WO2020183765A1 - Vaporization device - Google Patents

Vaporization device Download PDF

Info

Publication number
WO2020183765A1
WO2020183765A1 PCT/JP2019/037863 JP2019037863W WO2020183765A1 WO 2020183765 A1 WO2020183765 A1 WO 2020183765A1 JP 2019037863 W JP2019037863 W JP 2019037863W WO 2020183765 A1 WO2020183765 A1 WO 2020183765A1
Authority
WO
WIPO (PCT)
Prior art keywords
trough
heating liquid
manifold
end wall
heat transfer
Prior art date
Application number
PCT/JP2019/037863
Other languages
French (fr)
Japanese (ja)
Inventor
慶彦 鶴
祐二 澄田
一也 河田
孝祐 東
諭史 近口
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019163411A external-priority patent/JP7242481B2/en
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020217031871A priority Critical patent/KR20210134743A/en
Priority to EP19918713.9A priority patent/EP3922937B1/en
Priority to ES19918713T priority patent/ES2964460T3/en
Publication of WO2020183765A1 publication Critical patent/WO2020183765A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/04Distributing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0115Single phase dense or supercritical, i.e. at high pressure and high density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05358Assemblies of conduits connected side by side or with individual headers, e.g. section type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0047Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for hydrogen or other compressed gas storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/0297Side headers, e.g. for radiators having conduits laterally connected to common header

Definitions

  • the present invention relates to a vaporizer used for vaporizing liquefied gas.
  • the vaporizer disclosed in Patent Document 1 is composed of a plurality of heat transfer panels each having a plurality of heat transfer tubes erected so as to guide the liquefied gas upward, and the liquefied gas on these heat transfer panels. It also has multiple troughs, each configured to sprinkle hot heating liquids.
  • the plurality of heat transfer panels and the plurality of troughs are alternately arranged in a direction perpendicular to the alignment direction of the plurality of heat transfer tubes.
  • a plurality of supply pipes extending from the manifold are connected to each of these troughs.
  • the heating liquid is supplied to a plurality of troughs through a manifold and a plurality of supply pipes.
  • the heating liquid overflows from these troughs and is supplied to a plurality of heat transfer tubes of a heat transfer panel adjacent to these troughs. While the heating liquid flows down along the outer surface of these heat transfer tubes, the liquefied gas flows upward in the heat transfer tubes and exchanges heat with the heating liquid. As a result of heat exchange, the temperature of the heating liquid decreases, while the temperature of the liquefied gas rises and vaporizes.
  • the outermost troughs placed outside the row of heat transfer panels are adjacent only to the outermost heat transfer panels, while the troughs placed between adjacent heat transfer panels have two heat transfers. Adjacent to the heat panel. In this case, the outermost trough may supply a smaller amount of heating liquid than the other troughs.
  • An object of the present invention is to provide a vaporizer having a structure capable of making a supply amount of a heating liquid different between a plurality of troughs.
  • the vaporizer according to one aspect of the present invention is configured to vaporize the liquefied gas under heat exchange between the liquefied gas and the heating liquid having a temperature higher than that of the liquefied gas.
  • the vaporizer includes a plurality of heat transfer panels each configured such that a plurality of heat transfer tubes erected so as to guide the liquefied gas are arranged in the horizontal direction, and one of the plurality of heat transfer panels.
  • the first trough configured to supply the heating liquid to the outer surface of the heat transfer tube, and the heating liquid to the outer surface of the other plurality of heat transfer tubes among the plurality of heat transfer panels.
  • a second trough configured to supply the heating liquid, a manifold through which the heating liquid flows, and the manifold and the first trough connected so as to supply the heating liquid from the manifold to the first trough.
  • the first supply pipe and the manifold and the second trough are connected so as to supply the heating liquid from the manifold to the second trough, and a flow path cross-sectional area smaller than that of the first trough is formed. It is equipped with a second supply pipe that it has.
  • the above-mentioned vaporizer has a structure that enables the supply amount of the heating liquid to be different among a plurality of troughs.
  • FIG. 3 is a schematic cross-sectional view of a trough having two inlets. It is a schematic sectional view of the trough which formed the inflow port in the bottom wall. It is a schematic sectional view of the trough which formed the inflow port in the bottom wall. It is the schematic sectional drawing of the trough which receives the liquid for heating from the upper side. It is a schematic cross-sectional view of the 2nd trough to which the 2nd supply pipe to which the closing member was fixed internally was connected. It is the schematic sectional drawing of the manifold in which the closing member is fixed internally. It is a schematic perspective view of the vaporizer which has a box body which a perforated plate is attached to an inflow port.
  • FIG. 1 is a schematic perspective view of an open rack type vaporizer (ORV) 100.
  • FIG. 2 is a schematic cross-sectional view of the vaporizer 100 on a virtual vertical plane. The vaporizer 100 will be described with reference to FIGS. 1 and 2.
  • the vaporizer 100 is configured to vaporize the liquefied natural gas (hereinafter referred to as "liquefied gas") by exchanging heat with a heating liquid having a temperature higher than that of the liquefied gas.
  • liquefied gas The gas phase natural gas obtained as a result of heat exchange is referred to as "vaporized gas" in the following description.
  • seawater is used as the heating liquid.
  • a liquid having a temperature higher than that of the vaporized gas may be used as the heating liquid.
  • the vaporizer 100 includes a lower manifold 111, an upper manifold 112, and a plurality of heat transfer panels 113 through which liquefied gas or vaporized gas flows internally.
  • the lower manifold 111 and the upper manifold 112 extend in the horizontal direction.
  • the upper manifold 112 extends substantially parallel to the lower manifold 111 at a position separated upward from the lower manifold 111.
  • the plurality of heat transfer panels 113 are connected to the upper manifold 112 and the lower manifold 111.
  • the plurality of heat transfer panels 113 are arranged in the horizontal direction at intervals.
  • the extending directions of the lower manifold 111 and the upper manifold 112 coincide with the alignment directions of the plurality of heat transfer panels 113.
  • the lower manifold 111 is used to distribute the liquefied gas to the plurality of heat transfer panels 113.
  • the plurality of heat transfer panels 113 are used for heat exchange of the liquefied gas with seawater.
  • the upper manifold 112 is used to aggregate the vaporized gas obtained as a result of heat exchange between the liquefied gas and seawater.
  • a supply device (not shown) configured to supply vaporized gas to a predetermined demand destination (not shown) is connected to the upper manifold 112.
  • Each of the plurality of heat transfer panels 113 includes a lower header tube 114, an upper header tube 115, and a plurality of heat transfer tubes 116.
  • the lower header pipe 114 and the upper header pipe 115 are extended in the horizontal direction perpendicular to the extending direction of the lower manifold 111 and the upper manifold 112 at positions separated from each other in the vertical direction.
  • the plurality of heat transfer tubes 116 extend vertically between the lower header tube 114 and the upper header tube 115, respectively.
  • the lower header tube 114 extends from the lower manifold 111 to form the lower edge of the heat transfer panel 113, while the upper header tube 115 extends from the upper manifold 112 to form the upper edge of the heat transfer panel 113. doing.
  • the plurality of heat transfer tubes 116 extend upward from the lower header tube 114 and are connected to the upper header tube 115.
  • the plurality of heat transfer tubes 116 are arranged in the extending direction of the lower header tube 114 and the upper header tube 115.
  • the alignment direction of the plurality of heat transfer tubes 116 is referred to as a "first horizontal direction” in the following description.
  • the horizontal direction perpendicular to the first horizontal direction (that is, the extension direction of the lower manifold 111 and the upper manifold 112) is referred to as a "second horizontal direction" in the following description.
  • the vaporizer 100 includes a pump 121 configured to discharge seawater and a manifold 122 configured to guide the seawater discharged from the pump 121 in the second horizontal direction. Further, the vaporizer 100 includes a plurality of first supply pipes 123'and a plurality of second supply pipes 123, each connected to the manifold 122, and a plurality of troughs 130. The manifold 122, the plurality of first supply pipes 123', and the plurality of second supply pipes 123 form a flow path for supplying seawater to the plurality of troughs 130.
  • the manifold 122 extends in the second horizontal direction at a position separated from the plurality of heat transfer panels 113 in the first horizontal direction.
  • the manifold 122 is formed with a plurality of outlets 125 from which seawater flowing into the manifold 122 flows out. These outlets 125 are spaced apart in the second horizontal direction.
  • the plurality of troughs 130 are arranged so as to be alternately arranged with the plurality of heat transfer panels 113 in the second horizontal direction. With respect to the height position of each of the plurality of troughs 130, the trough 130 is arranged at a position lower than that of the upper header pipe 115. The trough 130 is arranged so as to be adjacent to the upper part of the plurality of heat transfer tubes 116 of the heat transfer panel 113 (above the intermediate position of the plurality of heat transfer tubes 116 in the height direction) in the second horizontal direction. The trough 130 is located higher than the manifold 122 on which the outlet 125 is formed.
  • Each of the plurality of troughs 130 is configured to guide the box body 131 configured to store seawater and the seawater overflowing from the box body 131 to the outer surfaces of the plurality of heat transfer tubes of the corresponding heat transfer panels 113. It includes a guide unit 139 and the like.
  • the box body 131 is a rectangular box that is long in the first horizontal direction and short in the second horizontal direction.
  • the box body 131 is open upward.
  • the box body 131 includes an elongated substantially rectangular bottom wall 132 in the first horizontal direction, and a peripheral wall 133 erected above the outer peripheral edge of the bottom wall 132.
  • the upper edge of the peripheral wall 133 is substantially horizontal as a whole.
  • the peripheral wall 133 has a pair of side walls 134 and 135 erected upward from a pair of longitudinally extending edges of the bottom wall 132 and a first erected upward from a pair of laterally extending edges of the bottom wall 132. It includes one end wall 136 and a second end wall 137.
  • the side walls 134 and 135 are erected at positions separated from each other in the second horizontal direction, while the first end wall 136 and the second end wall 137 are erected at positions separated from each other in the first horizontal direction. ing.
  • the lengths of the side walls 134 and 135 and the bottom wall 132 in the first horizontal direction are set to a value larger than the length of the pipe rows of the plurality of heat transfer tubes 116 arranged in the first horizontal direction.
  • the box 131 is arranged so that the side walls 134 and 135 overlap the entire row of the plurality of heat transfer tubes 116 in the second horizontal direction.
  • the first end wall 136 is arranged closer to the outlet 125 of the manifold 122 than the second end wall 137.
  • An inflow port 138 through which seawater flows is formed in the first end wall 136 (see FIG. 1).
  • the center of the inflow port 138 is located below the center of the first end wall.
  • the position of the inflow port 138 of the first end wall 136 in the second horizontal direction substantially coincides with the position of the outflow port 125 of the manifold 122 in the second horizontal direction. Since the trough 130 is located higher than the manifold 122, the inflow port 138 formed on the first end wall 136 of the trough 130 is also located higher than the outlet 125 of the manifold 122.
  • the inner trough 130 arranged between the adjacent heat transfer panels 113 is referred to as the "first trough 130A" in the following description.
  • the two troughs 130 arranged outside the row of heat transfer panels 113 are referred to as “second trough 130B” in the following description.
  • Each of the two second troughs 130B is adjacent to only one heat transfer panel 113.
  • each of the two first troughs 130A is arranged between two adjacent heat transfer panels 113, they are adjacent to these heat transfer panels 113.
  • the height dimension of the first end wall 136 and the second end wall 137 of the second trough 130B is set to a value larger than the height dimension of the side walls 134 and 135. That is, the upper edges of the first end wall 136 and the second end wall 137 extend at positions higher than the upper edges of the side walls 134 and 135.
  • the height dimension of the first end wall 136, the second end wall 137 and the right side wall 135 of the second trough 130B on the right side is the height of the left side wall 134 (that is, the side wall 134 facing the heat transfer panel 113 side). It is set to a value larger than the dimension. That is, the upper edges of the first end wall 136, the second end wall 137, and the side wall 135 extend at a position higher than the upper edge of the side wall 134. That is, the side wall on the side opposite to the side wall has a larger height than the side wall on the heat transfer panel 113 side.
  • the height dimension of the first end wall 136, the second end wall 137 and the left side wall 134 of the second trough 130B on the left side is the height of the right side wall 135 (that is, the side wall 135 facing the heat transfer panel 113 side). It is set to a value larger than the dimension. That is, the upper edges of the first end wall 136, the second end wall 137, and the side wall 134 extend at a position higher than the upper edge of the side wall 135.
  • the guide portion 139 forms an inclined surface inclined downward from the upper edge of at least one of the side walls 134 and 135 toward the heat transfer panel 113 to which the seawater is supplied.
  • the guide portion 139 allows the seawater that is supplied to the trough 130 beyond the volume of the box body 131 and overflows beyond the upper edges of the side walls 134 and 135 of the box body 131 to be transferred to the plurality of heat transfer tubes 116 of the corresponding heat transfer panel 113. It is used to guide you to.
  • the guide portion 139 of the second trough 130B on the left side is provided so as to project to the right from the upper edge of the side wall 135 on the heat transfer panel 113 side.
  • the guide portion 139 is not provided on the side wall 134 on the opposite side.
  • the guide portion 139 of the second trough 130B on the right side is provided so as to project to the left from the upper edge of the side wall 134 on the left side.
  • the guide portion 139 is not provided on the side wall 134 on the opposite side.
  • the guide portion 139 of the first trough 130A is provided so as to project outward from the upper edges of the side walls 134 and 135.
  • Each of the plurality of first supply pipes 123'and the plurality of second supply pipes 123 has an upstream end connected to the outlet 125 of the manifold 122 and a downstream end connected to the inlet 138 of the corresponding trough 130. However, a flow path through which seawater flows is formed between the upstream end and the downstream end.
  • the first supply pipe 123' extends from the manifold 122 to the inflow port 138 of the first trough 130A.
  • the second supply pipe 123 extends from the manifold 122 to the inflow port 138 of the second trough 130B.
  • the flow path cross-sectional area of the second supply pipe 123 is smaller than the flow path cross-sectional area of the first supply pipe 123'.
  • the liquefied gas is supplied to the lower manifold 111 by a pump (not shown). After flowing into the lower manifold 111, the liquefied gas flows into the lower header pipe 114 of each of the plurality of heat transfer panels 113. The liquefied gas that has flowed into the lower header tube 114 flows upward along the plurality of heat transfer tubes 116. During this time, the liquefied gas exchanges heat with seawater and becomes vaporized gas. The vaporized gas flows upward and flows into the header pipe 115. After that, the vaporized gas flows through the upper header pipe 115 and is collected in the upper manifold 112.
  • Seawater is supplied to the manifold 122 by the pump 121.
  • the seawater is guided in the second horizontal direction by the manifold 122 and distributed to the plurality of first supply pipes 123'and the plurality of second supply pipes 123 attached to the manifold 122.
  • the seawater that has flowed through the plurality of first supply pipes 123'and the plurality of second supply pipes 123 flows into the first trough 130A and the second trough 130B.
  • the seawater that has flowed into the first trough 130A and the second trough 130B forms a liquid layer in the space surrounded by the bottom wall 132 and the peripheral wall 133.
  • Each of the two second troughs 130B of the vaporizer 100 described above supplies a heating liquid to one heat transfer panel 113, whereas each of the two first troughs 130A heats the two heat transfer panels 113. It is necessary to supply the liquid for use. Therefore, it is necessary that a larger amount of the heating liquid flows out from the first trough 130A than the amount of the heating liquid flowing out from the second trough 130B. Therefore, it is necessary to supply a larger amount of the heating liquid to the first trough 130A than the amount of the heating liquid supplied to the second trough 130B.
  • the flow path cross-sectional area of the first supply pipe 123' is larger than the flow path cross-sectional area of the second supply pipe 123 in order to make the supply amount of the heating liquid different between the first trough 130A and the second trough 130B. It is set to a value. Therefore, a larger amount of heating liquid than the amount of heating liquid supplied to the second trough 130B is supplied to the first trough 130A. It is not necessary to attach valve bodies to the first supply pipe 123'and the second supply pipe 123 in order to obtain such a magnitude relationship of the flow rate.
