WO2012120580A1 - Gasification device for low-temperature liquefied gas - Google Patents

Gasification device for low-temperature liquefied gas Download PDF

Info

Publication number
WO2012120580A1
WO2012120580A1 PCT/JP2011/007075 JP2011007075W WO2012120580A1 WO 2012120580 A1 WO2012120580 A1 WO 2012120580A1 JP 2011007075 W JP2011007075 W JP 2011007075W WO 2012120580 A1 WO2012120580 A1 WO 2012120580A1
Authority
WO
WIPO (PCT)
Prior art keywords
vaporization
pipe
region
pipes
liquefied gas
Prior art date
Application number
PCT/JP2011/007075
Other languages
French (fr)
Japanese (ja)
Inventor
西村 真
光一 新開
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP11860385.1A priority Critical patent/EP2672213B1/en
Priority to CN201180068641.5A priority patent/CN103403483B/en
Priority to KR1020137026252A priority patent/KR101489114B1/en
Publication of WO2012120580A1 publication Critical patent/WO2012120580A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/04Distributing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • F28D5/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation in which the evaporating medium flows in a continuous film or trickles freely over the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/14Arrangements for modifying heat-transfer, e.g. increasing, decreasing by endowing the walls of conduits with zones of different degrees of conduction of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0273Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0316Water heating
    • F17C2227/0318Water heating using seawater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2270/00Thermal insulation; Thermal decoupling

Abstract

Provided is a gasification device for low-temperature liquefied gas for which curvature of the inter-gasification-pipe distribution pipes caused by changes in the temperature of the inter-gasification-pipe distribution pipes in the lengthwise direction does not easily occur. This gasification device has multiple gasification pipes (21), and inter-gasification-pipe distribution pipes (22) that distribute a low-temperature liquefied gas to these gasification pipes (21), and is characterized by being equipped with: gasification pipe panels (16), for which multiple gasification pipes (21) are aligned in the horizontal direction in a vertical plane, and inter-gasification-pipe distribution pipes (22) extend in the horizontal direction and are connected to the lower ends of each of the gasification pipes (21); a liquid supply unit (30) that supplies a heat exchange-use liquid from the upper ends of the gasification pipe panels (16) such that the liquid flows down along the multiple gasification pipes (21); and heat transfer reduction units (23) for the purpose of reducing, with respect to the heat transfer rate from the heat exchange-use liquid in a first region (A1) of the inter-gasification-pipe distribution pipes (22) on which the multiple gasification pipes (21) are arranged, the overall heat transfer rate from the heat exchange-use liquid in a second region (A2) of the inter-gasification-pipe distribution pipes (22) that is outside of the first region (A1).

