WO2012122677A1 - 激光投影系统的光斑抑制装置及其抑制方法 - Google Patents

激光投影系统的光斑抑制装置及其抑制方法 Download PDF

Info

Publication number
WO2012122677A1
WO2012122677A1 PCT/CN2011/000424 CN2011000424W WO2012122677A1 WO 2012122677 A1 WO2012122677 A1 WO 2012122677A1 CN 2011000424 W CN2011000424 W CN 2011000424W WO 2012122677 A1 WO2012122677 A1 WO 2012122677A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
phase interference
phase
screen
spot
Prior art date
Application number
PCT/CN2011/000424
Other languages
English (en)
French (fr)
Inventor
陈致晓
Original Assignee
Chen Chih-Hsiao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chen Chih-Hsiao filed Critical Chen Chih-Hsiao
Priority to PCT/CN2011/000424 priority Critical patent/WO2012122677A1/zh
Publication of WO2012122677A1 publication Critical patent/WO2012122677A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources

Definitions

  • the invention relates to a spot suppression device and a suppression method thereof for use in a laser projection system, in particular to provide at least one laser phase interference component on a laser beam projection path between a laser light source and a screen, so as to be reflected Or the laser beam passing through the phase interference element produces an uneven spatial phase change, and reduces the coherence length of the beam cross section of the imaging light of the image image finally emitted from the screen, thereby achieving the effect of suppressing the laser spot.
  • Background technique
  • a laser projection system 1 generally includes a laser projector 10 and at least one screen 20, but the laser projector 10 mainly includes: at least one laser light source 11 such as a separate R (red), G (green), B (blue) three-color laser light source but not limited to the laser beam 1 10 such as R (red), G (green), B (blue), etc. 10; - the light combining module 12 is not limited to form the aforementioned three-color laser light 1 10 into a laser beam 1 1 1 ; and at least one image generating element 13 for forming the laser beam into the imaging beam 1 12 and by the laser At least one light exit 101 on the casing of the projector 10 is projected outward onto the screen 20 to form an image frame.
  • at least one laser light source 11 such as a separate R (red), G (green), B (blue) three-color laser light source but not limited to the laser beam 1 10 such as R (red), G (green), B (blue), etc. 10
  • the light combining module 12 is not limited to form the aforementioned
  • the image generating component 13 can be divided into two types according to different imaging modes.
  • One is to use a beam deflecting device as shown in FIG. 1 , a port: a mirror, a 4-drum electromechanical mirror (Micro-Electronic Mechanical System vibratiom) Mirror (abbreviated as MEMS mirror), one of a polygon mirror, an ultrasonic grating, or a combination thereof, but not limited thereto, and the type of laser projector 10 generally includes: a laser light source
  • the module, a laser signal modulation module, a combined light module, a rotating plane mirror module, a rotating plane mirror control module and a signal conversion module are not limited; the other is to use a two-dimensional brightness adjustment array such as As shown in FIG.
  • FIG. 1 and FIG. 2 are only used to represent two different architectures of the laser projector 10 and the screen 20 in a laser projection system 1.
  • the detailed structure of the laser projector 10 and the related art of the imaging method, such as the imaging mode of the image generating element 13 and its technique, etc., will not be described in detail herein.
  • the laser beam has an intrinsic good coherent, which is a high-energy beam with uniform wavelength, uniform phase, single frequency and good guiding. When it is applied as the light source of the laser projector, it will Along with the laser speckle phenomenon.
  • the laser spot is an irregular granular brightness distribution caused by a homogenous light source on a rough surface, such as a projection screen 20 or a half transparent diffuser, which causes irregularities due to scattered light at different points due to rough surfaces. Constructive or destructive interference. Those with brighter light intensity are caused by constructive interference; those with darker light intensity are the result of destructive interference; laser spot will cause high spatial frequency noise of the projected image, with the resolution of the human eye. In addition to the visual persistence effect, these scattered light spots between different particles on the projection screen are the biggest disadvantages for laser projection image viewing.
  • the foregoing apparatus or method utilizes a braking mechanism to drive the screen 20 or a time-varying Diffuser to move or rotate relative to the laser light, so that the overall mechanism is complicated, the production cost of the product is relatively increased, and the volume is relatively large. Large, it is not conducive to the design requirements of the laser projector 10 thin and short.
  • the main object of the present invention is to provide a spot suppression device for a laser projection system and a method for suppressing the same, the laser projection system comprising a laser projector and a screen, wherein the laser projector comprises at least one laser light source for emitting a laser beam and at least one An image generating component, such as a beam deflecting device or a two-dimensional brightness adjusting array, for forming the laser beam into an imaging beam and projecting onto the screen by at least one light emitting port to form an image frame, which is emitted from the screen and is viewed by the human eye.
  • the laser projector comprises at least one laser light source for emitting a laser beam and at least one An image generating component, such as a beam deflecting device or a two-dimensional brightness adjusting array, for forming the laser beam into an imaging beam and projecting onto the screen by at least one light emitting port to form an image frame, which is emitted from the screen and is viewed by the human eye.
  • the spot suppression device of the present invention and the suppression method thereof utilize at least one laser light phase interference element which is a film-like junction having an appropriate thickness a structure having at least one phase interference pattern such as a one-dimensional random pattern, a one-dimensional periodic pattern, a two-dimensional random pattern, and a two-dimensional periodic pattern on the surface thereof Or a combination thereof; and the at least one phase interference component is disposed on a laser beam or an imaging beam projection path between the laser light source and the screen, so that the laser beam or the imaging beam passes through the reflection or the penetration
  • the phase interference element of the phase interferes with the pattern, an uneven spatial phase change can be generated, and the correlation length of the beam cross section of the image image of the image image finally emitted from the screen is reduced, thereby suppressing the image on the image frame.
  • the generated laser spot wherein the coherence length of the beam cross section is a parameter for indicating a phase change on a beam cross section, and the smaller the coherence length of the beam cross section, the phase distribution of the beam cross section is within a unit cross-sectional area
  • the coherence length of the beam cross section is a parameter for indicating a phase change on a beam cross section
  • the smaller the coherence length of the beam cross section, the phase distribution of the beam cross section is within a unit cross-sectional area
  • Another object of the present invention is to provide a spot suppression device for a laser projection system and a method for suppressing the same, wherein when the phase interference element is a reflective element, the laser beam or the imaging beam passes through the phase interference of the phase interference element in a reflective manner. a pattern; wherein when the phase interference component is a transmissive component, the laser beam or the imaging beam passes through the phase interference pattern of the phase interference component in a penetrating manner, and may generate a phase difference variation of at least ⁇ to enable the laser
  • the beam or imaging beam produces constructive or destructive interference variations that suppress the laser spot generated on the image.
  • Another object of the present invention is to provide a spot suppression device for a laser projection system and a method for suppressing the same, wherein the image generation element is a beam deflection device such as a mirror, a microelectromechanical mirror, a polygonal mirror, or an ultrasonic grating. Or one or a combination thereof, but not limited to, the at least one phase interference component is disposed at a position on a laser beam projection path between the laser light source and the beam deflecting device, a mirror surface of the beam deflecting device, and The imaging beam is projected onto the path between the beam deflecting device and the screen, at least in one of the positions.
  • the image generation element is a beam deflection device such as a mirror, a microelectromechanical mirror, a polygonal mirror, or an ultrasonic grating.
  • the at least one phase interference component is disposed at a position on a laser beam projection path between the laser light source and the beam deflecting device, a mirror surface of the beam deflect
  • Another object of the present invention is to provide a spot suppression device for a laser projection system and a method for suppressing the same, wherein when the image generation element is a two-dimensional brightness adjustment array, such as DLP (Digital Light Processor), LCOS ( Liquid Crystal On Silicon, one of the developing device and the Hologram developing device, wherein the at least one phase interference component is disposed at the following position: between the laser light source and the image generating component a projection path of the laser beam on the surface of the image generating element and an imaging beam projection path between the image generating element and the screen, at least one of the positions.
  • DLP Digital Light Processor
  • LCOS Liquid Crystal On Silicon
  • Another object of the present invention is to provide a spot suppression device for a laser projection system and a method for suppressing the same,
  • the at least one phase interference component is further disposed at the light exit of the laser projector such that the imaging beam is projected through the phase interference pattern of the phase interference component in a penetrating manner onto the screen to form an image frame.
  • Another object of the present invention is to provide a spot suppression device for a laser projection system and a method for suppressing the same, wherein the at least one phase interference component is further disposed on a surface of the screen to allow the image frame to pass through the phase interference in a penetrating manner. The phase interference pattern of the component is then received by the human eye.
  • Another object of the present invention is to provide a spot suppression device for a laser projection system and a method for suppressing the same, wherein the laser beam or the imaging beam is further operable when the laser beam or the imaging beam passes the phase interference pattern before being projected onto the screen.
  • the change in time passes through different regions of the phase interference pattern to cause the contrast of the laser spot to be reduced or suppressed by time averaging during the visual pause time observed by the human eye.
  • Another object of the present invention is to provide a spot suppression device for a laser projection system and a method for suppressing the same, wherein the laser beam or the imaging beam is further operable when the laser beam or the imaging beam passes the phase interference pattern before being projected onto the screen.
  • the phase interference pattern is passed over time (at different times) and at different angles of incidence to reconcile the contrast of the laser spot over time during the visual pause time observed by the human eye.
  • Another object of the present invention is to provide a spot suppression device for a laser projection system and a method for suppressing the same, wherein the laser spot suppression method comprises the following steps:
  • At least one laser light phase interference component wherein at least one laser light phase interference pattern is disposed thereon, wherein the laser light phase interference pattern is configured to enable the laser beam or the imaging beam to pass through the phase interference pattern in a reflective manner or in a penetrating manner Produce uneven phase changes;
  • a non-uniform phase change is generated for the laser beam or the imaging beam passing through the laser light phase interference pattern, and the coherence length of the beam cross section of the image image that is finally emitted by the screen is reduced.
