WO2012122841A1 - 带热力补偿的锅炉机组抽汽干化污泥系统 - Google Patents

带热力补偿的锅炉机组抽汽干化污泥系统 Download PDF

Info

Publication number
WO2012122841A1
WO2012122841A1 PCT/CN2011/084201 CN2011084201W WO2012122841A1 WO 2012122841 A1 WO2012122841 A1 WO 2012122841A1 CN 2011084201 W CN2011084201 W CN 2011084201W WO 2012122841 A1 WO2012122841 A1 WO 2012122841A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
steam
boiler
inlet pipe
deaerator
Prior art date
Application number
PCT/CN2011/084201
Other languages
English (en)
French (fr)
Inventor
钱学略
Original Assignee
上海伏波环保设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海伏波环保设备有限公司 filed Critical 上海伏波环保设备有限公司
Priority to JP2013558292A priority Critical patent/JP5881751B2/ja
Priority to DE112011105039.9T priority patent/DE112011105039B4/de
Priority to AU2011362424A priority patent/AU2011362424A1/en
Publication of WO2012122841A1 publication Critical patent/WO2012122841A1/zh
Priority to US14/027,259 priority patent/US20140007447A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/001Heating arrangements using waste heat
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/04Using steam or condensate extracted or exhausted from steam engine plant for specific purposes other than heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B2200/00Drying processes and machines for solid materials characterised by the specific requirements of the drying good
    • F26B2200/18Sludges, e.g. sewage, waste, industrial processes, cooling towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention relates to a dry sludge system, in particular to a method for drying a sludge system by using steam extraction of a boiler unit. Background technique
  • Drying is done by heat, which is usually produced by energy combustion. There are two types of heat utilization: 1. Direct use; 2. Indirect use.
  • the source of heat is a single coal-fired fuel.
  • the boiler is the source of power for various equipment.
  • the largest user of coal fuel is the potential for drying sludge heat. provider.
  • the fuel used in the boiler contains S element, the flue gas emitted from the boiler is burned to contain acid gas.
  • the temperature is high, they will flow through the heated surfaces of the boiler in a gaseous state until they are removed into the desulfurization tower.
  • the temperature of the smoke is lower than a certain temperature, they combine with water vapor in the flue gas to form sulfuric acid to corrode the heat exchange equipment. Low temperature corrosion typically occurs in the cold end of the air preheater and in the economizer where the feed water temperature is low.
  • the boiler exhaust gas temperature is usually designed to be high.
  • the new boiler is about 14CTC. After running for a period of time, it tends to be as high as 160 °C. This direct emission of flue gas causes a great waste of energy. If you can use this part of the heat source to dry the sludge, the cost is undoubtedly economic.
  • the high-temperature flue gas is directly introduced into the dryer, and the heat is exchanged by the contact and convection of the gas and the wet material.
  • This method is characterized by high efficiency of heat utilization, but if the material to be dried has the nature of pollutants, it will also cause emission problems, because the entry of high-temperature flue gas is continuous, thus also causing the same flow rate,
  • the exhaust gas whose material has been in direct contact must be discharged after special treatment, and the acid gas which may exist in the flue gas also has a certain corrosive effect on the drying equipment, which will inevitably affect the service life of the dryer.
  • Indirect use The heat of high-temperature flue gas is passed through a heat exchanger to a medium, which may be heat transfer oil, steam or air.
  • the medium circulates in a closed loop and is not in contact with the material being dried.
  • the smoke is partially discharged after the heat is partially used.
  • Indirect use has a certain heat loss, but also faces the following two problems:
  • a multi-stage heater is generally provided on the water supply pipe in front of the economizer to heat the boiler feed water due to the heating water supply pressure.
  • the heat source used for the deaerator and the high and low pressure heaters is the steam extraction of the boiler unit (steam turbine unit). According to the different units, the steam parameters of the extraction steam are also different, generally greater than 160 ° C. For larger units, the temperature will be higher. Summary of the invention
  • the problem to be solved by the present invention is to provide a boiler unit extraction steam drying sludge system with thermal compensation, which overcomes the above problems in the prior art.
  • the boiler-assisted steam drying sludge system with thermal compensation of the invention comprises a boiler flue, a boiler feed water pipeline and a unit extraction system, wherein the boiler feed water pipeline is provided with a deaerator and an economizer, the province
  • the coal heater is located in the boiler flue as a heating surface, and the steam inlet pipe of the deaerator is connected with the unit extraction system, and the outlet pipe of the deaerator is connected with the inlet pipe of the economizer, and the sludge is further dried.
  • the steam inlet pipe of the sludge dryer is connected with the unit extraction system, and the flue gas waste heat utilization device comprises an absorption section and a heat release section connected through the circulation pipeline, and the heat absorption section is The rear side of the last stage heating surface in the boiler flue, and the heat release section is placed on one of the inlet pipes of the deaerator.
  • the sludge drying device of the present invention is provided with a steam heater, and the steam inlet pipe of the steam heater is connected with the steam extraction system of the unit, and the steam outlet pipe of the steam heater is connected with the condensate water tank.
  • the sludge drying system of the present invention further comprises a sludge bin and a sludge steam recovery system, the sludge bin is connected to the sludge dryer, and the sludge dryer is connected to the sludge steam recovery system through a circulating gas pipe.
  • the sludge vapor recovery system of the present invention comprises a condenser, a circulation fan and a sewage treatment system, wherein the condenser is connected to the sludge dryer through the circulation gas pipe, and the circulation fan is arranged on the circulation gas pipe, and the discharge port of the condenser Connected to a sewage treatment system.
  • the condenser of the present invention is provided with a shower head, and the shower head is connected with the feed water pump.
  • the water inlet pipe of the deaerator of the present invention comprises two branches, each of which is provided with a flow regulating valve, and the heat releasing section is located on one of the branches
  • the invention further includes a control system and a temperature sensor, wherein the temperature sensor is disposed on the heat absorption section, and the steam inlet pipe of the steam heater is provided with a flow regulating valve, wherein the temperature sensor and the flow regulating valve are both connected to the control system connection.
  • the invention further includes a low pressure heater, the low pressure heater and the heat release section are respectively disposed on two branches of the deaerator inlet pipe, and the inlet pipe of the low pressure heater is connected to the unit extraction system.
  • the steam inlet pipe of the steam heater of the present invention is in communication with the steam inlet pipe of the low pressure heater.
  • the steam inlet pipe of the steam heater of the present invention is in communication with the steam inlet pipe of the deaerator.
  • the boiler with steam compensation of the heat compensation boiler unit of the present invention extracts steam from the boiler unit to heat the sludge to be dried, and in the case of avoiding corrosion of the smoke acid dew.
  • 1 is a specific embodiment of a boiler unit steam extraction and drying sludge system of the present invention.
  • the boiler-assisted steaming and drying sludge system of the present invention includes a boiler flue 1, a boiler water supply pipe and a unit extraction system, and a deaerator 6 is provided on the boiler water supply pipe.
  • the economizer 2 the economizer is located in the boiler flue 1 as the heating surface, the inlet pipe of the deaerator 6 is connected with the unit extraction system, and the outlet pipe of the deaerator is connected to the inlet pipe of the economizer.
