WO2012121130A1 - シリカ殻からなるナノ中空粒子及びその製造方法 - Google Patents
シリカ殻からなるナノ中空粒子及びその製造方法 Download PDFInfo
- Publication number
- WO2012121130A1 WO2012121130A1 PCT/JP2012/055326 JP2012055326W WO2012121130A1 WO 2012121130 A1 WO2012121130 A1 WO 2012121130A1 JP 2012055326 W JP2012055326 W JP 2012055326W WO 2012121130 A1 WO2012121130 A1 WO 2012121130A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silica
- particles
- calcium carbonate
- organic acid
- particle
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/18—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
- B01J13/06—Making microcapsules or microballoons by phase separation
- B01J13/14—Polymerisation; cross-linking
- B01J13/18—In situ polymerisation with all reactants being present in the same phase
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
- C01P2004/34—Spheres hollow
Definitions
- the present invention relates to a nano hollow particle composed of a silica shell having an outer diameter in the range of 30 nm to 300 nm (hereinafter also referred to as “silica nano hollow particle”) and a method for producing the same, and particularly to secondary particles.
- the present invention relates to a silica nano hollow particle that is less agglomerated and can be reduced in cost, and a method for producing the same.
- the hollow nanoparticle is a hollow nanoparticle composed of a dense silica shell, and has a primary particle size of 30 to 300 nm by transmission electron microscopy, a particle size of 30 to 800 nm by static light scattering method, a mercury intrusion method or In the pore distribution measured by the gas adsorption method, pores of 2 nm to 20 nm are not detected.
- silica nano hollow particle concerning this patent document 1 adjusts calcium carbonate to a water-containing cake state, uses this as a core, disperses this calcium carbonate core in the water-containing cake state in alcohol, and adds silicon alkoxide or the like to it. It is manufactured by coating silica and then dissolving calcium carbonate.
- the present invention has been made to solve such problems, and can reduce costs and improve production efficiency, and has a high dispersibility with little aggregation to secondary particles. It is an object of the present invention to provide nano hollow particles comprising the above and a method for producing the same.
- the hollow nanoparticle comprising a silica shell according to the invention of claim 1 has an outer diameter in the range of 30 nm to 300 nm, and has a pore distribution of 2 nm to 20 nm in a pore distribution measured by a mercury intrusion method or a gas adsorption method.
- Nano-hollow particles composed of silica shells in which no water is detected, and the organic powder-coated calcium carbonate particles in a dry powder state in which the surface of the dry powder-state calcium carbonate particles having an outer diameter of a predetermined size is coated with an organic acid Is dispersed in an organic solvent that dissolves a portion of the organic acid in the organic acid-coated calcium carbonate particles, and further mixed with silicon alkoxide and a base catalyst to form a silica shell on the surface of the calcium carbonate particles to form a silica coating. Then, the calcium carbonate in the silica coated particles is dissolved by acid treatment.
- the “organic acid” is not particularly limited as long as it can coat the calcium carbonate particles in a dry powder state, and examples thereof include alkaline soaps such as rosin acid and fatty acids.
- the “organic solvent” a part of the organic acid in the organic acid-coated nano calcium carbonate particles can be dissolved, it is soluble in silicon alkoxide and water, and further, the hydrolysis of silicon alkoxide can be promoted.
- any substance that can precipitate silica by hydrolysis thereof may be used.
- tetraethoxysilane (TEOS), trimethoxysilane, tetramethoxysilane, triethoxysilane, tripropoxysilane. Tetrapropoxysilane, tributoxysilane, or the like can be used.
- base catalyst include ammonia and amines.
- microscopy refers to the size of each part of the particle by actually observing the particle using a scanning electron microscope (SEM) or transmission electron microscope (TEM). This is a method for determining the thickness.
- SEM scanning electron microscope
- TEM transmission electron microscope
- the hollow nanoparticle composed of the silica shell according to the invention of claim 2 has a cubic shape.
- the “cubic form” refers to a shape similar to a cube surrounded by a face, not limited to a cube.
- the hollow particle which consists of a silica shell which has such a cubic form is manufactured by using a cubic calcium carbonate particle in a dry powder state, for example.
- the hollow nanoparticle composed of a silica shell according to the invention of claim 3 has a particle inclusion space volume ratio of 30% to 80%, more preferably 40% to 75%.
- the organic acid is rosin acid.
- the organic solvent is a glycol ether type and / or an alcohol type.
- glycol ethers more preferred is diethylene glycol dimethyl ether (diglyme), and among the alcohols, more preferred is methanol.
- the hollow nanoparticle composed of a silica shell according to the invention of claim 6 is obtained by mixing a silicone oil, preferably a modified silicone oil, more preferably a monoamine (NH 2 ) modified silicone oil, in a medium. It is.
- the silicone oil of nano hollow particles comprising silica shell according to the invention of claim 7 is an amino-modified silicone oil, more preferably a side chain monoamine (NH 2 ) -modified silicone oil.
- the amount of the silicone oil in the nano-hollow particles comprising silica shells according to the invention of claim 8 is based on the whole compounding material in the process of forming the silica coating particles, that is, organic acid-coated calcium carbonate particles, organic solvent , Silicon alkoxide, base catalyst, silicone oil, etc., based on the total weight of the blended materials, it is in the range of 0.2% to 3.0% by weight, more preferably 0.3% to 2.0%. It is within the range of% by weight. Note that the above numerical range does not require strictness, and is of course an approximate value including an error, and does not negate an error of several percent.
- the hollow nanoparticle made of silica shell according to the invention of claim 9 is obtained by performing ultrasonic treatment in the process of forming the silica shell on the surface of the calcium carbonate particle.
- the method for producing nano hollow particles comprising a silica shell according to the invention of claim 10 has an outer diameter in the range of 30 nm to 300 nm and has a pore distribution measured by mercury porosimetry or gas adsorption method of 2 nm to 20 nm.
- a method for producing nano-hollow particles comprising silica shells in which no pores are detected, wherein the surface of a dry powdery calcium carbonate particle having an outer diameter of a predetermined size is coated with an organic acid, and the organic acid-coated calcium carbonate
- the hollow particles made of silica shells have a cubic shape.
- the method for producing nano-hollow particles comprising silica shells according to the invention of claim 12 is such that the hollow particles comprising silica shells have a volume-containing space volume ratio of 30% to 80%, more preferably 40% to 75%.
- the organic acid is rosin acid.
- the organic solvent is a glycol ether type and / or an alcohol type.
- glycol ethers diethylene glycol dimethyl ether (diglyme) is more preferable, and among alcohols, methanol is more preferable.
- a silicone oil preferably a modified silicone oil, more preferably a monoamine (NH 2) is further contained in the medium.
- a mixture of modified silicone oil is further contained in the medium.
- the method for producing nano hollow particles comprising silica shells according to the invention of claim 16 is such that the silicone oil is an amino-modified silicone oil, more preferably a side chain monoamine (NH 2 ) -modified silicone oil.
- the silicone oil is an amino-modified silicone oil, more preferably a side chain monoamine (NH 2 ) -modified silicone oil.
- the method for producing nano-hollow particles comprising silica shells according to the invention of claim 17 is such that the amount of the silicone oil blended with respect to the entire blended material in the silica coating forming step, that is, organic acid-coated calcium carbonate particles, organic In the range of 0.2% by weight to 3.0% by weight, and more preferably 0.3% by weight to 2.% by weight based on the total weight of the blended materials such as solvent, silicon alkoxide, base catalyst, and silicone oil. It is within the range of 0% by weight. Note that the above numerical range does not require strictness, and is of course an approximate value including an error, and does not negate an error of several percent.
- the method for producing nano-hollow particles comprising silica shells according to the invention of claim 18 is obtained by performing ultrasonic treatment in the silica coating forming step.
- the nano-hollow particles comprising the silica shell according to the invention of claim 1 are obtained by coating the organic acid-coated calcium carbonate particles in the dry powder state obtained by coating the surface of the calcium carbonate particles in the dry powder state with an organic acid.
- a portion of the organic acid in the calcium particles is dispersed in an organic solvent that dissolves, and further, silicon alkoxide and a base catalyst are mixed to form silica shells on the surface of the calcium carbonate particles to form silica coating particles, and then the silica coating particles.
- the calcium carbonate inside the particles is dissolved by acid treatment.
- the organic acid-coated calcium carbonate particles in a dry powder state are dispersed in an organic solvent, a part of the organic acid in the organic acid-coated calcium carbonate particles is dissolved, and the surface of the calcium carbonate particles expressed by dissolution and the organic The organic solvent is coated on the surface of the calcium carbonate particles by interacting with the solvent.
- the silicon alkoxide and the base catalyst are mixed, the silicon alkoxide interacts with the organic solvent in a state of covering the surface of the calcium carbonate particles, and the silica in which SiO 2 molecules generated by the hydrolysis of the silicon alkoxide are polycondensed. Shells are formed on the entire surface of the calcium carbonate particles to form silica-coated particles.
- the dry powdered organic acid-coated calcium carbonate particles obtained by coating the surface of the dry powdered calcium carbonate particles with an organic acid were used.
- the silica shell is formed on the calcium carbonate particle as the core particle by the interaction of the calcium carbonate particle, the organic solvent, and the silicon alkoxide, the core particle is coated in the process of coating the silica shell.
- the calcium carbonate particles are prevented from absorbing water and aggregating with each other.
- the nano hollow particles composed of the silica shell obtained by dissolving the calcium carbonate inside the silica coated particles in a state in which the aggregation is prevented are less disaggregated into secondary particles and have high dispersibility.
- the use of organic acid-coated calcium carbonate particles in the dry powder state in which the surface of the calcium carbonate particles in the dry powder state is coated with an organic acid makes it difficult for the raw materials to be altered, so cost control is not required and quality is reduced. It is possible to improve the mass productivity.
- nano hollow particles composed of silica shells that can be reduced in cost and improved in production efficiency and have a high degree of dispersibility with little aggregation to secondary particles.
- the incident light of more than the spherical hollow particle Low refractive index and high light transmittance.
- target objects such as resin and a coating material
- the volume ratio of the particle-containing space of the hollow particles comprising the silica shell is 30% to 80%.
- high heat insulation can be secured. More preferably, it is 40% to 75%.
- the organic acid is rosin acid
- the calcium carbonate particles in the dry powder state are surely covered to prevent aggregation of the core particles. can do. Therefore, in addition to the effect described in any one of claims 1 to 3, the agglomeration into the secondary particles can be surely reduced and the dispersibility can be made high.
- the organic solvent is glycol ether type and / or alcohol type, it has good reactivity and surely in the organic acid coated calcium carbonate particle. While dissolving a part of organic acid, the interaction between calcium carbonate particles and silicon alkoxide can be achieved. That is, these organic solvents are highly soluble in organic acids, and have a strong interaction (affinity / reactivity) with calcium carbonate particles and silicon alkoxide.
- the nano hollow particles surrounded by the surface of the silica shell that is more reliably dispersed with less aggregation to the secondary particles and high dispersibility
- it is possible to improve production efficiency and reduce costs. More preferably, it is diglyme and / or methanol which can be obtained at low cost and can obtain silica nano hollow particles at a high recovery rate.
- the nano hollow particle composed of the silica shell according to the invention of claim 6 since the silicone oil is further mixed in the medium, the surface of the silica coating particle is protected by the silicone oil, and the calcium carbonate of the silica shell is protected. Adsorption on the particle surface is stabilized. Therefore, in addition to the effect of any one of claims 1 to 5, production efficiency can be improved.
- the silica coating particles since the surface of the silica coating particles is protected, in the reaction solution for forming the silica shell, the silica coating particles are prevented from agglomerating with each other, and the nano hollow particles comprising the silica shell obtained by dissolving calcium carbonate Since the surface is protected by silicone oil, aggregation is prevented. For this reason, the aggregation to the secondary particles is further reduced and the dispersibility is higher.
- the silicone oil is an amino-modified silicone oil.
- the amino-modified silicone oil is highly reactive with the surface of the silica-coated particles (silica shell), and by using the amino-modified silicone oil, silica-coated particles are used.
- the silica coating particles of interest can be easily separated by centrifugation, and in the washing process after dissolution of calcium carbonate, the nano hollow particles made of silica shells can be easily separated by centrifugation.
- the recovery rate of nano hollow particles made of can be improved, and that the obtained nano hollow particles made of silica shell have a low particle size distribution. Therefore, according to the nano hollow particle comprising the silica shell of the present invention, in addition to the effect of the sixth aspect, the recovery rate is high and the particle size distribution is low. More preferably, it is a side chain type monoamine (NH 2 ) modified silicone oil.
- the compounding amount of the silicone oil is 0.2% by weight to 3% with respect to the total compounding material in the process of forming the silica coating particle.
- the blending amount of the silicone oil is 0.2% by weight or more based on the total blending material in the process of forming the silica coating particles.
- the recovery rate of nano hollow particles made of silica shell is dramatically improved, and the particle size distribution thereof is remarkably lowered.
- the amount exceeds 3.0% by weight the recovery rate is lowered and the particle size distribution is increased.
- the present invention was completed based on this finding. Therefore, according to the nano hollow particle comprising the silica shell of the present invention, in addition to the effect of claim 6 or claim 7, the recovery rate is extremely high and the particle size distribution is low. More preferably, it is within the range of 0.3% to 2.0% by weight.
- the nano hollow particles comprising the silica shell according to the invention of claim 9
- the ultrasonic treatment was performed in the process of forming the silica coating particles
- the organic acid-coated calcium carbonate particles are easily dispersed and coagulated with each other.
- the silica shell is formed in such a state that the particles are dispersed, and the silica coating particles are further prevented from aggregating with each other. Therefore, in addition to the effect described in any one of claims 1 to 8, the aggregation to the secondary particles is less and the dispersibility is higher.
- the silica shell is easily adsorbed on the surface of calcium carbonate by ultrasonic waves, the production efficiency can be improved.
- the surface of the calcium carbonate particles in a dry powder state is coated with the organic acid and dried powder.
- the organic acid-coated calcium carbonate particles in a state, and subsequently, in the silica coating formation step, the organic acid-coated calcium carbonate particles are dispersed in an organic solvent that dissolves part of the organic acid in the organic acid-coated calcium carbonate particles, Furthermore, silicon alkoxide and a base catalyst are mixed to form silica shells on the surface of the calcium carbonate particles to form silica coating particles.
- the calcium carbonate inside the silica coating particles is subjected to acid treatment. Dissolve into nano hollow particles made of silica shell.
- the organic acid-coated calcium carbonate particles in the dry powder state prepared in the organic acid-coated calcium carbonate particle forming step are dispersed in an organic solvent, a part of the organic acid in the organic acid-coated calcium carbonate particles is dissolved and dissolved.
- the surface of the calcium carbonate particles expressed by the above and the organic solvent interact to coat the surface of the calcium carbonate particles with the organic solvent.
- the silicon alkoxide and the base catalyst are mixed, the silicon alkoxide interacts with the organic solvent in a state of covering the surface of the calcium carbonate particles, and the silica in which SiO 2 molecules generated by the hydrolysis of the silicon alkoxide are polycondensed.
- Shells are formed on the entire surface of the calcium carbonate particles to form silica-coated particles. Then, in the calcium carbonate dissolving step, the calcium carbonate in the silica coated particles is dissolved by acid treatment, has an outer diameter in the range of 30 nm to 300 nm, and is measured by mercury intrusion method or gas adsorption method. It becomes a nano hollow particle which consists of a silica shell from which a 20 nm pore is not detected.
- the nano hollow particles composed of silica shells obtained by dissolving calcium carbonate in the silica coated particles in a state where aggregation to the secondary particles is prevented are dispersed with little aggregation to the secondary particles. It becomes a thing with high property. Further, since it has an outer diameter in the range of 30 nm to 300 nm, it is highly transparent.
- the use of organic acid-coated calcium carbonate particles in the dry powder state in which the surface of the calcium carbonate particles in the dry powder state is coated with an organic acid makes it difficult for the raw material to change, so the cost of quality control is not reduced and the cost is reduced. It is possible to improve the mass productivity.
- nano-hollow particles made of silica shells that can reduce costs and improve production efficiency, and has high agglomeration with little aggregation to secondary particles.
- Nano hollow particles composed of silica shells having a lower refractive index of incident light and higher light transmittance than spherical hollow particles can raise the filling rate rather than a spherical hollow particle, when mixing in target objects, such as resin and a coating material.
- the volume volume ratio of the hollow particles made of silica shells is 30% to 80%.
- high heat insulation can be secured in the nano hollow particles made of the silica shell obtained. More preferably, it is 40% to 75%.
- the organic acid is rosin acid
- the calcium carbonate particles in the dry powder state are surely coated and the core particles Aggregation can be prevented. Therefore, in addition to the effect described in any one of claims 10 to 12, it is possible to reliably obtain nano hollow particles composed of silica shells that are less aggregated into secondary particles and highly dispersible.
- the organic solvent is glycol ether type and / or alcohol type.
- a part of the organic acid in the calcium particles can be dissolved, and the interaction between the calcium carbonate particles and the silicon alkoxide can be achieved. That is, these organic solvents are highly soluble in organic acids, and have a strong interaction (affinity / reactivity) with calcium carbonate particles and silicon alkoxide. Due to the interaction between the surface of the calcium particles and the organic solvent, most of the surface of the calcium carbonate particles is covered with the organic solvent, and further, the interaction between the organic solvent and the silicon alkoxide promotes the hydrolysis of the silicon alkoxide, and the calcium carbonate.
- the formation of silica shells on the entire surface of the glass is promoted.
- glycol ether solvents and alcohol solvents are easily available and relatively inexpensive. Therefore, in addition to the effect according to any one of claims 10 to 13, the nano hollow particles surrounded by the surface of the silica shell which is more reliably dispersed with less aggregation to the secondary particles and high dispersibility
- the silicone oil is further mixed in the medium, the surface of the silica coating particles is protected by the silicone oil, and the carbon dioxide of the silica shell is protected. Adsorption on the calcium particle surface is stabilized. Therefore, in addition to the effect described in any one of claims 10 to 14, production efficiency can be improved.
- the surface of the silica coating particles is protected, in the reaction solution for forming the silica shell, aggregation of the silica coating particles is prevented, and the nano hollow made of the silica shell obtained by dissolving the calcium carbonate particles. Since the surface of the particles is also protected by the silicone oil, aggregation is prevented. For this reason, the nano hollow particle which consists of a silica shell with much less aggregation to a secondary particle and higher dispersibility can be obtained.
- the silicone oil is an amino-modified silicone oil.
- the amino-modified silicone oil is highly reactive with the surface of the silica-coated particles (silica shell), and by using the amino-modified silicone oil, silica-coated particles are used.
- the silica coating particles of interest can be easily separated by centrifugation, and in the washing process after dissolution of calcium carbonate, the nano hollow particles made of silica shells can be easily separated by centrifugation.
- Nano hollow particles composed of silica shells with low distribution can be obtained. More preferably, it is a side chain type monoamine (NH 2 ) modified silicone oil.
- the blending amount of the silicone oil is 0.2% by weight to 3% based on the entire blending material in the silica coating forming step. Within the range of 0.0 wt%.
- the present inventors made the amount of the silicone oil 0.2% by weight or more based on the total amount of the compounded material in the silica coating formation step, so that from the silica shell.
- the recovery rate of nano hollow particles is dramatically improved and the particle size distribution is remarkably lowered.
- the content exceeds 3% by weight, the recovery rate is lowered and the particle size distribution is increased.
- Nano hollow particles can be obtained. More preferably, it is within the range of 0.3% to 2.0% by weight.
- the organic acid-coated calcium carbonate particles are easily dispersed and are aggregated with each other.
- the silica shell is formed in a state where such particles are dispersed, and the silica coating particles are more prevented from agglomerating with each other. Therefore, in addition to the effect described in any one of claims 10 to 17, nano hollow particles composed of silica shells with less aggregation to secondary particles and higher dispersibility can be obtained. Furthermore, since silica shells are easily adsorbed on the surface of calcium carbonate by ultrasonic waves, production efficiency can be further improved.
- FIG. 1 is a flowchart showing a method for producing silica nano hollow particles according to Embodiment 1 of the present invention.
- Fig.2 (a) is a schematic diagram which shows the manufacturing process of the silica nano hollow particle which concerns on Embodiment 1 of this invention.
- FIG.2 (b) is the photograph by the transmission electron microscope (TEM) of the silica nano hollow particle which concerns on Embodiment 1 of this invention.
- FIG. 3 shows scanning electron microscope (SEM) photographs (SEI: scanning secondary electron images) of silica nano hollow particles according to Examples 1 to 5 of the present invention in comparison with Comparative Example 1 and Comparative Example 2. It is a schematic diagram.
- FIG. 1 is a flowchart showing a method for producing silica nano hollow particles according to Embodiment 1 of the present invention.
- TEM transmission electron microscope
- SEI scanning electron microscope
- FIG. 4 is an explanatory diagram for explaining light transmittance and light diffusibility in the cubic form of the silica nano hollow particles according to Embodiment 1 of the present invention in comparison with solid particles in a spherical form.
- FIG. 5 (a) is a partial cross-sectional view showing the configuration of a glass plate on which a heat insulating film using silica nano hollow particles according to Embodiment 1 of the present invention is attached
- FIG. 5 (b) is Embodiment 1 of the present invention. It is a graph which shows the thermal conductivity of resin containing the silica nano hollow particle which concerns on the comparison with the case of resin only.
- FIG. 6A is a perspective view showing an example in which the heat insulating film using the silica nano hollow particles according to Embodiment 1 of the present invention is applied to an automobile window glass
- FIG. 6B is an enlarged cross-sectional view of the multilayer glass
- c) is an enlarged cross-sectional view of a pair of glasses.
- FIG. 7A is a perspective view showing an example in which the heat insulating film using the silica nano hollow particles according to Embodiment 1 of the present invention is applied to a pair glass of a high-rise building
- FIG. 7B is an enlarged cross-sectional view.
- FIG. 7A is a perspective view showing an example in which the heat insulating film using the silica nano hollow particles according to Embodiment 1 of the present invention is applied to a pair glass of a high-rise building
- FIG. 7B is an enlarged cross-sectional view.
- FIG. 8 is an explanatory view showing an example in which the silica nano hollow particles according to Embodiment 1 of the present invention are used for an LED diffusion plate or a reflection dot for a light guide plate in comparison with a conventional technique (solid particles).
- (c) is a reflective dot of the silica nano hollow particles on the lower surface of the light guide plate.
- D is a schematic diagram of a silica nano hollow particle diffusion sheet disposed on the lower surface of the light guide plate.
- FIG. 9 (a) is a schematic diagram showing an example in which the silica nano hollow particles according to Embodiment 1 of the present invention are used in a fluorescent lamp phosphor coating as compared with the prior art (solid particles).