  • the seawater flow path is configured so that the seawater flows in from the bottom surface of the trough, and therefore extends beyond the first end wall from the pipe member and manifold forming the seawater flow path. And connected to the inflow port formed on the bottom of the trough.
  • the first supply pipe 123'and the second supply pipe 123 are connected to the first end wall 136 and do not extend beyond the first end wall 136. Therefore, not only the material cost of the first supply pipe 123'and the second supply pipe 123 is saved, but also the flow resistance to the seawater flowing in the first supply pipe 123'and the second supply pipe 123 is lowered.
  • liquefied natural gas is exemplified as the liquefied gas.
  • the liquefied gas may be liquefied petroleum gas or liquid nitrogen.
  • FIG. 3 is a schematic vertical sectional view of the box body 131.
  • the vaporizer 100 includes a closing member 140 attached to the inner surface of the box 131 so as to partially close the inflow port 138.
  • the closing member 140 is used to make the inflow of seawater substantially uniform among the plurality of troughs 130.
  • an orifice having an opening 141 formed in the first horizontal direction can be preferably used as the closing member 140.
  • the opening 141 has a smaller area than the inflow port 138.
  • the closing member 140 is attached to the inner surface of the first end wall 136 and / or the side walls 134, 135.
  • the closing member 140 is removable from the first end wall 136 and / or the side walls 134, 135.
  • the side edge of the closing member 140 may be inserted into the groove formed on the inner surface of the side walls 134 and 135.
  • Replacing an orifice attached to one of the troughs 130 with another orifice with a smaller opening area reduces the inflow of seawater into the trough 130 with which the orifice has been replaced, while the other.
  • the inflow of seawater into the trough 130 increases.
  • an orifice having an appropriate opening area be selected as the closing member 140 for each of the troughs 130 so that a substantially uniform distribution of seawater is obtained among the troughs 130.
  • fluid parts such as butterfly valves and orifices are generally arranged in the flow path extending from the manifold to multiple troughs. These fluid components are used to suppress variations in the amount of seawater flowing into a plurality of troughs.
  • the closing member 140 is used in order to suppress the variation in the amount of seawater among the plurality of troughs.
  • the operator performing the replacement work can easily access the closing member 140 through the upward opening of the box body 131.
  • the operator can pull out the existing closing member 140 from the box body 131 and install a new closing member in the box body 131.
  • the replacement of the closing member 140 does not require disassembly of the first supply pipe 123'and the second supply pipe 123.
  • the wide space above the trough 130 is used for the replacement work, not the narrow space in which the first supply pipe 123'and the second supply pipe 123 are extended. Therefore, the replacement of the closing member 140 is relatively easy.
  • the inflow port 138 is formed on the first end wall 136.
  • the heating liquid flowing in from the inflow port 138 collides with the second end wall 137 on the opposite side.
  • a part of the heating liquid that collides with the second end wall 137 flows upward and raises the liquid level of the heating liquid near the second end wall 137.
  • the vaporizer 100 may have a uplift suppressing portion in order to suppress the uplift of the liquid level in the trough 130.
  • the ridge suppressing portion includes a resistance member arranged between the first end wall 136 and the second end wall 137.
  • the resistance member is arranged so that the seawater flowing in from the inflow port 138 collides with the resistance member before colliding with the second end wall 137.
  • the resistance member includes a baffle plate (resistor) 151 erected above the bottom wall 132. Three baffle plates 151 are shown in FIG.
  • the plurality of baffle plates 151 are arranged at intervals in the first horizontal direction between the first end wall 136 and the second end wall 137.
  • the plurality of baffle plates 151 are attached to the bottom wall 132 and / or the side walls 134 and 135.
  • the plurality of baffle plates 151 may be removable from the bottom wall 132 and / or the side walls 134, 135.
  • the height dimension of the baffle plate 151 is smaller than the height dimension of the peripheral wall 133. Therefore, a space for seawater to flow in the first horizontal direction is formed above the baffle plate 151.
  • the flow path of seawater from the manifold 122 to the plurality of troughs 130 is compared with the structure of the conventional vaporizer as follows.
  • the seawater that has flowed into the box 131 collides with a plurality of obstacle plates 151.
  • the effect of these baffle plates 151 on the seawater flowing in the box 131 will be described below.
  • FIG. 3 shows a straight line (solid line) extending in the first horizontal direction and a curved line drawn by a dotted line above the plurality of obstacle plates 151.
  • the solid line schematically represents the liquid level of seawater assumed in the presence of a plurality of obstacle plates 151.
  • the dotted line schematically represents the liquid level of seawater assumed in the absence of the plurality of obstacle plates 151.
  • the liquid level of the seawater in the box 131 rises upward near the inner surface of the second end wall 137.
  • baffle plate 151 that is, the first end arranged most upstream. It collides with the baffle plate 151) arranged at the position closest to the wall 136.
  • a part of the seawater that collides with the obstacle plate 151 changes its direction and flows in a direction other than the first horizontal direction, while the other seawater gets over the obstacle plate 151 and flows toward the second end wall 137.
  • the seawater that has passed over the most upstream obstacle plate 151 collides with the next obstacle plate 151.
  • the seawater component that flows vigorously toward the second end wall 137 gradually decreases. Since the collision force generated between the seawater and the second end wall 137 is smaller in the presence of the plurality of obstruction plates 151 than in the absence of the plurality of obstruction plates 151, the collision force of the seawater with respect to the second end wall 137 occurs. The momentum of the upward seawater flow caused by this also weakens. As a result, the height of the liquid level uplift near the inner surface of the second end wall 137 becomes low.
  • the number of baffle plates 151 to be arranged is determined so that the liquid level of seawater in the trough 130 is substantially flat based on the flow velocity of the seawater flowing into the trough 130 and the flow mode of the seawater in the trough 130. It is preferable to be done. Therefore, the resistance member may be one or two baffle plates 151, or may be a baffle plate 151 exceeding three.
  • resistance member instead of the baffle plate 151, another resistance member configured to collide with the seawater flowing in from the inflow port 138 may be used.
  • Alternative members that can be used as resistance members are described with reference to FIGS. 4 and 5. 4 and 5 are schematic perspective views of the alternative member.
  • a perforated plate 152 having a large number of through holes formed in the first horizontal direction may be used as a resistance member (see FIG. 4). Since seawater can pass through the through hole of the perforated plate 152, the perforated plate 152 may have substantially the same height dimension as the peripheral wall 133.
  • a block body 153 whose dimensional difference in the first horizontal direction, the second horizontal direction, and the vertical direction is smaller than that of the baffle plate 151 may be used as the resistance member (FIG. 5). See). It is preferable that the shape and size of the member used as the uplift suppressing portion are determined so that the liquid level of the seawater in the box 131 is substantially flat.
  • the ridge suppressing portion may be a plate-shaped lid member 154 arranged in the box body 131 near the second end wall 137. A large number of through holes are formed in the lid member 154. Therefore, as the lid member 154, a perforated plate (plate member) can be preferably used.
  • the lid member 154 may be used alone as a ridge suppressing portion (see FIG. 6), or may be used as a ridge suppressing portion together with a resistance member (for example, a baffle plate 151).
  • the lid member 154 extends in the first horizontal direction from the vicinity of the second end wall 137 and is arranged so as to lie substantially horizontally.
  • the lid member 154 partitions a part of the internal space of the box body 131 up and down near the second end wall 137.
  • the pair of side edges of the lid member 154 may be attached to the inner surfaces of the side walls 134, 135.
  • the downstream edge of the lid member 154 may be attached to the inner surface of the second end wall 137 and abut on the inner surface of the second end wall 137 (see FIG. 6).
  • the first horizontal position of the lid member 154 may be determined such that the downstream edge of the lid member 154 is slightly spaced from the inner surface of the second end wall 137 (see FIG. 7).
  • the downstream edge of the lid member 154 is close to the inner surface of the second end wall 137, whereas the upstream edge of the lid member 154 is significantly distant from the inner surface of the upstream first end wall 136. It is preferable that the lid member 154 is removable from the box body 131.
  • the lid member 154 is arranged at a position higher than the inflow port 138. Therefore, most of the seawater that has flowed into the box 131 from the inflow port 138 through the opening of the closing member 140 (orifice) collides with the inner surface of the second end wall 137 below the lid member 154.
  • the lid member may not have a through hole as long as the effect of suppressing the local uplift of the liquid level can be obtained over the entire trough 130.
  • seawater can flow into the space above the lid member through the space between the upstream edge of the lid member and the first upstream wall 136.
  • FIGS. 6 and 7 show a single perforated plate as the lid member 154.
  • a plurality of perforated plates (plate members) 155 may be arranged in the box 131 as lid members 154 (see FIG. 8). These perforated plates 155 are arranged at intervals in the first horizontal direction. In addition, these perforated plates 155 are arranged at a substantially constant height position (higher than the inflow port and lower than the upper edge of the box 131).
  • the most downstream perforated plate 155 corresponds to the lid member 154 described with reference to FIGS. 6 and 7. That is, the most downstream perforated plate 155 contributes to the suppression of the uplift of the liquid level near the second end wall 137.
  • the other perforated plate 155 contributes to suppressing the waviness of the liquid level caused by the seawater from the inflow port 138.
  • the waviness of the liquid surface is suppressed to some extent by forming the inflow port 138 in the lower region of the first end wall 136, but it is also effectively suppressed by these perforated plates 155.
  • thin plates having no through holes may be attached at the arrangement positions of these perforated plates 155.
  • seawater can flow into the region above the placement height of these thin plates through the voids between the adjacent thin plates.
  • the effect of suppressing the waviness and swelling of the liquid surface can be obtained by using a plurality of thin plates.
  • One perforated plate 156 long in the first horizontal direction may be used as the lid member 154 in order to obtain an effect of suppressing the waviness and swelling of the liquid surface (see FIG. 9).
  • the perforated plate 156 shown in FIG. 9 vertically partitions the internal space of the box body 131 over a section between the inner surface of the first end wall 136 and the inner surface of the second end wall 137.
  • the height position of the perforated plate 156 is equal to the height position of the perforated plate 155 of FIG. Seawater can flow into the space above the perforated plate 156 through the through hole of the perforated plate 156.
  • FIG. 10 is a schematic cross-sectional view of the manifold 122.
  • the inflow port 138 of the first end wall 136 is arranged at a different height position from the outflow port 125 of the manifold 122.
  • the inflow port 138 of the first end wall 136 may have a relative positional relationship between the manifold 122 and the plurality of troughs 130 so as to be substantially coaxial with the outflow port 125 of the manifold 122 (FIG. FIG. See 10). That is, the manifold 122 may be arranged at a position higher than the position shown in FIG. 1 so that the height position of the manifold 122 is substantially equal to the height position of the plurality of troughs 130.
  • the straight pipe type first supply pipe 123'and the second supply pipe 123 can be preferably used as the supply pipes connected to them, and a flow path shorter than the curved flow path is formed.
  • the vaporizer 100 may include an additional manifold 122 and an additional first supply pipe 123'(and / or a second supply pipe 123) (see FIG. 11).
  • the inflow port 138 is also formed on the second end wall 137.
  • the vaporizer 100 includes an additional closing member 140 fixed adjacent to the inner surface of the second end wall 137 so as to partially block the inflow port 138 of the second end wall 137.
  • the heating liquid flows in from the inflow port 138 of the first end wall 136 and the second end wall 137. As a result, the heating liquids flow in opposite directions in the trough 130. These streams collide at approximately intermediate positions in the longitudinal direction of the trough 130. As a result, the liquid level of the heating liquid may rise at the intermediate position, but in this case, for example, the lid member 154 described with reference to FIG. 9 is used to suppress the rise of the liquid level. May be done.
  • the amount of the heating liquid supplied to the first trough 130A not only makes the flow path cross-sectional area of the first supply pipe 123'larger than that of the second supply pipe 123, but also supplies the first to the second end wall 137 side.
  • the structure of the trough 130 shown in FIG. 11 is the first trough. It may be applied only to 130A.
  • the inflow port 138' may be formed on the bottom wall 132 in order to prevent the heating liquid from colliding with the first end wall 136 or the second end wall 137 (see FIG. 12). In this case, the heating liquid flows into the trough 130 through the inflow port 138'of the bottom wall 132 and then flows in the longitudinal direction of the trough 130. Since the inflow port 138'does not face the peripheral wall 133 of the trough 130, the uplift of the liquid surface due to the collision of the heating liquid with the peripheral wall 133 is suppressed.
  • One inflow port 138' is formed on the bottom wall 132 of the trough 130 shown in FIG. In this case, as shown in FIG. 13, the liquid level may rise locally above the inflow port 138'.
  • a plurality of inflow ports 138' may be formed on the bottom wall 132 in order to suppress this local uplift of the liquid level.
  • the first supply pipe 123'and / or the second supply pipe 123 connected to the trough 130 of FIG. 13 has a header pipe 126 extending from the manifold 122 in the longitudinal direction below the trough 130.
  • the first supply pipe 123'and / or the second supply pipe 123 has a plurality of connection pipes 127 extending upward from the header pipe 126 and connected to the inflow port 138'of the bottom wall 132. ..
  • the flow path cross-sectional areas of these connecting pipes 127 and header pipes 126 are different between the first supply pipe 123'and the second supply pipe 123.
  • the cross-sectional areas of the flow paths may be set to different values among the plurality of connecting pipes 127.
  • the flow path cross-sectional area of the connecting pipe 127 corresponding to the occurrence site of the large uplift may be set to a relatively small value.
  • the resistance of the small flow path cross-sectional area 127 increases, and the inflow amount of the heating liquid from the connecting pipe 127 decreases. As a result, the uplift of the liquid level of the heating liquid above the connecting pipe 127 is reduced.
  • inflow ports 138 and 138' are formed to supply the heating liquid to the trough 130. If the heating liquid is supplied into the trough 130 through the upward opening region of the trough 130, the inflow ports 138,138'may not be formed in the trough 130. In this case, the manifold 122 and the first supply pipe 123'(and / or the second supply pipe 123) are arranged in the space above the trough 130 (see FIG. 14).
  • the trough 130 has a simple structure because the inflow ports 138,138'are not formed in the trough 130.
  • FIG. 14 shows one manifold 122.
  • a plurality of manifolds 122 may be arranged above the trough 130 in order to increase the inflow of the heating liquid into the trough 130.
  • the closing member 140 is arranged inside the trough 130.
  • a closing member 140' that partially blocks the flow path of the second supply pipe 123 may be arranged in the second supply pipe 123.
  • the closing member 140'in FIG. 15 is fixed at the upstream end of the second supply pipe 123.
  • the closing member 140' may be arranged at another position (for example, a downstream end or an intermediate position) of the second supply pipe 123.
  • the closing member 140'in the second supply pipe 123 By arranging the closing member 140'in the second supply pipe 123, the amount of the heating liquid flowing through the second supply pipe 123 can be further reduced. By adjusting the closed area of the closing member 140'with respect to the flow path cross-sectional area of the second supply pipe 123, the inflow amount of the heating liquid flowing through the second supply pipe 123 can be finely adjusted.
  • two closing members 140 ′′ may be fixed in the manifold 122. These closing members 140 ′′ are configured to partially block the flow path in the manifold 122. These closing members 140'' are fixed at a position between the connection portion of the first supply pipe 123'to the manifold 122 and the connection portion of the second supply pipe 123 to the manifold 122 (shown by the dotted line in FIG. 1). Position). An inflow portion of the heating liquid from the pump 121 to the manifold 122 is provided in the manifold 122 in the flow path section between these closing members 140 ′′. That is, the inflow portion is formed closer to the connection portion of the first supply pipe 123'than the connection portion of the second supply pipe 123.