  • the present invention provides a spot suppression device for a laser projection system, the laser projection system comprising a laser projector and a screen, wherein the laser projector comprises at least one laser light source for emitting a laser beam and at least one image generation The component is configured to form a laser beam into an imaging beam and project onto the screen by at least one light exit port to form an image frame, the image frame is emitted from the screen and received by the human eye;
  • the spot suppression device comprises:
  • At least one laser light phase interference component is disposed on a projection path of the laser beam or the imaging beam between the laser light source and the screen for the laser beam or the imaging beam to pass through, wherein the optical phase interference component is of a suitable thickness a film-like structure having at least one phase interference pattern on its surface;
  • the coherence length is a parameter for defining a frequency of change of a distribution state, and is used to indicate a phase change frequency of the laser beam or the imaging beam.
  • the phase distribution of the laser beam is The more and dense phase changes produced in the unit cross-sectional area, the better the suppression effect of the laser spot.
  • the manner in which the laser beam or imaging beam passes through the phase interference pattern comprises passing the phase interference pattern in a reflective manner or in a penetrating manner.
  • the phase interference pattern has a surface coherence length Pr that is less than a surface coherence length of any surface of the laser projection system that the laser beam or imaging beam passes over its projection path, wherein the surface coherence length Pr
  • the height variation frequency case used to represent a surface roughness is defined as the coefficient of the Gaussian distribution function of the self-correlation function D(R) of the two-dimensional pattern surface height variation in space:
  • D(R) exp(- ⁇ ) where R represents the distance in space; wherein the smaller the coherence length of the surface, the more the surface roughness distribution is denser in the unit length, the better the suppression of the laser spot is. . .
  • the phase interference pattern has a surface coherence length (Pr) that is less than the laser beam diameter, wherein the laser beam diameter is defined as a circle defined by the diameter that contains 99% of the energy of the laser beam.
  • the phase interference pattern comprises one of a one-dimensional scattered pattern, a one-dimensional periodic pattern, a two-dimensional scattered pattern, a two-dimensional periodic pattern, or a combination thereof.
  • the laser beam or the imaging beam can produce a phase difference variation of at least ⁇ after passing through the at least one phase interference pattern of the at least one laser light phase interference element in a reflective manner.
  • a phase difference variation of at least ⁇ can be generated to enable the laser beam or the imaging beam Produce constructive or destructive interference changes.
  • the phase interference component is a reflective component such that the laser beam or imaging beam passes through the phase interference pattern of the phase interference component in a reflective manner.
  • the phase interference element is a transmissive element such that the laser beam or imaging beam passes through the phase interference pattern of the phase interference element in a penetrating manner.
  • the image generating component is a beam deflecting device comprising the following groups: one of a mirror, a micro mirror, a polygon mirror, an ultrasonic grating, or a combination thereof.
  • the at least one phase interference component is disposed at a position on a laser beam projection path between the laser light source and the beam deflecting device, a mirror surface of the beam deflecting device, and the beam deflecting device and the screen
  • the imaging beam is projected onto the path, at least one of which is located.
  • the laser beam or the imaging beam when the laser beam or the imaging beam passes through the phase interference pattern before being projected onto the screen, the laser beam or the imaging beam further changes in time through different regions on the phase interference pattern to be observed by the human eye.
  • the contrast of the laser spot is reduced or suppressed by time averaging during the visual retention time.
  • the laser beam or the imaging beam when the laser beam or the imaging beam passes through the phase interference pattern before being projected onto the screen, the laser beam or the imaging beam further changes with time and passes the phase interference pattern at different incident angles to observe in the human eye.
  • the contrast of the laser spot is suppressed by the time average during the visual retention time.
  • the image generating component is a two-dimensional brightness adjustment array, one of the following groups: DLP, LCOS, and holographic imaging device.
  • the at least one phase interference component is disposed at: a laser beam projection path between the laser light source and the image generating component, an image on a surface of the image generating component, and an image between the image generating component and the screen At least one of the positions on the beam projection path.
  • the at least one phase interference component is disposed at a light exit of the laser projector such that the imaging beam is projected through the phase interference pattern of the phase interference component in a penetrating manner onto the screen to form an image frame.
  • the at least one phase interference component is disposed on a surface of the screen to enable the image to The phase interference pattern of the phase interference component passes through the human eye.
  • the present invention also provides a method for suppressing a spot of a laser projection system, which utilizes the spot suppression device of the laser projection system of any one of claims 1 to 17, the laser projection system comprising a laser projector and a screen, wherein the The laser projector comprises at least one laser light source for emitting a laser beam and at least one image generating component forms an imaging beam of the laser beam and is emitted from the light exit port onto the screen to form an image frame, which is emitted from the screen and is viewed by the human eye.
  • Receiving; the laser spot suppression method comprises the following steps:
  • the laser light phase interference pattern is configured to generate a non-uniform phase change when the laser beam or the imaging beam passes through the phase interference pattern in a reflective manner or in a penetrating manner; and the at least one laser light phase interference
  • the component is disposed on a projection path between the laser light source and the screen, so that the laser beam or the imaging beam can be reflected or penetrated by the laser light phase interference of the at least one phase interference component before being projected onto the screen.
  • the coherence length is a parameter for defining a varying frequency condition of a distribution state; wherein the coherence length of the beam section of the imaging light of the image frame is a parameter indicating a phase change condition on a beam section.
  • the coherence length of the beam section is small, it indicates that the phase distribution of the beam section produces more dense phase changes in the unit cross-sectional area; when the coherence length of the imaging beam section is smaller, the laser spot suppression effect is better.
  • FIG. 1 is a schematic view of an embodiment of a conventional laser projection system (provided with a beam deflecting device);
  • FIG. 2 is a schematic view of another embodiment of a conventional laser projection system (without a beam deflecting device); BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic view showing an embodiment (first embodiment) of the laser projection system shown in FIG. 1;
  • FIG. 4 is a schematic diagram (enlarged view) of an embodiment of a phase interference pattern of a phase interference element of the present invention (an enlarged pattern);
  • FIG. 5 is a phase interference pattern of a phase interference element of the present invention (one-dimensional periodicity) Schematic diagram of another embodiment (enlarged image);
  • 6 is a schematic diagram of an embodiment of a phase interference component of the present invention in cooperation with a MEMS mirror;
  • Figure 7 is a schematic view showing an embodiment (second embodiment) of the laser projection system of Figure 2 applied to the present invention.
  • Figure 8 is a schematic view showing the contrast and coherence length of the pre-suppression spot before the laser projection system has not utilized the present invention
  • Figure 9 is a schematic illustration of spot contrast and coherence length after the laser projection system has utilized the present invention.
  • DESCRIPTION OF REFERENCE NUMERALS 1-laser projection system; 10-laser projector; 11-laser source; 110, 111-laser beam; 112-imaging beam; 12-combination module; 13-image generating element; Protective cover; 14-light outlet; 20-screen; 30, 30a-phase interference component; 31, 31a, 3 lb-phase interference pattern. detailed description
  • the present invention provides a spot suppression device and a suppression method thereof for a laser projection system, and the spot suppression device and the suppression method thereof can be applied regardless of the imaging mode or the technical architecture of the laser projection system. Therefore, the present invention directly refers to the laser projection system 1 of two different technical architectures as shown in FIG. 1 and FIG. 2 to illustrate the technical features of the present invention, but FIG. 1 and FIG. 2 are only used to represent the laser in a laser projection system 1.
  • the two different architectures of projector 10 and screen 20 are not intended to limit the invention.
  • the laser projection system 1 includes a laser projector 10 and a screen 20, wherein the laser projector 10 mainly includes at least one laser light source 11 for emitting a laser beam 110 and at least one image generating component 13, wherein A light combining module 12 may be disposed between the laser light source 11 and the image generating element 13 but is not limited to form the laser light 110 into a laser beam 111.
  • the image generating element 13 is a beam deflecting device such as a mirror, a one-dimensional or two-dimensional MEMS mirror, and a polygon mirror ultrasonic grating.
  • a beam deflecting device such as a mirror, a one-dimensional or two-dimensional MEMS mirror, and a polygon mirror ultrasonic grating.
  • the spot suppression device 3 of the present embodiment uses at least one laser light phase interference element 30 to be disposed on the projection path of the laser beam 110, 111 or the imaging beam 112 between the laser light source 11 and the screen 20. For the laser beam 110, 111 or imaging beam 112 to pass.
  • the phase interference component 30 is a film-like structure having a suitable thickness, and the surface thereof is provided with at least one phase interference pattern 31, and the at least one phase interference pattern may be a one-dimensional random pattern as shown in FIG.
  • the periodic pattern is as shown in FIG. 5, one of a two-dimensional random pattern, a two-dimensional periodic pattern, or a combination thereof, such as two phase interference elements 30 can be utilized
  • the unidirectional phase interference pattern 31 is such that the combined application of the two phase interference elements 30 can still achieve the function of a two-dimensional random pattern or a two-dimensional periodic pattern.
  • the phase interference pattern 31, as shown in Figs. 4 and 5, may be formed by sputtering an aluminum thin film or etching on the surface of the phase interference element 30.
  • the surface interference pattern 31 has a surface coherence length, denoted by Pr, which is smaller than the diameter of the laser beam 110, 111 or 112 incident on the phase interference pattern 31, wherein the diameters of the laser beams 110, 111 and 112 are defined as The circle defined by the diameter can contain 99% of the energy of the laser beam.
  • the phase interference pattern 31 has a surface coherence length (Pr) which is smaller than a surface coherence length of the surface of the laser beam projection system 1 in which the laser beam 110, 111 or the imaging beam 112 passes over its projection path ( Correlation length ) , any surface containing a mirror surface of a microelectromechanical mirror ( MEMS mirror ) ( 13 ) as shown in FIG.
  • the coherence length is a parameter for defining a frequency of change of a distribution state
  • the surface coherence length, represented by Pr is used to represent a height variation frequency of a surface roughness, defined as a two-dimensional pattern.
  • R represents the distance in space; wherein the smaller the coherence length of the surface, the more the surface roughness distribution is denser within the unit length, the better the suppression of the laser spot is.
  • the correlation length of the rough surface refer to JA Ogilvy, Theory of Waves scattering from random rough surfaces"; Petry Beckmann and Andre Spizzichino, The scattering of Electromagnetic Waves from random rough surface”; and Joseph W Goodman's, Speckle Phenomena in Optics: Theory and Application"; If the phase change of the beam section is substituted for the change in the height of the rough surface in the above definition, the same mathematical model can be used to obtain the definition of the coherence length of the beam section.