  • the utility model further comprises a sludge drying device 3 and a flue gas waste heat utilization device, wherein the steam inlet pipe of the sludge drying device is connected with the unit steam extraction system, and the flue gas waste heat utilization device comprises the heat absorption section 4 and the heat release section connected through the circulation pipeline. 5, endothermic section 4 As the last stage heated surface is set in the boiler flue, the water inlet pipe of the deaerator is provided with two branches, and the heat release section 5 is placed on one of the roads.
  • the invention adopts a sludge drying device to utilize the extraction steam of the boiler unit extraction system to dry the sludge, so that the flue gas is not in contact with the sludge, and the waste heat of the flue gas is fully utilized.
  • the thermal compensation mainly absorbs part of the flue gas residual heat in the boiler exhaust through the flue gas waste heat recovery and utilization device, and returns it to the thermal system of the original boiler unit by heating the boiler make-up water or condensed water.
  • the exhaust temperature of the boiler is 140 ⁇ 160°C, and the temperature of the heated boiler feed water or condensate is usually between 20 ⁇ 60°C. If the flue gas directly exchanges heat with it, the wall temperature of the heat exchanger is close to the flue gas dew point temperature.
  • the flue gas waste heat recovery and utilization device is divided into two parts: the heat absorption section and the heat release section, and the heat absorption section 4 is placed in the flue to absorb heat and transfer to the working medium.
  • the working medium is then transferred to the boiler make-up water or condensed water in the exothermic section 5.
  • the working mechanism of the working medium is usually high-temperature forced circulating water or natural circulating steam, so the heat transfer coefficient is much higher than the flue gas side, so that the wall surface temperature is worked. The temperature on the medium side is determined.
  • the sludge drying system further includes a sludge tank 9, a condensate tank 10 and a sludge vapor recovery system, the sludge tank 9 is connected to the sludge dryer 3, and the steam heater of the sludge dryer is located at the steam outlet.
  • the condensate tank 10 Connected to the condensate tank 10, after the steam has dried the sludge, it becomes condensed water and is stored in the condensate tank 10, and this part of the condensed water can be replenished to the deaerator or used for other purposes.
  • the sludge dryer 3 is connected to the sludge vapor recovery system through a circulating gas pipe.
  • the sludge vapor recovery system comprises a condenser 11, a circulation fan 12 and a sewage treatment system, and the condenser 11 is connected to the sludge dryer 3 through a circulation gas pipe, the circulation fan 12 is arranged on the circulation gas pipe, the drainage port of the condenser 11 and the sewage The processing system is connected.
  • the condenser 11 is provided with a spray head which is connected to the feed water pump 13.
  • the dewatered sludge coming in from the water treatment plant generally has a moisture content of about 80%.
  • the sludge is stored in the sludge silo 9 and a push-plate device is arranged in the sludge silo 9 to operate by hydraulic or electric devices to prevent sludge slagging from affecting discharge.
  • the sludge dryer 3 transfers the heat of the steam to the sludge, evaporates the sludge water, and is carried out by the circulating air.
  • the circulation fan 12 draws the water vapor and a part of the volatile matter generated by the sludge dryer 3 through the circulation gas pipe into the condenser 11 and condenses and circulates into the sludge dryer 3 .
  • the condenser 11 is sprayed and condensed.
  • the condensed water comes from the pool. After passing through the feed pump 14, it enters the spray condenser. After being atomized by the sprinkler, it is in full contact with the circulating air. After the air is cooled, it is discharged from the upper part of the condenser 11, and the air is exhausted. After cooling, part of the water vapor condenses into liquid water, and the condensed water is discharged from the bottom outlet of the condenser and enters the sewage treatment system for treatment.
  • the sludge dryer can be designed to be one or more stages depending on the amount of sludge treated, the degree of drying of the sludge, and the temperature and flow rate of the flue gas.
  • the boiler water supply pipe is provided with a deaerator 6 and an economizer 2, and the economizer 2 is connected to the outlet pipe of the deaerator 6 through a water pump, and the sludge is dried.
  • the steamifier is provided in the chemical converter 3, and the steam inlet pipe of the steam heater is connected to the steam inlet pipe of the deaerator 6, and the steam outlet pipe of the steam heater is connected to the condensate water tank.
  • the water inlet pipe of the deaerator is divided into two branches, and the heat release section 5 is placed on one of the roads.
  • the boiler gives water two ways into the deaerator 6, one through the heat release section 5 and then enters the deaerator 6, the other directly enters the deaerator 6, the boiler feed water flows out of the deaerator 6 through the water pump into the economizer 2 .
  • a flow regulating valve 17 is arranged on the inlet pipe of the heat release section, and a flow regulating valve 8 is arranged on the other branch of the deaerator inlet pipe, and the amount of water entering the deaerator is controlled by controlling the two flow regulating valves. .
  • the invention further comprises a control system 14, a temperature sensor 15 and a flow regulating valve 17, 8, a temperature sensor 15 and a flow regulating valve connected to the control system, the temperature sensor 15 being arranged on the heat absorption section 4 and on the water inlet pipe of the heat release section
  • a flow regulating valve 17 is provided, and a flow regulating valve 8 is arranged on the other branch of the deaerator inlet pipe.
  • the steam inlet pipe of the steam heater is also provided with a flow regulating valve 16, and the flow regulating valve 16 is adjusted to control the ingress of pollution. The amount of steam in the mud dryer.
  • the temperature sensor 15 on the heat absorption section 4 of the flue gas waste heat recovery device and the flow regulating valve 7 installed on the water inlet pipe of the heat release section 5 are controlled by the control system 14, and the control system can freely adjust the wall temperature of the heat absorption section according to the change of the boiler load. It is always higher than the flue gas dew point temperature to maximize the recovery of exhaust heat.
  • the boiler water supply pipe may be provided with a low pressure heater 7, a deaerator and a low pressure heater, respectively, and a boiler unit.
  • the extraction system is connected, and the low-pressure heater 7 and the heat-dissipating section 5 are respectively disposed on the two branches of the deaerator inlet pipe.
  • the boiler feed water passes through the low-pressure heater to enter the deaerator, and then passes through the heat release section to enter the deaerator.
  • the steam inlet pipe of the steam heater may be selectively connected to the steam inlet pipe of the deaerator 6, or may be connected to the steam inlet pipe of the low pressure heater 7, and a flow regulating valve is arranged on the steam inlet pipe of the steam heater. 16. Regardless of whether the sludge dryer is connected to the deaerator or to the low-pressure heater, the boiler is pumped to dry the sludge.
  • the utility model further comprises a control system 14, a temperature sensor 15 and a flow regulating valve 17, 8, a temperature sensor 15 and a flow regulating valve connected to the control system, the temperature sensor 15 is arranged on the heat absorption section 4, and is provided on the water inlet pipe of the heat release section.
  • the flow regulating valve 17 is provided with a flow regulating valve 8 on the branch of the deaerator inlet pipe, that is, a branch having a low-pressure heater, and the heater inlet pipe of the sludge dryer is also provided with a flow regulating valve 16 The amount of steam entering the sludge dryer is controlled by adjusting the flow regulating valve 16.
  • the invention utilizes the heat recovered by the flue gas waste heat to heat the boiler feed water, and then uses the above-mentioned heating boiler feed water to extract the sludge to ensure the balance of the original thermal system, and the waste heat of the boiler exhaust is used to dry the sludge. .

