WO2012124001A1 - 電動送風機およびそれを用いた電気掃除機 - Google Patents

電動送風機およびそれを用いた電気掃除機 Download PDF

Info

Publication number
WO2012124001A1
WO2012124001A1 PCT/JP2011/006462 JP2011006462W WO2012124001A1 WO 2012124001 A1 WO2012124001 A1 WO 2012124001A1 JP 2011006462 W JP2011006462 W JP 2011006462W WO 2012124001 A1 WO2012124001 A1 WO 2012124001A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
ring
bearing ring
electric blower
fan
Prior art date
Application number
PCT/JP2011/006462
Other languages
English (en)
French (fr)
Inventor
幸弘 藤原
香山 博之
中村 一繁
村上 誠
梅景 康裕
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011057486A external-priority patent/JP2012193647A/ja
Priority claimed from JP2011057485A external-priority patent/JP2012193646A/ja
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012124001A1 publication Critical patent/WO2012124001A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • F04D25/062Details of the bearings
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/22Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
    • A47L5/36Suction cleaners with hose between nozzle and casing; Suction cleaners for fixing on staircases; Suction cleaners for carrying on the back
    • A47L5/362Suction cleaners with hose between nozzle and casing; Suction cleaners for fixing on staircases; Suction cleaners for carrying on the back of the horizontal type, e.g. canister or sledge type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/059Roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7886Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted outside the gap between the inner and outer races, e.g. sealing rings mounted to an end face or outer surface of a race

