WO2012122976A2 - Vorrichtung und verfahren für den übergang zwischen einem stahlturmabschnitt und einem vorgespannten betonturmabschnitt - Google Patents

Vorrichtung und verfahren für den übergang zwischen einem stahlturmabschnitt und einem vorgespannten betonturmabschnitt Download PDF

Info

Publication number
WO2012122976A2
WO2012122976A2 PCT/DE2012/100055 DE2012100055W WO2012122976A2 WO 2012122976 A2 WO2012122976 A2 WO 2012122976A2 DE 2012100055 W DE2012100055 W DE 2012100055W WO 2012122976 A2 WO2012122976 A2 WO 2012122976A2
Authority
WO
WIPO (PCT)
Prior art keywords
component
tower section
steel
section
tendons
Prior art date
Application number
PCT/DE2012/100055
Other languages
English (en)
French (fr)
Other versions
WO2012122976A3 (de
Inventor
Xiaofeng Tang
Original Assignee
Ed. Züblin Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ed. Züblin Ag filed Critical Ed. Züblin Ag
Priority to EP12724559.5A priority Critical patent/EP2744955B1/de
Publication of WO2012122976A2 publication Critical patent/WO2012122976A2/de
Publication of WO2012122976A3 publication Critical patent/WO2012122976A3/de

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • E04H12/08Structures made of specified materials of metal
    • E04H12/085Details of flanges for tubular masts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • E04H12/08Structures made of specified materials of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • E04H12/12Structures made of specified materials of concrete or other stone-like material, with or without internal or external reinforcements, e.g. with metal coverings, with permanent form elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/16Prestressed structures