Description

带热力补偿的锅炉机组抽汽干化污泥系统 技术领域
本发明涉及一种干化污泥系统, 特别涉及一种利用锅炉机组的抽汽来干化污泥系统。 背景技术
2009年度我国城镇污水处理量达到 280亿吨, 湿污泥 (含水率为 80% ) 产生量为 2005 万吨, 折合每天产生含水量 80%的湿污泥 5.5万吨。 当今国内外对于这部分污泥的处理与处 置技术的发展依据是 "四化 "原则一减量化、 稳定化、 无害化和资源化。 然而无论哪一种污 泥处理方法对污泥的含水率都有严格的要求; 一般经过水处理厂初步处理的污泥含水率在 80%左右, 远达不到减量化和资源化的工艺要求。 因此污泥的干化成为污泥进一步处理的必 经之路。
干化是依靠热量来完成的, 热量一般都是能源燃烧产生的。 热量的利用形式有两类: 1、 直接利用; 2、 间接利用。
无论直接利用还是间接利用, 由于经济性原因其热量的来源形式都是单一的一煤燃料 的燃烧, 锅炉是各种设备的动力之源, 煤燃料的最大用户, 是干化污泥热源的潜在提供者。 由于锅炉所用的燃料中含有 S元素, 经燃烧后使得锅炉排放的烟气中含有酸性气体, 烟温高 时它们会以气态的形式流经锅炉各受热面直至到脱硫塔里被除去。 当烟温低于某一温度时, 它们会与烟气中的水蒸气结合成硫酸而腐蚀换热设备。 低温腐蚀通常出现在空气预热器的冷 端以及给水温度低的省煤器中。 当受热面的温度低于烟气的露点时, 烟气中的水蒸气和煤燃 烧后所生成的三氧化硫 (只是硫的燃料产物的很少一部分) 结合成的硫酸会凝结在受热面 上, 严重腐蚀受热面。 为避免锅炉尾部受热面的酸露腐蚀, 通常锅炉排烟温度设计较高, 新 锅炉 14CTC左右, 运行一段时间后往往会高达 160°C, 这部分烟气的直接排放造成了很大的 能源浪费, 如果能利用这部分热源来干化污泥, 其成本无疑是经济的。
直接利用: 将高温烟道气直接引入干燥器, 通过气体与湿物料的接触、 对流进行换热。 这种做法的特点是热量利用的效率高, 但是如果被干化的物料具有污染物性质, 也将带来排 放问题, 因高温烟道气的进入是持续的, 因此也造成同等流量的、 与物料有过直接接触的废 气必须经特殊处理后排放, 而且烟气中可能存在的酸性气体对干化设备也有一定的腐蚀作 用, 必然影响干化器的使用寿命。 以浙江大学翁焕新为代表的直接利用烟气干化污泥技术将 这部分烟气与湿污泥在回转烘干窑里直接混合接触干化污泥, 其能源的利用效率无疑较高 的, 然而如前所述其缺点也是显而易见的, 与物料有过直接接触的大量烟气必须经特殊处理 后才能排放, 而且烟气中可能存在的酸性气体对干化设备也有一定的腐蚀作用, 影响了干化 器的使用寿命, 而且 14CTC烟温其能量的品位也较低, 干化效率较低。
间接利用: 将高温烟气的热量通过热交换器, 传给某种介质, 这些介质可能是导热油、 蒸汽或者空气。 介质在一个封闭的回路中循环, 与被干化的物料没有接触。 热量被部分利用 后的烟气正常排放。 间接利用存在一定的热损失, 而且还面临下面两个问题:
一是由于烟温较低会腐蚀与烟气接触的设备, 这部分烟气中的余热怎么去回收? 二是与直接利用这部分烟气干化污泥的方法相比, 间接利用的热能品位会更低, 干化污 泥显得更困难。
然而使用这些锅炉的电厂或大中型企业自备电厂热力系统中为提高整个机组的效率, 一 般在进省煤器前的给水管路上设有多级加热器, 加热锅炉给水, 因加热的给水压力较高, 称 之高压加热器; 对于一些大中型锅炉机组而言, 在进除氧器 (本身也为一加热器) 前的凝结 水管路上亦设有多级加热器, 加热凝结水, 相对于给水的压力而言, 凝结水的压力较低, 称 之为低压加热器。 包括除氧器在内和高低压加热器它们所用热源均为锅炉机组 (汽轮机组) 的抽汽, 根据各机组的不同, 抽汽的蒸汽参数也不尽相同, 一般来说大于 160°C, 对于大的 机组来, 温度会更高。 发明内容
本发明所要解决的问题是提供一种带热力补偿的锅炉机组抽汽干化污泥系统, 克服现有 技术中存在的上述问题。