  • the heating liquid flows into the first supply pipe 123 ′′ without passing through the closing member 140 ′′, while flowing into the second supply pipe 123 after passing through the closing member 140 ′′.
  • the closing member 140'' in the manifold 122 By providing the closing member 140'' in the manifold 122, the flow rate between the first supply pipe 123'and the second supply pipe 123 due to the difference in the flow path cross-sectional area of the first supply pipe 123'and the second supply pipe 123. The difference can be fine-tuned.
  • the closing member 140 (and the closing member 140 ′′, 140 ′′) is formed by using an orifice.
  • the closing member 140 (and the closing member 140', 140 ") may be formed by using the perforated plate 142.
  • a plurality of baffle plates 151 are used as the ridge suppressing portion.
  • a single baffle plate may be used as the ridge suppressor. How many baffles are used as the uplift suppressor may be determined based on the flow rate of seawater flowing into the trough 130 and the size of the inflow port 138. Based on these design conditions, the arrangement interval of the plurality of baffle plates 151 and the heights of the plurality of baffle plates 151 may be determined.
  • the vaporizer described in connection with the various embodiments described above mainly has the following features.
  • the vaporizer is configured to vaporize the liquefied gas under heat exchange between the liquefied gas and the heating liquid having a temperature higher than that of the liquefied gas.
  • the vaporizer includes a plurality of heat transfer panels each configured such that a plurality of heat transfer tubes erected so as to guide the liquefied gas are arranged in the horizontal direction, and one of the plurality of heat transfer panels.
  • the first trough configured to supply the heating liquid to the outer surface of the heat transfer tube, and the heating liquid to the outer surface of the other plurality of heat transfer tubes among the plurality of heat transfer panels.
  • a second trough configured to supply the heating liquid, a manifold through which the heating liquid flows, and the manifold and the first trough connected so as to supply the heating liquid from the manifold to the first trough.
  • the first supply pipe and the manifold and the second trough are connected so as to supply the heating liquid from the manifold to the second trough, and a flow path cross-sectional area smaller than that of the first trough is formed. It is equipped with a second supply pipe that it has.
  • the supply amount of the heating liquid to these troughs is. , Varies according to the flow path cross-sectional area of these supply pipes.
  • the structure of the vaporizer is complicated when the supply of heating liquid from the second trough to the corresponding heat transfer panel may be less than the supply of heating liquid from the first trough to the corresponding heat transfer panel. A relatively small amount of heating liquid can be supplied to the second trough without conversion.
  • the second trough may be arranged outside the row of the plurality of heat transfer panels.
  • the first trough may be arranged between adjacent heat transfer panels.
  • one heat transfer panel is adjacent to the second trough, while two heat transfer panels are adjacent to each other in the first trough. Therefore, from the second trough, the heating liquid flows down to one heat transfer panel, while from the first trough, the heating liquid flows down to the two heat transfer panels.
  • the flow path cross-sectional area of the supply pipe connected to the second trough is smaller than the flow path cross-sectional area of the supply pipe for the first trough, the amount of the heating liquid supplied to the second trough is relatively large. It becomes smaller.
  • the amount of the heating liquid supplied to these troughs depends on the flow path cross-sectional area of these supply pipes. Will change. Therefore, a flow rate corresponding to the number of heat transfer panels to which the heating liquid is supplied can be obtained. Therefore, it is not necessary to attach a valve body for adjusting the supply flow rate to the supply pipe for the second trough.
  • the first trough is a first erected on a bottom wall extending in the alignment direction of the plurality of heat transfer tubes and an end portion of the bottom wall located on the manifold side in the alignment direction. It may include an end wall and a second end wall erected at another end of the bottom wall that is separated from the first end wall in the alignment direction. An inflow port into which the heating liquid flows may be formed on the first end wall.
  • a manifold configured to supply the heating liquid to the first trough is arranged on the first end wall side of the trough, and an inflow port is formed in the first end wall. Therefore, the flow path of the heating liquid from the manifold to the first trough is shortened. In other words, the flow path of the heating liquid from the manifold to the first trough crosses the first end wall, unlike the structure in which the heating liquid flows into the first trough having an inflow port formed in the bottom wall from the manifold. It does not have to extend to the inlet of the bottom wall.
  • the second end wall may be formed with an inflow port into which the heating liquid flows.
  • the heating liquid collides with the second end wall and raises the liquid level of the heating liquid near the second end wall.
  • the amount of the heating liquid flowing out from the vicinity of the second end wall to the heat transfer panel is larger than the amount of the heating liquid flowing out from the vicinity of the first end wall to the heat transfer panel.
  • the first trough may have a bottom wall on which an inflow port into which the heating liquid flows is formed.
  • the heating liquid can flow into the first trough and the second trough without colliding with the inner surface of the first trough.
  • the first supply pipe may be arranged above the first trough.
  • the heating liquid can flow into the first trough through the upward opening region of the first trough. Since the inflow port does not have to be formed in the first trough, the configuration of the first trough can be simplified.
  • the vaporizer may further include a closing member arranged in the first trough so as to partially close the inflow port.
  • the closing member may be removable from the first trough.
  • the closing member since the closing member partially closes the inflow port, it is possible to give resistance to the heating liquid at the inflow port of the trough and adjust the inflow amount of the heating liquid into the trough. Since the closing member is removable from the trough, the resistance to the heating liquid passing through the inflow port can be reduced by removing the closing member from the trough.
  • the first trough may include a side wall erected facing the one heat transfer panel.
  • the side wall may have an inner surface on which a groove into which the closing member is inserted is formed.
  • the closing member is attached to the first trough by being inserted into a groove formed on the inner surface of the side wall.
  • the vaporizer comprises a flow path in the manifold between a connection portion where the second supply pipe is connected to the manifold and a connection portion where the first supply pipe is connected to the manifold.
  • An additional closing member may be further provided.
  • the inflow portion where the heating liquid flows into the manifold is located in the first supply pipe rather than the connection portion of the second supply pipe so that the heating liquid flows into the second supply pipe through the closing member. It may be formed near the connection site.
  • the inflow portion through which the heating liquid flows into the manifold is formed closer to the connection portion of the first supply pipe than the connection portion of the second supply pipe, so that the heating liquid is formed in the manifold. It flows into the second supply pipe through the closing member inside. Since the heating liquid receives resistance from the closing member, the inflow amount of the heating liquid into the second supply pipe is smaller than the inflow amount of the heating liquid into the first supply pipe.
  • the vaporizer may further include a closing member that partially closes the flow path in the second supply pipe.
  • the closing member partially closes the flow path in the second supply pipe, so that the inflow amount of the heating liquid to the second supply pipe is reduced.
  • the vaporizer so as to suppress the uplift of the liquid level of the heating liquid caused by the collision of the heating liquid flowing into the first trough with the second end wall. It may further include a configured uplift suppressing portion.
  • the heating liquid that has flowed into the trough through the inflow port formed on the first end wall flows toward the second end wall and collides with the second end wall.
  • a part of the heating liquid that collides with the second end wall flows upward near the second end wall and tries to raise the liquid level of the heating liquid upward.
  • the amount of the heating liquid that overflows from the trough at the raised portion becomes larger than the flow rate that overflows at the other portion.
  • the amount of heat exchanged between the heating liquid and the liquefied gas varies greatly among the plurality of heat transfer tubes.
  • the uplift suppressing portion suppresses the uplift of the liquid surface, excessive supply of the heating liquid to the outer surface of the heat transfer tube near the second end wall is prevented. Therefore, the variation in the amount of heat exchange between the plurality of heat transfer tubes is suppressed.
  • the ridge suppressing portion may include a lid member extending in the alignment direction from the second end wall side at a position higher than the inflow port in the first trough.
  • the lid member may be formed with a through hole that penetrates the lid member in the vertical direction.
  • a part of the heating liquid flowing upward can flow into the space above the lid member through the through hole of the lid member. Since resistance is applied to the heating liquid as the heating liquid passes through the through hole, the pressure of the heating liquid flowing into the space above the lid member is reduced. As a result, the uplift of the liquid level near the second end wall is suppressed.
  • the uplift suppressing portion collides with the heating liquid that has flowed into the first trough from the inflow port before colliding with the second end wall, thereby causing a collision force of the heating liquid.
  • It may include a resistance member arranged between the first end wall and the second end wall so as to suppress the above.
  • the heating liquid flowing in from the inflow port collides with the resistance member before colliding with the second end wall, so that the heating liquid in the direction from the first end wall to the second end wall
  • the velocity component is reduced before the collision with the second edge wall. Since the heating liquid is decelerated by the resistance member before it collides with the second end wall, even if the heating liquid collides with the second end wall, a large collision force is not generated and a large velocity component is generated upward.
  • the flow of the heating liquid to have is unlikely to occur. That is, the uplift of the liquid level near the second end wall is suppressed.
  • the resistance member may be formed with a through hole that allows the passage of the heating liquid toward the second end wall.
  • the resistance member is formed with a through hole, a part of the heating liquid flowing in from the inflow port formed in the first end wall is passed through the through hole of the resistance member to the second. It flows toward the end wall. As the heating liquid passes through the through hole, a large resistance is applied to the heating liquid, so that the pressure of the heating liquid toward the second end wall decreases. As a result, the uplift of the liquid level near the second end wall is suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

The present application discloses a vaporization device that vaporizes liquefied gas by the heat exchange of the liquefied gas with a heating liquid that has a higher temperature than the liquefied gas. The vaporization device comprises: a plurality of heat transfer panels; a first trough and a second trough that are configured to supply the heating liquid to the outer surface of a plurality of heat transfer tubes; a manifold through which the heating liquid flows; a first supply tube which connects the manifold and the first trough so as to supply the heating liquid from the manifold to the first trough; and a second supply tube which connects the manifold and the second trough so as to supply the heating liquid from the manifold to the second trough, and which has a smaller flow passage cross sectional area than the first trough.

Description

気化装置Vaporizer
 本発明は、液化ガスを気化するために用いられる気化装置に関する。 The present invention relates to a vaporizer used for vaporizing liquefied gas.
 低温の液化ガスの気化に用いられる様々な気化装置が開発されている。特許文献1に開示された気化装置は、液化ガスを上方に案内するように立設された複数の伝熱管をそれぞれ有している複数の伝熱パネルと、これらの伝熱パネルに液化ガスよりも高温の加熱用液体を散水するようにそれぞれ構成された複数のトラフとを備えている。複数の伝熱パネル及び複数のトラフは、複数の伝熱管の整列方向に対して直角の方向において、交互に配置されている。複数のトラフに加熱用液体を供給するために、これらのトラフには、マニホールドから延設された複数の供給管がそれぞれ接続されている。 Various vaporizers used for vaporizing low-temperature liquefied gas have been developed. The vaporizer disclosed in Patent Document 1 is composed of a plurality of heat transfer panels each having a plurality of heat transfer tubes erected so as to guide the liquefied gas upward, and the liquefied gas on these heat transfer panels. It also has multiple troughs, each configured to sprinkle hot heating liquids. The plurality of heat transfer panels and the plurality of troughs are alternately arranged in a direction perpendicular to the alignment direction of the plurality of heat transfer tubes. In order to supply the heating liquid to the plurality of troughs, a plurality of supply pipes extending from the manifold are connected to each of these troughs.
 加熱用液体は、マニホールド及び複数の供給管を通じて複数のトラフに供給される。加熱用液体は、これらのトラフから溢れ出し、これらのトラフに隣り合う伝熱パネルの複数の伝熱管に供給される。加熱用液体がこれらの伝熱管の外表面に沿って流下している間、液化ガスは、伝熱管内を上向きに流れ加熱用液体と熱交換する。熱交換の結果、加熱用液体の温度は低下する一方で、液化ガスは昇温され気化する。 The heating liquid is supplied to a plurality of troughs through a manifold and a plurality of supply pipes. The heating liquid overflows from these troughs and is supplied to a plurality of heat transfer tubes of a heat transfer panel adjacent to these troughs. While the heating liquid flows down along the outer surface of these heat transfer tubes, the liquefied gas flows upward in the heat transfer tubes and exchanges heat with the heating liquid. As a result of heat exchange, the temperature of the heating liquid decreases, while the temperature of the liquefied gas rises and vaporizes.
 複数のトラフのうち一部に対して、他のトラフよりも少ない量の加熱用液体を、対応する伝熱パネルに供給することが必要になることがある。たとえば、伝熱パネルの列の外側に配置された最外のトラフは最外の伝熱パネルにのみ隣り合っている一方で、隣り合う伝熱パネルの間に配置されたトラフは、2つの伝熱パネルと隣り合っている。この場合、最外のトラフは、他のトラフよりも少量の加熱用液体を供給してもよい。 For some of the multiple troughs, it may be necessary to supply a smaller amount of heating liquid to the corresponding heat transfer panel than the other troughs. For example, the outermost troughs placed outside the row of heat transfer panels are adjacent only to the outermost heat transfer panels, while the troughs placed between adjacent heat transfer panels have two heat transfers. Adjacent to the heat panel. In this case, the outermost trough may supply a smaller amount of heating liquid than the other troughs.
特開2017-40296号公報Japanese Unexamined Patent Publication No. 2017-40296
 本発明は、加熱用液体の供給量を複数のトラフ間で相違させることを可能にする構造を有する気化装置を提供することを目的とする。 An object of the present invention is to provide a vaporizer having a structure capable of making a supply amount of a heating liquid different between a plurality of troughs.
 本発明の一の局面に係る気化装置は、液化ガスと前記液化ガスよりも高温の加熱用液体との間での熱交換の下で前記液化ガスを気化させるように構成されている。気化装置は、前記液化ガスを案内するように立設された複数の伝熱管が水平方向に並ぶようにそれぞれ構成された複数の伝熱パネルと、前記複数の伝熱パネルのうち1つの前記複数の伝熱管の外表面へ前記加熱用液体を供給するように構成された第1トラフと、前記複数の伝熱パネルのうち他のもう1つの前記複数の伝熱管の外表面へ前記加熱用液体を供給するように構成された第2トラフと、前記加熱用液体が流れるマニホールドと、前記マニホールドから前記第1トラフへ前記加熱用液体を供給するように前記マニホールドと前記第1トラフとに接続された第1供給管と、前記マニホールドから前記第2トラフへ前記加熱用液体を供給するように前記マニホールドと前記第2トラフとに接続されているとともに前記第1トラフよりも小さな流路断面積を有している第2供給管とを備えている。 The vaporizer according to one aspect of the present invention is configured to vaporize the liquefied gas under heat exchange between the liquefied gas and the heating liquid having a temperature higher than that of the liquefied gas. The vaporizer includes a plurality of heat transfer panels each configured such that a plurality of heat transfer tubes erected so as to guide the liquefied gas are arranged in the horizontal direction, and one of the plurality of heat transfer panels. The first trough configured to supply the heating liquid to the outer surface of the heat transfer tube, and the heating liquid to the outer surface of the other plurality of heat transfer tubes among the plurality of heat transfer panels. A second trough configured to supply the heating liquid, a manifold through which the heating liquid flows, and the manifold and the first trough connected so as to supply the heating liquid from the manifold to the first trough. The first supply pipe and the manifold and the second trough are connected so as to supply the heating liquid from the manifold to the second trough, and a flow path cross-sectional area smaller than that of the first trough is formed. It is equipped with a second supply pipe that it has.
 上述の気化装置は、加熱用液体の供給量を複数のトラフ間で相違させることを可能にする構造を有する。 The above-mentioned vaporizer has a structure that enables the supply amount of the heating liquid to be different among a plurality of troughs.
 本発明の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The object, features and advantages of the present invention will be made clearer by the following detailed description and accompanying drawings.