  • Coherence length is a parameter, used to table A phase change on a beam section is shown.
  • the coherence length of the beam section is small, it indicates that the phase distribution of the beam section produces more and dense phase changes in the unit cross-sectional area.
  • the coherence length of the section of the imaging beam is smaller, the suppression effect of the laser spot is better.
  • the at least one phase interference component 30 can be disposed at the following position according to design or assembly requirements: the laser beam projection path between the laser light source 1 1 and the beam deflecting device 13 is deflected by the beam The mirror surface of the device 13 and the imaging beam 112 between the beam deflecting device 13 and the screen 20 are projected on at least one of the positions, such as a selective cover disposed on the light exit port 14 for imaging the light beam 12 After being penetrated, the external scan is projected onto the screen 20 to form an image frame; or the cover is disposed on the surface of the screen 20 such that the image frame passes through the phase interference pattern 31 of the phase interference element 30 in a penetrating manner. Received by the human eye.
  • the phase interference component 30 can be a transmissive component, that is, the phase interference component 30 is made of a transparent material, and the laser beam 1 10, 1 1 1 or the imaging beam 1 12 (wavelength is ⁇ ) is penetrated. Passing the phase interference pattern 31 of the phase interference component 30, and generating a phase difference variation of at least ⁇ after the penetration passes, so that the laser beam or the imaging beam can cause constructive or destructive interference changes to suppress The laser spot generated on the image screen.
  • the phase interference component 30 can be a reflective component, that is, the phase interference component 30 is made of a non-transparent material and forms a reflective surface, or a transparent phase interference component 30 is flatly pasted on the microelectromechanical as shown in FIG. Formed on the mirror surface of the mirror ( MEMS mirror ) ( 13 ), at which time the laser beam 1 10, 1 1 1 or the imaging beam 1 12 passes through the phase interference pattern 31 of the phase interference element 30 in a reflective manner and is reflective After the passage, a phase difference variation of at least ⁇ is generated, that is, the phase interference pattern 31 incident on and out of the phase interference element 30 can respectively generate a phase difference variation of at least ⁇ /2, so that the laser beam or the imaging beam can be constructive or Destructive interference changes to suppress the laser spot generated on the image.
  • FIG. 6 is a schematic diagram of an embodiment of the phase interference component 30 of the present invention in cooperation with a MEMS mirror (13).
  • the phase interference component 30 can be coupled to a MEMS mirror (13) packaging process, such as a conventional TO-can package, and disposed in the microelectromechanical mirror (13), which is a beam deflecting device.
  • a type of 13 is provided on the inner side of the transparent protective cover 131, but is not limited to as shown in FIG. 6, so that the laser beam 11 1 first penetrates through the phase interference pattern 31 of a correspondingly disposed phase interference element 30.
  • phase interference component 30 that is, the phase interference components 30 and 30a are simultaneously disposed when the microelectromechanical mirror (13) is manufactured or packaged; and the phase interference components 30 and 30a are disposed correspondingly It may be separately provided, or integrated, but not limited, and may be attached to the inner side of the transparent protective cover 131 of the microelectromechanical mirror (13) at one time as shown in FIG.
  • the laser beam 110, 111 or the imaging beam 112 passes through the phase interference pattern 31 of the phase interference element 30 in a reflective manner or in a penetrating manner, an uneven spatial phase change can be generated, and the image finally emitted from the screen 20 can be generated.
  • the coherence length of the beam section of the imaging light of the picture is reduced to suppress the laser spot generated on the image frame; wherein the coherence length of the beam section of the imaging light of the image picture is a parameter for indicating a beam
  • the phase change situation on the cross section When the coherence length of the beam section is small, it indicates that the phase distribution of the beam section produces more and dense phase changes in the unit sectional area. When the coherence length of the section of the imaging beam is small, the suppression effect of the laser spot is better.
  • the laser beam 111 is incident on the micro-electromechanical mirror through a phase interference pattern 31 of the correspondingly disposed phase interference element 30 at a certain angle of incidence.
  • the mirror surface is scanned by the microelectromechanical mirror (13) at a scanning angle to form the imaging beam 112 and then penetrates through the phase interference pattern 31 of the other correspondingly disposed phase interference element 30 (30a).
  • Projection, i.e., the exit angle of the imaging beam 112 is reciprocally scanned between a predetermined scan amplitude, such that the imaging beam 112 penetrates the phase of the phase interference element 30 (30a) over time (i.e., at different times).
  • the contrast of the laser spot is further reduced or suppressed by time averaging in terms of the visual retention time observed by the human eye.
  • the embodiment shown in FIG. 6 is taken as an example for illustration and not limitation.
  • the imaging beam 112 changes in time (ie, at different times) and passes through different angles of incidence, such as ⁇ 1, ⁇ 2 in FIG.
  • the phase of the phase interference element 30a interferes with the pattern 31, so that the contrast of the laser spot is further suppressed by time averaging in terms of the visual retention time observed by the human eye.
  • FIG. 7 is a schematic diagram of an embodiment of the laser projection system shown in FIG. 2.
  • the laser projection system 1 is used to illustrate the technical features of the present invention but is not intended to limit the present invention.
  • the laser projection system 1 includes a laser projector 10 and a screen 20, wherein the laser projector 10 mainly includes at least one laser light source 11 for emitting a laser beam 110 and at least one image generating component 13, wherein A light combining module 12 may be disposed between the laser light source 11 and the image generating element 13 but is not limited to form the laser light 110 into a laser beam 111.
  • the image generating component 13 is a group of the following groups: DLP (Digital Light Processor), LCOS (Liquid Crystal On Silicon), hologram (Hologram) one, but not limited, for forming a laser beam 110 or 111 into an imaging beam 112, which is then projected by at least one light exit 14 onto a screen 20 to form an image; The screen is then emitted from the screen 20 and received by the human eye.
  • DLP Digital Light Processor
  • LCOS Liquid Crystal On Silicon
  • Hologram hologram
  • the spot suppression device 3 of the present embodiment is substantially the same as the embodiment shown in FIG. 3, and the main difference is that the imaging mode and the technical architecture of the image generating element 13 are different; therefore, the spot suppression device 3 of the present embodiment also utilizes at least one laser.
  • the optical phase interference element 30 is disposed on a projection path of the laser beam 110, 111 or the imaging beam 112 between the laser light source 11 and the screen 20 for the laser beam 110, 111 or the imaging beam 112 to pass.
  • the structural characteristics and operational functions of the phase interference element 30 and the phase interference pattern 31 provided on the surface thereof are the same as those in the first embodiment shown in Fig. 3.
  • the at least one phase interference component 30 can be disposed at the following position according to design or assembly requirements: the image generating element 13 on the laser beam projection path between the laser light source 1 1 and the image generating component 13
  • the image generating element 13 on the laser beam projection path between the laser light source 1 1 and the image generating component 13
  • at least one position such as a selective cover
  • the external scan is projected onto the screen 20 to form an image frame
  • the cover is disposed on the surface of the screen 20 such that the image frame passes through the phase interference pattern 31 of the phase interference element 30 in a penetrating manner.
  • the human eye receives a cover such as a cover on the light exit opening 14 for the imaging light beam 112 to pass through and then scans outward onto the screen 20 to form an image frame.
  • the laser beam 110, 111 or the imaging beam 112 passes through the phase interference pattern 31 of the phase interference element 30 in a reflective manner or in a penetrating manner, an uneven spatial phase change can be generated, and the image finally emitted from the screen 20 can be generated.
  • the coherence length of the imaging light of the picture is reduced, thereby suppressing the laser spot generated on the image frame; wherein the coherence length is a parameter for defining a frequency of change of a distribution state; wherein the image
  • the coherence length of the beam section of the imaged light of the picture is a parameter used to represent the phase change on a beam section. When the coherence length of the beam section is small, it indicates that the phase distribution of the beam section produces more dense phase changes in the unit cross-sectional area. When the coherence length of the section of the imaging beam is small, the suppression effect of the laser spot is better.
  • the phase interference pattern 31 can be represented by a length period Px and Py, and the height variation h range should be greater than a quarter wavelength ⁇ (the wavelength of the laser beam or the imaging beam is ⁇ )
  • the relationship between the laser spot contrast and the roughness of the surface of the screen is defined as a relationship of the length (defined as Is).
  • the laser spot contrast is rough with the surface of the screen.
  • the coherence length of the laser spot contrast and the roughness of the screen surface (defined as Is) comparison chart as can be seen from Fig. 9, after adding a two-dimensional phase interference element 30, the contrast of the laser spot is significantly reduced, and the laser spot contrast is lower than 75. It is apparent that the spot suppression device of the present invention and the suppression method thereof can achieve the specific effects of suppressing the laser spot.
  • the laser spot projection method of the laser projection system of the present invention wherein the laser projection system 1 comprises a laser projector 10 and a screen 20, wherein the laser projector 10 mainly comprises at least one laser light source 11 for emitting the laser beam 110 and at least one An image generating component 13 , wherein a light combining module 12 is disposed between the laser light source 11 and the image generating component 13 , but the laser beam 110 is not limited to form a laser beam 111; the image generating component 13 can The laser beam 110 or 111 is formed into an imaging beam 112 to be projected onto the screen 20 by at least one light exit 14 of the laser projector 10 to form an image for viewing by the human eye.
  • the laser spot suppression method comprises the following steps:
  • the mode can generate an uneven phase change when passing through the phase interference pattern 31;
  • the at least one phase interference component 30 is disposed on a projection path between the laser light source 11 and the screen 20 such that the laser beam 110, 11 or the imaging beam 112 can reflect or penetrate before being projected onto the screen 20.
  • the mode first passes through the phase interference pattern 31 of the at least one phase interference component 30;
  • phase interference pattern 31 By using the phase interference pattern 31, a non-uniform phase change is generated for the laser beam 110, 111 or the imaging beam 112 passing through the phase interference pattern 31, and the coherence length of the image image of the image image finally emitted by the screen 20 is reduced. Suppressing the generation of a laser spot on the image frame;
  • the coherence length is a parameter for defining a frequency of change of a distribution state; wherein a coherence length of the beam section of the image light of the image frame is a parameter indicating a phase change on a beam section .
  • the coherence length of the beam section is small, it indicates that the phase distribution of the beam section produces more and dense phase changes in the unit cross-sectional area.
  • the coherence length of the imaging beam section is small, the suppression effect of the laser spot is better.