Definitions

  • the present invention relates to an electric blower and a vacuum cleaner using the same.
  • FIG. 6 is a schematic configuration view of a conventional electric vacuum cleaner using an electric blower.
  • the conventional vacuum cleaner main body 61 has a dust collection chamber 63 and a motor chamber 64.
  • the dust collecting chamber 63 and the motor chamber 64 are divided by a grid partition 62 provided at the center.
  • a paper bag 65 is provided in the dust collection chamber 63.
  • An electric blower 51 is provided in the motor chamber 64.
  • a connection pipe 66, a hose 67, a tip pipe 68, an extension pipe 69 and a nozzle 70 are sequentially connected to the electric vacuum cleaner main body 61.
  • the dust collected from the nozzle 70 is collected inside the paper bag 65 of the dust collection chamber 63 through the extension pipe 69, the tip pipe 68, the hose 67 and the connection pipe 66 by the suction force of the electric blower 51.
  • FIG. 7 is a schematic configuration diagram of a conventional electric blower. As shown in FIG. 7, the electric blower 51 has a motor unit 53 and a fan unit 52.
  • the motor unit 53 has a rotating shaft 37, a rotor 38 and a stator 39.
  • the rotating shaft 37 is connected to the rotor 38.
  • the rotor 38 has a commutator (not shown) and a rotor winding (not shown).
  • the rotor winding (not shown) is wound around the outer periphery of an armature core (not shown).
  • the stator 39 is connected to the motor side frame 55.
  • the bearing 40 and the bearing 41 are press-fit to both ends of the rotating shaft 37.
  • the bearing 40 supports the end of the rotary shaft 37 of the motor unit 53.
  • the bearing 40 is held by the fan side frame 54.
  • the bearing 41 is held by the motor side frame 55.
  • the rotating shaft 37 is supported by the bearing 40 and the bearing 41.
  • the bearings 40 and the bearings 41 supporting the both ends of the rotating shaft 37 transmit to the impeller fan 43 so that the loss of the rotational torque of the motor unit 53 is reduced.
  • the motor side frame 55 includes a rotor 38 and a stator 39.
  • the fan unit 52 includes a fan side frame 54, an impeller fan 43, and an air guide 44.
  • the fan side frame 54 covers a bearing 40 that supports the rotating shaft 37.
  • the impeller fan 43 is covered by a fan case 46.
  • the impeller fan 43 includes a plurality of blades 42.
  • the plurality of blades 42 are held by a flat disk-shaped rear shroud (not shown) and an umbrella-shaped front shroud (not shown) having a disk-shaped bottom.
  • the impeller fan 43 is fixed to the rotating shaft 37 using a spacer 57 (FIG. 8), a washer 56 (FIG. 8), and a nut 58 (FIG. 8).
  • the impeller fan 43 rotates with the rotating shaft 37.
  • the impeller fan 43 generates air volume and pressure (dynamic pressure and static pressure) by rotating at high speed.
  • the air guide 44 is fixed to the fan side frame 54 by a screw (not shown) or the like.
  • the fan side frame 54 and the motor side frame 55 are fixed by screws (not shown) or the like.
  • the air guide 44 rectifies the air blown out of the impeller fan 43.
  • the air guide 44 converts the dynamic pressure generated by the impeller fan 43 into a static pressure.
  • the air guide 44 is a so-called diffuser guide and contributes to the improvement of the fan efficiency.
  • the fan case 46 is an outer part and covers the impeller fan 43 and the air guide 44.
  • the fan case 46 is provided to prevent leakage of air inside the fan case 46 and intrusion of air from the outside.
  • FIG. 8 is a partial cross-sectional view in the vicinity of the bearing of the conventional electric blower disclosed in Patent Document 1. As shown in FIG. Although not shown in FIG. 8, the motor chamber 64 is located below the bearing 40, and the fan portion 52 is located above the bearing 40.
  • the bearing 40 includes an inner ring 40c, an outer ring 40b, a seal plate 40d, and a seal plate 40e.
  • the seal plate 40 d is provided between the inner ring 40 c and the outer ring 40 b and is provided inside the bearing 40 on the fan side.
  • the seal plate 40 e is provided between the inner ring 40 c and the outer ring 40 b, and is provided inside the bearing 40 on the motor side.
  • the bearing 40 is internally sealed by seal plates 40d and 40e.
  • the seal plate 40d on the fan side is not in contact with the inner ring 40c.
  • the motor side seal plate 40e contacts the inner ring 40c.
  • the non-contacting seal plate 40d is made of iron, and the contacting seal plate 40e is made of rubber.
  • the seal plate 40 e on the motor side of the bearing 40 is in contact with the inner ring 40 c so that the fan located on the upper side of the bearing 40 in FIG. Prevent air leakage to the part 52 side.
  • FIG. 9 is a cross-sectional view of a bearing of a conventional electric blower disclosed in Patent Document 2. As shown in FIG. Although not illustrated in FIG. 9, the motor unit 53 is located below the bearing 40, and the fan unit 52 is located above the bearing 40.
  • the bearing 40 has an inner ring 40c, an outer ring 40b, a seal plate 40d, and a seal plate 40e.
  • the seal plate 40d is provided on the fan side of the bearing 40 so as to cover the inner ring 40c and the outer ring 40b.
  • the seal plate 40 e is provided on the motor side of the bearing 40 so as to cover the inner ring 40 c and the outer ring 40 b.
  • the bearing 40 dusts the inside of the bearing 40 by the seal plates 40d and 40e.
  • the seal plate 40d on the fan side is not in contact with the inner ring 40c. Unlike in Patent Document 1, the motor side seal plate 40e does not contact the inner ring 40c. Since the seal plate 40 e is not in contact with the inner ring 40 c, mechanical friction loss is smaller than that of the conventional electric blower 1 of Patent Document 1.
  • the bottom surface of the rear surface shroud 42b of the impeller fan 43 has a spacer 57 made of sintering or brass and a washer 56 made of a sheet metal or the like.
  • the suction side portion of the rear shroud 42 b is fixed to the rotating shaft 37 by a nut 58 via a washer 56.
  • the washer 56 located on the bottom of the rear shroud 42 b has a diameter larger than the outer diameter A of the housing chamber 127 of the fan side frame 54 containing the bearing 40, and the outer load surface of the washer 56 on the non-load side A circular contact ring 124 whose tip is formed at an acute angle is formed.
  • the circular contact ring 124 is configured to be in contact tight with the bottom of the air guide 44 formed of resin.
  • the tip of the circular contact ring 124 of the washer 56 provided on the bottom of the rear shroud 42b contacts the bottom of the air guide 44 formed of resin, passes through the inside of the bearing 40, and from the motor 53 side. Leakage of air to the fan 52 can be prevented.
  • the conventional electric blower 51 shown in Patent Documents 1 and 2 rotates at 30,000 to 45,000 r / min.
  • the electric blower 51 is required to further improve the output in order to improve the suction performance of the electric vacuum cleaner, and the rotational speed of the electric blower 51 is further increased to, for example, 45,000 to 120,000 r / min.
  • the pressure difference between the motor unit 53 and the fan unit 52 further increases, and the air flow in the bearing 40 increases.
  • the lubricating grease may flow out of the bearing 40 due to the air flow in the bearing 40 which is increased with the increase of the rotational speed of the electric blower 51.
  • the lubricating grease flows out of the bearing 40, the reliability of the bearing 40 is reduced.
  • the present invention has been made in view of such problems, and provides a configuration for reducing grease leakage from a non-contact seal type bearing with low mechanical friction loss.
  • the present invention is an electric blower and an electric vacuum cleaner using the same, comprising: a rotating shaft; a rotor connected to the rotating shaft; a motor having a stator disposed opposite to the rotor; and at least one end of the rotating shaft It has a bearing to support. Furthermore, a frame covering the bearing and the stator, a front shroud fixed to the rotating shaft and having a suction port at the center, a rear shroud facing the front shroud, and a plurality of members sandwiched between the front shroud and the rear shroud And an impeller fan having a plurality of blades. In addition, a fan case having an intake port and covering an impeller fan is provided.
  • a seal plate having an annular projection protruding toward the frame side, and an annular bearing ring supported by the frame, is provided between the rear shroud and the frame.
  • An annular bearing ring is arranged such that the center of the annular bearing ring and the center of the rotation axis substantially coincide.
  • FIG. 1 is a cross-sectional view of a main body of an electric blower according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the electric blower according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view around the bearing in the embodiment of the present invention.
  • FIG. 4A is a top view of a bearing ring according to an embodiment of the present invention.
  • FIG. 4B is an external view of a bearing ring in the embodiment of the present invention.
  • FIG. 5A is a top view in the case where a plurality of groove portions are provided on the outer peripheral portion of the bearing ring in the embodiment of the present invention.
  • FIG. 5B is an external view of the case where a plurality of groove portions are provided on the outer peripheral portion of the bearing ring in the embodiment of the present invention.
  • FIG. 6 is a schematic configuration view of a conventional electric vacuum cleaner using an electric blower.
  • FIG. 7 is a schematic configuration diagram of a conventional electric blower.
  • FIG. 8 is a partial cross-sectional view of the vicinity of a bearing of a conventional electric blower.
  • FIG. 9 is a partial sectional view of a bearing of a conventional electric blower.
  • FIG. 1 is a cross-sectional view of a main body of a vacuum cleaner according to an embodiment of the present invention.
  • the vacuum cleaner 20 includes a dust collecting chamber 22, a blowing chamber 24, a dust collecting bag 26, an electric blower 1, a soundproof cover 27, and a sound absorbing material inside the cleaner body 25. And 28.
  • the cleaner body 25 has a dust collection chamber 22 and a blower chamber 24.
  • the dust collection chamber 22 is in communication with the outside of the vacuum cleaner 20 through the main body air inlet 21.
  • the air blowing chamber 24 communicates with the outside of the vacuum cleaner 20 through the main body exhaust port 23.
  • the dust collection bag 26 is provided inside the dust collection chamber 22.
  • the dust collection bag 26 is airtightly attached to the main body intake port 21.
  • the electric blower 1 is installed inside the blowing chamber 24.
  • the soundproof cover 27 is made of a flame-retardant resin material or the like, and is provided to cover the electric blower 1.
  • the sound absorbing material 28 is disposed above and below the blowing chamber 24.
  • the installation area of the sound absorbing material 28 provided in the cleaner main body 25 can be enlarged by expanding the space which arrange
  • a hose (not shown) and an extension pipe (not shown) are sequentially connected to the main body intake port 21.
  • a nozzle (not shown) is attached to the tip of the extension tube. The nozzles suction dust on the floor surface.
  • FIG. 2 is a cross-sectional view of the electric blower according to the embodiment of the present invention.
  • the electric blower 1 includes a brushless motor 11, an impeller fan 12, a frame front 10 a, a frame rear 10 b, a fan case 13 and a bearing 9.
  • the brushless motor 11 has a rotating shaft 2, a rotor 3 and a stator 6.
  • the rotor 3 is connected to the rotating shaft 2.
  • the rotor 3 is provided with a stator 6 and a gap.
  • the winding 4 is wound around the core 5.
  • the stator 6 has a core 5 around which a winding 4 is wound.
  • a plurality of second guide wings 8 are provided on the outer periphery of the core 5 so as to be fitted and fixed to the recess 7.
  • An impeller fan 12 is provided on the rotary shaft 2 of the brushless motor 11.
  • An impeller fan 12, a seal plate 32, and a cylindrical spacer 33 are disposed on the rotary shaft 2 of the brushless motor 11 in order from the impeller fan 12 side.
  • the impeller fan 12 has a front shroud 12b, a rear shroud 12a, and a blade 12c.
  • the impeller fan 12 is fixed to the rotating shaft 2 and provided.
  • the front shroud 12b has a disk-shaped bottom surface having an air inlet at its central portion, and has an umbrella shape.
  • the rear shroud 12a has a flat disk shape.
  • the front shroud 12 b is located on the inlet 13 a side of the impeller fan 12.
  • the front shroud 12b has a disk-shaped bottom and is umbrella-like.
  • An air inlet is provided at the center of the front shroud 12b.
  • the tip of the intake port of the front shroud 12 b and the intake port 13 a are dynamically sealed via an annular ring 19.
  • the rear shroud 12 a is located on the brushless motor 11 side of the impeller fan 12.
  • the rear shroud 12a has a flat disk shape.
  • the annular ring 19 dynamically seals between the tip of the intake port of the front shroud 12 b and the intake port 13 a provided at the center of the fan case 13, and is disposed such that the impeller fan 12 can be rotationally driven. It is done.
  • the annular ring 19 is made of a resin material such as PTFE.
  • the impeller fan 12 is fastened to the rotating shaft 2 by a nut 34.
  • the impeller fan 12 rotates in a state of being fixed to the rotating shaft 2.
  • the blade 12c is sandwiched and supported by the front shroud 12b and the rear shroud 12a.
  • the blade 12c sucks in air from the central portion of the blade 12c and blows air to the outer peripheral portion of the blade 12c.
  • the fan case 13 is provided to cover the impeller fan 12.
  • the motor case 15 is disposed in contact with the front of the frame 10 a to form a plurality of first independent air passages 16.
  • the motor case 15 has a conical shape that spreads at a predetermined angle from the upstream to the downstream of the air passage 14.
  • a first guide wing 15 a is provided on the inner wall of the motor case 15.
  • the frame front 10 a and the frame back 10 b cover the brushless motor 11.
  • the frame front 10 a holds a bearing 9 fixed to the rotating shaft 2. Furthermore, the frame front 10a is located in the suction direction, which is the upstream side of the air flow.
  • the post-frame 10b is configured to be located in the discharge direction, which is the downstream side of the air flow.
  • FIG. 3 is a cross-sectional view of the area around the bearing according to the embodiment of the present invention.
  • the bearing 9 shown in FIG. 3 has a so-called noncontact seal configuration.
  • the outer ring 9 b is a cylindrical metal.
  • the inner ring 9c is provided inside the outer ring 9b.
  • the ball 9a is provided between the inner ring 9c and the outer ring 9b.
  • the ball 9a is provided in a rotatable state with respect to the outer ring 9b.
  • the ball 9 a is located between the outer ring 9 b and the inner ring 9 c and receives a rotational load from the rotary shaft 2.
  • the balls 9a are held by a cage (not shown) and arranged at equal positional intervals between the outer ring 9b and the inner ring 9c.
  • the seal part 9d is provided between the inner ring 9c and the outer ring 9b.
  • the seal part 9d is fixed to the outer ring 9b.
  • the seal part 9d prevents the leakage of lubricating grease and prevents the entry of dust and foreign matter from the outside of the bearing 9.
  • the seal parts 9 d are disposed at the front and back of the bearing 9 in the thrust direction. The seal part 9d is not in contact with the inner ring 9c.
  • the seal part 9d is generally configured using an iron-based material.
  • the seal part 9d may be configured by using another material such as aluminum or a resin material. Any material may be used as long as the outflow of lubricating grease from the bearing 9 can be reduced.
  • the bearing 9 is connected to the rotating shaft 2.
  • the outer ring 9b is disposed in contact with the front of the frame 10a.
