JP5789386B2 - Low temperature liquefied gas vaporizer - Google Patents

Low temperature liquefied gas vaporizer Download PDF

Info

Publication number
JP5789386B2
JP5789386B2 JP2011053051A JP2011053051A JP5789386B2 JP 5789386 B2 JP5789386 B2 JP 5789386B2 JP 2011053051 A JP2011053051 A JP 2011053051A JP 2011053051 A JP2011053051 A JP 2011053051A JP 5789386 B2 JP5789386 B2 JP 5789386B2
Authority
JP
Japan
Prior art keywords
tube
vaporization
heat transfer
liquefied gas
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011053051A
Other languages
Japanese (ja)
Other versions
JP2012189256A (en
Inventor
上田 宏樹
宏樹 上田
広敏 在原
広敏 在原
西村 真
真 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011053051A priority Critical patent/JP5789386B2/en
Priority to PCT/JP2011/007102 priority patent/WO2012120581A1/en
Publication of JP2012189256A publication Critical patent/JP2012189256A/en
Application granted granted Critical
Publication of JP5789386B2 publication Critical patent/JP5789386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • F17C7/04Discharging liquefied gases with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/04Distributing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/16Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/422Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element with outside means integral with the tubular element and inside means integral with the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/006Preventing deposits of ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0273Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0275Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple branch pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/035High pressure, i.e. between 10 and 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0316Water heating
    • F17C2227/0318Water heating using seawater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0397Localisation of heat exchange characterised by fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0033Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cryogenic applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、液化天然ガス(LNG)や液化石油ガス(LPG)、液体窒素(LN)等の低温液化ガスを海水等の熱媒体と熱交換させることにより気化させるための気化装置に関する。 The present invention relates to a vaporizer for vaporizing a low-temperature liquefied gas such as liquefied natural gas (LNG), liquefied petroleum gas (LPG), or liquid nitrogen (LN 2 ) by heat exchange with a heat medium such as seawater.

従来から、液化天然ガス(LNG)を海水と熱交換させて気化させる気化装置(ORV)として、特許文献1に記載のものが知られている。   Conventionally, the thing of patent document 1 is known as a vaporizer (ORV) which heat-exchanges liquefied natural gas (LNG) with seawater, and vaporizes it.

この気化装置は、図13に示すように、複数の気化管ブロック102と、各気化管ブロック102へ液化天然ガス(低温液化ガス)を分配する分配管104と、各気化管ブロック102において気化された液化天然ガス(天然ガス)を集める集合管106と、を備える。   As shown in FIG. 13, this vaporizer is vaporized in a plurality of vaporized pipe blocks 102, distribution pipes 104 that distribute liquefied natural gas (low-temperature liquefied gas) to the vaporized pipe blocks 102, and vaporized pipe blocks 102. And a collecting pipe 106 for collecting liquefied natural gas (natural gas).

各気化管ブロック102は、複数の気化管パネル108と、分配管104からの液化天然ガスを各気化管パネル108へ分配する供給側マニホールド110と、各気化管パネル108において気化された液化天然ガスを集めて集合管106に送出する送出側マニホールド112と、をそれぞれ有する。複数の気化管パネル108は、互いに平行な姿勢でパネル面と直交する方向に配置されている。各供給側マニホールド110は分配管104にそれぞれ接続され、各送出側マニホールド112は集合管106にそれぞれ接続されている。   Each vaporization pipe block 102 includes a plurality of vaporization pipe panels 108, a supply-side manifold 110 that distributes the liquefied natural gas from the distribution pipe 104 to each vaporization pipe panel 108, and the liquefied natural gas vaporized in each vaporization pipe panel 108. And a delivery-side manifold 112 that collects and feeds them to the collecting pipe 106. The plurality of vaporization tube panels 108 are arranged in a direction perpendicular to the panel surface in a posture parallel to each other. Each supply side manifold 110 is connected to the distribution pipe 104, and each delivery side manifold 112 is connected to the collecting pipe 106.

気化管パネル108は、互いに平行な姿勢で垂直面上に配置された複数の気化管(伝熱管)114と、供給側マニホールド110からの液化天然ガスを各気化管114に分配する供給側ヘッダー116と、各気化管114において気化された液化天然ガスを集めて送出側マニホールド112に送出する送出側ヘッダー118とを有する。供給側ヘッダー116は、1つの気化管パネル108に含まれる各気化管114の下端部と、供給側マニホールド110とに接続されている。送出側ヘッダー118は、1つの気化管パネル108に含まれる各気化管114の上端部と、送出側マニホールド112とに接続されている。   The vaporization tube panel 108 includes a plurality of vaporization tubes (heat transfer tubes) 114 arranged on a vertical surface in parallel postures, and a supply-side header 116 that distributes liquefied natural gas from the supply-side manifold 110 to the vaporization tubes 114. And a delivery-side header 118 that collects the liquefied natural gas vaporized in each vaporization pipe 114 and delivers it to the delivery-side manifold 112. The supply side header 116 is connected to the lower end portion of each vaporization pipe 114 included in one vaporization pipe panel 108 and the supply side manifold 110. The delivery side header 118 is connected to the upper end portion of each vaporization pipe 114 included in one vaporization pipe panel 108 and the delivery side manifold 112.

このような気化装置100では、気化管114内を流れる液化天然ガスと、各気化管パネル108の表面を流れ落ちる海水との熱交換によって当該液化天然ガスが気化される。具体的には、分配管104に供給された液化天然ガスが当該分配管104によって各気化管ブロック102に分配され、供給側マニホールド110、供給側ヘッダー116を通じて各気化管114の下端部から気化管114内に供給される。この液化天然ガスは、気化管114内を当該気化管114の下端から上端に向って流れる。その際に、液化天然ガスは、気化管114の管壁を介してその外周面に沿って流れ落ちる海水と熱交換することにより気化される。各気化管114で気化された液化天然ガス、即ち天然ガスは、送出側ヘッダー118、送出側マニホールド112を経て集合管106に集められた後、この集合管106に接続される配管系(図示省略)を通じて消費地等に送出される。   In such a vaporizer 100, the liquefied natural gas is vaporized by heat exchange between the liquefied natural gas flowing in the vaporization pipe 114 and seawater flowing down the surface of each vaporization pipe panel 108. Specifically, the liquefied natural gas supplied to the distribution pipe 104 is distributed to each vaporization pipe block 102 by the distribution pipe 104, and the vaporization pipe is supplied from the lower end portion of each vaporization pipe 114 through the supply side manifold 110 and the supply side header 116. 114 is supplied. The liquefied natural gas flows in the vaporization pipe 114 from the lower end to the upper end of the vaporization pipe 114. At that time, the liquefied natural gas is vaporized by exchanging heat with seawater flowing along the outer peripheral surface of the vaporized pipe 114 through the tube wall. The liquefied natural gas vaporized in each vaporizing pipe 114, that is, natural gas, is collected in the collecting pipe 106 via the sending side header 118 and the sending side manifold 112, and then connected to the collecting pipe 106 (not shown). ) Is sent to the consumption area.

また、この気化装置100は、気化管114下部の外表面での着氷を抑えると共に十分な伝熱性能を確保して効率よく液化天然ガスを気化するために、気化管114の内側に内伝熱管120を設けた二重管構造を有する。具体的には、図14(A)及び図14(B)に示されるように、供給側ヘッダー116から延びる気化管114の内部に内伝熱管120が設けられている。この内伝熱管120は、気化管114に沿って延び、その長さが気化管114よりも短い。また、内伝熱管120は、気化管114との間に外側空間s1を形成すると共に、その内側に内側空間s2を形成する。供給側ヘッダー116は、外側空間s1と内側空間s2とに液化天然ガスを供給する。かかる気化装置100においては、外側空間s1を流れる液化天然ガスが内側空間s2を流れる液化天然ガスに比べて流量が小さく且つ気化管114の外部との熱交換が行われ易いためにすぐに気化し、この気化した状態の液化天然ガス(即ち、天然ガス)が外側空間s1を流れる。そのため、気化管114の表面温度が内伝熱管120の設けられていない気化管(気化前の低温液化ガスが内部を流れている状態の気化管)に比べて高くなり、これにより、表面の着氷が抑えられる。また、外側空間s1において液化天然ガスが気化するときに気化管114の内周面と内伝熱管120の外周面との温度差に起因する強制対流沸騰が強まって当該領域における熱伝達率が高くなる。   Further, the vaporizer 100 suppresses icing on the outer surface of the lower part of the vaporization tube 114 and secures sufficient heat transfer performance to efficiently vaporize the liquefied natural gas. It has a double tube structure provided with a heat tube 120. Specifically, as shown in FIGS. 14A and 14B, an internal heat transfer tube 120 is provided inside a vaporization tube 114 extending from the supply-side header 116. The inner heat transfer tube 120 extends along the vaporization tube 114 and has a length shorter than that of the vaporization tube 114. Further, the inner heat transfer tube 120 forms an outer space s1 between the inner heat transfer tube 120 and an inner space s2 inside thereof. The supply side header 116 supplies liquefied natural gas to the outer space s1 and the inner space s2. In such a vaporizer 100, the liquefied natural gas flowing in the outer space s1 has a smaller flow rate than the liquefied natural gas flowing in the inner space s2, and heat exchange with the outside of the vaporizer pipe 114 is easily performed, so that it is immediately vaporized. The vaporized liquefied natural gas (that is, natural gas) flows through the outer space s1. For this reason, the surface temperature of the vaporization tube 114 is higher than that of the vaporization tube in which the internal heat transfer tube 120 is not provided (vaporization tube in a state where the low-temperature liquefied gas before vaporization is flowing inside). Ice is suppressed. Further, when liquefied natural gas is vaporized in the outer space s1, forced convection boiling due to the temperature difference between the inner peripheral surface of the vaporization tube 114 and the outer peripheral surface of the inner heat transfer tube 120 is strengthened, and the heat transfer coefficient in the region is high. Become.

特開平08−29075号公報Japanese Patent Laid-Open No. 08-29075

前記の気化装置100において、各管104、106、110、112、114、116、118内の圧力、各管104、106、110、112、114、116、118内を流れる低温液化ガス(液化天然ガス)の流量、温度等の運転条件によって、気化装置100及び当該装置100に接続された配管系に振動が生じる場合がある。この振動は高い応力を生じさせ、気化装置100を構成する各部位に金属疲労等を蓄積させ、損傷や故障の原因となるおそれがある。   In the vaporizer 100, the pressure in each tube 104, 106, 110, 112, 114, 116, 118, the low-temperature liquefied gas (liquefied natural gas) flowing in each tube 104, 106, 110, 112, 114, 116, 118. Depending on the operating conditions such as the gas flow rate and temperature, vibration may occur in the vaporizer 100 and the piping system connected to the apparatus 100. This vibration generates high stress, accumulates metal fatigue or the like in each part constituting the vaporizer 100, and may cause damage or failure.