Description

激光投影系统的光斑抑制装置及其抑制方法 技术领域
本发明有关一种光斑抑制装置及其抑制方法供应用于激光投影系统中, 尤 指一种在激光光源与屏幕之间的激光光束投射路径上设置至少一激光相位干扰 元件, 以使以反射方式或穿透方式经过该相位干扰元件的激光光束产生不均匀 的空间相位变化, 并使最后自屏幕出射的影像画面的成像光的光束截面的相干 长度缩小, 而达成抑制激光光斑的效果。 背景技术
请参考图 1及图 2所示, 现有一激光投影系统 1一般包含一激光投影器 10 及至少一屏幕 20但不限制, 其中该激光投影器 10主要包含: 至少一激光光源 1 1如分别的 R (红色) 、 G (绿色) 、 B (蓝色) 三色激光光源但不限制供出射 激光光束 1 10如 R (红色) 、 G (绿色) 、 B (蓝色) 等三色激光光 1 10; —合 光模组 12但不限制供可将前述的三色激光光 1 10组成一激光光束 1 1 1 ; 及至少 一影像产生元件 13供将激光光束形成成像光束 1 12并由该激光投影器 10的机 壳上至少一出光口 101向外投射至该屏幕 20上以形成影像画面。 该影像产生元 件 13可依不同的成像方式概分为两种型态,一是使用光束偏折装置如图 1所示, ^口:反射镜、 4鼓机电反射镜 ( Micro-Electronic Mechanical System vibratiom Mirror, 简称 MEMS mirror )、多角反射镜 (polygon mirror)、超音波光栅 (ultrasonic grating) 中的一种或其组合但不限制, 而此种型态激光投影器 10—般设计包含: 一激光 光源模组、 一激光讯号调变模组、 一合光模组、 一旋转平面镜模组、 一旋转平 面镜控制模组及一讯号转换模组但不限制; 另一是使用二维光亮度调整阵列如 图 2所示, 如: DLP (Digital Light Processor, 数位光线处理器)、 LCOS ( Liquid Crystal On Silicon, 矽基液晶) 显像装置、 全像 (Hologram)显像装置中的一种但 不限制。 由于本发明主要是针对一激光投影系统 1 提供一光斑抑制装置及其抑 制方法, 因此图 1及图 2仅用以表示一激光投影系统 1中激光投影器 10及屏幕 20的两种不同架构,至于该激光投影器 10的详细结构及其成像方式的相关技术, 如该影像产生元件 13的成像方式及其技术等, 在此不另作详细说明。
激光光束具有本质上良好的同调性 (coherent) , 其为波长一致、 相位一致、 单一频率且导向性佳的高能量光束, 当其被应用为激光投影器的光源时, 将会 伴随产生激光光斑 (laser speckle)现象。激光光斑乃是同调性光源照射在一粗糙表 面上,如一投影用屏幕 20或一半透明扩散板,所造成的不规则颗粒状亮度分布, 其起因为散射光在不同点因粗糙表面而产生不规则的建设性或破坏性干涉。 光 强度较亮者乃是建设性干涉所造成; 光强度较暗者乃是破坏性干涉的结果; 激 光光斑将导致投影影像的高度空间频率干扰 (spatial frequency noise)问题, 以人 眼的解析度加上视觉暂留影响, 这些来自投影屏幕上不同颗粒间的明暗散乱性 光斑, 即是对激光投影影像观赏上的最大的缺点。
针对激光光斑的问题, 目前已有现有技术提出解决的方法, 如在投影用屏 幕 20上增设一制动机构 ( actuator ) 如马达以驱使屏幕 20不断地移动或转动, 以破坏激光光束的同调性而减低干涉现象; 或如我国发明公开第 201019032号, 其利用透镜将一影像产生模组所产生的影像聚焦于可移动或转动的一可随时间 变更扩散器 (Time-varying Diffuser ) 上, 以破坏激光光的同调性, 而緩和影像 画面上的激光斑点现象, 其原理以高频率的震动, 造成相位差间的紊乱, 使影 像抵达人眼后不易察觉微小光点间的明暗差异, 而降低甚至消除激光光斑。 然, 前述装置或方法皆利用制动机构以驱动屏幕 20 或扩散器 ( Time-varying Diffuser ) 相对于激光光产生移动或转动, 因此整体机构较为复杂, 产品制作成 本也相对提高,且体积相对较大, 不利于该激光投影器 10轻薄短小的设计要求。
另, 尚有其他业者提出解决激光斑点的设备, 如美国 TI公司的旋转折射设 备 (refracting device with rotating) ,美国 Microvision公司的光学反馈设备 (optical feedback devices),美国 Corning公司的周期阶段遮蔽物(periodic phase mask )等, 其机构亦较为复杂, 亦须付出较高的制作成本。 因此如何釆行较为简便且具低 成本的装置与方法, 以降低或乃至于消除激光光斑, 是当前相关业界亟待努力 的重要课题。 发明内容
本发明的主要目的提供一种激光投影系统的光斑抑制装置及其抑制方法, 该激光投影系统包含一激光投影器及一屏幕, 其中该激光投影器包含至少一激 光光源供射出激光光束及至少一影像产生元件如光束偏折装置或二维光亮度调 整阵列供将该激光光束形成成像光束并由至少一出光口投射至该屏幕上以形成 影像画面, 该影像画面并自屏幕出射而由人眼接收; 本发明的光斑抑制装置及 其抑制方法利用至少一激光光相位干扰元件, 其是一具有适当厚度的薄膜状结 构体且其表面上设有至少一相位干扰图案如一维散乱图案 (random p attern)、一维 周期性图案、 二维散乱图案 (random pattern) 、 二维周期性图案 (periodic pattern) 中的一种或其组合; 并将该至少一相位干扰元件设在该激光光源与该屏幕之间 的激光光束或成像光束投射路径上, 以使该激光光束或成像光束以反射方式或 以穿透方式经过该相位干扰元件的相位干扰图案时, 能产生不均匀的空间相位 变化,并使最后自屏幕出射的影像画面成像光的光束截面的相干长度( correlation length ) 缩小, 藉以抑制在该影像画面上所产生的激光光斑; 其中该光束截面的 相干长度是一参数, 用以表示一光束截面上的相位变化情形, 当该光束截面的 相干长度越小时, 表示该光束截面的相位分布在单位截面积内产生越多而密集 的相位变化, 当成像光的光束截面的相干长度越小时, 则激光光斑的抑制效果 越好。
本发明的另一目的提供一种激光投影系统的光斑抑制装置及其抑制方法, 其中当该相位干扰元件为反射式元件时, 该激光光束或成像光束以反射方式经 过该相位干扰元件的相位干扰图案; 其中当该相位干扰元件为穿透式元件时, 该激光光束或成像光束以穿透方式经过该相位干扰元件的相位干扰图案, 并可 产生至少 π的相位差变化, 以能使该激光光束或成像光束产生建设性或破坏性 的干涉变化, 藉以抑制在该影像画面上所产生的激光光斑。
本发明的另一目的提供一种激光投影系统的光斑抑制装置及其抑制方法, 其中当该影像产生元件为光束偏折装置时如反射镜、 微机电反射镜、 多角反射 镜、 超音波光栅中的一种或其组合但不限制, 该至少一相位干扰元件设置在下 列位置: 该激光光源与该光束偏折装置之间的激光光束投射路径上、 该光束偏 折装置的反射镜面上, 及该光束偏折装置与该屏幕之间的成像光束投射路径上, 其中至少一位置上。
本发明的另一目的提供一种激光投影系统的光斑抑制装置及其抑制方法, 其中当该影像产生元件为二维光亮度调整阵列时如 DLP (Digital Light Processor, 数位光线处理器)、 LCOS ( Liquid Crystal On Silicon, 矽基液晶) 显 像装置、 全像 (Hologram)显像装置中的一种但不限制, 该至少一相位干扰元件 设置在下列位置: 该激光光源与该影像产生元件之间的激光光束投射路径上、 该影像产生元件的表面上及该影像产生元件与该屏幕之间的成像光束投射路径 上, 其中至少一位置上。
本发明的另一目的提供一种激光投影系统的光斑抑制装置及其抑制方法, 其中该至少一相位干扰元件进一步可设置在该激光投影器的出光口处, 以使成 像光束以穿透方式经过该相位干扰元件的相位干扰图案再投射至该屏幕上以形 成影像画面。
本发明的另一目的提供一种激光投影系统的光斑抑制装置及其抑制方法, 其中该至少一相位干扰元件进一步可设置在该屏幕的表面上, 以使影像画面以 穿透方式经过该相位干扰元件的相位干扰图案再由人眼接收。
本发明的另一目的提供一种激光投影系统的光斑抑制装置及其抑制方法, 其中当该激光光束或成像光束在投影至该屏幕之前经过该相位干扰图案时, 该 激光光束或成像光束进一步可依时间的变化 (以不同的时间) 经过该相位干扰 图案上的不同区域, 以在人眼观察的视觉暂留时间内使激光光斑的对比因时间 平均而再被降低或抑制。
本发明的另一目的提供一种激光投影系统的光斑抑制装置及其抑制方法, 其中当该激光光束或成像光束在投影至该屏幕之前经过该相位干扰图案时, 该 激光光束或成像光束进一步可依时间的变化 (以不同的时间) 并以不同入射角 经过该相位干扰图案, 以在人眼观察的视觉暂留时间内使激光光斑的对比因时 间平均而再被抑制。
本发明的另一目的提供一种激光投影系统的光斑抑制装置及其抑制方法, 其中该激光光斑的抑制方法包含下列步骤:
提供至少一激光光相位干扰元件, 其上设有至少一激光光相位干扰图案, 其中该激光光相位干扰图案用以使激光光束或成像光束以反射方式或穿透方式 经过该相位干扰图案时能产生不均匀的相位变化;
将该至少一激光光相位干扰元件设置于该激光光源与该屏幕之间的投射路 径上, 以使激光光束或成像光束在投射至该屏幕上之前能以反射或穿透方式先 经过该至少一相位干扰元件的激光光相位干扰图案; 及
利用该激光光相位干扰图案, 对经过该激光光相位干扰图案的激光光束或 成像光束产生不均勾的相位变化, 并使最后由屏幕出射的影像画面成像光的光 束截面的相干长度缩小, 以抑制在该影像画面上产生激光光斑; 其中该光束截 面的相干长度是一参数, 用以表示一光束截面上的相位变化情形, 当该光束截 面的相干长度越小时, 表示该光束截面的相位分布在单位截面积内产生越多而 密集的相位变化, 当成像光的光束截面的相干长度越小时, 则激光光斑的抑制 效果越好。 为了达到上述目的本发明提供了一种激光投影系统的光斑抑制装置, 该激 光投影系统包含一激光投影器及一屏幕, 其中该激光投影器包含至少一激光光 源供射出激光光束及至少一影像产生元件供将激光光束形成成像光束并由至少 一出光口投射至该屏幕上以形成影像画面, 该影像画面自该屏幕出射而由人眼 接收; 该光斑抑制装置包含:
至少一激光光相位干扰元件设在该激光光源与该屏幕之间该激光光束或成 像光束的投射路径上以供该激光光束或成像光束经过, 其中该光相位千扰元件 为一具有适当厚度的薄膜状结构体, 其表面上设有至少一相位干扰图案;
其中当该激光光束或成像光束在经过该相位干扰图案时, 能产生不均匀的 空间相位变化, 并使最后自屏幕出射的影像画面的成像光束的光束截面的相干 长度缩小, 以抑制在该影像画面上所产生的激光光斑;
其中该相干长度是一用以界定一分布状态的变化频率情形的参数, 在此用 以表示该激光光束或成像光束的相位变化频率情形, 当该相干长度越小时表示 该激光光束的相位分布在单位截面积内产生越多而密集的相位变化, 则激光光 斑的抑制效果越好。