  • the inner ring 9 c is disposed in contact with the rotation shaft 2.
  • the inner ring 9 c rotates with the rotor 3 and the impeller fan 12.
  • the bearing 9 is filled with lubricating grease (not shown).
  • the lubricating grease lubricates the outer ring 9b of the bearing 9, the inner ring 9c, and the balls 9a.
  • the impeller fan 12 is fixed to the rotating shaft 2 by a nut 34 via the seal plate 32 and the cylindrical spacer 33.
  • the cylindrical spacer 33 has a cylindrical shape, and is made of sintering, brass or the like.
  • the cylindrical spacer 33 is in contact with the inner ring 9 c of the bearing 9, is press-fitted and fixed to the rotating shaft 2, and rotates with the rotation of the rotating shaft 2.
  • the bearing ring 30 has an annular shape, and is fixed to the front of the frame 10a.
  • the bearing ring 30 is made of a resin material having a low coefficient of friction, as typified by fluorocarbon resin (PTFE).
  • PTFE fluorocarbon resin
  • the seal plate 32 is in the shape of a disk having a hole at its center.
  • the seal plate 32 has an annular projection 31 on a disk-shaped surface.
  • the annular projection 31 is provided to project toward the front of the frame 10a. As shown in FIG. 2, the seal plate 32 is located at the bottom of the rear shroud 12a.
  • the seal plate 32 contacts the cylindrical spacer 33, regulates the fixed position of the impeller fan 12 with respect to the thrust direction of the rotary shaft 2, and rotates with the rotation of the rotary shaft 2.
  • the seal plate 32 is slidably disposed such that the entire circumference of the annular projection 31 of the seal plate 32 is in contact with the bearing ring 30.
  • the impeller fan 12 is fixed to the rotating shaft 2 by a nut 34 via the seal plate 32 and the cylindrical spacer 33.
  • the grease leak prevention unit 35 is constituted by the bearing 9 and the seal plate 32. Furthermore, the grease leak prevention portion 35 may be configured by the bearing 9, the seal plate 32, the bearing ring 30, and the cylindrical spacer 33.
  • the electric blower 1 includes a brushless motor 11, a bearing 9, a frame front 10a, a rear shroud 12a, a front shroud 12b, an impeller fan 12, a fan case 13, a seal plate 32, and bearings. And a ring 30.
  • the center of the bearing ring 30 is arranged to substantially coincide with the center of the rotation shaft 2.
  • the entire circumference of the annular projection 31 of the seal plate 32 is configured to be in contact with the annular bearing ring 30.
  • the protrusion 31 and the bearing ring 30 are in close contact with each other, and a contact seal effect is exhibited.
  • the contact margin between the projection 31 and the bearing ring 30 has no so-called clearance and is in constant contact, so that the sealing performance of the contact seal is kept good, lubricating grease and air leakage. It can be reduced.
  • the contact area between the projection 31 and the annular bearing ring 30 is increased, the load in the thrust direction applied to the seal plate 32 is increased. As the load in the thrust direction applied to the seal plate 32 increases, the mechanical friction loss increases. Therefore, it is desirable to reduce the contact area between the annular projection 31 and the annular bearing ring 30.
  • the contact area between the protrusion 31 and the bearing ring 30 is calculated as an optimum value based on the operating conditions of the electric blower such as the number of rotations and the fan output.
  • the shape of the protrusions 21 it is also possible to reduce the contact area by configuring the shape of the tip shape as an acute angle protrusion, an obtuse angle protrusion, a 90 degree right triangle, or a R-chamfered protrusion. is there.
  • the bearing ring 30 has an annular shape, and is made of a resin material having a low coefficient of friction, as typified by fluorocarbon resin (PTFE).
  • PTFE fluorocarbon resin
  • the bearing ring 30 is not limited to the configuration using a resin material.
  • the bearing 9 of the electric blower 1 in the present embodiment includes an outer ring 9 b, an inner ring 9 c, a ball 9 a, and a seal part 9 d. Furthermore, the internal volume of the grease leak prevention part 35 is smaller than the volume of the grease filling part 36 inside the bearing 9.
  • this configuration will be described in detail.
  • the internal volume of the grease leak prevention portion 35 is a space between the bearing 9 and the seal plate 32 and is a space held by the bearing ring 30 and the cylindrical spacer 33.
  • the grease filling portion 36 is a space inside the bearing 9 and filled with grease.
  • Patent Document 1 As shown in FIG. 9, the contact ring 124 is provided to prevent air leakage from the impeller fan portion.
  • the rotational speed of the conventional electric blower is 30,000 to 45,000 r / min.
  • the electric blower 1 in the present embodiment is required to further improve the output in order to improve the suction performance of the vacuum cleaner, and a high speed of 45,000 to 120,000 r / min using the brushless motor 11 It is premised to perform rotation.
  • the outer diameter of the contact ring 124 is larger than the outer diameter of the motor housing chamber 127. That is, the space from which the air flows out is larger than the volume of the space filled with grease inside the bearing 40. Therefore, a large amount of grease in the bearing 40 flows out. When the grease inside the bearing 40 flows out, the reliability of the bearing 40 is reduced.
  • the volume of the grease outflow portion of the electric blower 1 in the present embodiment is smaller than the volume of the grease filling portion 36. That is, the grease leakage preventing portion 35 from which the lubricating grease flows out is smaller than the volume of the grease filling portion 36 filled with the grease inside the bearing. This prevents a large amount of grease from flowing out. This prevents the lowering of the reliability of the bearing.
  • the distance from the center of the rotary shaft 2 to the tip of the annular projection 31 is smaller than the distance from the center of the rotary shaft 2 to the outer periphery of the bearing 40 It is also good.
  • the contact portion between the annular projection 31 and the annular bearing ring 30 approaches the center of the rotation shaft 2.
  • the volume of the grease leak prevention part 35 of the electric blower 1 becomes smaller than the volume of the grease filling part 36. Therefore, the volume of lubricating grease leaking from the bearing 9 to the grease leakage preventing portion 35 can be reduced.
  • the seal plate 32 may be formed integrally with the rear shroud 12a. The reason is that the annular projection 31 of the seal plate 32 may have a shape that suppresses mechanical friction loss with the bearing ring 30. Moreover, it is because the annular projection 31 of the seal plate 32 may have a small contact area and a shape that maintains sealing performance.
  • a method of forming the seal plate 32 integrally with the rear surface shroud 12a a method such as a die casting method, casting, casting, forging, sintering or pressing is used.
  • the impeller fan 12 and the seal plate 32 are not limited to the shapes in the embodiment of the present invention.
  • the impeller fan 12 and the seal plate 32 may have a shape that suppresses mechanical friction loss, have a small contact area, and can maintain sealing performance.
  • the bearing ring 30 may be configured using a resin material having a low coefficient of friction.
  • the bearing ring 30 is made of a high strength material such as an aluminum or iron based material or an engineering plastic. This is because the bearing ring 30 is a resin material having a low coefficient of friction, and by using a relatively soft material, the contact area between the bearing ring 30 and the seal plate 32 increases.
  • the material of the bearing ring 30 is more easily adhered to the seal plate 32 made of metal or the like by using a resin material. Thereby, the seal plate 32 improves the sealability with the bearing ring 30. Thereby, lubricating grease leakage from the bearing 9 can be further reduced. Therefore, the reliability of the bearing 9 is improved.
  • the material of the bearing ring 30 is a material having a low coefficient of friction, the friction with the seal plate 32 can be reduced. Thereby, the fan efficiency of the impeller fan 12 is improved.
  • bearing ring 30 has been described as being made of fluorocarbon resin (PTFE), the present invention is not limited to this example.
  • PTFE fluorocarbon resin
  • the material of the bearing ring 30 is good as long as it has good slidability and sealing properties.
  • the bearing ring 30 may be, for example, a resin material having wear resistance such as polyphenylene sulfide (PPS), polybutylene terephthalate (PBT), polyoxymethylene (POM), and polyamide (PA).
  • the bearing ring 30 may be made of a resin material having good adhesion to the adhesive as long as it is a resin material having good wear resistance and slidability.
  • bearing ring 30 may be configured using a material other than a resin material such as iron, aluminum, sintered alloy, brass, or an elastic material such as rubber.
  • the bearing ring 30 is not limited to the above-described resin material as long as it can maintain the seal configuration to reduce lubricating grease leakage. It is because the effect produced by the present invention can be equally exhibited.
  • the bearing ring 30 may be fixedly disposed on the frame front 10a.
  • the fixed arrangement of the bearing ring 30 in front of the frame 10a can prevent the bearing ring from rotating.
  • a centrifugal force or a rotational moment is applied to the bearing ring 30 by the rotation of the protrusion 31.
  • the centrifugal force is generally proportional to the square of the rotational speed if it is the same mass and located on the coaxial radius.
  • the rotational moment is proportional to the product of the rotational force and the shaft radius. The rotational force increases with the number of rotations. Therefore, when the impeller fan 12 rotates at high speed, the centrifugal force and the rotational moment applied to the bearing ring 30 increase.
  • the rotational moment due to the impeller fan 12 rotating at high speed causes a force to rotate the protrusion 31 and the bearing ring 30 together.
  • Fixing the bearing ring 30 prevents the protrusion 31 and the bearing ring 30 from rotating together. Thereby, the sliding loss by corotation of the projection part 31 and the bearing ring 30 can be reduced.
  • the bearing ring 30 may float from the interface between the bearing ring 30 and the frame front 10a. Air leakage and lubricating grease leakage occur because the bearing ring 30 floats from the joint surface between the bearing ring 30 and the frame front 10a.
  • the bearing ring 30 and the front of the frame 10a can be fixed by means of a so-called fitting and fixing. Furthermore, the bearing ring 30 and the frame front 10a may be fixed using a welding method or a welding method.
  • the frame front 10a may be provided with a threaded portion. You may fix by making the screw part of frame front 10a, and the outer peripheral part of the bearing ring 30 screw-fasten. This is because even with these methods, the above-described effects of fixing the bearing ring 30 and the frame front 10a can be maintained in the same manner. Thereby, the manufacturing cost can be reduced as compared with the case of fixing the bearing ring 30 and the frame front 10a using another part such as a screw. This is because the number of parts is reduced and the number of assembling steps is reduced.
  • the bearing ring 30 and the frame front 10a are fixed. Air leakage from the brushless motor 11 to the impeller fan 12 side can be prevented by preventing the bearing ring 30 from being separated from the joint surface between the bearing ring 30 and the frame front 10a. Thereby, the fan efficiency can be prevented from being reduced.
  • the bearing ring 30 may be bonded to the front of the frame 10a.
  • the fixing can be performed securely.
  • Bonding between the bearing ring 30 and the front of the frame 10a may be performed using a bonding agent, an elastic adhesive, a resin-based adhesive, or an adhesive such as a cured resin.
  • the adhesive can prevent the bearing ring 30 and the seal plate 32 from rotating together. Thereby, it is possible to prevent the sliding loss due to the bearing ring 30 and the seal plate 32 rotating together.
  • the bearing ring 30 is adhesively fixed to the frame front 10a. As a result, even when the electric blower 1 is operated with an inclination or when a centrifugal force is generated by rotation of the fan, the bearing ring 30 can be prevented from coming off from the front of the frame 10a.
  • the bearing ring 30 can be prevented from falling by adhesively fixing the bearing ring 30 to the front of the frame 10a.
  • the bearing ring 30 When the bearing ring 30 is not adhesively fixed to the front of the frame 10a, the pressure difference generated during the operation of the fan may cause the bearing ring 30 to fall due to the air flow toward the fan side.
  • the bearing ring 30 when the bearing ring 30 is not adhesively fixed to the frame front 10a, the projection 31 of the seal plate 32 and the bearing ring 30 contact with each other to cause mechanical friction.
  • the frictional resistance causes the bearing ring 30 to rotate with the seal plate 32.
  • the bearing ring 30 and the ground contact surface portion of the front of the frame 10 generate friction loss due to the sliding portion.
  • the bearing ring 30 is prevented from rotating by bonding the annular bearing ring 30 and the frame front 10a. This can prevent an increase in sliding loss due to rotation. In addition, it is possible to prevent air leakage to the fan side caused by separation (lifting) of the bearing ring 30 from the ground contact surface portion of the front of the frame 10a. Thereby, the fan efficiency can also be prevented from decreasing.
  • lubricating grease leakage can be prevented because the bearing ring 30 and the frame front 10a are adhesively fixed. Thereby, lubricating grease leakage of the bearing 9 can be prevented. Furthermore, by preventing the air leakage of the fan, the fan efficiency is improved.
  • a bond is used as an adhesive between the bearing ring 30 and the frame front 10a, but the present invention is not limited to this.
  • the adhesive needs to be able to fix the bearing ring 30 and the frame front 10a.
  • the bearing ring 30 may have at least one groove along the central axis direction of the bearing ring 30 on the outer peripheral portion of the bearing ring 30. Furthermore, the groove may be filled with an adhesive.
  • FIG. 4A is a top view of a bearing ring according to an embodiment of the present invention.
  • FIG. 4B is an external view of a bearing ring in the embodiment of the present invention.
  • the annular bearing ring 30 has a groove 30a at the outer peripheral portion.
  • One groove portion 30 a is provided in the bearing ring 30.
  • the groove 30 a has a cross section including an arc shape in a plane perpendicular to the central axis of the bearing ring 30.
  • the annular bearing ring 30 is provided with a groove 30a on the outer periphery.
  • the groove 30 a penetrates from the upper surface to the lower surface of the bearing ring 30.
  • the depth of the groove 30 a is represented by a radial length from the outer periphery of the bearing ring 30 to the inner periphery of the bearing ring 30.
  • the depth of the groove portion 30 a is a shape that does not penetrate to the inner periphery of the bearing ring 30 and stops midway on the outer periphery of the annular bearing ring 30.
  • the bonding area between the frame front 10 a and the bearing ring 30 is larger in the case where the groove 30 a is provided than in the case where the groove 30 a is not provided in the outer peripheral portion of the bearing ring 30.
  • the bonding area between the frame front 10a and the bearing ring 30 is increased. Thereby, the adhesiveness of the flame
  • the cross section of the groove part 30a has an arc shape, it is easy to be filled with an adhesive at the time of assembly.
  • the adhesive is easy to be stored in the groove 30a.