- FIG. 9B is a schematic diagram in which phosphors and quantum dots are contained in the silica nano hollow particles according to Embodiment 1 of the present invention
- FIG. 9C shows the silica nano hollow particles according to Embodiment 1 of the present invention as LEDs. It is a schematic diagram which shows an example used for.
- FIG. 10 is a flowchart showing a method for producing silica nano hollow particles according to Embodiment 2 of the present invention.
- FIG. 10 is a flowchart showing a method for producing silica nano hollow particles according to Embodiment 2 of the present invention.
- FIG. 11 is a graph showing the recovery rate (recovered amount / TEOS + and silicone oil) of silica nano hollow particles and the particle size distribution with respect to the addition rate of amino-modified silicone oil in silica nano hollow particles of Examples and Comparative Examples of the present invention.
- FIG. 12 (a) is a scanning electron microscope (SEM) photograph (SEI: scanning secondary electron image and STEM: scanning transmission image) of silica nano hollow particles according to Example 22 using methanol as the organic solvent of the present invention
- FIG.12 (b) is a scanning electron microscope (SEM) photograph (SEI: scanning secondary electron image) of the silica nano hollow particle based on Example 23 which uses octanol as the organic solvent of this invention.
- the calcium carbonate particle 2 in a dry powder state has a cubic shape
- calcium carbonate particles 2 in a dry powder state for the calcium carbonate particles 2 in a dry powder state, commercially available calcium carbonate particles can be purchased and used, for example, particle calcium carbonate of Hayashi Kasei Co., Ltd., synthetic calcium carbonate of Shiroishi Kogyo Co., Ltd., etc. be able to. Further, for example, it is possible to produce calcium carbonate particles 2 in a dry powder state by a method of growing and dehydrating calcium carbonate crystals in an aqueous system, and using this. The calcium carbonate crystals produced by this method are calcite and hexagonal, but by controlling the synthesis conditions, they grow into a cubic shape, that is, a “cubic shape”. be able to.
- the method of growing crystals in an aqueous system is not particularly limited, and a method of introducing carbon dioxide into a calcium hydroxide slurry to precipitate calcium carbonate, or an aqueous solution of a soluble calcium salt such as calcium chloride.
- a method of adding a soluble carbonate such as sodium carbonate to precipitate calcium carbonate can be applied.
- it is desirable that the precipitation rate of calcium carbonate is increased at a relatively low temperature.
- the liquid temperature when introducing the carbon dioxide gas is 30 ° C.
- the rate at which the carbon dioxide gas is introduced is 1.0 L / 100 g of calcium hydroxide. It is preferable to set it to min or more.
- the size of the calcium carbonate particles 2 in the dry powder state is preferably such that the outer diameter measured by microscopy is in the range of 8 nm to 200 nm. As a result, the outer diameter of the finally obtained silica nano hollow particles 1 measured by microscopy can be set in the range of 30 nm to 300 nm.
- the organic acid 3 may be any organic acid as long as it can prevent aggregation of the calcium carbonate particles 2 in the process of forming a silica shell by coating the calcium carbonate particles 2 in a dry powder state.
- Alkaline soap such as is used.
- the organic acid-coated calcium carbonate particles 4 in a dry powder state are, for example, mixed with commercially available calcium carbonate particles 2 in a dry powder state or added with a carbonic acid source (blown) into a calcium hydroxide suspension. Thereafter, it can be produced (formed) by adding an organic acid 3 or the like.
- the organic acid-coated calcium carbonate particles 4 are dispersed in diglyme (diethylene glycol dimethyl ether) 5 as an organic solvent capable of dissolving a part of the organic acid 3 in the organic acid-coated calcium carbonate particles 4.
- diglyme diethylene glycol dimethyl ether
- Step S2a a part of the organic acid 3 in the organic acid-coated calcium carbonate particles 4 is dissolved, and further, silicon alkoxide 6, ammonia (NH 4 OH) water 8 as a base catalyst, and water 7 are mixed.
- the calcium carbonate particles 2 are coated with silica (SiO 2 ) 1b by the sol-gel method to form silica-coated particles 9 (Step S2).
- the silica shell 1b is formed by the sol-gel method while sufficiently dispersing the organic acid-coated calcium carbonate particles 4 (including those in which a part of the organic acid 3 is dissolved). Therefore, the reaction was performed while applying ultrasonic waves (frequency: 20 KHz to 40 KHz).
- an ultrasonic horn is directly inserted into the solution (UH-600S frequency 20 KHz / SMT Co., Ltd., SONFIER 4020-800 frequency 40 KHz / BRANSON), or the solution is circulated.
- a type (UH-600SR frequency 20 KHz / SMTE Co., Ltd.) or a bath type (ultrasonic cleaner type) type that indirectly irradiates a container containing a solution from the outside can be used.
- the organic solvent a part of the organic acid 3 in the organic acid-coated calcium carbonate particles 4 can be dissolved.
- any material that can be dissolved in the silicon alkoxide 6 and the water 7 and can further promote the hydrolysis of the silicon alkoxide 6 may be used. More preferably, the organic solvent has a solubility of 20% to 50% with respect to the organic acid 3 in the organic acid-coated calcium carbonate particles 4.
- TEOS tetraethoxysilane
- ethyl silicate product name “high purity ethyl silicate”: tetraethoxysilane (TEOS)
- TEOS tetraethoxysilane
- KBE-04 alkoxysilane
- TEOS tetraethoxysilane
- ammonia is the most suitable base catalyst.
- silicon is reliably and efficiently used. It is possible to react the alkoxide 6 with the water 7 to precipitate silica in which the SiO 2 molecules are polycondensed, thereby forming the silica shell 1 b on the calcium carbonate particles 2.
- step S3a the silica coating particles 9 thus formed are washed (step S3a) and then dispersed in water (step S3b). Then, in the calcium carbonate dissolving step, hydrochloric acid 10 is added as an acid treatment (step S3c), and the calcium carbonate 2 inside is dissolved and discharged (step S3). Finally, after washing with water (step S4a), drying (step S4b) is performed. Thereby, the nano hollow particle 1 which consists of a silica-shell of a cube shape is manufactured.
- the hydrogen ion concentration index of the dispersion system by acid treatment is pH 5 or less.
- the inner diameter of the hollow portion 1a of the nano hollow particle 1 made of the silica shell thus produced is 8 nm to 200 nm which is the outer diameter of the calcium carbonate particle 2 as the core particle, and the thickness of the silica shell 1b is 1 nm.
- TEM transmission electron microscopy
- the hollow nanoparticle 1 composed of the silica shell thus obtained has a particle diameter of 30 nm to 800 nm by a static light scattering method (measured by ZETASIZER 3000HSA / Malvern Instrument Ltd), and a mercury intrusion method (mercury porosimeter: 2 to 20 nm pores are not detected in the pore distribution (Autosorb-1 / Quantachrome Corp) measured by PASCAL140, PASCAL240 (FISONS Instruments) or gas adsorption method (here, nitrogen gas)
- PASCAL140, PASCAL240 (FISONS Instruments) or gas adsorption method here, nitrogen gas
- the organic acid-coated calcium carbonate particles 4 in which the surface of the calcium carbonate particles 2 in a dry powder state is coated with the organic acid 3 are dispersed in diglyme 5 as an organic solvent, whereby the organic acid 3 in the organic acid-coated calcium carbonate particles 4 is dispersed.
- the surface of the calcium carbonate particles 2 expressed by dissolution interacts with the diglyme 5 as the organic solvent to coat the surface of the calcium carbonate particles 2 with the diglyme 5 as the organic solvent.
- silicon alkoxide 6 and aqueous ammonia 8 as a base catalyst silicon alkoxide 6 interacts with diglyme 5 as an organic solvent in a state of covering the surface of calcium carbonate particles 2, and these calcium carbonates.
- organic solvent-silicon alkoxide Is SiO 2 molecules produced by hydrolysis the formation of the whole calcium carbonate particles 2 surface of the polycondensed silica shell 1b is accelerated. Therefore, according to the present invention, in the process in which the silica shell 1b is formed on the calcium carbonate particles 2, the calcium carbonate particles 2 are prevented from aggregating due to the calcium carbonate particles 2 being exposed and absorbing moisture. And the nano hollow particle 1 which consists of a silica shell obtained becomes a thing with high dispersibility.
- the nano hollow particle 1 made of the silica shell according to the first embodiment is thus coated with the organic acid-coated calcium carbonate particle in the dry powder state in which the surface of the calcium carbonate particle 2 in the dry powder state is coated with the organic acid 3. 4 is used, and the quality of the raw material is unlikely to change, so the cost of the quality control of the raw material is not incurred. Therefore, the cost can be reduced. Further, since the raw material hardly changes, it is possible to improve production efficiency and mass productivity.
- the mixing ratio and concentration are determined.
- a production test using each formulation of Comparative Example 1 and Comparative Example 2 was also performed.
- Table 1 shows the contents of each of Examples 1 to 6, Comparative Example 1, and Comparative Example 2.
- the organic acid-coated calcium carbonate particles 4 are rosin acid-coated calcium carbonate particles (product name “Homocal D (primary particle size: 80 nm)”) manufactured by Shiroishi Kogyo Co., Ltd.
- Silane (TEOS) product name “KBE-04”
- ammonia water 8 were used as a base catalyst, and the blending ratios are expressed in parts by weight.
- FIG. 3 the photograph by a scanning electron microscope (SEM: measured by JSM-7600F / JEOL Co., Ltd.) is shown in FIG.
- SEM scanning electron microscope
- the compounding ratio of tetraethoxysilane (TEOS) / rosin acid-coated calcium carbonate is within the range of 1.2 to 0.6, the hollow structure has a cubic shape.
- the compounding ratio of tetraethoxysilane (TEOS) / rosin acid-coated calcium carbonate is 0.5 or less.
- a cubical particle structure may not be obtained.
- TEOS tetraethoxysilane
- rosin acid-coated calcium carbonate exceeds 1.3, unreacted tetraethoxysilane (TEOS) increases and is recovered.
- TEOS tetraethoxysilane
- the mixing ratio of tetraethoxysilane (TEOS) / rosin acid-coated calcium carbonate is set to 0.1. It is preferably in the range of 6 to 1.3, and more preferably in the range of 0.6 to 1.2.
- the nano hollow particle 1 made of the silica shell according to the first embodiment has an outer diameter in the range of 30 nm to 300 nm, and has a pore distribution measured by the mercury intrusion method or the gas adsorption method of 2 nm to Nano hollow particles composed of silica shells in which pores of 20 nm are not detected, in a dry powder state in which the surface of a dry powder state calcium carbonate particle 2 having an outer diameter of a predetermined size is coated with an organic acid 3
- the organic acid-coated calcium carbonate particles 4 are dispersed in diglyme 5 as an organic solvent capable of dissolving a part of the organic acid 3 in the organic acid-coated calcium carbonate particles 4, and further, silicon alkoxide 6 and ammonia water 8 as a base catalyst.
- the method for producing nano hollow particles 1 made of silica shells according to the first embodiment has an outer diameter in the range of 30 nm to 300 nm, and has a pore distribution measured by a mercury intrusion method or a gas adsorption method.
- a method for producing nano-hollow particles comprising silica shells in which pores of 2 nm to 20 nm are not detected, wherein the surface of dry powdered calcium carbonate particles 2 having an outer diameter of a predetermined size is coated with an organic acid 3
- Organic acid-coated calcium carbonate particles 4 for forming an organic acid-coated calcium carbonate (step S1), and organic acid-coated diglyme 5 as an organic solvent capable of dissolving a part of the organic acid 3 in the organic acid-coated calcium carbonate particles 4
- the calcium carbonate particles 4 are dispersed, and the silicon alkoxide 6 and ammonia water 8 and water 7 as a base catalyst are mixed to obtain calcium carbonate particles 2.
- the organic acid-coated calcium carbonate particles 4 obtained by coating the surface of the calcium carbonate particles 2 in a dry powder state with the organic acid 3 are dispersed in diglyme 5 as an organic solvent, and the silica shell 1b is formed by the sol-gel method.
- the nano hollow particle 1 composed of a silica shell with little aggregation to the secondary particles and high dispersibility, and a method for producing the nano hollow particle 1 are obtained.
- the organic acid-coated calcium carbonate particles 4 in which the surfaces of the calcium carbonate particles 2 in a dry powder state are coated with the organic acid 3 are used, the quality of the raw material is small, quality control costs are not required, and the cost is reduced. In addition, the production efficiency can be improved.
- the nano hollow particle 1 made of the silica shell and the manufacturing method thereof according to Embodiment 1 since the ultrasonic treatment was performed in the process of forming the silica coating particle 9 as described above, the organic acid coating The calcium carbonate particles 4 are easily dispersed, and the aggregation of each other is further prevented. Further, when the silica shell 1b is formed in the state in which the particles are dispersed to form the silica coating particles 9, the mutual aggregation is further prevented. Therefore, the aggregation to the secondary particles is further reduced and the dispersibility is further increased. In addition, since the silica shell 1b is easily adsorbed on the surface of the calcium carbonate particles 2 by ultrasonic waves, the reaction efficiency is high. Therefore, production efficiency can be improved.
- the nano hollow particles 1 made of silica shells are hollow and have a thin silica shell 1b of 20 nm or less, an outer diameter measured by microscopy is in the range of 30 nm to 300 nm, and furthermore, the dispersibility is high. It is excellent in heat insulation, transparency and translucency.
- the silicon alkoxide 6 is formed on the surface of the calcium carbonate particles 2.
- the precipitated silica layer When the silica produced by the hydrolysis reaction is precipitated, the precipitated silica layer also has a cubic shape, and the nano hollow particles 1 made of silica shells obtained by dissolving calcium carbonate inside the silica layer are also formed of the calcium carbonate particles 2.
- the cubic form is transferred to a cubic form. Therefore, according to the nano-hollow particle 1 composed of the silica shell according to the first embodiment, since the shape thereof is a hollow and cubic shape, solid particles having a spherical shape as shown in FIG. It is easier to transmit light than the hollow particles in the spherical shape, and the refraction of the incident light is less likely to occur (low refractive index), and the transparency / translucency (light transmission) is higher. Become.
- the filling rate can be raised rather than a spherical thing.
- an aggregate is preferable.
- the silica nano hollow particles 1 have a cubic shape, as shown in FIG. 4, even in the structure of the aggregate, the transparency / translucency (light transmission) is high.
- a conventional heat insulating film that has been used for a window glass for home use is a film of 20 ⁇ m to 30 ⁇ m thick made of PET (polyethylene terephthalate) resin and the like, Metals such as silver, ITO (Indium Tin Oxide), etc. were vapor-deposited, and the vapor-deposited side was affixed to the inner side of the window glass to reflect sunlight and to prevent heat. For this reason, 4% to 5% of sunlight is reflected on the glass surface, and near-infrared light is reflected by a metal vapor deposition film (thickness of several tens of nm) of a conventional heat insulating film.
- a heat insulating film 20 in which silica nano hollow particles 1 are mixed metal is vapor-deposited on one side of the transparent synthetic resin film and silica nano hollow particles 1 are mixed on the other side.
- a heat insulating film formed by uniformly applying a heat insulating paint the heat insulating properties of the silica nano hollow particles 1 are exhibited, the difference in thermal conductivity between the surfaces of both surfaces is increased, and the heat absorbed by the glass is reduced. Since it is discharged to the outside, excellent heat insulation can be obtained. Further, in winter, it is possible to sufficiently suppress the outflow of heat inside (such as indoors).
- silica nano hollow particles 1 blended with synthetic resin (polyester resin) at a solid content of about 10% (silica nano hollow particle-containing resin) and synthetic resin (polyester resin) heat conduction.
- synthetic resin polyyester resin
- synthetic resin polyyester resin
- synthetic resin polyyester resin
- FIG. 5 (b) it is confirmed that the thermal conductivity of the silica nanohollow particle-containing resin is half or less of the thermal conductivity of the resin alone.
- the silica nano hollow particles 1 have an extremely small particle diameter within a range of 30 nm to 300 nm as measured by a microscopic method.
- the dispersibility is high, the silica nano hollow particles 1 can be mixed even in a film or the like.
- the film thickness can be reduced to 10 ⁇ m or less, and a sufficient heat insulating effect can be obtained even with such a thin film thickness.
- the window glass 31 for the automobile 30 is provided with a multilayer interference film on the inside thereof, and by forming a thin multilayer film having a refractive index different from that of the glass, the surface of the film is formed.
- light having a wavelength other than the wavelength to be transmitted is reflected by using reflection interference on the back surface.
- This multilayer interference film does not require the use of metal vapor deposition or metal sputtering, so it does not cause radio wave interference when a car navigation system or ETC (Electronic Toll Collection System) vehicle-mounted device is installed in an automobile.
- this laminated glass is obtained by bonding polyvinyl butyral (PVB) as an adhesive between two sheets of glass, and when it is broken, it is glass.
- PVB polyvinyl butyral
- the use of the silica nano hollow particles 1 for the heat insulating film utilizing the heat insulating property, the glass for the heat insulating paint, etc. suppresses the temperature rise in the interior (indoors, the interior of the vehicle, etc.) in the summer and the winter Since the outflow of heat inside (inside the room, inside the vehicle, etc.) can be suppressed, energy saving effects such as air conditioning can be achieved. In particular, in automobiles, improvement in fuel consumption and electricity consumption can be expected.
- multi-layer glass having heat insulation properties has been developed as a window glass for high-rise buildings and homes, but there are problems such as heavy sashes and high prices. However, it is possible to expect a heat insulation effect with a light and simple structure by sticking a heat insulating film etc. utilizing the heat insulating property of silica nano hollow particles 1 to a single plate glass. It leads to.
- silica nano hollow particles 1 are printed on the upper surface of the diffusion plate, or as shown in the right side of FIG. Printing reflective dots for light guide plate mixed with particles 1 or printing reflective dots for light guide plate mixed with silica nano hollow particles on the lower surface of the light guide plate as shown in the right side of FIG.
- the transparency of the silica nano hollow particles 1 and the light transmittance due to the hollow structure are exhibited, the LED light source can be transmitted efficiently (light can be taken out), and the luminance and light quantity can be increased.
- the thickness of the light guide plate can be reduced or the number of diffusion plates can be reduced, and the device can be made thinner and lighter.
- the application field using the transparency and light transmittance of the silica nano hollow particles 1 includes use in lighting fixtures such as fluorescent lamps and LED lights.
- Conventional fluorescent lamps generate ultraviolet light in mercury vapor in a vacuum tube, and make the ultraviolet light collide with a fluorescent paint applied to the surface of the tube to convert it into visible light, which is used as a light source. Light is obtained.
- solid particles have been mixed in the phosphor paint.
- the conventional solid particles like the above, are not solid, so that visible light converted by colliding with ultraviolet rays or phosphor particles is converted. The light is attenuated without being transmitted, and the light emission efficiency such as luminance and light quantity is reduced.
- the silica nano hollow particles 1 are mixed with the phosphor coating applied to the tube surface, or the hollow particles containing the phosphor or quantum dod are mixed with the tube surface. More specifically, as shown in FIG. 9 (b), the silica nano hollow particles 1 in which the quantum dots are encapsulated in the silica shell, the phosphor or quantum dots are coated on the surface, or the inside is coated.
- the silica nano hollow particles 1 of the incorporated two-layer structure to the tube surface, the transparency and light transmittance of the silica nano hollow particles 1 are exhibited, and the visible light converted by colliding with ultraviolet rays or phosphors efficiently.
- the luminous efficiency such as luminance and light quantity can be increased.
- fluorescent lamps are wide-area diffused light
- conventional LED lights are point emission (spot irradiation light)
- LED chips must be arranged in a straight tube type or a bulb type without any gaps
- FIG. 9 (c) by applying the silica nano hollow particles 1 to the surface of the LED illumination, the light transmittance of the silica nano hollow particles 1 is exhibited, and the silica nano hollow particles 1 are aggregated as described above.
- the light source is efficiently diffused and reflected, the luminous efficiency is increased, and wide-area diffused light having a luminance equal to or higher than that of fluorescence or the like can be obtained, and the power consumption can be reduced (see FIG. 4).
- the silica nano hollow particles 1 can be used in paints, coating films, and films as an application field that utilizes the transparency and light transmittance of the silica nano hollow particles 1 according to the first embodiment and also the light diffusibility by the aggregation control.
- those obtained by dispersing silica nano hollow particles 1 in a large amount in paints, coating films, and films can function as antiglare coating agents, antiglare films, and antiglare films by utilizing their irregular reflections. Is possible.
- CRT display devices such as CRT monitors for cathode-ray tube TVs and personal computers
- liquid crystal display devices such as liquid crystal monitors for liquid crystal televisions and personal computers
- plasma display devices such as plasma displays.
- Shinkansen glass and show window it prevents reflection on the glass surface due to dazzling light such as sunlight, automobile headlights, interior light, etc. Can do.
- the silica nano hollow particle 1 according to the first embodiment has a cubic shape, the refraction of incident light is less likely to occur than a spherical one, and has a low refractive index, and has a high antireflection / antiglare effect. It is possible to obtain.
- the nano hollow particle which consists of a silica shell concerning Embodiment 2 of this invention and its manufacturing method are demonstrated with reference to FIG.
- the manufacturing method of the nano hollow particle 100 which consists of a silica shell concerning this Embodiment 2 is substantially the same as the manufacturing method of Embodiment 1 mentioned above. The difference is that, as shown in FIG. 10, the modified silicone oil 101 is mixed in the medium in the silica coating forming step (step S2). The rest is the same as in the first embodiment, and a detailed description thereof is omitted.
- step S2b A part of the organic acid 3 in the organic acid-coated calcium carbonate particles 4 is dissolved, and further, silicon alkoxide 6, ammonia (NH 4 OH) water 8 as a base catalyst, and water 7 are mixed (step S2b). .
- the modified silicone oil 101 as a silicone oil is further mixed.
- modified silicone oil 101 modified silicone oil introduced with hydrophilic organic groups such as polyether groups, ethoxy groups, carboxyl groups, and lipophilic organic groups such as monoamine groups, amino groups, and alkyl groups were introduced.
- Modified silicone oil or the like is used.
- the modified silicone oil 101 is easily available, has high reactivity for protecting the surface of the silica coating particles 9, and can be mixed with an organic solvent or solvent-based paint in the above-described application fields with high dispersion. Silicone oil is preferably used.
- the calcium carbonate particles 2 are coated with silica (SiO 2 ) 1b by the sol-gel method to form silica coated particles 9 (step S2), and the surface is protected by the modified silicone oil 101. Will be.
- the subsequent manufacturing process is exactly the same as in the first embodiment, that is, after the silica coating particles 9 are washed (step S3a), dispersed in water (step S3b), and in the calcium carbonate dissolution process, acid treatment is performed. Hydrochloric acid 10 is added (step S3c) to dissolve and flow out the calcium carbonate 2 inside (step S3). And finally, after performing water washing (step S4a), it is made to dry (step S4b). Thereby, the nano hollow particle 100 which consists of a silica-shell of the cube form which concerns on this Embodiment 2 is manufactured.