本发明的带热力补偿的锅炉机组抽汽干化污泥系统, 包括锅炉烟道、 锅炉给水管道和机 组抽汽系统, 所述锅炉给水管道上设有除氧器和省煤器, 所述省煤器作为受热面位于锅炉烟 道内, 所述除氧器的进汽管与机组抽汽系统相连接, 所述除氧器的出水管与省煤器的进水管 相连, 还包括污泥干化器和烟气余热利用装置, 污泥干化器的进汽管与所述机组抽汽系统相 连, 烟气余热利用装置包括通过循环管道相连的吸热段和放热段, 吸热段设在所述锅炉烟道 内最末级受热面的后方, 放热段置于所述除氧器的进水管一支路上。
本发明所述污泥干化器内设有蒸汽加热器, 蒸汽加热器的进汽管与所述机组抽汽系统相 连, 蒸汽加热器的出汽管与凝结水箱相连接。
本发明所述污泥干化系统还包括污泥仓和污泥蒸汽回收系统, 污泥仓与所述污泥干化器 相连, 污泥干化器通过循环气管与污泥蒸汽回收系统相连。 本发明所述污泥蒸汽回收系统包括冷凝器、 循环风机和污水处理系统, 所述冷凝器通过 所述循环气管与污泥干化器相连, 循环风机设在循环气管上, 冷凝器的排水口与污水处理系 统相连。
本发明所述冷凝器内设有喷淋头, 喷淋头与给水泵相连。
本发明所述除氧器的进水管包括两条支路, 每条支路上均设有一个流量调节阀, 所述放 热段位于其中一条支路上
本发明还包括控制系统和温度传感器, 温度传感器设在所述吸热段上, 所述蒸汽加热器 的进汽管上设有流量调节阀, 所述温度传感器、 流量调节阀均与控制系统相连接。
本发明还包括一低压加热器, 低压加热器与所述放热段分别设在所述除氧器进水管的两 条支路上, 低压加热器的进汽管与所述机组抽汽系统相连。
本发明所述蒸汽加热器的进汽管与所述低压加热器的进汽管相连通。
本发明所述蒸汽加热器的进汽管与所述除氧器的进汽管相连通。
通过以上技术方案, 本发明的带热力补偿的锅炉机组抽汽干化污泥系统, 将锅炉机组的 部分抽汽来加热污泥使其干化, 并在避免烟气酸露腐蚀的情况下, 最大程度的回收锅炉排烟 余热来补偿干化污泥的抽汽热量损失, 使烟气与污泥不直接接触避免有害废气的产生, 并减 少污泥干化的能耗, 降低污泥干化运行成本。 附图说明
图 1为本发明锅炉机组抽汽干化污泥系统的一具体实施例。
图 2为本发明锅炉机组抽汽干化污泥系统的另一具体实施例。
图中, 1, 锅炉烟道; 2, 省煤器; 3, 污泥干化器; 4, 吸热段; 5, 放热段;
6, 除氧器; 7, 低压加热器; 8、 16、 17, 流量调节阀; 9, 污泥仓; 10, 凝结水箱;
11, 冷凝器; 12, 循环风机; 13, 给水泵; 14, 控制系统; 15, 温度传感器。 具体实施方式
如图 1 及图 2 所示, 本发明带热力补偿的锅炉机组抽汽干化污泥系统, 包括锅炉烟道 1、 锅炉给水管道和机组抽汽系统, 锅炉给水管道上设有除氧器 6 和省煤器 2, 省煤器作为 受热面位于锅炉烟道 1内, 除氧器 6的进汽管与机组抽汽系统相连接, 除氧器的出水管与省 煤器的进水管相连, 还包括污泥干化器 3和烟气余热利用装置, 污泥干化器的进汽管与机组 抽汽系统相连, 烟气余热利用装置包括通过循环管道相连的吸热段 4和放热段 5, 吸热段 4 作为最末级受热面设在锅炉烟道内, 除氧器的进水管设有两个支路, 放热段 5置于其中一支 路上。 本发明采用污泥干化器利用锅炉机组抽汽系统的抽汽来干化污泥, 使烟气与污泥非接 触, 并充分利用烟气余热。 但在抽汽总量不变的情况下, 由于利用了部分抽汽来干化污泥, 用于加热锅炉给水的抽汽量减少, 那么进入省煤器的水热量会降低, 为弥补该部分热量损 失, 采用热力补偿来保证锅炉机组的热力平衡。
热力补偿主要通过烟气余热回收利用装置吸收锅炉排烟中的部分烟气余热, 以加热锅炉 补给水或凝结水的方式返还给原锅炉机组的热力系统中。 锅炉的排烟温度为 140~160°C, 加 热的锅炉补给水或凝结水温度通常为 20~60°C之间, 若烟气直接与其换热, 换热器壁面温度 接近烟气酸露点温度, 可能造成换热设备的酸露腐蚀, 为避免这一问题, 本烟气余热回收利 用装置分吸热段和放热段两个部分, 吸热段 4置于烟道中吸收热量传递给工作介质, 工作介 质再在放热段 5传递给锅炉补给水或凝结水, 工作介质工作机理通常为高温强制循环水或自 然循环蒸汽, 因此其传热系数远高于烟气侧, 使得壁面温度由工作介质侧温度决定。