Definitions

  • the present invention relates to a connection between two construction sections of a tower - preferably a tower of a wind turbine - with each other.
  • the coupling point is the transition between a generally prestressed reinforced concrete tower section and the rising steel structure.
  • Wind turbine towers with tower sections made of different materials are also referred to as hybrid towers.
  • the lower section of concrete may consist of prefabricated concrete elements that are joined together, or of a monolithic concrete component.
  • the construction section made of concrete material is often preloaded. This is done by means of tendons freely accessible in the tower interior or by means of tendons, which lie within the concrete cross-section and are cast after preloading. By casting the cavity between the tendon and cladding tube with an alkaline potting the tendon is particularly well protected against corrosion.
  • the position of the tendon in the concrete cross section allows a centric biasing force with respect to the heavy line of the concrete cross section; There are no additional bending loads.
  • the rising tower section made of steel may consist of several tubular tower segments, which are either made in one piece or consist of several joined segments over the circumference of the section. Centric stress conditions also prevail in this steel ring cross section.
  • the upper Tower section made of high-strength, age-resistant plastic - for example, glass fiber amplifier plastic - be made.
  • the patent DE 102 30 273 B3 describes an annular adapter element made of steel, which has bores through which the tendons are guided out of the lower concrete tower section. Above the adapter element, the tendons are anchored, so that there is a firm connection between the adapter element and prestressed concrete. At the upper end of the adapter element is a flange construction, to which the rising steel structure is connected. Due to the design, an offset of the load transfer occurs in the adapter ring, since the tendon anchoring lies outside the rising wall.
  • an annular head beam is arranged at the upper end of the concrete tower segment, through which the free tendons lying in the tower interior are guided and anchored.
  • the rising steel structure has a one-sided flange. Through the head bar extends an inclined bore through which anchoring bolts are guided. These connect steel flange and concrete component and are each fastened with two nuts. This solution allows the replacement of the anchor bolt, but also here creates an offset in the line of action of the vertical forces.
  • DE 10 2004 017 006 A1 describes an anchoring construction, the lower component of which - a steel plate anchored through - is cast in the concrete of the tower shaft or of the foundation.
  • the structure of the construction is symmetrical: in the rising steel component a symmetrical, T-shaped flange is arranged, through which an anchor rod is guided on both sides of the web and fastened with a nut.
  • these can indeed be guided in the concrete cross-section and subsequently potted, however, the final anchoring of the Tendon in concrete cross-section laterally next to the anchorage of the rising steel segment.
  • a widening of the concrete cross section is necessary.
  • an L-shaped, one-sided flange can be formed on the rising steel segment. This is placed on the upper end of the concrete component and anchored directly from the tendon. Because of the high forces occurring and the offset between normal stresses in the steel ring and the load introduction of the preload force, the flange must be made very thick. In addition, it is also necessary in this design for geometric reasons that the concrete cross-section is widened - and that the tendon is warped out of its axis out to the final anchorage out. Due to the curvature of the tendon arise in this construction deflection forces that must also be included in the concrete section.
  • the object of the invention is to provide a transitional structure for a hybrid tower - with an upper tower section made of steel or glass fiber reinforced plastic and a lower section of prestressed concrete - which withstands the high dynamic effects, is compact and economical and the establishment of the Tower simplified.
  • the invention provides a prefabricated annular or ringsegment- shaped component made of steel - or alternatively made of glass fiber reinforced plastic (GRP) - as a transition element.
  • GRP glass fiber reinforced plastic
  • This has in cross section the shape of an inverted Ts with a vertically arranged web, which represents the transition to the rising cross section of the upper tower section.
  • the web In the flange in the ring direction at a defined distance from each other in the middle recessed gene through which the tendons of the prestressed concrete tower section are performed.
  • the web is preferably recessed in rounded form so as to reduce stress concentrations so that the anchor heads of the tendons can be accommodated.
  • the tendons are threaded through the recesses in the component according to the invention.
  • the transition element is aligned in its final position on the upper edge of the reinforced concrete tower section and potted with non-positive grout.
  • push knobs are arranged in an alternative embodiment below the flange, which are introduced into previously prepared depressions in the concrete.
  • the anchor heads are installed and applied a defined biasing force.
  • the anchor heads are fixed, ie the tendons are wedged and the cladding tubes of the tendons filled with - preferably alkaline - injection material.
  • Anchor head attached this can be done demountable, so that a check of the anchor heads in the course of maintenance is possible at any time.
  • the transition element is connected directly to the reinforced concrete shaft. An additional installation for anchoring or attachment of the steel tower section on the prestressed concrete tower section is not necessary.
  • the transition element is ring segment-shaped and having at least one further or, for example, two or three or more, in particular identically shaped, ring-segment-shaped transition components connectable to a closed ring.
  • the interconnected segments together form an annular transition element.
  • Fig. 1 shows schematically a partial view of the tower - preferably the tower of a wind turbine - with the transition point between rising steel tower section 6 and lower prestressed concrete tower section. 7
  • the transitional component 1 according to the invention is shown in detail in the installed state.
  • recesses 3 are arranged accurately to the position of the tendons 8.
  • the web 4 is provided with a recess 5.
  • the flaccid tensioning element 8 is guided in the flange 2 during the assembly of the component 1 by the cutouts 3.
  • the mortar bed 1 1 between component 1 and lower tower section made of concrete 7 with grout 1 1 is filled.
  • the anchor head 10 can be mounted in the recess 5 provided in the web 4:
  • the tendon strands 9 are guided by the anchor head 10 and secured with wedges.
  • the pre-clamping force is applied by means of pressing at the lower end of the tendons.
  • Fig. 3 shows a cross section through the transition point, which lies between two tendons 8.
  • push catches 13 are arranged, which are introduced into previously produced recesses 14 in the concrete and potted with mortar.
  • Fig. 4 shows a cross section through the transition point, which is located directly in the tendon 8. After preloading and securing the tendon strands 9, the cladding tube 12 is pressed. Subsequently, the anchor head - not shown in the drawing - protected against corrosion. LIST OF REFERENCE NUMBERS

Abstract

Die Erfindung beschreibt ein T-förmiges Bauteil (1) - bevorzugt aus Stahl -, das besonders dazu geeignet ist, den Übergang zwischen dem unteren Spannbetonabschnitt (7) eines Turmes - bevorzugt einer Windenergieanlage - und dem aufgehenden Turmabschnitt aus Stahl (6) - oder einem alternativen Material - zu bilden. Durch mittig in einem T-Querschnitt angeordnete Aussparungen (3, 5) werden die Spannglieder (8) des unteren Spannbeton-Turmabschnittes (7) durchgeführt, verankert und vorgespannt. Das Bauteil (1) ist damit verankert ohne weitere Verankerungselemente und ohne zusätzliche Belastungen aus exzentrisch angreifenden Kräften.