Description

低温液化ガスの気化装置Low temperature liquefied gas vaporizer
 本発明は、液化天然ガス(LNG)、液化石油ガス(LPG)、液体窒素(LN)等の低温液化ガスを、海水等の熱媒体と熱交換させることにより気化させるための気化装置に関するものである。 The present invention relates to a vaporizer for vaporizing a low-temperature liquefied gas such as liquefied natural gas (LNG), liquefied petroleum gas (LPG), or liquid nitrogen (LN 2 ) by heat exchange with a heat medium such as seawater. It is.
 従来から、特許文献1に開示されるように、液化天然ガス(LNG)を海水(熱交換用液体)と熱交換させて気化させる気化装置(ORV)が知られている。 Conventionally, as disclosed in Patent Document 1, a vaporizer (ORV) that vaporizes liquefied natural gas (LNG) by heat exchange with seawater (heat exchange liquid) is known.
 この気化装置は、図11に示すように、特定の垂直面に沿って広がる気化管パネル102と、気化管パネル102に海水を供給する海水供給部104と、を備える。 As shown in FIG. 11, the vaporizer includes a vaporization tube panel 102 that extends along a specific vertical plane, and a seawater supply unit 104 that supplies seawater to the vaporization tube panel 102.
 気化管パネル102は、複数の気化管(伝熱管)106と、気化管間分配管(供給側ヘッダー)108とを有する。海水供給部104は、気化管パネル102の表面に沿って流れ落ちるように気化管パネル102の上端部から海水を供給する。 The vaporization tube panel 102 has a plurality of vaporization tubes (heat transfer tubes) 106 and a distribution pipe (supply-side header) 108 between the vaporization tubes. The seawater supply unit 104 supplies seawater from the upper end of the vaporization tube panel 102 so as to flow down along the surface of the vaporization tube panel 102.
 各気化管106は、垂直方向に延びており、内部に流される液化天然ガス(低温液化ガス)を外部の媒体との熱交換によって気化させる。これら気化管パネル102に含まれる複数の気化管106は、互いに平行な姿勢となるように前記特定の垂直面上において水平方向に並ぶ。気化管間分配管108は、気化管パネル102内における各気化管106に液化天然ガスをそれぞれ分配する。この気化管間分配管108は、水平方向に延びており、気化管パネル102に含まれる各気化管106の下端部にそれぞれ接続されている。 Each vaporization tube 106 extends in the vertical direction, and vaporizes liquefied natural gas (low-temperature liquefied gas) flowing inside by heat exchange with an external medium. The plurality of vaporization tubes 106 included in the vaporization tube panel 102 are arranged in the horizontal direction on the specific vertical plane so as to be parallel to each other. The inter-vaporization pipe distribution pipe 108 distributes liquefied natural gas to the vaporization pipes 106 in the vaporization pipe panel 102. This inter-vaporization pipe distribution pipe 108 extends in the horizontal direction, and is connected to the lower end of each vaporization pipe 106 included in the vaporization pipe panel 102.
 このような気化装置100においては、気化管間分配管108が各気化管106に液化天然ガスを分配し、この分配された液化天然ガスが各気化管106内を上昇する。これと共に、海水供給部104から供給された海水が気化管106の外側を当該気化管106に沿って流れ落ちる。このとき、各気化管106において、当該気化管106の内部と外部とを隔てる管壁を介して、液化天然ガスと海水とが熱交換する。これにより、液化天然ガスは、気化されて天然ガス(NG)となる。 In such a vaporizer 100, the vaporizer pipe distribution pipe 108 distributes the liquefied natural gas to the vaporizer tubes 106, and the distributed liquefied natural gas rises in the vaporizer tubes 106. At the same time, the seawater supplied from the seawater supply unit 104 flows down along the vaporization pipe 106 outside the vaporization pipe 106. At this time, in each vaporization tube 106, the liquefied natural gas and seawater exchange heat via a tube wall that separates the inside and the outside of the vaporization tube 106. Thereby, liquefied natural gas is vaporized and becomes natural gas (NG).
 また、特許文献2に記載された気化装置が知られている。この気化装置では、図12に示すように、気化管間分配管108の第1領域a1の上側に防水カバー110が被せられている。この防水カバー110は、海水が気化管間分配管108の第1領域a1に直接当たるのを防ぐ。これにより、海水の温度が比較的高く負荷が小さい場合における液化天然ガス(気化した液化天然ガス)の熱量変動を抑えることができる。 Also, a vaporizer described in Patent Document 2 is known. In this vaporizer, as shown in FIG. 12, a waterproof cover 110 is put on the upper side of the first region a1 of the inter-vaporization pipe distribution pipe. This waterproof cover 110 prevents seawater from directly hitting the first region a1 of the inter-vaporization pipe distribution pipe 108. Thereby, the calorie | heat amount fluctuation | variation of the liquefied natural gas (vaporized liquefied natural gas) in case the temperature of seawater is comparatively high and load is small can be suppressed.
 上記特許文献1の気化装置においては、低温液化ガス(液化天然ガス)が気化されるときに、気化管間分配管108における当該分配管108の長手方向の端部(図11における領域a2)と中央部(図11における領域a2)とにおいて温度の違いが生じる。このような温度差が生じると、これに起因する各気化管106の熱伸縮量の違いにより、気化管間分配管108が湾曲する場合がある。これにより、気化管間分配管108における曲がりの発生や、気化管間分配管108と各気化管106との接合部位において応力が発生する。 In the vaporization apparatus of Patent Document 1, when the low-temperature liquefied gas (liquefied natural gas) is vaporized, the longitudinal end of the distribution pipe 108 in the distribution pipe 108 (area a2 in FIG. 11) A difference in temperature occurs in the central portion (region a2 in FIG. 11). When such a temperature difference arises, the distribution pipe | tube 108 between vaporization tubes may curve by the difference in the amount of thermal expansion / contraction of each vaporization pipe 106 resulting from this. As a result, bending occurs in the inter-vaporization pipe distribution pipe 108, and stress is generated at the joint portion between the vaporization pipe distribution pipe 108 and each vaporization pipe 106.
 具体的には、気化管間分配管108の長手方向において、複数の気化管106が配置された領域a1の外側が、前記領域a1の温度よりも高くなる。即ち、気化管間分配管108の長手方向における端部a2の温度が、前記領域a1の温度よりも高くなる。これは、以下の理由による。 Specifically, in the longitudinal direction of the inter-vaporization pipe distribution pipe 108, the outside of the area a1 where the plurality of vaporization pipes 106 are arranged becomes higher than the temperature of the area a1. That is, the temperature of the end a2 in the longitudinal direction of the inter-vaporization pipe distribution pipe 108 becomes higher than the temperature of the region a1. This is due to the following reason.
 気化管パネル102に沿って第1領域a1を流れ落ちる熱交換用液体(海水)は、気化管間分配管108まで流れ落ちたときに、気化管106内の低温液化ガスとの熱交換によって十分に低温となっている。これに対し、前記長手方向における気化管パネル102の外側を流れ落ちる熱交換用液体は、気化管106内の低温液化ガスとの熱交換を殆ど行わずに流れ落ちるため、気化管間分配管108に到達したときの熱交換用液体の温度は、前記第1領域a1を流れ落ちる熱交換用液体に比べて高い。 When the heat exchange liquid (seawater) flowing down the first region a1 along the vaporization tube panel 102 flows down to the intervaporization pipe distribution pipe 108, the temperature is sufficiently low by heat exchange with the low-temperature liquefied gas in the vaporization pipe 106. It has become. On the other hand, the heat exchange liquid flowing down the outside of the vaporization tube panel 102 in the longitudinal direction flows down with little heat exchange with the low-temperature liquefied gas in the vaporization tube 106, and therefore reaches the intervaporization pipe distribution pipe 108. In this case, the temperature of the heat exchange liquid is higher than that of the heat exchange liquid flowing down the first region a1.
 このように気化管間分配管108において第1領域a1と第2領域a2との間に温度の違いが生じると、当該気化管間分配管108から前記長手方向の端部位置の気化管106に分配される低温液化ガスの温度と、第1領域a1の前記長手方向の中央部位置の気化管106に分配される低温液化ガスの温度と、に違いが生じる。その結果、前記端部位置の気化管106と前記中央部位置の気化管106とに熱伸縮量の差が生じ、これにより、気化管間分配管108が湾曲する。 As described above, when a temperature difference occurs between the first region a1 and the second region a2 in the inter-vaporization pipe distribution pipe 108, the vaporization pipe distribution pipe 108 leads to the vaporization pipe 106 at the end portion in the longitudinal direction. There is a difference between the temperature of the low-temperature liquefied gas distributed and the temperature of the low-temperature liquefied gas distributed to the vaporization pipe 106 at the central position in the longitudinal direction of the first region a1. As a result, a difference in thermal expansion and contraction occurs between the vaporization pipe 106 at the end position and the vaporization pipe 106 at the central position, and thereby the vaporization pipe distribution pipe 108 is bent.
 一方、上記特許文献2に記載の気化装置においては、防水カバー110は、気化管間分配管108の第1領域a1に対して熱交換用液体が直接当たることを防止する。しかし、防水カバー110は、気化管間分配管108の第2領域a2において、水平方向における端部位置の気化管106と隣接する部位しか覆っていない。従って、当該気化装置においても、低温液化ガスと熱交換していない(温度の高い)熱交換用液体が、気化管間分配管108の第2領域a2に当たる。このため、当該気化装置においても、気化管間分配管108の第1領域a1と第2領域a2との間に温度の違いが生じる。その結果、特許文献2に記載の気化装置においても、上記特許文献1の気化装置と同様に、気化管間分配管108が湾曲することが懸念される。 On the other hand, in the vaporizer described in Patent Document 2, the waterproof cover 110 prevents the heat exchange liquid from directly hitting the first region a1 of the inter-vaporization pipe distribution pipe 108. However, the waterproof cover 110 covers only the portion adjacent to the vaporizing tube 106 at the end position in the horizontal direction in the second region a2 of the inter-vaporizing tube distribution pipe 108. Therefore, also in the vaporizer, the heat exchange liquid that does not exchange heat with the low-temperature liquefied gas (high temperature) hits the second region a2 of the inter-vaporization pipe distribution pipe 108. For this reason, also in the said vaporization apparatus, a temperature difference arises between 1st area | region a1 and 2nd area | region a2 of the distribution pipe | tube 108 between vaporization pipes. As a result, also in the vaporizer described in Patent Document 2, as with the vaporizer described in Patent Document 1, there is a concern that the inter-vaporization pipe distribution pipe 108 is bent.
特開昭57-57998号公報JP-A-57-57998 特開平08-183970号公報Japanese Patent Laid-Open No. 08-183970
 本発明の目的は、気化管間分配管の長手方向の温度の違いに起因する気化管間分配管の湾曲が生じ難い低温液化ガスの気化装置を提供することである。 An object of the present invention is to provide a vaporizer for low-temperature liquefied gas in which bending of the pipe between the vaporization pipes is unlikely to occur due to a difference in temperature in the longitudinal direction of the pipe between the vaporization pipes.
 本発明の一つの面によれば、低温液化ガスを気化するための装置であって、垂直方向に延び且つ内部に流される前記低温液化ガスと外部の媒体との熱交換によって前記低温液化ガスを気化させるための複数の気化管とこれら各気化管に前記低温液化ガスをそれぞれ分配する気化管間分配管とを有し、前記複数の気化管が垂直面上において水平方向に並び且つ前記気化管間分配管が水平方向に延びて前記各気化管の下端部にそれぞれ接続されている気化管パネルと、前記複数の気化管に沿って流れ落ちるように前記気化管パネルの上端部から熱交換用液体を供給する液体供給部と、前記複数の気化管が配置されている前記気化管間分配管の第1領域における前記熱交換用液体からの単位面積当たりの伝熱量と比べて、前記水平方向において前記第1領域の外側に位置する前記気化管間分配管の第2領域における熱交換用液体からの単位面積当たりの伝熱量を同程度以下に抑えるための伝熱抑制部と、を備える。 According to one aspect of the present invention, there is provided an apparatus for vaporizing a low-temperature liquefied gas, wherein the low-temperature liquefied gas is exchanged by heat exchange between the low-temperature liquefied gas extending in the vertical direction and flowing inside and an external medium. A plurality of vaporization tubes for vaporization, and an inter-vaporization pipe distribution pipe for distributing the low-temperature liquefied gas to each of the vaporization tubes, wherein the plurality of vaporization tubes are arranged in a horizontal direction on a vertical plane and the vaporization tubes A vaporization tube panel in which an intermediate pipe extends in the horizontal direction and is connected to a lower end portion of each vaporization tube, and a heat exchange liquid from the upper end portion of the vaporization tube panel so as to flow down along the plurality of vaporization tubes Compared to the amount of heat transfer per unit area from the heat exchange liquid in the first region of the inter-vaporization pipe distribution pipe in which the plurality of vaporization pipes are arranged, and in the horizontal direction in front And a heat transfer suppressing section for suppressing heat transfer per unit area of the heat transfer fluid in the second region of the vaporizing tube during distribution pipe located outside the first region below the same level.
図1は、本実施形態に係る低温液化ガスの気化装置の概略構成斜視図である。FIG. 1 is a schematic configuration perspective view of a low-temperature liquefied gas vaporizer according to the present embodiment. 図2は、前記気化装置の配管の状態を示す模式図(正面図)である。FIG. 2 is a schematic diagram (front view) showing a state of piping of the vaporizer. 図3は、前記気化装置の配管の状態を示す模式図(側面図)である。FIG. 3 is a schematic diagram (side view) showing a state of piping of the vaporizer. 図4は、前記気化装置の熱伝達抑制部を説明するための部分拡大図である。FIG. 4 is a partially enlarged view for explaining a heat transfer suppressing portion of the vaporizer. 図5(A)は、前記気化装置の海水供給部を説明するための側面図であり、図5(B)は、前記気化装置の海水供給部を説明するための正面図である。FIG. 5A is a side view for explaining a seawater supply unit of the vaporizer, and FIG. 5B is a front view for explaining a seawater supply unit of the vaporizer. 図6は、前記気化装置が設置された状態を示す図であって、一部を破断した斜視図である。FIG. 6 is a view showing a state in which the vaporizer is installed, and is a perspective view with a part broken away. 図7は、断熱部材の厚さによる供給側ヘッダー内を流れる液化天然ガスの温度の違いを示す図である。FIG. 7 is a diagram illustrating a difference in temperature of liquefied natural gas flowing in the supply-side header depending on the thickness of the heat insulating member. 図8は、他実施形態に係る断熱部材(熱伝達抑制部)を説明するための縦断面図である。FIG. 8 is a longitudinal sectional view for explaining a heat insulating member (heat transfer suppressing portion) according to another embodiment. 図9は、他実施形態の低温液化ガスの気化装置におけるカバー部材を説明するための拡大横断面図である。FIG. 9 is an enlarged cross-sectional view for explaining a cover member in the low-temperature liquefied gas vaporizer according to another embodiment. 図10は、他実施形態の低温液化ガスの気化装置における気化管間分配管の第2領域の拡大横断面図である。FIG. 10 is an enlarged cross-sectional view of the second region of the inter-vaporization pipe distribution pipe in the low-temperature liquefied gas vaporizer according to another embodiment. 図11は、従来の気化装置を説明するための部分拡大斜視図である。FIG. 11 is a partially enlarged perspective view for explaining a conventional vaporizer. 図12は、従来の気化装置を説明するための部分拡大斜視図である。FIG. 12 is a partially enlarged perspective view for explaining a conventional vaporizer.