  • the groove part 30a can be utilized also as an adhesion accumulation part.
  • the cross-sectional area of the adhesive portion increases the contact margin as compared with the bearing ring 30 in which the groove portion 30a is not provided in the outer peripheral portion.
  • the adhesiveness of the bearing ring 30 and the frame front 10a improves. Therefore, the bearing ring 30 is adhesively fixed to the frame front 10a more reliably.
  • annular bearing ring 30 may have a plurality of groove portions 30 a in the outer peripheral portion.
  • FIG. 5A is a top view in the case where a plurality of groove portions are provided on the outer peripheral portion of the bearing ring in the embodiment of the present invention.
  • FIG. 5B is an external view of the case where a plurality of groove portions are provided on the outer peripheral portion of the bearing ring in the embodiment of the present invention.
  • the bearing ring 30 has four grooves 30a in the outer peripheral portion.
  • the bonding area between the front of the frame 10 a and the bearing ring 30 is larger in the case of having a plurality of grooves than in the case of having one groove on the outer peripheral portion of the bearing ring 30.
  • This configuration prevents grease from leaking from the bearing 9. Furthermore, it prevents the air leakage of the fan. This improves the reliability of the bearing 9 and the fan efficiency.
  • the position where the groove 30a is disposed may be the outer peripheral portion of the bearing ring 30.
  • the grooves 30a may be arranged so that the grooves 30a are diagonal to each other or have a predetermined distance from each other.
  • each groove part 30a may have an unequal space
  • the number of grooves 30a may be any number as long as adhesion between the frame front 10a and the bearing ring 30 can be appropriately performed.
  • the number of grooves 30a may be multiple.
  • the optimum number of grooves 30a can be experimentally determined in consideration of the manufacturing method, the yield of component materials, and the like.
  • the optimum condition can be experimentally obtained in consideration of the operating conditions such as the degree of vacuum and the number of rotations of the electric blower 1.
  • the cross-sectional shape of the groove portion 30a has been described by giving an example having an arc shape, but the present invention is not limited to this.
  • the shape of the cross section of the groove 30a may be a shape in which stress is not easily concentrated.
  • the cross-sectional shape of the groove 30a is a V-shaped groove, stress is likely to be concentrated. Stress concentration occurs in the V-shaped groove of the bearing ring 30. When stress is concentrated on the V-shaped groove of the bearing ring 30, the bearing ring 30 may be cracked. When the crack of the bearing ring 30 reaches the inner peripheral portion of the bearing ring 30, air flows into the impeller fan 12 side. Thereby, the sealing function of the bearing ring 30 is impaired. For this reason, as for the shape of the cross section of the groove part 30a, it is desirable to make it a shape which stress is hard to concentrate, such as circular arc shape.
  • the conventional bearing 40 utilizes a contact rubber seal.
  • the rubber contacts the inner ring 40c formed of iron.
  • the contact rubber seal type bearing 40 generally has a smaller number of circulations and is complicated in construction and assembly due to the different materials of rubber and iron as compared with a noncontact seal bearing composed of a generally used iron material. Become expensive and expensive.
  • the electric blower 1 in the present embodiment is required to further improve the output in order to improve the suction performance of the vacuum cleaner, and a high speed of 45,000 to 120,000 r / min using the brushless motor 11 It is premised to perform rotation.
  • a contact rubber seal type bearing can reduce the outflow of air and lubricating grease, but under high speed rotation, the rubber seal may be scraped by contact and mechanical friction loss may increase.
  • the bearing 9 in the present embodiment uses a noncontact seal type bearing and uses a contact seal between the projection 31 formed of a metal material and the bearing ring 30 formed of a resin material having a low coefficient of friction. I explained about.
  • the bearing 9 Due to the contact seal configuration between the projection 31 and the bearing ring 30 described above, the bearing 9 uses a noncontact seal type bearing that is relatively inexpensive and simple compared to conventional contact rubber seal bearings. be able to. At this time, although the material used for the seal plate 9d of the bearing is generally an iron-based material, the above-mentioned effect is not changed even if another material such as aluminum or a resin material is used.
  • the present invention is not limited to this, and the bearing 9 can improve the reliability of the bearing even if a contact rubber seal type bearing is used.
  • the effect of the present invention can be used in other types of bearings because lubricating grease flowing out of the bearings 9 can be prevented.
  • the annular projection 31 of the seal plate 32 is generally formed by pressing a sheet metal. In order to produce the projection part 31 by press work of sheet metal, addition of parts is unnecessary and it can produce simply. Therefore, the increase in the production cost of the seal plate 32 can be suppressed.
  • the seal configuration for preventing grease leakage from the noncontact seal type bearing 9 in the present embodiment is made of a resin material having a low coefficient of friction that improves the slidability of the annular bearing ring 30, and a protrusion Contact with 31 metal materials. Further, the contact area is reduced so as to contact only the protrusion 31 of the tip. Thereby, the mechanical friction loss due to the contact can be reduced as compared with the conventional contact rubber seal bearing.
  • the present embodiment has been described using the configuration of the brushless motor.
  • the present invention is not limited to the present embodiment, and can be implemented even when a commutator motor or the like used in a conventional electric blower is used.
  • the air flowing into the impeller fan 12 passes through the first independent air passage 16 and the second independent air passage 18 communicating therewith.
  • the air that has passed through the second independent air passage 18 flows out from the exhaust port opened to the soundproof cover 27 (FIG. 1).
  • the air flowing out of the exhaust port is discharged to the outside of the cleaner body 25 through the main body exhaust port 23 (FIG. 1).
  • the impeller fan 12 When the rotating shaft 2 rotates, the impeller fan 12 also rotates. Due to the rotation of the impeller fan 12, the air inside the impeller fan 12 is scraped out by the blades 12 c disposed in the impeller fan 12. The air inside the impeller fan 12 flows out from an air inlet disposed at the central portion of the impeller fan 12 along the shape of the front shroud 12 b.
  • the air flows in the circumferential direction of the impeller fan 12.
  • the air inside the impeller fan 12 is swept outward in the outer peripheral direction of the impeller fan 12 and to the rear, so the inside of the impeller fan 12 has a negative pressure.
  • the air flow generated from the brushless motor 11 side in the direction of the impeller fan 12 is prevented from flowing out to the impeller fan 12 side by the contact sealing action between the projection 31 and the bearing ring 30.
  • the contact sealing action is caused by the close contact between the annular projection 31 disposed on the seal plate 32 and the bearing ring 30.
  • a series of independent air passages are formed by the first independent air passage 16 and the second independent air passage 18.
  • the first independent air passage 16 is formed by arranging the motor case 15 and the frame front 10a in contact with each other.
  • a plurality of first independent air passages 16 are provided.
  • the second independent air passage 18 is connected to the first independent air passage 16.
  • a plurality of second independent air passages 18 are connected to one first independent air passage 16.
  • the air flow that has flowed out of the impeller fan 12 flows into the first independent air passage 16.
  • the air flow that has flowed into the first independent air passage 16 flows along the outer peripheral surface of the frame front 10a.
  • the air flow that has flowed along the outer peripheral surface of the frame front 10 a flows out of the electric blower 1.
  • the cross-sectional area of the series of independent air passages increases from the upstream side of the impeller fan 12 to the downstream side of the electric blower 1 downstream. That is, the cross-sectional area of a series of independent air passages increases from upstream to downstream. As the cross-sectional area of the independent air passage increases, the velocity of the air flow decreases. Therefore, the air flow is converted from dynamic pressure to static pressure.
  • the blowing performance of the electric blower 1 is represented by the ratio between the driving power of the electric blower 1 and the work performed by the electric blower 1.
  • the work performed by the electric blower 1 is represented by the product of the degree of vacuum generated by rotation of the impeller fan 12 and the flow rate.
  • the lubricating grease decreases in viscosity as the temperature of the lubricating grease increases.
  • the viscosity of the lubricating grease decreases, the lubricating grease tends to flow out of the bearing 9. There is a problem that the reliability of the bearing 9 is reduced by the lubricating grease flowing out of the bearing 9.
  • the temperature of the lubricating grease is increased by the frictional heat generated by the rotation of the bearing 9 at high speed. Further, the temperature of the lubricating grease is raised by the generation of heat from the brushless motor 11 being transmitted to the bearing 9.
  • the reason why the brushless motor 11 generates heat is due to copper loss, iron loss and mechanical loss.
  • the copper loss is Joule heat generated by the current flowing through the winding 4 and increases in proportion to the square of the current.
  • Iron loss is divided into hysteresis loss and eddy current loss.
  • the hysteresis loss occurs due to the physical properties of the magnetic steel sheet that forms the magnetic path of the brushless motor 11.
  • the hysteresis loss is caused by the change of the magnetic flux density of the magnetic steel sheet due to the change of the magnetic field due to the rotation of the brushless motor 11.
  • the fluctuation of the magnetic flux passing through the core 5 causes a spiral current to flow around the magnetic flux line.
  • Eddy current loss occurs due to the electrical resistance at that time.
  • the mechanical loss is caused by the friction of the bearing 9 and the agitation resistance of air between the rotor 3 and the stator 6.
  • hysteresis loss and eddy current loss increase depending on the operating frequency. Therefore, when the brushless motor 11 is used at high speed rotation, heat generation due to iron loss becomes large. It is important how to efficiently dissipate heat generated by iron loss.
  • the plurality of second guide wings 8 are fitted and fixed in linear recesses 7 provided on the outer peripheral portion of the core 5.
  • the heat generated in the core 5 is conducted to the second guide wing 8.
  • a plurality of second guide wings 8 are provided.
  • the heat conducted to the surface of the second guide vane 8 is conducted to the air flow from the impeller fan 12 flowing in a series of independent air passages.
  • the heat conducted to the surfaces of the plurality of second guide wings 8 flows out of the brushless motor 11.
  • the core 5 and the second guide wing 8 are bonded with a highly thermally conductive adhesive.
  • the adhesive prevents a minute gap from being formed in the fitting portion between the core 5 and the second guide wing 8.
  • the thermal conductivity from the core 5 to the second guide wing 8 is improved by reducing the thermal contact resistance of the fitting portion.
  • the second guide vanes 8 are continuously and forcibly cooled by the air flow from the impeller fan 12. Therefore, a temperature difference occurs between the second guide wing 8 and the core 5. Heat conduction inside the core 5 is promoted. Thereby, the heat of the core 5 is efficiently released to the outside of the brushless motor 11.
  • the heat of the core 5 can be easily conducted to the entire second guide wing 8 by using aluminum having high thermal conductivity for the core 5.
  • the heat conducted to the second guide wing 8 dissipates heat from the surface of the second guide wing 8. Therefore, the 2nd guide wing 8 can be used as a radiating fin.
  • the brushless motor 11 can dissipate heat efficiently by the second guide vanes 8.
  • the heat generated by the winding 4 is transmitted to the plurality of second guide wings 8 through the mold portion 17.
  • the mold portion 17 is molded of a heat conductive resin.
  • the heat transferred to the second guide wing 8 is transferred to the air flow from the impeller fan 12 through the same process as the heat transferred from the core 5.
  • the heat conducted to the air flow from the impeller fan 12 is released to the outside of the brushless motor 11.
  • the mold portion 17 uses a heat conductive resin, the heat conductivity becomes dramatically higher than air. The heat generated by the winding 4 can be efficiently dissipated by the mold portion 17.
  • the second guide wing 8 may be a metal material such as copper and silver, a thermally conductive hard metal, or a powder of carbon.
  • the second guide wing 8 may use a thermally conductive resin containing a filler such as fibers. By including a filler such as fiber in the second guide wing 8, the thermal conductivity is improved.
  • the second guide wing 8 may be made of a material having high thermal conductivity.
  • the thermally conductive resin used for the second guide wing 8 may be polyphenylene sulfide resin (PPS), nylon and liquid crystal polymer (LCP).
  • the conductive filler used for the second guide wing 8 may be metal powder, graphite, carbon black or the like.
  • the insulating filler used for the second guide wing 8 may be a sintered ceramic such as aluminum nitride, boron nitride, or alumina.
  • the filler to be selected is preferably used for each part depending on the presence or absence of the insulating property. Further, as the second guide wing 8, it is preferable to use a resin containing a conductive filler.
  • the resin containing the conductive filler can increase the thermal conductivity as compared to the resin containing the insulating filler.
  • the heat conductive resin of the second guide wing 8 has an appropriate filler blending ratio. As the blending ratio of the filler increases, the viscosity at the time of melting increases. If the viscosity at the time of melting is increased, the formability is reduced, so the second guide vanes 8 are easily deteriorated.
  • the thickness of the second guide wing 8 and the number of wings may be experimentally determined optimum values in consideration of the cross-sectional area of the second guide wing 8, the rate of change of the cross-sectional area, and the heat dissipation capacity. desirable.
  • the heat radiation capacity of the second guide wing 8 is the ability to cool the stator 6.
  • the cross-sectional area of the second guide vane 8 and the rate of change of the cross-sectional area are determined using the plurality of second independent air passages 18 formed in the air passage 14 to obtain optimum values.
  • the electric blower according to the present invention has a significant effect of preventing lubricating grease from leaking from the bearing. Therefore, for example, it is useful for a floor moving AC cleaner, a vertical AC cleaner, a handy DC charging cleaner, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 電動送風機およびそれを用いた電気掃除機であって、ブラシレスモータと、軸受と、フレームと、回転軸に固定され、中央に吸込口を有する前面シュラウドと、後面シュラウドと、インペラファンと、インペラファンを覆うファンケースと、シール板(32)と、軸受リング(30)とを備える。軸受リング(30)が、軸受リング(30)の中心と、回転軸(2)との中心が実質的に一致するように配置される。さらに、シール板(32)の円環状の突起部(31)の全周を、軸受リング(30)と接触させる。