上述污泥干化系统还包括污泥仓 9、 凝结水箱 10和污泥蒸汽回收系统, 污泥仓 9与污 泥干化器 3相连, 污泥干化器内的蒸汽加热器的出汽管与凝结水箱 10相连, 蒸汽干化污泥 后, 自身变为凝结水储存在凝结水箱 10 中, 这部分凝结水可补充到除氧器中或作其他用 途。 污泥干化器 3 通过循环气管与污泥蒸汽回收系统相连。 污泥蒸汽回收系统包括冷凝器 11、 循环风机 12和污水处理系统, 冷凝器 11通过循环气管与污泥干化器 3相连, 循环风机 12 设在循环气管上, 冷凝器 11 的排水口与污水处理系统相连。 并冷凝器 11 内设有喷淋 头, 喷淋头与给水泵 13相连。
从水处理厂进来的脱水污泥, 一般含水率在 80%左右。 污泥储存在污泥仓 9中, 污泥仓 9 内设置了推板装置, 通过液压或电动装置运行, 防止污泥板结渣影响出料。 污泥干化器 3 将蒸汽的热量传递给污泥, 将污泥水分蒸发, 由循环空气带出。 污泥蒸汽回收系统中循环风 机 12将污泥干化器 3产生的水蒸汽和部分挥发份的气体抽出通过循环气管进入冷凝器 11冷 凝后循环进入污泥干化器 3。 冷凝器 11 采用喷水冷凝的方式, 冷凝水来自水池, 经过给水 泵 14后进入喷淋冷凝器, 通过喷淋头雾化后与循环空气充分接触, 空气冷却后从冷凝器 11 上部排出, 空气降温后部分水蒸气凝结成液态水, 随冷凝水从冷凝器底部排水口排出, 进入 污水处理系统进行处理。 污泥干化器可根据污泥的处理量、 污泥的干化程度、 烟气的温度和 流量设计为一级或多级。
由于污泥中的部分挥发气体不断进入循环气体中, 循环空气的量将不断增加, 在循环空 气管路上装设了排气管, 气体经排气管接入附近焚烧炉, 通过焚烧回收挥发分的能量, 并消 除恶臭, 或采用其他处理方式, 减少对环境的污染。
作为本发明的一具体实施例, 如图 1所示, 锅炉给水管道上设有除氧器 6和省煤器 2, 省煤器 2通过水泵与除氧器 6的出水管相连, 污泥干化器 3内设有蒸汽加热器, 蒸汽加热器 的进汽管与除氧器 6的进汽管相连通, 蒸汽加热器的出汽管与凝结水箱相连。 除氧器的进水 管分为两支路, 放热段 5置于其中一支路上。 锅炉给水分两路进入除氧器 6, 一路通过放热 段 5吸热后再进入除氧器 6, 另一路直接进入除氧器 6, 锅炉给水流出除氧器 6经过水泵进 入省煤器 2。 在放热段进水管上设有流量调节阀 17, 在除氧器进水管的另一支路上设有流量 调节阀 8, 通过控制这两个流量调节阀确保进入除氧器的水量大小不变。
本发明还包括控制系统 14、 温度传感器 15和流量调节阀 17、 8, 温度传感器 15和流量 调节阀与控制系统相连, 温度传感器 15设在吸热段 4上, 并在放热段进水管上设有流量调 节阀 17, 在除氧器进水管的另一支路上设有流量调节阀 8, 蒸汽加热器的进汽管也设有流量 调节阀 16, 通过调节流量调节阀 16来控制进入污泥干化器的蒸汽量。 通过控制系统 14控 制烟气余热回收利用装置吸热段 4上的温度传感器 15和安装于放热段 5进水管路上的流量 调节阀 7, 该控制系统可随锅炉负荷的变动随意调节吸热段壁温使其始终高于烟气酸露点温 度, 最大程度回收排烟余热。
作为本发明的另一具体实施例, 如图 2所示, 锅炉给水管道上除省煤器和除氧器外, 还 可设有低压加热器 7, 除氧器和低压加热器分别与锅炉机组抽汽系统相连, 低压加热器 7和 放热段 5分别设在除氧器进水管的两支路上。 锅炉给水一路经过低压加热器进入除氧器, 一 路经过放热段进入除氧器。 此时蒸汽加热器的进汽管可以选择与除氧器 6的进汽管相连, 也 可以选择与低压加热器 7 的进汽管相连, 并在蒸汽加热器的进汽管上设流量调节阀 16。 无 论污泥干化器与除氧器相连还是与低压加热器相连, 都是利用锅炉抽汽来干化污泥。
还包括控制系统 14、 温度传感器 15和流量调节阀 17、 8, 温度传感器 15和流量调节阀 与控制系统相连, 温度传感器 15 设在吸热段 4 上, 并在放热段进水管上设有流量调节阀 17, 在除氧器进水管的另一支路即设有低压加热器的支路上设有流量调节阀 8, 污泥干化器 的加热器进汽管也设有流量调节阀 16, 通过调节流量调节阀 16来控制进入污泥干化器的蒸 汽量。 本发明利用上述的烟气余热回收的热量来加热锅炉给水, 再用上述加热锅炉给水的抽 汽来干化污泥, 保证原热力系统平衡, 间接地把锅炉排烟余热用来干化污泥。