 以下、本発明の一実施形態について、添付図面を参照しつつ説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
 本実施形態に係る低温液化ガスの気化装置(以下、単に「気化装置」とも称する。)は、供給された低温液化ガスを外部の熱交換用液体と熱交換させることにより、当該低温液化ガスを気化させる、いわゆるオープンラック型の気化装置(ORV)である。本実施形態の気化装置は、液化天然ガス(LNG)を気化する。また、本実施形態において用いられる熱交換用液体は、海水である。 The low-temperature liquefied gas vaporizer according to the present embodiment (hereinafter, also simply referred to as “vaporizer”) exchanges the supplied low-temperature liquefied gas with an external heat exchange liquid, thereby It is a so-called open rack type vaporizer (ORV) that vaporizes. The vaporizer of this embodiment vaporizes liquefied natural gas (LNG). The heat exchange liquid used in the present embodiment is seawater.
 具体的に、気化装置は、図1~図5に示すように、複数(本実施形態では2個)の気化管ブロック11と、分配管12と、集合管14と、海水供給部(液体供給部)30と、を備える。分配管12は、各気化管ブロック11へLNGを分配する。集合管14は、各気化管ブロック11において気化されたLNG(天然ガス(NG))を集める。海水供給部30は、各気化管パネル16の表面を伝って流れ落ちるように気化管パネル16の上部に海水を供給する。尚、気化装置10に設けられる気化管ブロック11の数は、複数に限定されず、1つでもよい。 Specifically, as shown in FIGS. 1 to 5, the vaporizer includes a plurality (two in this embodiment) of vaporization pipe blocks 11, a distribution pipe 12, a collecting pipe 14, a seawater supply unit (liquid supply unit). Part) 30. The distribution pipe 12 distributes LNG to each vaporization pipe block 11. The collecting pipe 14 collects LNG (natural gas (NG)) vaporized in each vaporizing pipe block 11. The seawater supply unit 30 supplies seawater to the upper part of the vaporization tube panel 16 so as to flow down along the surface of each vaporization tube panel 16. In addition, the number of the vaporization pipe blocks 11 provided in the vaporizer 10 is not limited to plural, and may be one.
 以下、各構成について詳しく説明する。 Hereinafter, each configuration will be described in detail.
 各気化管ブロック11は、複数(本実施形態では5枚)の気化管パネル16と、供給側マニホールド17と、送出側マニホールド19と、をそれぞれ有する。尚、1つの気化管ブロック11に含まれる気化管パネル16の数は5枚に限定されず、他の枚数であってもよい。 Each vaporization pipe block 11 has a plurality (five in this embodiment) of vaporization pipe panels 16, a supply side manifold 17, and a delivery side manifold 19. The number of vaporization tube panels 16 included in one vaporization tube block 11 is not limited to five, and may be another number.
 各気化管パネル16は、垂直面上に互いに平行な姿勢となるように並べられた複数(本実施形態では90本)の気化管(伝熱管)21と、供給側ヘッダー(気化管間分配管)22と、伝熱抑制部23と、送出側ヘッダー24と、をそれぞれ有する。尚、1枚の気化管パネル16に含まれる気化管21の数は90本に限定されず、他の本数であってもよい。 Each vaporization tube panel 16 includes a plurality (90 in this embodiment) of vaporization tubes (heat transfer tubes) 21 arranged in parallel to each other on a vertical plane, and a supply side header (distribution pipe between vaporization tubes). ) 22, a heat transfer suppression unit 23, and a delivery-side header 24. The number of vaporization tubes 21 included in one vaporization tube panel 16 is not limited to 90, and may be other numbers.
 各気化管21は、アルミニウム又はアルミニウム合金等の熱伝導率の高い金属材料により形成され、上下方向に延びる管である。 Each vaporization tube 21 is a tube formed of a metal material having high thermal conductivity such as aluminum or aluminum alloy and extending in the vertical direction.
 供給側ヘッダー22は、供給側マニホールド17からのLNGを各気化管21に分配する。具体的に、供給側ヘッダー22は、気化管21が並ぶ前記垂直面に沿って水平方向に延びる管である。この供給側ヘッダー22も、気化管21同様に、アルミニウム又はアルミニウム合金等の熱伝導率の高い金属材料により形成されている。供給側ヘッダー22は、1つの気化管パネル16に含まれる各気化管21の下端部とそれぞれ接続されている。また、供給側ヘッダー22は、その内部にヘッダー内管50を有する。そして、供給側ヘッダー22では、内部に配置されたヘッダー内管50を介して供給側マニホールド17からLNGが供給されるように、その一端が供給側マニホールド17に接続されている。 The supply side header 22 distributes the LNG from the supply side manifold 17 to the vaporization tubes 21. Specifically, the supply-side header 22 is a tube that extends in the horizontal direction along the vertical plane in which the vaporization tubes 21 are arranged. The supply side header 22 is also formed of a metal material having a high thermal conductivity such as aluminum or an aluminum alloy, like the vaporization tube 21. The supply-side header 22 is connected to the lower end portion of each vaporization tube 21 included in one vaporization tube panel 16. The supply-side header 22 has a header inner pipe 50 inside thereof. The supply-side header 22 has one end connected to the supply-side manifold 17 so that LNG is supplied from the supply-side manifold 17 via the header inner pipe 50 disposed inside.
 ヘッダー内管50は、供給側ヘッダー22に沿って延びる管状部材であり、供給側ヘッダー22と同軸となるように当該供給側ヘッダー22の内部に配置されている(図3参照)。このヘッダー内管50の外径は、供給側ヘッダー22の内径よりも小さい。これにより、ヘッダー内管50が供給側ヘッダー22の内部に配置されたときに、当該ヘッダー内管50の外周面と供給側ヘッダー22の内周面との間に所定の空間が形成されている。そして、ヘッダー内管50は、その内部にLNGが供給されるように供給側マニホールド17に接続されている。ヘッダー内管50は、当該ヘッダー内管50の軸方向において管壁(周壁)の各気化管21と対応する位置にそれぞれ穴51を有する。この軸方向の各気化管21に対応する位置には、それぞれ複数の穴(本実施形態では4つの穴)51が設けられている。具体的に、これら複数の穴51は、前記軸方向における各気化管21と対応する位置(本実施形態では、各気化管21の下方側の位置)において、各穴51の中心がヘッダー内管50の下半分に位置するように、ヘッダー内管50の周方向に並んでいる。 The header inner pipe 50 is a tubular member extending along the supply side header 22 and is arranged inside the supply side header 22 so as to be coaxial with the supply side header 22 (see FIG. 3). The outer diameter of the header inner tube 50 is smaller than the inner diameter of the supply-side header 22. Thereby, when the header inner pipe 50 is arranged inside the supply side header 22, a predetermined space is formed between the outer peripheral surface of the header inner pipe 50 and the inner peripheral surface of the supply side header 22. . The header inner pipe 50 is connected to the supply side manifold 17 so that LNG is supplied into the header inner pipe 50. The header inner pipe 50 has holes 51 at positions corresponding to the vaporizing pipes 21 on the pipe wall (circumferential wall) in the axial direction of the header inner pipe 50. A plurality of holes (four holes in this embodiment) 51 are provided at positions corresponding to the respective vaporizing tubes 21 in the axial direction. Specifically, the plurality of holes 51 are located in the header inner tube at the center of each hole 51 at a position corresponding to each vaporization tube 21 in the axial direction (a position below each vaporization tube 21 in the present embodiment). 50 are arranged in the circumferential direction of the header inner tube 50 so as to be positioned in the lower half of the header 50.
 このように、供給側ヘッダー22の内部にヘッダー内管50が設けられて二重管構造とされ、且つ、複数の穴51がヘッダー内管50の各気化管21に対応する位置にそれぞれ設けられることにより、各気化管21に分配されるLNGの流量が均等になる。 Thus, the header inner pipe 50 is provided inside the supply side header 22 to form a double pipe structure, and a plurality of holes 51 are provided at positions corresponding to the vaporization pipes 21 of the header inner pipe 50, respectively. As a result, the flow rate of LNG distributed to each vaporizing tube 21 is equalized.
 また、複数の穴51がヘッダー内管50の各気化管21に対応する位置にそれぞれ設けられることにより、各気化管21に流入するLNGの流れが均一となる。具体的には、各気化管21に対応する位置の複数の穴51から流れ出たLNGは、供給側ヘッダー22とヘッダー内管50との間を気化管21に向かって流れるときに、供給側ヘッダー22の周方向上側に向かって流れてから気化管21内に流入する。これにより、LNGがヘッダー内管50の上部(例えば、気化管21の下端と対向する位置等)に設けられた穴から流れ出て気化管21内に直ぐに流入する場合に比べて、LNGの流れが均一となる。 Further, by providing the plurality of holes 51 at positions corresponding to the vaporization tubes 21 of the header inner tube 50, the flow of LNG flowing into the vaporization tubes 21 becomes uniform. Specifically, when the LNG flowing out from the plurality of holes 51 at positions corresponding to the respective vaporization tubes 21 flows toward the vaporization tube 21 between the supply-side header 22 and the header inner tube 50, the supply-side header After flowing toward the upper side in the circumferential direction of 22, it flows into the vaporizing tube 21. As a result, the flow of LNG is greater than when LNG flows out of a hole provided in the upper part of the header inner pipe 50 (for example, a position facing the lower end of the vaporizing pipe 21) and immediately flows into the vaporizing pipe 21. It becomes uniform.
 伝熱抑制部23は、供給側ヘッダー22の両端部に設けられる。この伝熱抑制部23は、供給側ヘッダー22における海水からの単位面積当たりの伝熱量を抑える。具体的に、伝熱抑制部23は、供給側ヘッダー22の第2領域A2の全域(全体)において、海水供給部30から供給された海水の有する熱が当該第2領域A2に伝熱されるときの単位面積当たりの伝熱量を抑える。 The heat transfer suppression unit 23 is provided at both ends of the supply side header 22. The heat transfer suppression unit 23 suppresses the heat transfer amount per unit area from the seawater in the supply side header 22. Specifically, the heat transfer suppression unit 23 is configured to transfer the heat of the seawater supplied from the seawater supply unit 30 to the second region A2 in the entire second region A2 of the supply header 22 (entire). Reduce the amount of heat transfer per unit area.
 ここで、供給側ヘッダー22の第2領域A2とは、供給側ヘッダー22の長手方向(水平方向)における複数の気化管21が配置されている領域(第1領域)A1の外側の領域である(図3及び図4参照)。 Here, the second area A2 of the supply-side header 22 is an area outside the area (first area) A1 in which the plurality of vaporization tubes 21 are arranged in the longitudinal direction (horizontal direction) of the supply-side header 22. (See FIGS. 3 and 4).
 第1領域A1は、供給側ヘッダー22の長手方向において、気化管21の配置されている領域である。即ち、前記長手方向において、供給側ヘッダー22に沿って並ぶ複数の気化管21の一端の気化管21から他端の気化管21までの領域である。一方、第2領域A2は、前記長手方向において、第1領域A1の外側の領域である。例えば、気化管ブロック11が部屋H(図6参照)内に配置される場合には、第2領域A2は、供給側ヘッダー22の第1領域A1以外であって室内に位置する部位である。尚、この場合、各気化管ブロック11は、供給側ヘッダー22の供給側マニホールド17と反対側の端部が部屋H内に位置するように配置される。 1st area | region A1 is an area | region where the vaporization pipe | tube 21 is arrange | positioned in the longitudinal direction of the supply side header 22. FIG. That is, in the longitudinal direction, a region from the vaporizing tube 21 at one end to the vaporizing tube 21 at the other end of the plurality of vaporizing tubes 21 arranged along the supply-side header 22. On the other hand, the second region A2 is a region outside the first region A1 in the longitudinal direction. For example, when the vaporizing tube block 11 is disposed in the room H (see FIG. 6), the second area A2 is a part located outside the first area A1 of the supply side header 22 and in the room. In this case, each vaporizing pipe block 11 is arranged such that the end of the supply side header 22 opposite to the supply side manifold 17 is located in the room H.
 より詳しくは、第2領域A2は、前記長手方向において、第1領域A1に対して供給側マニホールド17側(図3における左側)に位置する第2領域A2と、第1領域A1に対して供給側マニホールド17と反対側(図3における右側)に位置する第2領域A2と、がある。前記反対側の第2領域A2は、図4において複数の気化管21のうちの右端に配置された気化管21の外側から供給側ヘッダー22の右端までの領域である。また、前記供給側マニホールド17側の第2領域A2は、図4において複数の気化管21のうちの左端に配置された気化管21の外側から、気化管ブロック11が配置される部屋Hの仕切り壁H1までの領域である(図1、図3、図6参照)。 More specifically, the second region A2 is supplied to the first region A1 and the second region A2 located on the supply side manifold 17 side (left side in FIG. 3) with respect to the first region A1 in the longitudinal direction. There is a second region A2 located on the side opposite to the side manifold 17 (right side in FIG. 3). The second region A2 on the opposite side is a region from the outside of the vaporizing tube 21 arranged at the right end of the plurality of vaporizing tubes 21 in FIG. 4 to the right end of the supply-side header 22. Further, the second region A2 on the supply side manifold 17 side is a partition of the room H in which the vaporizing pipe block 11 is arranged from the outside of the vaporizing pipe 21 arranged at the left end of the plurality of vaporizing pipes 21 in FIG. This is the area up to the wall H1 (see FIGS. 1, 3, and 6).
 本実施形態の熱伝達抑制部23は、供給側ヘッダー22の第2領域A2を囲う断熱部材である。断熱部材23の熱伝導率は、供給側ヘッダー22(詳しくは、供給側ヘッダー22の管壁)の熱伝導率よりも小さい。この断熱部材23は、第2領域A2の表面を覆うように供給側ヘッダー22に巻き付けられたウレタンフォーム等の発泡プラスチック製のテープによって形成されている。詳しくは、前記テープは、所定の伸縮性を有する。そして、供給側ヘッダー22の第2領域A2における表面(外周面)からの厚さが例えば1.5mmになるまで、供給側ヘッダー22の第2領域A2の全域において巻き重ねられている。尚、断熱部材23の厚さは、供給側ヘッダー22の第1領域A1に向けて流れ落ちる海水と、第2領域A2に向けて流れ落ちる海水と、の温度差、及び、断熱部材23の熱伝導率等に基づいて適宜設定される。 The heat transfer suppressing portion 23 of the present embodiment is a heat insulating member that surrounds the second region A2 of the supply side header 22. The heat conductivity of the heat insulating member 23 is smaller than the heat conductivity of the supply side header 22 (specifically, the tube wall of the supply side header 22). The heat insulating member 23 is formed of a foamed plastic tape such as urethane foam wound around the supply side header 22 so as to cover the surface of the second region A2. Specifically, the tape has a predetermined elasticity. And it is wound in the whole area of 2nd area | region A2 of the supply side header 22 until the thickness from the surface (outer peripheral surface) in 2nd area | region A2 of the supply side header 22 becomes 1.5 mm. In addition, the thickness of the heat insulation member 23 is the temperature difference between the seawater flowing toward the first region A1 of the supply side header 22 and the seawater flowing toward the second region A2, and the thermal conductivity of the heat insulation member 23. It sets suitably based on etc.
 この断熱部材23は、供給側ヘッダー22において、第2領域A2にのみ設けられ、第1領域A1には設けられない。即ち、供給側ヘッダー22の第1領域A1は外部に露出した状態であり、第2領域A2はその全域において断熱部材23によって覆われた状態である。 The heat insulating member 23 is provided only in the second region A2 and not in the first region A1 in the supply side header 22. That is, the first area A1 of the supply side header 22 is exposed to the outside, and the second area A2 is covered with the heat insulating member 23 in the entire area.