- the nano hollow particles 100 made of the silica shell according to the second embodiment manufactured in this way have the surface of the silica shell 1b protected in the silica coating particle 9 by the modified silicone oil 101, the silica shell 1b Adsorption on the surface of the calcium carbonate particles 2 is stabilized. For this reason, according to the nano hollow particle 100 which consists of a silica shell which concerns on this Embodiment 2, reaction efficiency and production efficiency can be improved.
- the surface of the silica shell 1b is protected by the modified silicone oil 101 as described above, the calcium carbonate is dissolved in the subsequent water dispersion (step S3a) or the calcium carbonate dissolution step (step S3).
- the nano hollow particle 100 made of the silica shell according to the second embodiment has a higher degree of dispersibility with less aggregation to the secondary particles.
- the nano hollow particle 100 made of the silica shell according to the second embodiment is mixed in a solvent or a solvent-based paint. It is difficult to re-aggregate and is easily dispersed, and can be mixed in a dispersed state. Furthermore, since it can mix in the disperse
- the organic solvent becomes an oleophilic silica nano hollow particle 100.
- the modified silicone oil into which a hydrophilic organic group such as a polyether group, an ethoxy group, or a carboxyl group is used, the silica nano hollow particle 100 becomes hydrophilic. Dispersion of water and water-based paint becomes easy.
- silica nano hollow particles of Example 6 to Example 13 were produced, and their characteristics were verified.
- silica nano hollow particles of Comparative Example 3 in which no silicone oil is added, and additives such as silicone oil such as non-reactive silicone oil, silane, organic dispersant, and oil instead of amino-modified silicone oil The silica nano hollow particles of Comparative Example 4 to Comparative Example 14 were prepared using the above, and the difference in characteristics from the silica nano hollow particles according to Example 6 to Example 13 was evaluated.
- rosin acid-coated calcium carbonate particles (Shiraishi calcium ( Product name “Homocal D (cubic shape, average primary particle size: 80 nm)”), 59.00 g of this rosin acid-coated calcium carbonate particle, 590.00 g of diglyme 5 as an organic solvent, 47.20 g of tetraethoxysilane (TEOS) (Shin-Etsu Chemical Co., Ltd., product name “KBE-04”) as silicon alkoxide 6 was super-treated while maintaining the slurry temperature at 20 ° C. in a 1 L glass beaker. The mixture was dispersed for 60 minutes using a sonic homogenizer. Further, 265.50 g of water 7 was added thereto and dispersed and mixed for 5 minutes.
- TEOS tetraethoxysilane
- Step S2 reagent ammonia (NH 4 OH) water 8 as a base catalyst was added and dispersed and mixed for 90 minutes to carry out a sol-gel reaction.
- the silica coating forming step (Step S2) was performed. Subsequently, separation and washing were performed using a centrifuge (2500 G, 10 minutes), and after standing for 12 hours and curing, 106 ml of hydrochloric acid diluted 40 times with water was added to a cured slurry with a pH of 3 It dripped so that it might become, and the calcium carbonate melt
- Table 2 summarizes the blending contents in Examples 6 to 13 and Comparative Examples 3 to 14 described above.
- the silica nano hollow particle which concerns on the comparative example 3 was produced without mix
- FIG. The various properties of silica nano hollow particles according to Examples 6 to 13 prepared using various amino-modified silicone oils are shown in Table 3, and the silica nano particles according to Comparative Example 3 prepared without adding silicone oil.
- Table 4 shows various properties of the hollow silica particles and silica nano hollow particles according to Comparative Example 4 to Comparative Example 14 produced by using other additives such as various silicone oils and dispersants in place of the amino-modified silicone oil. .
- the recovery rate is approximately 20% or more, and the particle size distribution [laser Average particle size Z-Average (d. Nm) measured by diffraction / scattering method (microtrack method) or dynamic light scattering method (measuring device name, for example, ZETA SIZER Nano-ZS particle size distribution meter manufactured by Malvern) ] was almost 400 nm or less.
- the silica nano hollow particles according to Comparative Example 3 to which no silicone oil was added had a recovery rate of 5% or less, and the particle size distribution was approximately 800 nm. It was.
- silica nano hollow particles according to Comparative Examples 4 to 14 prepared by adding additives such as silicone oil such as non-reactive silicone oil other than amino-modified silicone oil, silane, organic dispersant, oil,
- silicone oil such as non-reactive silicone oil other than amino-modified silicone oil
- silane silane
- organic dispersant oil
- the recovery rate was 6% or less, and the particle size distribution was 700 nm or more.
- the silica nano hollow particles 100 having a remarkably low particle size distribution can be obtained by dramatically increasing the recovery rate of the silica nano hollow particles 100 by mixing the amino-modified silicone oil. That is, the silica nano hollow particles according to Example 6 to Example 13 are obtained with high production efficiency (productivity) and have high dispersibility.
- the recovery rate is high and the particle size distribution is high. Since it was the lowest, the use of a side chain monoamine-modified silicone oil is optimal as the silicone oil.
- the present inventors further examined the optimum blending amount of amino-modified silicone oil for obtaining silica nano hollow particles having a high recovery rate and a low particle size distribution. That is, the silica nano hollow particles of Examples 14 to 21 were produced by changing only the compounding amount of the amino-modified silicone oil with the same blending materials and production conditions as in Examples 6 to 13, and the recovered amount thereof. The particle size distribution was measured. Table 5 summarizes the contents of each of Examples 14 to 21 and the recovered amount and particle size distribution of the silica nano hollow particles produced by the contents of the formulation. Table 5 also shows Comparative Example 3 in which no amino-modified silicone oil was added for reference. FIG.
- FIG. 11 is a graph showing the recovery rate of silica nano hollow particles (recovered amount / TEOS + and silicone oil) and the particle size distribution with respect to the addition rate of amino-modified silicone oil.
- a monoamine-modified side chain type product name “KF-868 (functional group equivalent; 8,800 g / mol)” of Shin-Etsu Chemical Co., Ltd.) is used as an amino-modified silicone oil. used.
- or Example 21 by mix
- silica nano hollow particles a high recovery rate of 20% or more was obtained, and the particle size distribution was extremely low, approximately 400 nm or less.
- the blending amount of the silicone oil is preferably in the range of 0.2 wt% to 3.0 wt%, more preferably based on the entire blended material (slurry) in the process of forming the silica coating particles. Is in the range of 0.3% to 2.0% by weight.
- the use of amino-modified silicone oil improves the recovery rate of the nano hollow particles 100 made of silica shells, and the resulting nano hollow particles 100 made of silica shells.
- the nano hollow particles 100 made of silica shell mixed with amino-modified silicone oil have high production efficiency (productivity) and high dispersibility.
- the amino-modified silicone oil has good reactivity to the surface of the silica-coated particles 9 (silica shell 1b), and the silica-coated particles 9 can be obtained by using the amino-modified silicone oil.
- the target silica coating particles produced by the sol-gel method are separated by sedimentation only of the target silica coating particles 9 by centrifugation without filtering or using a flocculant.
- By-products such as solid silica particles other than 9 can be easily removed.
- the object in the washing treatment after dissolution of calcium carbonate 2, the object can be obtained by centrifugation without filtering or using a flocculant.
- silica nano hollow particles 100 Only silica nano hollow particles 100 to be settled and separated, and calcium carbonate by hydrochloric acid treatment It is possible to easily remove calcium hydrochloride (residual calcium salt) and the like generated by dissolution of the silica 2 and efficiently collect only the silica nano hollow particles 100, and it is confirmed that a high recovery rate can be obtained in the silica nano hollow particles 100. Has been.
- the amino-modified silicone oil is highly reactive to the surface of the silica coating particles 9 (silica shell 1b), and the surface of the silica shell 1b is highly protected by the amino-modified silicone oil.
- this amino-modified silicone oil can protect the surface of the silica shell 1b of the silica coating particle 9 by mixing simultaneously with the silica coating formation reaction (sol-gel reaction) in the silica coating formation step, and thus the production efficiency is good. .
- the calcium carbonate particles 2 in a dry powder state commercially available calcium carbonate particles, for example, synthetic calcium carbonate (product name “Brilliant (primary particle diameter: 150 nm)”) manufactured by Shiroishi Kogyo Co., Ltd. ) And the like, and this can be coated with an organic acid 3 such as rosin acid to form organic acid-coated calcium carbonate particles 4 in a dry powder state. It is also possible to use acid-coated calcium carbonate powder.
- synthetic calcium carbonate product name “Brilliant (primary particle diameter: 150 nm)
- organic acid 3 such as rosin acid
- Examples of such commercially available organic acid-coated calcium carbonate powder include rosin acid-coated calcium carbonate particles (product names “Homocal D (primary particle diameter: 80 nm)”, “Shirakaka DD (primary particle diameter) of Shiroishi Kogyo Co., Ltd.” : 50 nm) ”,“ white luster O (primary particle size: 30 nm) ”and the like.
- the size of the organic acid-coated calcium carbonate particles 4 in a dry powder state is preferably such that the outer diameter measured by microscopy is in the range of 26 nm to 280 nm. As a result, the outer diameter of the finally obtained silica nano hollow particles 1 measured by microscopy can be set in the range of 30 nm to 300 nm.
- the diglyme 5 which is a glycol ether type
- alcohol systems such as methanol and octanol, etc. are used in addition to this, for example. be able to.
- alcohol systems such as methanol and octanol, etc. are used in addition to this, for example. be able to.
- These also ensure that a part of the organic acid 3 in the organic acid-coated calcium carbonate particles 4 is dissolved and that the calcium carbonate particles 2 and the silicon alkoxide 6 interact with each other. Formation of the silica shell 1b produced by the hydrolysis can be promoted, and silica nano-nano hollow particles surrounded by the surface of the silica shell 1b having high agglomeration and low dispersibility can be obtained.
- glycol ether solvents and alcohol solvents are both easy to obtain and handle, and are relatively inexpensive, so that the cost can be reduced.
- the silica nano hollow particles are diglyme and / or methanol obtained with a high recovery rate.