实施时, 该激光光束或成像光束经过该相位干扰图案的方式包含以反射方 式或以穿透方式经过该相位干扰图案。
实施时, 该相位干扰图案所具有的表面相干长度 Pr小于该激光投影系统中 该激光光束或成像光束在其投射路径上所经过的任一表面所具有的表面相干长 度, 其中该表面相干长度 Pr用以表示一表面粗糙度的高度变化频率情形, 定义 为二维图案表面高度变化在空间中的自我相关函数 D(R)的高斯分布函数的系 数:
D(R) = exp(- ^) 其中 R代表空间中的距离; 其中当该表面相干长度越小时, 表示该表面粗 糙分布在单位长度内越多而密集, 则激光光斑的抑制的效果越好。 .
实施时, 该相位干扰图案所具有的表面相干长度 (Pr ) 小于该激光光束直 径, 其中该激光光束直径的定义为该直径定义的圓包含激光光束 99% 的能量。
实施时, 该相位干扰图案包含一维散乱图案、 一维周期性图案、 二维散乱 图案、 二维周期性图案中的一种或其组合。 实施时, 该激光光束或成像光束在以反射方式经过该至少一激光光相位干 扰元件的该至少一相位干扰图案之后能产生至少 π的相位差变化。
实施时, 当该激光光束或成像光束在以穿透方式经过该至少一激光光相位 干扰元件的该至少一相位干扰图案之后能产生至少 π的相位差变化, 以能使该 激光光束或成像光束产生建设性或破坏性的干涉变化。
实施时, 该相位干扰元件为一反射式元件, 以使该激光光束或成像光束以 反射方式经过该相位干扰元件的相位干扰图案。
实施时, 该相位干扰元件为一穿透式元件, 以使该激光光束或成像光束以 穿透方式经过该相位干扰元件的相位干扰图案。
实施时, 该影像产生元件为光束偏折装置, 包含下列族群: 反射镜、 微机 电反射镜、 多角反射镜、 超音波光栅中的一种或其组合。
实施时, 该至少一相位干扰元件设置在下列位置: 该激光光源与该光束偏 折装置之间的激光光束投射路径上、 该光束偏折装置的反射镜面上及该光束偏 折装置与该屏幕之间的成像光束投射路径上, 其中的至少一位置。
实施时, 当该激光光束或成像光束在投影至该屏幕之前经过该相位干扰图 案时, 该激光光束或成像光束进一步依时间的变化经过该相位干扰图案上的不 同区域, 以在人眼观察的视觉暂留时间内使激光光斑的对比因时间平均而被降 低或抑制。
实施时, 当该激光光束或成像光束在投影至该屏幕之前经过该相位干扰图 案时, 该激光光束或成像光束进一步依时间的变化并以不同入射角经过该相位 干扰图案, 以在人眼观察的视觉暂留时间内使激光光斑的对比因时间平均而被 抑制。
实施时, 该影像产生元件为二维光亮度调整阵列, 下列族群: DLP、 LCOS、 全像显像装置中的一种。
实施时, 该至少一相位干扰元件设置在下列位置: 该激光光源与该影像产 生元件之间的激光光束投射路径上、 该影像产生元件的表面上及该影像产生元 件与该屏幕之间的成像光束投射路径上, 其中的至少一位置。
实施时, 该至少一相位干扰元件设置在该激光投影器的出光口处, 以使成 像光束以穿透方式经过该相位干扰元件的相位干扰图案投射至该屏幕上以形成 影像画面。
实施时, 该至少一相位干扰元件设置在该屏幕的表面上, 以使影像画面以 穿透方式经过该相位干扰元件的相位干扰图案再由人眼接收。
本发明还一种激光投影系统的光斑的抑制方法, 其利用请求项 1至 17任一 项所述的激光投影系统的光斑抑制装置, 该激光投影系统包含一激光投影器及 一屏幕, 其中该激光投影器包含至少一激光光源供射出激光光束及至少一影像 产生元件将激光光束形成成像光束并由一出光口射出至该屏幕上以形成影像画 面, 该影像画面并自屏幕出射而由人眼接收; 该激光光斑的抑制方法包含下列 步骤:
提供至少一激光光相位干扰元件, 其上设有至少一
激光光相位干扰图案, 其中该激光光相位干扰图案用以使激光光束或成像 光束以反射方式或穿透方式经过该相位干扰图案时能产生不均匀的相位变化; 将该至少一激光光相位干扰元件设置于该激光光源与该屏幕之间的投射路 径上, 以使激光光束或成像光束在投射至该屏幕上之前能以反射或穿透方式先 经过该至少一相位干扰元件的激光光相位干扰图案; 及利用该激光光相位干扰 图案, 对经过该激光光相位干扰图案的激光光束或成像光束产生不均勾的相位 变化, 并使最后由屏幕出射的影像画面成像光的光束截面的相干长度缩小, 以 抑制在该影像画面上产生激光光斑;
该相干长度是一用以界定一分布状态的变化频率情形的参数; 其中该影像 画面的成像光的光束截面的相干长度是一参数, 用以表示一光束截面上的相位 变化情形。 当该光束截面的相干长度越小时, 表示该光束截面的相位分布在单 位截面积内产生越多而密集的相位变化; 当成像光束截面的相干长度越小时, 则激光光斑的抑制效果越好。 附图说明
图 1是现有激光投影系统 (设有光束偏折装置) 一实施例示意图; 图 2是现有另一种激光投影系统(非设有光束偏折装置)一实施例示意图; 图 3是本发明所应用于图 1所示激光投影系统的一实施例 (第 1 实施例) 示意图;
图 4 是本发明的相位干扰元件的相位干扰图案 (一维散乱图案, random pattern )一实施例示意图 (放大图) ; - 图 5是本发明的相位干扰元件的相位干扰图案 (一维周期性图案, periodic pattern ) 另一实施例示意图 (放大图) ; 图 6是本发明的相位干扰元件与一微机电反射镜 ( MEMS mirror )配合设置 的一实施例示意图;
图 7是本发明所应用于图 2所示激光投影系统的一实施例 (第 2实施例) 示意图;
图 8 是激光投影系统尚未利用本发明之前的抑制前光斑对比度与相干长度 示意图;
图 9是激光投影系统已利用本发明之后的光斑对比度与相干长度示意图。 附图标记说明: 1-激光投影系统; 10-激光投影器; 11-激光光源; 110、 111- 激光光束; 112-成像光束; 12-合光模组; 13-影像产生元件; 131-透明保护盖; 14-出光口; 20-屏幕; 30、 30a-相位干扰元件; 31、 31a, 3 lb-相位干扰图案。 具体实施方式
本发明系针对一激光投影系统提供一光斑抑制装置及其抑制方法, 而不论 该激光投影系统属于那一种成像方式或那一种技术架构, 本发明的光斑抑制装 置及其抑制方法均能适用, 因此本发明直接引用如图 1及图 2所示两种不同技 术架构的激光投影系统 1来说明本发明的技术特征, 但该图 1及图 2仅用以表 示一激光投影系统 1 中激光投影器 10及屏幕 20的两种不同架构, 非用以限制 本发明。
请参考图 3, 其本发明应用于图 1所示激光投影系统的一实施例示意图。 该 激光投影系统 1 用以说明本发明的技术特征但非用以限制本发明。 该激光投影 系统 1如图 1所示, 包含一激光投影器 10及一屏幕 20, 其中该激光投影器 10 主要包含至少一激光光源 11供射出激光光束 110及至少一影像产生元件 13,其 中在该激光光源 11与该影像产生元件 13之间亦可设一合光模组 12但不限制供 可将该激光光 110组成一激光光束 111。 在本实施例中该影像产生元件 13为一 光束偏折装置如反射镜、 一维或二维微机电反射镜(MEMS mirror) 、 多角反射 镜 (polygon mirror) 超音波光栅 (ultrasonic grating) 中的一种或其组合但不限制, 供将激光光束 110或 111形成, 如扫描形成, 成像光束 112; 该成像光束 112再 由至少一出光口 14投射至一屏幕 20上以形成影像画面; 该影像画面再自该屏 幕 20出射而由人眼接收。
本实施例的光斑抑制装置 3利用至少一激光光相位干扰元件 30设在该激光 光源 11与该屏幕 20之间该激光光束 110、 111或成像光束 112的投射路径上, 以供该激光光束 110、 111或成像光束 112经过。
该相位干扰元件 30—具有适当厚度的薄膜状结构体, 其表面设有至少一相 位干扰图案 31 , 该至少一相位干扰图案可为一维散乱图案 (random pattern) 如图 4所示、 一维周期性图案如图 5所示、 二维散乱图案 (random pattern) 、 二维周 期性图案 (periodic pattern) 中的一种或其组合, 如可利用两个相位干扰元件 30 而其上各设一单方向相位干扰图案 31 ,以使该两个相位干扰元件 30的组合应用 仍可达成一二维散乱图案(random pattern) 或一二维周期性图案(periodic pattern) 的作用功能。 该相位干扰图案 31如图 4、 5所示, 可以溅镀铝薄膜方式或蚀刻 方式以形成于该相位干扰元件 30的表面上。
该相位干扰图案 31 所具有的表面相干长度, 以 Pr表示, 小于入射于该相 位干扰图案 31的激光光束 110、 111或 112的直径, 其中该激光光束 110、 111 及 112的直径的定义为该直径定义的圓可包含激光光束 99% 的能量。
又该相位干扰图案 31 所具有的表面相干长度 (Pr ) 小于该激光投影系统 1 中该激光光束 110、 111或成像光束 112在其投射路径上所经过的任一表面所具 有的表面相干长度 ( correlation length ) , 该任一表面包含如图 3中所示微机电 反射镜( MEMS mirror ) ( 13 )的反射镜面。 其中该相干长度一用以界定一分布 ( distribution )状态的变化频率情形的参数; 该表面相干长度, 在此以 Pr代表, 用以表示一表面粗糙度的高度变化频率情形, 定义为二维图案表面高度变化在 空间中的自我相关函数 D(R)(autocorrelation function)的高斯分布函数 ( Gaussian distribution ) 的系数:
Figure imgf000011_0001
其中 R代表空间中的距离; 其中当该表面相干长度越小时, 表示该表面粗 糙分布在单位长度内越多而密集, 则激光光斑的抑制的效果越好。 关于粗糙表 面的相干长度 ( correlation length ) 定义可参考 J.A Ogilvy的 、、 Theory of Waves scattering from random rough surfaces" ; Petry Beckmann及 Andre Spizzichino的 、、 The scattering of Electromagnetic Waves from random rough surface" ;及 Joseph W. Goodman的 、、 Speckle Phenomena in Optics: Theory and Application" ; 若将 光束截面的相位变化取代上述定义中粗糙表面高度变化, 利用同样的数学模型 则可得到光束截面的相干长度定义。 该光束截面的相干长度为一参数, 用以表 示一光束截面上的相位变化情形。 当该光束截面的相干长度越小时, 表示该光 束截面的相位分布在单位截面积内产生越多而密集的相位变化。 当成像光束截 面的相干长度越小时, 则激光光斑的抑制效果越好。