Description

TITEL
Vorrichtung und Verfahren für den Übergang zwischen einem Stahlturmabschnitt und einem vorgespannten Betonturmabschnitt
BESCHREIBUNG Technisches Gebiet
Die vorliegende Erfindung betrifft eine Verbindung zwischen zwei Konstrukti- onsabschnitten eine Turmes - bevorzugt eines Turmes einer Windenergieanlage - untereinander. Bei der Koppelstelle handelt es sich um den Übergang zwischen einem in der Regel vorgespannten Stahlbetonturmabschnitt und der aufgehenden Stahlkonstruktion. Stand der Technik
Windenergieanlagentürme mit Turmabschnitten aus unterschiedlichen Materialien werden auch als Hybridtürme bezeichnet. Der untere Abschnitt aus Beton kann aus vorgefertigten Betonelementen, die miteinander verbunden werden, oder aus einem monolithischen Betonbauteil bestehen. Um eine höhere Standfestigkeit zu erhalten ist der Konstruktionsabschnitt aus Betonwerkstoff häufig vorgespannt. Dies erfolgt mittels im Turminneren frei zugänglichen Spanngliedern oder mittels Spanngliedern, die innerhalb des Betonquerschnittes liegen und nach dem Vorspannen vergossen werden. Durch das Vergießen des Hohlraumes zwischen Spannglied und Hüllrohr mit einem alkalischen Vergussmaterial ist das Spannglied besonders gut vor Korrosion geschützt. Außerdem ermöglicht die Lage des Spanngliedes im Betonquerschnitt eine zentrische Vorspannkraft hinsichtlich der Schwerlinie des Betonquerschnittes; es treten keine zusätzlichen Biegebelastungen auf.
Der aufgehende Turmabschnitt aus Stahl kann aus mehreren röhrenförmigen Turmsegmenten bestehen, die entweder einstückig gefertigt sind oder aus mehreren zusammengefügten Segmenten über den Umfang der Sektion bestehen. In diesem Stahlringquerschnitt herrschen ebenfalls zentrische Spannungsverhältnisse. Alternativ zu einer Ausführung in Stahl kann der obere Turmabschnitt aus hochfestem, alterungsbeständigem Kunststoff - beispielsweise Glasfaserverstärker Kunststoff - gefertigt sein.
An der Verbindungsstelle des oberen Turmabschnittes mit dem unteren, vor- gespannten Turmabschnitt aus Beton treffen unterschiedliche Werkstoffe und Bauteildicken aufeinander. Beide Bauteile müssen dauerhaft fest miteinander verbunden werden, um den hohen dynamischen Belastungen standzuhalten.
Für dieses Detail sind verschiedene Lösungen aus dem Stand der Technik bekannt. So ist in der Patentschrift DE 102 30 273 B3 ein ringförmiges Adapterelement aus Stahl beschrieben, das Bohrungen aufweist, durch die die Spannglieder aus dem unteren Betonturmabschnitt geführt sind. Oberhalb des Adapterelementes sind die Spannglieder verankert, so dass eine feste Verbindung zwischen Adapterelement und Spannbeton besteht. Am oberen Abschluss des Adapterelementes befindet sich eine Flanschkonstruktion, an die die aufgehende Stahlkonstruktion angeschlossen ist. Im Adapterring entsteht konstruktionsbedingt ein Versatz der Lastweiterleitung, da die Spanngliedverankerung außerhalb der aufgehenden Wandung liegt. Bei der aus DE 10 2007 031 065 A1 bekannten Konstruktion ist am oberen Abschluss des Betonturmsegmentes ein ringförmiger Kopfbalken angeordnet, durch den die im Turminneren liegenden, freien Spannglieder geführt und verankert sind. Die aufgehende Stahlkonstruktion weist einen einseitigen Flansch auf. Durch den Kopfbalken verläuft eine geneigte Bohrung, durch die Verankerungsbolzen geführt sind. Diese verbinden Stahlflansch und Betonbauteil und sind jeweils mit zwei Muttern befestigt. Diese Lösung ermöglicht den Austausch der Ankerbolzen, aber auch hier entsteht ein Versatz in der Wirkungslinie der Vertikalkräfte. DE 10 2004 017 006 A1 beschreibt eine Verankerungskonstruktion, deren unteres Bauteil - eine durchankerte Stahlplatte - im Beton des Turmschaftes oder des Fundamentes eingegossen wird. Der Aufbau der Konstruktion ist symmetrisch: im aufgehenden Stahlbauteil ist ein symmetrischer, T-förmiger Flansch angeordnet, durch den beidseitig des Steges je eine Ankerstange geführt und mit einer Mutter befestigt wird. Bei Anordnung von Vorspannlitzen im unteren Turmschaft können diese zwar im Betonquerschnitt geführt und nachträglich vergossen werden, allerdings liegt die Endverankerung des Spanngliedes im Betonquerschnitt seitlich neben der Verankerung des aufgehenden Stahlsegmentes. Um sowohl die Verankerungskonstruktion für den aufgehenden Stahlturm als auch die Endverankerung des Spanngliedes im Querschnitt unterbringen zu können, ist eine Aufweitung des Betonquerschnit- tes notwendig.
Alternativ kann ein L-förmiger, einseitiger Flansch am aufgehenden Stahlsegment angeformt werden. Dieser wird am oberen Ende des Betonbauteils aufgesetzt und direkt vom Spannglied durchankert. Wegen der hohen auftre- tenden Kräfte und des Versatzes zwischen Normalspannungen im Stahlring und der Lasteinleitung der Vorspannkraft muss der Flansch sehr dick ausgeführt werden. Außerdem ist es auch in dieser Bauweise aus geometrischen Gründen erforderlich, dass der Betonquerschnitt aufgeweitet wird - und dass das Spannglied aus seiner Achse heraus zur Endverankerung hin verzogen wird. Bedingt durch die Krümmung des Spanngliedes entstehen in dieser Konstruktion Umlenkkräfte, die ebenfalls im Betonquerschnitt aufgenommen werden müssen.
Allen bekannten Lösungen haben gemeinsam, dass an dieser dynamisch hochbelasteten Stelle ein Versatz aus der Vorspannkraft und der Normallkraft im Stahlturmabschnitt entsteht.
Aufgabe der Erfindung
Aufgabe der Erfindung ist es, eine Übergangskonstruktion für einen Hybridturm - mit einem oberen Turmabschnitt aus Stahl oder Glasfaserverstärktem Kunststoff und einem unteren Abschnitt aus Spannbeton - zur Verfügung zu stellen, die den hohen dynamischen Einwirkungen stand hält, kompakt aufgebaut und wirtschaftlich ist und die Errichtung des Turmes vereinfacht.
Darstellung der Erfindung
Die Aufgabe wird durch die im Kennzeichen des Anspruchs 1 angegebenen Merkmale gelöst.
Hierzu sieht die Erfindung ein vorgefertigtes ringförmiges oder ringsegment- förmiges Bauteil aus Stahl - oder alternaiv aus Glasfaserverstärktem Kunststoff (GFK) - als Übergangselement vor. Dieses hat im Querschnitt die Form eines umgekehrten Ts mit einem vertikal angeordneten Steg, der den Übergang zum aufgehenden Querschnitt des oberen Turmabschnittes darstellt. Im Flansch sind in Ringrichtung im definierten Abstand zueinander mittig Öffnun- gen ausgespart, durch die die Spannglieder des Spannbetonturmabschnittes durchgeführt werden. Im Bereich dieser Flanschdurchörterungen ist der Steg - vorzugsweise in ausgerundeter Form, um Spannungskonzentrationen zu reduzieren - ausgenommen, so dass die Ankerköpfe der Spannglieder Platz finden. Die Spannglieder werden durch die Aussparungen im erfindungsgemäßen Bauteil gefädelt. Das Übergangselement wird in seiner endgültigen Lage auf der Oberkante des Stahlbeton-Turmabschnittes ausgerichtet und kraftschlüssig mit Vergussmörtel vergossen. Zur Erhöhung der Schubkrafttragfähigkeit sind in einer alternativen Ausführungsvariante unterhalb des Flansches sogenannte Schubknaggen angeordnet, die in vorher hergestellte Vertiefungen im Beton eingebracht werden. Nach Erhärten des Vergussmaterials werden die Ankerköpfe eingebaut und eine definierte Vorspannkraft aufgebracht. Die Ankerköpfe werden festgelegt, d. h. die Spannglieder werden verkeilt und die Hüllrohre der Vorspannglieder mit - bevorzugt alkalischem - Verpressmaterial verfüllt. Im nächsten Schritt wird ein Korrosionschutz am