この振動を抑止するためには、気化管ブロック102や各気化管パネル108内の各部材同士の結合強度を高めて、これら気化管ブロック102や各気化管パネル108全体の剛性を高めることが有効であるが、この場合には熱応力が上昇する不具合がある。具体的に、当該気化装置100では、各管内を低温(マイナス百数十度)の液化ガスが流れているとき(運転時)と、当該液化ガスが流れておらず装置全体が常温にあるとき(停止時)とでは著しい温度差がある。そのため、この温度差による各部材の伸び縮み(熱伸縮)が激しく、各部材同士を強固に結合すると、前記熱伸縮に起因する過大な熱応力が生じて損傷や故障を促すおそれがある。   In order to suppress this vibration, it is effective to increase the joint strength between the members in the vaporization tube block 102 and each vaporization tube panel 108 and increase the rigidity of the vaporization tube block 102 and each vaporization tube panel 108 as a whole. However, in this case, there is a problem that the thermal stress increases. Specifically, in the vaporizer 100, when a low-temperature (minus hundreds of degrees) liquefied gas is flowing in each pipe (during operation), and when the liquefied gas is not flowing and the entire apparatus is at room temperature There is a significant temperature difference from (when stopped). Therefore, the expansion and contraction (thermal expansion and contraction) of each member due to this temperature difference is intense, and if the members are firmly coupled to each other, excessive thermal stress due to the thermal expansion and contraction may occur, which may promote damage or failure.

そこで、本発明は、上記問題点に鑑み、気化管内に内伝熱管が設けられた気化装置であって低温液化ガスを気化するときに当該気化装置又は/及び当該気化装置に接続された配管系に振動が生じ難い低温液化ガスの気化装置を提供することを課題とする。   Therefore, in view of the above problems, the present invention is a vaporization apparatus in which an internal heat transfer tube is provided in a vaporization pipe, and when the low-temperature liquefied gas is vaporized, the vaporization apparatus or / and a piping system connected to the vaporization apparatus It is an object of the present invention to provide a low-temperature liquefied gas vaporizer that is unlikely to vibrate.

本発明者らは、上記課題を解消すべく鋭意研究を行った結果、前記気化装置等に生じる振動は、内伝熱管120の上端近傍での気化管内における液相の低温液化ガスと気相の(気化した)低温液化ガスとの境界部(界面)の周期的な変動に起因することを発見した。詳しくは、以下に説明する。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the vibration generated in the vaporizer and the like is caused by the low-temperature liquefied gas and the gas phase of the liquid phase in the vaporization tube near the upper end of the internal heat transfer tube 120. It was discovered that this was caused by periodic fluctuations in the boundary (interface) with the (vaporized) low-temperature liquefied gas. Details will be described below.

上記の気化装置100において、外側空間s1を流れる低温液化ガスは、気化管114の外部からの熱によって気化された状態(気相)となって上方に向かって流れ、内側空間s2を流れる低温液化ガスは、液相のままで上方に向かって流れる。これら気相の低温液化ガス(以下、単に「ガス」とも称する。)gと液相の低温液化ガス(以下、単に「液化ガス」とも称する。)lとは、内伝熱管120の上端(先端)周辺(合流領域)において合流する。この合流領域では、ガスgと液化ガスlとの界面の周期的な変動が生じる。具体的には、気化管間分配管116から外側空間s1に供給された液化ガスlが当該外側空間s1において気化することにより密度が低く且つ液化ガスlに比べて温度の高いガスgとなる。このガスgによって前記境界部bが内伝熱管120の先端よりも上方側(外側空間s1の外側)に押し上げられると、図15(A)に示されるように、ガスgと液化ガスlとの接する面(界面)bの面積が大きくなる。そうすると、ガスgが液化ガスlとの熱交換によって冷やされて凝縮が起こり、この凝縮によって界面bが気化管114と内伝熱管120との間(即ち、外側空間s1内)に引き込まれる(図15(B)参照)。その後、外側空間s1内に引き込まれた界面bがやがて上昇し始める(図15(C)参照)。このような界面bの変動が気化管114内において繰り返される。ここで、ガスgと液化ガスlとの界面bとは、合流領域において、外側空間s1を通過したガスgと内側空間s2を通過した液化ガスlとが接する境界部であり、所定値以上の密度差(所定値以上の密度勾配)が形成されている部位である。   In the vaporizer 100 described above, the low-temperature liquefied gas flowing in the outer space s1 flows in the vaporized state (gas phase) by heat from the outside of the vaporization tube 114, flows upward, and flows in the inner space s2. The gas flows upward while remaining in a liquid phase. The gas phase low-temperature liquefied gas (hereinafter also simply referred to as “gas”) g and the liquid-phase low-temperature liquefied gas (hereinafter also simply referred to as “liquefied gas”) l are the upper ends (tips) of the internal heat transfer tube 120. ) Join in the vicinity (merging area). In this merging region, periodic fluctuations at the interface between the gas g and the liquefied gas l occur. Specifically, the liquefied gas 1 supplied from the inter-vaporization pipe distribution pipe 116 to the outer space s1 is vaporized in the outer space s1, so that the gas g is low in density and higher in temperature than the liquefied gas l. When the boundary b is pushed up by the gas g above the tip of the inner heat transfer tube 120 (outside the outer space s1), as shown in FIG. 15A, the gas g and the liquefied gas l The area of the contact surface (interface) b is increased. Then, the gas g is cooled by heat exchange with the liquefied gas l and condensation occurs, and the interface b is drawn between the vaporization tube 114 and the internal heat transfer tube 120 (that is, in the outer space s1) by this condensation (FIG. 15 (B)). Thereafter, the interface b drawn into the outer space s1 starts to rise (see FIG. 15C). Such fluctuation of the interface b is repeated in the vaporizing tube 114. Here, the interface b between the gas g and the liquefied gas l is a boundary portion where the gas g that has passed through the outer space s1 and the liquefied gas l that has passed through the inner space s2 are in contact with each other, and is greater than or equal to a predetermined value. It is a site where a density difference (a density gradient greater than a predetermined value) is formed.

以上のようなガスgと液化ガスlとの境界部(界面)bの周期的な変動が気化管114内に生じると、この界面bの周期的な変動(即ち、ガスg及び液化ガスlの体積変化)に伴う圧力変動も気化管114内において生じるが、この界面bの周期的な変動と気化管114内の圧力変動との間に時間的なずれ(位相のずれ)が生じる(図16参照)。この位相のずれにより、管内の圧力の周期的な変動が増長される場合がある。このように管内の圧力の周期的な変動が増長されると、この増長された圧力変動が気化装置100を構成する各管104、106、110、112、114、116、118に伝播して、この圧力変動を加振力とする振動が生じる。   When the periodic fluctuation of the boundary part (interface) b between the gas g and the liquefied gas l as described above occurs in the vaporization pipe 114, the periodic fluctuation of the interface b (that is, the gas g and the liquefied gas l Although the pressure fluctuation accompanying the volume change also occurs in the vaporization tube 114, a temporal shift (phase shift) occurs between the periodic fluctuation of the interface b and the pressure fluctuation in the vaporization pipe 114 (FIG. 16). reference). This phase shift may increase periodic fluctuations in the pressure in the tube. When the periodic fluctuation of the pressure in the pipe is increased in this way, the increased pressure fluctuation propagates to each pipe 104, 106, 110, 112, 114, 116, 118 constituting the vaporizer 100, The vibration which makes this pressure fluctuation the exciting force arises.

本発明は、このような発見に基づいてなされたものであり、垂直方向に延び且つ内部に流される低温液化ガスを外部との熱交換によって気化させるための複数の気化管と、前記複数の気化管の下端部にそれぞれ接続されて各気化管に前記低温液化ガスをそれぞれ分配する気化管間分配管と、各気化管の内部に配置され且つ当該気化管よりも短い複数の内伝熱管と、を備える。そして、前記気化管間分配管は、前記気化管と前記内伝熱管との間に形成される外側空間と、前記内伝熱管内の内側空間と、に前記低温液化ガスをそれぞれ供給し、前記内伝熱管は、前記内側空間を流れる低温液化ガスの一部を当該内伝熱管の上端に到達する前に前記外側空間を流れて気化した低温液化ガスに合流させる構成である。   The present invention has been made based on such a discovery, and a plurality of vaporization tubes for vaporizing a low-temperature liquefied gas extending in the vertical direction and flowing inside by heat exchange with the outside, and the plurality of vaporizations An inter-vaporization pipe distribution pipe connected to the lower ends of the pipes to distribute the low-temperature liquefied gas to the vaporization pipes, and a plurality of internal heat transfer pipes arranged inside the vaporization pipes and shorter than the vaporization pipes, Is provided. And the pipe between the vaporization pipes supplies the low-temperature liquefied gas to the outer space formed between the vaporization pipe and the inner heat transfer pipe and the inner space inside the inner heat transfer pipe, respectively. The inner heat transfer tube is configured to join a part of the low-temperature liquefied gas flowing in the inner space to the vaporized low-temperature liquefied gas before reaching the upper end of the inner heat transfer tube.

本発明によれば、内伝熱管の上端(先端)周辺の領域(合流領域)において合流する気相の(気化した)低温液化ガスと液相の低温液化ガスとの温度差及び密度差が抑えられ、これにより、合流領域における気相の低温液化ガスと液相の低温液化ガスとの界面の周期的な変動が抑制される。   According to the present invention, the temperature difference and density difference between the gas phase (vaporized) low-temperature liquefied gas and the liquid-phase low-temperature liquefied gas that merge in the region around the upper end (tip) of the inner heat transfer tube (confluence region) are suppressed. Thus, the periodic fluctuation of the interface between the gas phase low temperature liquefied gas and the liquid phase low temperature liquefied gas in the merged region is suppressed.

詳しくは、前記の内伝熱管によれば、当該内伝熱管の上端近傍の合流領域に到達する前に、内側空間を流れる液相の低温液化ガスの一部が外側空間を流れることにより気化した(気相の)低温液化ガスと合流する。このため、当該気相の低温液化ガスが合流領域に到達する前にその温度が低下すると共に密度が上昇する。その結果、合流領域において気相の低温液化ガスと液相の低温液化ガスとが合流するときのこれら低温液化ガスの温度差及び密度差が抑えられ、これにより、当該合流領域における気相の低温液化ガスと液相の低温液化ガスとの界面の周期的な変動が抑制される。その結果、前記界面の周期的な変動に起因する気化装置及び当該気化装置に接続された配管系の振動を抑制することができる。   Specifically, according to the inner heat transfer tube, before reaching the merge region near the upper end of the inner heat transfer tube, a part of the liquid low-temperature liquefied gas flowing in the inner space is vaporized by flowing in the outer space. Merges with (gas phase) low-temperature liquefied gas. For this reason, before the low-temperature liquefied gas in the gas phase reaches the joining region, the temperature decreases and the density increases. As a result, the temperature difference and the density difference between these low-temperature liquefied gases when the low-temperature liquefied gas in the gas phase and the low-temperature liquefied gas in the liquid phase merge in the merging region are suppressed. Periodic fluctuations at the interface between the liquefied gas and the low-temperature liquefied gas in the liquid phase are suppressed. As a result, it is possible to suppress the vibration of the vaporizer and the piping system connected to the vaporizer due to the periodic fluctuation of the interface.