Claims

权利要求书
1. 一种带热力补偿的锅炉机组抽汽干化污泥系统, 包括锅炉烟道 (1 )、 锅炉给水管道和机 组抽汽系统, 所述锅炉给水管道上设有除氧器 (6) 和省煤器 (2), 所述省煤器作为受热 面位于锅炉烟道 (1 ) 内, 所述除氧器 (6) 的进汽管与机组抽汽系统相连接, 所述除氧 器的出水管与省煤器的进水管相连, 其特征在于, 还包括污泥干化器 (3) 和烟气余热利 用装置, 污泥干化器与所述机组抽汽系统相连, 烟气余热利用装置包括通过循环管道相 连的吸热段 (4) 和放热段 (5 ), 吸热段 (4) 作为最末级受热面设在所述锅炉烟道内, 放热段 (5) 置于所述除氧器的进水管上。
2. 根据权利要求 1 所述的锅炉机组抽汽干化污泥系统, 其特征在于, 所述污泥干化器内设 有蒸汽加热器, 蒸汽加热器的进汽管与所述机组抽汽系统相连, 蒸汽加热器的出汽管与 凝结水箱 (10) 相连接。
3. 根据权利要求 2所述的锅炉机组抽汽干化污泥系统, 其特征在于, 所述污泥干化系统还 包括污泥仓 (9) 和污泥蒸汽回收系统, 污泥仓 (9) 与所述污泥干化器 (3 ) 相连, 污泥 干化器 (3) 通过循环气管与污泥蒸汽回收系统相连。
4. 根据权利要求 3 所述的锅炉机组抽汽干化污泥系统, 其特征在于, 所述污泥蒸汽回收系 统包括冷凝器 (11 )、 循环风机 (12) 和污水处理系统, 所述冷凝器 (11 ) 通过所述循环 气管与污泥干化器 (3) 相连, 循环风机 (12) 设在循环气管上, 冷凝器的排水口与污水 处理系统相连。
5. 根据权利要求 4所述的锅炉机组抽汽干化污泥系统, 其特征在于, 所述冷凝器 (11 ) 内 设有喷淋头, 喷淋头与给水泵 (13) 相连。
6. 根据权利要求 2所述的锅炉机组抽汽干化污泥系统, 其特征在于, 所述除氧器的进水管 包括两条支路, 每条支路上均设有一个流量调节阀 (8、 17), 所述放热段 (5) 位于其中 一条支路上。
7. 根据权利要求 6 所述的锅炉机组抽汽干化污泥系统, 其特征在于, 还包括控制系统
( 14) 和温度传感器 (15 ), 温度传感器 (15 ) 设在所述吸热段 (4) 上, 所述蒸汽加热 器的进汽管上设有流量调节阀 (16), 所述温度传感器、 流量调节阀 (8、 16、 17 ) 均与 控制系统相连接。
8. 根据权利要求 6 所述的锅炉机组抽汽干化污泥系统, 其特征在于, 还包括一低压加热器
(7), 低压加热器 (7) 与所述放热段 (5) 分别设在所述除氧器 (6) 进水管的两条支路 上, 低压加热器的进汽管与所述机组抽汽系统相连。 根据权利要求 8 所述的锅炉机组抽汽干化污泥系统, 其特征在于, 所述蒸汽加热器的进 汽管与所述低压加热器 (7) 的进汽管相连通。
根据权利要求 2所述的锅炉机组抽汽干化污泥系统, 其特征在于, 所述蒸汽加热器的进 汽管与所述除氧器 (6) 的进汽管相连通。
PCT/CN2011/084201 2011-03-16 2011-12-19 带热力补偿的锅炉机组抽汽干化污泥系统 WO2012122841A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013558292A JP5881751B2 (ja) 2011-03-16 2011-12-19 熱補償付きボイラーユニット抽出蒸気汚泥乾燥システム
DE112011105039.9T DE112011105039B4 (de) 2011-03-16 2011-12-19 System zur Schlammtrocknung durch Dampf, der aus einem Boileraggregat mit thermischer Kompensation entnommen wird
AU2011362424A AU2011362424A1 (en) 2011-03-16 2011-12-19 System for drying sludge by steam extracted from boiler set with thermal compensation
US14/027,259 US20140007447A1 (en) 2011-03-16 2013-09-16 Sludge drying system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011100631749A CN102173555B (zh) 2011-03-16 2011-03-16 带热力补偿的锅炉机组抽汽干化污泥系统
CN201110063174.9 2011-03-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/027,259 Continuation-In-Part US20140007447A1 (en) 2011-03-16 2013-09-16 Sludge drying system