Description

電動送風機およびそれを用いた電気掃除機
 本発明は、電動送風機およびそれを用いた電気掃除機に関する。
 まず、従来の電動送風機51の構成について、図6を用いて説明する。図6は、従来の電動送風機を用いた電気掃除機の概略構成図である。従来の電気掃除機本体61は、集塵室63と、モータ室64とを有している。集塵室63と、モータ室64とは、中央部に設けられた格子隔壁62により分けられている。集塵室63には、紙袋65が設けられている。モータ室64には、電動送風機51が設けられている。
 電動掃除機本体61には、接続パイプ66、ホース67、先端パイプ68、延長管69およびノズル70が順次接続されている。電動送風機51の吸引力により、ノズル70から集められた塵埃は、延長管69、先端パイプ68、ホース67および接続パイプ66を通り、集塵室63の紙袋65の内部に集められる。
 図7は、従来の電動送風機の概略構成図である。図7に示すように、電動送風機51は、モータ部53およびファン部52を有する。
 モータ部53は、回転軸37と、回転子38と、固定子39とを有する。回転軸37は、回転子38と接続されている。回転子38は、整流子(図示せず)および回転子巻線(図示せず)を有する。回転子巻線(図示せず)は、電機子コア(図示せず)の外周に巻かれている。固定子39は、モータ側フレーム55に接続されている。
 軸受40および軸受41は、回転軸37の両端に圧入されている。
 軸受40は、モータ部53の回転軸37の端部を支持する。軸受40は、ファン側フレーム54により保持される。軸受41は、モータ側フレーム55により保持される。回転軸37は、軸受40および軸受41により支持される。回転軸37の両端部を支持する軸受40および軸受41は、モータ部53の回転トルクの損失が少なくなるよう、インペラファン43に伝達する。モータ側フレーム55は、回転子38および固定子39を含む。
 ファン部52は、ファン側フレーム54と、インペラファン43と、エアガイド44とを有している。
 ファン側フレーム54は、回転軸37を支持する軸受40を覆っている。
 インペラファン43は、ファンケース46により覆われている。インペラファン43は、複数枚のブレード42を備える。複数枚のブレード42は、平面の円板形状である後面シュラウド(図示せず)と、円板形状の底面を有する傘状の前面シュラウド(図示せず)とによって挟持されている。インペラファン43は、スペーサ57(図8)と、座金56(図8)と、ナット58(図8)とを用いて回転軸37に固定されている。インペラファン43は、回転軸37とともに回転する。インペラファン43は、高速で回転することにより、風量および圧力(動圧と静圧)を発生させる。
 エアガイド44は、ネジ(図示せず)等によって、ファン側フレーム54に固定されている。ファン側フレーム54およびモータ側フレーム55は、ネジ(図示せず)等によって固定されている。エアガイド44は、インペラファン43から吹き出された空気の整流を行う。エアガイド44は、インペラファン43により発生した動圧を静圧に変換する。エアガイド44は、いわゆるディフューザガイドであり、ファンの効率の向上に寄与する。
 ファンケース46は、外郭部品であり、インペラファン43およびエアガイド44を覆う。ファンケース46は、ファンケース46の内部の空気の漏出と、外部からの空気の浸入を防ぐために設けられている。
 このような従来の電動送風機において、軸受を接触式のシール板により防塵することで、軸受信頼性を向上させる構成が提案されている(例えば、特許文献1を参照)。
 図8は、特許文献1に示された、従来の電動送風機の軸受付近の部分断面図である。図8には図示しないが、軸受40の下側には、モータ室64が位置し、軸受40の上側には、ファン部52が位置するものとする。
 図8に示すように、軸受40は、内輪40cと、外輪40bと、シール板40dと、シール板40eとを有する。シール板40dは、内輪40cおよび外輪40bの間に設けられ、軸受40のファン側の内部に備えられる。シール板40eは、内輪40cおよび外輪40bとの間に設けられ、軸受40のモータ側の内部に備えられる。軸受40は、シール板40d、40eにより、内部がシールされている。
 ファン側のシール板40dは、内輪40cと非接触である。モータ側のシール板40eは、内輪40cと接触する。一般的には、非接触のシール板40dは鉄、接触する方のシール板40eはゴムでそれぞれ構成されている。
 図8に示すように、軸受40のモータ側のシール板40eは、内輪40cと接触させることで、軸受40の下側に位置するモータ室64側から図8の軸受40の上側に位置するファン部52側への空気漏れを防止する。
 また、従来の電動送風機において、軸受を非接触式のシール板により防塵することで、軸受信頼性を向上させる構成が提案されている(例えば、特許文献2を参照)。
 図9は、特許文献2に示された、従来の電動送風機の軸受の断面構成図である。図9には図示しないが、軸受40の下側には、モータ部53が位置し、軸受40の上側には、ファン部52が位置する。
 図9に示すように、軸受40は、内輪40cと、外輪40bと、シール板40dと、シール板40eとを有する。シール板40dは、内輪40cおよび外輪40bを覆うように、軸受40のファン側の内部に備えられる。シール板40eは、内輪40cおよび外輪40bを覆うように、軸受40のモータ側の内部に備えられる。軸受40は、シール板40d、40eにより、軸受40の内部を防塵する。
 ファン側のシール板40dは、内輪40cと非接触である。モータ側のシール板40eは、特許文献1と異なり、内輪40cと非接触である。シール板40eが、内輪40cと非接触であることにより、特許文献1の従来の電動送風機1よりも機械摩擦損失が少ない。
 また、インペラファン43を回転軸37に固定、位置決めするために、インペラファン43の後面シュラウド42bの底面部には、焼結や真鍮などからなるスペーサ57と、板金などからなる座金56を有し、後面シュラウド42bの吸引側面部は、座金56を介して、ナット58により回転軸37に固定されている。
 後面シュラウド42bの底面部に位置する座金56は、軸受40を収めたファン側フレーム54のハウジング室127の外径Aよりも大きい径を有しており、座金56の反負荷側外周面には、先端が鋭角に形成された円形接触リング124が形成されている。
 そして、この円形接触リング124は、樹脂で形成されたエアガイド44の底面部と接触タイトを行う構成である。
 次に、上記構成における、インペラファン43の回転動作時の軸受40内を流れる空気の流れについて説明する。
 インペラファン43が回転することにより、ファン部52の周辺の気圧が下がる。シール板40eと、内輪40cとの間は非接触であり、僅かな隙間を有している。ファン部52の周辺の気圧が下がったとき、モータ部53から、ファン部52へ空気流れが生じる。そのため、空気は、シール板40eと、内輪40cとの間の僅かな隙間を通って、モータ部53側からファン部52側に向かって漏れる。
 この時、後面シュラウド42bの底面に設けた座金56の円形接触リング124の先端部が、樹脂で形成されたエアガイド44の底面部と接触し、軸受40の内部を通り、モータ部53側からファン部52側への空気の漏れを防ぐことができる。
 特許文献1、2に示した、従来の電動送風機51は、30,000~45,000r/minで回転する。
 また、電動送風機51は、電気掃除機の吸引性能向上のため、更なる出力向上が求められており、更に電動送風機51の回転数を増加させて、例えば45,000~120,000r/minという高速回転化を行う場合、モータ部53とファン部52との圧力差がさらに大きくなり、軸受40内の空気流れが増大する。このとき、電動送風機51の回転数の増加に伴って増大した軸受40内の空気流れにより、軸受40から潤滑グリスが流出する可能性がある。潤滑グリスが軸受40から流出すると、軸受40の信頼性が低下する。
特許第3538006号公報 特開2010-144521号公報
 本発明は、このような課題に鑑みてなされたものであり、機械摩擦損失が少ない非接触シール式軸受において、軸受からのグリス漏れを低減させる構成を提供するものである。
 本発明は、電動送風機およびそれを用いた電気掃除機であって、回転軸、回転軸に接続された回転子および回転子に対向配置された固定子を有するモータと、回転軸の少なくとも一端を支持する軸受を備える。さらに、軸受と固定子とを覆うフレームと、回転軸に固定され、中央に吸込口を有する前面シュラウドと、前面シュラウドに対向する後面シュラウドと、前面シュラウドと後面シュラウドとの間に挟持される複数枚のブレードを有するインペラファンとを備える。また、吸気口を有し、インペラファンを覆うファンケースを備える。さらに、後面シュラウドとフレームとの間に、フレーム側に突出した円環状突起を有するシール板と、フレームに支持された円環状の軸受リングとを備える。円環状の軸受リングが、円環状の軸受リングの中心と回転軸との中心が実質的に一致するように配置される。シール板の円環状突起の全周を円環状の軸受リングと接触させることで、軸受リングおよびシール板によりグリス漏れ防止部を構成する。
図1は、本発明の実施の形態における電動送風機の本体の断面構成図である。 図2は、本発明の実施の形態における電動送風機の断面図である。 図3は、本発明の実施の形態における軸受周辺の断面図である。 図4Aは、本発明の実施の形態における軸受リングの上面図である。 図4Bは、本発明の実施の形態における軸受リングの外観図である。 図5Aは、本発明の実施の形態における軸受リングの外周部に複数溝部を設けた場合の上面図である。 図5Bは、本発明の実施の形態における軸受リングの外周部に複数溝部を設けた場合の外観図である。 図6は、従来の電動送風機を用いた電気掃除機の概略構成図である。 図7は、従来の電動送風機の概略構成図である。 図8は、従来の電動送風機の軸受付近の部分断面図である。 図9は、従来の電動送風機の軸受の部分断面図である。
 以下の本発明の実施の形態について、図面を用いて説明する。
 まず、図1を用いて本発明の実施の形態における電気掃除機の全体構成を説明する。図1は、本発明の実施の形態における電気掃除機の本体の断面構成図である。図1に示すように、電気掃除機20は、掃除機本体25の内部に、集塵室22と、送風室24と、集塵袋26と、電動送風機1と、防音カバー27と、吸音材28とを有している。
 掃除機本体25は、集塵室22と、送風室24とを有する。集塵室22は、本体吸気口21を介して電気掃除機20の外部と連通している。送風室24は、本体排気口23を介して、電気掃除機20の外部と連通している。
 集塵袋26は、集塵室22の内部に設けられている。集塵袋26は、本体吸気口21に気密に装着されている。
 電動送風機1は、送風室24の内部に設置されている。防音カバー27は、難燃性の樹脂材料等で構成され、電動送風機1を覆うように設けられている。
 吸音材28は、送風室24の上下に配置されている。なお、吸音材28を配置する空間を拡大させることで、掃除機本体25内に設ける吸音材28の設置面積を大きくすることができる。吸音材28の吸音面積が大きくなると、電気掃除機20の運転音が小さくなる。
 本体吸気口21には、ホース(図示せず)、延長管(図示せず)が順次接続される。延長管の先端には、ノズル(図示せず)が取り付けられている。ノズルは、床面上の塵埃を吸引する。
 電動送風機1のインペラファン12(図2)が回転すると、集塵室22の内部が負圧になる。図1に示す矢印は、空気の流れを示す。ノズルから吸引された塵埃を含む気流は、本体吸気口21を通過して集塵袋26へ流入する。塵埃は、集塵袋26において、濾過分離される。濾過分離された空気は、電動送風機1のインペラファン12(図2)へ流入する。
 次に、図2を用いて、本発明の実施の形態における電気掃除機20に設けられた電動送風機1の構成を説明する。図2は、本発明の実施の形態における電動送風機の断面構成図である。
 電動送風機1は、ブラシレスモータ11、インペラファン12、フレーム前10a、フレーム後10b、ファンケース13および軸受9を備える。
 ブラシレスモータ11は、回転軸2と、回転子3と、固定子6とを有している。回転子3は、回転軸2に接続されている。回転子3は、固定子6と、隙間を有して備えられている。巻線4は、コア5の外周に巻かれている。固定子6は、巻線4が巻かれたコア5を有している。コア5の外周部には、複数の第2の案内翼8が、凹部7に嵌合固定されて設けられている。
 ブラシレスモータ11の回転軸2には、インペラファン12が設けられている。ブラシレスモータ11の回転軸2には、インペラファン12側から順に、インペラファン12と、シール板32と、筒状スペーサ33とが配置されている。
 インペラファン12は、前面シュラウド12bと、後面シュラウド12aと、ブレード12cとを有している。インペラファン12は、回転軸2に固定されて設けられる。前面シュラウド12bは、中央部に吸気口を有した円板形状の底面を持ち、傘状の形状である。後面シュラウド12aは、平らな円板形状である。
 前面シュラウド12bは、インペラファン12の吸気口13a側に位置する。前面シュラウド12bは、円板形状の底面を持ち、傘状である。前面シュラウド12bの中央部には、吸気口が備えられている。前面シュラウド12bの吸気口の先端部と、吸気口13aとは、円環状のリング19を介して動的シールされている。
 後面シュラウド12aは、インペラファン12のブラシレスモータ11側に位置する。後面シュラウド12aは、平らな円板形状である。
 円環状のリング19は、前面シュラウド12bの吸気口の先端部と、ファンケース13の中央に設けた吸気口13aとの間を動的シールしかつ、インペラファン12が回転駆動可能な状態に配置されている。円環状のリング19は、PTFE等の樹脂材料で構成されている。
 インペラファン12は、ナット34によって、回転軸2に締結される。インペラファン12は、回転軸2に固定された状態で回転する。
 ブレード12cは、前面シュラウド12bと、後面シュラウド12aとにより、挟み込まれて支持されている。ブレード12cは、ブレード12cの中心部から空気を吸い込み、ブレード12cの外周部に空気を吹き出す。
 ファンケース13は、インペラファン12を覆うように設けられている。モータケース15は、フレーム前10aと当接して配置され、複数の第1の独立風路16を形成する。モータケース15は、通気路14の上流から下流にかけて、所定の角度で拡がる円錐形状である。モータケース15の内壁には、第1の案内翼15aが備えられている。
 フレーム前10aおよびフレーム後10bは、ブラシレスモータ11を覆う。フレーム前10aは、回転軸2に固定された軸受9を保持する。さらに、フレーム前10aは、気流の上流側である、吸い込み方向に位置する。フレーム後10bは、気流の下流側である、吐き出し方向に位置するように構成される。
 次に、図3を用いて、電動送風機1に備えられる軸受9の構成を説明する。図3は、本発明の実施の形態における軸受周辺の断面構成図である。
 図3に示す軸受9は、いわゆる非接触シール構成である。外輪9bは、円筒形状の金属である。内輪9cは、外輪9bの内側に設けられる。
 ボール9aは、内輪9cと、外輪9bとの間に設けられる。ボール9aは、内輪9cを外輪9bに対して、回転可能な状態で設けられる。ボール9aは、外輪9bと、内輪9cとの間に位置し、回転軸2からの回転荷重を受ける。ボール9aは、保持器(図示せず)により保持され、外輪9bと、内輪9cとの間に、均等な位置間隔で配置される。
 シールパーツ9dは、内輪9cと、外輪9bとの間に設けられる。シールパーツ9dは、外輪9bに固定される。シールパーツ9dは、潤滑グリスの漏れを防止し、軸受9の外部からの塵埃や異物の侵入を防止する。シールパーツ9dは、軸受9のスラスト方向の前後に配置している。シールパーツ9dは、内輪9cに接触していない。
 シールパーツ9dは、一般的に、鉄系の材料を用いて構成される。シールパーツ9dは、アルミや樹脂材料等の他の材料を用いた場合の構成でもよい。軸受9の潤滑グリスの流出を低減できれば、いずれの材料でもよい。
 軸受9は、回転軸2に接続されている。外輪9bは、フレーム前10aに接するよう配置される。内輪9cは、回転軸2と接するように配置される。内輪9cは、回転子3とインペラファン12と共に回転する。