 このような断熱部材23が供給側ヘッダー22の第2領域A2に設けられることにより、供給側ヘッダー22の第1領域A1における海水(詳しくは、海水供給部30から供給される海水)からの熱伝達率に比べ、供給側ヘッダー22の第2領域A2における海水からの熱伝達率が抑えられている。これにより、第2領域に向けて流れ落ちる海水の温度が海水供給部30から供給側ヘッダー22の第1領域A1に向けて流れ落ちる海水の温度よりも高くても、第2領域A2の管壁の温度が供給側ヘッダー22の第1領域A1の管壁の温度よりも高くなることが防がれる。 By providing such a heat insulating member 23 in the second region A2 of the supply-side header 22, heat from seawater (specifically, seawater supplied from the seawater supply unit 30) in the first region A1 of the supply-side header 22 is provided. Compared with the transfer rate, the heat transfer rate from the seawater in the second region A2 of the supply side header 22 is suppressed. Thereby, even if the temperature of the seawater flowing down toward the second region is higher than the temperature of the seawater flowing down from the seawater supply unit 30 toward the first region A1 of the supply side header 22, the temperature of the pipe wall of the second region A2 Is prevented from becoming higher than the temperature of the tube wall in the first region A1 of the supply-side header 22.
 また、断熱部材23は、前記伸縮性を有するテープによって形成されているため、所定の伸縮性を有する。そのため、供給側ヘッダー22が熱伸縮しても、この熱伸縮に伴って断熱部材23自身も伸縮する。これにより、供給側ヘッダー22の熱伸縮(特に、供給側ヘッダー22の径方向の熱伸縮)に起因する断熱部材23の破れ等の損傷が効果的に防止される。 Further, since the heat insulating member 23 is formed of the tape having elasticity, it has a predetermined elasticity. Therefore, even if the supply-side header 22 is thermally expanded and contracted, the heat insulating member 23 itself is expanded and contracted along with the thermal expansion and contraction. Thereby, damage, such as a tear of the heat insulation member 23 resulting from the thermal expansion / contraction of the supply side header 22 (especially the thermal expansion / contraction of the supply side header 22 in the radial direction), is effectively prevented.
 送出側ヘッダー24は、各気化管21において気化されたLNGを集めて送出側マニホールド19に送出する。この送出側ヘッダー24は、供給側ヘッダー22と平行に延びる管である。送出側ヘッダー24は、1つの気化管パネル16に含まれる各気化管21の上端部と、送出側マニホールド19と、に接続されている。 The sending-side header 24 collects LNG vaporized in each vaporizing tube 21 and sends it to the sending-side manifold 19. The delivery side header 24 is a pipe extending in parallel with the supply side header 22. The delivery side header 24 is connected to the upper end portion of each vaporization tube 21 included in one vaporization tube panel 16 and the delivery side manifold 19.
 以上のように構成された複数の気化管パネル16は、互いに平行な姿勢となるようにパネル面(気化管21が並ぶ前記垂直面)と直交する方向(図2において左右方向)に配置されている。 The plurality of vaporization tube panels 16 configured as described above are arranged in a direction (left and right direction in FIG. 2) orthogonal to the panel surface (the vertical surface on which the vaporization tubes 21 are arranged) so as to be parallel to each other. Yes.
 供給側マニホールド17は、分配管12からのLNGを各気化管パネル16へ分配する。この供給側マニホールド17は、供給側ヘッダー22と交差する方向(本実施形態では、略直交する方向:図3における紙面と直交する方向)に延びる管である。そして、供給側マニホールド17は、1つの気化管ブロック11に含まれる各供給側ヘッダー22と、分配管12と、にそれぞれ接続されている。 The supply side manifold 17 distributes the LNG from the distribution pipe 12 to each vaporization pipe panel 16. The supply-side manifold 17 is a tube extending in a direction intersecting with the supply-side header 22 (in the present embodiment, a direction substantially orthogonal to the sheet: a direction orthogonal to the paper surface in FIG. 3). The supply side manifold 17 is connected to each supply side header 22 and the distribution pipe 12 included in one vaporization pipe block 11.
 送出側マニホールド19は、各気化管パネル16において気化したLNG(即ち、NG)を集めて集合管14に送出する。この送出側マニホールド19は、送出側ヘッダー24と交差する方向(本実施形態では、略直交する方向:図3において紙面と直交する方向)に延びる管である。そして、送出側マニホールド19は、1つの気化管ブロック11に含まれる各送出側ヘッダー24と、集合管14と、にそれぞれ接続されている。 The delivery-side manifold 19 collects LNG (that is, NG) vaporized in each vaporization tube panel 16 and sends it to the collecting tube 14. The delivery-side manifold 19 is a tube that extends in a direction intersecting with the delivery-side header 24 (in the present embodiment, a direction substantially orthogonal to the sheet: a direction orthogonal to the paper surface in FIG. 3). The delivery side manifold 19 is connected to each delivery side header 24 and the collecting pipe 14 included in one vaporization pipe block 11.
 分配管12は、供給側マニホールド17と略平行に延びる管である。この分配管12は、各供給側マニホールド17にそれぞれ接続される。また、分配管12は、外部から当該気化装置10にLNGを供給するための配管P1が接続される供給側接続部12aを有する。 The distribution pipe 12 is a pipe extending substantially parallel to the supply side manifold 17. The distribution pipe 12 is connected to each supply side manifold 17. In addition, the distribution pipe 12 has a supply side connection portion 12a to which a pipe P1 for supplying LNG to the vaporizer 10 from the outside is connected.
 集合管14は、送出側マニホールド19と略平行に延びる管である。この集合管14は、各送出側マニホールド19にそれぞれ接続されている。また、集合管14は、消費地等の外部へNGを送出するための配管P2が接続される送出側接続部14aを有する。 The collecting pipe 14 is a pipe extending substantially in parallel with the delivery side manifold 19. The collecting pipe 14 is connected to each delivery side manifold 19. Further, the collecting pipe 14 has a sending side connection portion 14a to which a pipe P2 for sending NG to the outside such as a consumption area is connected.
 海水供給部30は、トラフ31と、海水ヘッダー32と、海水マニホールド33と、を備える(図5(A)、図5(B)参照)。トラフ31は、各気化管パネル16の上端部近傍に配置されている。このトラフ31は、気化管パネル16(詳しくは、当該気化管パネル16を構成する各気化管21)の表面に沿って海水が流れ落ちるように各気化管パネル16の上端部に海水を供給する。このトラフ31から供給されて気化管パネル16の表面を流れ落ちる海水(気化管21の外部の媒体)と、各気化管21内を流れるLNGとが、気化管21の管壁を介して熱交換する。これにより、LNGが気化してNGとなる。また、海水ヘッダー32は、各トラフ31に海水を供給する。また、海水マニホールド33は、各海水ヘッダー32に海水を分配する。 The seawater supply unit 30 includes a trough 31, a seawater header 32, and a seawater manifold 33 (see FIGS. 5A and 5B). The trough 31 is disposed in the vicinity of the upper end portion of each vaporizing tube panel 16. The trough 31 supplies seawater to the upper end of each vaporization tube panel 16 so that the seawater flows down along the surface of the vaporization tube panel 16 (specifically, each vaporization tube 21 constituting the vaporization tube panel 16). Seawater (medium outside the vaporization pipe 21) supplied from the trough 31 and flowing down the surface of the vaporization pipe panel 16 and LNG flowing in the vaporization pipes 21 exchange heat through the pipe wall of the vaporization pipe 21. . Thereby, LNG vaporizes and becomes NG. The seawater header 32 supplies seawater to each trough 31. The seawater manifold 33 distributes seawater to each seawater header 32.
 このように構成された気化装置10の各気化管ブロック11は、図6に示すように、コンクリート等の壁に囲まれた部屋H内にそれぞれ配置されている。具体的には、各気化管ブロック11は、当該気化管ブロック11における供給側マニホールド17及び送出側マニホールド19が部屋Hの外に位置するように、部屋H内に配置されている。この部屋Hは、供給側ヘッダー22の長手方向において、気化管21と供給側マニホールド17との間を室内と室外とに仕切る仕切りH1を有する。そして、供給側ヘッダー22は、その端部(供給側マニホールド17側の端部)と当該端部側に位置する気化管21との間の部位において仕切り壁H1を貫通しており、また、送出側ヘッダー24は、その端部(送出側マニホールド19側の端部)と当該端部側に位置する気化管21との間の部位において、仕切り壁H1を貫通している。この部屋Hの外に配置される各管12、14、17、19には、その表面全体を覆うように断熱部材が設けられている。 Each vaporizing pipe block 11 of the vaporizing apparatus 10 configured as described above is arranged in a room H surrounded by a wall of concrete or the like, as shown in FIG. Specifically, each vaporizing pipe block 11 is arranged in the room H such that the supply side manifold 17 and the delivery side manifold 19 in the vaporizing pipe block 11 are located outside the room H. This room H has a partition H <b> 1 that partitions between the vaporizing pipe 21 and the supply side manifold 17 into an indoor space and an outdoor space in the longitudinal direction of the supply header 22. The supply-side header 22 penetrates the partition wall H1 at a portion between the end portion (end portion on the supply-side manifold 17 side) and the vaporizing tube 21 located on the end portion side. The side header 24 penetrates the partition wall H1 at a portion between the end portion (end portion on the delivery side manifold 19 side) and the vaporizing tube 21 located on the end portion side. Each pipe 12, 14, 17, 19 disposed outside the room H is provided with a heat insulating member so as to cover the entire surface.
 以上のように構成された気化装置10は、以下のようにしてLNGを気化する。 The vaporizer 10 configured as described above vaporizes LNG as follows.
 海水は、トラフ31から各気化管パネル16の表面に供給される。これと共に、LNGが、供給ポンプ等から供給側接続部12aに接続された配管P1を通じて分配管12に供給される。分配管12は、供給ポンプ等によって供給されたLNGを、当該分配管12に接続された各供給側マニホールド17に分配する。各供給側マニホールド17は、分配管12からのLNGを、当該供給側マニホールド17に接続された各供給側ヘッダー22にそれぞれ分配する。各供給側ヘッダー22は、供給されたLNGを、当該供給側ヘッダー22に接続された各気化管21に分配する。各気化管21の内部において、供給側ヘッダー22から供給されたLNGは、当該気化管21の下端から上端に向けて流れる。このとき、気化管21の内部を流れるLNGは、気化管21の表面を流れ落ちる海水と、当該気化管21の管壁を介して熱交換する。この熱交換により、LNGが気化してNGとなる。 Seawater is supplied from the trough 31 to the surface of each vaporizing tube panel 16. At the same time, LNG is supplied from the supply pump or the like to the distribution pipe 12 through the pipe P1 connected to the supply side connection portion 12a. The distribution pipe 12 distributes LNG supplied by a supply pump or the like to each supply-side manifold 17 connected to the distribution pipe 12. Each supply-side manifold 17 distributes LNG from the distribution pipe 12 to each supply-side header 22 connected to the supply-side manifold 17. Each supply-side header 22 distributes the supplied LNG to each vaporization tube 21 connected to the supply-side header 22. In each vaporization tube 21, the LNG supplied from the supply-side header 22 flows from the lower end of the vaporization tube 21 toward the upper end. At this time, the LNG flowing inside the vaporizing tube 21 exchanges heat with seawater flowing down the surface of the vaporizing tube 21 via the tube wall of the vaporizing tube 21. By this heat exchange, LNG vaporizes and becomes NG.
 この気化装置10においてLNGの気化が行われているときに、海水供給部30は、気化管パネル16の気化管21が設けられた領域だけでなく、その幅方向(当該気化管パネル16における気化管21の並び方向)の外側の領域にも海水を供給する。これは、前記幅方向の両端部に位置する気化管21においても、全周において海水と十分に接触させるためである。これにより、LNGが気化されてNGになるとき、即ち、気化装置10の運転中においては、気化管パネル16に沿って供給側ヘッダー22の第1領域A1に向けて流れ落ちる海水は、気化管21内のLNGとの熱交換によって供給側ヘッダー22の位置まで流れ落ちたときに十分に低温となっている。これに対し、前記気化管の外側を流れ落ちる(即ち、供給側ヘッダー22の第2領域A2に向けて流れ落ちる)海水では、気化管21内のLNGとの熱交換を殆ど行わずに流れ落ちるため、前記第1領域A1に向けて流れ落ちる海水に比べて供給側ヘッダー22の位置に到達したときの温度が高い。そのため、仮に供給側ヘッダー22の第2領域A2に断熱部材(熱伝達抑制部)23が設けられていなければ、この海水との熱交換によって供給側ヘッダー22の第1領域A1の管壁よりも第2領域A2の管壁の方が高温となる。このため、第2領域A2に隣接する気化管21(前記気化管パネルの幅方向の端部位置の気化管21)に供給されるLNG(詳しくは、ヘッダー内管50の穴51から流れ出て当該ヘッダー内管50と供給側ヘッダー22との間を気化管21に向かって流れるときに、供給側ヘッダー22の周方向上側に向かって流れるLNG)は、第1領域A1の中央部位置の気化管21に供給されるLNGに比べて高温となる。しかし、本実施形態の気化装置10においては、供給側ヘッダー22の第2領域A2に断熱部材23が設けられているため、当該第2領域A2の管壁におけるこの温度の高い海水からの単位面積当たりの伝熱量が抑えられる。これにより、供給側ヘッダー22の第2領域A2に隣接する気化管21に供給されるLNGと、第1領域A1の中央部位置の気化管21に供給されるLNGと、の間に温度の違いが生じることが防がれる。 When LNG is vaporized in the vaporizer 10, the seawater supply unit 30 is not only in the region where the vaporization tube 21 of the vaporization tube panel 16 is provided, but also in its width direction (vaporization in the vaporization tube panel 16. Seawater is also supplied to the region outside the direction in which the tubes 21 are arranged. This is because the vaporization pipes 21 located at both ends in the width direction are sufficiently brought into contact with seawater on the entire circumference. Thereby, when LNG is vaporized to become NG, that is, during the operation of the vaporizer 10, the seawater flowing down toward the first region A1 of the supply side header 22 along the vaporization tube panel 16 is vaporized. The temperature is sufficiently low when it flows down to the position of the supply side header 22 by heat exchange with the LNG inside. On the other hand, the seawater that flows down outside the vaporizing pipe (that is, flows down toward the second region A2 of the supply side header 22) flows without performing heat exchange with the LNG in the vaporizing pipe 21, so The temperature when reaching the position of the supply-side header 22 is higher than the seawater flowing down toward the first region A1. Therefore, if the heat insulating member (heat transfer suppressing portion) 23 is not provided in the second region A2 of the supply side header 22, it is more than the tube wall of the first region A1 of the supply side header 22 by heat exchange with the seawater. The tube wall in the second region A2 has a higher temperature. For this reason, it flows out from the hole 51 of the header inner pipe 50 and flows into the LNG (specifically, the vaporization pipe 21 at the end position in the width direction of the vaporization pipe panel) adjacent to the second region A2. When flowing between the header inner pipe 50 and the supply side header 22 toward the vaporization pipe 21, the LNG flowing toward the upper side in the circumferential direction of the supply side header 22) is the vaporization pipe at the center position of the first region A1. The temperature is higher than that of LNG supplied to 21. However, in the vaporization apparatus 10 of the present embodiment, since the heat insulating member 23 is provided in the second region A2 of the supply side header 22, the unit area from the seawater having a high temperature in the pipe wall of the second region A2 is provided. The amount of heat transfer per hit is suppressed. Thereby, the temperature difference between the LNG supplied to the vaporization pipe 21 adjacent to the second area A2 of the supply side header 22 and the LNG supplied to the vaporization pipe 21 at the center position of the first area A1. Is prevented from occurring.