オープンラック式の気化装置の概略的な斜視図である。It is a schematic perspective view of the open rack type vaporizer. 気化装置の概略的な断面図である。It is a schematic cross-sectional view of a vaporizer. 気化装置の箱体の概略的な断面図である。It is a schematic sectional view of the box body of a vaporizer. 箱体内に配置される抵抗部材の概略的な斜視図である。It is a schematic perspective view of the resistance member arranged in a box body. 箱体内に配置される他のもう1つの抵抗部材の概略的な斜視図である。It is a schematic perspective view of another resistance member arranged in a box body. 一重の蓋部材を有した箱体の概略的な断面図である。It is a schematic cross-sectional view of the box body which has a single lid member. 一重の蓋部材を有した箱体の概略的な断面図である。It is a schematic cross-sectional view of the box body which has a single lid member. 一重の蓋部材を有した箱体の概略的な断面図である。It is a schematic cross-sectional view of the box body which has a single lid member. 一重の蓋部材を有した箱体の概略的な断面図である。It is a schematic cross-sectional view of the box body which has a single lid member. 気化装置のマニホールドの概略的な断面図である。It is the schematic sectional drawing of the manifold of a vaporizer. 2つの流入口を有しているトラフの概略的な断面図である。FIG. 3 is a schematic cross-sectional view of a trough having two inlets. 底壁に流入口が形成されたトラフの概略的な断面図である。It is a schematic sectional view of the trough which formed the inflow port in the bottom wall. 底壁に流入口が形成されたトラフの概略的な断面図である。It is a schematic sectional view of the trough which formed the inflow port in the bottom wall. 上側から加熱用液体の供給を受けるトラフの概略的な断面図である。It is the schematic sectional drawing of the trough which receives the liquid for heating from the upper side. 閉塞部材が内部で固定された第2供給管が接続された第2トラフの概略的な断面図である。It is a schematic cross-sectional view of the 2nd trough to which the 2nd supply pipe to which the closing member was fixed internally was connected. 閉塞部材が内部で固定されたマニホールドの概略的な断面図である。It is the schematic sectional drawing of the manifold in which the closing member is fixed internally. 多孔板が流入口に取り付けられた箱体を有している気化装置の概略的な斜視図である。It is a schematic perspective view of the vaporizer which has a box body which a perforated plate is attached to an inflow port.
 図1は、オープンラック式の気化装置(ORV)100の概略的な斜視図である。図2は、仮想的な鉛直平面上の気化装置100の概略的な断面図である。気化装置100が図1及び図2を参照して説明される。 FIG. 1 is a schematic perspective view of an open rack type vaporizer (ORV) 100. FIG. 2 is a schematic cross-sectional view of the vaporizer 100 on a virtual vertical plane. The vaporizer 100 will be described with reference to FIGS. 1 and 2.
 気化装置100は、液化天然ガス(以下、「液化ガス」と称される)を液化ガスよりも高温の加熱用液体と熱交換させ、液化ガスを気化させるように構成されている。熱交換の結果得られた気相の天然ガスは、以下の説明において「気化ガス」と称される。本実施形態において、加熱用液体として海水が用いられている。代替的に、気化ガスよりも高い温度を有する液体が加熱用液体として利用されてもよい。 The vaporizer 100 is configured to vaporize the liquefied natural gas (hereinafter referred to as "liquefied gas") by exchanging heat with a heating liquid having a temperature higher than that of the liquefied gas. The gas phase natural gas obtained as a result of heat exchange is referred to as "vaporized gas" in the following description. In this embodiment, seawater is used as the heating liquid. Alternatively, a liquid having a temperature higher than that of the vaporized gas may be used as the heating liquid.
 気化装置100は、液化ガス又は気化ガスが内部で流動する下マニホールド111、上マニホールド112及び複数の伝熱パネル113を含んでいる。下マニホールド111及び上マニホールド112は、水平方向に延設されている。上マニホールド112は、下マニホールド111から上方に離間した位置において下マニホールド111と略平行に延設されている。複数の伝熱パネル113は、上マニホールド112と下マニホールド111とに接続されている。複数の伝熱パネル113は、間隔を空けて水平方向に並べられている。下マニホールド111及び上マニホールド112の延設方向は、複数の伝熱パネル113の整列方向に一致している。 The vaporizer 100 includes a lower manifold 111, an upper manifold 112, and a plurality of heat transfer panels 113 through which liquefied gas or vaporized gas flows internally. The lower manifold 111 and the upper manifold 112 extend in the horizontal direction. The upper manifold 112 extends substantially parallel to the lower manifold 111 at a position separated upward from the lower manifold 111. The plurality of heat transfer panels 113 are connected to the upper manifold 112 and the lower manifold 111. The plurality of heat transfer panels 113 are arranged in the horizontal direction at intervals. The extending directions of the lower manifold 111 and the upper manifold 112 coincide with the alignment directions of the plurality of heat transfer panels 113.
 下マニホールド111は、複数の伝熱パネル113に液化ガスを分配するために用いられる。複数の伝熱パネル113は、液化ガスを海水と熱交換させるために用いられる。上マニホールド112は、液化ガスと海水との間の熱交換の結果得られた気化ガスを集約させるために用いられる。上マニホールド112には、所定の需要先(図示せず)に気化ガスを供給するように構成された供給装置(図示せず)が接続されている。 The lower manifold 111 is used to distribute the liquefied gas to the plurality of heat transfer panels 113. The plurality of heat transfer panels 113 are used for heat exchange of the liquefied gas with seawater. The upper manifold 112 is used to aggregate the vaporized gas obtained as a result of heat exchange between the liquefied gas and seawater. A supply device (not shown) configured to supply vaporized gas to a predetermined demand destination (not shown) is connected to the upper manifold 112.
 複数の伝熱パネル113それぞれは、下ヘッダ管114、上ヘッダ管115及び複数の伝熱管116を含んでいる。下ヘッダ管114及び上ヘッダ管115は、鉛直方向に互いに離間した位置で下マニホールド111及び上マニホールド112の延設方向に対して直角の水平方向にそれぞれ延設されている。複数の伝熱管116は、下ヘッダ管114及び上ヘッダ管115の間で鉛直方向にそれぞれ延設されている。下ヘッダ管114は、下マニホールド111から延設され伝熱パネル113の下縁を形成している一方で、上ヘッダ管115は、上マニホールド112から延設され伝熱パネル113の上縁を形成している。複数の伝熱管116は、下ヘッダ管114から上方に延設され上ヘッダ管115に接続されている。複数の伝熱管116は、下ヘッダ管114及び上ヘッダ管115の延設方向において配列されている。複数の伝熱管116の整列方向は、以下の説明において「第1水平方向」と称される。第1水平方向に対して直角の水平方向(すなわち、下マニホールド111及び上マニホールド112の延設方向)は、以下の説明において「第2水平方向」と称される。 Each of the plurality of heat transfer panels 113 includes a lower header tube 114, an upper header tube 115, and a plurality of heat transfer tubes 116. The lower header pipe 114 and the upper header pipe 115 are extended in the horizontal direction perpendicular to the extending direction of the lower manifold 111 and the upper manifold 112 at positions separated from each other in the vertical direction. The plurality of heat transfer tubes 116 extend vertically between the lower header tube 114 and the upper header tube 115, respectively. The lower header tube 114 extends from the lower manifold 111 to form the lower edge of the heat transfer panel 113, while the upper header tube 115 extends from the upper manifold 112 to form the upper edge of the heat transfer panel 113. doing. The plurality of heat transfer tubes 116 extend upward from the lower header tube 114 and are connected to the upper header tube 115. The plurality of heat transfer tubes 116 are arranged in the extending direction of the lower header tube 114 and the upper header tube 115. The alignment direction of the plurality of heat transfer tubes 116 is referred to as a "first horizontal direction" in the following description. The horizontal direction perpendicular to the first horizontal direction (that is, the extension direction of the lower manifold 111 and the upper manifold 112) is referred to as a "second horizontal direction" in the following description.
 気化装置100は、海水を吐出するように構成されたポンプ121と、ポンプ121から吐出された海水を第2水平方向に案内するように構成されたマニホールド122とを備えている。さらに、気化装置100は、マニホールド122にそれぞれ接続された複数の第1供給管123’及び複数の第2供給管123と、複数のトラフ130とを含んでいる。マニホールド122、複数の第1供給管123’及び複数の第2供給管123は、複数のトラフ130へ海水を供給するための流路を形成している。 The vaporizer 100 includes a pump 121 configured to discharge seawater and a manifold 122 configured to guide the seawater discharged from the pump 121 in the second horizontal direction. Further, the vaporizer 100 includes a plurality of first supply pipes 123'and a plurality of second supply pipes 123, each connected to the manifold 122, and a plurality of troughs 130. The manifold 122, the plurality of first supply pipes 123', and the plurality of second supply pipes 123 form a flow path for supplying seawater to the plurality of troughs 130.
 マニホールド122は、複数の伝熱パネル113から第1水平方向において離れた位置において第2水平方向に延設されている。マニホールド122には、マニホールド122内に流入した海水が流出する複数の流出口125が形成されている。これらの流出口125は、第2水平方向において間隔を空けて並んでいる。 The manifold 122 extends in the second horizontal direction at a position separated from the plurality of heat transfer panels 113 in the first horizontal direction. The manifold 122 is formed with a plurality of outlets 125 from which seawater flowing into the manifold 122 flows out. These outlets 125 are spaced apart in the second horizontal direction.
 複数のトラフ130は、複数の伝熱パネル113と第2水平方向において交互に並ぶように配置されている。複数のトラフ130それぞれの高さ位置に関して、トラフ130は、上ヘッダ管115よりも低い位置に配置されている。トラフ130は、伝熱パネル113の複数の伝熱管116の上部(高さ方向における複数の伝熱管116の中間位置よりも上側)に対して第2水平方向において隣り合うように配置されている。トラフ130は、流出口125が形成されたマニホールド122よりも高い位置に配置されている。 The plurality of troughs 130 are arranged so as to be alternately arranged with the plurality of heat transfer panels 113 in the second horizontal direction. With respect to the height position of each of the plurality of troughs 130, the trough 130 is arranged at a position lower than that of the upper header pipe 115. The trough 130 is arranged so as to be adjacent to the upper part of the plurality of heat transfer tubes 116 of the heat transfer panel 113 (above the intermediate position of the plurality of heat transfer tubes 116 in the height direction) in the second horizontal direction. The trough 130 is located higher than the manifold 122 on which the outlet 125 is formed.
 複数のトラフ130それぞれは、海水を貯留するように構成された箱体131と、箱体131から溢れ出した海水を対応する伝熱パネル113の複数の伝熱管の外表面に案内するように構成された案内部139とを含んでいる。 Each of the plurality of troughs 130 is configured to guide the box body 131 configured to store seawater and the seawater overflowing from the box body 131 to the outer surfaces of the plurality of heat transfer tubes of the corresponding heat transfer panels 113. It includes a guide unit 139 and the like.
 箱体131は、第1水平方向において長く第2水平方向において短い矩形箱である。箱体131は上方に開口している。箱体131は、第1水平方向において細長い略矩形状の底壁132と、底壁132の外周縁から上方に立設された周壁133とを含んでいる。周壁133の上縁は、全体的に略水平である。 The box body 131 is a rectangular box that is long in the first horizontal direction and short in the second horizontal direction. The box body 131 is open upward. The box body 131 includes an elongated substantially rectangular bottom wall 132 in the first horizontal direction, and a peripheral wall 133 erected above the outer peripheral edge of the bottom wall 132. The upper edge of the peripheral wall 133 is substantially horizontal as a whole.
 周壁133は、底壁132の一対の長手方向に延びる縁から上方に立設された一対の側壁134,135と、底壁132の一対の短手方向に延びる縁から上方に立設された第1端壁136及び第2端壁137とを含んでいる。側壁134,135は、第2水平方向において互いに離間した位置で立設されている一方で、第1端壁136及び第2端壁137は、第1水平方向において互いに離間した位置で立設されている。 The peripheral wall 133 has a pair of side walls 134 and 135 erected upward from a pair of longitudinally extending edges of the bottom wall 132 and a first erected upward from a pair of laterally extending edges of the bottom wall 132. It includes one end wall 136 and a second end wall 137. The side walls 134 and 135 are erected at positions separated from each other in the second horizontal direction, while the first end wall 136 and the second end wall 137 are erected at positions separated from each other in the first horizontal direction. ing.
 側壁134,135及び底壁132の第1水平方向における長さは、第1水平方向に並べられた複数の伝熱管116の管列の長さよりも大きな値に設定されている。側壁134,135が複数の伝熱管116の管列全体と第2水平方向において重なるように箱体131が配置されている。 The lengths of the side walls 134 and 135 and the bottom wall 132 in the first horizontal direction are set to a value larger than the length of the pipe rows of the plurality of heat transfer tubes 116 arranged in the first horizontal direction. The box 131 is arranged so that the side walls 134 and 135 overlap the entire row of the plurality of heat transfer tubes 116 in the second horizontal direction.
 第1端壁136は、第2端壁137よりもマニホールド122の流出口125の近くに配置されている。第1端壁136には、海水が流入する流入口138が形成されている(図1を参照)。流入口138の中心は、第1端壁の中心よりも下方に位置している。第2水平方向における第1端壁136の流入口138の位置は、第2水平方向におけるマニホールド122の流出口125の位置と略一致している。トラフ130は、マニホールド122よりも高い位置に配置されているので、トラフ130の第1端壁136に形成された流入口138も、マニホールド122の流出口125よりも高い位置にある。 The first end wall 136 is arranged closer to the outlet 125 of the manifold 122 than the second end wall 137. An inflow port 138 through which seawater flows is formed in the first end wall 136 (see FIG. 1). The center of the inflow port 138 is located below the center of the first end wall. The position of the inflow port 138 of the first end wall 136 in the second horizontal direction substantially coincides with the position of the outflow port 125 of the manifold 122 in the second horizontal direction. Since the trough 130 is located higher than the manifold 122, the inflow port 138 formed on the first end wall 136 of the trough 130 is also located higher than the outlet 125 of the manifold 122.
 第2水平方向に間隔を空けて整列された4つのトラフ130のうち隣り合う伝熱パネル113の間に配置された内側のトラフ130は、以下の説明において、「第1トラフ130A」と称される。伝熱パネル113の列の外側に配置された2つのトラフ130は、以下の説明において、「第2トラフ130B」と称される。2つの第2トラフ130Bそれぞれは、1つの伝熱パネル113にのみ隣り合っている。一方、2つの第1トラフ130Aそれぞれは、隣り合う2つの伝熱パネル113の間に配置されているので、これらの伝熱パネル113に隣り合っている。 Of the four troughs 130 arranged at intervals in the second horizontal direction, the inner trough 130 arranged between the adjacent heat transfer panels 113 is referred to as the "first trough 130A" in the following description. To. The two troughs 130 arranged outside the row of heat transfer panels 113 are referred to as "second trough 130B" in the following description. Each of the two second troughs 130B is adjacent to only one heat transfer panel 113. On the other hand, since each of the two first troughs 130A is arranged between two adjacent heat transfer panels 113, they are adjacent to these heat transfer panels 113.
 第2トラフ130Bの第1端壁136及び第2端壁137の高さ寸法は、側壁134,135の高さ寸法よりも大きな値に設定されている。すなわち、第1端壁136及び第2端壁137の上縁は、側壁134,135の上縁よりも高い位置で延設されている。 The height dimension of the first end wall 136 and the second end wall 137 of the second trough 130B is set to a value larger than the height dimension of the side walls 134 and 135. That is, the upper edges of the first end wall 136 and the second end wall 137 extend at positions higher than the upper edges of the side walls 134 and 135.