例えば、具体的に、前記内伝熱管が、その管壁に貫通孔を有することによって、内側空間下部の前記横断面における各位置を同時に通過した低温液化ガスが当該内伝熱管の上端に到達する前に、管壁の貫通孔を通じてその一部を外側空間を流れる気相の低温液化ガスに合流させることができる。これにより、合流領域において合流するときの外側空間を通過した気相の低温液化ガスと内側空間を通過した液相の低温液化ガスとの温度差及び密度差が抑えられ、その結果、界面の周期的な変動が防止され若しくは抑制される。   For example, specifically, the inner heat transfer tube has a through-hole in the tube wall, so that the low-temperature liquefied gas that has simultaneously passed through the respective positions in the transverse section in the lower part of the inner space reaches the upper end of the inner heat transfer tube. Before, a part of the gas can be merged with the gas phase low-temperature liquefied gas flowing in the outer space through the through hole in the tube wall. This suppresses the temperature difference and density difference between the gas phase low temperature liquefied gas that has passed through the outer space and the liquid phase low temperature liquefied gas that has passed through the inner space when merging in the merging region. Fluctuations are prevented or suppressed.

この場合、前記貫通孔は、少なくとも前記内伝熱管の上部に設けられることが好ましい。このように合流領域に近い位置に貫通孔が設けられることによって、液相の低温液化ガスの一部が合流して温度が低下した気相の低温液化ガスが、外部との熱交換によって前記合流前の温度にまで上昇する前に合流領域に確実に到達できる。これにより、合流領域における前記気相の低温液化ガスと前記液相の低温液化ガスとの温度差及び密度差を好適に抑えることができる。   In this case, it is preferable that the through hole is provided at least in the upper part of the inner heat transfer tube. By providing the through hole at a position close to the merging region in this manner, the gas phase low-temperature liquefied gas whose temperature has been reduced due to the merge of part of the liquid-phase low-temperature liquefied gas is exchanged by the heat exchange with the outside. It is possible to reliably reach the confluence area before rising to the previous temperature. Thereby, a temperature difference and a density difference between the low-temperature liquefied gas in the gas phase and the low-temperature liquefied gas in the liquid phase in the merge region can be suitably suppressed.

さらに、前記内伝熱管には複数の前記貫通孔が設けられ、これら複数の貫通孔は当該内伝熱管の上部から下方側に向かって並ぶことがより好ましい。   Furthermore, it is more preferable that the plurality of through holes are provided in the inner heat transfer tube, and the plurality of through holes are arranged from the upper part to the lower side of the inner heat transfer tube.

かかる構成によれば、気相の低温液化ガスが外側空間を流れて合流領域に到達するまでに、十分な量の液相の低温液化ガスが各貫通孔を通じて気相の低温液化ガスに合流することができる。これにより、合流領域での気相の低温液化ガスと液相の低温液化ガスとの温度差及び密度差を十分に小さくすることができ、その結果、合流領域における気相の低温液化ガスと液相の低温液化ガスとの界面の周期的な変動をより効果的に抑えることができる。   According to such a configuration, a sufficient amount of the liquid-phase low-temperature liquefied gas merges with the gas-phase low-temperature liquefied gas through each through-hole until the gas-phase low-temperature liquefied gas flows through the outer space and reaches the merge region. be able to. As a result, the temperature difference and the density difference between the gas-phase low-temperature liquefied gas and the liquid-phase low-temperature liquefied gas in the merge region can be sufficiently reduced. Periodic fluctuations in the interface with the low-temperature liquefied gas in the phase can be suppressed more effectively.

この場合、前記上下方向に沿って並ぶ複数の貫通孔は、上下方向において前記内伝熱管の上端から当該内伝熱管の長さの20〜40%までの領域に設けられることが好ましい。これにより、合流領域における気相の低温液化ガスと液相の低温液化ガスとの温度差及び密度差を好適に抑えることができる。   In this case, it is preferable that the plurality of through holes arranged in the vertical direction are provided in a region from the upper end of the internal heat transfer tube to 20 to 40% of the length of the internal heat transfer tube in the vertical direction. Thereby, the temperature difference and density difference of the low temperature liquefied gas of a gaseous phase and the low temperature liquefied gas of a liquid phase in a confluence | merging area | region can be suppressed suitably.

また、前記内伝熱管は、同じ高さ位置において複数の前記貫通孔を前記管壁に有し、これら同じ高さ位置の複数の貫通孔は、当該内伝熱管の周方向に沿って等間隔に配置されることが好ましい。   Further, the inner heat transfer tube has a plurality of through holes in the tube wall at the same height position, and the plurality of through holes at the same height position are equally spaced along the circumferential direction of the inner heat transfer tube. It is preferable to arrange | position.

かかる構成によれば、気化管(内伝熱管)の周方向における低温液化ガスの温度分布の偏りが抑えられ、気化装置において前記周方向の温度分布の偏りに起因する気化効率の低下等を抑えることができる。   According to such a configuration, the bias of the temperature distribution of the low-temperature liquefied gas in the circumferential direction of the vaporization tube (inner heat transfer tube) is suppressed, and the decrease in vaporization efficiency due to the bias of the temperature distribution in the circumferential direction is suppressed in the vaporizer. be able to.

また、前記内伝熱管は、上下方向に沿って当該内伝熱管の上端面から下方側に延びる切欠きを当該内伝熱管の管壁に有してもよい。   Further, the inner heat transfer tube may have a notch extending in the vertical direction from the upper end surface of the inner heat transfer tube to the lower side in the tube wall of the inner heat transfer tube.

かかる構成によっても、内側空間下部の前記横断面における各位置を同時に通過した低温液化ガスが当該内伝熱管の上端に到達する前に、管壁の切欠きを通じてその一部を外側空間を流れる気相の低温液化ガスに合流させることができる。これにより、合流領域において合流するときの外側空間を通過した気相の低温液化ガスと内側空間を通過した液相の低温液化ガスとの温度差及び密度差が抑えられ、その結果、界面の周期的な変動が防止され若しくは抑制される。   Even in such a configuration, the low-temperature liquefied gas that has simultaneously passed through the respective positions in the cross section in the lower part of the inner space reaches the upper end of the inner heat transfer tube, and a part of the gas flows through the outer space through the tube wall notch. The phase can be merged into a low temperature liquefied gas. This suppresses the temperature difference and density difference between the gas phase low temperature liquefied gas that has passed through the outer space and the liquid phase low temperature liquefied gas that has passed through the inner space when merging in the merging region. Fluctuations are prevented or suppressed.

しかも、切欠きが所定の長さを有することにより、気相の低温液化ガスが外側空間を流れて合流領域に到達するまでに十分な量の液相の低温液化ガスが切欠きを通じて気相の低温液化ガスに合流することが可能となる。これにより、合流領域での気相の低温液化ガスと液相の低温液化ガスとの温度差及び密度差を十分に小さくすることができる。   In addition, since the notch has a predetermined length, a sufficient amount of the low-temperature liquefied gas in the liquid phase until the low-temperature liquefied gas in the gas phase flows through the outer space and reaches the merged region is formed in the gas phase through the notch. It becomes possible to join the low-temperature liquefied gas. As a result, the temperature difference and density difference between the gas-phase low-temperature liquefied gas and the liquid-phase low-temperature liquefied gas in the merging region can be sufficiently reduced.

さらに、切欠きが内伝熱管の上端面から下方側に延びていることにより、液相の低温液化ガスの一部が合流して温度が低下した気相の低温液化ガスが、外部との熱交換によって前記合流前の温度にまで上昇する前に合流領域に確実に到達できる。   Furthermore, since the notch extends downward from the upper end surface of the inner heat transfer tube, the gas phase low temperature liquefied gas whose temperature has been lowered due to the merge of part of the liquid phase low temperature liquefied gas becomes the heat from the outside. The exchange can reliably reach the joining area before the temperature rises to the temperature before joining.

この場合、前記管壁には複数の前記切欠きが設けられ、これら複数の切欠きは当該内伝熱管の周方向に沿って等間隔に配置されることが好ましい。   In this case, it is preferable that a plurality of the notches are provided in the tube wall, and the plurality of notches are arranged at equal intervals along the circumferential direction of the inner heat transfer tube.

かかる構成によれば、気化管(内伝熱管)の周方向における低温液化ガスの温度分布の偏りが抑えられ、気化装置において前記周方向の温度分布の偏りに起因する気化効率の低下等を抑えることができる。   According to such a configuration, the bias of the temperature distribution of the low-temperature liquefied gas in the circumferential direction of the vaporization tube (inner heat transfer tube) is suppressed, and the decrease in vaporization efficiency due to the bias of the temperature distribution in the circumferential direction is suppressed in the vaporizer. be able to.

また、前記切欠きは、上下方向において前記内伝熱管の上端から当該内伝熱管の長さの20〜40%までの領域に設けられることが好ましい。これにより、合流領域における気相の低温液化ガスと液相の低温液化ガスとの温度差及び密度差を好適に抑えることができる。   Moreover, it is preferable that the said notch is provided in the area | region from 20 to 40% of the length of the said internal heat exchanger tube in the up-down direction from the upper end of the said internal heat exchanger tube. Thereby, the temperature difference and density difference of the low temperature liquefied gas of a gaseous phase and the low temperature liquefied gas of a liquid phase in a confluence | merging area | region can be suppressed suitably.

以上より、本発明によれば、気化管内に内伝熱管が設けられた気化装置であって低温液化ガスを気化するときに当該気化装置又は/及び当該気化装置に接続された配管系に振動が生じ難い低温液化ガスの気化装置を提供することができる。   As described above, according to the present invention, when a low-temperature liquefied gas is vaporized in an internal heat transfer tube provided in the vaporization tube, vibration is generated in the vaporization device or / and a piping system connected to the vaporization device. It is possible to provide a low-temperature liquefied gas vaporizer that is unlikely to occur.