- micrographs of silica nano hollow particles according to Example 22 using methanol as the organic solvent and silica nano hollow particles according to Example 23 using 1-octanol as the organic solvent are shown in FIG.
- the blending contents and recovery rates in the silica nano hollow particles according to Example 22 and Example 23 are shown in Table 6.
- the silica nano hollow particles according to Example 22 using methanol as the organic solvent is not a mixture of silicone oil, but its recovery rate is as high as 20%.
- the surface of the calcium carbonate particles 2 in a dry powder state is coated with the organic acid 3.
- the organic acid-coated calcium carbonate particles 4 By dispersing the organic acid-coated calcium carbonate particles 4 in diglyme 5 as an organic solvent, a part of the organic acid 3 in the organic acid-coated calcium carbonate particles 4 is dissolved, and the surface of the calcium carbonate particles 2 exposed by the dissolution
- diglyme 5 By interacting with diglyme 5, the surface of calcium carbonate particles 2 is coated with diglyme 5, and further, silicon alkoxide 6 and aqueous ammonia 8 as a base catalyst are mixed, so that silicon alkoxide 6 and calcium carbonate particles 2 are mixed.
- the quality of the raw material is small and stable for a long time. There is no cost for management.
- rosin acid-coated calcium carbonate as the organic acid-coated calcium carbonate particles 4 can be obtained at low cost.
- organic solvents such as diglyme 5 and methanol are stable for a long period of time, and cost is not required for quality control and can be obtained at a low price. Therefore, since the raw material is inexpensive and does not require manufacturing cost, it can be manufactured at low cost, and further, since the quality of the raw material is small, the production efficiency can be improved.
- the modified silicone oil 101 is further mixed in the medium in the silica coating forming step. 101 protects the surface of the silica shell 1b in the silica coating particle 9, so that the adsorption of the silica shell 1b to the surface of the calcium carbonate particle 2 is stabilized. For this reason, reaction efficiency and production efficiency can be improved.
- the surface of the silica shell 1b is protected by the modified silicone oil 101 in this way, the aggregation of the silica coating particles 9 is prevented, and the calcium carbonate 2 inside the silica coating particles 9 in a state where the aggregation is prevented is prevented. Aggregation is also prevented in the nano hollow particles 100 made of silica shells obtained by dissolution. Therefore, the nano hollow particle 100 made of the silica shell according to the second embodiment has a higher degree of dispersibility with less aggregation to the secondary particles.
- nano hollow particles 100 made of silica shells according to Examples 6 to 21 and the production method thereof amino-modified silicone oil is used as the silicone oil, and according to the present invention, the silica shells are used.
- the nano hollow particles 100 a high recovery rate is obtained, the production efficiency (productivity) is improved, and the particle size distribution is low and the dispersibility is high. For this reason, further cost reduction and improvement of production efficiency can be aimed at.
- the nano hollow particles 100 composed of silica shells according to Examples 15 to 20 and the method for producing the nano hollow particles 100, and the amount of amino-modified silicone oil blended with respect to the entire blended material in the process of forming the silica coating particles 9, Since the content is in the range of 0.2% by weight to 3.0% by weight, the recovery rate is extremely high and the particle size distribution is extremely low.
- the blending amount and blending ratio of each component in the method for producing silica nanohollow particles, the reaction time, the reaction temperature, etc., and the other steps of the method for producing silica nanohollow particles are also described above.
- the present invention is not limited to the embodiment and each example.
- the numerical values given in the embodiment of the present invention do not indicate critical values but indicate preferable values suitable for implementation, and therefore, even if the numerical values are slightly changed, the implementation is denied. is not.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
Abstract
低コスト化及び生産効率の向上を図ることができ、かつ、二次粒子への凝集が少なくて分散性が高いこと。 シリカ殻からなるナノ中空粒子1は、所定の大きさの外径を有する乾燥粉末状態の炭酸カルシウム粒子2の表面を有機酸3で被覆してなる乾燥粉末状態の有機酸被覆炭酸カルシウム粒子4を、有機酸被覆炭酸カルシウム粒子4における有機酸3の一部を溶解可能な有機溶媒としてのジグライム5に分散させ、更に、シリコンアルコキシド6と塩基触媒としてのアンモニア水8と水7を混合し、炭酸カルシウム粒子2の表面にシリカ殻1bを形成してシリカコーティング粒子9とし、その後、このシリカコーティング粒子9の内部における炭酸カルシウム2を酸処理としての塩酸10によって溶解させて製造したものである。
Description
本発明は、30nmから300nmまでの範囲内の外径を有するシリカ殻からなるナノ中空粒子(以下、「シリカナノ中空粒子」ともいう。)及びその製造方法に関するもので、特に、二次粒子への凝集が少なく、低コスト化が可能なシリカナノ中空粒子及びその製造方法に関するものである。
近年、ナノテクノロジー研究の一環として、数百ナノメートル以下の粒子径を有する粒子についての応用研究が盛んに行われている。その一例として、特許文献1に記載の高分散シリカナノ中空粒子及びそれを製造する方法の発明がある。このナノ中空粒子は、緻密なシリカ殻からなるナノ中空粒子であって、透過型電子顕微鏡法による一次粒子径が30~300nm、静的光散乱法による粒子径が30~800nm、水銀圧入法またはガス吸着法により測定される細孔分布において2nm~20nmの細孔が検出されないものである。
そして、この特許文献1に係るシリカナノ中空粒子は、炭酸カルシウムを含水ケーキ状態に調整してこれをコアとして用い、この含水ケーキ状態の炭酸カルシウムコアをアルコール中に分散させ、それにシリコンアルコキシド等を添加することによってシリカをコーティングし、その後、炭酸カルシウムを溶解させることによって製造されるものである。
ところが、特許文献1に記載の発明においては、コアとしての含水ケーキ状態の炭酸カルシウムが水分を含んでいるため、時間の経過と共に炭酸カルシウムの成長や凝集が起こって変質しやすく、一定の品質を保持することが困難で品質管理にコストがかかったり、量産性が損なわれたりするという問題点があった。
これに対して、本発明者らの実験研究によれば、含水ケーキ状態の炭酸カルシウムの代わりにコア粒子として乾燥粉末状態の炭酸カルシウムを使用して上述と同様に製造した場合、炭酸カルシウムの表面が不安定であるために強固な凝集体を形成しやすく、得られる粒子は2μm以上のマイクロサイズの二次凝集粒子となっており、水銀圧入法またはガス吸着法により測定される細孔分布においても10nm~20nmの細孔が存在し、分散性が高いナノ中空粒子とはならかった。
これに対して、本発明者らの実験研究によれば、含水ケーキ状態の炭酸カルシウムの代わりにコア粒子として乾燥粉末状態の炭酸カルシウムを使用して上述と同様に製造した場合、炭酸カルシウムの表面が不安定であるために強固な凝集体を形成しやすく、得られる粒子は2μm以上のマイクロサイズの二次凝集粒子となっており、水銀圧入法またはガス吸着法により測定される細孔分布においても10nm~20nmの細孔が存在し、分散性が高いナノ中空粒子とはならかった。
そこで、本発明は、かかる不具合を解決すべくなされたものであって、低コスト化及び生産効率の向上を図ることができ、かつ、二次粒子への凝集が少なくて分散性が高いシリカ殻からなるナノ中空粒子及びその製造方法の提供を課題とするものである。
請求項1の発明に係るシリカ殻からなるナノ中空粒子は、30nm~300nmの範囲内の外径を有し、水銀圧入法またはガス吸着法により測定される細孔分布において2nm~20nmの細孔が検出されないシリカ殻からなるナノ中空粒子であって、所定の大きさの外径を有する乾燥粉末状態の炭酸カルシウム粒子の表面を有機酸で被覆してなる乾燥粉末状態の有機酸被覆炭酸カルシウム粒子を、当該有機酸被覆炭酸カルシウム粒子における有機酸の一部を溶解する有機溶媒に分散させ、更に、シリコンアルコキシド及び塩基触媒を混合し、前記炭酸カルシウム粒子の表面にシリカ殻を形成してシリカコーティグ粒子とし、その後、当該シリカコーティグ粒子の内部における前記炭酸カルシウムを酸処理によって溶解させてなるものである。
ここで、「有機酸」としては、乾燥粉末状態の炭酸カルシウム粒子を被覆できるものであればよく、例えば、ロジン酸、脂肪酸等のアルカリ性石鹸等が挙げられる。
また、「有機溶媒」としては、有機酸被覆ナノ炭酸カルシウム粒子における有機酸の一部を溶解でき、かつ、シリコンアルコキシドと水に対して溶解性があり、更に、シリコンアルコキシドの加水分解を促進可能なものであればよく、有機酸に対する溶解性が大きく、炭酸カルシウム粒子やシリコンアルコキシドとの相互作用性(親和性・反応性)が大きい、例えば、ジエチレングリコールジメチルエーテル(ジグライム)、エチレングリコールジメチルエーテル(モノグライム)、トリエチレングルコールジメチルエーテル(トリグライム)、テトラグリコールジメチルエーテル(テトラグライム)等のグリコールエーテル系、メタノール、オクタノール等のアルコール系等の単体溶媒もしくはこれら2種類以上の混合溶媒が挙げられるが、中でも、反応性がよく安価に入手できるジグライム、メタノールが好ましい。
また、「有機溶媒」としては、有機酸被覆ナノ炭酸カルシウム粒子における有機酸の一部を溶解でき、かつ、シリコンアルコキシドと水に対して溶解性があり、更に、シリコンアルコキシドの加水分解を促進可能なものであればよく、有機酸に対する溶解性が大きく、炭酸カルシウム粒子やシリコンアルコキシドとの相互作用性(親和性・反応性)が大きい、例えば、ジエチレングリコールジメチルエーテル(ジグライム)、エチレングリコールジメチルエーテル(モノグライム)、トリエチレングルコールジメチルエーテル(トリグライム)、テトラグリコールジメチルエーテル(テトラグライム)等のグリコールエーテル系、メタノール、オクタノール等のアルコール系等の単体溶媒もしくはこれら2種類以上の混合溶媒が挙げられるが、中でも、反応性がよく安価に入手できるジグライム、メタノールが好ましい。
さらに、「シリコンアルコキシド」としては、その加水分解によりシリカを析出させることができるものであればよく、例えば、テトラエトキシシラン(TEOS)、トリメトキシシラン、テトラメトキシシラン、トリエトキシシラン、トリプロポキシシラン、テトラプロポキシシラン、トリブトキシシラン等を用いることができる。
加えて、「塩基触媒」としては、例えば、アンモニア、アミン類等が挙げられる。
加えて、「塩基触媒」としては、例えば、アンモニア、アミン類等が挙げられる。
そして、シリカ殻からなるナノ中空粒子における「30nm~300nmの範囲内の外径を有する」とは、本明細書及び特許請求の範囲においては、顕微鏡法により測定される一次粒子径が30nm~300nmの範囲内であることを意味し、ここでいう顕微鏡法とは、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)を用いて粒子を実際に観察して、粒子の各部分の大きさを求める方法である。
なお、上記数値は、臨界値、境界値として当該値が出てきたものではなく、その数値は大凡の値として捉えているものである。
なお、上記数値は、臨界値、境界値として当該値が出てきたものではなく、その数値は大凡の値として捉えているものである。
請求項2の発明に係るシリカ殻からなるナノ中空粒子は、その形状が、立方体状形態であるものである。
ここで、「立方体状形態」とは、立方体に限らず面で囲まれた立方体に似た形状をいう。そして、このような立方体状形態を有するシリカ殻からなる中空粒子は、例えば、乾燥粉末状態で立方体状の炭酸カルシウム粒子を用いることによって製造される。
ここで、「立方体状形態」とは、立方体に限らず面で囲まれた立方体に似た形状をいう。そして、このような立方体状形態を有するシリカ殻からなる中空粒子は、例えば、乾燥粉末状態で立方体状の炭酸カルシウム粒子を用いることによって製造される。
請求項3の発明に係るシリカ殻からなるナノ中空粒子は、その粒子内包空間体積率が30%~80%であるもの、より好ましくは、40%~75%であるものである。
請求項4の発明に係るシリカ殻からなるナノ中空粒子は、前記有機酸がロジン酸であるものである。
請求項5の発明に係るシリカ殻からなるナノ中空粒子は、前記有機溶媒が、グリコールエーテル系及び/またはアルコール系であるものである。グリコールエーテル系の中でもより好ましくは、ジエチレングリコールジメチルエーテル(ジグライム)、アルコール系の中でも、より好ましくはメタノールである。
請求項6の発明に係るシリカ殻からなるナノ中空粒子は、媒質中に、更に、シリコーンオイル、好ましくは、変性シリコーンオイル、より好ましくは、モノアミン(NH2)変性シリコーンオイルを混合してなるものである。
請求項7の発明に係るシリカ殻からなるナノ中空粒子の前記シリコーンオイルは、アミノ変性シリコーンオイル、より好ましくは、側鎖型モノアミン(NH2)変性シリコーンオイルであるものである。
請求項8の発明に係るシリカ殻からなるナノ中空粒子の前記シリコーンオイルの配合量は、前記シリカコーティング粒子を形成する過程における配合材料全体に対して、即ち、有機酸被覆炭酸カルシウム粒子、有機溶媒、シリコンアルコキシド、塩基触媒、シリコーンオイル等の配合材料の総重量に対して、0.2%重量%~3.0重量%の範囲内、より好ましくは、0.3%重量%~2.0重量%の範囲内であるものである。
なお、上記の数値範囲は、厳格であることを要求するものではなく、当然、誤差を含む概略値であり、数割の誤差を否定するものではない。
なお、上記の数値範囲は、厳格であることを要求するものではなく、当然、誤差を含む概略値であり、数割の誤差を否定するものではない。
請求項9の発明に係るシリカ殻からなるナノ中空粒子は、前記炭酸カルシウム粒子の表面にシリカ殻を形成する過程において超音波処理を行ったものである。
請求項10の発明に係るシリカ殻からなるナノ中空粒子の製造方法は、30nm~300nmの範囲内の外径を有し、水銀圧入法またはガス吸着法により測定される細孔分布において2nm~20nmの細孔が検出されないシリカ殻からなるナノ中空粒子の製造方法であって、所定の大きさの外径を有する乾燥粉末状態の炭酸カルシウム粒子の表面を有機酸で被覆して有機酸被覆炭酸カルシウム粒子とする有機酸被覆炭酸カルシウム形成工程と、前記有機酸被覆炭酸カルシウム粒子における有機酸の一部を溶解する有機溶媒に、前記有機酸被覆炭酸カルシウム粒子を分散させ、更に、シリコンアルコキシド及び塩基触媒を混同し前記炭酸カルシウム粒子の表面にシリカ殻を形成してシリカコーティグ粒子とするシリカ被覆形成工程と、前記シリカコーティグ粒子の内部における前記炭酸カルシウムを酸処理によって溶解させる炭酸カルシウム溶解工程とを具備するものである。
請求項11の発明に係るシリカ殻からなるナノ中空粒子の製造方法は、前記シリカ殻からなる中空粒子の形状は、立方体状形態であるものである。
請求項12の発明に係るシリカ殻からなるナノ中空粒子の製造方法は、前記シリカ殻からなる中空粒子の粒子内包空間体積率が、30%~80%であるもの、より好ましくは、40%~75%であるものである。
請求項13の発明に係るシリカ殻からなるナノ中空粒子の製造方法は、前記有機酸が、ロジン酸であるものである。
請求項14の発明に係るシリカ殻からなるナノ中空粒子の製造方法は、前記有機溶媒がグリコールエーテル系及び/またはアルコール系であるものである。グリコールエーテル系の中でも、より好ましくは、ジエチレングリコールジメチルエーテル(ジグライム)であり、アルコール系の中でも、より好ましくは、メタノールである。
請求項15の発明に係るシリカ殻からなるナノ中空粒子の製造方法は、前記シリカ被覆形成工程において、媒質中に、更に、シリコーンオイル、好ましくは、変性シリコーンオイル、より好ましくは、モノアミン(NH2)変性シリコーンオイルを混合したものである。
請求項16の発明に係るシリカ殻からなるナノ中空粒子の製造方法は、前記シリコーンオイルが、アミノ変性シリコーンオイル、より好ましくは、側鎖型モノアミン(NH2)変性シリコーンオイルであるものである。
請求項17の発明に係るシリカ殻からなるナノ中空粒子の製造方法は、前記シリコーンオイルの配合量が、前記シリカ被覆形成工程における配合材料全体に対して、即ち、有機酸被覆炭酸カルシウム粒子、有機溶媒、シリコンアルコキシド、塩基触媒、シリコーンオイル等の配合材料の総重量に対して、0.2%重量%~3.0重量%の範囲内、より好ましくは、0.3%重量%~2.0重量%の範囲内であるものである。
なお、上記の数値範囲は、厳格であることを要求するものではなく、当然、誤差を含む概略値であり、数割の誤差を否定するものではない。
なお、上記の数値範囲は、厳格であることを要求するものではなく、当然、誤差を含む概略値であり、数割の誤差を否定するものではない。
請求項18の発明に係るシリカ殻からなるナノ中空粒子の製造方法は、シリカ被覆形成工程において、超音波処理を行ったものである。
請求項1の発明に係るシリカ殻からなるナノ中空粒子は、乾燥粉末状態の炭酸カルシウム粒子の表面を有機酸で被覆してなる乾燥粉末状態の有機酸被覆炭酸カルシウム粒子を、当該有機酸被覆炭酸カルシウム粒子における有機酸の一部を溶解する有機溶媒に分散させ、更に、シリコンアルコキシド及び塩基触媒を混合し前記炭酸カルシウム粒子の表面にシリカ殻を形成してシリカコーティグ粒子とし、その後、当該シリカコーティグ粒子内部の前記炭酸カルシウムを酸処理によって溶解させてなる。
ここで、乾燥粉末状態の有機酸被覆炭酸カルシウム粒子を有機溶媒に分散させると、有機酸被覆炭酸カルシウム粒子における有機酸の一部が溶解すると共に、溶解によって表出した炭酸カルシウム粒子の表面と有機溶媒とが相互作用して、炭酸カルシウム粒子の表面に有機溶媒が被覆される。更に、シリコンアルコキシド及び塩基触媒が混合されると、シリコンアルコキシドと炭酸カルシウム粒子の表面を被覆した状態の有機溶媒とが相互作用し、シリコンアルコキシドの加水分解によって生じたSiO2 分子が重縮合したシリカ殻が炭酸カルシウム粒子の表面全体に形成されてシリカコーティグ粒子となる。そして、酸処理によって、シリカコーティグ粒子の内部における炭酸カルシウムが溶解し、30nm~300nmの範囲内の外径を有し、水銀圧入法またはガス吸着法により測定される2nm~20nmの細孔が検出されないシリカ殻からなるナノ中空粒子となる。
このように、本発明に係るシリカ殻からなるナノ中空粒子によれば、乾燥粉末状態の炭酸カルシウム粒子の表面を有機酸で被覆してなる乾燥粉末状態の有機酸被覆炭酸カルシウム粒子を用いたことから、そして、上述したように、炭酸カルシウム粒子と有機溶媒とシリコンアルコキシドとの相互作用によりコア粒子としての炭酸カルシウム粒子にシリカ殻が形成されることから、シリカ殻をコーティングする過程において、コア粒子としての炭酸カルシウム粒子が水分を吸収して互いに凝集するのが防止される。このため、この凝集が防止された状態のシリカコーティグ粒子内部の炭酸カルシウムを溶解することによって得られるシリカ殻からなるナノ中空粒子は、二次粒子への凝集が少なくて分散性が高いものとなる。
また、乾燥粉末状態の炭酸カルシウム粒子の表面を有機酸で被覆した乾燥粉末状態の有機酸被覆炭酸カルシウム粒子を用いることで原料の変質が起こりにくくなるため、品質管理にコストが掛からず低コスト化が可能であり、量産性を向上させることもできる。
また、乾燥粉末状態の炭酸カルシウム粒子の表面を有機酸で被覆した乾燥粉末状態の有機酸被覆炭酸カルシウム粒子を用いることで原料の変質が起こりにくくなるため、品質管理にコストが掛からず低コスト化が可能であり、量産性を向上させることもできる。
このようにして、低コスト化及び生産効率の向上を図ることができ、かつ、二次粒子への凝集が少なくて分散性が高いシリカ殻からなるナノ中空粒子となる。
請求項2の発明に係るシリカ殻からなるナノ中空粒子によれば、その形状が立方体状形態であることから、請求項1に記載の効果に加えて、球状の中空粒子よりも入射した光の屈折率が低くて光透過性が高い。また、樹脂や塗料等の目的物に混入する際には、球状の中空粒子よりもその充填率を高めることができる。
請求項3の発明に係るシリカ殻からなるナノ中空粒子によれば、前記シリカ殻からなる中空粒子の粒子内包空間体積率は30%~80%であることから、請求項1または請求項2に記載の効果に加えて、高い断熱性を確保できる。更に、より好ましくは、40%~75%である。