 右側の第2トラフ130Bの第1端壁136、第2端壁137及び右側の側壁135の高さ寸法は、左側の側壁134(すなわち、伝熱パネル113側に向いた側壁134)の高さ寸法よりも大きな値に設定されている。すなわち、第1端壁136、第2端壁137及び側壁135の上縁は、側壁134の上縁よりも高い位置で延設されている。つまり、伝熱パネル113側の側壁よりも、当該側壁とは反対側の側壁の方が大きな高さを有している。 The height dimension of the first end wall 136, the second end wall 137 and the right side wall 135 of the second trough 130B on the right side is the height of the left side wall 134 (that is, the side wall 134 facing the heat transfer panel 113 side). It is set to a value larger than the dimension. That is, the upper edges of the first end wall 136, the second end wall 137, and the side wall 135 extend at a position higher than the upper edge of the side wall 134. That is, the side wall on the side opposite to the side wall has a larger height than the side wall on the heat transfer panel 113 side.
 左側の第2トラフ130Bの第1端壁136、第2端壁137及び左側の側壁134の高さ寸法は、右側の側壁135(すなわち、伝熱パネル113側に向いた側壁135)の高さ寸法よりも大きな値に設定されている。すなわち、第1端壁136、第2端壁137及び側壁134の上縁は、側壁135の上縁よりも高い位置で延設されている。 The height dimension of the first end wall 136, the second end wall 137 and the left side wall 134 of the second trough 130B on the left side is the height of the right side wall 135 (that is, the side wall 135 facing the heat transfer panel 113 side). It is set to a value larger than the dimension. That is, the upper edges of the first end wall 136, the second end wall 137, and the side wall 134 extend at a position higher than the upper edge of the side wall 135.
 案内部139は、側壁134,135のうち少なくとも一方の上縁から海水の供給先の伝熱パネル113に向けて下方に傾斜した傾斜面を形成している。案内部139は、箱体131の容積を超えてトラフ130に供給され箱体131の側壁134,135の上縁を越えて溢れ出した海水を、対応する伝熱パネル113の複数の伝熱管116へ案内するために用いられる。 The guide portion 139 forms an inclined surface inclined downward from the upper edge of at least one of the side walls 134 and 135 toward the heat transfer panel 113 to which the seawater is supplied. The guide portion 139 allows the seawater that is supplied to the trough 130 beyond the volume of the box body 131 and overflows beyond the upper edges of the side walls 134 and 135 of the box body 131 to be transferred to the plurality of heat transfer tubes 116 of the corresponding heat transfer panel 113. It is used to guide you to.
 左側の第2トラフ130Bの案内部139は、伝熱パネル113側の側壁135の上縁から右方に突出するように設けられている。案内部139は、反対側の側壁134には設けられていない。右側の第2トラフ130Bの案内部139は、左側の側壁134の上縁から左方に突出するように設けられている。案内部139は、反対側の側壁134には設けられていない。第1トラフ130Aの案内部139は、両側壁134,135の上縁から外方に突出するように設けられている。 The guide portion 139 of the second trough 130B on the left side is provided so as to project to the right from the upper edge of the side wall 135 on the heat transfer panel 113 side. The guide portion 139 is not provided on the side wall 134 on the opposite side. The guide portion 139 of the second trough 130B on the right side is provided so as to project to the left from the upper edge of the side wall 134 on the left side. The guide portion 139 is not provided on the side wall 134 on the opposite side. The guide portion 139 of the first trough 130A is provided so as to project outward from the upper edges of the side walls 134 and 135.
 複数の第1供給管123’及び複数の第2供給管123それぞれは、マニホールド122の流出口125に接続された上流端と、対応するトラフ130の流入口138に接続された下流端とを有し、上流端と下流端との間で海水が流れる流路を形成している。第1供給管123’は、マニホールド122から第1トラフ130Aの流入口138に延設されている。第2供給管123は、マニホールド122から第2トラフ130Bの流入口138に延設されている。第2供給管123の流路断面積は、第1供給管123’の流路断面積よりも小さい。 Each of the plurality of first supply pipes 123'and the plurality of second supply pipes 123 has an upstream end connected to the outlet 125 of the manifold 122 and a downstream end connected to the inlet 138 of the corresponding trough 130. However, a flow path through which seawater flows is formed between the upstream end and the downstream end. The first supply pipe 123'extends from the manifold 122 to the inflow port 138 of the first trough 130A. The second supply pipe 123 extends from the manifold 122 to the inflow port 138 of the second trough 130B. The flow path cross-sectional area of the second supply pipe 123 is smaller than the flow path cross-sectional area of the first supply pipe 123'.
 気化装置100内における液化ガス及び海水の流れが以下に説明される。 The flow of liquefied gas and seawater in the vaporizer 100 will be described below.
 液化ガスは、ポンプ(図示せず)によって下マニホールド111に供給される。液化ガスは、下マニホールド111に流入した後、複数の伝熱パネル113それぞれの下ヘッダ管114に流入する。下ヘッダ管114に流入した液化ガスは、複数の伝熱管116に沿って上方に流れる。この間、液化ガスは、海水と熱交換し気化ガスになる。気化ガスは、上方に流れ上ヘッダ管115に流入する。その後、気化ガスは、上ヘッダ管115を流れ上マニホールド112内に集約される。 The liquefied gas is supplied to the lower manifold 111 by a pump (not shown). After flowing into the lower manifold 111, the liquefied gas flows into the lower header pipe 114 of each of the plurality of heat transfer panels 113. The liquefied gas that has flowed into the lower header tube 114 flows upward along the plurality of heat transfer tubes 116. During this time, the liquefied gas exchanges heat with seawater and becomes vaporized gas. The vaporized gas flows upward and flows into the header pipe 115. After that, the vaporized gas flows through the upper header pipe 115 and is collected in the upper manifold 112.
 海水は、ポンプ121によってマニホールド122に供給される。海水は、マニホールド122によって第2水平方向に案内され、マニホールド122に取り付けられた複数の第1供給管123’及び複数の第2供給管123に分配される。複数の第1供給管123’及び複数の第2供給管123を流れた海水は、第1トラフ130A及び第2トラフ130B内に流入する。第1トラフ130A及び第2トラフ130B内に流入した海水は、底壁132及び周壁133によって囲まれた空間内で液層を形成する。トラフ130への海水の流入量が箱体131の容積を超えると、海水は、側壁134,135の上縁を越えて溢れ出す。海水は、その後、案内部139の傾斜面に沿って流下する。この結果、海水は、箱体131の側方に位置する複数の伝熱管116の上部に散水される。 Seawater is supplied to the manifold 122 by the pump 121. The seawater is guided in the second horizontal direction by the manifold 122 and distributed to the plurality of first supply pipes 123'and the plurality of second supply pipes 123 attached to the manifold 122. The seawater that has flowed through the plurality of first supply pipes 123'and the plurality of second supply pipes 123 flows into the first trough 130A and the second trough 130B. The seawater that has flowed into the first trough 130A and the second trough 130B forms a liquid layer in the space surrounded by the bottom wall 132 and the peripheral wall 133. When the inflow of seawater into the trough 130 exceeds the volume of the box 131, the seawater overflows beyond the upper edges of the side walls 134 and 135. The seawater then flows down along the slope of the guide 139. As a result, the seawater is sprinkled on the upper portions of the plurality of heat transfer tubes 116 located on the side of the box 131.
 上述の気化装置100の2つの第2トラフ130Bそれぞれは、1つの伝熱パネル113へ加熱用液体を供給するのに対して、2つの第1トラフ130Aそれぞれは、2つの伝熱パネル113へ加熱用液体を供給する必要がある。したがって、第2トラフ130Bからの加熱用液体の流出量より多くの加熱用液体が第1トラフ130Aから流出する必要がある。よって、第2トラフ130Bへの加熱用液体の供給量より多くの加熱用液体が第1トラフ130Aへ供給される必要がある。 Each of the two second troughs 130B of the vaporizer 100 described above supplies a heating liquid to one heat transfer panel 113, whereas each of the two first troughs 130A heats the two heat transfer panels 113. It is necessary to supply the liquid for use. Therefore, it is necessary that a larger amount of the heating liquid flows out from the first trough 130A than the amount of the heating liquid flowing out from the second trough 130B. Therefore, it is necessary to supply a larger amount of the heating liquid to the first trough 130A than the amount of the heating liquid supplied to the second trough 130B.
 第1トラフ130Aと第2トラフ130Bとの間で加熱用液体の供給量を相違させるために、第1供給管123’の流路断面積は、第2供給管123の流路断面積より大きな値に設定されている。したがって、第2トラフ130Bへの加熱用液体の供給量より多くの加熱用液体が、第1トラフ130Aへ供給される。このような流量の大小関係を得るために、第1供給管123’及び第2供給管123に弁体を取り付ける必要はない。 The flow path cross-sectional area of the first supply pipe 123'is larger than the flow path cross-sectional area of the second supply pipe 123 in order to make the supply amount of the heating liquid different between the first trough 130A and the second trough 130B. It is set to a value. Therefore, a larger amount of heating liquid than the amount of heating liquid supplied to the second trough 130B is supplied to the first trough 130A. It is not necessary to attach valve bodies to the first supply pipe 123'and the second supply pipe 123 in order to obtain such a magnitude relationship of the flow rate.
 従来の構造に関して、海水の流動経路は、海水がトラフの底面から流入するように構成されているので、海水の流動経路を形成している管部材、マニホールドから第1端壁を越えて延設され、トラフの底面に形成された流入口に接続される。従来の構造とは異なり、第1供給管123’及び第2供給管123は、第1端壁136に接続されており、第1端壁136を越えては延設されない。したがって、第1供給管123’及び第2供給管123の材料費が節約されるだけでなく第1供給管123’及び第2供給管123内を流れる海水に対する流動抵抗が低くなる。 With respect to the conventional structure, the seawater flow path is configured so that the seawater flows in from the bottom surface of the trough, and therefore extends beyond the first end wall from the pipe member and manifold forming the seawater flow path. And connected to the inflow port formed on the bottom of the trough. Unlike the conventional structure, the first supply pipe 123'and the second supply pipe 123 are connected to the first end wall 136 and do not extend beyond the first end wall 136. Therefore, not only the material cost of the first supply pipe 123'and the second supply pipe 123 is saved, but also the flow resistance to the seawater flowing in the first supply pipe 123'and the second supply pipe 123 is lowered.
 上述の実施形態に関連して説明された構造は例示的であり、制限的に解釈されるべきではない。上述の実施形態に関連して説明された構造に対して様々な変更や改良が加えられてもよい。 The structures described in connection with the embodiments described above are exemplary and should not be construed in a restrictive manner. Various changes and improvements may be made to the structures described in connection with the embodiments described above.
 上述の実施形態に関して、液化ガスとして液化天然ガスが例示されている。しかしながら液化ガスは、液化石油ガスであってもよいし、液体窒素であってもよい。 Regarding the above-described embodiment, liquefied natural gas is exemplified as the liquefied gas. However, the liquefied gas may be liquefied petroleum gas or liquid nitrogen.
 上述の実施形態に関して、トラフ130への海水の流入量を調整することやトラフ130内の海水の液面の隆起を抑制することを目的として、トラフ130の箱体131内に様々な部品が配置されていてもよい。箱体131内の例示的な構造が、図3に示されている。図3は、箱体131の概略的な縦断面図である。 Regarding the above-described embodiment, various parts are arranged in the box 131 of the trough 130 for the purpose of adjusting the inflow of seawater into the trough 130 and suppressing the uplift of the seawater level in the trough 130. It may have been. An exemplary structure within the box 131 is shown in FIG. FIG. 3 is a schematic vertical sectional view of the box body 131.
 気化装置100は、流入口138を部分的に閉じるように箱体131の内面に取り付けられた閉塞部材140を含んでいる。閉塞部材140は、複数のトラフ130間で海水の流入量を略均一にするために用いられる。 The vaporizer 100 includes a closing member 140 attached to the inner surface of the box 131 so as to partially close the inflow port 138. The closing member 140 is used to make the inflow of seawater substantially uniform among the plurality of troughs 130.
 閉塞部材140として、第1水平方向に穿設された開口141が形成されたオリフィスが好適に利用可能である。開口141は、流入口138よりも小さな面積を有している。閉塞部材140は、第1端壁136及び/又は側壁134,135の内面に取り付けられている。加えて、閉塞部材140は、第1端壁136及び/又は側壁134,135から取り外し可能である。たとえば、側壁134,135の内面に形成された溝部に閉塞部材140の側縁が差し込まれてもよい。 As the closing member 140, an orifice having an opening 141 formed in the first horizontal direction can be preferably used. The opening 141 has a smaller area than the inflow port 138. The closing member 140 is attached to the inner surface of the first end wall 136 and / or the side walls 134, 135. In addition, the closing member 140 is removable from the first end wall 136 and / or the side walls 134, 135. For example, the side edge of the closing member 140 may be inserted into the groove formed on the inner surface of the side walls 134 and 135.
 複数のトラフ130のうち1つに取り付けられたオリフィスが開口面積において小さな他のもう1つのオリフィスに交換されると、オリフィスの交換がなされたトラフ130への海水の流入量が減る一方で他のトラフ130への海水の流入量が増える。逆に開口面積において大きなオリフィスが新たに取り付けられると、オリフィスの交換がなされたトラフ130への海水の流入量が増える一方で他のトラフ130への海水の流入量が減る。複数のトラフ130間において海水の略均一な分配が得られるように、適切な開口面積を有するオリフィスが、複数のトラフ130それぞれについて閉塞部材140として選択されることが好ましい。 Replacing an orifice attached to one of the troughs 130 with another orifice with a smaller opening area reduces the inflow of seawater into the trough 130 with which the orifice has been replaced, while the other. The inflow of seawater into the trough 130 increases. On the contrary, when a large orifice is newly installed in the opening area, the amount of seawater flowing into the trough 130 in which the orifice has been replaced increases, while the amount of seawater flowing into the other trough 130 decreases. It is preferred that an orifice having an appropriate opening area be selected as the closing member 140 for each of the troughs 130 so that a substantially uniform distribution of seawater is obtained among the troughs 130.
 従来の構造に関して、マニホールドから複数のトラフとの間で延設された流動経路にバタフライ弁やオリフィスといった流体部品が一般的に配置されている。これらの流体部品は、複数のトラフ間へ流入する海水量のばらつきを抑制するために用いられている。本実施形態に関して、複数のトラフ間での海水量のばらつきを抑制するために、閉塞部材140が用いられている。 Regarding the conventional structure, fluid parts such as butterfly valves and orifices are generally arranged in the flow path extending from the manifold to multiple troughs. These fluid components are used to suppress variations in the amount of seawater flowing into a plurality of troughs. In this embodiment, the closing member 140 is used in order to suppress the variation in the amount of seawater among the plurality of troughs.
 閉塞部材140の交換に関して、交換作業を行う作業者は、箱体131の上向きの開口部を通じて閉塞部材140に容易にアクセスすることができる。作業者は、既存の閉塞部材140を箱体131から抜き出し、新たな閉塞部材を箱体131内に取り付けることができる。供給管にバタフライ弁やオリフィスが取り付けられた構造とは異なり、閉塞部材140の交換は、第1供給管123’及び第2供給管123の分解を必要としない。加えて、第1供給管123’及び第2供給管123が延設された狭い空間ではなく、トラフ130の上方の広い空間が交換作業に利用される。したがって、閉塞部材140の交換は、比較的容易である。 Regarding the replacement of the closing member 140, the operator performing the replacement work can easily access the closing member 140 through the upward opening of the box body 131. The operator can pull out the existing closing member 140 from the box body 131 and install a new closing member in the box body 131. Unlike the structure in which the butterfly valve and the orifice are attached to the supply pipe, the replacement of the closing member 140 does not require disassembly of the first supply pipe 123'and the second supply pipe 123. In addition, the wide space above the trough 130 is used for the replacement work, not the narrow space in which the first supply pipe 123'and the second supply pipe 123 are extended. Therefore, the replacement of the closing member 140 is relatively easy.