Publications (1)

Publication Number Publication Date
WO2012122841A1 true WO2012122841A1 (zh) 2012-09-20

Family

ID=44516860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084201 WO2012122841A1 (zh) 2011-03-16 2011-12-19 带热力补偿的锅炉机组抽汽干化污泥系统

Country Status (7)

Country Link
US (1) US20140007447A1 (zh)
JP (1) JP5881751B2 (zh)
CN (1) CN102173555B (zh)
AU (1) AU2011362424A1 (zh)
DE (1) DE112011105039B4 (zh)
TW (1) TW201245055A (zh)
WO (1) WO2012122841A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110272176A (zh) * 2019-07-09 2019-09-24 招远市汇潮新能源科技有限公司 基于分布式超强吸液小球的污泥深度干化装置及方法
CN111777126A (zh) * 2020-06-30 2020-10-16 上海江柘环境工程技术有限公司 一种利用烟气余热处理含盐废水的装置及方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102173555B (zh) * 2011-03-16 2012-07-04 上海伏波环保设备有限公司 带热力补偿的锅炉机组抽汽干化污泥系统
CN103175188A (zh) * 2011-12-20 2013-06-26 上海康洪精密机械有限公司 闭循环式省煤器
CN102734787B (zh) * 2012-07-06 2014-10-22 上海伏波环保设备有限公司 顺流式锅炉烟气余热回收系统
CN103723901A (zh) * 2012-10-12 2014-04-16 上海市政工程设计研究总院(集团)有限公司 利用污泥干化余热对消化处理进泥进行预加热的方法
US8869420B1 (en) * 2012-11-19 2014-10-28 Mousa Mohammad Nazhad Energy-efficient process and apparatus for drying feedstock
CN102997220B (zh) * 2012-12-31 2015-01-21 北京富士特锅炉有限公司 一种大气式废热回收热力除氧装置
CN105502876B (zh) * 2015-11-25 2018-07-27 上海环境卫生工程设计院有限公司 一种污泥间接热干化尾气利用系统和干化方法
CN111285581B (zh) * 2020-03-30 2022-05-24 西安热工研究院有限公司 一种燃煤电站机组污泥低温热水解系统的运行控制方法
CN114576688B (zh) * 2021-12-28 2023-12-05 温州宏泽热电股份有限公司 一种热电厂废热综合梯级利用系统
CN115143472B (zh) * 2022-09-01 2023-01-24 北京华宇辉煌生态环保科技股份有限公司 一种基于热解余热循环的固废垃圾处理系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1743284A (zh) * 2004-08-30 2006-03-08 徐宝安 一种以发电厂为中心的污水垃圾处理清洁生产系统
JP2007021333A (ja) * 2005-07-14 2007-02-01 Kawasaki Heavy Ind Ltd 汚泥濃縮システム
CN101251045A (zh) * 2008-03-18 2008-08-27 黄家笙 一种生物质能循环发电工艺及其发电系统
CN101817629A (zh) * 2010-03-30 2010-09-01 浙江大学 污泥干化焚烧发电一体化方法和装置
CN102173555A (zh) * 2011-03-16 2011-09-07 上海伏波环保设备有限公司 带热力补偿的锅炉机组抽汽干化污泥系统
CN202038959U (zh) * 2011-03-16 2011-11-16 上海伏波环保设备有限公司 带热力补偿的锅炉机组抽汽干化污泥系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3884292A (en) * 1973-06-22 1975-05-20 Isothermics Air-o-space heater means for recovering heat from a fluid steam
US4288295A (en) * 1979-06-12 1981-09-08 Interlake, Inc. Coke oven with apparatus for partially drying and preheating coal
US4957049A (en) * 1990-02-22 1990-09-18 Electrodyne Research Corp. Organic waste fuel combustion system integrated with a gas turbine combined cycle
US5215670A (en) * 1990-02-26 1993-06-01 Bio Gro Systems, Inc. Process of drying and pelletizing sludge in indirect dryer having recycled sweep air
JPH07305608A (ja) * 1994-05-10 1995-11-21 Hitachi Eng Co Ltd 排気再燃型コンバインドプラントのボイラ排熱回収装置
JPH0953414A (ja) * 1995-08-09 1997-02-25 Mitsubishi Heavy Ind Ltd タービン抽気制御装置
JP2000088207A (ja) * 1998-09-18 2000-03-31 Babcock Hitachi Kk 蒸気給水加熱器とその浸食および腐食防止法
JP2000304492A (ja) * 1999-04-20 2000-11-02 Babcock Hitachi Kk ガス給水加熱器
JP2003074310A (ja) * 2001-09-04 2003-03-12 Babcock Hitachi Kk 排気再燃型コンバインドサイクルプラント
US20040168900A1 (en) * 2003-02-27 2004-09-02 Peter Tung Staged heat and mass transfer applications
US7909895B2 (en) * 2004-11-10 2011-03-22 Enertech Environmental, Inc. Slurry dewatering and conversion of biosolids to a renewable fuel
JP2007167782A (ja) * 2005-12-22 2007-07-05 Nippon Steel Engineering Co Ltd 廃棄物処理方法
JP2008232546A (ja) * 2007-03-22 2008-10-02 Sumitomo Metal Mining Co Ltd 転化器ボイラー及び独立節炭器の酸露点腐食防止方法及び装置
TW200846292A (en) * 2007-05-28 2008-12-01 Wen-Bo Zhuang Sludge treatment system capable of deodorization and energy saving
JP2009028672A (ja) * 2007-07-30 2009-02-12 Nippon Steel Engineering Co Ltd 高含水廃棄物の処理方法および処理装置
CN101560047A (zh) * 2008-04-16 2009-10-21 平国明 高环保低成本干燥污泥的设备及其方法
JP5558036B2 (ja) * 2008-09-04 2014-07-23 株式会社東芝 二酸化炭素回収型汽力発電システム
JP5320013B2 (ja) * 2008-10-16 2013-10-23 三菱重工業株式会社 ボイラユニットおよび発電システム
JP5361401B2 (ja) * 2009-01-07 2013-12-04 三菱重工環境・化学エンジニアリング株式会社 汚泥乾燥装置および汚泥乾燥方法
CN201678575U (zh) * 2010-03-30 2010-12-22 浙江大学 一种污泥干化焚烧发电一体化装置
CN201753303U (zh) * 2010-04-21 2011-03-02 北京机电院高技术股份有限公司 一种污泥的蒸汽低温热调质干化成套处理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1743284A (zh) * 2004-08-30 2006-03-08 徐宝安 一种以发电厂为中心的污水垃圾处理清洁生产系统
JP2007021333A (ja) * 2005-07-14 2007-02-01 Kawasaki Heavy Ind Ltd 汚泥濃縮システム
CN101251045A (zh) * 2008-03-18 2008-08-27 黄家笙 一种生物质能循环发电工艺及其发电系统
CN101817629A (zh) * 2010-03-30 2010-09-01 浙江大学 污泥干化焚烧发电一体化方法和装置
CN102173555A (zh) * 2011-03-16 2011-09-07 上海伏波环保设备有限公司 带热力补偿的锅炉机组抽汽干化污泥系统
CN202038959U (zh) * 2011-03-16 2011-11-16 上海伏波环保设备有限公司 带热力补偿的锅炉机组抽汽干化污泥系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110272176A (zh) * 2019-07-09 2019-09-24 招远市汇潮新能源科技有限公司 基于分布式超强吸液小球的污泥深度干化装置及方法
CN110272176B (zh) * 2019-07-09 2022-06-28 招远市汇潮新能源科技有限公司 基于分布式超强吸液小球的污泥深度干化装置及方法
CN111777126A (zh) * 2020-06-30 2020-10-16 上海江柘环境工程技术有限公司 一种利用烟气余热处理含盐废水的装置及方法