 軸受9には、潤滑グリス(図示せず)が充填されている。潤滑グリスは、軸受9の外輪9bと、内輪9cと、ボール9aとを潤滑している。
 インペラファン12は、シール板32および筒状スペーサ33を介して、ナット34により、回転軸2に固定されている。
 筒状スペーサ33は、筒状であり、焼結や真鍮などで構成される。
 筒状スペーサ33は、軸受9の内輪9cに接地し、回転軸2に圧入固定され、回転軸2の回転に伴って回転する。
 軸受リング30は、円環状の形状であり、フレーム前10aに固定されて設けられている。
 軸受リング30は、フッ素樹脂(PTFE)等に代表されるような低摩擦係数の樹脂材料で構成されている。
 シール板32は、中心部に穴を有する円盤形状である。シール板32は、円盤形状の表面に、円環状に突起した突起部31を有している。円環状の突起部31は、フレーム前10a側に突出して設けられている。図2に示すように、シール板32は、後面シュラウド12aの底面部に位置する。
 シール板32は、筒状スペーサ33と接触し、回転軸2のスラスト方向に対するインペラファン12の固定位置を規制すると共に、回転軸2の回転に伴って回転する。
 シール板32は、シール板32の円環状の突起部31の全周が軸受リング30に対して接触し、かつ摺動可能に配置されている。
 インペラファン12は、シール板32および筒状スペーサ33を介して、ナット34により、回転軸2に固定されている。
 グリス漏れ防止部35は、軸受9およびシール板32により構成される。さらに、グリス漏れ防止部35は、軸受9、シール板32、軸受リング30および筒状スペーサ33により構成されていてもよい。
 本実施の形態における電動送風機1は、ブラシレスモータ11と、軸受9と、フレーム前10aと、後面シュラウド12aと、前面シュラウド12bと、インペラファン12と、ファンケース13と、シール板32と、軸受リング30とを備える。
 図3に示すように、軸受リング30の中心は、回転軸2の中心と実質的に一致するように配置されている。シール板32の円環状の突起部31の全周が、円環状の軸受リング30と接触するように構成されている。
 これにより、突起部31と、軸受リング30とは密着し、接触シール効果を奏する。突起部31と、軸受リング30との接触代は、いわゆるクリアランスがなく、常時接触している状態で構成することで、接触シールのシール性を良好に保つことなり、潤滑グリス洩れおよび空気洩れを低減することができる。突起部31と、円環状の軸受リング30との接触面積が大きくなると、シール板32にかかるスラスト方向の荷重が大きくなる。シール板32にかかるスラスト方向の荷重が大きくなると、機械摩擦損失が増大する。したがって、円環状の突起部31と、円環状の軸受リング30との接触面積を小さくすることが望ましい。従って、突起部31と、軸受リング30との接触面積は、回転数およびファン出力などの電動送風機の運転条件により、最適値を算出する。同様に突起部21の形状についても、先端形状については鋭角突起や鈍角突起、90度の直角三角形や、あるいはR面取り状の突起等の形状で構成することで接触面積を小さくすることも可能である。
 インペラファン12側に負圧が発生すると、軸受9の内部の潤滑グリスは、グリス漏れ防止部35に流出する。シール板32の突起部31と、軸受リング30とは、密着しているため、軸受9から流出する潤滑グリスが、インペラファン12側に漏れることを抑えることができる。潤滑グリスは、空気より粘性、密度および比重が大きい。そのため、潤滑グリスは、円環状の突起部31および軸受リング30との接触部を通過することを防止できる。これにより、本実施の形態における電気掃除機20は、ファン効率向上および軸受9の信頼性向上を図ることができる。
 なお、軸受リング30は、円環状の形状であり、フッ素樹脂(PTFE)等に代表されるような低摩擦係数の樹脂材料で構成されている。軸受リング30は、樹脂材料を用いた構成に限定されるものではない。
 さらに、本実施の形態における電動送風機1の軸受9は、外輪9bと、内輪9cと、ボール9aと、シールパーツ9dとを備える。さらに、グリス漏れ防止部35の内部容積は、軸受9の内部のグリス充填部36の容積より小さい。以下、この構成について、詳細に説明する。
 グリス漏れ防止部35の内部の容積とは、軸受9およびシール板32の間の空間であって、軸受リング30と、筒状スペーサ33とに狭持される空間である。
 グリス充填部36は、軸受9の内部にあり、グリスが充填されている空間である。
 ここで、グリス漏れについて従来の技術と比較して説明する。特許文献1では、図9に示すように、接触リング124が設けられていることにより、インペラファン部からの空気漏れを防止する。
 従来の電動送風機の回転数は、30,000~45,000r/minである。しかしながら、本実施の形態における電動送風機1は、電気掃除機の吸引性能向上のため、更なる出力向上が求められており、ブラシレスモータ11を用いて、45,000~120,000r/minの高速回転を行うことを前提としている。
 電動送風機51を、従来の電動送風機の回転数よりも高速で回転させるため、軸受9から空気および潤滑グリスが流出するという問題が生じる可能性がある。
 図9に示す特許文献1における電動送風機51を用いて高速回転を行う場合、潤滑グリスは、接触リング124と、ハウジング127と、スペーサ57とにより構成される空間に潤滑グリスが流出する。
 図9に示すように、接触リング124の外径は、モータハウジング室127の外径より大きい。すなわち、空気が流出する空間は、軸受40の内部のグリスが充填されている空間の容積より大きい。このため、軸受40の内部のグリスが多量に流出する。軸受40の内部のグリスが流出すると、軸受40の信頼性が低下する。
 本実施の形態における電動送風機1のグリス流出部の容積は、グリス充填部36の容積より小さい。すなわち、潤滑グリスが流出するグリス漏れ防止部35は、軸受の内部のグリスが充填されているグリス充填部36の容積より小さい。これにより、グリスが多量に流出することを防止する。これにより、軸受の信頼性の低下を防ぐ。
 さらに、本実施の形態における電動送風機1において、回転軸2の中心から円環状の突起部31の先端部までの距離は、回転軸2の中心から軸受40の外周までの距離より小さく構成してもよい。これにより、円環状の突起部31と、円環状の軸受リング30との接触部分が、回転軸2の中心側に近づく。
 これにより、電動送風機1のグリス漏れ防止部35の容積は、グリス充填部36の容積より小さくなる。このため、軸受9から、グリス漏れ防止部35へ漏れ出す潤滑グリスの容量を少なくすることができる。
 そのため、結果として、軸受9からの潤滑グリス漏れを防止する。潤滑グリス漏れを防止することにより、軸受9の外輪9b、内輪9c、ころ、およびボール9aを潤滑グリス不足による破損を防止することができる。そのため、軸受9の信頼性が向上する。
 さらに、本実施の形態における電動送風機1は、シール板32を、後面シュラウド12aと一体に形成してもよい。その理由は、シール板32の円環状の突起部31が、軸受リング30との機械摩擦損失を抑える形状であればよいためである。また、シール板32の円環状の突起部31が、接触面積が少なく、シール性を保つ形状であればよいためである。
 シール板32を、後面シュラウド12aと一体に形成する方法には、ダイカスト工法、鋳造、鋳物、鍛造、焼結またはプレスなどの工法を用いる。
 インペラファン12、シール板32、後面シュラウド12aについて一体化する工法および寸法は、実験的に最適値を求める必要がある。工法および寸法は、電動送風機の運転条件に左右されるためである。
 なお、インペラファン12と、シール板32とは、本発明の実施の形態における形状に限られるものではない。インペラファン12と、シール板32とは、機械摩擦損失を抑える形状で、接触面積が小さく、シール性を保つことができる形状であればよい。
 さらに、本実施の形態における電動送風機1において、軸受リング30は、摩擦係数の低い樹脂材料を用いて構成してもよい。
 軸受リング30は、アルミまたは鉄系の材料、またはエンジニアリングプラスチック等の高強度材料で構成される場合より、摩擦係数の低い樹脂材料を用いるほうが望ましい。軸受リング30が、摩擦係数の低い樹脂材料であり、比較的軟らかい素材を用いることで、軸受リング30とシール板32との接触面積が増えるためである。
 軸受リング30の素材は、樹脂材料を用いることにより、金属等により構成されたシール板32と、より接着しやすくなる。これにより、シール板32は、軸受リング30とのシール性が向上する。これにより、軸受9からの潤滑グリス漏れをさらに低減させることができる。このため、軸受9の信頼性が向上する。
 さらに、軸受リング30の素材が、摩擦係数の低い材料であることにより、シール板32との摩擦を低減できる。これにより、インペラファン12のファン効率が向上する。
 軸受リング30は、フッ素樹脂(PTFE)により構成されるものとして説明したが、本発明はこの例に限定されるものではない。
 軸受リング30の素材は、摺動性がよく、シール性を満たすものであればよい。軸受リング30は、例えば、ポリフェニレンサンファイド(PPS)、ポリブチレンテレフタレート(PBT)やポリオキシメチレン(POM)、ポリアミド(PA)等の耐磨耗性を持った樹脂材料であればよい。
 また、軸受リング30は、耐摩耗性および摺動性が良い樹脂材料であれば、接着剤との接着性がよい樹脂材料を用いて構成してもよい。
 また、軸受リング30は、樹脂材料以外の鉄、アルミ系、焼結合金、真鍮等材料、あるいは、ゴム等の弾性体の材料を用いて構成してもよい。
 軸受リング30は、潤滑グリス漏れを低減する、シール構成を保つことができれば、上述の樹脂材料に限定されるものではない。本発明により生じる効果も、同等に発揮することができるためである。
 さらに、本実施の形態における電動送風機1において、軸受リング30は、フレーム前10aに固定配置されていてもよい。軸受リング30が、フレーム前10aに固定配置されることにより、軸受リングが回転することを防止することができる。
 軸受リング30には、突起部31の回転により、遠心力や回転モーメントがかかる。遠心力は、通常、同質量体で同軸半径に位置するものであれば、回転速度の2乗に比例する。回転モーメントは、回転力と軸半径の積により比例する。回転力は、回転数により増加する。したがって、インペラファン12が高速で回転すると、軸受リング30にかかる遠心力および回転モーメントが増大する。
 また、インペラファン12が高速で回転することによる回転モーメントにより、突起部31と、軸受リング30とが、共回りする力が働く。軸受リング30を固定することにより、突起部31と、軸受リング30とが、共回りすることを防止する。これにより、突起部31と、軸受リング30との、共回りによる摺動損失を、低減させることができる。
 軸受リング30が、フレーム前10aと固定されていない場合、軸受リング30が、軸受リング30とフレーム前10aとの接合面から浮いてしまう可能性がある。軸受リング30が、軸受リング30とフレーム前10aとの接合面から浮くことにより、空気漏れおよび潤滑グリス漏れが発生する。
 軸受リング30が、フレーム前10aと固定されていることにより、軸受9からファン側への空気漏れおよび潤滑グリス漏れを、より確実に防止することができる。空気漏れおよび潤滑グリス漏れを防止することにより、ファン性能の低下を防止することができる。
 軸受リング30と、フレーム前10aとは、いわゆる嵌合固定である圧入固定により、固定できる。さらに、軸受リング30と、フレーム前10aとを、溶接工法や、溶着工法を用いて固定してもよい。
 さらに、フレーム前10aは、ねじ部を設けてもよい。フレーム前10aのねじ部と、軸受リング30の外周部とを、ねじ状に締結させることにより固定してもよい。これらの方法であっても、軸受リング30と、フレーム前10aとの固定による上述の効果を同様に保つことができるためである。これにより、軸受リング30と、フレーム前10aとを、ネジ等の別の部品を用いて固定を行う場合に比べて、製作コストを削減できる。部品点数が低減し、組立工数が減少するためである。
 軸受リング30と、フレーム前10aとは、固定される。軸受リング30が、軸受リング30とフレーム前10aとの接合面より離れることである、浮き、を防止することにより、ブラシレスモータ11からインペラファン12側への空気漏れを防ぐことができる。これにより、ファン効率低下を防止することができる。
 さらに、本実施の形態における電動送風機1において、軸受リング30は、フレーム前10aに接着されていてもよい。軸受リング30と、フレーム前10aとを接着剤を用いて固定することにより、確実に固定することができる。
 軸受リング30と、フレーム前10aとの接着は、ボンド剤や、弾性接着剤や、樹脂系接着剤や、硬化樹脂などの接着剤を用いてもよい。接着剤により、軸受リング30と、シール板32との共周りを防止することができる。これにより、軸受リング30と、シール板32とが共回りすることによる摺動損失を、防ぐことができる。
 軸受リング30は、フレーム前10aに接着固定する。これにより、電動送風機1を傾けて運転する場合や、ファンが回転することによって遠心力が生じる場合でも、軸受リング30が、フレーム前10aから外れることを防止できる。
 さらに、軸受リング30を、フレーム前10aに接着固定することにより、軸受リング30が落下することを防止できる。
 軸受リング30を、フレーム前10aに接着固定していない場合、ファン運転時に生じる圧力差により、ファン側への空気流れが発生することによって軸受リング30が落下する可能性がある。
 さらに、軸受リング30を、フレーム前10aに接着固定していない場合、シール板32の突起部31と、軸受リング30とは、接触により、機械摩擦が発生する。摩擦抵抗により、軸受リング30は、シール板32と共に、共回りする。これにより、軸受リング30とフレーム前10aの接地面部は、摺動部による摩擦損失が発生する。
 円環状の軸受リング30と、フレーム前10aとを接着することにより、軸受リング30の回転止めを行う。これにより、共回りによる摺動損失の増大を防ぐことができる。また、軸受リング30が、フレーム前10aの接地面部より離れる(浮き)によって生じる、ファン側への空気洩れも防ぐことができる。これにより、ファン効率低下も防止することができる。
 このため、軸受リング30を、フレーム前10aに接着固定することにより、軸受リング30が、フレーム前10aから外れることを防止できる。これにより、軸受リング30と、フレーム前10aとのシール機能が損なわれることを防止できる。
 さらに、潤滑グリス漏れは、軸受リング30と、フレーム前10aとが接着固定されているため防止することができる。これにより、軸受9の潤滑グリス漏れを防止することができる。さらに、ファンの空気漏れを防止することにより、ファン効率が向上する。
 本実施の形態では、軸受リング30と、フレーム前10aとの接着剤としてボンドを用いているが、本発明は、これに限定されるものではない。接着剤は、軸受リング30と、フレーム前10aとを固定できればよいためである。
 さらに、本実施の形態における電動送風機1において、軸受リング30は、軸受リング30の外周部に、軸受リング30の中心軸方向に沿った溝部を少なくとも一つ有してもよい。さらに、溝部には、接着剤が充填されていてもよい。
 図4Aは、本発明の実施の形態における軸受リングの上面図である。また、図4Bは、本発明の実施の形態における軸受リングの外観図である。
 図4Aおよび図4Bに示すように、円環状の軸受リング30は、外周部に溝部30aを有している。溝部30aは、軸受リング30に1つ設けられている。溝部30aは、軸受リング30の中心軸と垂直平面に、円弧形状を含む断面を有する。
 円環状の軸受リング30は、外周部に溝部30aを設ける。溝部30aは、軸受リング30の上面から下面まで貫通している。
 溝部30aの深さは、軸受リング30の外周から軸受リング30の内周へ向けての径方向の長さで表される。溝部30aの深さは、軸受リング30の内周まで貫通せずに、円環状の軸受リング30の外周途中で止まる形状である。また、溝部30aは、複数設けることも可能である。