 上述の実施形態に関して、流入口138は、第1端壁136に形成されている。この場合、流入口138から流入した加熱用液体は、反対側の第2端壁137と衝突する。第2端壁137と衝突した加熱用液体の一部は、上向きに流れ、第2端壁137の近くにおいて加熱用液体の液面を隆起させる。この液面の隆起を抑制するために、気化装置100は、トラフ130内の液面の隆起を抑制するために隆起抑制部を有していてもよい。 Regarding the above-described embodiment, the inflow port 138 is formed on the first end wall 136. In this case, the heating liquid flowing in from the inflow port 138 collides with the second end wall 137 on the opposite side. A part of the heating liquid that collides with the second end wall 137 flows upward and raises the liquid level of the heating liquid near the second end wall 137. In order to suppress the uplift of the liquid level, the vaporizer 100 may have a uplift suppressing portion in order to suppress the uplift of the liquid level in the trough 130.
 隆起抑制部は、第1端壁136と第2端壁137との間に配置された抵抗部材を含んでいる。抵抗部材は、流入口138から流入した海水が第2端壁137に衝突する前に抵抗部材に衝突するように配置されている。抵抗部材は、底壁132から上方に立設された邪魔板(抵抗体)151を含んでいる。3つの邪魔板151が、図3に示されている。 The ridge suppressing portion includes a resistance member arranged between the first end wall 136 and the second end wall 137. The resistance member is arranged so that the seawater flowing in from the inflow port 138 collides with the resistance member before colliding with the second end wall 137. The resistance member includes a baffle plate (resistor) 151 erected above the bottom wall 132. Three baffle plates 151 are shown in FIG.
 複数の邪魔板151は、第1端壁136及び第2端壁137の間で第1水平方向において間隔を空けて配列されている。複数の邪魔板151は、底壁132及び/又は側壁134,135に取り付けられている。複数の邪魔板151は、底壁132及び/又は側壁134,135から取り外し可能であってもよい。 The plurality of baffle plates 151 are arranged at intervals in the first horizontal direction between the first end wall 136 and the second end wall 137. The plurality of baffle plates 151 are attached to the bottom wall 132 and / or the side walls 134 and 135. The plurality of baffle plates 151 may be removable from the bottom wall 132 and / or the side walls 134, 135.
 邪魔板151の高さ寸法は、周壁133の高さ寸法よりも小さい。したがって、邪魔板151の上方には、海水が第1水平方向に流れるための空間が形成されている。 The height dimension of the baffle plate 151 is smaller than the height dimension of the peripheral wall 133. Therefore, a space for seawater to flow in the first horizontal direction is formed above the baffle plate 151.
 マニホールド122から複数のトラフ130への海水の流動経路が従来の気化装置の構造と以下に対比される。 The flow path of seawater from the manifold 122 to the plurality of troughs 130 is compared with the structure of the conventional vaporizer as follows.
 箱体131に流入した海水は、複数の邪魔板151に衝突する。これらの邪魔板151が箱体131内で流れる海水に与える影響が以下に説明される。 The seawater that has flowed into the box 131 collides with a plurality of obstacle plates 151. The effect of these baffle plates 151 on the seawater flowing in the box 131 will be described below.
 複数の邪魔板151の上方に第1水平方向に延設された直線(実線)及び点線で描かれた曲線が図3に示されている。実線は、複数の邪魔板151の存在下で想定される海水の液面を概略的に表している。点線は、複数の邪魔板151の不存在下で想定される海水の液面を概略的に表している。 FIG. 3 shows a straight line (solid line) extending in the first horizontal direction and a curved line drawn by a dotted line above the plurality of obstacle plates 151. The solid line schematically represents the liquid level of seawater assumed in the presence of a plurality of obstacle plates 151. The dotted line schematically represents the liquid level of seawater assumed in the absence of the plurality of obstacle plates 151.
 複数の邪魔板151の不存在下では、流入口138及び閉塞部材140(オリフィス)の開口141を順次通過した海水は、第2端壁137の内面に勢いよく衝突する。第2端壁137に衝突した海水の一部は、第2端壁137の内面に沿って上方に勢いよく流れる。この結果、点線で示されるように、箱体131内の海水の液面は、第2端壁137の内面の近くで上方に隆起する。 In the absence of the plurality of baffle plates 151, the seawater that has sequentially passed through the inflow port 138 and the opening 141 of the closing member 140 (orifice) collides vigorously with the inner surface of the second end wall 137. A part of the seawater that collides with the second end wall 137 flows vigorously upward along the inner surface of the second end wall 137. As a result, as shown by the dotted line, the liquid level of the seawater in the box 131 rises upward near the inner surface of the second end wall 137.
 一方、複数の邪魔板151の存在下では、流入口138及び閉塞部材140(オリフィス)の開口141を順次通過した海水の一部は、最も上流に配置された邪魔板151(すなわち、第1端壁136に最も近い位置に配置された邪魔板151)に衝突する。この邪魔板151に衝突した海水の一部は、向きを変え第1水平方向以外の方向に流れる一方で、他の海水は、邪魔板151を乗り越え、第2端壁137に向けて流れる。最も上流の邪魔板151を乗り越えた海水は、次の邪魔板151に衝突する。複数の邪魔板151に海水が順次衝突する結果、第2端壁137に向けて勢いよく流れる海水成分は徐々に少なくなる。海水と第2端壁137との間で生ずる衝突力は、複数の邪魔板151の存在下では複数の邪魔板151の不存在下よりも小さくなるので、第2端壁137に対する海水の衝突に起因して生じた上向きの海水流の勢いも弱くなる。この結果、第2端壁137の内面近くでの液面の隆起高さが低くなる。 On the other hand, in the presence of the plurality of baffle plates 151, a part of the seawater that has sequentially passed through the inflow port 138 and the opening 141 of the closing member 140 (orifice) is the baffle plate 151 (that is, the first end) arranged most upstream. It collides with the baffle plate 151) arranged at the position closest to the wall 136. A part of the seawater that collides with the obstacle plate 151 changes its direction and flows in a direction other than the first horizontal direction, while the other seawater gets over the obstacle plate 151 and flows toward the second end wall 137. The seawater that has passed over the most upstream obstacle plate 151 collides with the next obstacle plate 151. As a result of the seawater colliding with the plurality of baffle plates 151 in sequence, the seawater component that flows vigorously toward the second end wall 137 gradually decreases. Since the collision force generated between the seawater and the second end wall 137 is smaller in the presence of the plurality of obstruction plates 151 than in the absence of the plurality of obstruction plates 151, the collision force of the seawater with respect to the second end wall 137 occurs. The momentum of the upward seawater flow caused by this also weakens. As a result, the height of the liquid level uplift near the inner surface of the second end wall 137 becomes low.
 いくつの邪魔板151が配置されるかは、トラフ130に流入する海水の流速やトラフ130内での海水の流動態様に基づいてトラフ130内での海水の液面が略平坦になるように決定されることが好ましい。したがって、抵抗部材は、1若しくは2つの邪魔板151であってもよいし、3を越える邪魔板151であってもよい。 The number of baffle plates 151 to be arranged is determined so that the liquid level of seawater in the trough 130 is substantially flat based on the flow velocity of the seawater flowing into the trough 130 and the flow mode of the seawater in the trough 130. It is preferable to be done. Therefore, the resistance member may be one or two baffle plates 151, or may be a baffle plate 151 exceeding three.
 抵抗部材として、邪魔板151に代えて、流入口138から流入した海水に衝突するように構成された他の抵抗部材が用いられてもよい。抵抗部材として利用可能な代替的な部材が、図4及び図5を参照して説明される。図4及び図5は、代替的な部材の概略的な斜視図である。 As the resistance member, instead of the baffle plate 151, another resistance member configured to collide with the seawater flowing in from the inflow port 138 may be used. Alternative members that can be used as resistance members are described with reference to FIGS. 4 and 5. 4 and 5 are schematic perspective views of the alternative member.
 貫通孔が形成されていない邪魔板151に代えて、第1水平方向に穿設された多数の貫通孔が形成された多孔板152が抵抗部材として用いられてもよい(図4を参照)。海水は多孔板152の貫通孔を通過することができるので、多孔板152は、周壁133と略同じ高さ寸法を有してもよい。 Instead of the baffle plate 151 having no through holes formed, a perforated plate 152 having a large number of through holes formed in the first horizontal direction may be used as a resistance member (see FIG. 4). Since seawater can pass through the through hole of the perforated plate 152, the perforated plate 152 may have substantially the same height dimension as the peripheral wall 133.
 第1水平方向に薄い邪魔板151に代えて、第1水平方向、第2水平方向及び鉛直方向における寸法差が邪魔板151よりも小さなブロック体153が抵抗部材として用いられてもよい(図5を参照)。隆起抑制部として用いられる部材の形状や大きさは、箱体131内の海水の液面が略平坦になるように決定されることが好ましい。 Instead of the baffle plate 151 which is thin in the first horizontal direction, a block body 153 whose dimensional difference in the first horizontal direction, the second horizontal direction, and the vertical direction is smaller than that of the baffle plate 151 may be used as the resistance member (FIG. 5). See). It is preferable that the shape and size of the member used as the uplift suppressing portion are determined so that the liquid level of the seawater in the box 131 is substantially flat.
 隆起抑制部は、第2端壁137の近くにおいて、箱体131内に配置された板状の蓋部材154であってもよい。蓋部材154には、多数の貫通孔が形成されている。したがって、蓋部材154として、多孔板(板部材)が好適に利用可能である。蓋部材154は、単独で隆起抑制部として用いられてもよいし(図6を参照)、抵抗部材(たとえば、邪魔板151)とともに隆起抑制部として用いられてもよい。 The ridge suppressing portion may be a plate-shaped lid member 154 arranged in the box body 131 near the second end wall 137. A large number of through holes are formed in the lid member 154. Therefore, as the lid member 154, a perforated plate (plate member) can be preferably used. The lid member 154 may be used alone as a ridge suppressing portion (see FIG. 6), or may be used as a ridge suppressing portion together with a resistance member (for example, a baffle plate 151).
 蓋部材154は、第2端壁137の近傍から第1水平方向に延設され、略水平に横たわるように配置されている。蓋部材154は、箱体131の内部空間の一部を第2端壁137の近くにおいて上下に仕切っている。蓋部材154の一対の側縁は、側壁134,135の内面に取り付けられてもよい。蓋部材154の下流端縁は、第2端壁137の内面に取り付けられ、第2端壁137の内面に当接していてもよい(図6を参照)。代替的に、蓋部材154の下流端縁が第2端壁137の内面から僅かに離間するように、蓋部材154の第1水平方向の位置が定められてもよい(図7を参照)。蓋部材154の下流端縁が第2端壁137の内面に近接しているのに対して、蓋部材154の上流端縁は、上流の第1端壁136の内面から大きく離れている。蓋部材154は、箱体131から取り外し可能であることが好ましい。 The lid member 154 extends in the first horizontal direction from the vicinity of the second end wall 137 and is arranged so as to lie substantially horizontally. The lid member 154 partitions a part of the internal space of the box body 131 up and down near the second end wall 137. The pair of side edges of the lid member 154 may be attached to the inner surfaces of the side walls 134, 135. The downstream edge of the lid member 154 may be attached to the inner surface of the second end wall 137 and abut on the inner surface of the second end wall 137 (see FIG. 6). Alternatively, the first horizontal position of the lid member 154 may be determined such that the downstream edge of the lid member 154 is slightly spaced from the inner surface of the second end wall 137 (see FIG. 7). The downstream edge of the lid member 154 is close to the inner surface of the second end wall 137, whereas the upstream edge of the lid member 154 is significantly distant from the inner surface of the upstream first end wall 136. It is preferable that the lid member 154 is removable from the box body 131.
 蓋部材154は、流入口138よりも高い位置に配置されている。したがって、流入口138から閉塞部材140(オリフィス)の開口を通じて箱体131内に流入した海水の多くは、蓋部材154の下方で第2端壁137の内面に衝突する。 The lid member 154 is arranged at a position higher than the inflow port 138. Therefore, most of the seawater that has flowed into the box 131 from the inflow port 138 through the opening of the closing member 140 (orifice) collides with the inner surface of the second end wall 137 below the lid member 154.
 蓋部材154の下方での衝突の結果生じた上向きの海水の流れは、蓋部材154の下面に衝突する。この結果、蓋部材154に衝突した海水の多くは、蓋部材154の下面に沿って上流の第1端壁136に向けて流れる。したがって、下流の第2端壁137の近くでの液面の隆起は、効果的に抑制される。 The upward seawater flow generated as a result of the collision below the lid member 154 collides with the lower surface of the lid member 154. As a result, most of the seawater that collides with the lid member 154 flows toward the first end wall 136 upstream along the lower surface of the lid member 154. Therefore, the uplift of the liquid level near the second end wall 137 downstream is effectively suppressed.
 蓋部材154に衝突した海水の一部は、蓋部材154を鉛直方向に貫く貫通孔を通じて蓋部材154の上方の空間に流入する。したがって、蓋部材154は、蓋部材154の上方での海水の液層の形成を過度に妨げない。すなわち、蓋部材154は、海水がトラフ130の下流端から溢れ出すことを過度に抑制しない。 A part of the seawater that collides with the lid member 154 flows into the space above the lid member 154 through a through hole that penetrates the lid member 154 in the vertical direction. Therefore, the lid member 154 does not excessively hinder the formation of a liquid layer of seawater above the lid member 154. That is, the lid member 154 does not excessively prevent seawater from overflowing from the downstream end of the trough 130.
 トラフ130全体に亘って液面の局所的な隆起の抑制効果が得られるならば、蓋部材には、貫通孔が形成されていなくてもよい。この場合、海水は、蓋部材の上流端縁と上流の第1端壁136との間の空間を通じて蓋部材の上方の空間に流入することができる。 The lid member may not have a through hole as long as the effect of suppressing the local uplift of the liquid level can be obtained over the entire trough 130. In this case, seawater can flow into the space above the lid member through the space between the upstream edge of the lid member and the first upstream wall 136.
 図6及び図7は、蓋部材154として単数の多孔板を示している。しかしながら、複数の多孔板(板部材)155が、蓋部材154として箱体131内に配置されていてもよい(図8を参照)。これらの多孔板155は、第1水平方向において間隔を空けて配置されている。加えて、これらの多孔板155は、略一定の高さ位置(流入口より高く箱体131の上縁よりも低い位置)に配置されている。最も下流の多孔板155は、図6及び図7を参照して説明された蓋部材154に相当している。すなわち、最も下流の多孔板155は、第2端壁137の近くにおける液面の隆起の抑制に寄与する。他の多孔板155は、流入口138からの海水に起因して生ずる液面の波打ちを抑制することに寄与する。液面の波打ちは、流入口138が第1端壁136の下部領域に形成されることによってある程度抑制されるけれども、これらの多孔板155によっても効果的に抑制される。 6 and 7 show a single perforated plate as the lid member 154. However, a plurality of perforated plates (plate members) 155 may be arranged in the box 131 as lid members 154 (see FIG. 8). These perforated plates 155 are arranged at intervals in the first horizontal direction. In addition, these perforated plates 155 are arranged at a substantially constant height position (higher than the inflow port and lower than the upper edge of the box 131). The most downstream perforated plate 155 corresponds to the lid member 154 described with reference to FIGS. 6 and 7. That is, the most downstream perforated plate 155 contributes to the suppression of the uplift of the liquid level near the second end wall 137. The other perforated plate 155 contributes to suppressing the waviness of the liquid level caused by the seawater from the inflow port 138. The waviness of the liquid surface is suppressed to some extent by forming the inflow port 138 in the lower region of the first end wall 136, but it is also effectively suppressed by these perforated plates 155.
 複数の多孔板155に代えて、貫通孔が形成されていない薄板がこれらの多孔板155の配置位置に取り付けられてもよい。この場合、隣り合う薄板の間の空隙を通じて海水がこれらの薄板の配置高さよりも上の領域に流入することができる。複数の薄板によっても液面の波打ち及び隆起に対する抑制効果が得られる。 Instead of the plurality of perforated plates 155, thin plates having no through holes may be attached at the arrangement positions of these perforated plates 155. In this case, seawater can flow into the region above the placement height of these thin plates through the voids between the adjacent thin plates. The effect of suppressing the waviness and swelling of the liquid surface can be obtained by using a plurality of thin plates.