請求項4の発明に係るシリカ殻からなるナノ中空粒子によれば、前記有機酸は、ロジン酸であるから、確実に前記乾燥粉末状態の炭酸カルシウム粒子を被覆してコア粒子同士の凝集を防止することができる。したがって、請求項1乃至請求項3の何れか1つに記載の効果に加えて、確実に二次粒子への凝集が少なくて分散性が高いものとすることができる。
請求項5の発明に係るシリカ殻からなるナノ中空粒子によれば、前記有機溶媒は、グリコールエーテル系及び/またはアルコール系であるから、反応性がよく、確実に、有機酸被覆炭酸カルシウム粒子における有機酸の一部を溶解すると共に、炭酸カルシウム粒子とシリコンアルコキシドとの相互作用を図ることができる。即ち、それら有機溶媒は、有機酸に対する溶解性が大きく、また、炭酸カルシウム粒子やシリコンアルコキシドとの相互作用性(親和性・反応性)が強く、それ故、有機酸の溶解によって表出した炭酸カルシウム粒子の表面と有機溶媒の相互作用により、炭酸カルシウム粒子の表面の大部分が有機溶媒に覆われ、更に、有機溶媒とシリコンアルコキシドとの相互作用により、シリコンアルコキシドの加水分解が促進され炭酸カルシウムの表面全体へのシリカ殻の形成が促進される。また、グリコールエーテル系やアルコール系の溶媒は入手が容易であり、かつ比較的安価である。したがって、請求項1乃至請求項4の何れか1つに記載の効果に加えて、より確実に、二次粒子への凝集が少なくて分散性が高いシリカ殻の面で囲まれたナノ中空粒子となり、また、生産効率の向上や低コスト化を図ることができる。
より好ましくは、安価に入手でき、また、シリカナノ中空粒子を高い回収率で得ることができるジグライム及び/またはメタノールである。
より好ましくは、安価に入手でき、また、シリカナノ中空粒子を高い回収率で得ることができるジグライム及び/またはメタノールである。
請求項6の発明に係るシリカ殻からなるナノ中空粒子によれば、媒質中に、更にシリコーンオイルを混合してなることから、シリコーンオイルによってシリカコーティグ粒子の表面が保護され、シリカ殻の炭酸カルシウム粒子表面への吸着が安定化される。したがって、請求項1乃至請求項5の何れか1つに記載の効果に加えて、生産効率を向上させることができる。また、シリカコーティグ粒子の表面が保護されることから、シリカ殻形成の反応液中において、シリカコーティグ粒子同士の凝集が防止されると共に、炭酸カルシウムを溶解して得られるシリカ殻からなるナノ中空粒子においてもシリコーンオイルによってその表面が保護されるため、凝集が防止される。このため、二次粒子への凝集が一段と少なくて分散性がより高いものとなる。
請求項7の発明に係るシリカ殻からなるナノ中空粒子によれば、前記シリコーンオイルは、アミノ変性シリコーンオイルである。
ここで、本発明者らの鋭意実験研究を積み重ねた結果、アミノ変性シリコーンオイルは、シリカコーティグ粒子表面(シリカ殻)との反応性が高く、アミノ変性シリコーンオイルを使用することで、シリカコーティング粒子形成後の洗浄処理において遠心分離によって目的とするシリカコーティング粒子を沈降分離させやすく、また、炭酸カルシウム溶解後の洗浄処理においても遠心分離によってシリカ殻からなるナノ中空粒子を沈降分離させやすく、シリカ殻からなるナノ中空粒子の回収率を向上させることができ、更に、得られるシリカ殻からなるナノ中空粒子は低い粒度分布となることが明らかになった。
したがって、この発明のシリカ殻からなるナノ中空粒子によれば、請求項6に記載の効果に加えて、回収率が高く、かつ、その粒度分布が低いものとなる。
より好ましくは、側鎖型モノアミン(NH2)変性シリコーンオイルである。
ここで、本発明者らの鋭意実験研究を積み重ねた結果、アミノ変性シリコーンオイルは、シリカコーティグ粒子表面(シリカ殻)との反応性が高く、アミノ変性シリコーンオイルを使用することで、シリカコーティング粒子形成後の洗浄処理において遠心分離によって目的とするシリカコーティング粒子を沈降分離させやすく、また、炭酸カルシウム溶解後の洗浄処理においても遠心分離によってシリカ殻からなるナノ中空粒子を沈降分離させやすく、シリカ殻からなるナノ中空粒子の回収率を向上させることができ、更に、得られるシリカ殻からなるナノ中空粒子は低い粒度分布となることが明らかになった。
したがって、この発明のシリカ殻からなるナノ中空粒子によれば、請求項6に記載の効果に加えて、回収率が高く、かつ、その粒度分布が低いものとなる。
より好ましくは、側鎖型モノアミン(NH2)変性シリコーンオイルである。
請求項8の発明に係るシリカ殻からなるナノ中空粒子によれば、前記シリコーンオイルの配合量は、前記シリカコーティング粒子を形成する過程における配合材料全体に対して、0.2%重量%~3.0重量%の範囲内である。
ここで、本発明者らは、鋭意実験研究の結果、前記シリコーンオイルの配合量が、前記シリカコーティング粒子を形成する過程における配合材料全体に対して、0.2%重量以上であることで、シリカ殻からなるナノ中空粒子の回収率が飛躍的に向上すると共に、その粒度分布も顕著に低くなり、一方、3.0重量%を超えると、回収率が低下すると共に、粒度分布が高くなることを見出し、この知見に基づいて本発明を完成させたものである。
よって、この本発明のシリカ殻からなるナノ中空粒子によれば、請求項6または請求項7に記載の効果に加えて、極めて回収率が高く、かつ、その粒度分布が低いものとなる。
より好ましくは、0.3%重量%~2.0重量%の範囲内であるものである。
ここで、本発明者らは、鋭意実験研究の結果、前記シリコーンオイルの配合量が、前記シリカコーティング粒子を形成する過程における配合材料全体に対して、0.2%重量以上であることで、シリカ殻からなるナノ中空粒子の回収率が飛躍的に向上すると共に、その粒度分布も顕著に低くなり、一方、3.0重量%を超えると、回収率が低下すると共に、粒度分布が高くなることを見出し、この知見に基づいて本発明を完成させたものである。
よって、この本発明のシリカ殻からなるナノ中空粒子によれば、請求項6または請求項7に記載の効果に加えて、極めて回収率が高く、かつ、その粒度分布が低いものとなる。
より好ましくは、0.3%重量%~2.0重量%の範囲内であるものである。
請求項9の発明に係るシリカ殻からなるナノ中空粒子によれば、前記シリカコーティグ粒子を形成する過程において、超音波処理を行ったことから、有機酸被覆炭酸カルシウム粒子が分散され易く互いの凝集がより防止され、かかる粒子が分散されている状態でシリカ殻が形成されてシリカコーティグ粒子においても互いの凝集がより防止される。したがって、請求項1乃至請求項8の何れか1つに記載の効果に加えて、二次粒子への凝集がより少なくて分散性がより高いものとなる。さらに、超音波によって、炭酸カルシウム表面へシリカ殻が吸着されやすくなっていることから、生産効率を向上させることができる。
請求項10の発明に係るシリカ殻からなるナノ中空粒子の製造方法によれば、有機酸被覆炭酸カルシウム粒子形成工程において、乾燥粉末状態の炭酸カルシウム粒子の表面を当該有機酸で被覆して乾燥粉末状態の有機酸被覆炭酸カルシウム粒子とし、続いて、シリカ被覆形成工程において、前記有機酸被覆炭酸カルシウム粒子における有機酸の一部を溶解する有機溶媒に、前記有機酸被覆炭酸カルシウム粒子を分散させ、更に、シリコンアルコキシド及び塩基触媒を混合し前記炭酸カルシウム粒子の表面にシリカ殻を形成してシリカコーティグ粒子とし、その後、炭酸カルシウム溶解工程において、前記シリカコーティグ粒子の内部における前記炭酸カルシウムを酸処理によって溶解させてシリカ殻からなるナノ中空粒子とする。
ここで、有機酸被覆炭酸カルシウム粒子形成工程において作製した乾燥粉末状態の有機酸被覆炭酸カルシウム粒子を有機溶媒に分散させると、有機酸被覆炭酸カルシウム粒子における有機酸の一部が溶解すると共に、溶解によって表出した炭酸カルシウム粒子の表面と有機溶媒とが相互作用して、炭酸カルシウム粒子の表面に有機溶媒が被覆される。更に、シリコンアルコキシド及び塩基触媒が混合されると、シリコンアルコキシドと炭酸カルシウム粒子の表面を被覆した状態の有機溶媒とが相互作用し、シリコンアルコキシドの加水分解によって生じたSiO2 分子が重縮合したシリカ殻が炭酸カルシウム粒子の表面全体に形成されてシリカコーティグ粒子となる。そして、炭酸カルシウム溶解工程において、酸処理によって、シリカコーティグ粒子の内部における炭酸カルシウムが溶解し、30nm~300nmの範囲内の外径を有し、水銀圧入法またはガス吸着法により測定される2nm~20nmの細孔が検出されないシリカ殻からなるナノ中空粒子となる。
このように、本発明に係るシリカ殻からなるナノ中空粒子の製造方法によれば、乾燥粉末状態の炭酸カルシウム粒子の表面を有機酸で被覆してなる乾燥粉末状態の有機酸被覆炭酸カルシウム粒子を用いたことから、そして、上述したように、炭酸カルシウム粒子と有機溶媒とシリコンアルコキシドとの相互作用によって、コア粒子としての炭酸カルシウム粒子にシリカ殻が形成されることから、シリカ殻をコーティングする過程において、コア粒子としての炭酸カルシウム粒子が水分を吸収して互いに凝集するのが防止される。このため、この二次粒子への凝集が防止された状態のシリカコーティグ粒子の内部における炭酸カルシウムを溶解することによって得られるシリカ殻からなるナノ中空粒子は、二次粒子への凝集が少なくて分散性が高いものとなる。更に、30nm~300nmの範囲内の外径を有することから透明性が高いものとなる。
また、乾燥粉末状態の炭酸カルシウム粒子の表面を有機酸で被覆した乾燥粉末状態の有機酸被覆炭酸カルシウム粒子を用いることで原料の変質が起こりにくくなるため、品質管理のコストが掛からず低コスト化が可能であり、量産性を向上させることができる。
また、乾燥粉末状態の炭酸カルシウム粒子の表面を有機酸で被覆した乾燥粉末状態の有機酸被覆炭酸カルシウム粒子を用いることで原料の変質が起こりにくくなるため、品質管理のコストが掛からず低コスト化が可能であり、量産性を向上させることができる。
このようにして、低コスト化及び生産効率の向上を図ることができ、かつ、二次粒子への凝集が少なくて分散性が高いシリカ殻からなるナノ中空粒子の製造方法となる。
請求項11の発明に係るシリカ殻からなるナノ中空粒子の製造方法によれば、シリカ殻からなるナノ中空粒子の形状が立方体状形態であることから、請求項10に記載の効果に加えて、球状の中空粒子よりも入射した光の屈折率が低くて光透過性が高いシリカ殻からなるナノ中空粒子となる。また、得られるシリカ殻からなるナノ中空粒子は、樹脂や塗料等の目的物に混入する際に、球状の中空粒子よりもその充填率を高めることができる。
請求項12の発明に係るシリカ殻からなるナノ中空粒子の製造方法によれば、前記シリカ殻からなる中空粒子の粒子内包空間体積率は30%~80%であることから、請求項10または請求項11に記載の効果に加えて、得られるシリカ殻からなるナノ中空粒子において高い断熱性を確保できる。更に、より好ましくは、40%~75%である。
請求項13の発明に係るシリカ殻からなるナノ中空粒子の製造方法によれば、前記有機酸は、ロジン酸であるから、確実に前記乾燥粉末状態の炭酸カルシウム粒子を被覆してコア粒子同士の凝集を防止することができる。したがって、請求項10乃至請求項12の何れか1つに記載の効果に加えて、確実に二次粒子への凝集が少なくて分散性が高いシリカ殻からなるナノ中空粒子を得ることができる。
請求項14の発明に係るシリカ殻からなるナノ中空粒子の製造方法によれば、前記有機溶媒は、グリコールエーテル系及び/またはアルコール系であるから、反応性がよく、確実に、有機酸被覆炭酸カルシウム粒子における有機酸の一部を溶解すると共に、炭酸カルシウム粒子とシリコンアルコキシドとの相互作用を図ることができる。即ち、それら有機溶媒は、有機酸に対する溶解性が大きく、また、炭酸カルシウム粒子やシリコンアルコキシドとの相互作用性(親和性・反応性)が強く、それ故、有機酸の溶解によって表出した炭酸カルシウム粒子の表面と有機溶媒の相互作用により、炭酸カルシウム粒子の表面の大部分が有機溶媒に覆われ、更に、有機溶媒とシリコンアルコキシドとの相互作用により、シリコンアルコキシドの加水分解が促進され炭酸カルシウムの表面全体へのシリカ殻の形成が促進される。また、グリコールエーテル系やアルコール系の溶媒は入手が容易であり、かつ比較的安価である。したがって、請求項10乃至請求項13の何れか1つに記載の効果に加えて、より確実に、二次粒子への凝集が少なくて分散性が高いシリカ殻の面で囲まれたナノ中空粒子を得ることができ、また、生産効率の向上や低コスト化を図ることができる。
より好ましくは、安価に入手でき、また、シリカナノ中空粒子を高い回収率で得ることができるジグライム及び/またはメタノールである。
より好ましくは、安価に入手でき、また、シリカナノ中空粒子を高い回収率で得ることができるジグライム及び/またはメタノールである。
請求項15の発明に係るシリカ殻からなるナノ中空粒子の製造方法によれば、媒質中に、更にシリコーンオイルを混合したことから、シリコーンオイルによってシリカコーティグ粒子の表面が保護され、シリカ殻の炭酸カルシウム粒子表面への吸着が安定化される。したがって、請求項10乃至請求項14の何れか1つに記載の効果に加えて、生産効率を向上させることができる。また、シリカコーティグ粒子の表面が保護されることから、シリカ殻形成の反応液中において、シリカコーティグ粒子同士の凝集が防止されると共に、炭酸カルシウム粒子を溶解して得られるシリカ殻からなるナノ中空粒子においてもシリコーンオイルによってその表面が保護されるため、凝集が防止される。このため、二次粒子への凝集が一段と少なくて分散性がより高いシリカ殻からなるナノ中空粒子を得ることができる。
請求項16の発明に係るシリカ殻からなるナノ中空粒子の製造方法によれば、前記シリコーンオイルは、アミノ変性シリコーンオイルである。
ここで、本発明者らの鋭意実験研究を積み重ねた結果、アミノ変性シリコーンオイルは、シリカコーティグ粒子表面(シリカ殻)との反応性が高く、アミノ変性シリコーンオイルを使用することで、シリカコーティング粒子形成後の洗浄処理において遠心分離によって目的とするシリカコーティング粒子を沈降分離させやすく、また、炭酸カルシウム溶解後の洗浄処理においても遠心分離によってシリカ殻からなるナノ中空粒子を沈降分離させやすく、シリカ殻からなるナノ中空粒子の回収率を向上させることができ、更に、得られるシリカ殻からなるナノ中空粒子は低い粒度分布となることが明らかになった。
したがって、この発明のシリカ殻からなるナノ中空粒子の製造方法によれば、請求項15に記載の効果に加えて、シリカ殻からなるナノ中空粒子の回収率を向上させることができ、かつ、粒度分布が低いシリカ殻からなるナノ中空粒子を得ることができる。
より好ましくは、側鎖型モノアミン(NH2)変性シリコーンオイルである。
ここで、本発明者らの鋭意実験研究を積み重ねた結果、アミノ変性シリコーンオイルは、シリカコーティグ粒子表面(シリカ殻)との反応性が高く、アミノ変性シリコーンオイルを使用することで、シリカコーティング粒子形成後の洗浄処理において遠心分離によって目的とするシリカコーティング粒子を沈降分離させやすく、また、炭酸カルシウム溶解後の洗浄処理においても遠心分離によってシリカ殻からなるナノ中空粒子を沈降分離させやすく、シリカ殻からなるナノ中空粒子の回収率を向上させることができ、更に、得られるシリカ殻からなるナノ中空粒子は低い粒度分布となることが明らかになった。
したがって、この発明のシリカ殻からなるナノ中空粒子の製造方法によれば、請求項15に記載の効果に加えて、シリカ殻からなるナノ中空粒子の回収率を向上させることができ、かつ、粒度分布が低いシリカ殻からなるナノ中空粒子を得ることができる。
より好ましくは、側鎖型モノアミン(NH2)変性シリコーンオイルである。
請求項17の発明に係るシリカ殻からなるナノ中空粒子の製造方法によれば、前記シリコーンオイルの配合量は、前記シリカ被覆形成工程における配合材料全体に対して、0.2%重量%~3.0重量%の範囲内である。
ここで、本発明者らは、鋭意実験研究の結果、前記シリコーンオイルの配合量を、前記シリカ被覆形成工程における配合材料全体に対して、0.2%重量以上とすることで、シリカ殻からなるナノ中空粒子の回収率が飛躍的に向上すると共に、その粒度分布も顕著に低くなり、一方、3重量%を超えると回収率が低下すると共に、粒度分布が高くなることを見出し、この知見に基づいて本発明を完成させたものである。
よって、この発明のシリカ殻からなるナノ中空粒子の製造方法によれば、請求項15または請求項16に記載の効果に加えて、極めて回収率が高く、かつ、粒度分布が低いシリカ殻からなるナノ中空粒子を得ることができる。
より好ましくは、0.3%重量%~2.0重量%の範囲内であるものである。
ここで、本発明者らは、鋭意実験研究の結果、前記シリコーンオイルの配合量を、前記シリカ被覆形成工程における配合材料全体に対して、0.2%重量以上とすることで、シリカ殻からなるナノ中空粒子の回収率が飛躍的に向上すると共に、その粒度分布も顕著に低くなり、一方、3重量%を超えると回収率が低下すると共に、粒度分布が高くなることを見出し、この知見に基づいて本発明を完成させたものである。
よって、この発明のシリカ殻からなるナノ中空粒子の製造方法によれば、請求項15または請求項16に記載の効果に加えて、極めて回収率が高く、かつ、粒度分布が低いシリカ殻からなるナノ中空粒子を得ることができる。
より好ましくは、0.3%重量%~2.0重量%の範囲内であるものである。
請求項18の発明に係るシリカ殻からなるナノ中空粒子の製造方法によれば、シリカ被覆形成工程において、超音波処理を行ったことから、有機酸被覆炭酸カルシウム粒子が分散され易く互いの凝集がより防止され、かかる粒子が分散されている状態でシリカ殻が形成されてシリカコーティグ粒子においても互いの凝集がより防止される。したがって、請求項10乃至請求項17の何れか1つに記載の効果に加えて、二次粒子への凝集がより少なくて分散性がより高いシリカ殻からなるナノ中空粒子を得ることができる。さらに、超音波によって、炭酸カルシウム表面へシリカ殻が吸着されやすくなっていることから、より生産効率を向上させることができる。
1,100 シリカ殻からなるナノ中空粒子
2 炭酸カルシウム粒子
3 有機酸
4 有機酸被覆炭酸カルシウム粒子
5 ジグライム(有機溶媒)
6 シリコンアルコキシド
7 アンモニア水(塩基触媒)
9 シリカコーティング粒子
101 変性シリコーンオイル
2 炭酸カルシウム粒子
3 有機酸
4 有機酸被覆炭酸カルシウム粒子
5 ジグライム(有機溶媒)
6 シリコンアルコキシド
7 アンモニア水(塩基触媒)
9 シリカコーティング粒子
101 変性シリコーンオイル
以下、本発明の実施の形態について、図面を参照しながら説明する。
なお、各実施の形態において、同一の記号及び同一の符号は同一または相当する機能部分を意味し、各実施の形態相互の同一の記号及び同一の符号は、それら実施の形態に共通する機能部分であるから、ここでは重複する詳細な説明を省略する。
なお、各実施の形態において、同一の記号及び同一の符号は同一または相当する機能部分を意味し、各実施の形態相互の同一の記号及び同一の符号は、それら実施の形態に共通する機能部分であるから、ここでは重複する詳細な説明を省略する。
[実施の形態1]
まず、本発明の実施の形態1に係るシリカ殻からなるナノ中空粒子及びその製造方法について、図1乃至図3を参照して説明する。
図1のフローチャートに示されるように、本実施の形態1に係るシリカ殻からなるナノ中空粒子1の製造方法においては、最初に、有機酸被覆炭酸カルシウム形成工程にて、乾燥粉末状態(乾燥状態の固体微粉末状)の炭酸カルシウム(CaCO3 )粒子2の表面を有機酸3で被覆して乾燥粉末状態の有機酸被覆炭酸カルシウム粒子4を形成する(ステップS1)。
ここで、本実施の形態1においては、乾燥粉末状態の炭酸カルシウム粒子2は、立方体状形態となっており、この炭酸カルシウム粒子2に有機酸3が被覆されてなる有機酸被覆炭酸カルシウム粒子4も、図2(a)に示されるように、立方体状形態である。
まず、本発明の実施の形態1に係るシリカ殻からなるナノ中空粒子及びその製造方法について、図1乃至図3を参照して説明する。
図1のフローチャートに示されるように、本実施の形態1に係るシリカ殻からなるナノ中空粒子1の製造方法においては、最初に、有機酸被覆炭酸カルシウム形成工程にて、乾燥粉末状態(乾燥状態の固体微粉末状)の炭酸カルシウム(CaCO3 )粒子2の表面を有機酸3で被覆して乾燥粉末状態の有機酸被覆炭酸カルシウム粒子4を形成する(ステップS1)。
ここで、本実施の形態1においては、乾燥粉末状態の炭酸カルシウム粒子2は、立方体状形態となっており、この炭酸カルシウム粒子2に有機酸3が被覆されてなる有機酸被覆炭酸カルシウム粒子4も、図2(a)に示されるように、立方体状形態である。
乾燥粉末状態の炭酸カルシウム粒子2には、市販の炭酸カルシウム粒子を購入して使用することができ、例えば、林化成株式会社の粒子炭酸カルシウムや、白石工業株式会社の合成炭酸カルシウム等を使用することができる。
また、例えば、水系で炭酸カルシウム結晶を成長させた後に熟成して脱水する方法で乾燥粉末状態の炭酸カルシウム粒子2を製造し、これを用いることも可能である。この方法で生成する炭酸カルシウムの結晶はカルサイトであり六方晶系であるが、合成条件を制御することにより、あたかも立方晶系であるかのような形状、即ち「立方体状形態」に成長させることができる。なお、水系で結晶を成長させる方法としては、特段に限定されるものではなく、水酸化カルシウムのスラリーに炭酸ガスを導入して炭酸カルシウムを沈殿させる方法や、塩化カルシウムなどの可溶性カルシウム塩の水溶液に炭酸ナトリウムなどの可溶性炭酸塩を添加して炭酸カルシウムを沈殿させる方法などが適用できる。この際、後述するように目的とする外径が8nm~200nmの範囲内である炭酸カルシウム粒子2を得るには、比較的低温でかつ炭酸カルシウムの沈殿反応の速度を速めることが望ましい。例えば、水酸化カルシウムスラリーに炭酸ガスを導入する方法においては、炭酸ガスを導入する際の液温を30℃以下とし、また炭酸ガスを導入する速度を、水酸化カルシウム100g当り、1.0L/min以上とすることが好適である。
なお、乾燥粉末状態の炭酸カルシウム粒子2の大きさは、顕微鏡法により測定した外径が8nm~200nmの範囲内であることが好ましい。これによって、最終的に得られるシリカナノ中空粒子1の顕微鏡法により測定した外径を30nm~300nmの範囲内とすることができる。
また、例えば、水系で炭酸カルシウム結晶を成長させた後に熟成して脱水する方法で乾燥粉末状態の炭酸カルシウム粒子2を製造し、これを用いることも可能である。この方法で生成する炭酸カルシウムの結晶はカルサイトであり六方晶系であるが、合成条件を制御することにより、あたかも立方晶系であるかのような形状、即ち「立方体状形態」に成長させることができる。なお、水系で結晶を成長させる方法としては、特段に限定されるものではなく、水酸化カルシウムのスラリーに炭酸ガスを導入して炭酸カルシウムを沈殿させる方法や、塩化カルシウムなどの可溶性カルシウム塩の水溶液に炭酸ナトリウムなどの可溶性炭酸塩を添加して炭酸カルシウムを沈殿させる方法などが適用できる。この際、後述するように目的とする外径が8nm~200nmの範囲内である炭酸カルシウム粒子2を得るには、比較的低温でかつ炭酸カルシウムの沈殿反応の速度を速めることが望ましい。例えば、水酸化カルシウムスラリーに炭酸ガスを導入する方法においては、炭酸ガスを導入する際の液温を30℃以下とし、また炭酸ガスを導入する速度を、水酸化カルシウム100g当り、1.0L/min以上とすることが好適である。
なお、乾燥粉末状態の炭酸カルシウム粒子2の大きさは、顕微鏡法により測定した外径が8nm~200nmの範囲内であることが好ましい。これによって、最終的に得られるシリカナノ中空粒子1の顕微鏡法により測定した外径を30nm~300nmの範囲内とすることができる。
また、有機酸3としては、乾燥粉末状態の炭酸カルシウム粒子2を被覆することによって、シリカ殻を形成する過程において、炭酸カルシウム粒子2同士の凝集を防止できるものであればよく、例えば、ロジン酸等のアルカリ性石鹸等が使用される。
そして、乾燥粉末状態の有機酸被覆炭酸カルシウム粒子4は、例えば、市販の乾燥粉末状態の炭酸カルシウム粒子2に有機酸3を混合したり、水酸化カルシウム懸濁液に炭酸源を添加(吹き込み)後、有機酸3を添加したりすること等によって作製(形成)することができる。
続いて、シリカ被覆形成工程にて、有機酸被覆炭酸カルシウム粒子4における有機酸3の一部を溶解可能な有機溶媒としてのジグライム(ジエチレングリコールジメチルエーテル)5に、有機酸被覆炭酸カルシウム粒子4を分散させて(ステップS2a)、有機酸被覆炭酸カルシウム粒子4における有機酸3の一部を溶解し、更に、シリコンアルコキシド6、塩基触媒としてのアンモニア(NH4OH)水8、及び、水7を混合して(ステップS2b)、ゾル-ゲル法により炭酸カルシウム粒子2にシリカ(SiO2 )1bをコーティングし、シリカコーティング粒子9とする(ステップS2)。
このとき、本実施の形態1においては、有機酸被覆炭酸カルシウム粒子4(有機酸3の一部が溶解したものも含む)を十分に分散させながらゾル-ゲル法によるシリカ殻1bの形成を行うために超音波(周波数:20KHz~40KHz)をかけながら反応させた。なお、超音波照射に使用する装置としては、溶液に超音波ホーンを直接入れる形式(UH-600S 周波数 20KHz/(株)エスエムテー、SONIFIER 4020-800 周波数 40KHz/BRANSON)のものや、溶液を循環させる形式(UH-600SR 周波数 20KHz/(株)エスエムテー)のものや、溶液を入れた容器を外から間接的に照射するバス型(超音波洗浄機型)形式のもの等が使用できる。
このとき、本実施の形態1においては、有機酸被覆炭酸カルシウム粒子4(有機酸3の一部が溶解したものも含む)を十分に分散させながらゾル-ゲル法によるシリカ殻1bの形成を行うために超音波(周波数:20KHz~40KHz)をかけながら反応させた。なお、超音波照射に使用する装置としては、溶液に超音波ホーンを直接入れる形式(UH-600S 周波数 20KHz/(株)エスエムテー、SONIFIER 4020-800 周波数 40KHz/BRANSON)のものや、溶液を循環させる形式(UH-600SR 周波数 20KHz/(株)エスエムテー)のものや、溶液を入れた容器を外から間接的に照射するバス型(超音波洗浄機型)形式のもの等が使用できる。