 フレーム前10aと、軸受リング30との接着面積は、軸受リング30の外周部に溝部30aが無い場合より、溝部30aを有する場合の方が大きい。軸受リング30の外周部に溝部30aを設けることにより、フレーム前10aと、軸受リング30との接着面積が増加する。これにより、フレーム前10aと、軸受リング30との接着性が向上する。これにより、軸受9の信頼性が向上する。
 また、溝部30aの断面は、円弧形状を有するため、組み立て時に接着剤を充填しやすい。接着剤は、溝部30aに溜めることが容易である。
 これにより、溝部30aは、接着溜まり部としても利用できる。いわゆる接着溜まり部を設けることにより、接着部の断面積は、外周部に溝部30aを設けない軸受リング30に比べ、接触代が増加する。これにより、軸受リング30と、フレーム前10aとの接着性が向上する。そのため、より確実に、軸受リング30は、フレーム前10aに接着固定される。
 これにより、軸受9の潤滑グリス漏れを防止することができる。さらに、ファンの空気漏れを防止することにより、ファン効率が向上する。
 さらに、円環状の軸受リング30は、外周部に溝部30aを複数有していてもよい。
 図5Aは、本発明の実施の形態における軸受リングの外周部に複数溝部を設けた場合の上面図である。また、図5Bは、本発明の実施の形態における軸受リングの外周部に複数溝部を設けた場合の外観図である。
 図5Aおよび図5Bに示すように、軸受リング30は、外周部に4つ溝部30aを有している。フレーム前10aと、軸受リング30との接着面積は、軸受リング30の外周部に溝を1つ有する場合より、溝を複数有する場合の方が大きい。フレーム前10aと、軸受リング30との接着面積が増加することにより、接着性が向上する。
 この構成により、軸受9からのグリス漏れを防止する。さらに、ファンの空気漏れを防止する。これにより、軸受9の信頼性向上およびファン効率が向上する。
 溝部30aを配置する位置は、軸受リング30の外周部であればよい。溝部30aの配置は、溝部30aを、互いに対角状または所定の間隔を有するように配置してもよい。また、それぞれの溝部30aは、不均等な間隔を有して配置してもよい。溝部30aの配置は、ファンの回転力および回転モーメントがかかる部分を考慮して、適切に求めることができる。
 溝部30aの個数は、フレーム前10aと、軸受リング30との接着を適切に行うことができる数であればよい。溝部30aを配置する個数は、複数であってもよい。溝部30aの個数は、製造工法、部品材料の歩留まりなどを考慮して、実験的に最適な条件を求めることができる。
 溝部30aを配置する位置や個数は、電動送風機1の真空度や回転数等の運転条件を考慮して、実験的に最適な条件を求めることができる。
 本実施の形態において、溝部30aの断面の形状は、円弧形状である例を挙げて説明を行ったが、これに限られることはない。溝部30aの断面の形状は、応力が集中しづらい形状であればよい。
 溝部30aの断面の形状が、V型溝形状であると、応力が集中しやすい。軸受リング30のV型溝形部に、応力集中が発生する。軸受リング30のV型溝形部に応力が集中すると、軸受リング30に亀裂が入る可能性がある。軸受リング30の亀裂が、軸受リング30の内周部まで到達すると、インペラファン12側へ空気が流入する。これにより、軸受リング30のシール機能が損なわれる。このため、溝部30aの断面の形状は、円弧形状などの、応力が集中しづらい形状にすることが望ましい。
 なお、従来の軸受40は、接触ゴムシールを利用している。接触ゴムシール仕様において、鉄で形成された内輪40cと、ゴムが接触する。
 また、接触ゴムシール式の軸受40は、一般的に使用されている鉄材料で構成される非接触シール軸受と比較すると一般的に流通数が少なくゴムと鉄という異材料のため構成および組立が複雑化し、価格が高価になる。
 なお、本実施の形態における電動送風機1は、電気掃除機の吸引性能向上のため、更なる出力向上が求められており、ブラシレスモータ11を用いて、45,000~120,000r/minの高速回転を行うことを前提としている。接触ゴムシール式の軸受は、空気や潤滑グリスの流出を低減できるが、高速回転下においては、接触によりゴムシールが削られたり機械摩擦損失が増大する可能性がある。
 そのため、本実施の形態における軸受9は、非接触シール式軸受を用い、金属材料で形成された突起部31と、摩擦係数の低い樹脂材料で形成された軸受リング30との接触シールを用いる場合について説明を行った。
 前述の、突起部31と、軸受リング30との接触シール構成により、軸受9には、従来の接触ゴムシール軸受に比べ、比較的コストが安価で簡易な構成である、非接触シール式軸受を用いることができる。このとき軸受のシールプレート9dに用いられる材料は、一般的には、鉄系材料ではあるが、アルミや樹脂材料等の他の材料を用いた場合の構成でも、前述の効果に変わりはない。
 しかし、これに限られること無く、軸受9は、接触ゴムシール式軸受を用いても軸受の信頼性向上を図ることができる。本発明の効果は、軸受9から流出する潤滑グリスを防止できるため、他の形式の軸受でも利用できる。
 なお、シール板32の円環状の突起部31は、一般的に、板金のプレス加工により作成される。板金のプレス加工により突起部31を作成するため、部品の追加が不要で、簡便に作成できる。そのため、シール板32の生産コストの増加を抑えることができる。
 このように、本実施の形態における非接触シール式の軸受9からのグリス漏れを防止するシール構成は、円環状の軸受リング30の摺動性を良くする摩擦係数の低い樹脂材料と、突起部31の金属材料とを接触させる。さらに、先端部の突起部31のみに接触するように接触面積を少なく構成している。これにより、接触による機械摩擦損失を、従来の接触ゴムシール軸受に比べ低減することができる。
 このように、本実施の形態では、ブラシレスモータの構成を用いて説明を行った。本発明は、本実施の形態に限定されるものではなく、従来の電動送風機に用いられる整流子モータ等を用いた場合でも実施できる。
 上述した構成の電動送風機1における空気の流れについて説明する。図2に示す矢印は、電動送風機1の空気の流れを示す。
 インペラファン12へ流入した空気は、第1の独立風路16と、それに連通する第2の独立風路18とを通過する。第2の独立風路18を通過した空気は、防音カバー27(図1)に開口した排気口から流出する。排気口から流出した空気は、本体排気口23(図1)を介して、掃除機本体25外部へと放出される。
 まず、電動送風機1の巻線4が励磁されると、回転磁界が発生する。回転子3は、回転磁界と同期して回転する。
 回転軸2が回転すると、インペラファン12も回転する。インペラファン12の回転により、インペラファン12の内部の空気は、インペラファン12に配置されているブレード12cによって掻き出される。インペラファン12の内部の空気は、インペラファン12の中央部に配された吸気口から、前面シュラウド12bの形状に沿って流出する。
 図2に示すように、ファンケース13の吸気口13aおよび前面シュラウド12bの中央部の吸込口から空気が流れ込む。気流は、前面シュラウド12b、ブレード12cに沿って流れた後、インペラファン12から流出する。
 インペラファン12の回転により、空気は、インペラファン12の外周方向へ流れる。インペラファン12の内部の空気は、インペラファン12の内部の外周方向かつ後方へと押し流されるため、インペラファン12の内部は負圧になる。
 インペラファン12の内部が負圧になったため、インペラファン12側と、ブラシレスモータ11側で圧力差が生じる。この圧力差により、ブラシレスモータ11側からインペラファン12側へ、空気が流れ込む。そのため、軸受9には、ブラシレスモータ11からインペラファン12の方向へ空気が流れる。
 図3に示すように、シールパーツ9dと、内輪9cとの間は非接触であるため、僅かな隙間を有している。図2に示すように、インペラファン12の後面シュラウドの底面部とフレーム前10aとの隙間ならびにシール板32とフレーム前10aとの隙間においては、インペラファン12の回転により負圧になる。このため、ブラシレスモータ11側から、インペラファン12側へ流れる空気流が、シールパーツ9dと内輪40cとの間の僅かな隙間において発生する。
 ブラシレスモータ11側から、インペラファン12の方向へ生じる空気流は、突起部31と軸受リング30との接触シール作用により、インペラファン12側への空気の流出が防止される。接触シール作用は、シール板32に配置された円環状の突起部31と、軸受リング30とが密着することにより生じる。
 図2に示すように、一連の独立風路は、第1の独立風路16と第2の独立風路18とにより形成される。第1の独立風路16は、モータケース15とフレーム前10aとが当接して配置されることにより形成される。第1の独立風路16は、複数設けられている。第2の独立風路18は、第1の独立風路16に接続される。1つの第1の独立風路16に対し、複数の第2の独立風路18が接続される。
 インペラファン12から流出した気流は、第1の独立風路16に流入する。第1の独立風路16に流入した気流は、フレーム前10aの外周面に沿って流れる。フレーム前10aの外周面に沿って流れた気流は、電動送風機1の外部へと流出する。
 一連の独立風路の断面積は、上流であるインペラファン12側から、下流である電動送風機1の外部側にかけて大きくなる。つまり、一連の独立風路の断面積は上流から下流にかけて大きくなる。独立風路の断面積が大きくなると、気流の速度が減速する。そのため、気流は、動圧から静圧へと変換される。
 電動送風機1の送風性能は、電動送風機1の駆動電力と、電動送風機1が行う仕事との比で表される。電動送風機1が行う仕事は、インペラファン12が回転することで発生する真空度と、流量との積で表される。
 このような、電動送風機1の送風性能を上げるためには、電動送風機1により発生する真空度を大きくすることが必要である。
 次に、軸受9の内部を潤滑する潤滑グリスについて説明する。潤滑グリスは、潤滑グリスの温度が上昇すると、潤滑グリスの粘性が下がる。潤滑グリスの粘性が下がると、軸受9から潤滑グリスが流出しやすくなる。軸受9から潤滑グリスが流出することで、軸受9の信頼性が低下するという問題がある。
 潤滑グリスの温度は、軸受9が高速で回転することにより生じる摩擦熱により上昇する。また、潤滑グリスの温度は、ブラシレスモータ11の発熱が軸受9に伝わることにより上昇する。
 ブラシレスモータ11が発熱する理由は、銅損、鉄損および機械損によるものがある。銅損は、巻線4を流れる電流によって生じるジュール熱であり、電流の二乗に比例して大きくなる。
 鉄損は、ヒステリシス損と、渦電流損に分けられる。ヒステリシス損は、ブラシレスモータ11の磁路を形成する、電磁鋼板の物性が原因で発生する。ヒステリシス損は、ブラシレスモータ11の回転による磁界の変化で、電磁鋼板の磁束密度が変化することに起因する。コア5に通る磁束の変動により、磁束線のまわりに渦状の電流が流れる。渦電流損は、その際の電気抵抗で発生する。
 機械損は、軸受9部の摩擦や、回転子3と固定子6との間の空気の攪拌抵抗により生じる。特に、鉄損については、ヒステリシス損および渦電流損は、運転周波数に依存して大きくなる。そのため、ブラシレスモータ11を高速回転で使用する際には、鉄損による発熱が大きくなる。鉄損による発熱を、いかに効率よく放熱させるかが重要となる。
 次に、コア5において発生する熱の放熱について説明する。
 図2に示すように、複数の第2の案内翼8は、コア5の外周部に設けられた直線状の凹部7に、嵌合固定されている。コア5で発生した熱は、第2の案内翼8へと伝導される。第2の案内翼8は複数設けられている。第2の案内翼8の表面へ伝導した熱は、一連の独立風路を流れるインペラファン12からの気流に伝導する。複数の第2の案内翼8の表面へ伝導された熱は、ブラシレスモータ11外部へと流出する。
 コア5と、第2の案内翼8とは、熱伝導性の高い接着剤で接着されている。接着剤は、コア5と、第2の案内翼8との嵌合部に、微小な隙間が出来るのを防止する。コア5から、第2の案内翼8への熱伝導性は、嵌合部の熱的な接触抵抗を低減させることにより向上する。
 第2の案内翼8は、インペラファン12からの気流によって連続的かつ強制的に冷却される。そのため、第2の案内翼8と、コア5との間に温度差が生じる。コア5内部の熱伝導が促進される。これにより、コア5の熱は、効率良くブラシレスモータ11外部へと放出される。
 また、コア5に、熱伝導性の高いアルミニウムを使用することで、コア5の熱を、第2の案内翼8全体へ伝導しやすくすることができる。
 第2の案内翼8へ伝導した熱は、第2の案内翼8の表面から放熱する。そのため、第2の案内翼8は、放熱フィンとして用いることができる。ブラシレスモータ11は、第2の案内翼8により、熱を効率よく放熱することが可能となる。
 巻線4で発生した熱は、モールド部17を介して、複数の第2の案内翼8へと伝わる。モールド部17は、熱伝導性樹脂で成形されている。第2の案内翼8へと伝わった熱は、コア5から伝導した熱と同様の過程を経て、インペラファン12からの気流に伝導する。インペラファン12からの気流に伝導された熱は、ブラシレスモータ11外部へと放出される。
 モールド部17は、熱伝導性樹脂を用いているため、空気に比べて熱伝導率が飛躍的に高くなる。巻線4で発生した熱は、モールド部17により、効率的に放熱することができる。
 また、第2の案内翼8は、アルミニウムの他にも、銅および銀などの金属材料や、熱伝導性の硬い金属や、炭素の粉末でもよい。第2の案内翼8は、繊維などの充填剤(フィラー)を含有させた熱伝導性樹脂を用いてもよい。第2の案内翼8に繊維などの充填剤(フィラー)を含有させることで、熱伝導性が向上する。第2の案内翼8は、熱伝導性の高い材質であればよい。
 第2の案内翼8に用いられる熱伝導性樹脂は、ポリフェニレンサンファイド樹脂(PPS)、ナイロンおよび液晶ポリマー(LCP)でもよい。第2の案内翼8に用いられる導電性のフィラーは、金属粉末、グラファイト、カーボンブラックなどでもよい。第2の案内翼8に用いられる絶縁性のフィラーは、窒化アルミニウム、窒化ホウ素、アルミナなど焼結セラミックでもよい。
 選択するフィラーは、絶縁性の有無に応じて、部位ごとに使い分けることが望ましい。また、第2の案内翼8は、導電性フィラーを配合した樹脂を用いるほうが望ましい。導電性フィラーを配合した樹脂の方が、絶縁性フィラーを配合した樹脂に比べて、熱伝導性を大きくすることができる。
 第2の案内翼8の熱伝導性樹脂は、充填剤の配合比率を適切にすることが望ましい。充填剤の配合比率が大きくなると、溶融時の粘性が大きくなる。溶融時の粘性が大きくなると、成形性が低下するため、第2の案内翼8が劣化しやすい。
 また、第2の案内翼8の厚みおよび翼の枚数は、第2の案内翼8の断面積と、断面積の変化率と、放熱能力とを考慮し、実験的に最適値を求めることが望ましい。
 第2の案内翼8の放熱能力は、固定子6の冷却を行うことが出来る能力である。第2の案内翼8の断面積および断面積の変化率は、通気路14に形成される複数の第2の独立風路18を用いて、最適な値を求める。
 以上説明したように、本発明にかかる電動送風機は、軸受からの潤滑グリス漏れを防止する格別な効果を有する。したがって、例えば、床移動型交流掃除機や、縦型交流掃除機およびハンディ型直流充電式掃除機等に有用である。
 1  電動送風機
 2  回転軸
 3  回転子
 4  巻線
 5  コア
 6  固定子
 7  凹部
 8  第2の案内翼
 9  軸受
 9a  ボール
 9b  外輪
 9c  内輪
 9d  シールパーツ
 10a  フレーム前
 10b  フレーム後
 11  ブラシレスモータ
 12  インペラファン
 12a  後面シュラウド
 12b  前面シュラウド
 12c  ブレード
 13  ファンケース
 13a  吸気口
 14  通気路
 15  モータケース
 16  第1の独立風路
 17  モールド部
 18  第2の独立風路
 19  リング
 20  電気掃除機
 21  本体吸気口
 22  集塵室
 23  本体排気口
 24  送風室
 25  掃除機本体
 26  集塵袋
 27  防音カバー
 28  吸音材
 30  軸受リング
 30a  溝部
 31  突起部
 32  シール板
 33  筒状スペーサ
 34  ナット
 35  グリス漏れ防止部
 36  グリス充填部