 液面の波打ち及び隆起に対する抑制効果を得るために、第1水平方向に長い1つの多孔板156が蓋部材154として用いられてもよい(図9を参照)。図9に示される多孔板156は、第1端壁136の内面と第2端壁137の内面との間の区間に亘って箱体131の内部空間を上下に仕切っている。多孔板156の高さ位置は、図8の多孔板155の高さ位置と等しい。海水は、多孔板156の貫通孔を通じて多孔板156の上側の空間に流入することができる。 One perforated plate 156 long in the first horizontal direction may be used as the lid member 154 in order to obtain an effect of suppressing the waviness and swelling of the liquid surface (see FIG. 9). The perforated plate 156 shown in FIG. 9 vertically partitions the internal space of the box body 131 over a section between the inner surface of the first end wall 136 and the inner surface of the second end wall 137. The height position of the perforated plate 156 is equal to the height position of the perforated plate 155 of FIG. Seawater can flow into the space above the perforated plate 156 through the through hole of the perforated plate 156.
 マニホールド122の高さ位置に関して様々なレイアウトが採用可能である。マニホールド122の他のレイアウトが、図1及び図10を参照して説明される。図10は、マニホールド122の概略的な断面図である。 Various layouts can be adopted for the height position of the manifold 122. Other layouts of the manifold 122 are described with reference to FIGS. 1 and 10. FIG. 10 is a schematic cross-sectional view of the manifold 122.
 図1に示されるレイアウトに関して、第1端壁136の流入口138は、マニホールド122の流出口125とは異なる高さ位置に配置されている。しかしながら、第1端壁136の流入口138は、マニホールド122の流出口125と略同軸になるようにマニホールド122と複数のトラフ130との間の相対的な位置関係が定められてもよい(図10を参照)。すなわち、マニホールド122の高さ位置が複数のトラフ130の高さ位置に略等しくなるように、マニホールド122が図1に示される位置よりも高い位置に配置されてもよい。この場合これらに接続される供給管として直管型の第1供給管123’及び第2供給管123が好適に利用可能であり、湾曲した流動経路よりも短い流動経路が形成される。 Regarding the layout shown in FIG. 1, the inflow port 138 of the first end wall 136 is arranged at a different height position from the outflow port 125 of the manifold 122. However, the inflow port 138 of the first end wall 136 may have a relative positional relationship between the manifold 122 and the plurality of troughs 130 so as to be substantially coaxial with the outflow port 125 of the manifold 122 (FIG. FIG. See 10). That is, the manifold 122 may be arranged at a position higher than the position shown in FIG. 1 so that the height position of the manifold 122 is substantially equal to the height position of the plurality of troughs 130. In this case, the straight pipe type first supply pipe 123'and the second supply pipe 123 can be preferably used as the supply pipes connected to them, and a flow path shorter than the curved flow path is formed.
 気化装置100は、追加的なマニホールド122及び追加的な第1供給管123’(及び/又は、第2供給管123)を備えていてもよい(図11を参照)。この場合、第2端壁137にも流入口138が形成される。加えて、気化装置100は、第2端壁137の流入口138を部分的に塞ぐように第2端壁137の内面に隣接して固定された追加的な閉塞部材140を備えている。 The vaporizer 100 may include an additional manifold 122 and an additional first supply pipe 123'(and / or a second supply pipe 123) (see FIG. 11). In this case, the inflow port 138 is also formed on the second end wall 137. In addition, the vaporizer 100 includes an additional closing member 140 fixed adjacent to the inner surface of the second end wall 137 so as to partially block the inflow port 138 of the second end wall 137.
 加熱用液体は、第1端壁136及び第2端壁137の流入口138から流入する。この結果、トラフ130内では互いに反対向きの加熱用液体の流れが生ずる。これらの流れは、トラフ130の長手方向における略中間位置において衝突する。この結果、加熱用液体の液面は、当該中間位置において隆起することもあるけれども、この場合には、たとえば、図9を参照して説明された蓋部材154を用いて液面の隆起が抑制されてもよい。 The heating liquid flows in from the inflow port 138 of the first end wall 136 and the second end wall 137. As a result, the heating liquids flow in opposite directions in the trough 130. These streams collide at approximately intermediate positions in the longitudinal direction of the trough 130. As a result, the liquid level of the heating liquid may rise at the intermediate position, but in this case, for example, the lid member 154 described with reference to FIG. 9 is used to suppress the rise of the liquid level. May be done.
 第1トラフ130Aへの加熱用液体の供給量が、第1供給管123’の流路断面積を第2供給管123よりも大きくするだけでなく、第2端壁137側にも第1供給管123’を追加することによって第1トラフ130Aと第2トラフ130Bとの間で加熱用液体の供給量を相違させる場合には、図11に示されているトラフ130の構造は、第1トラフ130Aにのみ適用されてもよい。 The amount of the heating liquid supplied to the first trough 130A not only makes the flow path cross-sectional area of the first supply pipe 123'larger than that of the second supply pipe 123, but also supplies the first to the second end wall 137 side. When the supply of heating liquid is different between the first trough 130A and the second trough 130B by adding the tube 123', the structure of the trough 130 shown in FIG. 11 is the first trough. It may be applied only to 130A.
 第1端壁136又は第2端壁137に対する加熱用液体の衝突を防ぐために、流入口138’が底壁132に形成されていてもよい(図12を参照)。この場合、加熱用液体は、底壁132の流入口138’を通じてトラフ130内に流入した後、トラフ130の長手方向に流れる。流入口138’は、トラフ130の周壁133に対向していないので、周壁133に対する加熱用液体の衝突に起因する液面の隆起が抑制される。 The inflow port 138'may be formed on the bottom wall 132 in order to prevent the heating liquid from colliding with the first end wall 136 or the second end wall 137 (see FIG. 12). In this case, the heating liquid flows into the trough 130 through the inflow port 138'of the bottom wall 132 and then flows in the longitudinal direction of the trough 130. Since the inflow port 138'does not face the peripheral wall 133 of the trough 130, the uplift of the liquid surface due to the collision of the heating liquid with the peripheral wall 133 is suppressed.
 図12に示されているトラフ130の底壁132には、1つの流入口138’が形成されている。この場合、図13に示されるように当該流入口138’の上方において液面が局所的に隆起することがある。この局所的な液面の隆起を抑制するために、複数の流入口138’が底壁132に形成されていてもよい。図13のトラフ130に接続された第1供給管123’及び/又は第2供給管123は、トラフ130の下方において長手方向においてマニホールド122から延設されたヘッダ管126を有している。第1供給管123’ 及び/又は第2供給管123は、ヘッダ管126から上方に延設されているとともに底壁132の流入口138’に接続された複数の接続管127を有している。これらの接続管127及びヘッダ管126の流路断面積は、第1供給管123’及び第2供給管123の間で相違している。 One inflow port 138'is formed on the bottom wall 132 of the trough 130 shown in FIG. In this case, as shown in FIG. 13, the liquid level may rise locally above the inflow port 138'. A plurality of inflow ports 138'may be formed on the bottom wall 132 in order to suppress this local uplift of the liquid level. The first supply pipe 123'and / or the second supply pipe 123 connected to the trough 130 of FIG. 13 has a header pipe 126 extending from the manifold 122 in the longitudinal direction below the trough 130. The first supply pipe 123'and / or the second supply pipe 123 has a plurality of connection pipes 127 extending upward from the header pipe 126 and connected to the inflow port 138'of the bottom wall 132. .. The flow path cross-sectional areas of these connecting pipes 127 and header pipes 126 are different between the first supply pipe 123'and the second supply pipe 123.
 複数の流入口138’が設けられると、1つの流入口138’からトラフ130内に流入する加熱用液体の量が減り、各流入口138’の上方での液面の隆起が抑制される。 When a plurality of inlets 138'are provided, the amount of heating liquid flowing into the trough 130 from one inlet 138' is reduced, and the uplift of the liquid level above each inlet 138' is suppressed.
 トラフ130内の加熱用液体の液面の平滑化を目的として、複数の接続管127の間で流路断面積が互いに異なる値に設定されていてもよい。たとえば、加熱用液体の液面の大きな隆起が生じた場合、大きな隆起の発生部位に対応する接続管127の流路断面積は比較的小さな値に設定されてもよい。この場合、小さな流路断面積127の抵抗が増え、当該接続管127からの加熱用液体の流入量が減る。この結果、この接続管127の上方での加熱用液体の液面の隆起が低減される。 For the purpose of smoothing the liquid level of the heating liquid in the trough 130, the cross-sectional areas of the flow paths may be set to different values among the plurality of connecting pipes 127. For example, when a large uplift of the liquid level of the heating liquid occurs, the flow path cross-sectional area of the connecting pipe 127 corresponding to the occurrence site of the large uplift may be set to a relatively small value. In this case, the resistance of the small flow path cross-sectional area 127 increases, and the inflow amount of the heating liquid from the connecting pipe 127 decreases. As a result, the uplift of the liquid level of the heating liquid above the connecting pipe 127 is reduced.
 上述の実施形態に関して、トラフ130へ加熱用液体を供給するために流入口138,138’が形成されている。加熱用液体がトラフ130の上向きの開口領域を通じてトラフ130内に供給される場合には、流入口138,138’がトラフ130に形成されなくともよい。この場合、マニホールド122及び第1供給管123’(及び/又は、第2供給管123)は、トラフ130の上側の空間に配置される(図14を参照)。 Regarding the above-described embodiment, inflow ports 138 and 138'are formed to supply the heating liquid to the trough 130. If the heating liquid is supplied into the trough 130 through the upward opening region of the trough 130, the inflow ports 138,138'may not be formed in the trough 130. In this case, the manifold 122 and the first supply pipe 123'(and / or the second supply pipe 123) are arranged in the space above the trough 130 (see FIG. 14).
 加熱用液体がトラフ130の上向きの開口領域を通じてトラフ130内に供給される場合においても、周壁133に対する加熱用液体の衝突に起因する液面の隆起は抑制される。加えて、流入口138,138’がトラフ130に形成されないので、トラフ130は簡素な構造を有する。 Even when the heating liquid is supplied into the trough 130 through the upward opening region of the trough 130, the uplift of the liquid level due to the collision of the heating liquid with the peripheral wall 133 is suppressed. In addition, the trough 130 has a simple structure because the inflow ports 138,138'are not formed in the trough 130.
 図14には、1つのマニホールド122が示されている。トラフ130への加熱用液体の流入量を増やすために、複数のマニホールド122がトラフ130の上側に配置されていてもよい。 FIG. 14 shows one manifold 122. A plurality of manifolds 122 may be arranged above the trough 130 in order to increase the inflow of the heating liquid into the trough 130.
 上述の実施形態に関して、閉塞部材140は、トラフ130の内部に配置されている。これに代えて、図15に示されるように、第2供給管123の中に第2供給管123の流路を部分的に塞ぐ閉塞部材140’が配置されていてもよい。図15の閉塞部材140’は、第2供給管123の上流端で固定されている。しかしながら、閉塞部材140’は、第2供給管123の他の位置(たとえば、下流端や中間位置)に配置されていてもよい。 Regarding the above-described embodiment, the closing member 140 is arranged inside the trough 130. Instead of this, as shown in FIG. 15, a closing member 140'that partially blocks the flow path of the second supply pipe 123 may be arranged in the second supply pipe 123. The closing member 140'in FIG. 15 is fixed at the upstream end of the second supply pipe 123. However, the closing member 140'may be arranged at another position (for example, a downstream end or an intermediate position) of the second supply pipe 123.
 第2供給管123の中に閉塞部材140’が配置されることによって、第2供給管123を流れる加熱用液体の量を更に低減することができる。第2供給管123の流路断面積に対する閉塞部材140’の閉塞面積が調整されることによって、第2供給管123を流れる加熱用液体の流入量が微調整され得る。 By arranging the closing member 140'in the second supply pipe 123, the amount of the heating liquid flowing through the second supply pipe 123 can be further reduced. By adjusting the closed area of the closing member 140'with respect to the flow path cross-sectional area of the second supply pipe 123, the inflow amount of the heating liquid flowing through the second supply pipe 123 can be finely adjusted.
 図16に示されるように、2つの閉塞部材140’’が、マニホールド122内で固定されていてもよい。これらの閉塞部材140’’は、マニホールド122内の流路を部分的に塞ぐように構成されている。これらの閉塞部材140’’は、マニホールド122に対する第1供給管123’の接続部位とマニホールド122に対する第2供給管123の接続部位との間の位置において固定されている(図1の点線で表されている位置)。ポンプ121からマニホールド122への加熱用液体の流入部は、これらの閉塞部材140’’の間の流路区間においてマニホールド122に設けられている。すなわち、流入部は、第2供給管123の接続部位よりも第1供給管123’の接続部位の近くに形成されている。 As shown in FIG. 16, two closing members 140 ″ may be fixed in the manifold 122. These closing members 140 ″ are configured to partially block the flow path in the manifold 122. These closing members 140'' are fixed at a position between the connection portion of the first supply pipe 123'to the manifold 122 and the connection portion of the second supply pipe 123 to the manifold 122 (shown by the dotted line in FIG. 1). Position). An inflow portion of the heating liquid from the pump 121 to the manifold 122 is provided in the manifold 122 in the flow path section between these closing members 140 ″. That is, the inflow portion is formed closer to the connection portion of the first supply pipe 123'than the connection portion of the second supply pipe 123.
 加熱用液体は、閉塞部材140’’を通過することなく第1供給管123’に流入する一方で、閉塞部材140’’を通過した後に第2供給管123に流入する。閉塞部材140’’をマニホールド122内に設けることによって、第1供給管123’及び第2供給管123の流路断面積の差による1供給管123’及び第2供給管123の間での流量差を微調整することができる。 The heating liquid flows into the first supply pipe 123 ″ without passing through the closing member 140 ″, while flowing into the second supply pipe 123 after passing through the closing member 140 ″. By providing the closing member 140'' in the manifold 122, the flow rate between the first supply pipe 123'and the second supply pipe 123 due to the difference in the flow path cross-sectional area of the first supply pipe 123'and the second supply pipe 123. The difference can be fine-tuned.
 上述の実施形態に関して、閉塞部材140(及び閉塞部材140’,140’’)は、オリフィスを用いて形成されている。しかしながら、図17に示されるように、閉塞部材140(及び閉塞部材140’,140’’)は、多孔板142を用いて形成されていてもよい。 Regarding the above-described embodiment, the closing member 140 (and the closing member 140 ″, 140 ″) is formed by using an orifice. However, as shown in FIG. 17, the closing member 140 (and the closing member 140', 140 ") may be formed by using the perforated plate 142.
 上述の実施形態に関して、複数の邪魔板151が隆起抑制部として用いられている。しかしながら、単一の邪魔板が隆起抑制部として用いられてもよい。いくつの邪魔板が隆起抑制部として用いられるかは、トラフ130へ流入する海水の流量や流入口138の大きさに基づいて決定されてもよい。これらの設計条件に基づき複数の邪魔板151の配置間隔や複数の邪魔板151の高さが決定されてもよい。 Regarding the above-described embodiment, a plurality of baffle plates 151 are used as the ridge suppressing portion. However, a single baffle plate may be used as the ridge suppressor. How many baffles are used as the uplift suppressor may be determined based on the flow rate of seawater flowing into the trough 130 and the size of the inflow port 138. Based on these design conditions, the arrangement interval of the plurality of baffle plates 151 and the heights of the plurality of baffle plates 151 may be determined.
 上述の様々な実施形態に関連して説明された気化装置は、以下の特徴を主に備えている。 The vaporizer described in connection with the various embodiments described above mainly has the following features.