ここで、本実施の形態1においては、有機溶媒としてジグライムを使用したが、本発明を実施する場合には、有機溶媒としては、有機酸被覆炭酸カルシウム粒子4における有機酸3を一部溶解でき、かつ、シリコンアルコキシド6及び水7に対して溶解可能で、更に、シリコンアルコキシド6の加水分解を促進可能なものであればよい。なお、有機溶媒としてより好ましくは、有機酸被覆炭酸カルシウム粒子4における有機酸3に対して20%~50%の溶解性があるものである。
また、炭酸カルシウム粒子2の表面に、ゾル-ゲル法でシリカ殻1bをコーティングするためのシリコンアルコキシド6としては、テトラエトキシシラン(TEOS)を始めとする種々のシリコンアルコキシドを用いることができ、より具体的には、例えば多摩化学工業株式会社のエチルシリケート(製品名「高純度正珪酸エチル」:テトラエトキシシラン(TEOS))、信越化学工業株式会社の機能性シランの中のアルコキシシラン(製品名「KBE-04」:テトラエトキシシラン(TEOS))、等を使用することができる。
なお、本発明を実施する場合には、塩基触媒としてその他にも、例えば、アミン類等を使用することも可能である。しかし、反応効率の良さ、価格面、入手しやすさ、扱いやすさ等を考慮すると、塩基触媒としてはアンモニアが最適であり、塩基触媒としてアンモニアを使用することで、確実にしかも効率よく、シリコンアルコキシド6と水7とを反応させてSiO2 分子が重縮合したシリカを析出させ、炭酸カルシウム粒子2にシリカ殻1bを形成させることが可能である。
なお、本発明を実施する場合には、塩基触媒としてその他にも、例えば、アミン類等を使用することも可能である。しかし、反応効率の良さ、価格面、入手しやすさ、扱いやすさ等を考慮すると、塩基触媒としてはアンモニアが最適であり、塩基触媒としてアンモニアを使用することで、確実にしかも効率よく、シリコンアルコキシド6と水7とを反応させてSiO2 分子が重縮合したシリカを析出させ、炭酸カルシウム粒子2にシリカ殻1bを形成させることが可能である。
次に、このようにして形成されたシリカコーティング粒子9を洗浄した(ステップS3a)後に、水に分散させる(ステップS3b)。そして、炭酸カルシウム溶解工程にて、酸処理として塩酸10を添加して(ステップS3c)内部の炭酸カルシウム2を溶解させて流出させる(ステップS3)。最後に、水洗浄(ステップS4a)を行った後、乾燥(ステップS4b)させる。これによって、立方体状形態のシリカ殻からなるナノ中空粒子1が製造される。
なお、上記炭酸カルシウム溶解工程(ステップS3)においては、酸処理による分散系の水素イオン濃度指数をpH5以下とすることが好まししい。分散系の水素イオン濃度指数がpH5を上回った状態においては、内部の炭酸カルシウム粒子2を完全に溶解させることが困難だからである。因みに、本発明を実施する場合には、酸処理としてその他にも、例えば、硝酸、酢酸、クエン酸等の酸を用いることも可能である。
なお、上記炭酸カルシウム溶解工程(ステップS3)においては、酸処理による分散系の水素イオン濃度指数をpH5以下とすることが好まししい。分散系の水素イオン濃度指数がpH5を上回った状態においては、内部の炭酸カルシウム粒子2を完全に溶解させることが困難だからである。因みに、本発明を実施する場合には、酸処理としてその他にも、例えば、硝酸、酢酸、クエン酸等の酸を用いることも可能である。
このようにして製造されたシリカ殻からなるナノ中空粒子1の中空部分1aの内径は、コア粒子としての炭酸カルシウム粒子2の外径である8nm~200nmであり、シリカ殻1bの厚さは1nm~5nm、厚くても5nm~30nm前後であるため、シリカ殻からなるナノ中空粒子1の透過型電子顕微鏡法(TEM:JEOL JEM 2000 FX/日本電子(株)により測定)による外径(一次粒子径)は30nm~300nmとなり、その粒子内包空間体積率は30%~80%となる。なお、断熱性や透明性等の観点からすると、好ましくは、40%~75%である。念のため、本実施の形態1に係るシリカ殻からなるナノ中空粒子1の透過型電子顕微鏡による写真を図2(b)に示す。
そして、このようにして得られたシリカ殻からなるナノ中空粒子1は、静的光散乱法(ZETASIZER 3000HSA/Malvern Instrument Ltdにより測定)による粒子径が30nm~800nmで、水銀圧入法(水銀ポロシメーター:PASCAL140、PASCAL240(FISONS Instruments)により測定)またはガス吸着法(ここでは、窒素ガス)により測定される細孔分布(Autosorb-1/Quantachrome Corp)において2~20nmの細孔が検出されないものとなっており、二次粒子への凝集が少なくて、分散性が高いものであった。
これは、炭酸カルシウム粒子2にシリカ殻1bが形成される過程において、炭酸カルシウム同士の凝集が防止されたためである。
即ち、乾燥粉末状態の炭酸カルシウム粒子2の表面を有機酸3で被覆した有機酸被覆炭酸カルシウム粒子4を有機溶媒としてのジグライム5に分散させることで、有機酸被覆炭酸カルシウム粒子4における有機酸3の一部が溶解し、溶解によって表出した炭酸カルシウム粒子2の表面と有機溶媒としてのジグライム5とが相互作用して炭酸カルシウム粒子2の表面に有機溶媒としてのジグライム5が被覆され、更に、これに、シリコンアルコキシド6及び塩基触媒としてのアンモニア水8を混合することで、シリコンアルコキシド6と炭酸カルシウム粒子2の表面を被覆した状態の有機溶媒としてのジグライム5とが相互作用し、これら炭酸カルシウム-有機溶媒、有機溶媒-シリコンアルコキシドの錯体形成により、シリコンアルコキシド6の加水分解によって生じたSiO2 分子が重縮合したシリカ殻1bの炭酸カルシウム粒子2表面全体への形成が促進される。このため、本発明によれば、炭酸カルシウム粒子2にシリカ殻1bが形成される過程において、炭酸カルシウム粒子2が剥き出しとなって水分を吸収してしまうことによる炭酸カルシウム粒子2同士の凝集が防止され、得られるシリカ殻からなるナノ中空粒子1は、分散性が高いものとなる。
これは、炭酸カルシウム粒子2にシリカ殻1bが形成される過程において、炭酸カルシウム同士の凝集が防止されたためである。
即ち、乾燥粉末状態の炭酸カルシウム粒子2の表面を有機酸3で被覆した有機酸被覆炭酸カルシウム粒子4を有機溶媒としてのジグライム5に分散させることで、有機酸被覆炭酸カルシウム粒子4における有機酸3の一部が溶解し、溶解によって表出した炭酸カルシウム粒子2の表面と有機溶媒としてのジグライム5とが相互作用して炭酸カルシウム粒子2の表面に有機溶媒としてのジグライム5が被覆され、更に、これに、シリコンアルコキシド6及び塩基触媒としてのアンモニア水8を混合することで、シリコンアルコキシド6と炭酸カルシウム粒子2の表面を被覆した状態の有機溶媒としてのジグライム5とが相互作用し、これら炭酸カルシウム-有機溶媒、有機溶媒-シリコンアルコキシドの錯体形成により、シリコンアルコキシド6の加水分解によって生じたSiO2 分子が重縮合したシリカ殻1bの炭酸カルシウム粒子2表面全体への形成が促進される。このため、本発明によれば、炭酸カルシウム粒子2にシリカ殻1bが形成される過程において、炭酸カルシウム粒子2が剥き出しとなって水分を吸収してしまうことによる炭酸カルシウム粒子2同士の凝集が防止され、得られるシリカ殻からなるナノ中空粒子1は、分散性が高いものとなる。
また、本実施の形態1に係るシリカ殻からなるナノ中空粒子1は、このように、乾燥粉末状態の炭酸カルシウム粒子2の表面を有機酸3で被覆した乾燥粉末状態の有機酸被覆炭酸カルシウム粒子4を用いていて原料の変質が起こりにくいため、原料の品質管理にコストが掛からない。したがって、低コスト化が可能である。また、原料の変質が起こりにくいため、生産効率や量産性を向上させることが可能である。
ここで、更に、乾燥粉末状態の有機酸被覆炭酸カルシウム粒子4とシリコンアルコキシド6の重量比や、塩基触媒の量がシリカナノ中空粒子1の粒子形態に及ぼす影響について調べるため、係る配合比や濃度を様々変えて実施例1乃至実施例5とし、製造試験を実施した。また、比較のために、比較例1及び比較例2の各配合による製造試験も実施した。実施例1乃至実施例6、比較例1及び比較例2の各配合内容を表1に示す。
なお、ここでは、有機酸被覆炭酸カルシウム粒子4として、白石工業(株)のロジン酸被覆炭酸カルシウム粒子(製品名「ホモカルD(一次粒子径:80nm)」、また、シリコンアルコキシド6として、テトラエトキシシラン(TEOS)(製品名「KBE-04」)、さらに、塩基触媒としてアンモニア水8を使用した。配合比は、いずれも重量部で表されている。
なお、ここでは、有機酸被覆炭酸カルシウム粒子4として、白石工業(株)のロジン酸被覆炭酸カルシウム粒子(製品名「ホモカルD(一次粒子径:80nm)」、また、シリコンアルコキシド6として、テトラエトキシシラン(TEOS)(製品名「KBE-04」)、さらに、塩基触媒としてアンモニア水8を使用した。配合比は、いずれも重量部で表されている。
そして、これらの各配合内容で図1のフローチャートにしたがって製造されたものについて、走査型電子顕微鏡(SEM:JSM-7600F/日本電子(株)により測定)による写真を図3に示す。
図3に示されるよう、実施例1乃至実施例5から、テトラエトキシシラン(TEOS)/ロジン酸被覆炭酸カルシウムの配合比が、1.2~0.6の範囲内においては、中空構造で立方体状形態の面にシリカ殻が形成されたものが確実に得られるのに対し、比較例1及び比較例2から、テトラエトキシシラン(TEOS)/ロジン酸被覆炭酸カルシウムの配合比が0.5以下では、塩基触媒としてのアンモニア水の量が少ないと、立方体状形態の粒子構造が得られない場合がある。
なお、本発明者らの実験研究によれば、テトラエトキシシラン(TEOS)/ロジン酸被覆炭酸カルシウムの配合比が1.3を超えると、未反応のテトラエトキシシラン(TEOS)が多くなって回収に手間がかかるようになったり、また、シリカコーティング後の洗浄(ステップS3a)の際に、シリカコーティング粒子6が凝集しやすくなったりすることが確認されている。
このため、分散性が高くシリカ殻が均一に形成された立方体状形態のシリカナノ中空粒子1を確実に製造するためには、テトラエトキシシラン(TEOS)/ロジン酸被覆炭酸カルシウムの配合比を0.6~1.3の範囲内とすることが好ましく、より好ましくは、0.6~1.2の範囲内である。
図3に示されるよう、実施例1乃至実施例5から、テトラエトキシシラン(TEOS)/ロジン酸被覆炭酸カルシウムの配合比が、1.2~0.6の範囲内においては、中空構造で立方体状形態の面にシリカ殻が形成されたものが確実に得られるのに対し、比較例1及び比較例2から、テトラエトキシシラン(TEOS)/ロジン酸被覆炭酸カルシウムの配合比が0.5以下では、塩基触媒としてのアンモニア水の量が少ないと、立方体状形態の粒子構造が得られない場合がある。
なお、本発明者らの実験研究によれば、テトラエトキシシラン(TEOS)/ロジン酸被覆炭酸カルシウムの配合比が1.3を超えると、未反応のテトラエトキシシラン(TEOS)が多くなって回収に手間がかかるようになったり、また、シリカコーティング後の洗浄(ステップS3a)の際に、シリカコーティング粒子6が凝集しやすくなったりすることが確認されている。
このため、分散性が高くシリカ殻が均一に形成された立方体状形態のシリカナノ中空粒子1を確実に製造するためには、テトラエトキシシラン(TEOS)/ロジン酸被覆炭酸カルシウムの配合比を0.6~1.3の範囲内とすることが好ましく、より好ましくは、0.6~1.2の範囲内である。
このように本実施の形態1に係るシリカ殻からなるナノ中空粒子1は、30nm~300nmの範囲内の外径を有し、水銀圧入法またはガス吸着法により測定される細孔分布において2nm~20nmの細孔が検出されないシリカ殻からなるナノ中空粒子であって、所定の大きさの外径を有する乾燥粉末状態の炭酸カルシウム粒子2の表面を有機酸3で被覆してなる乾燥粉末状態の有機酸被覆炭酸カルシウム粒子4を、有機酸被覆炭酸カルシウム粒子4における有機酸3の一部を溶解可能な有機溶媒としてのジグライム5に分散させ、更に、シリコンアルコキシド6と塩基触媒としてのアンモニア水8と水7を混合し、炭酸カルシウム粒子2の表面にシリカ殻1bを形成してシリカコーティング粒子9とし、その後、このシリカコーティング粒子9の内部における炭酸カルシウム2を酸処理としての塩酸10によって溶解させてなるものである。
また、本実施の形態1に係るシリカ殻からなるナノ中空粒子1の製造方法は、30nm~300nmの範囲内の外径を有し、水銀圧入法またはガス吸着法により測定される細孔分布において2nm~20nmの細孔が検出されないシリカ殻からなるナノ中空粒子の製造方法であって、所定の大きさの外径を有する乾燥粉末状態の炭酸カルシウム粒子2の表面を有機酸3で被覆して有機酸被覆炭酸カルシウム粒子4とする有機酸被覆炭酸カルシウム形成工程(ステップS1)と、有機酸被覆炭酸カルシウム粒子4における有機酸3の一部を溶解可能な有機溶媒としてのジグライム5に有機酸被覆炭酸カルシウム粒子4を分散させ、さらに、シリコンアルコキシド6と塩基触媒としてのアンモニア水8と水7を混合して、炭酸カルシウム粒子2の表面にシリカ殻1bを形成してシリカコーティング粒子9とするシリカ被覆形成工程(ステップS2)と、シリカコーティング粒子9の内部における炭酸カルシウム2を酸処理としての塩酸10によって溶解させる炭酸カルシウム溶解工程と(ステップS3)とを具備するものである。
このようにして、乾燥粉末状態の炭酸カルシウム粒子2の表面を有機酸3で被覆してなる有機酸被覆炭酸カルシウム粒子4を有機溶媒としてのジグライム5に分散し、ゾルゲル法によってシリカ殻1bを形成することによって、炭酸カルシウム粒子2にシリカ殻1bを形成する過程において炭酸カルシウム粒子2同士の凝集が防止される。これによって、二次粒子への凝集が少なくて、分散性が高いシリカ殻からなるナノ中空粒子1及びその製造方法となる。また、乾燥粉末状態の炭酸カルシウム粒子2の表面を有機酸3で被覆した有機酸被覆炭酸カルシウム粒子4が使用されるため、原料の変質が少なくて品質管理のコストもかからず、低コスト化及び生産効率の向上を図ることができる。
特に、本実施の形態1に係るシリカ殻からなるナノ中空粒子1及びその製造方法によれば、上述の如く、シリカコーティング粒子9を形成する過程において超音波処理を行ったことから、有機酸被覆炭酸カルシウム粒子4が分散され易くて互いの凝集がより防止されていることになる。また、かかる粒子が分散されている状態でシリカ殻1bが形成されてシリカコーティング粒子9となる際にも互いの凝集がより防止されることになる。したがって、二次粒子への凝集が一段と少なくて分散性が更に高いものとなる。加えて、超音波によって、炭酸カルシウム粒子2の表面にシリカ殻1bが吸着されやすくなっていることから、反応効率が高い。よって、生産効率を向上させることが可能である。
そして、このようにシリカ殻からなるナノ中空粒子1は、中空でシリカ殻1bが20nm以下と薄く、顕微鏡法により測定した外径が30nm~300nmの範囲内であり、さらに、分散性が高いため、断熱性、及び、透明性・透光性に優れるものである。
特に、本実施の形態1においては、図2(a)に示したように、乾燥粉末状態の炭酸カルシウム粒子2が立方体状形態となっているため、炭酸カルシウム粒子2の表面にシリコンアルコキシド6の加水分解反応によって生成するシリカを析出させる際に、析出したシリカ層も立方体状形態となり、シリカ層内部の炭酸カルシウムを溶解させて得られるシリカ殻からなるナノ中空粒子1も、炭酸カルシウム粒子2の立方体状形態が転写されて立方体状形態となる。したがって、本実施の形態1に係るシリカ殻からなるナノ中空粒子1によれば、その形状が、中空で立方体状形態であるために、図4に示されるように球形体状形態の中実粒子よりも、光が透過し易く、また、球形体状形態の中空粒子よりも、入射した光の屈折が起こりにくく(低屈折率)、透明性・透光性(光透過性)が高いものとなる。また、樹脂や塗料等の目的物に混入する際には、球状のものよりもその充填率を高めることができる。
なお、光の高拡散を図るためには、凝集体とすることが好ましい。殊に、シリカナノ中空粒子1は立方体状形態であるため、図4に示されるように、凝集体の構造においても透明性・透光性(光透過性)が高いものとなる。
特に、本実施の形態1においては、図2(a)に示したように、乾燥粉末状態の炭酸カルシウム粒子2が立方体状形態となっているため、炭酸カルシウム粒子2の表面にシリコンアルコキシド6の加水分解反応によって生成するシリカを析出させる際に、析出したシリカ層も立方体状形態となり、シリカ層内部の炭酸カルシウムを溶解させて得られるシリカ殻からなるナノ中空粒子1も、炭酸カルシウム粒子2の立方体状形態が転写されて立方体状形態となる。したがって、本実施の形態1に係るシリカ殻からなるナノ中空粒子1によれば、その形状が、中空で立方体状形態であるために、図4に示されるように球形体状形態の中実粒子よりも、光が透過し易く、また、球形体状形態の中空粒子よりも、入射した光の屈折が起こりにくく(低屈折率)、透明性・透光性(光透過性)が高いものとなる。また、樹脂や塗料等の目的物に混入する際には、球状のものよりもその充填率を高めることができる。
なお、光の高拡散を図るためには、凝集体とすることが好ましい。殊に、シリカナノ中空粒子1は立方体状形態であるため、図4に示されるように、凝集体の構造においても透明性・透光性(光透過性)が高いものとなる。
ここで、このような優れた分散性を有して断熱性及び透明性・透光性の高いシリカナノ中空粒子1の応用分野について、主に、図5乃至図9を参照して説明する。
まず、シリカナノ中空粒子1の断熱性や透明性を利用した応用分野としては、シリカナノ中空粒子1を塗料中に分散してなる断熱塗料や、透明合成樹脂フィルムの片面に金属を蒸着して他方の面に上記断熱塗料を均一に塗布してなる断熱フィルムや、合成樹脂中にシリカナノ中空粒子1を混入してこれをフィルムに加工してなる断熱フィルム等、殊に、シリカナノ中空粒子1の透明性を生かした透明断熱塗膜を形成するための透明断熱塗料や透明断熱フィルムが挙げられる。そして、これら(透明)断熱塗料や(透明)断熱フィルムは、例えば、家庭の窓ガラス、自動車の窓ガラス、オフィスビルの窓ガラス等へ使用することができる。
図5(a)に示されるように、家庭用の窓ガラス等に使用されてきた従来の断熱フィルムは、PET(ポリエチレンテレフタラート)樹脂等からなる20μm~30μmの厚さのフィルムに、金、銀等の金属やITO(Indium Tin Oxide)等を蒸着して、蒸着した側を窓ガラスの内側に貼り付けることによって、太陽光線を反射して遮熱を図るものであった。このため、太陽光線は、ガラス表面で4%~5%が反射し、さらに従来の断熱フィルムの金属蒸着膜(厚さ数十nm)で近赤外線が反射されるが、その間に近赤外線(熱線)がガラスに吸収され、熱貫流となって両面の熱伝導率の差にしたがって内外両面に放散することになり、従来においては両面の熱伝導率の差がなかったため内部にも熱が放散され、十分な断熱効果は得られなかった。また、冬場においては、内部(室内等)の熱の流出を抑える効果も不十分であった。
そこで、図5(a)に示されるように、シリカナノ中空粒子1を混入してなる断熱フィルム20(透明合成樹脂フィルムの片面に金属を蒸着して他方の面にシリカナノ中空粒子1を混入させた断熱塗料を均一に塗布してなる断熱フィルム等)を使用することで、シリカナノ中空粒子1の断熱性が発揮され、両面の表面の熱伝導率の差が大きくなり、ガラスに吸収された熱が外部へ放出されるため、優れた断熱性を得ることができる。また、冬場においては、内部(室内等)の熱の流出を十分に抑えることが可能となる。
因みに、本発明者らの実験研究によって、シリカナノ中空粒子1を合成樹脂(ポリエステル樹脂)に固形分で約10%配合したもの(シリカナノ中空粒子含有樹脂)と、合成樹脂(ポリエステル樹脂)の熱伝導率を比較すると、図5(b)に示されるように、シリカナノ中空粒子含有樹脂の熱伝導率は、樹脂単独の熱伝導率の半分以下となることが確認されている。
なお、このシリカナノ中空粒子1は、顕微鏡法により測定した外径が30nm~300nmの範囲内と極めて小さい粒子径を有しており、さらに、分散性が高いため、フィルム等に混入する場合でもその膜厚を10μm以下と薄くすることができ、そのように薄い膜厚のものであっても十分な断熱効果を得ることができる。
なお、このシリカナノ中空粒子1は、顕微鏡法により測定した外径が30nm~300nmの範囲内と極めて小さい粒子径を有しており、さらに、分散性が高いため、フィルム等に混入する場合でもその膜厚を10μm以下と薄くすることができ、そのように薄い膜厚のものであっても十分な断熱効果を得ることができる。
また、図6に示されるように、自動車30用の窓ガラス31には、その内側に多層干渉膜が構成されており、ガラスと屈折率の異なる薄い多層膜を形成することによって、膜の表面と裏面の反射干渉を利用して、透過させたい波長以外の波長の光を反射させている。この多層干渉膜は金属蒸着や金属スパッタリングを使用する必要がないため、カーナビゲーションシステムやETC(Electronic Toll Collection System)車載器等を自動車に搭載している場合に、無線電波障害を起こさないという特徴を有する。しかし、ガラスが熱線を吸収する点については上記と同様であり、自動車30においては、特に夏季における太陽光線による車内温度の上昇という重大な問題がある。
そこで、図6(b)の拡大断面図に示されるように、一番内側のPET層の内側にシリカナノ中空粒子1を混入してなる透明断熱フィルム33(合成樹脂中にシリカナノ中空粒子1を混入してこれをフィルムに加工してなる断熱フィルム等)を貼り付けることによって、可視光線の透過率を低下させることなくガラス31に吸収された熱を外部へ効率良く放出することができ、優れた断熱性を得ることができる。また、冬場においては、車内等の熱の流出を十分に抑えることが可能となる。
そこで、図6(b)の拡大断面図に示されるように、一番内側のPET層の内側にシリカナノ中空粒子1を混入してなる透明断熱フィルム33(合成樹脂中にシリカナノ中空粒子1を混入してこれをフィルムに加工してなる断熱フィルム等)を貼り付けることによって、可視光線の透過率を低下させることなくガラス31に吸収された熱を外部へ効率良く放出することができ、優れた断熱性を得ることができる。また、冬場においては、車内等の熱の流出を十分に抑えることが可能となる。
さらに、フロントガラス32においては、異物等が衝突して割れた場合にガラス破片の飛散を防止するために、強化ガラスとしてのペアガラス(合わせガラス)を使用することが義務付けられている。図6(c)の拡大断面図に示されるように、この合わせガラスは、2枚のガラスの間に接着剤としてのポリビニルブチラール(PVB)を挟んで貼り合わせたもので、割れた場合にガラス破片の飛散を防止するだけでなく、耐貫通性に優れているため、事故の場合に乗員がフロントガラス32を突き破って飛び出すのを防ぐことができる。
しかしながら、上記同様、従来のフロントガラス32では、熱線である赤外線の透過率は低いものの、太陽光線によって温められたフロントガラス32の外表面から内部に熱貫流が生じて、自動車30内部の温度を上昇させていた。
そこで、図6(c)の拡大断面図に示されるように、シリカナノ中空粒子1を多量に混入したペアガラス中間層(断熱膜)34を、フロントガラス(ペアガラス)32内に設けることによって、シリカナノ中空粒子1の断熱性が発揮されて、フロントガラス32の外表面から内部への熱貫流が遮断され、自動車30の内部の温度上昇を顕著に低減することができ、優れた断熱性を得ることができる。また、冬場においては、車内の熱の流出を十分に抑えることが可能となる。
しかしながら、上記同様、従来のフロントガラス32では、熱線である赤外線の透過率は低いものの、太陽光線によって温められたフロントガラス32の外表面から内部に熱貫流が生じて、自動車30内部の温度を上昇させていた。
そこで、図6(c)の拡大断面図に示されるように、シリカナノ中空粒子1を多量に混入したペアガラス中間層(断熱膜)34を、フロントガラス(ペアガラス)32内に設けることによって、シリカナノ中空粒子1の断熱性が発揮されて、フロントガラス32の外表面から内部への熱貫流が遮断され、自動車30の内部の温度上昇を顕著に低減することができ、優れた断熱性を得ることができる。また、冬場においては、車内の熱の流出を十分に抑えることが可能となる。
加えて、図7に示されるように、高層ビル40において、大通りに面した壁面の大部分をガラス張りとすることも行われているが、かかる窓ガラス41としても強化ガラスとしてのペアガラスが用いられている。このような高層ビル40用の窓ガラス41としても、図7(b)の拡大断面図に示されるように、ポリビニルブチラール(PVB)にシリカナノ中空粒子1を多量に混入した中間層(断熱膜)42を、ペアガラス41内に設けることによって、シリカナノ中空粒子1の断熱性が発揮されて、窓ガラス41の外表面から内部への熱貫流が遮断され、高層ビル40の室内の温度上昇を顕著に低減でき、優れた断熱性を得ることができる。また、同じく、冬場においては、室内等の熱の流出を十分に抑えることが可能となる。
そして、このように、シリカナノ中空粒子1の断熱性を利用した断熱フィルム、断熱塗料等のガラス等への使用によって、夏場は内部(室内、車内等)の温度上昇が抑制されると共に、冬場は内部(室内、車内等)の熱の流出が抑えられるため、冷暖房等の省エネ効果を図ることができ、特に、自動車においては、燃費や電費の向上が期待できる。
また、高層ビルや家庭用の窓ガラスとして、断熱性を有する複層ガラスも開発されているが、サッシが重くなる、価格が高くなる等の問題がある。しかし、シリカナノ中空粒子1の断熱性を利用した断熱フィルム等を単板ガラスに貼付することによって、軽量かつシンプルな構造での断熱効果を期待でき、既存のガラス等への対応も可能で低コスト化にも繋がる。
また、高層ビルや家庭用の窓ガラスとして、断熱性を有する複層ガラスも開発されているが、サッシが重くなる、価格が高くなる等の問題がある。しかし、シリカナノ中空粒子1の断熱性を利用した断熱フィルム等を単板ガラスに貼付することによって、軽量かつシンプルな構造での断熱効果を期待でき、既存のガラス等への対応も可能で低コスト化にも繋がる。
次に、本実施の形態1に係るシリカナノ中空粒子1の透明性や光透過性を利用した応用分野としては、LED拡散板・導光板用反射ドットへの使用が挙げられる。
ディスプレイの光源には、バックライト式とサイドライト(導光板)式があるが、薄型化や低価格化のためにはサイドライト式が有効である。そして、従来においては、そのLED拡散板・導光板用反射ドットに中実粒子が混合されていた。