Also Published As

Publication number Publication date
TWI453169B (zh) 2014-09-21
CN102173555A (zh) 2011-09-07
DE112011105039T5 (de) 2013-12-19
JP5881751B2 (ja) 2016-03-09
AU2011362424A1 (en) 2013-11-07
DE112011105039B4 (de) 2016-09-15
US20140007447A1 (en) 2014-01-09
TW201245055A (en) 2012-11-16
JP2014509559A (ja) 2014-04-21
CN102173555B (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
WO2012122841A1 (zh) 带热力补偿的锅炉机组抽汽干化污泥系统
US11821637B2 (en) Energy-saving system using electric heat pump to deeply recover flue gas waste heat from heat power plant for district heating
US20130305554A1 (en) Non-contact Sludge Drying System With Flue Gas Heat
CN107120714B (zh) 一种全年化综合利用节能系统
CN201251371Y (zh) 高效节水节能烟气预降温系统
JP2014509559A5 (zh)
WO2012122785A2 (zh) 用锅炉烟气余热加热导热油的系统
CN204254934U (zh) 一种利用压缩式热泵实现锅炉烟气余热深度回收的供热系统
CN107178814A (zh) 一种热电厂锅炉烟气余热用于集中供热的节能系统
CN107655021A (zh) 一种利用吸收式热泵回收烟气余热的方法和系统
WO2014005476A1 (zh) 顺流式锅炉烟气余热回收系统
WO2012097602A1 (zh) 利用烟气余热产生低压蒸汽的系统
CN109945277A (zh) 一种采用电动热泵深度回收热电厂烟气余热用于集中供热的节能系统
CN102410549A (zh) 用于锅炉烟气余热回收的复合相变换热系统
TW201243262A (en) System for heating heat conducting oil by using waste heat of boiler flue gas
CN202511307U (zh) 用于锅炉烟气余热回收的复合相变换热系统
WO2019056183A1 (zh) 一种回热法污泥热干化系统
CN209876971U (zh) 蒸汽空气预热装置和系统
CN201942604U (zh) 非接触式烟气余热污泥干化系统
CN107345656A (zh) 一种利用锅炉烟气余热的蒸汽发生装置
CN201780001U (zh) 余热发电系统暖管蒸汽回收器
CN206755129U (zh) 一种利用锅炉烟气余热的蒸汽发生装置
CN112856449A (zh) 一种基于污泥掺烧电站的烟气余热回收系统
CN206666921U (zh) 一种纸机烘缸蒸汽冷凝水再利用系统
CN202038959U (zh) 带热力补偿的锅炉机组抽汽干化污泥系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861205

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013558292

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120111050399

Country of ref document: DE

Ref document number: 112011105039

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2011362424

Country of ref document: AU

Date of ref document: 20111219

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11861205

Country of ref document: EP

Kind code of ref document: A1