本実施形態に係る低温液化ガスの気化装置の概略構成斜視図である。It is a schematic structure perspective view of the vaporizer of the low-temperature liquefied gas concerning this embodiment. 前記気化装置の配管の状態を示す模式図(正面図)である。It is a schematic diagram (front view) which shows the state of piping of the said vaporization apparatus. 前記気化装置の配管の状態を示す模式図(側面図)である。It is a schematic diagram (side view) which shows the state of piping of the said vaporization apparatus. 前記気化装置における気化管の下部の拡大横断面図である。It is an expanded cross-sectional view of the lower part of the vaporization pipe | tube in the said vaporization apparatus. (A)は、前記気化管内に配置される内伝熱管を説明するための図であり、(B)は、他実施形態に係る内伝熱管を説明するための図である。(A) is a figure for demonstrating the internal heat exchanger tube arrange | positioned in the said vaporization pipe | tube, (B) is a figure for demonstrating the internal heat exchanger tube which concerns on other embodiment. 各気化管と対応する位置に複数の穴がそれぞれ設けられたヘッダー内管を説明するための模式図である。It is a schematic diagram for demonstrating the pipe | tube in a header in which the some hole was each provided in the position corresponding to each vaporization pipe | tube. 各気化管と対応する位置に複数の穴がそれぞれ設けられたヘッダー内管を説明するための拡大断面図である。It is an expanded sectional view for demonstrating the pipe | tube in a header in which the some hole was each provided in the position corresponding to each vaporization pipe | tube. (A)は、前記気化装置の海水供給部を説明するための側面図であり、(B)は、前記気化装置の海水供給部を説明するための正面図である。(A) is a side view for demonstrating the seawater supply part of the said vaporization apparatus, (B) is a front view for demonstrating the seawater supply part of the said vaporization apparatus. (A)は、貫通孔のない内伝熱管を備えた気化装置の気化管におけるNG及びLNGの温度の変化を示す図であり、(B)は当該気化管におけるNG及びLNGの密度の変化を示す図である。(A) is a figure which shows the change of the temperature of NG and LNG in the vaporization pipe | tube of the vaporization apparatus provided with the internal heat transfer pipe | tube without a through-hole, (B) shows the change of the density of NG and LNG in the said vaporization pipe | tube. FIG. (A)は、本実施形態に係る気化装置の気化管におけるNG及びLNGの温度の変化を示す図であり、(B)は当該気化管におけるNG及びLNGの密度の変化を示す図である。(A) is a figure which shows the change of the temperature of NG and LNG in the vaporization pipe | tube of the vaporization apparatus which concerns on this embodiment, (B) is a figure which shows the change of the density of NG and LNG in the said vaporization pipe | tube. 他実施形態に係る内伝熱管の構成を説明するための図である。It is a figure for demonstrating the structure of the internal heat exchanger tube which concerns on other embodiment. 他実施形態に係る内伝熱管の構成を説明するための図である。It is a figure for demonstrating the structure of the internal heat exchanger tube which concerns on other embodiment. 従来の低温液化ガスの気化装置の概略構成斜視図である。It is a schematic perspective view of a conventional low temperature liquefied gas vaporizer. (A)は従来の低温液化ガスの気化装置における気化管及び内伝熱管を説明するための縦断面図であり、(B)は前記気化管及び内伝熱管における図11のXI−XI位置における断面図である。(A) is a longitudinal cross-sectional view for demonstrating the vaporization pipe | tube and internal heat exchanger tube in the conventional low temperature liquefied gas vaporizer, (B) in the XI-XI position of FIG. 11 in the said vaporization pipe | tube and an internal heat exchanger tube It is sectional drawing. NGとLNGとの合流部(合流領域)における界面の周期的な変動の原理を説明するための図である。It is a figure for demonstrating the principle of the periodic fluctuation | variation of the interface in the junction part (merging area | region) of NG and LNG. 気化管内に生じる前記界面の変位と圧力の変位を示す図である。It is a figure which shows the displacement of the said interface which arises in a vaporization pipe | tube, and the displacement of a pressure.

以下、本発明の一実施形態について、添付図面を参照しつつ説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

本実施形態に係る低温液化ガスの気化装置(以下、単に「気化装置」とも称する。)は、供給された低温液化ガスを外部の熱交換用液体と熱交換させることにより、当該低温液化ガスを気化させるいわゆるオープンラック型の気化装置(ORV)である。本実施形態の気化装置では液化天然ガス(LNG)を気化する。また、本実施形態では、熱交換用液体として海水が用いられる。   The low-temperature liquefied gas vaporizer according to the present embodiment (hereinafter, also simply referred to as “vaporizer”) exchanges the supplied low-temperature liquefied gas with an external heat exchange liquid, thereby This is a so-called open rack type vaporizer (ORV) for vaporization. In the vaporizer of this embodiment, liquefied natural gas (LNG) is vaporized. In this embodiment, seawater is used as the heat exchange liquid.

具体的に、気化装置は、図1〜図5(B)、図8(A)、図8(B)に示されるように、複数(本実施形態では2個)の気化管ブロック11と、各気化管ブロック11へLNGを分配する分配管12と、各気化管ブロック11において気化されたLNGである天然ガス(NG)を集める集合管14と、各気化管パネル16の表面を伝って流れ落ちるように気化管パネル16の上部に海水を供給する海水供給部(液体供給部)30と、を備える。尚、気化装置10に設けられる気化管ブロック11の数は、複数に限定されず、1つでもよい。   Specifically, as shown in FIGS. 1 to 5 (B), FIG. 8 (A), and FIG. 8 (B), the vaporizer includes a plurality of (two in this embodiment) vaporizer block blocks 11; The distribution pipe 12 that distributes LNG to each vaporization pipe block 11, the collection pipe 14 that collects natural gas (NG) that is LNG vaporized in each vaporization pipe block 11, and the surface of each vaporization pipe panel 16 flow down. Thus, the seawater supply part (liquid supply part) 30 which supplies seawater to the upper part of the vaporization pipe panel 16 is provided. In addition, the number of the vaporization pipe blocks 11 provided in the vaporizer 10 is not limited to plural, and may be one.

各気化管ブロック11は、複数(本実施形態では5枚)の気化管パネル16と、分配管12からのLNGを各気化管パネル16へ分配する供給側マニホールド17と、各気化管パネル16において気化したLNG(即ち、NG)を集めて集合管14に送出する送出側マニホールド19と、をそれぞれ有する。尚、1つの気化管ブロック11に含まれる気化管パネル16の数は5枚に限定されず、他の枚数であってもよい。   Each vaporizing pipe block 11 includes a plurality of (in this embodiment, five) vaporizing pipe panels 16, a supply side manifold 17 that distributes LNG from the distribution pipe 12 to each vaporizing pipe panel 16, and each vaporizing pipe panel 16. And a delivery-side manifold 19 that collects vaporized LNG (that is, NG) and sends it to the collecting pipe 14. The number of vaporization tube panels 16 included in one vaporization tube block 11 is not limited to five, and may be another number.

各気化管パネル16は、垂直面上に互いに平行な姿勢で並べられた複数(本実施形態では90本)の気化管(伝熱管)21と、各気化管21の内部にそれぞれ配置される複数の内伝熱管25と、供給側マニホールド17からのLNGを各気化管21に分配する供給側ヘッダー22と、各気化管21において気化されたLNGを集めて送出側マニホールド19に送出する送出側ヘッダー24と、をそれぞれ有する。尚、1枚の気化管パネル16に含まれる気化管の数は90本に限定されず、他の本数であってもよい。   Each vaporization tube panel 16 has a plurality (90 in this embodiment) of vaporization tubes (heat transfer tubes) 21 arranged in parallel with each other on a vertical plane, and a plurality of vaporization tubes 21 arranged inside each vaporization tube 21. , The supply side header 22 that distributes the LNG from the supply side manifold 17 to each vaporization pipe 21, and the transmission side header that collects the LNG vaporized in each vaporization pipe 21 and sends it to the transmission side manifold 19. 24. The number of vaporization tubes included in one vaporization tube panel 16 is not limited to 90, and may be other numbers.

各気化管21は、アルミニウム又はアルミニウム合金等の熱伝導率の高い金属材料により形成され、上下方向に延びる管である。本実施形態の気化管21は、内部を流れるLNGとの接触面積を大きくするために、径方向の凹凸が周方向に繰り返される内周面21aを有する(図4参照)。また、気化管21は、当該気化管21に沿って流れ落ちる海水との接触面積を大きくするために、外周面21bに複数のフィンが形成されている。   Each vaporization tube 21 is a tube formed of a metal material having a high thermal conductivity such as aluminum or an aluminum alloy and extending in the vertical direction. The vaporization tube 21 of the present embodiment has an inner peripheral surface 21a in which radial irregularities are repeated in the circumferential direction in order to increase the contact area with the LNG flowing inside (see FIG. 4). Further, the vaporizing pipe 21 has a plurality of fins formed on the outer peripheral surface 21b in order to increase the contact area with the seawater flowing down along the vaporizing pipe 21.

尚、気化管21の内周面及び外周面の具体的構成は、上記の構成に限定されず、断面が円形若しくは略円形等であってもよい。   In addition, the specific structure of the inner peripheral surface and outer peripheral surface of the vaporization pipe | tube 21 is not limited to said structure, A cross section may be circular or substantially circular.

内伝熱管25は、気化管21下部の外表面での着氷を抑えると共に十分な伝熱性能を確保して効率よくLNGを気化するための部材であり、各気化管21の内部に配置され且つ当該気化管21よりも短い管である。内伝熱管25は、気化管21と同様に、アルミニウム又はアルミニウム合金等の熱伝導率の高い金属材料により形成される。この内伝熱管25は、気化管21との間に外側空間S1を規定すると共に当該内伝熱管25内に内側空間S2を規定する。具体的に、本実施形態の内伝熱管25は、円柱面状の外周面25bと、この外周面25bよりも内側に位置する円柱面状の内周面25aと、管軸(垂直方向)に垂直な上端面25cとを有する。尚、上端面は、管軸に垂直な面に限定される必要は無く、管軸に対して傾斜していてもよい(例えば、図12(B)参照)。   The inner heat transfer tube 25 is a member for suppressing icing on the outer surface of the lower portion of the vaporization tube 21 and ensuring sufficient heat transfer performance to efficiently vaporize LNG, and is disposed inside each vaporization tube 21. The tube is shorter than the vaporizing tube 21. The internal heat transfer tube 25 is formed of a metal material having a high thermal conductivity such as aluminum or an aluminum alloy, like the vaporization tube 21. The inner heat transfer tube 25 defines an outer space S <b> 1 between the inner heat transfer tube 25 and the inner space S <b> 2. Specifically, the inner heat transfer tube 25 of the present embodiment has a cylindrical outer peripheral surface 25b, a cylindrical inner peripheral surface 25a positioned inside the outer peripheral surface 25b, and a tube axis (vertical direction). And a vertical upper end surface 25c. The upper end surface need not be limited to a surface perpendicular to the tube axis, and may be inclined with respect to the tube axis (see, for example, FIG. 12B).

この内伝熱管25は、気化管21と同軸となるように当該気化管21の内部に配置される。外周面25bは、気化管21の内側に内伝熱管25が配置されたときに、当該外周面25bが気化管21の内周面21aにおける内側に突出する部位の各先端とそれぞれ当接するような外径を有する。このような気化管21の内周面21aと内伝熱管25の外周面25bとにより、内伝熱管25と気化管21との間に軸方向に連続し且つ周方向に断続な外側空間S1が形成される。尚、内伝熱管25の外周面25bと気化管21の内周面21aとの形状は、本実施形態のように周方向に断続な外側空間S1を形成するような形状に限定されず、周方向に連続な外側空間が形成されるような形状であってもよい。即ち、気化管の内周面と内伝熱管の外周面とがいずれも円柱面状であってもよい。   The inner heat transfer tube 25 is disposed inside the vaporization tube 21 so as to be coaxial with the vaporization tube 21. When the inner heat transfer tube 25 is disposed inside the vaporizing tube 21, the outer peripheral surface 25 b comes into contact with each tip of the portion projecting inwardly on the inner peripheral surface 21 a of the vaporizing tube 21. Has an outer diameter. Due to the inner peripheral surface 21a of the vaporizing tube 21 and the outer peripheral surface 25b of the inner heat transfer tube 25, an outer space S1 continuous in the axial direction and intermittent in the circumferential direction is formed between the inner heat transfer tube 25 and the vaporization tube 21. It is formed. The shape of the outer peripheral surface 25b of the inner heat transfer tube 25 and the inner peripheral surface 21a of the vaporization tube 21 is not limited to the shape that forms the intermittent outer space S1 in the circumferential direction as in the present embodiment. The shape may form a continuous outer space in the direction. That is, both the inner peripheral surface of the vaporization tube and the outer peripheral surface of the inner heat transfer tube may be cylindrical.