しかし、図4及び図8(a),(b),(c)に示されるように、従来の中実粒子では、中実であるがためにLED光源の光を殆ど透過せずに光の散乱や減衰を生じさせ、輝度や光量を低下させていた。
このため、特に大型ディスプレイ用では、十分な輝度を得るために導光板を厚くしたり、拡散板の数を多くしたりする必要がある。
ディスプレイの光源には、バックライト式とサイドライト(導光板)式があるが、薄型化や低価格化のためにはサイドライト式が有効である。そして、従来においては、そのLED拡散板・導光板用反射ドットに中実粒子が混合されていた。
しかし、図4及び図8(a),(b),(c)に示されるように、従来の中実粒子では、中実であるがためにLED光源の光を殆ど透過せずに光の散乱や減衰を生じさせ、輝度や光量を低下させていた。
このため、特に大型ディスプレイ用では、十分な輝度を得るために導光板を厚くしたり、拡散板の数を多くしたりする必要がある。
そこで、図8(a)の右側図に示されるように、拡散板の上面にシリカナノ中空粒子1を印刷したり、図8(b)の右側図に示されるように、導光板上面にシリカナノ中空粒子1を混合した導光板用反射ドットを印刷したり、図8(c)の右側図に示されるように、導光板下面にシリカナノ中空粒子を混合した導光板用反射ドットを印刷したりすることによって、シリカナノ中空粒子1の透明性や中空構造による光透過性が発揮されて、効率よくLED光源を透過させることができ(光を取り出すことができ)、輝度や光量を増大できる。そして、これにより、図8(b)の右側図に示されるように、導光板の厚さを薄くしたり、拡散板の数を少なくしたりすることができ、デバイスの薄型化や、軽量化や、低価格化が期待できる。また、従来の冷極陰管を用いた導光板と同等以上の輝度や光量を得ることも可能となるため、消費電力の低下が期待できる。更に、シリカナノ中空粒子1の凝集を制御することで、光源を効率よく拡散反射させることができ、照明用途として必要な広域拡散光を得ることも可能である(図4参照)。
加えて、図8(d)に示されるように、LEDライトを使用したフラット照明器具において導光板用アクリル板の拡散制御ドットや拡散シートにシリカナノ中空粒子1を混合しても、上記と同様の効果が期待できる。
加えて、図8(d)に示されるように、LEDライトを使用したフラット照明器具において導光板用アクリル板の拡散制御ドットや拡散シートにシリカナノ中空粒子1を混合しても、上記と同様の効果が期待できる。
さらに、シリカナノ中空粒子1の透明性や光透過性を利用した応用分野としては、蛍光灯やLEDライト等の照明器具への使用が挙げられる。
従来の蛍光灯は、真空管内の水銀蒸気中で紫外線を発生させ、かかる紫外線を管表面に塗布した蛍光体塗料に衝突させることで可視光に変換させて光源とするものであり、広域の拡散光が得られるものである。そして、従来においては、この蛍光体塗料に中実粒子が混合されていた。
しかし、図9(a)の左側図に示されるように、従来の中実粒子では、上述と同様に、中実であるがために紫外線や蛍光体粒子に衝突して変換された可視光を透過せずに減衰させてしまい、輝度や光量等の発光効率を低下させていた。
従来の蛍光灯は、真空管内の水銀蒸気中で紫外線を発生させ、かかる紫外線を管表面に塗布した蛍光体塗料に衝突させることで可視光に変換させて光源とするものであり、広域の拡散光が得られるものである。そして、従来においては、この蛍光体塗料に中実粒子が混合されていた。
しかし、図9(a)の左側図に示されるように、従来の中実粒子では、上述と同様に、中実であるがために紫外線や蛍光体粒子に衝突して変換された可視光を透過せずに減衰させてしまい、輝度や光量等の発光効率を低下させていた。
そこで、図9(a)の右側図に示されるように、シリカナノ中空粒子1を管表面に塗布される蛍光体塗料に混合することによって、または蛍光体や量子ドッドを含有した中空粒子を管表面に塗布することで、より具体的には、図9(b)に示されるように、量子ドットをシリカ殻に内包したシリカナノ中空粒子1や、蛍光体や量子ドットを表面に被覆させたり内部に取り入れたりした2層構造のシリカナノ中空粒子1を管表面に塗布することで、シリカナノ中空粒子1の透明性や光透過性が発揮され、効率よく紫外線や蛍光体に衝突して変換された可視光を透過して、輝度や光量等の発光効率を増大させることができる。さらに、シリカナノ中空粒子1の凝集を制御することで、光源を効率よく拡散反射させて光の拡散性を調整し、広域拡散光を得ることも可能である。
また、蛍光灯が広域拡散光であるのに対し、従来のLEDライトは、点発光(スポット照射光)であるため、直管型や電球型に隙間なくLEDチップを配列させなければならず、価格や消費電力が高いという問題点があった。
そこで、図9(c)に示すように、LED照明の表面にシリカナノ中空粒子1を塗布することで、シリカナノ中空粒子1の光透過性が発揮され、更に上述と同様にシリカナノ中空粒子1の凝集を制御することで、光源が効率よく拡散反射され、発光効率が増大して蛍光等と同等以上の輝度をもつ広域拡散光を得ることができ、消費電力を低下させることが可能となる(図4参照)。
そこで、図9(c)に示すように、LED照明の表面にシリカナノ中空粒子1を塗布することで、シリカナノ中空粒子1の光透過性が発揮され、更に上述と同様にシリカナノ中空粒子1の凝集を制御することで、光源が効率よく拡散反射され、発光効率が増大して蛍光等と同等以上の輝度をもつ広域拡散光を得ることができ、消費電力を低下させることが可能となる(図4参照)。
その他にも、本実施の形態1に係るシリカナノ中空粒子1の透明性や光透過性、更には凝集制御による光拡散性を利用した応用分野として、シリカナノ中空粒子1を塗料・塗膜・フィルム中に分散してなる反射防止コーティング剤・反射防止膜・反射防止フィルムが挙げられる。加えて、シリカナノ中空粒子1を塗料・塗膜・フィルム中に多量に分散してなるものは、その乱反射を利用することによって、防眩コーティング剤・防眩膜・防眩フィルムとして機能させることも可能である。そして、これらを、例えば、ブラウン管式テレビ・パソコン用CRTモニター等のCRT表示装置、液晶テレビ・パソコン用液晶モニター等の液晶表示装置、或いはプラズマディスプレイ等のプラズマ式表示装置の表面において使用することで、反射を防止し、コントラストを大きくして表示装置を見やすくすることができると共に、室内照明等が画面に映り込むのを防止することが可能となる。また、自動車のガラスやダッシュボード、新幹線のガラス、ショーウィンドウのガラス表面に使用することで、太陽光や自動車のヘッドライト、車内の光等の眩しい光によるガラス表面への映り込みを防止することができる。その他、太陽電池パネル表面への使用によって反射防止効果を発揮させることも可能であり、また、ビルの窓ガラスに使用することによって、太陽光や自動車のヘッドライト等の眩しい光がビルの窓ガラスで反射されて通行人や自動車の運転手の目に入るという不具合を防止することも可能である。
特に、本実施の形態1に係るシリカナノ中空粒子1は立方体状形態であるため、球状のものに比べ、入射した光の屈折が起きにくくて低屈折率であり、高い反射防止・防眩効果を得ることが可能である。
特に、本実施の形態1に係るシリカナノ中空粒子1は立方体状形態であるため、球状のものに比べ、入射した光の屈折が起きにくくて低屈折率であり、高い反射防止・防眩効果を得ることが可能である。
[実施の形態2]
次に、本発明の実施の形態2に係るシリカ殻からなるナノ中空粒子及びその製造方法について図10を参照して説明する。
本実施の形態2に係るシリカ殻からなるナノ中空粒子100の製造方法は、上述した実施の形態1の製造方法とほぼ同様である。異なるのは、図10に示したように、シリカ被覆形成工程(ステップS2)において、媒質中に変性シリコーンオイル101を混合した点である。その他は、上記実施の形態1と同じであるから、その詳細な説明を省略する。
次に、本発明の実施の形態2に係るシリカ殻からなるナノ中空粒子及びその製造方法について図10を参照して説明する。
本実施の形態2に係るシリカ殻からなるナノ中空粒子100の製造方法は、上述した実施の形態1の製造方法とほぼ同様である。異なるのは、図10に示したように、シリカ被覆形成工程(ステップS2)において、媒質中に変性シリコーンオイル101を混合した点である。その他は、上記実施の形態1と同じであるから、その詳細な説明を省略する。
即ち、本実施の形態2においても、図10のフローチャートに示されるように、まず、有機酸被覆炭酸カルシウム形成工程にて、乾燥粉末状態(乾燥状態の固体微粉末状)の炭酸カルシウム(CaCO3 )粒子2と有機酸3とを混合し、炭酸カルシウム粒子2の表面を有機酸3で被覆した乾燥粉末状態の有機酸被覆炭酸カルシウム粒子4を形成する。(ステップS1)。
次に、シリカ被覆形成工程にて、有機酸被覆炭酸カルシウム粒子4における有機酸3の一部を溶解可能な有機溶媒としてのジグライム5に、有機酸被覆炭酸カルシウム粒子4を分散させて(ステップS2a)、有機酸被覆炭酸カルシウム粒子4における有機酸3の一部を溶解し、さらに、シリコンアルコキシド6、塩基触媒としてのアンモニア(NH4OH)水8、及び、水7を混合する(ステップS2b)。
次に、シリカ被覆形成工程にて、有機酸被覆炭酸カルシウム粒子4における有機酸3の一部を溶解可能な有機溶媒としてのジグライム5に、有機酸被覆炭酸カルシウム粒子4を分散させて(ステップS2a)、有機酸被覆炭酸カルシウム粒子4における有機酸3の一部を溶解し、さらに、シリコンアルコキシド6、塩基触媒としてのアンモニア(NH4OH)水8、及び、水7を混合する(ステップS2b)。
ここで、本実施の形態2においては、さらにシリコーンオイルとしての変性シリコーンオイル101を混合する。
係る変性シリコーンオイル101としては、ポリエーテル基、エトキシ基、カルボキシル基等の親水性有機基が導入された変性シリコーンオイルや、モノアミン基、アミノ基、アルキル基等の親油性有機基が導入された変性シリコーンオイル等が用いられる。中でも、変性シリコーンオイル101として、入手が容易で、シリカコーティング粒子9の表面を保護する反応性が高く、上述した応用分野における有機溶媒や溶剤系塗料への高分散の混入が可能となるモノアミン変性シリコーンオイルを用いるのが好ましい。
係る変性シリコーンオイル101としては、ポリエーテル基、エトキシ基、カルボキシル基等の親水性有機基が導入された変性シリコーンオイルや、モノアミン基、アミノ基、アルキル基等の親油性有機基が導入された変性シリコーンオイル等が用いられる。中でも、変性シリコーンオイル101として、入手が容易で、シリカコーティング粒子9の表面を保護する反応性が高く、上述した応用分野における有機溶媒や溶剤系塗料への高分散の混入が可能となるモノアミン変性シリコーンオイルを用いるのが好ましい。
これにより、シリカ被覆形成工程にて、ゾル-ゲル法により炭酸カルシウム粒子2にシリカ(SiO2 )1bがコーティングされてシリカコーティング粒子9となり(ステップS2)、その表面は変性シリコーンオイル101によって保護されることになる。
その後の製造工程は、上記実施の形態1と全く同様にして、即ち、シリカコーティング粒子9を洗浄した(ステップS3a)後に、水に分散させ(ステップS3b)、炭酸カルシウム溶解工程において、酸処理として塩酸10を添加して(ステップS3c)内部の炭酸カルシウム2を溶解させて流出させる(ステップS3)。そして、最後に、水洗浄(ステップS4a)を行った後、乾燥(ステップS4b)させる。
これによって、本実施の形態2に係る立方体状形態のシリカ殻からなるナノ中空粒子100が製造される。
これによって、本実施の形態2に係る立方体状形態のシリカ殻からなるナノ中空粒子100が製造される。
このようにして製造された本実施の形態2に係るシリカ殻からなるナノ中空粒子100は、変性シリコーンオイル101によって、シリカコーティング粒子9においてシリカ殻1bの表面が保護されているため、シリカ殻1bの炭酸カルシウム粒子2の表面への吸着が安定化される。このため、本実施の形態2に係るシリカ殻からなるナノ中空粒子100によれば、反応効率や生産効率を向上させることができる。
また、このように変性シリコーンオイル101によって、シリカ殻1bの表面が保護されているため、その後の水に分散させる際(ステップS3a)や炭酸カルシウム溶解工程(ステップS3)にて炭酸カルシウムが溶解される際において、シリカコーティング粒子9同士の凝集が防止され、凝集が防止された状態のシリカコーティグ粒子9内部の炭酸カルシウム2を溶解することによって得られるシリカ殻からなるナノ中空粒子100同士の凝集も防止される。このため、本実施の形態2に係るシリカ殻からなるナノ中空粒子100は、二次粒子への凝集が一段と少なくて分散性がより高いものとなる。
また、このように変性シリコーンオイル101によって、シリカ殻1bの表面が保護されているため、その後の水に分散させる際(ステップS3a)や炭酸カルシウム溶解工程(ステップS3)にて炭酸カルシウムが溶解される際において、シリカコーティング粒子9同士の凝集が防止され、凝集が防止された状態のシリカコーティグ粒子9内部の炭酸カルシウム2を溶解することによって得られるシリカ殻からなるナノ中空粒子100同士の凝集も防止される。このため、本実施の形態2に係るシリカ殻からなるナノ中空粒子100は、二次粒子への凝集が一段と少なくて分散性がより高いものとなる。
そして、本実施の形態2に係るシリカ殻からなるナノ中空粒子100は、このように変性シリコーンオイル101によってシリカ殻1bの表面が保護されているため、溶媒や溶剤系塗料に混入させる場合において、再凝集し難くて分散が容易であり、また、分散させた状態で混入することができる。さらには、分散させた状態で混入することができることで、固形分としてより多くの量を混入することもできる。このため、本実施の形態2に係るシリカナノ中空粒子100の断熱性や透明性等の特性を充分に発揮させることができる。
因みに、変性シリコーンオイル101として、モノアミン基、アミノ基、アルキル基、等の親油性有機基が導入された変性シリコーンオイルを用いた場合には、親油性のシリカナノ中空粒粒子100となって有機溶媒や溶剤系塗料への分散が容易となり、ポリエーテル基、エトキシ基、カルボキシル基等の親水性有機基が導入された変性シリコーンオイルを用いた場合には、親水性のシリカナノ中空粒子100となって水や水性塗料の分散が容易となる。
因みに、変性シリコーンオイル101として、モノアミン基、アミノ基、アルキル基、等の親油性有機基が導入された変性シリコーンオイルを用いた場合には、親油性のシリカナノ中空粒粒子100となって有機溶媒や溶剤系塗料への分散が容易となり、ポリエーテル基、エトキシ基、カルボキシル基等の親水性有機基が導入された変性シリコーンオイルを用いた場合には、親水性のシリカナノ中空粒子100となって水や水性塗料の分散が容易となる。
ここで、シリコーンオイルのメチル基の一部をアミノアルキル基に置換えた構造をもつ各種アミノ変性シリコーンオイルを用い、実施例6乃至実施例13のシリカナノ中空粒子を作製して、その特性について検証した。また、比較のために、シリコーンオイルを添加しない比較例3のシリカナノ中空粒子、及び、アミノ変性シリコーンオイルの代わりに非反応性シリコーンオイル等のシリコーンオイル、シラン、有機分散剤、オイル等の添加剤を用いて比較例4乃至比較例14のシリカナノ中空粒子を作製して、実施例6乃至実施例13に係るシリカナノ中空粒子との特性の違いを評価した。
本実施例及び比較例においては、乾燥粉末状態の炭酸カルシウム粒子2の表面を有機酸3で被覆してなる乾燥粉末状態の有機酸被覆炭酸カルシウム粒子4としてロジン酸被覆炭酸カルシウム粒子(白石カルシウム(株)の製品名「ホモカルD(立方体状形態,平均一次粒子径:80nm)」)を用い、このロジン酸被覆炭酸カルシウム粒子を59.00gと、有機溶媒としてのジグライム5を590.00gと、シリコンアルコキシド6としてのテトラエトキシシラン(TEOS)(信越化学工業(株)の製品名「KBE-04」)47.20gを、1Lのガラスビーカー内にてスラリーの温度を20℃に維持しながら超音波ホモジナイザーを用い60分間混合分散させた。更に、これに、水7を265.50g添加して5分間分散混合させた。
そして、実施例6乃至実施例13においては、水7を加えた後、後述の表3に示す各種のアミノ変性シリコーンオイルを10.62g添加し、5分間分散混合させた。
これに対し、比較例4乃至比較例14においては、水7を加えた後、後述の表4に示す非反応性シリコーンオイル等のシリコーンオイル、シラン、有機分散剤、オイル等の添加剤を10.62g添加し、5分間分散混合させた。
なお、このとき比較例3においては、シリコーンオイルや分散剤を添加しなかった。
これに対し、比較例4乃至比較例14においては、水7を加えた後、後述の表4に示す非反応性シリコーンオイル等のシリコーンオイル、シラン、有機分散剤、オイル等の添加剤を10.62g添加し、5分間分散混合させた。
なお、このとき比較例3においては、シリコーンオイルや分散剤を添加しなかった。
その後は、実施例6乃至実施例13及び比較例3乃至比較例14とも、塩基触媒としての28%試薬アンモニア(NH4OH)水8を添加し、90分間分散混合してゾル‐ゲル反応を進行させ、シリカ被覆形成工程(ステップS2)を実施した。
続いて、遠心機(2500G,10分間)を使用して分離洗浄を行い、12時間静置して養生させた後、塩酸106mlを水で40倍に希釈したものを養生済みのスラリーにpH3となるように滴下し炭酸カルシウム溶解工程(ステップS3)を実施した。
そして、再び遠心機(2500G,10分間)を使用して分離洗浄を行った後、ロータリーエバポレーターで乾燥させ、得られた乾燥粉末を400℃で1時間焼成した。
このようにして、実施例6乃至実施例13及び比較例3乃至比較例14に係るシリカナノ中空粒子を作製した。
続いて、遠心機(2500G,10分間)を使用して分離洗浄を行い、12時間静置して養生させた後、塩酸106mlを水で40倍に希釈したものを養生済みのスラリーにpH3となるように滴下し炭酸カルシウム溶解工程(ステップS3)を実施した。
そして、再び遠心機(2500G,10分間)を使用して分離洗浄を行った後、ロータリーエバポレーターで乾燥させ、得られた乾燥粉末を400℃で1時間焼成した。
このようにして、実施例6乃至実施例13及び比較例3乃至比較例14に係るシリカナノ中空粒子を作製した。
以上説明した実施例6乃至実施例13及び比較例3乃至比較例14における配合内容を表2に纏めて示す。なお、比較例3に係るシリカナノ中空粒子は、表2の配合内容において、シリコーンオイル・添加剤を配合せずに作製したものである。
そして、各種アミノ変性シリコーンオイルを用いて作製された実施例6乃至実施例13に係るシリカナノ中空粒子の諸特性を表3に、また、シリコーンオイルを添加しないで作製された比較例3に係るシリカナノ中空粒子、及び、アミノ変性シリコーンオイルの代わりにその他の各種シリコーンオイルや分散剤等の添加材を用いて作製された比較例4乃至比較例14に係るシリカナノ中空粒子の諸特性を表4に示す。
そして、各種アミノ変性シリコーンオイルを用いて作製された実施例6乃至実施例13に係るシリカナノ中空粒子の諸特性を表3に、また、シリコーンオイルを添加しないで作製された比較例3に係るシリカナノ中空粒子、及び、アミノ変性シリコーンオイルの代わりにその他の各種シリコーンオイルや分散剤等の添加材を用いて作製された比較例4乃至比較例14に係るシリカナノ中空粒子の諸特性を表4に示す。
表3に示されるように、アミノ変性シリコーンオイルを添加して作製した実施例6乃至実施例13のシリカナノ中空粒子においては、その回収率が略20%以上であり、また、その粒度分布[レーザー回折・散乱法(マイクロトラック法)または動的光散乱法により測定(測定装置名 、例えばマルバーン社製、ZETA SIZER Nano-ZSの粒度分布計等)した平均粒子径Z‐Average(d.nm)]も殆どが略400nm以下であった。
これに対し、表4に示されるように、シリコーンオイルを添加していない比較例3に係るシリカナノ中空粒子においては、その回収率が5%以下であり、また、その粒度分布は略800nmであった。更に、アミノ変性シリコーンオイル以外の非反応性シリコーンオイル等のシリコーンオイル、シラン、有機分散剤、オイル等の添加剤を添加して作製した比較例4乃至比較例14に係るシリカナノ中空粒子においても、その回収率は6%以下であり、その粒度分布は700nm以上であった。
これに対し、表4に示されるように、シリコーンオイルを添加していない比較例3に係るシリカナノ中空粒子においては、その回収率が5%以下であり、また、その粒度分布は略800nmであった。更に、アミノ変性シリコーンオイル以外の非反応性シリコーンオイル等のシリコーンオイル、シラン、有機分散剤、オイル等の添加剤を添加して作製した比較例4乃至比較例14に係るシリカナノ中空粒子においても、その回収率は6%以下であり、その粒度分布は700nm以上であった。
これより、アミノ変性シリコーンオイルを混合することで、シリカナノ中空粒子100の回収率が飛躍的に高くなり、かつ、顕著に低い粒度分布のシリカナノ中空粒子100が得られることが明らかになった。即ち、実施例6乃至実施例13に係るシリカナノ中空粒子は、高い生産効率(生産性)で得られたものであり、かつ、分散性が高いものである。
特に、表3に示したように、アミノ変性シリコーンオイルとして側鎖型モノアミン変性シリコーンオイルを使用した実施例6及び実施例7に係るシリカナノ中空粒子100において、回収率が高く、かつ、粒度分布が最も低かったことから、シリコーンオイルとしては、側鎖型モノアミン変性シリコーンオイルの使用が最適である。
特に、表3に示したように、アミノ変性シリコーンオイルとして側鎖型モノアミン変性シリコーンオイルを使用した実施例6及び実施例7に係るシリカナノ中空粒子100において、回収率が高く、かつ、粒度分布が最も低かったことから、シリコーンオイルとしては、側鎖型モノアミン変性シリコーンオイルの使用が最適である。
ここで、更に、本発明者らは、高回収率及び低粒度分布のシリカナノ中空粒子を得るためのアミノ変性シリコーンオイルの最適な配合量について、検討を行った。
即ち、上記実施例6乃至実施例13と同様の配合材料及び製造条件で、アミノ変性シリコーンオイルの配合量のみを変化させ、実施例14乃至実施例21のシリカナノ中空粒子を作製し、その回収量及び粒度分布の測定を行った。
実施例14乃至実施例21の各配合内容及び係る配合内容で生成したシリカナノ中空粒子の回収量及び粒度分布を纏めて表5に示す。表5においては、参考までにアミノ変性シリコーンオイルを添加しない上記比較例3についても示した。また、アミノ変性シリコーンオイルの添加率に対するシリカナノ中空粒子の回収率(回収量/TEOS+及びシリコーンオイル)及び粒度分布の値をグラフにしたものを図11に示す。
なお、実施例14乃至実施例21においては、アミノ変性シリコーンオイルとしてモノアミン変性側鎖型(信越化学工業(株)の製品名「KF-868(官能基当量;8,800g/mol)」)を使用した。
即ち、上記実施例6乃至実施例13と同様の配合材料及び製造条件で、アミノ変性シリコーンオイルの配合量のみを変化させ、実施例14乃至実施例21のシリカナノ中空粒子を作製し、その回収量及び粒度分布の測定を行った。
実施例14乃至実施例21の各配合内容及び係る配合内容で生成したシリカナノ中空粒子の回収量及び粒度分布を纏めて表5に示す。表5においては、参考までにアミノ変性シリコーンオイルを添加しない上記比較例3についても示した。また、アミノ変性シリコーンオイルの添加率に対するシリカナノ中空粒子の回収率(回収量/TEOS+及びシリコーンオイル)及び粒度分布の値をグラフにしたものを図11に示す。
なお、実施例14乃至実施例21においては、アミノ変性シリコーンオイルとしてモノアミン変性側鎖型(信越化学工業(株)の製品名「KF-868(官能基当量;8,800g/mol)」)を使用した。
表5及び図11のグラフに示されるように、実施例14乃至実施例21と比較例3の比較から、アミノ変性シリコーンオイルを少量添加するだけで、シリカナノ中空粒子の回収率が極めて高くなり、かつ、その粒度分布も極めて低くなることが明らかである。
そして、実施例15乃至実施例21において、シリカコーティング粒子を形成する過程(シリカ被覆形成工程)における配合材料全体(スラリー)に対してアミノ変性シリコーンオイルを略0.2重量%以上配合することによって、シリカナノ中空粒子において20%以上の高い回収率が得られ、更に、その粒度分布も略400nm以下と極めて低い粒度分布になった。
そして、実施例15乃至実施例21において、シリカコーティング粒子を形成する過程(シリカ被覆形成工程)における配合材料全体(スラリー)に対してアミノ変性シリコーンオイルを略0.2重量%以上配合することによって、シリカナノ中空粒子において20%以上の高い回収率が得られ、更に、その粒度分布も略400nm以下と極めて低い粒度分布になった。
特に、図11のグラフに示されるように、実施例14と実施例15の比較から、アミノ変性シリコーンオイルの配合量を略0.1重量%から略0.2重量%に増やした際に、飛躍的にシリカナノ中空粒子の回収率が高くなった。また、実施例15と実施例16の比較から、アミノ変性シリコーンオイルの配合量を略0.2重量%から略0.3重量%に増やした際に、顕著にシリカナノ中空粒子の粒度分布が低くなった。一方で、実施例21から、アミノ変性シリコーンオイルの配合量を略3.0重量%より増やしてもシリカナノ中空粒子の回収率の向上及び粒度分布の低下は見られず、回収率が低下し粒度分布も高い値となった。
これより、シリコーンオイルの配合量は、シリカコーティング粒子を形成する過程における配合材料全体(スラリー)に対して、0.2重量%~3.0重量%の範囲内であるのが好ましく、より好ましくは、0.3重量%~2.0重量%の範囲内である。
これより、シリコーンオイルの配合量は、シリカコーティング粒子を形成する過程における配合材料全体(スラリー)に対して、0.2重量%~3.0重量%の範囲内であるのが好ましく、より好ましくは、0.3重量%~2.0重量%の範囲内である。
このように、本発明者らの実験研究によって、アミノ変性シリコーンオイルを使用することで、シリカ殻からなるナノ中空粒子100の回収率が向上し、かつ、得られるシリカ殻からなるナノ中空粒子100は低い粒度分布となることが明らかになった。即ち、アミノ変性シリコーンオイルが混合されてなるシリカ殻からなるナノ中空粒子100は、生産効率(生産性)が高く、かつ、分散性が高いのものとなる。