 各気化管21内において気化されたLNG、即ち、NGは、送出側ヘッダー24によって集められ、送出側マニホールド19に送出される。送出側マニホールド19に送られたNGは、集合管14を経て、送出側接続部14aに接続された配管P2を通じて消費地等に送出される。 LNG vaporized in each vaporization tube 21, that is, NG is collected by the delivery side header 24 and sent to the delivery side manifold 19. The NG sent to the delivery side manifold 19 is sent to the consumption area or the like through the collecting pipe 14 and the pipe P2 connected to the delivery side connection portion 14a.
 以上の気化装置10によれば、供給側ヘッダー22の第1領域A1に向けて流れ落ちる海水の温度に比べて第2領域A2に向けて流れ落ちる海水の温度が高くても、断熱部材(熱伝達抑制部)23によって、供給側ヘッダー22の第2領域A2の全域(各気化管ブロック11の収容されている部屋H内における供給側ヘッダー22の第1領域A1以外の領域)における海水からの単位面積当たりの伝熱量が抑えられる。そのため、前記温度の異なる海水によって供給側ヘッダー22の第1領域A1よりも第2領域A2が高温になることを防ぐことが可能となる。これにより、気化管パネル16の水平方向(幅方向)における端部位置の気化管21に分配されるLNGと、前記水平方向における中央部位置の気化管21に分配されるLNGと、の温度の違いが抑えられる。その結果、各気化管21の熱伸縮量に起因する供給側ヘッダー22の湾曲が防止される。 According to the above vaporizer 10, even if the temperature of the seawater flowing toward the second region A2 is higher than the temperature of the seawater flowing toward the first region A1 of the supply side header 22, the heat insulating member (heat transfer suppression) Unit) 23, the unit area from seawater in the entire second region A2 of the supply header 22 (region other than the first region A1 of the supply header 22 in the room H in which each vaporizing pipe block 11 is accommodated). The amount of heat transfer per hit is suppressed. Therefore, it becomes possible to prevent the second region A2 from becoming hotter than the first region A1 of the supply-side header 22 by the seawater having different temperatures. Thereby, the temperature of the LNG distributed to the vaporizing tube 21 at the end position in the horizontal direction (width direction) of the vaporizing tube panel 16 and the LNG distributed to the vaporizing tube 21 at the central position in the horizontal direction. The difference is suppressed. As a result, the supply-side header 22 is prevented from being bent due to the amount of thermal expansion and contraction of each vaporizing tube 21.
 また、本実施形態の気化装置10においては、断熱部材23によって供給側ヘッダー22の第2領域A2の全域(全体)が囲われている。このため、供給側ヘッダー22の第2領域A2における海水からの単位面積当たりの伝熱量は、供給側ヘッダー22の第1領域A1における海水からの単位面積当たりの伝熱量に比べ、容易且つ確実に抑えられる。 Moreover, in the vaporization apparatus 10 of this embodiment, the whole area (whole) of 2nd area | region A2 of the supply side header 22 is enclosed by the heat insulation member 23. FIG. For this reason, the heat transfer amount per unit area from the seawater in the second region A2 of the supply side header 22 is easier and more reliable than the heat transfer amount per unit area from the seawater in the first region A1 of the supply side header 22. It can be suppressed.
 また、本実施形態の気化装置10においては、断熱部材23が所定の伸縮性を有するため、供給側ヘッダー22の熱伸縮による断熱部材23の損傷が防がれる。具体的には、供給側ヘッダー22は、気化装置10の運転中と気化装置10の停止中との間の温度差によって熱伸縮する。このため、当該供給側ヘッダー22を囲う断熱部材23は、所定の伸縮性を有することによって当該供給側ヘッダー22の熱伸縮に合わせて伸縮する。これにより、供給側ヘッダー22の熱伸縮(特に、径方向の熱伸縮)に起因する断熱部材23の損傷が効果的に防がれる。 Moreover, in the vaporization apparatus 10 of this embodiment, since the heat insulation member 23 has a predetermined elasticity, the heat insulation member 23 is prevented from being damaged by the heat expansion and contraction of the supply side header 22. Specifically, the supply-side header 22 expands and contracts due to a temperature difference between when the vaporizer 10 is in operation and when the vaporizer 10 is stopped. For this reason, the heat insulation member 23 surrounding the supply side header 22 expands and contracts in accordance with the thermal expansion and contraction of the supply side header 22 by having predetermined elasticity. Thereby, damage of the heat insulation member 23 resulting from the thermal expansion / contraction (especially thermal expansion / contraction of radial direction) of the supply side header 22 is prevented effectively.
 断熱部材の効果を確認するために、断熱部材23を除いて上記気化装置10と同じ構成の気化装置を用い、当該気化装置の運転中の供給側ヘッダー22の第2領域を流れるLNGの温度を調べた。 In order to confirm the effect of the heat insulating member, the temperature of the LNG flowing through the second region of the supply side header 22 during operation of the vaporizer is determined using the vaporizer having the same configuration as the vaporizer 10 except for the heat insulator 23. Examined.
 この気化装置の供給側ヘッダーは、外径が165.2mmのアルミニウム製である。供給側ヘッダーの熱伝達率は、5000W/mKである。断熱部材の熱伝導率は、1W/mKである。 The supply side header of this vaporizer is made of aluminum with an outer diameter of 165.2 mm. The heat transfer coefficient of the supply side header is 5000 W / mK. The heat conductivity of the heat insulating member is 1 W / mK.
 この供給側ヘッダーに-145℃のLNGを供給し、断熱部材がない状態、厚さが0.5mmの断熱部材が設けられた状態、厚さが1.5mmの断熱部材が設けられた状態の各状態における供給側ヘッダーの第2領域を流れるLNGの温度が測定された。その結果を、図7に示す。 LNG at -145 ° C. is supplied to the supply side header, with no heat insulation member, with a heat insulation member with a thickness of 0.5 mm, and with a heat insulation member with a thickness of 1.5 mm. The temperature of the LNG flowing through the second region of the supply side header in each state was measured. The result is shown in FIG.
 この図からわかるように、断熱部材が設けられていない状態に比べ、薄い断熱部材であっても当該断熱部材が供給側ヘッダーの第2領域に設けられることにより、内部を流れるLNGの海水による温度上昇が抑えられることが確認できた。 As can be seen from this figure, the temperature of the LNG flowing through the seawater is reduced by providing the heat insulating member in the second region of the supply side header even if it is a thin heat insulating member as compared with the state where the heat insulating member is not provided. It was confirmed that the rise was suppressed.
 これにより、第2領域に向けて流れ落ちる海水の温度が第1領域に向けて流れ落ちる海水の温度よりも高くても、第2領域に断熱部材が設けられることによって、供給側ヘッダーにおける第1領域と第2領域との間の温度差が抑えられることが確認できた。 Thereby, even if the temperature of the seawater flowing down toward the second region is higher than the temperature of the seawater flowing down toward the first region, the heat insulation member is provided in the second region, It was confirmed that the temperature difference with the second region was suppressed.
 尚、本発明の低温液化ガスの気化装置は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 The low-temperature liquefied gas vaporizer according to the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.
 断熱部材23の具体的構成は限定されない。例えば、上記実施形態の断熱部材23は、ウレタンフォーム等の発泡プラスチック製のテープが供給側ヘッダー22の第2領域A2に巻き重ねられる(巻き付けられる)ことによって構成されているが、これに限定されない。即ち、断熱部材は、図8に示されるように、熱伝導率の小さな素材(例えば、シリコン、ポリ塩化ビニル等の樹脂、或いは発泡樹脂、グラスファイバーなどを織り込んだ樹脂、ゴム等)によって形成された筒状又は有底筒状の部材23A、23Bであってもよい。この筒状の断熱部材23A及び有底筒状の断熱部材23Bは、供給側ヘッダー22の第2領域A2の外周面の直径(外径)に対応する直径(内径)、又は前記外径よりも大きな前記内径の内周面123をそれぞれ有する。そして、筒状の断熱部材23Aは、供給側ヘッダー22における供給側マニホールド17側の第2領域A2の周囲に被せられる。一方、有底筒状の断熱部材23Bは、供給側ヘッダー22における供給側マニホールド17と反対側の第2領域A2に被せられる。これにより、第2領域A2の全域が断熱部材23A、23Bによって囲まれる。 The specific configuration of the heat insulating member 23 is not limited. For example, the heat insulating member 23 of the above embodiment is configured by winding (wrapping) a foamed plastic tape such as urethane foam around the second region A2 of the supply side header 22, but is not limited thereto. . That is, as shown in FIG. 8, the heat insulating member is formed of a material having a low thermal conductivity (for example, a resin such as silicon or polyvinyl chloride, or a resin woven with foamed resin, glass fiber, or rubber). It may be a cylindrical or bottomed cylindrical member 23A, 23B. The cylindrical heat insulating member 23A and the bottomed cylindrical heat insulating member 23B have a diameter (inner diameter) corresponding to the diameter (outer diameter) of the outer peripheral surface of the second region A2 of the supply side header 22 or the outer diameter. Each of the inner peripheral surfaces 123 has a large inner diameter. The tubular heat insulating member 23A is placed around the second region A2 on the supply side manifold 17 side in the supply side header 22. On the other hand, the bottomed cylindrical heat insulating member 23 </ b> B covers the second region A <b> 2 on the supply side header 22 on the side opposite to the supply side manifold 17. Thereby, the whole area of 2nd field A2 is surrounded by heat insulation members 23A and 23B.
 また、断熱部材は、供給側ヘッダー22の第2領域A2の表面に所定の厚さになるまで噴きつけられたウレタンフォーム等の発泡プラスチックにより形成されてもよい。 Further, the heat insulating member may be formed of foamed plastic such as urethane foam sprayed on the surface of the second region A2 of the supply side header 22 until a predetermined thickness is reached.
 また、熱伝達抑制部は、供給側ヘッダー22の第2領域A2を囲う構成に限定されない。例えば、熱伝達抑制部は、供給側ヘッダー22の第2領域A2の上側に配置され、平面視において供給側ヘッダー22の第2領域A2を覆い隠す形状を有するカバー部材60(図9参照)であってもよい。このカバー部材60は、平面視において供給側ヘッダー22の第2領域A2を覆い隠すことができるように供給側ヘッダー22の外径よりも大きな幅(水平方向の幅)を有する。そして、カバー部材60は、供給側ヘッダー22の第2領域A2の上側において当該第2領域A2と間隔をおいて(又は接触するように)配置される。このような構成によれば、供給側ヘッダーの長手方向(水平方向)における端部位置の気化管よりも外側を流れ落ち且つ当該気化管内を流れるLNGとの熱交換が殆ど行われていない海水が、供給側ヘッダーの第2領域に当たることを防止することができる。これにより、第2領域A2に向かって流れ落ちる海水の温度が供給側ヘッダー22の第1領域A1に向かって流れ落ちる海水の温度よりも高くても、供給側ヘッダー22の第1領域A1と第2領域A2との間に温度の違いが生じることを防ぐことが可能となる。即ち、供給側ヘッダー22の第2領域A2に海水供給部30から流れ落ちてくる海水が当たらないようにカバー部材60が設けられることにより、当該供給側ヘッダー22の第2領域A2の内部に海水からの熱を伝わり難くする。このようにして、供給側ヘッダー22の第1領域A1と第2領域A2とに流れるLNGの温度差が抑制されてもよい。 Further, the heat transfer suppression unit is not limited to the configuration surrounding the second region A2 of the supply side header 22. For example, the heat transfer suppression unit is a cover member 60 (see FIG. 9) that is disposed above the second region A2 of the supply header 22 and has a shape that covers the second region A2 of the supply header 22 in plan view. There may be. The cover member 60 has a width (horizontal width) larger than the outer diameter of the supply-side header 22 so as to cover the second region A2 of the supply-side header 22 in plan view. And the cover member 60 is arrange | positioned in the 2nd area | region A2 above the 2nd area | region A2 of the supply side header 22 at intervals (or so that it may contact). According to such a configuration, the seawater that flows down outside the vaporization tube at the end position in the longitudinal direction (horizontal direction) of the supply header and hardly exchanges heat with LNG flowing in the vaporization tube, It is possible to prevent hitting the second region of the supply header. Thereby, even if the temperature of the seawater which flows down toward 2nd area | region A2 is higher than the temperature of the seawater which flows down toward 1st area | region A1 of the supply side header 22, 1st area | region A1 and 2nd area | region of the supply side header 22 It is possible to prevent a difference in temperature from occurring with A2. That is, by providing the cover member 60 so that the seawater flowing down from the seawater supply unit 30 does not hit the second area A2 of the supply-side header 22, the inside of the second area A2 of the supply-side header 22 from the seawater Make it difficult to transmit the heat. In this way, the temperature difference of the LNG flowing through the first area A1 and the second area A2 of the supply side header 22 may be suppressed.
 また、供給側ヘッダーの第2領域A2の管壁が第1領域A1の管壁より熱伝導率の小さな素材によって構成されてもよい。具体的には、例えば、第1領域A1の管壁が、第1実施形態と同様に、アルミニウム又はアルミ合金等の熱伝導率の高い金属によって形成され、第2領域A2の管壁が鉄やSUSによって形成されてもよい。これにより、第2領域A2の管壁における熱伝導率が、供給側ヘッダーの第1領域A1の管壁における熱伝導率に比べて小さくなる。このため、供給側ヘッダーにおいて第1領域A1よりも温度の高い海水が第2領域A2に当たっても、供給側ヘッダーの第1領域A1の内部を流れるLNGの温度と、第2領域A2の内部を流れるLNGの温度と、の間に温度差が生じることが防がれる。その結果、この温度の違いに起因する供給側ヘッダーの湾曲が防がれる。 Further, the tube wall of the second region A2 of the supply side header may be made of a material having a smaller thermal conductivity than the tube wall of the first region A1. Specifically, for example, the tube wall in the first region A1 is formed of a metal having high thermal conductivity such as aluminum or aluminum alloy, as in the first embodiment, and the tube wall in the second region A2 is made of iron or aluminum. It may be formed by SUS. Thereby, the heat conductivity in the tube wall of 2nd area | region A2 becomes small compared with the heat conductivity in the tube wall of 1st area | region A1 of a supply side header. For this reason, even if seawater having a temperature higher than that of the first region A1 hits the second region A2 in the supply side header, the temperature of the LNG flowing in the first region A1 of the supply side header and the inside of the second region A2 A temperature difference between the LNG temperature and the LNG temperature is prevented. As a result, it is possible to prevent the supply-side header from being bent due to this temperature difference.