この内伝熱管25は、内側空間S2の下部における一横断面i(図5(A)参照)における各位置を同時に通過したLNGの一部を当該内伝熱管25の上端(本実施形態においては、上端面25c)に到達する前に外側空間S1を流れるNGに合流させる。尚、横断面iの具体的な位置は、本実施形態の位置に限定されない。即ち、横断面iは、管軸と垂直であれば、上端面25cと内伝熱管25の下端との間であって貫通孔26や後述する切欠き26A,26B(図11(A)及び図11(B)参照)よりも下側のいずれの位置の断面でもよい。   The inner heat transfer tube 25 is configured such that a part of the LNG that has simultaneously passed through each position in one transverse section i (see FIG. 5A) in the lower part of the inner space S2 is the upper end of the inner heat transfer tube 25 (in this embodiment, , Before reaching the upper end face 25c), the NG flowing in the outer space S1 is joined. In addition, the specific position of the cross section i is not limited to the position of this embodiment. That is, if the cross section i is perpendicular to the tube axis, it is between the upper end surface 25c and the lower end of the internal heat transfer tube 25, and the through hole 26 and notches 26A and 26B described later (FIG. 11A and FIG. 11 (B)) may be a cross section at any position below the lower side.

具体的には、本実施形態の内伝熱管25は、その管壁に複数の貫通孔26を有する。   Specifically, the internal heat transfer tube 25 of the present embodiment has a plurality of through holes 26 on the tube wall.

詳しくは、内伝熱管25の上部から供給側ヘッダー22に向かって並ぶ複数(図5(A)に示す例では3個)の貫通孔26を一組とし、この組が内伝熱管25の周方向に等間隔に配置されている。図5(A)に示す例では、貫通孔51の前記組は、周方向に4組配置されている。この貫通孔26の前記組は、内伝熱管25の先端(上端)から供給側ヘッダー22に向かって当該内伝熱管25の長さの20〜40%までの領域に設けられるのが好ましい。このような領域に設けられることにより、内伝熱管25の上端において合流する気相のLNG(即ちNG)と液相のLNGとの温度差及び密度差を好適に抑えることができる。ここで、上端とは、上端面25cが管軸と垂直である場合には当該上端面の位置であり、上端面が管軸に対して傾斜している場合には、当該上端面の最も高い位置である。   Specifically, a plurality of (three in the example shown in FIG. 5A) through-holes 26 arranged from the upper part of the inner heat transfer tube 25 toward the supply-side header 22 are set as one set, and this set is the circumference of the inner heat transfer tube 25. It is arranged at equal intervals in the direction. In the example shown in FIG. 5A, four sets of the through holes 51 are arranged in the circumferential direction. It is preferable that the group of the through holes 26 is provided in a region of 20 to 40% of the length of the internal heat transfer tube 25 from the tip (upper end) of the internal heat transfer tube 25 toward the supply-side header 22. By being provided in such a region, it is possible to suitably suppress a temperature difference and a density difference between the gas phase LNG (that is, NG) and the liquid phase LNG that merge at the upper end of the internal heat transfer tube 25. Here, the upper end is the position of the upper end surface when the upper end surface 25c is perpendicular to the tube axis, and is the highest of the upper end surface when the upper end surface is inclined with respect to the tube axis. Position.

尚、前記各組における貫通孔26の並び方向は、本実施形態のように垂直方向に真っ直ぐに並んでいてもよく(図5(A)参照)、垂直方向に対して所定の角度となるように並んでいてもよい(図5(B)参照)。また、本実施形態の外側空間S1が周方向に断続であるため、各貫通孔26は、内伝熱管25の周方向において外側空間S1と対応する位置にそれぞれ設けられる。また、各組の貫通孔51の径は、一定でなくてもよい。例えば、上側に位置する穴51ほど、直径が大きくてもよく、また、小さくてもよい。   The through holes 26 in each set may be arranged in a straight line in the vertical direction as in the present embodiment (see FIG. 5A), and at a predetermined angle with respect to the vertical direction. (See FIG. 5B). Further, since the outer space S <b> 1 of the present embodiment is intermittent in the circumferential direction, each through hole 26 is provided at a position corresponding to the outer space S <b> 1 in the circumferential direction of the inner heat transfer tube 25. Further, the diameter of each set of through holes 51 may not be constant. For example, the diameter of the hole 51 located on the upper side may be larger or smaller.

供給側ヘッダー22は、気化管21が並ぶ前記垂直面に沿って水平方向に延びる管である。供給側ヘッダー22は、1つの気化管パネル16に含まれる各気化管21にそれぞれ接続される。この供給側ヘッダー22は、外側空間S1と内側空間S2とにLNGをそれぞれ供給する。また、供給側ヘッダー22は、その内部に配置されたヘッダー内管50を介して供給側マニホールド17からLNGが供給されるように、その一端が供給側マニホールド17と接続される。   The supply-side header 22 is a tube that extends in the horizontal direction along the vertical plane in which the vaporization tubes 21 are arranged. The supply-side header 22 is connected to each vaporization tube 21 included in one vaporization tube panel 16. The supply header 22 supplies LNG to the outer space S1 and the inner space S2. In addition, one end of the supply side header 22 is connected to the supply side manifold 17 so that LNG is supplied from the supply side manifold 17 via the header inner pipe 50 disposed therein.

ヘッダー内管50は、供給側ヘッダー22に沿って延びる管状部材であり、供給側ヘッダー22と同軸となるように当該供給側ヘッダー22の内部に配置される(図3参照)。このヘッダー内管50は、その外径が供給側ヘッダー22の内径よりも小さく、これにより、供給側ヘッダー22の内部に配置されたときに当該ヘッダー内管50の外周面と供給側ヘッダー22の内周面との間に所定の空間が形成される。そして、ヘッダー内管50は、その内部にLNGが供給されるように供給側マニホールド17に接続され、当該ヘッダー内管50の軸方向において管壁(周壁)の各気化管21と対応する位置にそれぞれ穴51を有する。この軸方向の各気化管21に対応する位置には、それぞれ複数の(本実施形態では2つの穴)が設けられる。具体的に、これら複数の穴51は、前記軸方向における各気化管21と対応する位置(本実施形態では、各気化管21の下方側の位置)において、ヘッダー内管50の周方向に並んでいる。本実施形態では、2つの穴51が水平方向に対向する位置に設けられている。尚、各気化管21と対応する位置に3つ以上(図6及び図7の例では4つ)の穴51が設けられる場合には、前記各気化管21と対応する位置において、各穴51は、その中心がヘッダー内管50の下半分に位置するようにヘッダー内管50の周方向に並ぶように配置されることが好ましい。   The header inner pipe 50 is a tubular member extending along the supply side header 22 and is disposed inside the supply side header 22 so as to be coaxial with the supply side header 22 (see FIG. 3). The header inner pipe 50 has an outer diameter smaller than the inner diameter of the supply-side header 22, so that when arranged inside the supply-side header 22, the outer circumferential surface of the header inner pipe 50 and the supply-side header 22 A predetermined space is formed between the inner peripheral surface. The header inner pipe 50 is connected to the supply-side manifold 17 so that LNG is supplied into the header inner pipe 50, and at a position corresponding to each vaporization pipe 21 on the pipe wall (peripheral wall) in the axial direction of the header inner pipe 50. Each has a hole 51. A plurality of (two holes in the present embodiment) are provided at positions corresponding to the respective vaporizing tubes 21 in the axial direction. Specifically, the plurality of holes 51 are arranged in the circumferential direction of the header inner pipe 50 at positions corresponding to the respective vaporization pipes 21 in the axial direction (positions below the vaporization pipes 21 in the present embodiment). It is out. In the present embodiment, the two holes 51 are provided at positions facing the horizontal direction. When three or more holes (four in the examples of FIGS. 6 and 7) are provided at positions corresponding to the respective vaporizing tubes 21, the holes 51 are disposed at positions corresponding to the respective vaporizing tubes 21. Are preferably arranged so as to be aligned in the circumferential direction of the header inner tube 50 so that the center thereof is located in the lower half of the header inner tube 50.

このように、供給側ヘッダー22の内部にヘッダー内管50を設けて二重管構造とし、ヘッダー内管50の各気化管21に対応する位置に複数の穴51をそれぞれ設けることにより、各気化管21に分配されるLNGの流量が均等になる。   In this way, the header inner pipe 50 is provided inside the supply side header 22 to form a double pipe structure, and a plurality of holes 51 are provided at positions corresponding to the vaporization pipes 21 of the header inner pipe 50 to thereby provide each vaporization. The flow rate of LNG distributed to the pipe 21 is equalized.

また、ヘッダー内管50の各気化管21に対応する位置に複数の穴51をそれぞれ設け、これら複数の穴51が当該ヘッダー内管50の下半分に配置(詳しくは、各穴51の中心が前記下半分に位置するように配置)されることにより、各気化管21に流入するLNGの流れが均一となる。即ち、各気化管21に対応する位置の複数の穴51から流れ出たLNGが供給側ヘッダー22とヘッダー内管50との間を気化管21に向かって供給側ヘッダー22の周方向上側に向かって流れてから気化管21内に流入することにより、ヘッダー内管の上部(例えば、気化管21の下端と対向する位置等)に設けられた穴から流れ出て直ぐに気化管21内にLNGが流入する場合に比べてLNGの流れが均一となる。   Also, a plurality of holes 51 are provided at positions corresponding to the vaporization tubes 21 of the header inner pipe 50, and the plurality of holes 51 are arranged in the lower half of the header inner pipe 50 (specifically, the center of each hole 51 is (Arranged so as to be located in the lower half), the flow of LNG flowing into each vaporizing tube 21 becomes uniform. That is, LNG that has flowed out from the plurality of holes 51 at positions corresponding to the respective vaporization tubes 21 passes between the supply side header 22 and the header inner tube 50 toward the vaporization tube 21 and toward the upper side in the circumferential direction of the supply side header 22. By flowing into the vaporization tube 21 after flowing, LNG flows into the vaporization tube 21 immediately after flowing out of a hole provided in the upper portion of the header inner tube (for example, a position facing the lower end of the vaporization tube 21). Compared with the case, the flow of LNG becomes uniform.

送出側ヘッダー24は、供給側ヘッダー22と平行に延びる管である。この送出側ヘッダー24は、1つの気化管パネル16に含まれる各気化管21の上端部と、送出側マニホールド19と、に接続される。   The delivery side header 24 is a pipe extending in parallel with the supply side header 22. The delivery side header 24 is connected to the upper end portion of each vaporization tube 21 included in one vaporization tube panel 16 and the delivery side manifold 19.

以上のように構成される複数の気化管パネル16は、互いに平行な姿勢でパネル面(気化管21が並ぶ前記垂直面)と直交する方向(図2において左右方向)に配置されている。   The plurality of vaporizing tube panels 16 configured as described above are arranged in a direction (left-right direction in FIG. 2) orthogonal to the panel surface (the vertical surface on which the vaporizing tubes 21 are arranged) in a mutually parallel posture.

供給側マニホールド17は、供給側ヘッダー22と交差する方向(本実施形態では、略直交する方向:図3における紙面と直交する方向)に延びる管であり、1つの気化管ブロック11に含まれる各供給側ヘッダー22と、分配管12と、に接続される。   The supply-side manifold 17 is a pipe extending in a direction intersecting with the supply-side header 22 (in the present embodiment, a direction substantially orthogonal to the sheet: a direction orthogonal to the paper surface in FIG. 3), and is included in one vaporization tube block 11. Connected to the supply side header 22 and the distribution pipe 12.