ここで、本発明者らの実験研究によって、アミノ変性シリコーンオイルは、シリカコーティグ粒子9の表面(シリカ殻1b)への反応性がよく、アミノ変性シリコーンオイルを使用することで、シリカコーティング粒子9形成後の洗浄処理において、フィルタリングしたり、凝集剤を用いたりすることなく、遠心分離によって目的とするシリカコーティング粒子9のみを沈降分離させ、ゾル‐ゲル法により生成された目的とするシリカコーティング粒子9以外の中実シリカ粒子等の副産物を容易に除去することができ、さらに、炭酸カルシウム2溶解後の洗浄処理においても、フィルタリングしたり、凝集剤を用いたりすることなく、遠心分離によって目的とするシリカナノ中空粒子100のみを沈降分離させ、塩酸処理による炭酸カルシウム2の溶解で生じた塩酸カルシウム(残留カルシウム塩)等を容易に除去することができ、シリカナノ中空粒子100のみを効率よく回収できることから、シリカナノ中空粒子100において高い回収率が得られることが確認されている。
また、アミノ変性シリコーンオイルはシリカコーティグ粒子9表面(シリカ殻1b)への反応性が高く、アミノ変性シリコーンオイルによってシリカ殻1bの表面が高度に保護されることから、シリカコーティング粒子9同士の凝集が防止され、このシリカコーティグ粒子9内部の炭酸カルシウム2を溶解することによって得られるシリカナノナノ中空粒子100においてもその凝集が防止され、粒度分布が低く、分散性が高いシリカナノナノ中空粒子100となる。
さらに、このアミノ変性シリコーンオイルは、シリカ被覆形成工程におけるシリカ被覆形成の反応(ゾル‐ゲル反応)と同時の混合により、シリカコーティング粒子9のシリカ殻1bの表面を保護できることから、製造効率もよい。
さらに、このアミノ変性シリコーンオイルは、シリカ被覆形成工程におけるシリカ被覆形成の反応(ゾル‐ゲル反応)と同時の混合により、シリカコーティング粒子9のシリカ殻1bの表面を保護できることから、製造効率もよい。
ところで、本発明を実施する場合には、乾燥粉末状態の炭酸カルシウム粒子2として、市販の炭酸カルシウム粒子、例えば、白石工業株式会社の合成炭酸カルシウム(製品名「Brilliant(一次粒子径:150nm)」)等を購入し、これにロジン酸等の有機酸3を被覆処理して乾燥粉末状態の有機酸被覆炭酸カルシウム粒子4とすることもできるが、有機酸被覆炭酸カルシウム粒子4として、市販の有機酸被覆炭酸カルシウム粉末を用いることも可能である。このような市販の有機酸被覆炭酸カルシウム粉末としては、例えば、白石工業(株)のロジン酸被覆炭酸カルシウム粒子(製品名「ホモカルD(一次粒子径:80nm)」、「白艶華DD(一次粒子径:50nm)」、「白艶華O(一次粒子径:30nm)」等)がある。
そして、乾燥粉末状態の有機酸被覆炭酸カルシウム粒子4の大きさは、顕微鏡法により測定した外径が26nm~280nmの範囲内であることが好ましい。これによって、最終的に得られるシリカナノ中空粒子1の顕微鏡法により測定した外径を30nm~300nmの範囲内とすることができる。
そして、乾燥粉末状態の有機酸被覆炭酸カルシウム粒子4の大きさは、顕微鏡法により測定した外径が26nm~280nmの範囲内であることが好ましい。これによって、最終的に得られるシリカナノ中空粒子1の顕微鏡法により測定した外径を30nm~300nmの範囲内とすることができる。
また、上記実施の形態においては、有機溶媒としてグリコールエーテル系であるジグライム5を使用したが、本発明を実施する場合には、その他にも、例えば、メタノールやオクタノール等のアルコール系等を使用することができる。これらによっても、確実に有機酸被覆炭酸カルシウム粒子4における有機酸3の一部を溶解すると共に、炭酸カルシウム粒子2とシリコンアルコキシド6との相互作用を図り、炭酸カルシウム2表面全体にシリコンアルコキシド6の加水分解によって生成したシリカ殻1bの形成を促進することができ、二次粒子への凝集が少なくて分散性が高いシリカ殻1bの面で囲まれたシリカナノナノ中空粒子が得られる。また、グリコールエーテル系、アルコール系の溶媒はいずれも入手や取扱いが容易であり、かつ比較的安価であることから、低コスト化を図ることも可能である。
好ましくは、シリカナノ中空粒子が高い回収率で得られるジグライム及び/またはメタノールである。
好ましくは、シリカナノ中空粒子が高い回収率で得られるジグライム及び/またはメタノールである。
念のため、有機溶媒としてメタノールを使用した実施例22に係るシリカナノ中空粒子、及び、有機溶媒として1‐オクタノールを使用した実施例23に係るシリカナノ中空粒子の顕微鏡写真を図12に示す。
なお、参考までにこれら実施例22及び実施例23に係るシリカナノ中空粒子における配合内容及び回収率を表6に示す。因みに、後述の表6に示すように、有機溶媒としてメタノールを使用してなる実施例22に係るシリカナノ中空粒子は、シリコーンオイルを混合したものではないが、その回収率が20%と極めて高い。
なお、参考までにこれら実施例22及び実施例23に係るシリカナノ中空粒子における配合内容及び回収率を表6に示す。因みに、後述の表6に示すように、有機溶媒としてメタノールを使用してなる実施例22に係るシリカナノ中空粒子は、シリコーンオイルを混合したものではないが、その回収率が20%と極めて高い。
このように上記実施の形態1及び実施の形態2のシリカ殻からなるナノ中空粒子1,100及びその製造方法においては、乾燥粉末状態の炭酸カルシウム粒子2の表面を有機酸3で被覆してなる有機酸被覆炭酸カルシウム粒子4を有機溶媒としてのジグライム5に分散させることで、有機酸被覆炭酸カルシウム粒子4における有機酸3の一部が溶解し、溶解によって表出した炭酸カルシウム粒子2の表面とジグライム5とが相互作用して炭酸カルシウム粒子2の表面にジグライム5が被覆され、更に、シリコンアルコキシド6及び塩基触媒としてのアンモニア水8を混合されることで、シリコンアルコキシド6と炭酸カルシウム粒子2の表面を被覆した状態のジグライム5とが相互作用し、これら炭酸カルシウム-有機溶媒、有機溶媒-シリコンアルコキシドの錯体形成により、シリコンアルコキシド6の加水分解によって生じたシリカ殻1bの炭酸カルシウム粒子2表面全体への形成が促進される。このため、本発明によれば、炭酸カルシウム粒子2にシリカ殻1bが形成される過程において、炭酸カルシウム粒子2が剥き出しとなって水分を吸収してしまうことによる炭酸カルシウム粒子2同士の凝集が防止され、得られるシリカ殻からなるナノ中空粒子1,100は、分散性が高いものとなり、生産性が向上する。
また、乾燥粉末状態の炭酸カルシウム粒子2の表面を有機酸3で被覆した乾燥粉末状態の有機酸被覆炭酸カルシウム粒子4が使用されるため、原料の変質が少なくて長期間安定しており、品質管理にコストがかからない。特に、有機酸被覆炭酸カルシウム粒子4としてのロジン酸被覆炭酸カルシウムは安価に入手できる。さらに、ジグライム5やメタノール等の有機溶媒も、長期間安定しており、品質管理にコストがかからないうえ、低価格で入手できる。
故に、原料が安価であり、製造コストもかからないことから、低コストで製造でき、さらに、原料の変質も少ないことから生産効率の向上を図ることができる。
故に、原料が安価であり、製造コストもかからないことから、低コストで製造でき、さらに、原料の変質も少ないことから生産効率の向上を図ることができる。
特に、上記実施の形態2に係るシリカ殻からなるナノ中空粒子100及びその製造方法においては、シリカ被覆形成工程において、媒質中に、更に、変性シリコーンオイル101を混合したものであり、変性シリコーンオイル101によって、シリカコーティング粒子9におけるシリカ殻1bの表面が保護されるため、シリカ殻1bの炭酸カルシウム粒子2の表面への吸着が安定化される。このため、反応効率や生産効率を向上させることができる。
また、このように変性シリコーンオイル101によって、シリカ殻1bの表面が保護されるため、シリカコーティング粒子9同士の凝集が防止され、凝集が防止された状態のシリカコーティグ粒子9内部の炭酸カルシウム2を溶解することによって得られるシリカ殻からなるナノ中空粒子100においてもその凝集が防止される。よって、本実施の形態2に係るシリカ殻からなるナノ中空粒子100は、二次粒子への凝集が一段と少なくて分散性がより高いものとなる。
また、このように変性シリコーンオイル101によって、シリカ殻1bの表面が保護されるため、シリカコーティング粒子9同士の凝集が防止され、凝集が防止された状態のシリカコーティグ粒子9内部の炭酸カルシウム2を溶解することによって得られるシリカ殻からなるナノ中空粒子100においてもその凝集が防止される。よって、本実施の形態2に係るシリカ殻からなるナノ中空粒子100は、二次粒子への凝集が一段と少なくて分散性がより高いものとなる。
更に、実施例6乃至実施例21に係るシリカ殻からなるナノ中空粒子100及びその製造方法においては、シリコーンオイルとしてアミノ変性シリコーンオイルを使用したものであり、この発明によれば、シリカ殻からなるナノ中空粒子100において高い回収率が得られて生産効率(生産性)が向上し、かつ、その粒度分布が低く分散性が高いものとなる。このため、更なる低コスト化及び生産効率の向上を図ることができる。
特に、実施例15乃至実施例20に係るシリカ殻からなるナノ中空粒子100及びその製造方法は、アミノ変性シリコーンオイルの配合量が、シリカコーティング粒子9を形成する過程における配合材料全体に対して、0.2%重量%~3.0重量%の範囲内であることから、回収率が極めて高く、かつ、粒度分布も極めて低いものとなる。
特に、実施例15乃至実施例20に係るシリカ殻からなるナノ中空粒子100及びその製造方法は、アミノ変性シリコーンオイルの配合量が、シリカコーティング粒子9を形成する過程における配合材料全体に対して、0.2%重量%~3.0重量%の範囲内であることから、回収率が極めて高く、かつ、粒度分布も極めて低いものとなる。
このようにして、低コスト化及び生産効率の向上を図ることができ、かつ、二次粒子への凝集が少なくて分散性が高いシリカ殻からなるナノ中空粒子1,100及びその製造方法となる。
なお、本発明を実施するに際しては、シリカナノ中空粒子の製造方法における各成分の配合量・配合比、反応時間、反応温度等についても、シリカナノ中空粒子の製造方法のその他の工程についても、上記各実施の形態及び各実施例に限定されるものではない。
また、本発明の実施の形態で挙げている数値は、臨界値を示すものではなく、実施に好適な好適値を示すものであるから、上記数値を若干変更してもその実施を否定するものではない。
また、本発明の実施の形態で挙げている数値は、臨界値を示すものではなく、実施に好適な好適値を示すものであるから、上記数値を若干変更してもその実施を否定するものではない。
Claims (18)
- 30nm~300nmの範囲内の外径を有し、水銀圧入法またはガス吸着法により測定される細孔分布において2nm~20nmの細孔が検出されないシリカ殻からなるナノ中空粒子であって、
所定の大きさの外径を有する乾燥粉末状態の炭酸カルシウム粒子の表面を有機酸で被覆してなる乾燥粉末状態の有機酸被覆炭酸カルシウム粒子を、当該有機酸被覆炭酸カルシウム粒子における有機酸の一部を溶解する有機溶媒に分散させ、更に、シリコンアルコキシド及び塩基触媒を混合し、前記炭酸カルシウム粒子の表面にシリカ殻を形成してシリカコーティグ粒子とし、その後、当該シリカコーティグ粒子の内部における前記炭酸カルシウムを酸処理によって溶解させてなることを特徴とするシリカ殻からなるナノ中空粒子。 - 前記シリカ殻からなる中空粒子の形状は、立方体状形態であることを特徴とする請求項1に記載のシリカ殻からなるナノ中空粒子。
- 前記シリカ殻からなる中空粒子の粒子内包空間体積率は30%~80%であることを特徴とする請求項1または請求項2に記載のシリカ殻からなるナノ中空粒子。
- 前記有機酸は、ロジン酸であることを特徴とする請求項1乃至請求項3の何れか1つに記載のシリカ殻からなるナノ中空粒子。
- 前記有機溶媒は、グリコールエーテル系及び/またはアルコール系であることを特徴とする請求項1乃至請求項4の何れか1つに記載のシリカ殻からなるナノ中空粒子。
- 媒質中に、更に、シリコーンオイルを添加してなることを特徴とする請求項1乃至請求項5の何れか1つに記載のシリカ殻からなるナノ中空粒子。
- 前記シリコーンオイルは、アミノ変性シリコーンオイルであることを特徴とする請求項6に記載のシリカ殻からなるナノ中空粒子。
- 前記シリコーンオイルの配合量は、前記シリカコーティング粒子を形成する過程における配合材料全体に対して0.2%重量%~3.0重量%の範囲内であることを特徴とする請求項6または請求項7に記載のシリカ殻からなるナノ中空粒子。
- 前記シリカコーティグ粒子を形成する過程において、超音波処理を行ったことを特徴とする請求項1乃至請求項8の何れか1つに記載のシリカ殻からなるナノ中空粒子。
- 30nm~300nmの範囲内の外径を有し、水銀圧入法またはガス吸着法により測定される細孔分布において2nm~20nmの細孔が検出されないシリカ殻からなるナノ中空粒子の製造方法であって、
所定の大きさの外径を有する乾燥粉末状態の炭酸カルシウム粒子の表面を有機酸で被覆して有機酸被覆炭酸カルシウム粒子とする有機酸被覆炭酸カルシウム形成工程と、
前記有機酸被覆炭酸カルシウム粒子における有機酸の一部を溶解する有機溶媒に、前記有機酸被覆炭酸カルシウム粒子を分散させ、更に、シリコンアルコキシド及び塩基触媒を混同し前記炭酸カルシウム粒子の表面にシリカ殻を形成してシリカコーティグ粒子とするシリカ被覆形成工程と、
前記シリカコーティグ粒子の内部における前記炭酸カルシウムを酸処理によって溶解させる炭酸カルシウム溶解工程と
を具備することを特徴とするシリカ殻からなるナノ中空粒子の製造方法。 - 前記シリカ殻からなる中空粒子の形状は、立方体状形態であることを特徴とする請求項10に記載のシリカ殻からなるナノ中空粒子の製造方法。
- 前記シリカ殻からなる中空粒子の粒子内包空間体積率は30%~80%であることを特徴とする請求項10または請求項11に記載のシリカ殻からなるナノ中空粒子の製造方法。
- 前記有機酸は、ロジン酸であることを特徴とする請求項10乃至請求項12の何れか1つに記載のシリカ殻からなるナノ中空粒子の製造方法。
- 前記有機溶媒は、グリコールエーテル系及び/またはアルコール系であることを特徴とする請求項10乃至請求項13の何れか1つに記載のシリカ殻からなるナノ中空粒子の製造方法。
- 前記シリカ被覆形成工程において、媒質中に、更に、シリコーンオイルを混合したことを特徴とする請求項10乃至請求項14の何れか1つに記載のシリカ殻からなるナノ中空粒子の製造方法。
- 前記シリコーンオイルは、アミノ変性シリコーンオイルであることを特徴とする請求項15に記載のシリカ殻からなるナノ中空粒子の製造方法。
- 前記シリコーンオイルの配合量は、前記シリカコーティング粒子を形成する工程における配合材料全体に対して0.2%重量%~3.0重量%の範囲内であることを特徴とする請求項15または請求項16に記載のシリカ殻からなるナノ中空粒子の製造方法。
- 前記シリカ被覆形成工程において、超音波処理を行ったことを特徴とする請求項10乃至請求項17の何れか1つに記載のシリカ殻からなるナノ中空粒子の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013503491A JP5810362B2 (ja) | 2011-03-09 | 2012-03-02 | シリカ殻からなるナノ中空粒子の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-051157 | 2011-03-09 | ||
JP2011051157 | 2011-03-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012121130A1 true WO2012121130A1 (ja) | 2012-09-13 |
Family
ID=46798094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/055326 WO2012121130A1 (ja) | 2011-03-09 | 2012-03-02 | シリカ殻からなるナノ中空粒子及びその製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5810362B2 (ja) |
WO (1) | WO2012121130A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015025529A1 (ja) * | 2013-08-23 | 2015-02-26 | 国立大学法人神戸大学 | 硬殻マイクロカプセル化潜熱輸送物質とその製造方法 |
WO2015133606A1 (ja) * | 2014-03-06 | 2015-09-11 | 国立大学法人名古屋工業大学 | シリカ殻からなるナノ中空粒子の製造方法 |
JP2016033101A (ja) * | 2014-07-31 | 2016-03-10 | 三井化学株式会社 | 金属酸化物中空粒子の製造方法 |
WO2019220011A1 (en) * | 2018-05-16 | 2019-11-21 | Nordic Biotech Group Oy | An antimicrobial composition |
US10544321B2 (en) | 2016-06-06 | 2020-01-28 | Ricoh Company, Ltd. | Ink, inkjet recording method, ink cartridge, and image recording device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005263550A (ja) * | 2004-03-18 | 2005-09-29 | Nagoya Kogyo Univ | 高分散シリカナノ中空粒子及びそれを製造する方法 |
JP2008222459A (ja) * | 2007-03-09 | 2008-09-25 | Nagoya Institute Of Technology | 中空シリカ粒子の調製方法 |
-
2012
- 2012-03-02 WO PCT/JP2012/055326 patent/WO2012121130A1/ja active Application Filing
- 2012-03-02 JP JP2013503491A patent/JP5810362B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005263550A (ja) * | 2004-03-18 | 2005-09-29 | Nagoya Kogyo Univ | 高分散シリカナノ中空粒子及びそれを製造する方法 |
JP2008222459A (ja) * | 2007-03-09 | 2008-09-25 | Nagoya Institute Of Technology | 中空シリカ粒子の調製方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015025529A1 (ja) * | 2013-08-23 | 2015-02-26 | 国立大学法人神戸大学 | 硬殻マイクロカプセル化潜熱輸送物質とその製造方法 |
JPWO2015025529A1 (ja) * | 2013-08-23 | 2017-03-02 | 国立大学法人神戸大学 | 硬殻マイクロカプセル化潜熱輸送物質とその製造方法 |
US10442968B2 (en) | 2013-08-23 | 2019-10-15 | National University Corporation Kobe University | Latent heat transfer material micro-encapsulated in hard shell, and production method for same |
WO2015133606A1 (ja) * | 2014-03-06 | 2015-09-11 | 国立大学法人名古屋工業大学 | シリカ殻からなるナノ中空粒子の製造方法 |
JPWO2015133606A1 (ja) * | 2014-03-06 | 2017-04-06 | 国立大学法人 名古屋工業大学 | シリカ殻からなるナノ中空粒子の製造方法 |
JP2016033101A (ja) * | 2014-07-31 | 2016-03-10 | 三井化学株式会社 | 金属酸化物中空粒子の製造方法 |
US10544321B2 (en) | 2016-06-06 | 2020-01-28 | Ricoh Company, Ltd. | Ink, inkjet recording method, ink cartridge, and image recording device |
WO2019220011A1 (en) * | 2018-05-16 | 2019-11-21 | Nordic Biotech Group Oy | An antimicrobial composition |
CN112236037A (zh) * | 2018-05-16 | 2021-01-15 | 北欧生物技术集团有限公司 | 抗微生物组合物 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012121130A1 (ja) | 2014-07-17 |
JP5810362B2 (ja) | 2015-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5810362B2 (ja) | シリカ殻からなるナノ中空粒子の製造方法 | |
US10481301B2 (en) | Nanometric tin-containing metal oxide particle and dispersion, and preparation method and application thereof | |
JP5157143B2 (ja) | 反射防止膜付き基体 | |
CN102196996B (zh) | 中空粒子、其制造方法、涂料组合物及物品 | |
CN107037514B (zh) | 可透视的透射型屏幕 | |
US8247026B2 (en) | Optical film and method for producing same | |
CN106457303B (zh) | 带防眩膜的基材、其制造方法及物品 | |
EP2221349B1 (en) | Process for producing fine particles of surface treated zinc oxide, fine particles of surface treated zinc oxide, dispersion liquid and dispersion solid of the fine particles of surface treated zinc oxide, and base material coated with fine particles of zinc oxide | |
US20110003143A1 (en) | Organosol Containing Magnesium Fluoride Hydroxide, and Manufacturing Method Therefor | |
JP4752019B2 (ja) | 反射防止コーティング材、防眩コーティング材、反射防止膜、反射防止フィルム及び防眩フィルム | |
WO2008041681A1 (fr) | Composition de revêtement destinée à la formation d'un film antireflet, et article sur lequel est formé un film antireflet | |
WO2011040578A1 (ja) | 近赤外線吸収粒子、その製造方法、分散液およびその物品 | |
JP2007217258A (ja) | ナノ炭素粒子分散液及びその製造方法とコア・シェル型ナノ炭素粒子及びその製造方法 | |
JP6237322B2 (ja) | 防眩膜付き物品の製造方法 | |
JP2008291074A (ja) | 光拡散性樹脂成形体 | |
WO2015125929A1 (ja) | 防眩膜付き物品、その製造方法および画像表示装置 | |
JP5517268B2 (ja) | 微粒子状金属酸化物とその用途 | |
JP5673273B2 (ja) | 近赤外線吸収粒子およびその製造方法、ならびに分散液、樹脂組成物、近赤外線吸収塗膜を有する物品および近赤外線吸収物品 | |
WO2017029735A1 (ja) | 防眩膜付き物品、その製造方法および画像表示装置 | |
JP6206418B2 (ja) | アルカリバリア層形成用コート液及び物品 | |
JP2004269653A (ja) | 合成樹脂フィルム用光拡散剤及び該光拡散剤を用いた光拡散性樹脂フィルム | |
JP5891580B2 (ja) | 近赤外線吸収粒子の製造方法、分散液の製造方法および樹脂組成物の製造方法 | |
CN109476485B (zh) | 稀土磷酸盐颗粒、使用其的散射性提高方法 | |
JP2006193670A (ja) | シリカ膜被覆6ホウ化物微粒子とその製造方法、これを用いた光学部材用塗布液及び光学部材 | |
EP2204350B1 (en) | Process for production of surface-coated hexaboride particle precursor, surface-coated hexaboride particle precursor, surface-coated hexaboride particles, dispersion of the particles, and structures and articles made by using the particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12754685 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013503491 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12754685 Country of ref document: EP Kind code of ref document: A1 |