参考图 3所示, 该至少一相位干扰元件 30可依设计或组装需要而设置在下 列位置: 该激光光源 1 1 与该光束偏折装置 13之间的激光光束投射路径上, 该 光束偏折装置 13的反射镜面上, 及该光束偏折装置 13与该屏幕 20之间的成像 光束 1 12投射路径上, 等其中至少一位置上, 如选择罩设在出光口 14上供成像 光束 1 12穿透经过后再向外扫描投射至屏幕 20上以形成影像画面; 或如选择罩 设在该屏幕 20的表面上, 以使影像画面以穿透方式经过该相位干扰元件 30的 相位干扰图案 31再由人眼接收。
该相位干扰元件 30可为一穿透式元件, 即以透明材料制成该相位干扰元件 30, 此时该激光光束 1 10、 1 1 1或成像光束 1 12 (波长为 λ ) 以穿透方式经过该 相位干扰元件 30的相位干扰图案 31,并可在穿透经过之后产生至少 π的相位差 变化, 以能使该激光光束或成像光束产生建设性或破坏性的干涉变化, 以抑制 在该影像画面上所产生的激光光斑。
该相位干扰元件 30可为一反射式元件, 即以非透明材料制成该相位干扰元 件 30并形成反射面, 或将一透明的相位干扰元件 30平整贴覆在如图 3 中所示 微机电反射镜 ( MEMS mirror ) ( 13 ) 的反射镜面上而形成, 此时该激光光束 1 10、 1 1 1 或成像光束 1 12 以反射方式经过该相位干扰元件 30的相位干扰图案 31 , 并可反射经过之后产生至少 π的相位差变化, 即在入射及出射该相位干扰 元件 30的相位干扰图案 31可分别产生至少 π /2的相位差变化, 以能使该激光 光束或成像光束产生建设性或破坏性的干涉变化, 以抑制在该影像画面上所产 生的激光光斑。
请参考图 6,其本发明该相位干扰元件 30与一微机电反射镜( MEMS mirror ) ( 13 ) 配合设置的一实施例示意图。 该相位干扰元件 30可配合一微机电反射镜 ( MEMS mirror ) ( 13 ) 的封装制程, 如常见的 TO-can封装方式, 而设置在该 微机电反射镜( 13 ) , 其为光束偏折装置 13的一种型态, 的透明保护盖 131的 内侧面上但不限制如图 6所示, 使该激光光束 1 1 1先穿透经过一对应设置的相 位干扰元件 30的相位干扰图案 31而入射至该微机电反射镜( 13 ) 的反射镜面, 经由该微机电反射镜( 13 ) 扫描形成成像光束 1 12后又再穿透经过另一对应设 置的相位干扰元件 30a的相位干扰图案 31而向外投射, 如此设计有利于本发明 的相位干扰元件 30 的设置安装作业及应用, 即在制造或封装该微机电反射镜 ( 13 ) 时就同时设置安装该相位干扰元件 30及 30a; 又该两对应设置的相位干 扰元件 30及 30a可分开设置, 或形成一体但不限制而可一次贴置在该微机电反 射镜 ( 13 ) 的透明保护盖 131的内侧面上如图 6所示。
当该激光光束 110、 111或成像光束 112以反射方式或以穿透方式经过该相 位干扰元件 30的相位干扰图案 31 时, 能产生不均匀的空间相位变化, 并使最 后自屏幕 20 出射的影像画面的成像光的光束截面的相干长度 ( correlation length ) 缩小, 以抑制在该影像画面上所产生的激光光斑; 其中该影像画面的成 像光的光束截面的相干长度一参数, 用以表示一光束截面上的相位变化情形。 当该光束截面的相干长度越小时, 表示该光束截面的相位分布在单位截面积内 产生越多而密集的相位变化。 当成像光束截面的相干长度越小时, 则激光光斑 的抑制效果越好。
再以图 6所示实施例为例说明但不限制, 该激光光束 111 以一定的入射角 穿透经过该对应设置的相位干扰元件 30的相位干扰图案 31 而入射至该微机电 反射镜 ( 13 ) 的反射镜面, 经由该微机电反射镜 ( 13 ) 以一扫描角度扫描形成 成像光束 1 12后又再穿透经过另一对应设置的相位干扰元件 30 ( 30a )的相位干 扰图案 31而向外投射, 即成像光束 112的出射角在一预设的扫描幅度之间往复 扫描, 因此该成像光束 112依时间的变化 (即以不同的时间) 穿透经过该相位 干扰元件 30 ( 30a ) 的相位干扰图案 31上的不同区域 31a、 31b, 则以在人眼观 察的视觉暂留时间而言, 激光光斑的对比进一步会因时间平均而再被降低或抑 制。再以图 6所示实施例为例说明但不限制, 该成像光束 112依时间的变化(即 以不同的时间) 并以不同入射角, 如图 6 中的 Θ 1、 Θ 2, 穿透经过该相位干扰 元件 30a的相位干扰图案 31 , 因此以人眼观察的视觉暂留时间而言, 激光光斑 的对比进一步会因时间平均而再被抑制。
请参考图 7, 其本发明应用于图 2所示激光投影系统的一实施例示意图。 该 激光投影系统 1 用以说明本发明的技术特征但非用以限制本发明。 该激光投影 系统 1如图 2所示, 包含一激光投影器 10及一屏幕 20, 其中该激光投影器 10 主要包含至少一激光光源 1 1供射出激光光束 110及至少一影像产生元件 13 ,其 中在该激光光源 11与该影像产生元件 13之间亦可设一合光模组 12但不限制供 可将该激光光 110組成一激光光束 111。 本实施例中该影像产生元件 13为一下 列族群: DLP(Digital Light Processor)、 LCOS ( Liquid Crystal On Silicon )、 全像 (Hologram)显像装置中的一种但不限制,供将激光光束 110或 111形成成像光束 112 ,该成像光束 112再由至少一出光口 14投射至一屏幕 20上以形成影像画面; 该影像画面再自该屏幕 20出射而由人眼接收。
本实施例的光斑抑制装置 3与图 3所示实施例大致相同, 主要不同点在于 该影像产生元件 13的成像方式及技术架构不同而已; 因此本实施例的光斑抑制 装置 3亦利用至少一激光光相位干扰元件 30设在该激光光源 1 1与该屏幕 20之 间该激光光束 110、 111或成像光束 112的投射路径上, 以供该激光光束 1 10、 111或成像光束 112经过。 至于该相位干扰元件 30及其表面所设相位干扰图案 31的结构特征及作用功能则与图 3所示第 1实施例相同。
参考图 7所示, 该至少一相位干扰元件 30可依设计或组装需要而设置在下 列位置: 该激光光源 1 1 与该影像产生元件 13之间的激光光束投射路径上、 该 影像产生元件 13如 DLP(Digital Light Processor)的表面上及该影像产生元件 13 与该屏幕 20之间的成像光束投射路径上, 其中的至少一位置上, 如选择罩设在 出光口 14上供成像光束 1 12穿透经过后再向外扫描投射至屏幕 20上以形成影 像画面; 或如选择罩设在该屏幕 20的表面上, 以使影像画面以穿透方式经过该 相位干扰元件 30的相位干扰图案 31再由人眼接收如罩设在出光口 14上供成像 光束 112穿透经过后再向外扫描投射至屏幕 20上以形成影像画面。
当该激光光束 110、 111或成像光束 112以反射方式或以穿透方式经过该相 位干扰元件 30的相位干扰图案 31 时, 能产生不均匀的空间相位变化, 并使最 后自屏幕 20出射的影像画面的成像光的相干长度( correlation length )缩小, 藉 以抑制在该影像画面上所产生的激光光斑; 其中该相干长度一用以界定一分布 ( distribution )状态的变化频率情形的参数; 其中该影像画面的成像光的光束截 面的相干长度一参数, 用以表示一光束截面上的相位变化情形。 当该光束截面 的相干长度越小时, 表示该光束截面的相位分布在单位截面积内产生越多而密 集的相位变化。 当成像光束截面的相干长度越小时, 则激光光斑的抑制效果越 好。
兹再举例说明本发明的作用及功效:该相位干扰图案 31可用一长度周期 Px 及 Py 来表示, 其高度变化 h范围应大于四分之一波长 λ (该激光光束或成像 光束的波长为 λ ) , 且 Px , Py 小于该激光光束 110、 111或成像光束 112的 直径, 以能使波长为 λ的激光的相位产生建设性或破坏性干涉的变化, 如: 当激光光波长 λ = 532ηπι, h(min)=l/4 λ (133nm); 则取激光光散射后的第 1阶 ( 1st order )计算之;
依据模拟( Simulation )试验, 确实可验证此一本发明可有效降低激光光斑。 参阅图 8 所示, 其尚未利用本发明的光斑抑制装置之前, 激光光斑对比度 与屏幕表面的粗糙度其相干长度 (定义为 Is )关系图,由图 8可知激光光斑对比度 随着屏幕表面的粗糙度的相干长度逐渐增加 (激光光斑对比度为 60-100 ) ; 再 参阅图 9所示, 以周期性图案为例, 且当 Px = Py = l波长, 其已利用本发明的 光斑抑制装置之后,激光光斑对比度与屏幕表面的粗糙度其相干长度 (定义为 Is ) 比较图, 由图 9可知, 加入一二维相位干扰元件 30后, 激光光斑的对比度明显 的降低, 激光光斑对比度低于 75以下, 显见本发明的光斑抑制装置及其抑制方 法确实可达成抑制激光光斑的具体功效。
本发明的激光投影系统的激光光斑抑制方法, 其中该激光投影系统 1 包含 一激光投影器 10及一屏幕 20 , 其中该激光投影器 10主要包含至少一激光光源 11供射出激光光束 110及至少一影像产生元件 13 , 其中在该激光光源 11与该 影像产生元件 13之间亦可设一合光模组 12但不限制供可将该激光光束 110组 成一激光光束 111 ; 该影像产生元件 13可将激光光束 110或 111形成成像光束 112以由该激光投影器 10的至少一出光口 14投射至该屏幕 20上以形成影像画 面供人眼观看, 激光光斑抑制方法包含下列步骤:
提供至少一激光光的相位干扰元件 30, 其上设有至少一激光光的相位干扰 图案 31 , 其中该相位干扰图案 31用以使激光光束 110、 1 11或成像光束 112以 反射方式或穿透方式经过该相位干扰图案 31时能产生不均匀的相位变化;
将该至少一相位干扰元件 30设置于该激光光源 11与该屏幕 20之间的投射 路径上, 以使激光光束 110、 1 11或成像光束 112在投射至该屏幕 20之前能以 反射或穿透方式先经过该至少一相位干扰元件 30的相位干扰图案 31 ; 及
利用该相位干扰图案 31, 对经过该相位干扰图案 31 的激光光束 110、 111 或成像光束 112产生不均勾的相位变化, 并使最后由屏幕 20出射的影像画面成 像光的相干长度缩小, 以抑制在该影像画面上产生激光光斑;
其中该相干长度一用以界定一分布(distribution )状态的变化频率情形的参 数; 其中其中该影像画面的之成像光的光束截面的相干长度一参数, 用以表示 一光束截面上的相位变化情形。 当该光束截面的相干长度越小时, 表示该光束 截面的相位分布在单位截面积内产生越多而密集的相位变化。 当成像光束截面 的相干长度越小时, 则激光光斑的抑制效杲越好。 以上所示仅为本发明的优选实施例, 对本发明而言仅是说明性的, 而非限 制性的。 在本领域具通常智识理解, 在本发明专利要求所限定的精神和范围内 可对其进行许多改变, 修改, 甚至等效变更, 但都将落入本发明的保护范围内。