送出側マニホールド19は、送出側ヘッダー24と交差する方向(本実施形態では、略直交する方向:図3において紙面と直交する方向)に延びる管であり、1つの気化管ブロック11に含まれる各送出側ヘッダー24と、集合管14と、に接続される。   The delivery-side manifold 19 is a pipe extending in a direction intersecting with the delivery-side header 24 (in the present embodiment, a direction substantially orthogonal to the paper: a direction orthogonal to the paper surface in FIG. 3), and is included in one vaporization tube block 11. Connected to the sending side header 24 and the collecting pipe 14.

分配管12は、供給側マニホールド17と略平行に延びる管であり、各供給側マニホールド17に接続される。また、分配管12には、外部から当該気化装置10にLNGを供給するための配管P1を接続する供給側接続部12aが設けられている。   The distribution pipe 12 is a pipe extending substantially parallel to the supply side manifold 17 and is connected to each supply side manifold 17. Further, the distribution pipe 12 is provided with a supply side connection portion 12a for connecting a pipe P1 for supplying LNG to the vaporizer 10 from the outside.

集合管14は、送出側マニホールド19と略平行に延びる管であり、各送出側マニホールド19に接続される。また、集合管14には、消費地等の外部へNGを送出するための配管P2を接続する送出側接続部14aが設けられている。   The collecting pipe 14 is a pipe extending substantially in parallel with the delivery side manifold 19 and is connected to each delivery side manifold 19. Further, the collecting pipe 14 is provided with a sending side connection portion 14a for connecting a pipe P2 for sending NG to the outside such as a consumption area.

海水供給部30は、各気化管パネル16の上端部近傍に配置されるトラフ31と、各トラフ31に海水を供給する海水ヘッダー32と、各海水ヘッダー32に海水を分配する海水マニホールド33と、を備える(図8(A)、図8(B)参照)。トラフ31は、気化管パネル16(詳しくは、当該気化管パネル16を構成する各気化管21)の表面に沿って海水が流れ落ちるように各気化管パネル16の上端部に海水を供給する。このトラフ31から供給されて気化管パネル16の表面を流れ落ちる海水と、各気化管21内を流れるLNGとが、気化管21の管壁を介して熱交換することにより、LNGが気化してNGとなる。   The seawater supply unit 30 includes a trough 31 disposed in the vicinity of the upper end of each vaporization tube panel 16, a seawater header 32 that supplies seawater to each trough 31, a seawater manifold 33 that distributes seawater to each seawater header 32, (See FIGS. 8A and 8B). The trough 31 supplies seawater to the upper end portion of each vaporization tube panel 16 so that the seawater flows down along the surface of the vaporization tube panel 16 (specifically, each vaporization tube 21 constituting the vaporization tube panel 16). The seawater supplied from the trough 31 and flowing down the surface of the vaporization tube panel 16 and the LNG flowing in the vaporization tubes 21 exchange heat through the tube walls of the vaporization tubes 21, whereby LNG is vaporized and NG. It becomes.

以上のように構成される気化装置10は、以下のようにしてLNGを気化する。   The vaporizer 10 configured as described above vaporizes LNG as follows.

トラフ31から各気化管パネル16の表面に海水が供給されると共に、供給側接続部12aに接続された配管P1を通じて供給ポンプ等からLNGが分配管12に供給される。分配管12は、供給ポンプ等によって供給されたLNGを当該分配管12に接続された各供給側マニホールド17に分配し、各供給側マニホールド17は、分配管12からのLNGを当該供給側マニホールド17に接続された各供給側ヘッダー22にそれぞれ分配する。各供給側ヘッダー22は、供給されたLNGを当該供給側ヘッダー22に接続された各気化管21に分配する。詳しくは、供給側ヘッダー22は、各気化管21の内部に形成されている外側空間S1と内側空間S2とにそれぞれLNGを供給する。   Seawater is supplied from the trough 31 to the surface of each vaporization tube panel 16, and LNG is supplied to the distribution pipe 12 from a supply pump or the like through the pipe P1 connected to the supply side connection portion 12a. The distribution pipe 12 distributes LNG supplied by a supply pump or the like to each supply side manifold 17 connected to the distribution pipe 12, and each supply side manifold 17 supplies the LNG from the distribution pipe 12 to the supply side manifold 17. Are distributed to each supply-side header 22 connected to the. Each supply-side header 22 distributes the supplied LNG to each vaporization tube 21 connected to the supply-side header 22. Specifically, the supply-side header 22 supplies LNG to the outer space S1 and the inner space S2 formed inside each vaporizing tube 21.

各気化管21では、供給側ヘッダー22から供給されたLNGがその内部を当該気化管21の下端から上端に向けて流れる。このとき、外側空間S1に供給されたLNGは、気化管21の外部からの熱(詳しくは、気化管21に沿って流れ落ちる海水の有する熱)によって気化された状態(気相)となって上方に向かって流れ、内側空間S2に供給されたLNGは、液相のままで上方に向かって流れる。詳しくは、気化管21の下部(内伝熱管25が位置する領域)において、外側空間S1を流れるLNGが内側空間S2を流れるLNGに比べて流量が小さく且つ気化管21の外部との熱交換が行われ易いためにすぐに気化し、この気化した状態のLNG(即ち、NG)が外側空間S1を流れる。そのため、気化管21の表面温度が内伝熱管25の設けられていない気化管(気化前のLNGが内部を流れている状態の気化管)に比べて高くなり、これにより、表面の着氷が抑えられる。また、外側空間S1においてLNGが気化するときに気化管21の内周面21aと内伝熱管25の外周面25bとの温度差に起因する強制対流沸騰が強まって当該領域における熱伝達率が高くなっている。   In each vaporization tube 21, the LNG supplied from the supply-side header 22 flows through the vaporization tube 21 from the lower end to the upper end. At this time, the LNG supplied to the outer space S1 becomes vaporized by the heat from the outside of the vaporization pipe 21 (specifically, the heat of seawater flowing down along the vaporization pipe 21). LNG supplied to the inner space S2 flows upward while remaining in a liquid phase. Specifically, in the lower part of the vaporization tube 21 (region where the inner heat transfer tube 25 is located), the LNG flowing in the outer space S1 has a smaller flow rate than the LNG flowing in the inner space S2, and heat exchange with the outside of the vaporization tube 21 is performed. Since it is easily performed, it is vaporized immediately, and this vaporized LNG (that is, NG) flows through the outer space S1. Therefore, the surface temperature of the vaporizing tube 21 is higher than that of the vaporizing tube in which the internal heat transfer tube 25 is not provided (the vaporizing tube in a state where the LNG before vaporization is flowing inside), and thereby the surface icing is not caused. It can be suppressed. Further, when LNG is vaporized in the outer space S1, forced convection boiling caused by a temperature difference between the inner peripheral surface 21a of the vaporizing tube 21 and the outer peripheral surface 25b of the inner heat transfer tube 25 is strengthened, and the heat transfer coefficient in the region is high. It has become.

これら外側空間S1を流れる気相のLNG、即ち、NGと、内側空間S2を流れる液相のLNGと、が内伝熱管25の上端(先端)周辺において合流する前に、その一部が貫通孔26を通じて合流する。具体的に、内側空間S2下部の前記横断面iにおける各位置を同時に通過したLNGが内伝熱管25の上部に設けられた貫通孔26の位置に到達すると、その一部が貫通孔26を通じて外側空間S1に流入して当該外側空間S1を流れているNGに合流する。即ち、内伝熱管25の中間位置(下端と上端との間)において内側空間S2を流れるLNGの一部が外側空間S1を流れるNGに合流して当該NGの温度を下げると共に密度を上昇させる。これにより、内伝熱管に貫通孔が設けられていない場合に比べて、内伝熱管25の上端の周辺(合流領域)において外側空間S1を流れるNGと内側空間S2を流れるLNGとが合流したときのこれらNGとLNGとの温度差及び密度差がそれぞれ抑えられる。   Before the gas phase LNG flowing in the outer space S1, that is, NG, and the liquid phase LNG flowing in the inner space S2 merge around the upper end (tip) of the inner heat transfer tube 25, a part of the LNG is a through hole. 26. Specifically, when LNG that has passed through each position in the cross section i below the inner space S2 reaches the position of the through hole 26 provided in the upper part of the inner heat transfer tube 25, a part of the LNG passes through the through hole 26 to the outside. It flows into the space S1 and merges with NG flowing through the outer space S1. That is, at the intermediate position of the inner heat transfer tube 25 (between the lower end and the upper end), a part of the LNG flowing through the inner space S2 joins the NG flowing through the outer space S1, thereby lowering the temperature of the NG and increasing the density. Thereby, when the NG flowing through the outer space S1 and the LNG flowing through the inner space S2 are merged around the upper end of the inner heat transfer tube 25 (merging region), compared to the case where no through hole is provided in the inner heat transfer tube. The temperature difference and density difference between NG and LNG are suppressed.

その後、合流したNGとLNGとは、気化管21を上流に向かって流れつつ気化管21の管壁を介して当該気化管21に沿って流れ落ちる海水とさらに熱交換を続けることにより完全に気化される。   Thereafter, the merged NG and LNG are completely vaporized by continuing the heat exchange with the seawater flowing along the vaporizing pipe 21 through the tube wall of the vaporizing pipe 21 while flowing upstream through the vaporizing pipe 21. The

各気化管21内において気化されたLNG、即ち、NGは、送出側ヘッダー24によって集められ、送出側マニホールド19に送出される。送出側マニホールド19に送られたNGは、集合管14を経て、送出側接続部14aに接続された配管P2を通じて消費地等に送出される。   LNG vaporized in each vaporization tube 21, that is, NG is collected by the delivery side header 24 and delivered to the delivery side manifold 19. The NG sent to the delivery side manifold 19 is sent to the consumption area or the like through the collecting pipe 14 and the pipe P2 connected to the delivery side connection portion 14a.

以上の気化装置10によれば、内伝熱管25の上端周辺の領域(合流領域)において合流するNG(気相のLNG)とLNG(液相のLNG)との温度差及び密度差が抑えられ、これにより、合流領域におけるNGとLNGとの界面の周期的な変動が抑制される。   According to the vaporizer 10 described above, a temperature difference and a density difference between NG (gas phase LNG) and LNG (liquid phase LNG) joining in the region around the upper end of the inner heat transfer tube 25 (merging region) can be suppressed. Thereby, the periodic fluctuation | variation of the interface of NG and LNG in a confluence | merging area | region is suppressed.

詳しくは、本実施形態の内伝熱管25によれば、当該内伝熱管25の上端近傍の合流領域に到達する前に、内側空間S2を流れるLNGの一部が外側空間S1を流れるNGと合流する。このため、当該NGが合流領域に到達する前にその温度が低下すると共に密度が上昇する。その結果、合流領域においてNGとLNGとが合流するときのこれらNGとLNGとの温度差及び密度差が抑えられ、これにより、当該合流領域におけるNGとLNGとの界面の周期的な変動が抑制される。その結果、前記界面の周期的な変動に起因する気化装置10及び当該気化装置10に接続された配管系の振動を抑制することができる。   Specifically, according to the inner heat transfer tube 25 of the present embodiment, before reaching the merge region near the upper end of the inner heat transfer tube 25, a part of the LNG flowing in the inner space S2 merges with NG flowing in the outer space S1. To do. For this reason, before the said NG reaches | attains a joining area | region, the temperature falls and a density rises. As a result, the temperature difference and density difference between NG and LNG when NG and LNG merge in the merge region are suppressed, thereby suppressing periodic fluctuation of the interface between NG and LNG in the merge region. Is done. As a result, it is possible to suppress vibrations of the vaporizer 10 and the piping system connected to the vaporizer 10 due to the periodic fluctuation of the interface.