 また、供給側ヘッダー22の第2領域A2における管壁のみが当該管壁の厚さ方向に層状に構成されてもよい。かかる構成によれば、供給側ヘッダーの第2領域A2の表面(外周面)から当該第2領域A2の内部(供給側ヘッダーの内周面)への熱伝導率が抑えられ、これにより、供給側ヘッダー22の第2領域A2の管壁の熱伝導率(等価熱伝導率)が第1領域A1の管壁の熱伝導率よりも小さくなる。具体的には、図10に示すように、供給側ヘッダー22の第2領域A2における管壁が複数の層(図10の例では2層)からなり、各層間には、空気若しくは断熱部材が充填された熱伝導抑制層62が形成される。このような構成によっても、供給側ヘッダー22の第2領域A2の管壁における熱伝導率(等価熱伝導率)が第1領域A1の管壁における熱伝導率よりも小さくなる。尚、管壁を構成する層は、3層以上でもよい。 Further, only the tube wall in the second region A2 of the supply side header 22 may be configured in a layered manner in the thickness direction of the tube wall. According to such a configuration, the thermal conductivity from the surface (outer peripheral surface) of the second region A2 of the supply side header to the inside of the second region A2 (inner peripheral surface of the supply side header) is suppressed, thereby The thermal conductivity (equivalent thermal conductivity) of the tube wall in the second region A2 of the side header 22 is smaller than the thermal conductivity of the tube wall in the first region A1. Specifically, as shown in FIG. 10, the pipe wall in the second region A2 of the supply side header 22 is composed of a plurality of layers (two layers in the example of FIG. 10), and air or a heat insulating member is interposed between the layers. The filled heat conduction suppressing layer 62 is formed. Even with such a configuration, the thermal conductivity (equivalent thermal conductivity) in the tube wall of the second region A2 of the supply side header 22 becomes smaller than the thermal conductivity in the tube wall of the first region A1. Note that the number of layers constituting the tube wall may be three or more.
 また、上記実施形態では、ヘッダー内管50が供給側ヘッダー22の内部に設けられているが、この構成に限定されない。即ち、ヘッダー内管50が設けられることなく、LNGが、供給側マニホールド17から供給側ヘッダー22に直接供給されるように構成されてもよい。 In the above embodiment, the header inner pipe 50 is provided in the supply side header 22, but the present invention is not limited to this configuration. That is, the LNG may be directly supplied from the supply side manifold 17 to the supply side header 22 without providing the header inner pipe 50.
[実施の形態の概要]
 以上の実施形態をまとめると、以下の通りである。
[Outline of the embodiment]
The above embodiment is summarized as follows.
 即ち、上記の実施形態に係る低温液化ガスの気化装置では、低温液化ガスを気化するための装置であって、垂直方向に延び且つ内部に流される前記低温液化ガスと外部の媒体との熱交換によって前記低温液化ガスを気化させるための複数の気化管とこれら各気化管に前記低温液化ガスをそれぞれ分配する気化管間分配管とを有し、前記複数の気化管が垂直面上において水平方向に並び且つ前記気化管間分配管が水平方向に延びて前記各気化管の下端部にそれぞれ接続されている気化管パネルと、前記複数の気化管に沿って流れ落ちるように前記気化管パネルの上端部から熱交換用液体を供給する液体供給部と、前記複数の気化管が配置されている前記気化管間分配管の第1領域における前記熱交換用液体からの単位面積当たりの伝熱量と比べて、前記水平方向において前記第1領域の外側に位置する前記気化管間分配管の第2領域における熱交換用液体からの単位面積当たりの伝熱量を同程度以下に抑えるための伝熱抑制部と、を備える。尚、伝熱量が同程度以下とは、熱交換用液体から気化管間分配管を流れる低温液化ガスに熱が伝わったときに、気化管間分配管の第2領域内を流れる低温液化ガスの温度が第1領域内を流れる低温液化ガスの温度と同じ若しくは低い場合だけでなく、気化管間分配管の曲がりに影響を与えない程度で第1領域内を流れる低温液化ガスの温度よりもわずかに高くなるような場合も含む。 That is, the low-temperature liquefied gas vaporizer according to the above-described embodiment is a device for vaporizing the low-temperature liquefied gas, and exchanges heat between the low-temperature liquefied gas extending in the vertical direction and flowing inside and an external medium. A plurality of vaporization pipes for vaporizing the low-temperature liquefied gas, and a pipe between the vaporization pipes for distributing the low-temperature liquefied gas to each of the vaporization pipes, and the plurality of vaporization pipes in a horizontal direction on a vertical plane. And a vaporization tube panel in which the pipe between the vaporization tubes extends in the horizontal direction and is connected to a lower end portion of each vaporization tube, and an upper end of the vaporization tube panel so as to flow down along the plurality of vaporization tubes A ratio of heat transfer per unit area from the heat exchange liquid in the first region of the liquid supply part for supplying the heat exchange liquid from the part and the inter-vaporization pipe distribution pipe in which the plurality of vaporization pipes are arranged In addition, the heat transfer suppression unit for suppressing the heat transfer amount per unit area from the heat exchange liquid in the second region of the inter-vaporization pipe distribution pipe located outside the first region in the horizontal direction to the same level or less And comprising. Note that the heat transfer amount is approximately equal to or less than that when the heat is transferred from the heat exchange liquid to the low-temperature liquefied gas flowing through the vaporization pipe distribution pipe, the low-temperature liquefied gas flowing through the second region of the vaporization pipe distribution pipe. Not only when the temperature is the same or lower than the temperature of the low-temperature liquefied gas flowing in the first region, but also slightly lower than the temperature of the low-temperature liquefied gas flowing in the first region to the extent that it does not affect the bending of the pipe between the vaporization tubes. This includes cases where the price is too high.
 かかる構成によれば、気化管間分配管の第2領域に向けて流れ落ちる熱交換用液体の温度が気化管間分配管の第1領域に向けて流れ落ちる熱交換用液体の温度に比べて高くても、伝熱抑制部によって第2領域における熱交換用液体からの単位面積当たりの伝熱量が抑えられる。このため、前記温度の異なる熱交換用液体によって気化管間分配管の第1領域よりも第2領域が高温になることが防がれる。これにより、気化管間分配管から気化管パネルの水平方向における端部位置の気化管に分配される低温液化ガスと、気化管間分配管から中央部位置の気化管に分配される低温液化ガスと、の温度の違いが抑えられ、各気化管の熱伸縮量に起因する気化管間分配管の湾曲が防止される。 According to such a configuration, the temperature of the heat exchange liquid flowing down toward the second region of the inter-vaporization pipe distribution pipe is higher than the temperature of the heat exchange liquid flowing down toward the first area of the inter-vaporization pipe distribution pipe. However, the heat transfer suppression unit suppresses the amount of heat transfer per unit area from the heat exchange liquid in the second region. For this reason, the second region is prevented from being heated to a higher temperature than the first region of the inter-vaporization pipe distribution pipe by the heat exchange liquids having different temperatures. As a result, the low-temperature liquefied gas distributed from the distribution pipe between the vaporization pipes to the vaporization pipe at the end position in the horizontal direction of the vaporization pipe panel, and the low-temperature liquefied gas distributed from the distribution pipe between the vaporization pipes to the vaporization pipe at the central position. And the difference in temperature is suppressed, and bending of the pipe between the vaporization pipes due to the amount of thermal expansion and contraction of each vaporization pipe is prevented.
 また、上記の実施形態に係る低温液化ガスの気化装置では、前記伝熱抑制部は、前記気化管間分配管の第2領域を囲う断熱部材であり、前記断熱部材の熱伝導率が前記気化管間分配管の熱伝導率よりも小さい。 In the low-temperature liquefied gas vaporizer according to the above embodiment, the heat transfer suppression unit is a heat insulating member surrounding a second region of the inter-vaporizing pipe distribution pipe, and the heat conductivity of the heat insulating member is the vaporization. It is smaller than the thermal conductivity of the pipe between pipes.
 かかる構成によれば、気化管間分配管の第1領域における熱交換用液体からの単位面積当たりの伝熱量に比べ、第2領域における熱交換用液体からの単位面積当たりの伝熱量を容易且つ確実に抑えることができる。 According to such a configuration, the heat transfer amount per unit area from the heat exchange liquid in the second region can be easily and easily compared to the heat transfer amount per unit area from the heat exchange liquid in the first region of the inter-vaporization pipe distribution pipe. It can be surely suppressed.
 この場合、前記断熱部材が所定の伸縮性を有することが好ましい。 In this case, it is preferable that the heat insulating member has a predetermined stretchability.
 かかる構成によれば、気化管間分配管の熱伸縮による断熱部材の損傷が防止される。詳しくは、気化管間分配管を囲う断熱部材は、所定の伸縮性を有する。このため、低温液化ガスが流れている状態(即ち、気化装置の運転中)と、低温液化ガスが流れていない状態(即ち、気化装置の停止中)と、の間の温度差によって気化管間分配管が熱伸縮したときに、断熱部材は、気化管間分配管の熱伸縮に合わせて伸縮する。これにより、気化管間分配管の熱伸縮(特に、径方向の熱伸縮)に起因する断熱部材の損傷が効果的に防がれる。 According to this configuration, damage to the heat insulating member due to thermal expansion and contraction of the distribution pipe between the vaporization pipes is prevented. Specifically, the heat insulating member surrounding the vaporizing pipe distribution pipe has a predetermined stretchability. For this reason, the temperature difference between the state where the low-temperature liquefied gas is flowing (that is, the vaporizer is in operation) and the state where the low-temperature liquefied gas is not flowing (that is, when the vaporizer is stopped) When the distribution pipe thermally expands and contracts, the heat insulating member expands and contracts in accordance with the thermal expansion and contraction of the inter-vaporization pipe distribution pipe. Thereby, damage to the heat insulating member due to thermal expansion / contraction (particularly radial thermal expansion / contraction) of the distribution pipe between the vaporization tubes is effectively prevented.
 また、伝熱抑制部は、前記気化管間分配管の第2領域の上側に配置され、平面視において前記分配管の第2領域を覆い隠す形状を有するカバー部材であってもよい。 Further, the heat transfer suppression unit may be a cover member that is disposed on the upper side of the second region of the distribution pipe between the vaporization tubes and has a shape that covers the second region of the distribution pipe in a plan view.
 かかる構成によれば、気化管間分配管の長手方向(水平方向)における端部位置の気化管よりも外側を流れ落ち、且つ当該気化管内を流れる低温液化ガスとの熱交換が殆ど行われていない熱交換用液体が、気化管間分配管の第2領域に当たることを防止することができる。これにより、気化管間分配管の第1領域と第2領域との間に温度の違いが生じることが防がれる。 According to such a configuration, heat exchange with the low-temperature liquefied gas flowing down outside the vaporization pipe at the end position in the longitudinal direction (horizontal direction) of the inter-vaporization pipe distribution pipe and flowing in the vaporization pipe is hardly performed. It is possible to prevent the heat exchange liquid from hitting the second region of the inter-vaporization pipe distribution pipe. Thereby, it is prevented that the difference in temperature arises between the 1st field and the 2nd field of distribution pipe between vaporization pipes.
 尚、前記気化管間分配管におけるその端部と当該端部側に位置する気化管との間の部位が仕切り壁を貫通する場合、前記第2領域は、前記仕切り壁と前記端部側に位置する気化管までの領域である。 In addition, when the site | part between the edge part in the said distribution pipe between vaporization pipes and the vaporization pipe located in the said edge part side penetrates a partition wall, the said 2nd area | region is on the said partition wall and the said edge part side. This is the area up to the vaporization tube.
 また、上記課題を解消すべく、本発明は、低温液化ガスを気化するための装置であって、垂直方向に延び且つ内部に流される前記低温液化ガスと外部の媒体との熱交換によって前記低温液化ガスを気化させるための複数の気化管とこれら各気化管に前記低温液化ガスをそれぞれ分配する気化管間分配管とを有し、前記複数の気化管が特定の垂直面上において水平方向に並び且つ前記気化管間分配管が水平方向に延びて前記各気化管の下端部にそれぞれ接続されている気化管パネルと、前記複数の気化管に沿って流れ落ちるように前記気化管パネルの上端部から熱交換用液体を供給する液体供給部と、を備える。そして、前記複数の気化管が配置されている前記気化管間分配管の第1領域における管壁の熱伝導率よりも、前記水平方向において前記第1領域の外側に位置する前記気化管間分配管の第2領域における管壁の熱伝導率が小さい。 In order to solve the above problems, the present invention is an apparatus for vaporizing a low-temperature liquefied gas, wherein the low-temperature liquefied gas extending in the vertical direction and flowing inside is exchanged with the external medium for the low-temperature liquefied gas. A plurality of vaporization pipes for vaporizing the liquefied gas, and an inter-vaporization pipe distribution pipe for distributing the low-temperature liquefied gas to each of the vaporization pipes, wherein the plurality of vaporization pipes are horizontally arranged on a specific vertical plane. A vaporization tube panel in which the pipes between the vaporization tubes extend in the horizontal direction and are connected to the lower ends of the vaporization tubes, respectively, and an upper end of the vaporization tube panel so as to flow down along the plurality of vaporization tubes A liquid supply unit for supplying a heat exchange liquid from And the part between the vaporization pipes located outside the first area in the horizontal direction is more than the thermal conductivity of the pipe wall in the first area of the pipe between the vaporization pipes where the plurality of vaporization pipes are arranged. The thermal conductivity of the pipe wall in the second region of the pipe is small.
 かかる構成によれば、気化管間分配管の第1領域の管壁の熱伝導率より第2領域の管壁の熱伝導率が小さいため、気化管間分配管の第1領域よりも温度の高い熱交換用液体が気化管間分配管の第2領域に当たっても、気化管間分配管の第1領域の内部を流れる低温液化ガスの温度と、第2領域の内部を流れる低温液化ガスの温度と、の間に温度の違いが生じることが防がれる。その結果、この温度の違いに起因する気化管間分配管の湾曲が防止される。 According to this configuration, since the thermal conductivity of the tube wall in the second region is smaller than the thermal conductivity of the tube wall in the first region of the inter-vaporization pipe distribution pipe, the temperature is lower than that in the first region of the inter-vaporization pipe distribution pipe. Even if a high heat exchange liquid hits the second region of the inter-vaporization pipe distribution pipe, the temperature of the low-temperature liquefied gas flowing inside the first area of the inter-vaporization pipe distribution pipe and the temperature of the low-temperature liquefied gas flowing inside the second area It is possible to prevent a difference in temperature between and. As a result, the bending of the pipe between the vaporization pipes due to this temperature difference is prevented.
 以上のように、本発明に係る低温液化ガスの気化装置は、液化天然ガス(LNG)や液化石油ガス(LPG)、液体窒素(LN)等の低温液化ガスを、海水等の熱媒体と熱交換させることにより気化させるのに有用であり、気化管間分配管の長手方向の温度の違いに起因する気化管間分配管の湾曲を抑制するのに適している。 As described above, the low-temperature liquefied gas vaporizer according to the present invention uses a low-temperature liquefied gas such as liquefied natural gas (LNG), liquefied petroleum gas (LPG), or liquid nitrogen (LN 2 ) as a heat medium such as seawater. It is useful for vaporizing by heat exchange, and is suitable for suppressing the bending of the inter-vaporization pipes due to the difference in temperature in the longitudinal direction of the inter-vaporization pipes.