Ankerkopf angebracht; dieser kann demontierbar ausgeführt werden, so dass eine Überprüfung der Ankerköpfe im Zuge einer Wartung jederzeit möglich ist.
Über das Aufbringen und Festlegen der Vorspannkraft wird das Übergangs- element direkt mit dem Stahlbetonschaft verbunden. Ein zusätzliches Einbauten zur Verankerung oder Befestigung des Stahlturmabschnittes auf dem Spannbetonturmabschnitt ist nicht nötig.
Da die Schwerlinie des Stahlquerschnittes mit der des Betonquerschnittes in einer Wirkungslinie liegt, ist kein Versatz und damit auch keine daraus resul- tierende Zusatzbelastung vorhanden. Die Wandung des aufgehenden Turmes sowie die Bauteildicke des unteren Betonturmabschnittes können minimiert und wirtschaftlich ausgeführt werden. Auch eine geometrische Aufweitung der Stahlbetonwand - zur Aufnahme weiterer Einbauteile oder gekrümmter Spanngliedführung - kann entfallen.
Durch die mittige Lasteinleitung der Vorspann- und damit auch der Verbindungskraft in den Flansch des Stahlbauteiles erfährt dieser keine Biegebelastung in Querrichtung und kann somit geometrisch optimiert ausgebildet werden: auch an dieser Stelle wird Material eingespart. In einer Ausgestaltung ist das Übergangselement ringsegmentförmig und mit mindestens einem weiteren oder beispielsweise zwei oder drei oder mehreren insbesondere identisch geformten ringsegmentförmigen Übergangsbauteilen zu einem geschlossenen Ring verbindbar. Die miteinander verbundenen Segmente bilden gemeinsam ein ringförmiges Übergangselement.
Die Erfindung wird nachfolgend anhand von vier Zeichnungen erläutert. Es zeigen:
Fig. 1 zeigt schematisch eine Teilansicht des Turmes - bevorzugt des Turmes einer Windenergieanlage - mit der Übergangsstelle zwischen aufgehendem Stahlturmabschnitt 6 und unterem Spannbetonturmabschnitt 7.
In Fig. 2 ist das erfindungsgemäße Übergangsbauteil 1 im Detailausschnitt in eingebautem Zustand dargestellt. Im Flansch 2 des T-förmigen Bauteiles 1 sind Aussparungen 3 passgenau zur Lage der Spannglieder 8 angeordnet. An der selben Stelle ist der Steg 4 mit einer Aussparung 5 versehen. Das schlaffe Spannglied 8 wird im Zuge der Montage des Bauteiles 1 durch die Ausspa- rungen 3 im Flansch 2 geführt. Nach dem Ausrichten wird das Mörtelbett 1 1 zwischen Bauteil 1 und unterem Turmabschnitt aus Beton 7 mit Vergussmörtel 1 1 verfüllt. Nach Erhärten des Mörtels 1 1 kann der Ankerkopf 10 in der vorgesehenen Aussparung 5 im Steg 4 montiert werden: Die Spanngliedlitzen 9 werden durch den Ankerkopf 10 geführt und mit Keilen gesichert. Die Vor- Spannkraft wird mittels Pressen am unteren Ende der Spannglieder aufgebracht.
Fig. 3 zeigt einen Querschnitt durch die Übergangsstelle, der zwischen zwei Spanngliedern 8 liegt. In einer alternativen Ausführungsvariante sind zur Erhöhung der Schubkrafttragfähigkeit unterhalb des Flansches zusätzlich soge- nannte Schubknaggen 13 angeordnet, die in vorher hergestellte Vertiefungen 14 im Beton eingebracht und mit Mörtel vergossen werden.
Fig. 4 zeigt einen Querschnitt durch die Übergangsstelle, der direkt im Spannglied 8 liegt. Nach dem Vorspannen und Sichern der Spanngliedlitzen 9 wird das Hüllrohr 12 verpresst. Im Anschluss wird der Ankerkopf - in der Zeichnung nicht dargestellt - gegen Korrosion geschützt. Bezugszeichenliste
1 T-förmiges Bauteil aus Stahl 2 Flansch
3 Aussparung im Flansch 4 Steg
5 Aussparung im Steg 6 Stahl-Turm abschnitt 7 Spannbeton-Turmabschnitt 8 Spannglied
9 Spannglied-Litzen 10 Ankerkopf
1 1 Mörtelbett
12 Hüllrohr
13 Schubknagge am Einbauteil 14 Aussparung im Beton