本実施形態では、貫通孔26が内伝熱管25の上部、即ち、合流領域に近い位置に設けられているため、LNGの一部が合流して温度が低下したNGが、外部との熱交換によって前記合流前の温度にまで上昇する前に合流領域に確実に到達できる。これにより、合流領域におけるNGとLNGとの温度差及び密度差を好適に抑えることができる。   In the present embodiment, since the through hole 26 is provided in the upper part of the internal heat transfer tube 25, that is, a position close to the merge region, NG, in which a part of the LNG is merged and the temperature is reduced, is exchanged with the outside. Thus, it is possible to reliably reach the merge area before the temperature rises to the temperature before the merge. Thereby, the temperature difference and density difference of NG and LNG in a confluence | merging area | region can be suppressed suitably.

また、内伝熱管25の管壁において、複数の貫通孔26、26、…が上下方向に並ぶことにより、NGが外側空間S1を流れて合流領域に到達するまでに、十分な量のLNGが各貫通孔26を通じてNGに合流することができる。これにより、合流領域でのNGとLNGとの温度差及び密度差を十分に小さくすることができ、その結果、合流領域におけるNGとLNGとの界面の周期的な変動をより効果的に抑えることができる。   Further, in the tube wall of the inner heat transfer tube 25, a plurality of through holes 26, 26,... Are arranged in the vertical direction, so that a sufficient amount of LNG is obtained until the NG flows through the outer space S1 and reaches the merge region. It can merge with NG through each through hole 26. Thereby, the temperature difference and density difference between NG and LNG in the merging region can be sufficiently reduced, and as a result, the periodic fluctuation of the interface between NG and LNG in the merging region can be more effectively suppressed. Can do.

また、本実施形態では、内伝熱管25の同じ高さ位置の複数の貫通孔26、26、…が内伝熱管25の周方向に沿って等間隔に配置されているため、気化管21(内伝熱管25)の周方向におけるLNGの温度分布の偏りが抑えられ、気化装置10において前記周方向の温度分布の偏りに起因する気化効率の低下等を抑えることができる。   Moreover, in this embodiment, since the several through-holes 26, 26, ... of the same height position of the internal heat exchanger tube 25 are arrange | positioned at equal intervals along the circumferential direction of the internal heat exchanger tube 25, the vaporization pipe | tube 21 ( The deviation of the temperature distribution of the LNG in the circumferential direction of the inner heat transfer tube 25) can be suppressed, and a decrease in vaporization efficiency caused by the deviation of the temperature distribution in the circumferential direction in the vaporizer 10 can be suppressed.

内伝熱管に設けられた貫通孔の効果を確認するために、上記実施形態の気化装置10と、貫通孔が設けられていない内伝熱管を除いて上記実施形態の気化装置10と同じ構成の気化装置とを用い、外側空間を流れるNGと内側空間を流れるLNGとが合流したときのこれらNGとLNGとの温度差及び密度差をそれぞれ調べた。   In order to confirm the effect of the through hole provided in the internal heat transfer tube, the configuration of the vaporization device 10 of the above embodiment is the same as that of the vaporization device 10 of the above embodiment except for the vaporization device 10 of the above embodiment and the internal heat transfer tube not provided with the through hole. Using a vaporizer, the temperature difference and density difference between NG and LNG when NG flowing in the outer space and LNG flowing in the inner space merged were examined.

具体的には、各気化装置において、気化管の長さを6m、内伝熱管の長さを2.5mとし、これら気化装置に64barの圧力で−165℃程度のLNGを供給した。その結果を図9(A)〜図10(B)に示す。図9(A)及び図9(B)は、貫通孔のない内伝熱管を備えた気化装置における気化管でのNG及びLNGの温度変化と密度変化とを示す。図10(A)及び図10(B)は、上記実施形態の気化装置10の気化管21におけるNG及びLNGの温度変化と密度変化とを示す。   Specifically, in each of the vaporizers, the length of the vaporizer tube was 6 m, the length of the internal heat transfer tube was 2.5 m, and LNG at about −165 ° C. was supplied to these vaporizers at a pressure of 64 bar. The results are shown in FIGS. 9 (A) to 10 (B). FIG. 9A and FIG. 9B show the temperature change and density change of NG and LNG in the vaporization tube in the vaporization apparatus provided with the internal heat transfer tube having no through hole. FIG. 10A and FIG. 10B show the temperature change and density change of NG and LNG in the vaporization tube 21 of the vaporization apparatus 10 of the above embodiment.

図9(A)及び図9(B)から、貫通孔のない内伝熱管を備える気化装置では、外側空間を流れてきたNGと内側空間を流れてきたLNGとの合流領域(気化管の下端から2.5mの位置)における温度差が10℃以上であり、密度差が30%以上であることが分かる。これに対し、図10(A)及び図10(B)から、上記の気化装置10では、外側空間を流れてきたNGと内側空間を流れてきたLNGとの合流領域(2.5mの位置)における温度差が3℃まで抑えられると共に、密度差が数%に抑えられていることが分かる。   From FIG. 9A and FIG. 9B, in the vaporization apparatus having the inner heat transfer tube without the through hole, a merged region of the NG flowing through the outer space and the LNG flowing through the inner space (the lower end of the vaporization tube) It can be seen that the temperature difference at 10 m to 2.5 m is 10 ° C. or more and the density difference is 30% or more. On the other hand, from FIG. 10 (A) and FIG. 10 (B), in said vaporization apparatus 10, the confluence | merging area | region (position of 2.5 m) of NG which flowed through outer space, and LNG which flowed through inner space. It can be seen that the temperature difference is suppressed to 3 ° C. and the density difference is suppressed to several percent.

以上より、内伝熱管に貫通孔を設けることにより、合流領域におけるNGとLNGとの温度差及び密度差が効果的に抑えられることが確認できた。   From the above, it was confirmed that the temperature difference and the density difference between NG and LNG in the merging region can be effectively suppressed by providing a through hole in the inner heat transfer tube.

尚、本発明の低温液化ガスの気化装置は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, the low temperature liquefied gas vaporization apparatus of this invention is not limited to the said embodiment, Of course, in the range which does not deviate from the summary of this invention, a various change can be added.

内伝熱管25の具体的構成は限定されない。例えば、上記実施形態の内伝熱管25では管壁に複数の貫通孔26を設けることによって、内側空間S2の前記横断面における各位置を同時に通過したLNGが当該内伝熱管25の上端に到達する前にその一部を外側空間S1を流れるNGに合流させる構成としているがこれに限定されない。図11(A)及び図11(B)に示されるように、内伝熱管25A、25Bは、上下方向に沿って当該内伝熱管25A、25Bの上端面25cから下方側に延びる切欠き26A、26Bをその管壁に有していてもよい。この切欠き26A、26Bは、垂直方向に真っ直ぐ延びてもよく、垂直方向に対して傾斜していてもよい。   The specific configuration of the internal heat transfer tube 25 is not limited. For example, in the inner heat transfer tube 25 of the above embodiment, by providing a plurality of through holes 26 in the tube wall, LNG that has simultaneously passed through each position in the transverse section of the inner space S2 reaches the upper end of the inner heat transfer tube 25. A part thereof is previously joined to the NG flowing in the outer space S1, but the present invention is not limited to this. As shown in FIGS. 11 (A) and 11 (B), the inner heat transfer tubes 25A, 25B are notched 26A extending downward from the upper end surface 25c of the inner heat transfer tubes 25A, 25B along the vertical direction. 26B may be provided on the tube wall. The notches 26A and 26B may extend straight in the vertical direction or may be inclined with respect to the vertical direction.

また、切欠きの具体的形状も限定されない。例えば、図11(A)に示されるような垂直方向の各位置において幅が一定の矩形状の切欠き26Aでもよく、垂直方向において幅が一定でない形状の切欠き(図11(B)に示される例では上側ほど幅が広くなる形状の切欠き26B)等であってもよい。   Further, the specific shape of the notch is not limited. For example, a rectangular cutout 26A having a constant width at each position in the vertical direction as shown in FIG. 11A may be used, or a cutout having a shape with a non-constant width in the vertical direction (shown in FIG. 11B). In an example, a notch 26B) having a shape that becomes wider toward the upper side may be used.

気化管21の周方向におけるLNGの温度分布の偏りを抑えて、前記周方向の温度分布の偏りに起因する気化効率の低下等を抑えるために、これら切欠き26A、26Bは、内伝熱管25A、25Bの周方向において等間隔となるように複数設けられることが好ましいが、等間隔でなくてもよい。   In order to suppress the deviation of the temperature distribution of the LNG in the circumferential direction of the vaporization tube 21 and to suppress the decrease in vaporization efficiency caused by the deviation of the temperature distribution in the circumferential direction, these notches 26A and 26B are provided with the inner heat transfer tube 25A. , 25B is preferably provided so as to be equally spaced in the circumferential direction, but may not be equally spaced.

また、切欠き同様に、周方向における貫通孔同士の各間隔がそれぞれ異なるように、複数の貫通孔が内伝熱管の管壁に配置されてもよい。   Similarly to the notches, a plurality of through holes may be arranged on the tube wall of the internal heat transfer tube so that the intervals between the through holes in the circumferential direction are different from each other.

また、内伝熱管の周方向において、貫通孔又は切欠きが1つだけ設けられた構成であってもよい。   Moreover, the structure provided with only one through-hole or notch may be sufficient in the circumferential direction of the internal heat transfer tube.

また、図11(C)に示されるように、内伝熱管25Cは、貫通孔26と切欠き26Bとの両方を管壁に有していてもよい。   As shown in FIG. 11C, the internal heat transfer tube 25C may have both the through hole 26 and the notch 26B in the tube wall.

図12(A)に示されるように、周方向に複数の切欠き26Cが連続して設けられてもよい。この場合も、各切欠き26Cは、内伝熱管25Dの先端面(図12(A)において点線で示す面)25cから下方側に延びている。   As shown in FIG. 12A, a plurality of notches 26C may be provided continuously in the circumferential direction. Also in this case, each notch 26C extends downward from the distal end surface (surface indicated by a dotted line in FIG. 12A) 25c of the internal heat transfer tube 25D.

また、図12(B)に示されるように、内伝熱管25Eは、当該内伝熱管25Eの直径における一端から他端に向けて、管壁の上端面が連続的に低くなるように形成されてもよい。この場合も、内側空間S2下部の前記横断面における各位置を同時に通過したLNGが当該内伝熱管25Eの上端(前記直径の一端側の管壁上端)に到達する前にその一部を外側空間S1を流れるNGに合流させることができる。これにより、内伝熱管25Eの前記上端周辺の合流領域において合流するNGとLNGとの温度差及び密度差が抑えられる。   Further, as shown in FIG. 12B, the inner heat transfer tube 25E is formed such that the upper end surface of the tube wall continuously decreases from one end to the other end in the diameter of the inner heat transfer tube 25E. May be. Also in this case, a part of the LNG that has simultaneously passed through each position in the cross section below the inner space S2 reaches the upper end of the inner heat transfer tube 25E (the upper end of the tube wall on the one end side of the diameter). The NG flowing through S1 can be merged. Thereby, the temperature difference and density difference of NG and LNG which join in the joining area | region around the said upper end of the internal heat exchanger tube 25E are suppressed.