Claims (6)

  1.  低温液化ガスを気化するための装置であって、
     垂直方向に延び且つ内部に流される前記低温液化ガスと外部の媒体との熱交換によって前記低温液化ガスを気化させるための複数の気化管とこれら各気化管に前記低温液化ガスをそれぞれ分配する気化管間分配管とを有し、前記複数の気化管が垂直面上において水平方向に並び且つ前記気化管間分配管が水平方向に延びて前記各気化管の下端部にそれぞれ接続されている気化管パネルと、
     前記複数の気化管に沿って流れ落ちるように前記気化管パネルの上端部から熱交換用液体を供給する液体供給部と、
     前記複数の気化管が配置されている前記気化管間分配管の第1領域における前記熱交換用液体からの単位面積当たりの伝熱量と比べて、前記水平方向において前記第1領域の外側に位置する前記気化管間分配管の第2領域における熱交換用液体からの単位面積当たりの伝熱量を同程度以下に抑えるための伝熱抑制部と、を備える低温液化ガスの気化装置。
    An apparatus for vaporizing a low-temperature liquefied gas,
    A plurality of vaporization tubes for vaporizing the low-temperature liquefied gas by heat exchange between the low-temperature liquefied gas flowing in the vertical direction and flowing inside and an external medium, and vaporization for distributing the low-temperature liquefied gas to the respective vaporization tubes, respectively. Vaporization pipes, wherein the plurality of vaporization pipes are arranged in a horizontal direction on a vertical plane, and the pipes between the vaporization pipes extend in the horizontal direction and are respectively connected to lower ends of the vaporization pipes. Tube panels,
    A liquid supply unit for supplying a heat exchange liquid from the upper end of the vaporization tube panel so as to flow down along the plurality of vaporization tubes;
    Compared to the heat transfer amount per unit area from the heat exchange liquid in the first region of the inter-vaporization tube distribution pipe in which the plurality of vaporization tubes are arranged, it is located outside the first region in the horizontal direction. A low-temperature liquefied gas vaporization apparatus comprising: a heat transfer suppression unit configured to suppress a heat transfer amount per unit area from the heat exchange liquid in the second region of the inter-vaporization pipe distribution pipe.
  2.  前記伝熱抑制部は、前記気化管間分配管の第2領域を囲う断熱部材であり、
     前記断熱部材の熱伝導率は、前記気化管間分配管の熱伝導率よりも小さい請求項1に記載の低温液化ガスの気化装置。
    The heat transfer suppression part is a heat insulating member that surrounds a second region of the pipe between the vaporization pipes,
    The low-temperature liquefied gas vaporizer according to claim 1, wherein the thermal conductivity of the heat insulating member is smaller than the thermal conductivity of the inter-vaporization pipe distribution pipe.
  3.  前記断熱部材は、所定の伸縮性を有する請求項2に記載の低温液化ガスの気化装置。 The low-temperature liquefied gas vaporizer according to claim 2, wherein the heat insulating member has a predetermined stretchability.
  4.  前記伝熱抑制部は、前記気化管間分配管の第2領域の上側に配置され、平面視において前記分配管の第2領域を覆い隠す形状を有するカバー部材である請求項1に記載の低温液化ガスの気化装置。 2. The low temperature according to claim 1, wherein the heat transfer suppression unit is a cover member that is disposed above the second region of the inter-vaporization pipe distribution pipe and has a shape that covers the second area of the distribution pipe in a plan view. Liquefied gas vaporizer.
  5.  前記気化管間分配管におけるその端部と当該端部側に位置する気化管との間の部位が仕切り壁を貫通し、
     前記第2領域は、前記仕切り壁と前記端部側に位置する気化管までの領域である請求項1乃至4のいずれか1項に記載の低温液化ガスの気化装置。
    The portion between the end of the pipe between the vaporization pipes and the vaporization pipe located on the end side passes through the partition wall,
    The low-temperature liquefied gas vaporizer according to any one of claims 1 to 4, wherein the second region is a region from the partition wall to a vaporization tube located on the end side.
  6.  低温液化ガスを気化するための装置であって、
     垂直方向に延び且つ内部に流される前記低温液化ガスと外部の媒体との熱交換によって前記低温液化ガスを気化させるための複数の気化管とこれら各気化管に前記低温液化ガスをそれぞれ分配する気化管間分配管とを有し、前記複数の気化管が特定の垂直面上において水平方向に並び且つ前記気化管間分配管が水平方向に延びて前記各気化管の下端部にそれぞれ接続されている気化管パネルと、
     前記複数の気化管に沿って流れ落ちるように前記気化管パネルの上端部から熱交換用液体を供給する液体供給部と、を備え、
     前記複数の気化管が配置されている前記気化管間分配管の第1領域における管壁の熱伝導率よりも、前記水平方向において前記第1領域の外側に位置する前記気化管間分配管の第2領域における管壁の熱伝導率が小さい低温液化ガスの気化装置。
    An apparatus for vaporizing a low-temperature liquefied gas,
    A plurality of vaporization tubes for vaporizing the low-temperature liquefied gas by heat exchange between the low-temperature liquefied gas flowing in the vertical direction and flowing inside and an external medium, and vaporization for distributing the low-temperature liquefied gas to the respective vaporization tubes, respectively. A plurality of vaporizing pipes arranged in a horizontal direction on a specific vertical plane, and the pipes between the vaporizing pipes extend in the horizontal direction and are respectively connected to lower ends of the respective vaporizing pipes. A vaporizing tube panel,
    A liquid supply section for supplying a heat exchange liquid from the upper end of the vaporization tube panel so as to flow down along the plurality of vaporization tubes,
    More than the thermal conductivity of the tube wall in the 1st field of the distribution pipe between the vaporization pipes where the a plurality of vaporization pipes are arranged, of the distribution pipe between the vaporization pipes located outside the 1st field in the horizontal direction A vaporizer for low-temperature liquefied gas having a small thermal conductivity of the tube wall in the second region.
PCT/JP2011/007075 2011-03-10 2011-12-19 Gasification device for low-temperature liquefied gas WO2012120580A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11860385.1A EP2672213B1 (en) 2011-03-10 2011-12-19 Gasification device for low-temperature liquefied gas
CN201180068641.5A CN103403483B (en) 2011-03-10 2011-12-19 The gasification installation of liquefied gas at low temp
KR1020137026252A KR101489114B1 (en) 2011-03-10 2011-12-19 Gasification device for low-temperature liquefied gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-052378 2011-03-10
JP2011052378A JP5714944B2 (en) 2011-03-10 2011-03-10 Low temperature liquefied gas vaporizer