Claims

1.一种激光投影系统的光斑抑制装置,该激光投影系统.包含一激光投影器及 一屏幕, 其中该激光投影器包含至少一激光光源供射出激光光束及至少一影像 产生元件供将激光光束形成成像光束并由至少一出光口投射至该屏幕上以形成 影像画面, 该影像画面自该屏幕出射而由人眼接收; 其特征在于, 该光斑抑制 装置包含:
至少一激光光相位干扰元件设在该激光光源与该屏幕之间该激光光束或成 像光束的投射路径上以供该激光光束或成像光束经过, 其中该光相位干扰元件 为一具有适当厚度的薄膜状结构体, 其表面上设有至少一相位干扰图案;
其中当该激光光束或成像光束在经过该相位干扰图案时, 能产生不均匀的 空间相位变化, 并使最后自屏幕出射的影像画面的成像光束的光束截面的相干 长度缩小, 以抑制在该影像画面上所产生的激光光斑;
其中该相干长度是一用以界定一分布状态的变化频率情形的参数, 在此用 以表示该激光光束或成像光束的相位变化频率情形, 当该相干长度越小时表示 该激光光束的相位分布在单位截面积内产生越多而密集的相位变化, 则激光光 斑的抑制效果越好。
2.如权利要求 1所述的光斑抑制装置, 其特征在于, 该激光光束或成像光束 经过该相位干扰图案的方式包含以反射方式或以穿透方式经过该相位干扰图 案。
3.如权利要求 1所述的光斑抑制装置, 其特征在于, 该相位干扰图案所具有 的表面相干长度 Pr小于该激光投影系统中该激光光束或成像光束在其投射路径 上所经过的任一表面所具有的表面相干长度, 其中该表面相干长度 Pr用以表示 一表面粗糙度的高度变化频率情形, 定义为二维图案表面高度变化在空间中的 自我相关函数 D(R)的高斯分布函数的系数:
Figure imgf000017_0001
其中 R代表空间中的距离; 其中当该表面相干长度越小时, 表示该表面粗 糙分布在单位长度内越多而密集, 则激光光斑的抑制的效果越好。
4.如权利要求 3所述的光斑抑制装置, 其特征在于, 该相位干扰图案所具有 的表面相干长度 (Pr ) 小于该激光光束直径, 其中该激光光束直径的定义为该 直径定义的圓包含激光光束 99% 的能量。 .
5.如权利要求 1所述的光斑抑制装置, 其特征在于, 该相位干扰图案包含一 维散乱图案、 一维周期性图案、 二维散乱图案、 二维周期性图案中的一种或其 组合。
6.如权利要求 1所述的光斑抑制装置, 其特征在于, 该激光光束或成像光束 在以反射方式经过该至少一激光光相位干扰元件的该至少一相位干扰图案之后 能产生至少 π的相位差变化。
7.如权利要求 1所述的光斑抑制装置, 其特征在于, 当该激光光束或成像光 束在以穿透方式经过该至少一激光光相位干扰元件的该至少一相位干扰图案之 后能产生至少 π的相位差变化, 以能使该激光光束或成像光束产生建设性或破 坏性的干涉变化。
8.如权利要求 1所述的光斑抑制装置, 其特征在于, 该相位干扰元件为一反 射式元件, 以使该激光光束或成像光束以反射方式经过该相位干扰元件的相位 干扰图案。
9.如权利要求 1所述的光斑抑制装置, 其特征在于, 该相位干扰元件为一穿 透式元件, 以使该激光光束或成像光束以穿透方式经过该相位干扰元件的相位 干扰图案。
10.如权利要求 1所述的光斑抑制装置, 其特征在于, 该影像产生元件为光 束偏折装置, 包含下列族群: 反射镜、 微机电反射镜、 多角反射镜、 超音波光 栅中的一种或其组合。
1 1.如权利要求 10所述的光斑抑制装置, 其特征在于, 该至少一相位干扰元 件设置在下列位置: 该激光光源与该光束偏折装置之间的激光光束投射路径上、 该光束偏折装置的反射镜面上及该光束偏折装置与该屏幕之间的成像光束投射 路径上, 其中的至少一位置。
12.如权利要求 10所述的光斑抑制装置, 其特征在于, 当该激光光束或成像 光束在投影至该屏幕之前经过该相位干扰图案时, 该激光光束或成像光束进一 步^时间的变化经过该相位干扰图案上的不同区域, 以在人眼观察的视觉暂留 时间内使激光光斑的对比因时间平均而被降低或抑制。
13.如权利要求 10所述的光斑抑制装置, 其特征在于, 当该激光光束或成像 光束在投影至该屏幕之前经过该相位干扰图案时, 该激光光束或成像光束进一 步依时间的变化并以不同入射角经过该相位干扰图案, 以在人眼观察的视觉暂 留时间内使激光光斑的对比因时间平均而被抑制。
14.如权利要求 1所述的光斑抑制装置, 其特征在于, 该影像产生元件为二 维光亮度调整阵列, 下列族群: DLP、 LCOS、 全像显像装置中的一种。
15.如权利要求 14所述的光斑抑制装置, 其特征在于, 该至少一相位干扰元 件设置在下列位置: 该激光光源与该影像产生元件之间的激光光束投射路径上、 该影像产生元件的表面上及该影像产生元件与该屏幕之间的成像光束投射路径 上, 其中的至少一位置。
16.如权利要求 1所述的光斑抑制装置, 其特征在于, 该至少一相位干扰元 件设置在该激光投影器的出光口处, 以使成像光束以穿透方式经过该相位干扰 元件的相位干扰图案投射至该屏幕上以形成影像画面。
17.如权利要求 1所述的光斑抑制装置, 其特征在于, 该至少一相位干扰元 件设置在该屏幕的表面上, 以使影像画面以穿透方式经过该相位干扰元件的相 位干扰图案再由人眼接收。
18.—种激光投影系统的光斑的抑制方法,其利用请求项 1至 17任一项所述 的激光投影系统的光斑抑制装置, 该激光投影系统包含一激光投影器及一屏幕, 其中该激光投影器包含至少一激光光源供射出激光光束及至少一影像产生元件 将激光光束形成成像光束并由一出光口射出至该屏幕上以形成影像画面, 该影 像画面并自屏幕出射而由人眼接收; 该激光光斑的抑制方法包含下列步驟: 提供至少一激光光相位干扰元件, 其上设有至少一
激光光相位干扰图案, 其中该激光光相位干扰图案用以使激光光束或成像 光束以反射方式或穿透方式经过该相位干扰图案时能产生不均匀的相位变化; 将该至少一激光光相位干扰元件设置于该激光光源与该屏幕之间的投射路 径上, 以使激光光束或成像光束在投射至该屏幕上之前能以反射或穿透方式先 经过该至少一相位干扰元件的激光光相位干扰图案; 及利用该激光光相位干扰 图案, 对经过该激光光相位干扰图案的激光光束或成像光束产生不均勾的相位 变化, 并使最后由屏幕出射的影像画面成像光的光束截面的相干长度缩小, 以 抑制在该影像画面上产生激光光斑;
其特征在于, 该相干长度是一用以界定一分布状态的变化频率情形的参数; 其中该影像画面的成像光的光束截面的相干长度是一参数, 用以表示一光束截 面上的相位变化情形。 当该光束截面的相干长度越小时, 表示该光束截面的相 位分布在单位截面积内产生越多而密集的相位变化; 当成像光束截面的相干长 度越小时, 则激光光斑的抑制效果越好。
PCT/CN2011/000424 2011-03-17 2011-03-17 激光投影系统的光斑抑制装置及其抑制方法 WO2012122677A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/000424 WO2012122677A1 (zh) 2011-03-17 2011-03-17 激光投影系统的光斑抑制装置及其抑制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/000424 WO2012122677A1 (zh) 2011-03-17 2011-03-17 激光投影系统的光斑抑制装置及其抑制方法