また、図12(C)に示されるように、多数の貫通孔26Dが、内伝熱管25Eの上部に設けられてもよい。かかる構成によっても、内側空間S2の前記横断面における各位置を同時に通過したLNGが当該内伝熱管25Eの上端に到達する前にその一部を外側空間S1を流れることで気化したLNGに合流させることができる。   Moreover, as shown in FIG. 12C, a large number of through holes 26D may be provided in the upper part of the internal heat transfer tube 25E. Even with this configuration, a part of the LNG that has simultaneously passed through the respective positions in the cross section of the inner space S2 reaches the upper end of the inner heat transfer tube 25E, and a part of the LNG is merged with the vaporized LNG by flowing through the outer space S1. be able to.

10 気化装置
11 気化管ブロック
12 分配管
14 集合管
16 気化管パネル
17 供給側マニホールド
19 送出側マニホールド
21 気化管
22 供給側ヘッダー(気化管間分配管)
24 送出側ヘッダー
25 内伝熱管
26 貫通孔
30 海水供給部
b 境界部
g 気相の低温液化ガス
l 液相の低温液化ガス
S1 外側空間
S2 内側空間
DESCRIPTION OF SYMBOLS 10 Vaporizer 11 Evaporation pipe block 12 Distribution pipe 14 Collecting pipe 16 Evaporation pipe panel 17 Supply side manifold 19 Outlet side manifold 21 Evaporation pipe 22 Supply side header (evaporation pipe distribution pipe)
24 Sending side header 25 Inner heat transfer tube 26 Through hole 30 Seawater supply part b Boundary part g Low-temperature liquefied gas in gas phase l Low-temperature liquefied gas in liquid phase S1 Outer space S2 Inner space

Claims (6)

垂直方向に延び且つ内部に流される低温液化ガスを外部との熱交換によって気化させるための複数の気化管と、
前記複数の気化管の下端部にそれぞれ接続されて各気化管に前記低温液化ガスをそれぞれ分配する気化管間分配管と、
各気化管において上向きに流れる過程において気化した前記低温液化ガスを各気化管の上部で集めるように前記複数の気化管のそれぞれの上端部に接続された送出側ヘッダーと、
各気化管の内部に配置され且つ下向きに開放する開口を有して当該気化管よりも短い複数の内伝熱管と、を備え、
前記内伝熱管は、前記気化管と前記内伝熱管との間に外側空間を形成する姿勢で前記気化管内に配置されており、かつ、前記気化管間分配管から前記開口を通じて当該内伝熱管内の内側空間に流入した低温液化ガスの一部を当該内伝熱管の上端に到達する前に前記気化管間分配管から前記気化管と前記内伝熱管の下端部との隙間を通じて前記外側空間に流入して気化した低温液化ガスに合流させる構成であり、
前記内伝熱管は、前記外側空間を上昇して気化した低温液化ガスと前記内側空間を上昇して前記内伝熱管の上端から上方に流出した低温液化ガスとが合流する合流領域に前記気化した低温液化ガスが到達する前に、当該気化した低温液化ガスに前記内側空間に流入した低温液化ガスの一部を合流させることによって当該気化した低温液化ガスの温度を低下させるように、その管壁の少なくとも上部に設けられた貫通孔又は上下方向に沿って前記管壁の上端面から下方側に延びる切欠きを有する低温液化ガスの気化装置。
A plurality of vaporization tubes for vaporizing a low-temperature liquefied gas extending vertically and flowing inside by heat exchange with the outside;
An inter-vaporization pipe distribution pipe connected to the lower ends of the plurality of vaporization pipes and distributing the low-temperature liquefied gas to the vaporization pipes, respectively.
A sending-side header connected to each upper end of each of the plurality of vaporization tubes so as to collect the low-temperature liquefied gas vaporized in the process of flowing upward in each vaporization tube;
A plurality of internal heat transfer tubes that are disposed inside each vaporization tube and have an opening that opens downward and shorter than the vaporization tube, and
The inner heat transfer tube is disposed in the vaporization tube in a posture that forms an outer space between the vaporization tube and the inner heat transfer tube, and the internal heat transfer tube passes through the opening from the inter-vaporization tube distribution pipe. Before the part of the low-temperature liquefied gas flowing into the inner space in the tube reaches the upper end of the inner heat transfer tube, the outer space passes through the gap between the vaporization tube and the lower end portion of the inner heat transfer tube from the inter-vaporization pipe. Is combined with the low-temperature liquefied gas that has flowed into the
The inner heat transfer tube is vaporized in a merging region where the low-temperature liquefied gas that has been vaporized by rising the outer space and the low-temperature liquefied gas that has flowed upward from the upper end of the inner heat-transfer tube and merged. Before the low-temperature liquefied gas arrives, the pipe wall is made to lower the temperature of the vaporized low-temperature liquefied gas by joining a part of the low-temperature liquefied gas flowing into the inner space to the vaporized low-temperature liquefied gas. A vaporizer for low-temperature liquefied gas having a through-hole provided in at least the upper part of the tube or a notch extending downward from the upper end surface of the tube wall along the vertical direction.
前記内伝熱管には複数の前記貫通孔が設けられ、これら複数の貫通孔は当該内伝熱管の上部から下方側に向かって並ぶ請求項1に記載の低温液化ガスの気化装置。   The low-temperature liquefied gas vaporization device according to claim 1, wherein the inner heat transfer tube is provided with a plurality of the through holes, and the plurality of through holes are arranged from the upper part to the lower side of the inner heat transfer tube. 前記上下方向に沿って並ぶ複数の貫通孔は、上下方向において前記内伝熱管の上端から当該内伝熱管の長さの20〜40%までの領域に設けられる請求項2に記載の低温液化ガスの気化装置。   3. The low-temperature liquefied gas according to claim 2, wherein the plurality of through holes arranged along the vertical direction are provided in a region from the upper end of the inner heat transfer tube to 20 to 40% of the length of the inner heat transfer tube in the vertical direction. Vaporizer. 前記内伝熱管は、同じ高さ位置において複数の前記貫通孔を前記管壁に有し、これら同じ高さ位置の複数の貫通孔は、当該内伝熱管の周方向に沿って等間隔に配置される請求項2又は3に記載の低温液化ガスの気化装置。   The inner heat transfer tube has a plurality of through holes in the tube wall at the same height position, and the plurality of through holes at the same height position are arranged at equal intervals along the circumferential direction of the inner heat transfer tube. The vaporizer for low-temperature liquefied gas according to claim 2 or 3. 前記管壁には複数の前記切欠きが設けられ、これら複数の切欠きは当該内伝熱管の周方向に沿って等間隔に配置される請求項1乃至4のいずれか1項に記載の低温液化ガスの気化装置。   5. The low temperature according to claim 1, wherein a plurality of the notches are provided in the tube wall, and the plurality of notches are arranged at equal intervals along a circumferential direction of the inner heat transfer tube. Liquefied gas vaporizer. 前記切欠きは、上下方向において前記内伝熱管の上端から当該内伝熱管の長さの20〜40%までの領域に設けられる請求項1乃至5のいずれか1項に記載の低温液化ガスの気化装置。   6. The low-temperature liquefied gas according to claim 1, wherein the notch is provided in a region from the upper end of the inner heat transfer tube to 20 to 40% of the length of the inner heat transfer tube in the vertical direction. Vaporizer.
JP2011053051A 2011-03-10 2011-03-10 Low temperature liquefied gas vaporizer Active JP5789386B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011053051A JP5789386B2 (en) 2011-03-10 2011-03-10 Low temperature liquefied gas vaporizer
PCT/JP2011/007102 WO2012120581A1 (en) 2011-03-10 2011-12-20 Gasification device for low-temperature liquefied gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011053051A JP5789386B2 (en) 2011-03-10 2011-03-10 Low temperature liquefied gas vaporizer

Publications (2)

Publication Number Publication Date
JP2012189256A JP2012189256A (en) 2012-10-04
JP5789386B2 true JP5789386B2 (en) 2015-10-07

Family

ID=46797593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011053051A Active JP5789386B2 (en) 2011-03-10 2011-03-10 Low temperature liquefied gas vaporizer

Country Status (2)

Country Link
JP (1) JP5789386B2 (en)
WO (1) WO2012120581A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020183764A1 (en) * 2019-03-11 2020-09-17 株式会社神戸製鋼所 Vaporization device
WO2020183765A1 (en) * 2019-03-11 2020-09-17 株式会社神戸製鋼所 Vaporization device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648146B2 (en) * 1990-03-30 1994-06-22 東京瓦斯株式会社 Double pipe type open rack type vaporizer
JP2754147B2 (en) * 1993-12-02 1998-05-20 東京瓦斯株式会社 Double tube open rack type vaporizer
JP3037073B2 (en) * 1994-07-20 2000-04-24 株式会社神戸製鋼所 Cryogenic liquid vaporizer
JPH0814495A (en) * 1994-06-29 1996-01-16 Osaka Gas Co Ltd Liquefied natural gas vaporizing heating tube and vaporizing device using this heating tube
JPH08338692A (en) * 1995-06-13 1996-12-24 Tokyo Gas Co Ltd Open rack type vaporizer
DE102004012276A1 (en) * 2004-03-12 2005-09-29 Bayerisches Zentrum für angewandte Energieforschung e.V. (ZAE Bayern) liquid distributor

Also Published As

Publication number Publication date
WO2012120581A1 (en) 2012-09-13
JP2012189256A (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5714944B2 (en) Low temperature liquefied gas vaporizer
JP5789386B2 (en) Low temperature liquefied gas vaporizer
WO2014167779A1 (en) Vaporization device for low-temperature liquefied gas
JP5363427B2 (en) Low temperature liquefied gas vaporizer
JP2018532093A (en) Heat exchanger
JP5120567B2 (en) Air temperature liquefied gas vaporizer
WO2019188676A1 (en) Intermediate-medium vaporizer
JP6420220B2 (en) Gas vaporizer and operation method thereof
JP5523944B2 (en) Low temperature liquefied gas vaporizer
JP7467028B2 (en) Low-temperature liquefied gas vaporizer, cooling system, and method for suppressing ice formation in the vaporizer
JP5541779B2 (en) Open rack type vaporizer
JP2012132574A (en) Device for vaporizing low temperature liquid
JP2022108278A (en) Device for storing low-temperature fluid
JP6136944B2 (en) Evaporator
JP2011002120A (en) Hot water bath type vaporizer
JP6074073B2 (en) Low temperature liquefied gas vaporizer
JP4649349B2 (en) Evaporator with excellent distribution performance
JP4181250B2 (en) Natural gas heating method
CN205332856U (en) 2500 cube type air vaporizer
JP6126569B2 (en) Vaporizer for liquefied gas
US20150323222A1 (en) Heat Exchanger Device and System Technologies
JP2005321098A (en) Open rack type vaporizing device
JP4990096B2 (en) Liquefied natural gas vaporizer
JP2020169756A (en) Carbureter, and method of assembling heat transfer pipe
JP5841979B2 (en) Low temperature liquefied gas vaporizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150512

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150803

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5789386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150