Publications (1)

Publication Number Publication Date
WO2012120580A1 true WO2012120580A1 (en) 2012-09-13

Family

ID=46797592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007075 WO2012120580A1 (en) 2011-03-10 2011-12-19 Gasification device for low-temperature liquefied gas

Country Status (5)

Country Link
EP (1) EP2672213B1 (en)
JP (1) JP5714944B2 (en)
KR (1) KR101489114B1 (en)
CN (1) CN103403483B (en)
WO (1) WO2012120580A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104197189A (en) * 2014-07-21 2014-12-10 中国科学院力学研究所 Liquid oxygen gasifier device
CN108649470A (en) * 2018-07-19 2018-10-12 珠海市伟名发展有限公司 A kind of explosion-proof tank system based on cryogenic liquid pump

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140087219A (en) * 2012-12-28 2014-07-09 재단법인 포항산업과학연구원 High efficiency regenerator
CN104089499B (en) * 2014-06-27 2017-03-15 山东诺维科轻量化装备有限公司 Liquified natural gas vaporizer and its production equipment and method
JP6420223B2 (en) * 2015-10-14 2018-11-07 株式会社神戸製鋼所 Gas vaporizer
CN106989630B (en) * 2017-03-16 2018-12-25 上海交通大学 A kind of piping and the large-scale ice chest with the piping structure
CN110080846A (en) * 2018-04-23 2019-08-02 江苏科技大学 A kind of the monoblock type intermediate medium vaporizer and electricity generation system of band LNG cold energy use function
CN112424464B (en) * 2018-07-13 2021-07-06 三井易艾斯机械有限公司 Gasifier
JP6988035B2 (en) * 2018-07-13 2022-01-05 株式会社三井E&Sマシナリー Vaporizer
JP6740289B2 (en) * 2018-07-13 2020-08-12 株式会社三井E&Sマシナリー Vaporizer
JP7467028B2 (en) * 2018-10-29 2024-04-15 株式会社神戸製鋼所 Low-temperature liquefied gas vaporizer, cooling system, and method for suppressing ice formation in the vaporizer
JP2020169783A (en) * 2019-04-05 2020-10-15 株式会社神戸製鋼所 Vaporizer and maintenance method of vaporizer
WO2021081985A1 (en) * 2019-11-01 2021-05-06 Cryostar Sas Vaporizer for vaporization of liquefied gases and method of vaporizing liquefied gas

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634758B2 (en) * 1977-09-24 1981-08-12
JPS5757998A (en) 1980-09-20 1982-04-07 Sumitomo Precision Prod Co Ltd Water spinkler for open rack type evaporator
JPH03286990A (en) * 1990-03-30 1991-12-17 Tokyo Gas Co Ltd Double pipe type open rack gasifying apparatus
JPH04217788A (en) * 1990-12-17 1992-08-07 Kobe Steel Ltd Vaporizer for liquefied natural gas
JPH0626783A (en) * 1992-07-10 1994-02-04 Kobe Steel Ltd Gasification device for liquefied natural gas
WO1996002803A1 (en) * 1994-07-20 1996-02-01 Kabushiki Kaisha Kobe Seiko Sho Low-temperature liquid evaporator
JPH08183970A (en) 1994-12-28 1996-07-16 Tokyo Gas Co Ltd Apparatus for preventing heat input of lower header in open rack type liquefied natural gas vaporizer
JPH09317996A (en) * 1996-05-27 1997-12-12 Sumitomo Precision Prod Co Ltd Open rack type evaporator
JP2007016968A (en) * 2005-07-11 2007-01-25 Kansai Electric Power Co Inc:The Open rack type carburetor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3578693B2 (en) * 1999-10-14 2004-10-20 株式会社コーアガス日本 Air / hot water type gas production plant
JP4796362B2 (en) * 2005-09-13 2011-10-19 株式会社神戸製鋼所 Heat transfer tube for LNG vaporizer and method for manufacturing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634758B2 (en) * 1977-09-24 1981-08-12
JPS5757998A (en) 1980-09-20 1982-04-07 Sumitomo Precision Prod Co Ltd Water spinkler for open rack type evaporator
JPH03286990A (en) * 1990-03-30 1991-12-17 Tokyo Gas Co Ltd Double pipe type open rack gasifying apparatus
JPH04217788A (en) * 1990-12-17 1992-08-07 Kobe Steel Ltd Vaporizer for liquefied natural gas
JPH0626783A (en) * 1992-07-10 1994-02-04 Kobe Steel Ltd Gasification device for liquefied natural gas
WO1996002803A1 (en) * 1994-07-20 1996-02-01 Kabushiki Kaisha Kobe Seiko Sho Low-temperature liquid evaporator
JPH0829075A (en) * 1994-07-20 1996-02-02 Kobe Steel Ltd Gasifying device for low temperature liquid
JPH08183970A (en) 1994-12-28 1996-07-16 Tokyo Gas Co Ltd Apparatus for preventing heat input of lower header in open rack type liquefied natural gas vaporizer
JPH09317996A (en) * 1996-05-27 1997-12-12 Sumitomo Precision Prod Co Ltd Open rack type evaporator
JP2007016968A (en) * 2005-07-11 2007-01-25 Kansai Electric Power Co Inc:The Open rack type carburetor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104197189A (en) * 2014-07-21 2014-12-10 中国科学院力学研究所 Liquid oxygen gasifier device
CN108649470A (en) * 2018-07-19 2018-10-12 珠海市伟名发展有限公司 A kind of explosion-proof tank system based on cryogenic liquid pump
CN108649470B (en) * 2018-07-19 2024-01-26 珠海市伟名发展有限公司 Explosion-proof case system based on cryogenic liquid pump

Also Published As

Publication number Publication date
EP2672213A4 (en) 2015-03-04
KR101489114B1 (en) 2015-02-02
EP2672213A1 (en) 2013-12-11
CN103403483B (en) 2015-09-09
JP5714944B2 (en) 2015-05-07
KR20130132638A (en) 2013-12-04
JP2012189125A (en) 2012-10-04
EP2672213B1 (en) 2018-02-14
CN103403483A (en) 2013-11-20

Similar Documents

Publication Publication Date Title
WO2012120580A1 (en) Gasification device for low-temperature liquefied gas
CA2524830C (en) Double wall pipe with spacer member and aerogel insulation layer
RU2598500C2 (en) Hybrid system for pipeline insulation with heating
KR950011704B1 (en) Voporiere for liquiefied mataral gas
CN102226487B (en) Heat-supply three-layer casing system based on countercurrent heat exchange principle
US8061739B2 (en) Thermal insulation device of a screwed junction
EP3798495B1 (en) Insulation device for low-temperature pipe
JP7467028B2 (en) Low-temperature liquefied gas vaporizer, cooling system, and method for suppressing ice formation in the vaporizer
CN201129471Y (en) Vacuum thermal insulation low temperature valve
WO1996002803A1 (en) Low-temperature liquid evaporator
CN210687431U (en) Low-temperature pipeline through cabin penetrating structure of ship
CN104428619A (en) Apparatus and method for heating liquefied stream
JP5523944B2 (en) Low temperature liquefied gas vaporizer
JP5789386B2 (en) Low temperature liquefied gas vaporizer
CN207864813U (en) A kind of prefabricated direct-buried thermal insulation pipe preventing cold bridge heat loss
JP2011002120A (en) Hot water bath type vaporizer
JP6086187B2 (en) Cryogenic liquid storage tank
CN212273297U (en) Nano antibacterial PE-RT thermal insulation pipe
CN112592033B (en) Molten tin bath cooling water drum structure
CN102654232A (en) Thermal expansion-proof vacuum thermal-insulation pipe
JP2018091562A (en) Carburetor and manufacturing method thereof
WO2017054978A1 (en) Flexible pipeline
KR20100135589A (en) Inorganic insulation and inorganic insulation of use
CN207687574U (en) A kind of insulation construction for second voltage regulation system
KR20190073929A (en) Insulation system of independent type cargo tank

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860385

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011860385

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137026252

Country of ref document: KR

Kind code of ref document: A