Claims

ANSPRÜCHE
1 . T-förmiges Bauteil aus Stahl (1 ) als Übergangsbauteil an der Koppelstelle zwischen einem unteren Turmabschnitt aus Spannbeton (7) und dem aufgehenden Turmabschnitt aus Stahl (6), das ringförmig oder ringsegment- förmig und mit mindestens einem weiteren oder beispielsweise zwei oder drei oder mehreren insbesondere identisch geformten ringsegmentförmi- gen Übergangsbauteilen zu einem geschlossenen Ring verbindbar ist, dadurch gekennzeichnet, dass mittig im Querschnitt und in definiertem Abstand zueinander in Ringrichtung Aussparungen (3, 5) in Flansch (2) und Steg (4) angeordnet sind, durch die die Spannglieder (8) des unteren Spannbeton-Turmabschnittes (7) geführt, verankert und vorgespannt sind.
2. Bauteil (1 ) nach Anspruch 1 ,
dadurch gekennzeichnet, dass seine geometrische Lage an der Übergangsstelle so ist, dass die Wirkungslinie der Spannglieder (8) mit der Schwerlinie des Bauteiles (1 ) übereinstimmt und so eine zentrische Lasteinleitung erfolgt.
3. Bauteil (1 ) nach einem der Ansprüche 1 und 2,
dadurch gekennzeichnet, dass das Bauteil (1 ) an der Unterseite des Flansches zusätzlich mit Schubknaggen (13) versehen ist, die in vorgesehene Vertiefungen (14) im unteren Bauteil eingreifen.
4. Bauteil (1 ) nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass das Bauteil (1 ) aus einem alternativen Material - bevorzugt Glasfaserverstärkter Kunststoff - hergestellt ist.
5. Verfahren zur Montage einer Übergangskonstruktion (1 ) eines Hybridturmes aus einem aufgehenden Turmabschnitt aus Stahl (6) und eines unteren Turmabschnittes aus Spannbeton (7) nach einem der Ansprüche 1 bis 4, umfassend die Schritte:
- Ausrichten des Übergang-Bauteiles (1 ) auf der Oberkante des unte- ren Spannbeton-Turmabschnitt (7) mit Durchführen der Spannglieder (8) durch die vorgesehenen Öffnungen (3) im Flansch (2) des
Bauteiles (1 )
- kraftschlüssiges Vergießen des Mörtelbettes (1 1 )
- nach dem Aushärten des Mörtelbettes (1 1 ): Einbau der Ankerköpfe
(10), Verankerung der Spannglied-Litzen (9) und Spannen der
Spannglieder (8)
- Verfüllen des Hüllrohres (12)
PCT/DE2012/100055 2011-03-14 2012-03-08 Vorrichtung und verfahren für den übergang zwischen einem stahlturmabschnitt und einem vorgespannten betonturmabschnitt WO2012122976A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12724559.5A EP2744955B1 (de) 2011-03-14 2012-03-08 Vorrichtung und verfahren für den übergang zwischen einem aufgehenden turmabschnitt und einem vorgespannten betonturmabschnitt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011001250.8 2011-03-14
DE102011001250A DE102011001250A1 (de) 2011-03-14 2011-03-14 Vorrichtung und Verfahren für den Übergang zwischen einem Stahlturmabschnitt und einem vorgespannten Betonturmabschnitt

