WO2012124430A1 (ja) 2011-03-16 2012-02-17 太陽電池セルの製法および製造装置と太陽電池モジュールの製法

Country Status (2)

Country Link
JP (1) JP2012195461A (ja)
WO (1) WO2012124430A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015129329A (ja) * 2014-01-08 2015-07-16 東レエンジニアリング株式会社 差動排気システム
US20210057595A1 (en) * 2018-04-11 2021-02-25 Sunpower Corporation Method and apparatus of fabricating a solar cell device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152020A1 (ja) * 2014-03-31 2015-10-08 株式会社カネカ 太陽電池モジュールおよびその製造方法
JP7270607B2 (ja) * 2018-03-30 2023-05-10 株式会社カネカ 太陽電池セルの製造方法、太陽電池モジュールの製造方法、および、太陽電池モジュール

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520107A (ja) * 2004-11-10 2008-06-12 デイスター テクノロジーズ,インコーポレイティド 光起電基板堆積装置における圧力制御システム
JP2008520103A (ja) * 2004-11-10 2008-06-12 デイスター テクノロジーズ,インコーポレイティド 連続プロセスを用いて薄膜太陽電池を形成するための方法及び装置
WO2009110999A1 (en) * 2008-03-04 2009-09-11 Solexant Corp. Process for making solar cells
WO2010120631A2 (en) * 2009-04-13 2010-10-21 Miasole Method and apparatus for controllable sodium delivery for thin film photovoltaic materials
JP2010251525A (ja) * 2009-04-15 2010-11-04 Fujifilm Corp 集積型薄膜太陽電池の製造方法及び製造装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520107A (ja) * 2004-11-10 2008-06-12 デイスター テクノロジーズ,インコーポレイティド 光起電基板堆積装置における圧力制御システム
JP2008520103A (ja) * 2004-11-10 2008-06-12 デイスター テクノロジーズ,インコーポレイティド 連続プロセスを用いて薄膜太陽電池を形成するための方法及び装置
WO2009110999A1 (en) * 2008-03-04 2009-09-11 Solexant Corp. Process for making solar cells
WO2010120631A2 (en) * 2009-04-13 2010-10-21 Miasole Method and apparatus for controllable sodium delivery for thin film photovoltaic materials
JP2010251525A (ja) * 2009-04-15 2010-11-04 Fujifilm Corp 集積型薄膜太陽電池の製造方法及び製造装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015129329A (ja) * 2014-01-08 2015-07-16 東レエンジニアリング株式会社 差動排気システム
US20210057595A1 (en) * 2018-04-11 2021-02-25 Sunpower Corporation Method and apparatus of fabricating a solar cell device
US11830956B2 (en) * 2018-04-11 2023-11-28 Maxeon Solar Pte. Ltd. Method and apparatus of fabricating a solar cell device

Also Published As

Publication number Publication date
JP2012195461A (ja) 2012-10-11

Similar Documents

Publication Publication Date Title
KR20100126717A (ko) 태양 전지의 제조 방법
US20130068287A1 (en) Rapid Thermal Activation of Flexible Photovoltaic Cells and Modules
US10367116B2 (en) Method of reducing sodium concentration in a transparent conductive oxide layer of a semiconductor device
CN102844838A (zh) 辊到辊蒸发系统和制造ibiiiavia族光电装置的方法
US8465589B1 (en) Machine and process for sequential multi-sublayer deposition of copper indium gallium diselenide compound semiconductors
WO2012124430A1 (ja) 太陽電池セルの製法および製造装置と太陽電池モジュールの製法
CN107794510B (zh) 柔性薄膜立式真空镀膜生产线
US20200028014A1 (en) Photovoltaic device interconnect, photovoltaic device including same, and method of forming interconnect
US10211351B2 (en) Photovoltaic cell with high efficiency CIGS absorber layer with low minority carrier lifetime and method of making thereof
US20160329446A1 (en) Device for manufacturing integrated thin film solar cell
US10156009B2 (en) Silver copper indium gallium selenide reactive sputtering method and apparatus, and photovoltaic cell containing same
TWI589011B (zh) 化合物太陽電池及其製造方法
WO2012090506A1 (ja) 成膜装置および光電変換素子の製造方法
US20200194609A1 (en) Solar cell with zinc containing buffer layer and method of making thereof by sputtering without breaking vacuum between deposited layers
US9555502B2 (en) Dual lasers for removing glass-side debris during the manufacture of thin film photovoltaic devices
JP2011176148A (ja) 太陽電池モジュールの製造方法およびそれを用いて得られた太陽電池モジュール
JP5860309B2 (ja) 化合物太陽電池の製法
JP4126810B2 (ja) 薄膜太陽電池の製造装置
WO2014010371A1 (ja) 化合物太陽電池の製法
US20140134838A1 (en) Methods of annealing a conductive transparent oxide film layer for use in a thin film photovoltaic device
KR102077768B1 (ko) 박막 태양전지 모듈 구조 및 이의 제조 방법
JP2013115119A (ja) 化合物太陽電池セルおよびその製法ならびにそれを用いた化合物太陽電池モジュールおよびその製法
US20200028013A1 (en) Photovoltaic device interconnect, photovoltaic device including same, and method of forming interconnect
US8895351B2 (en) Method and apparatus of forming a conductive layer
US20180219113A1 (en) Cigs based photovoltaic cell with non-stoichiometric metal sulfide layer and method and apparatus for making thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12758198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12758198

Country of ref document: EP

Kind code of ref document: A1