Publications (1)

Publication Number Publication Date
WO2012122677A1 true WO2012122677A1 (zh) 2012-09-20

Family

ID=46830013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000424 WO2012122677A1 (zh) 2011-03-17 2011-03-17 激光投影系统的光斑抑制装置及其抑制方法

Country Status (1)

Country Link
WO (1) WO2012122677A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014059552A1 (en) 2012-10-17 2014-04-24 Optotune Ag Speckle free laser projection
EP2945005A1 (en) 2014-05-16 2015-11-18 Optotune AG Laser projection system for reducing speckle noise
EP3035110A1 (en) 2014-12-18 2016-06-22 Optotune AG Optical system for avoiding speckle patterns
US10687912B2 (en) * 2017-02-02 2020-06-23 Alcon Inc. Fiber-based mode mixing techniques for surgical laser illumination
US10779905B2 (en) 2017-02-02 2020-09-22 Alcon Inc. Focusing optics for mixed mode surgical laser illumination
CN112204454A (zh) * 2017-12-28 2021-01-08 ams传感器新加坡私人有限公司 发光光电模块
US11006822B2 (en) 2017-02-02 2021-05-18 Alcon Inc. Pixelated array optics for mixed mode surgical laser illumination
US11065077B2 (en) 2017-02-02 2021-07-20 Alcon Inc. Mechanical optics for mixed mode surgical laser illumination
US11927769B2 (en) 2022-03-31 2024-03-12 Metalenz, Inc. Polarization sorting metasurface microlens array device
US11978752B2 (en) 2019-07-26 2024-05-07 Metalenz, Inc. Aperture-metasurface and hybrid refractive-metasurface imaging systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169634B1 (en) * 1998-06-08 2001-01-02 Optimet, Optical Metrology Ltd Illumination techniques for overcoming speckle artifacts in metrology applications
US20080055698A1 (en) * 2006-05-23 2008-03-06 Samsung Electro-Mechanics Co., Ltd. Optical modulator and optical modulator module for reducing laser speckle
US20100296064A1 (en) * 2009-05-21 2010-11-25 Silverstein Barry D Projection with lenslet arrangement on speckle reduction element
CN101923186A (zh) * 2010-09-10 2010-12-22 福建师范大学 具有消除激光散斑功能的投影系统
TW201106083A (en) * 2009-08-04 2011-02-16 Asia Optical Co Inc Optical projection device and projecting method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169634B1 (en) * 1998-06-08 2001-01-02 Optimet, Optical Metrology Ltd Illumination techniques for overcoming speckle artifacts in metrology applications
US20080055698A1 (en) * 2006-05-23 2008-03-06 Samsung Electro-Mechanics Co., Ltd. Optical modulator and optical modulator module for reducing laser speckle
US20100296064A1 (en) * 2009-05-21 2010-11-25 Silverstein Barry D Projection with lenslet arrangement on speckle reduction element
TW201106083A (en) * 2009-08-04 2011-02-16 Asia Optical Co Inc Optical projection device and projecting method thereof
CN101923186A (zh) * 2010-09-10 2010-12-22 福建师范大学 具有消除激光散斑功能的投影系统

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014059552A1 (en) 2012-10-17 2014-04-24 Optotune Ag Speckle free laser projection
EP2945005A1 (en) 2014-05-16 2015-11-18 Optotune AG Laser projection system for reducing speckle noise
EP3035110A1 (en) 2014-12-18 2016-06-22 Optotune AG Optical system for avoiding speckle patterns
US10687912B2 (en) * 2017-02-02 2020-06-23 Alcon Inc. Fiber-based mode mixing techniques for surgical laser illumination
US10779905B2 (en) 2017-02-02 2020-09-22 Alcon Inc. Focusing optics for mixed mode surgical laser illumination
US11006822B2 (en) 2017-02-02 2021-05-18 Alcon Inc. Pixelated array optics for mixed mode surgical laser illumination
US11065077B2 (en) 2017-02-02 2021-07-20 Alcon Inc. Mechanical optics for mixed mode surgical laser illumination
CN112204454A (zh) * 2017-12-28 2021-01-08 ams传感器新加坡私人有限公司 发光光电模块
US11536937B2 (en) 2017-12-28 2022-12-27 Ams Sensors Singapore Pte. Ltd. Light-emitting optoelectronic modules
US11978752B2 (en) 2019-07-26 2024-05-07 Metalenz, Inc. Aperture-metasurface and hybrid refractive-metasurface imaging systems
US11927769B2 (en) 2022-03-31 2024-03-12 Metalenz, Inc. Polarization sorting metasurface microlens array device

Similar Documents

Publication Publication Date Title
WO2012122677A1 (zh) 激光投影系统的光斑抑制装置及其抑制方法
US9851581B2 (en) Optical scanning device, illumination device, projection apparatus and optical device
US7484340B2 (en) Displaying optical system and image projection apparatus
JP4475302B2 (ja) プロジェクタ及び投射装置
JP5168526B2 (ja) 投射型映像表示装置
JP4182032B2 (ja) 表示光学系および画像投射装置
JP5541462B2 (ja) 投射型映像表示装置
US20120206782A1 (en) Device for reducing speckle effect in a display system
US10401640B2 (en) Micro-projection device with anti-speckle vibration mode
JP2009162825A (ja) 画像表示装置
JP2004529375A (ja) レーザースペックル低減方法及び装置
US8498035B2 (en) Projection type image display apparatus and image display method
JP5414891B2 (ja) 曲面付スペックル低減素子を有する光投射機
JP2009162825A5 (zh)
EP3070939A1 (en) Speckle suppression unit and laser projection imaging device having same
JP2009527772A (ja) レーザ投影ディスプレイのための角度走査によるスペックル低減装置及び方法
JP2015532462A (ja) スペックルフリーのレーザ投影
JP2013530418A (ja) スペックル防止撮像モードを備えるマイクロプロジェクションデバイス
CN110869820A (zh) 减弱散斑的虚拟和增强现实系统及方法
US20150070659A1 (en) Method for reducing speckles and a light source used in said method
JP4534453B2 (ja) 投射型画像表示装置
KR20140092524A (ko) 레이저 프로젝터
TWI427347B (zh) 光學成像系統
CN102681198A (zh) 激光投影系统的激光光斑抑制装置及其抑制方法
Ouyang et al. Laser speckle reduction based on angular diversity induced by Piezoelectric Benders

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860757

Country of ref document: EP

Kind code of ref document: A1