Publications (2)

Publication Number Publication Date
WO2012122976A2 true WO2012122976A2 (de) 2012-09-20
WO2012122976A3 WO2012122976A3 (de) 2012-11-15

Family

ID=46196969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2012/100055 WO2012122976A2 (de) 2011-03-14 2012-03-08 Vorrichtung und verfahren für den übergang zwischen einem stahlturmabschnitt und einem vorgespannten betonturmabschnitt

Country Status (3)

Country Link
EP (1) EP2744955B1 (de)
DE (1) DE102011001250A1 (de)
WO (1) WO2012122976A2 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104408245A (zh) * 2014-11-20 2015-03-11 哈尔滨工业大学 预应力混凝土结构的承载力设计方法
US20150143765A1 (en) * 2012-02-28 2015-05-28 Ms Enertech, S.L. Connection between a wind turbine tower and its foundation
CN105673354B (zh) * 2016-03-22 2019-01-01 中国电建集团华东勘测设计研究院有限公司 混凝土塔筒和钢塔筒之间的连接结构
CN112112767A (zh) * 2020-09-15 2020-12-22 重庆大学 一种用于风电机组钢混塔筒的组合结构转接构造
CN113027692A (zh) * 2021-03-10 2021-06-25 重庆大学 一种用于风电结构的内环预应力装配式uhpc塔筒段

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2738322B1 (de) * 2012-11-29 2016-01-20 Siemens Aktiengesellschaft Turmstruktur
DE102013107059B4 (de) 2013-07-04 2018-12-06 SIAG Industrie GmbH Verfahren zur Herstellung und zum Errichten eines Rohrturmbauwerks
DE102014118251B4 (de) 2014-12-09 2017-05-04 SIAG Industrie GmbH Verfahren zur Herstellung und zum Errichten eines Rohrturmbauwerks
DE102015115645A1 (de) 2015-09-16 2017-03-16 SIAG Industrie GmbH Verfahren zur Herstellung und zum Errichten eines Rohrturmbauwerks
PL3230539T3 (pl) 2014-12-09 2023-04-17 SIAG Industrie GmbH Sposób wznoszenia rurowej wieży i rurowa wieża
DE102015014458A1 (de) 2015-09-16 2017-03-16 Senvion Gmbh Türkonstruktion für ein Rohrturmbauwerk
DE102015115646A1 (de) 2015-09-16 2017-03-16 SIAG Industrie GmbH Türkonstruktion für ein Rohrturmbauwerk
CN105909477B (zh) * 2016-04-20 2018-08-14 明阳智慧能源集团股份公司 一种连接钢塔筒和预应力混凝土塔筒的过渡段结构
CN105971827B (zh) * 2016-06-29 2018-06-19 中国航空规划设计研究总院有限公司 用于混凝土筒与钢筒组合塔架的转换环梁及其施工方法
CN109681390B (zh) * 2018-12-26 2020-08-28 北京天杉高科风电科技有限责任公司 风力发电机组、塔架及其基础结构
CN113482860A (zh) * 2021-08-27 2021-10-08 北京银泰建构预应力技术股份有限公司 一种用于风电机组的全装配式预应力混凝土塔基

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10230273B3 (de) 2002-07-05 2004-02-12 Institut für Fertigteiltechnik und Fertigbau Weimar e.V. Turm einer Windkraftanlage mit einem unteren Teil aus Spannbeton und einem aufgesetzten Stahlrohr
DE102004017006A1 (de) 2004-04-02 2005-10-27 Aloys Wobben Verfahren zum Errichten eines Turmes
DE102007031065A1 (de) 2007-06-28 2009-01-02 Nordex Energy Gmbh Windenergieanlagenturm