Claims (9)

  1. 回転軸と、前記回転軸に接続された回転子と、前記回転子に対向配置された固定子とを有するモータと、
    前記回転軸の少なくとも一端を支持する軸受と、
    前記軸受と前記固定子とを覆うフレームと、
    前記回転軸に固定され、中央に吸込口を有する前面シュラウドと、
    前記前面シュラウドに対向する後面シュラウドと、
    前記前面シュラウドと前記後面シュラウドとの間に挟持される複数枚のブレードを有するインペラファンと、
    吸気口を有し、前記インペラファンを覆うファンケースと、
    前記後面シュラウドと前記フレームとの間に、前記フレーム側に突出した円環状突起を有するシール板と、
    前記フレームに支持された円環状の軸受リングとを備え、
    前記円環状の軸受リングが、前記円環状の軸受リングの中心と前記回転軸との中心が実質的に一致するように配置され、前記シール板の円環状突起の全周を前記円環状の軸受リングと接触させることにより、前記軸受リングおよび前記シール板によりグリス漏れ防止部を構成した電動送風機。
  2. 前記軸受は、
    円筒形状の外輪と、
    前記外輪の内側に設けられた内輪と、
    前記外輪に設けられ、前記外輪と前記内輪との間の上開口部および下開口部の少なくとも一部を覆うシールパーツと、
    前記内輪を前記外輪に対して回転可能な状態で保持するボールと、
    前記外輪、前記内輪、および前記シール部で覆われ、グリスが充填されるグリス充填部とを備え、
    前記グリス漏れ防止部内部の容積は、前記グリス充填部の容積より小さい請求項1に記載の電動送風機。
  3. 回転軸の中心から、前記円環状突起の先端部と前記軸受リングとが接する部分の距離は、回転軸の中心から軸受の外周までの距離よりも小さい請求項2に記載の電動送風機。
  4. 前記シール板を前記後面シュラウドと一体に形成した請求項1に記載の電動送風機。
  5. 前記軸受リングを摩擦係数の低い樹脂材料にて構成した請求項1に記載の電動送風機。
  6. 前記軸受リングは、前記フレームに固定配置された請求項1に記載の電動送風機。
  7. 前記軸受リングは、前記フレームに接着された、請求項6に記載の電動送風機。
  8. 前記軸受リングは、前記軸受リングの外周部に、前記軸受リングの中心軸方向に沿った溝部を少なくとも一つ有し、前記溝部には、接着剤が充填される請求項7に記載の電動送風機。
  9. 請求項1~8に記載の電動送風機を搭載した電気掃除機。
PCT/JP2011/006462 2011-03-16 2011-11-21 電動送風機およびそれを用いた電気掃除機 WO2012124001A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-057486 2011-03-16
JP2011057486A JP2012193647A (ja) 2011-03-16 2011-03-16 電動送風機およびそれを用いた電気掃除機
JP2011057485A JP2012193646A (ja) 2011-03-16 2011-03-16 電動送風機およびそれを用いた電気掃除機
JP2011-057485 2011-03-16

Publications (1)

Publication Number Publication Date
WO2012124001A1 true WO2012124001A1 (ja) 2012-09-20

Family

ID=46830139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006462 WO2012124001A1 (ja) 2011-03-16 2011-11-21 電動送風機およびそれを用いた電気掃除機

Country Status (1)

Country Link
WO (1) WO2012124001A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136022A1 (de) * 2014-03-12 2015-09-17 BSH Hausgeräte GmbH Staubsaugergebläse
CN107630820A (zh) * 2016-07-19 2018-01-26 青岛海尔洗衣机有限公司 一种排水泵及使用该排水泵的洗衣机
WO2021082948A1 (zh) * 2019-10-28 2021-05-06 太仓市宇格明叶环保设备有限公司 一种结构改进的具有良好密封结构的蜗轮罩

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1193892A (ja) * 1997-09-18 1999-04-06 Mitsubishi Electric Corp 電動送風機
JP2010144521A (ja) * 2008-12-16 2010-07-01 Panasonic Corp 電動送風機及び電気掃除機
JP2010281232A (ja) * 2009-06-03 2010-12-16 Panasonic Corp 電動送風機およびそれを用いた電気掃除機
JP2011001939A (ja) * 2009-06-22 2011-01-06 Toshiba Corp 電動送風機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1193892A (ja) * 1997-09-18 1999-04-06 Mitsubishi Electric Corp 電動送風機
JP2010144521A (ja) * 2008-12-16 2010-07-01 Panasonic Corp 電動送風機及び電気掃除機
JP2010281232A (ja) * 2009-06-03 2010-12-16 Panasonic Corp 電動送風機およびそれを用いた電気掃除機
JP2011001939A (ja) * 2009-06-22 2011-01-06 Toshiba Corp 電動送風機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136022A1 (de) * 2014-03-12 2015-09-17 BSH Hausgeräte GmbH Staubsaugergebläse
CN107630820A (zh) * 2016-07-19 2018-01-26 青岛海尔洗衣机有限公司 一种排水泵及使用该排水泵的洗衣机
CN107630820B (zh) * 2016-07-19 2020-01-21 青岛海尔洗衣机有限公司 一种排水泵及使用该排水泵的洗衣机
WO2021082948A1 (zh) * 2019-10-28 2021-05-06 太仓市宇格明叶环保设备有限公司 一种结构改进的具有良好密封结构的蜗轮罩

Similar Documents

Publication Publication Date Title
US7946805B2 (en) Fan unit including tapered airflow passage
WO2016174790A1 (ja) 遠心送風機および掃除機
CN210290212U (zh) 风机和电器设备
EP3401549A1 (en) Turbo compressor
CN105846599B (zh) 无刷吸尘器电机的冷却装置
WO2017057482A1 (ja) 遠心圧縮機
EP3943754A1 (en) Fan and electric appliance
WO2012124001A1 (ja) 電動送風機およびそれを用いた電気掃除機
JP2012255413A (ja) 電動送風機およびそれを用いた電気掃除機
JP2013024133A (ja) 電動送風機およびそれを用いた電気掃除機
US8390161B2 (en) Electric motor having a rain guard
JP2014034935A (ja) 電動送風機およびそれを用いた電気掃除機
JP6581361B2 (ja) 電動送風機及びそれを搭載した電気掃除機
CN116526753B (zh) 一种具有复合散热方式的磁悬浮电机及磁悬浮鼓风机
JP2013019327A (ja) 電動送風機およびそれを用いた電気掃除機
JP2012255352A (ja) 電動送風機およびそれを用いた電気掃除機
WO2016121447A1 (ja) 電動送風機およびそれを用いた電気掃除機
JP2012255412A (ja) 電動送風機およびそれを用いた電気掃除機
KR101222822B1 (ko) 진공청소기용 모터 조립체
JP2012193647A (ja) 電動送風機およびそれを用いた電気掃除機
JP4849002B2 (ja) 送風装置
JP2013072360A (ja) 電動送風機および電気掃除機
EP1479917A1 (en) Fan
JPWO2020251041A5 (ja)
TWI384130B (zh) 散熱風扇

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860935

Country of ref document: EP

Kind code of ref document: A1