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007012201A1 (en) * 2005-07-25 2007-02-01 The University Of Manitoba Composite wind tower systems and methods of manufacture
US7694476B2 (en) * 2008-02-29 2010-04-13 Structural Components Llc Systems and methods for in-line base plate termination in monopole structures
US8490337B2 (en) * 2009-06-09 2013-07-23 Thomas Nott Word, III Structural flange connection system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10230273B3 (de) 2002-07-05 2004-02-12 Institut für Fertigteiltechnik und Fertigbau Weimar e.V. Turm einer Windkraftanlage mit einem unteren Teil aus Spannbeton und einem aufgesetzten Stahlrohr
DE102004017006A1 (de) 2004-04-02 2005-10-27 Aloys Wobben Verfahren zum Errichten eines Turmes
DE102007031065A1 (de) 2007-06-28 2009-01-02 Nordex Energy Gmbh Windenergieanlagenturm

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150143765A1 (en) * 2012-02-28 2015-05-28 Ms Enertech, S.L. Connection between a wind turbine tower and its foundation
CN104408245A (zh) * 2014-11-20 2015-03-11 哈尔滨工业大学 预应力混凝土结构的承载力设计方法
CN105673354B (zh) * 2016-03-22 2019-01-01 中国电建集团华东勘测设计研究院有限公司 混凝土塔筒和钢塔筒之间的连接结构
CN112112767A (zh) * 2020-09-15 2020-12-22 重庆大学 一种用于风电机组钢混塔筒的组合结构转接构造
CN113027692A (zh) * 2021-03-10 2021-06-25 重庆大学 一种用于风电结构的内环预应力装配式uhpc塔筒段
CN113027692B (zh) * 2021-03-10 2022-05-17 重庆大学 一种用于风电结构的内环预应力装配式uhpc塔筒段

Also Published As

Publication number Publication date
EP2744955B1 (de) 2016-01-20
WO2012122976A3 (de) 2012-11-15
DE102011001250A1 (de) 2012-09-20
EP2744955A2 (de) 2014-06-25

Similar Documents

Publication Publication Date Title
EP2744955B1 (de) Vorrichtung und verfahren für den übergang zwischen einem aufgehenden turmabschnitt und einem vorgespannten betonturmabschnitt
DE102007031065B4 (de) Windenergieanlagenturm
DE102009016893B4 (de) Verankerungsbauteil für einen Windenergieanlagenturm
DE10230273B3 (de) Turm einer Windkraftanlage mit einem unteren Teil aus Spannbeton und einem aufgesetzten Stahlrohr
EP2729621B1 (de) Anordnung zum abstützen eines zugglieds, insbesondere eines schrägseils, quer zu seiner längserstreckungsrichtung
AT519189B1 (de) Fundament für eine Windmühle
EP2395155B1 (de) Ertüchtigtes Fundament
AT521432B1 (de) Fundament für ein Windkraftwerk
WO2017125215A1 (de) Adaptervorrichtung für einen turm und verfahren zur herstellung
WO2013098086A1 (de) Turmförmiges tragwerk
WO2020174334A1 (de) Fundament für eine windkraftanlage
EP2159354A1 (de) Vorrichtung zur Befestigung von Pfosten für Schutzwände
DE102019217692A1 (de) Fundament für einen Turm einer Windkraftanlage
DE19901510A1 (de) Fundament für oberirdische Türme
DE2722180A1 (de) Verfahren und vorrichtung zur herstellung von aufspannpunkten in aufspannfeldern
EP2507450B1 (de) Pfostenverankerung system züblin auf ingenieurbauwerken mit kugelscheiben-kegelpfannensystem
DE102010040332B4 (de) Gründungselement
EP4022154A1 (de) Mit wenigstens einem spannglied vorgespanntes bauwerk sowie verfahren zur herstellung eines mit wenigstens einem spannglied vorgespannten bauwerks
DE102010008569B4 (de) Verankerungsboden
AT3336U1 (de) Vorrichtung zum anschluss eines trägers einer verbunddecke an eine stütze
EP0878581A1 (de) Tragelement und Verfahren zum Herstellen eines Tragelementes
DD232733A1 (de) Aufspannen von masten auf rohrgruendungskoerper

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012724559

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12724559

Country of ref document: EP

Kind code of ref document: A2