 上述の実施形態の一の局面に係る気化装置は、液化ガスと前記液化ガスよりも高温の加熱用液体との間での熱交換の下で前記液化ガスを気化させるように構成されている。気化装置は、前記液化ガスを案内するように立設された複数の伝熱管が水平方向に並ぶようにそれぞれ構成された複数の伝熱パネルと、前記複数の伝熱パネルのうち1つの前記複数の伝熱管の外表面へ前記加熱用液体を供給するように構成された第1トラフと、前記複数の伝熱パネルのうち他のもう1つの前記複数の伝熱管の外表面へ前記加熱用液体を供給するように構成された第2トラフと、前記加熱用液体が流れるマニホールドと、前記マニホールドから前記第1トラフへ前記加熱用液体を供給するように前記マニホールドと前記第1トラフとに接続された第1供給管と、前記マニホールドから前記第2トラフへ前記加熱用液体を供給するように前記マニホールドと前記第2トラフとに接続されているとともに前記第1トラフよりも小さな流路断面積を有している第2供給管とを備えている。 The vaporizer according to one aspect of the above-described embodiment is configured to vaporize the liquefied gas under heat exchange between the liquefied gas and the heating liquid having a temperature higher than that of the liquefied gas. The vaporizer includes a plurality of heat transfer panels each configured such that a plurality of heat transfer tubes erected so as to guide the liquefied gas are arranged in the horizontal direction, and one of the plurality of heat transfer panels. The first trough configured to supply the heating liquid to the outer surface of the heat transfer tube, and the heating liquid to the outer surface of the other plurality of heat transfer tubes among the plurality of heat transfer panels. A second trough configured to supply the heating liquid, a manifold through which the heating liquid flows, and the manifold and the first trough connected so as to supply the heating liquid from the manifold to the first trough. The first supply pipe and the manifold and the second trough are connected so as to supply the heating liquid from the manifold to the second trough, and a flow path cross-sectional area smaller than that of the first trough is formed. It is equipped with a second supply pipe that it has.
 上記の構成によれば、第1トラフ及び第2トラフは、マニホールドに接続された第1供給管及び第2供給管を通じて加熱用液体を受け取るので、これらのトラフへの加熱用液体の供給量は、これらの供給管の流路断面積に応じて変わる。第2トラフから対応する伝熱パネルへの加熱用液体の供給量が、第1トラフから対応する伝熱パネルへの加熱用液体の供給量よりも少なくてもよいとき、気化装置の構造を複雑化させることなく第2トラフへ比較的少量の加熱用液体が供給され得る。 According to the above configuration, since the first trough and the second trough receive the heating liquid through the first supply pipe and the second supply pipe connected to the manifold, the supply amount of the heating liquid to these troughs is. , Varies according to the flow path cross-sectional area of these supply pipes. The structure of the vaporizer is complicated when the supply of heating liquid from the second trough to the corresponding heat transfer panel may be less than the supply of heating liquid from the first trough to the corresponding heat transfer panel. A relatively small amount of heating liquid can be supplied to the second trough without conversion.
 上記の構成に関して、前記第2トラフは、前記複数の伝熱パネルの列の外側に配置されていてもよい。前記第1トラフは、隣り合う伝熱パネルの間に配置されていてもよい。 Regarding the above configuration, the second trough may be arranged outside the row of the plurality of heat transfer panels. The first trough may be arranged between adjacent heat transfer panels.
 上記の構成によれば、第2トラフには1つの伝熱パネルが隣り合っている一方で、第1トラフには2つの伝熱パネルが隣り合っている。したがって、第2トラフからは、1つの伝熱パネルに加熱用液体が流下され、その一方で、第1トラフからは、2つの伝熱パネルに加熱用液体が流下される。一方で、第2トラフに接続された供給管の流路断面積は、第1トラフ用の供給管の流路断面積よりも小さいので、第2トラフへの加熱用液体の供給量は比較的小さくなる。第1トラフ及び第2トラフは、マニホールドに接続された複数の供給管を通じて加熱用液体を受け取るので、これらのトラフへの加熱用液体の供給量は、これらの供給管の流路断面積に応じて変わる。したがって、加熱用液体が供給される伝熱パネルの数に応じた流量が得られる。よって、第2トラフ用の供給管に供給流量を調整するための弁体を取り付ける必要はない。 According to the above configuration, one heat transfer panel is adjacent to the second trough, while two heat transfer panels are adjacent to each other in the first trough. Therefore, from the second trough, the heating liquid flows down to one heat transfer panel, while from the first trough, the heating liquid flows down to the two heat transfer panels. On the other hand, since the flow path cross-sectional area of the supply pipe connected to the second trough is smaller than the flow path cross-sectional area of the supply pipe for the first trough, the amount of the heating liquid supplied to the second trough is relatively large. It becomes smaller. Since the first trough and the second trough receive the heating liquid through a plurality of supply pipes connected to the manifold, the amount of the heating liquid supplied to these troughs depends on the flow path cross-sectional area of these supply pipes. Will change. Therefore, a flow rate corresponding to the number of heat transfer panels to which the heating liquid is supplied can be obtained. Therefore, it is not necessary to attach a valve body for adjusting the supply flow rate to the supply pipe for the second trough.
 上記の構成に関して、前記第1トラフは、前記複数の伝熱管の整列方向に延設された底壁と、前記整列方向において前記マニホールド側に位置する前記底壁の端部に立設した第1端壁と、前記整列方向において前記第1端壁から離間する前記底壁の他のもう1つの端部に立設した第2端壁と含んでいてもよい。前記第1端壁には、前記加熱用液体が流入する流入口が形成されていてもよい。 With respect to the above configuration, the first trough is a first erected on a bottom wall extending in the alignment direction of the plurality of heat transfer tubes and an end portion of the bottom wall located on the manifold side in the alignment direction. It may include an end wall and a second end wall erected at another end of the bottom wall that is separated from the first end wall in the alignment direction. An inflow port into which the heating liquid flows may be formed on the first end wall.
 上記の構成によれば、加熱用液体を第1トラフへ供給するように構成されたマニホールドがトラフの第1端壁側に配置されているとともに第1端壁には流入口が形成されているので、マニホールドから第1トラフへの加熱用液体の流動経路は短くなる。言い換えると、マニホールドから第1トラフへの加熱用液体の流動経路は、マニホールドから底壁に流入口が形成された第1トラフに加熱用液体を流入させる構造とは異なり、第1端壁を越えて底壁の流入口まで延設される必要はない。 According to the above configuration, a manifold configured to supply the heating liquid to the first trough is arranged on the first end wall side of the trough, and an inflow port is formed in the first end wall. Therefore, the flow path of the heating liquid from the manifold to the first trough is shortened. In other words, the flow path of the heating liquid from the manifold to the first trough crosses the first end wall, unlike the structure in which the heating liquid flows into the first trough having an inflow port formed in the bottom wall from the manifold. It does not have to extend to the inlet of the bottom wall.
 上記の構成に関して、前記第2端壁には、前記加熱用液体が流入する流入口が形成されていてもよい。 Regarding the above configuration, the second end wall may be formed with an inflow port into which the heating liquid flows.
 第1端壁にのみ流入口が形成されている場合には、加熱用液体は、第2端壁に衝突し加熱用液体の液面を第2端壁の近くにおいて隆起させる。この場合、第2端壁の近くから伝熱パネルへの加熱用液体の流出量は、第1端壁の近くから伝熱パネルへの加熱用液体の流出量よりも大きくなる。上記の構成によれば、第1端壁及び第2端壁に流入口が形成されているので、第1端壁及び第2端壁の近くから伝熱パネルへの加熱用液体の流出量を略等しくすることができる。 When the inflow port is formed only on the first end wall, the heating liquid collides with the second end wall and raises the liquid level of the heating liquid near the second end wall. In this case, the amount of the heating liquid flowing out from the vicinity of the second end wall to the heat transfer panel is larger than the amount of the heating liquid flowing out from the vicinity of the first end wall to the heat transfer panel. According to the above configuration, since the inflow port is formed in the first end wall and the second end wall, the amount of the heating liquid flowing out from the vicinity of the first end wall and the second end wall to the heat transfer panel can be measured. Can be approximately equal.
 上記の構成に関して、前記第1トラフは、前記加熱用液体が流入する流入口が形成された底壁を有していてもよい。 With respect to the above configuration, the first trough may have a bottom wall on which an inflow port into which the heating liquid flows is formed.
 上記の構成によれば、流入口が底壁に形成されているので、加熱用液体は、第1トラフの内面に衝突することなく第1トラフ及び第2トラフ内に流入することができる。 According to the above configuration, since the inflow port is formed on the bottom wall, the heating liquid can flow into the first trough and the second trough without colliding with the inner surface of the first trough.
 上記の構成に関して、前記第1供給管は、前記第1トラフの上方に配置されていてもよい。 Regarding the above configuration, the first supply pipe may be arranged above the first trough.
 上記の構成によれば、第1供給管は、第1トラフの上方に配置されているので、加熱用液体は、第1トラフの上向きの開口領域を通じて第1トラフ内に流入することができる。第1トラフに流入口が形成されなくてもよいので、第1トラフの構成を簡素にできる。 According to the above configuration, since the first supply pipe is arranged above the first trough, the heating liquid can flow into the first trough through the upward opening region of the first trough. Since the inflow port does not have to be formed in the first trough, the configuration of the first trough can be simplified.
 上記の構成に関して、気化装置は、前記流入口を部分的に閉じるように前記第1トラフ内に配置された閉塞部材を更に備えていてもよい。前記閉塞部材は、前記第1トラフから取り外し可能であってもよい。 With respect to the above configuration, the vaporizer may further include a closing member arranged in the first trough so as to partially close the inflow port. The closing member may be removable from the first trough.
 上記の構成によれば、閉塞部材は、流入口を部分的に閉じるので、トラフの流入口において加熱用液体に抵抗を与え、トラフへの加熱用液体の流入量を調整することができる。閉塞部材は、トラフから取り外し可能であるので、閉塞部材をトラフから取り外すことによって、流入口を通過する加熱用液体に対する抵抗を低減することができる。 According to the above configuration, since the closing member partially closes the inflow port, it is possible to give resistance to the heating liquid at the inflow port of the trough and adjust the inflow amount of the heating liquid into the trough. Since the closing member is removable from the trough, the resistance to the heating liquid passing through the inflow port can be reduced by removing the closing member from the trough.
 上記の構成に関して、前記第1トラフは、前記1つの伝熱パネルに対向して立設された側壁を含んでいてもよい。前記側壁は、前記閉塞部材が差し込まれる溝部が形成された内面を有していてもよい。 Regarding the above configuration, the first trough may include a side wall erected facing the one heat transfer panel. The side wall may have an inner surface on which a groove into which the closing member is inserted is formed.
 上記の構成によれば、閉塞部材は、側壁の内面に形成された溝部に差し込まれることによって第1トラフに取り付けられる。 According to the above configuration, the closing member is attached to the first trough by being inserted into a groove formed on the inner surface of the side wall.
 上記の構成に関して、気化装置は、前記第2供給管が前記マニホールドに接続された接続部位と前記第1供給管が前記マニホールドに接続された接続部位との間で前記マニホールド内の流路を部分的に閉じる閉塞部材を更に備えていてもよい。前記加熱用液体が前記マニホールドに流入する流入部は、前記加熱用液体が前記閉塞部材を通じて前記第2供給管に流入するように前記第2供給管の前記接続部位よりも前記第1供給管の前記接続部位の近くに形成されていてもよい。 With respect to the above configuration, the vaporizer comprises a flow path in the manifold between a connection portion where the second supply pipe is connected to the manifold and a connection portion where the first supply pipe is connected to the manifold. An additional closing member may be further provided. The inflow portion where the heating liquid flows into the manifold is located in the first supply pipe rather than the connection portion of the second supply pipe so that the heating liquid flows into the second supply pipe through the closing member. It may be formed near the connection site.
 上記の構成によれば、加熱用液体がマニホールドに流入する流入部は、第2供給管の接続部位よりも第1供給管の接続部位の近くに形成されているので、加熱用液体は、マニホールド内の閉塞部材を通じて第2供給管に流入する。加熱用液体は、閉塞部材によって抵抗を受けるので、第2供給管への加熱用液体の流入量は、第1供給管への加熱用液体の流入量よりも少なくなる。 According to the above configuration, the inflow portion through which the heating liquid flows into the manifold is formed closer to the connection portion of the first supply pipe than the connection portion of the second supply pipe, so that the heating liquid is formed in the manifold. It flows into the second supply pipe through the closing member inside. Since the heating liquid receives resistance from the closing member, the inflow amount of the heating liquid into the second supply pipe is smaller than the inflow amount of the heating liquid into the first supply pipe.
 上記の構成に関して、気化装置は、前記第2供給管内の流路を部分的に閉じる閉塞部材を更に備えていてもよい。 With respect to the above configuration, the vaporizer may further include a closing member that partially closes the flow path in the second supply pipe.
 上記の構成によれば、閉塞部材は、第2供給管内の流路を部分的に閉じるので、第2への加熱用液体の流入量が低減される。 According to the above configuration, the closing member partially closes the flow path in the second supply pipe, so that the inflow amount of the heating liquid to the second supply pipe is reduced.
 上記の構成に関して、気化装置は、前記第1トラフ内に流入した前記加熱用液体が前記第2端壁に衝突することに起因して生ずる前記加熱用液体の液面の隆起を抑制するように構成された隆起抑制部を更に備えていてもよい。 With respect to the above configuration, the vaporizer so as to suppress the uplift of the liquid level of the heating liquid caused by the collision of the heating liquid flowing into the first trough with the second end wall. It may further include a configured uplift suppressing portion.
 上記の構成によれば、第1端壁に形成された流入口を通じてトラフ内に流入した加熱用液体は、第2端壁に向けて流れ第2端壁に衝突する。第2端壁に衝突した加熱用液体の一部は、第2端壁の近くで上向きに流れ、加熱用液体の液面を上方に隆起させようとする。加熱用液体の液面が上方に隆起すると、隆起が生じた部位においてトラフから溢れ出す加熱用液体は、他の部位において溢れ出る流量よりも多くなる。この場合、加熱用液体と液化ガスとの間での熱交換量が複数の伝熱管間で大きくばらつく。しかしながら、隆起抑制部は、液面の隆起を抑制するので、第2端壁の近くの伝熱管の外表面への加熱用液体の過多な供給が防止される。したがって、複数の伝熱管間での熱交換量のばらつきが抑制される。 According to the above configuration, the heating liquid that has flowed into the trough through the inflow port formed on the first end wall flows toward the second end wall and collides with the second end wall. A part of the heating liquid that collides with the second end wall flows upward near the second end wall and tries to raise the liquid level of the heating liquid upward. When the liquid level of the heating liquid rises upward, the amount of the heating liquid that overflows from the trough at the raised portion becomes larger than the flow rate that overflows at the other portion. In this case, the amount of heat exchanged between the heating liquid and the liquefied gas varies greatly among the plurality of heat transfer tubes. However, since the uplift suppressing portion suppresses the uplift of the liquid surface, excessive supply of the heating liquid to the outer surface of the heat transfer tube near the second end wall is prevented. Therefore, the variation in the amount of heat exchange between the plurality of heat transfer tubes is suppressed.
 上記の構成に関して、前記隆起抑制部は、前記第1トラフ内において前記流入口よりも高い位置で前記第2端壁側から前記整列方向に延設された蓋部材を含んでいてもよい。 With respect to the above configuration, the ridge suppressing portion may include a lid member extending in the alignment direction from the second end wall side at a position higher than the inflow port in the first trough.
 上記の構成によれば、流入口から流入した加熱用液体の多くは、流入口よりも高い位置に配置された蓋部材の下方の領域に流入する。加熱用液体が、その後第2端壁に衝突すると、加熱用液体の上向きの流れが生ずる。加熱用液体の上向きの流れが蓋部材に衝突することによって、加熱用液体の液面の隆起は抑制される。 According to the above configuration, most of the heating liquid flowing in from the inflow port flows into the region below the lid member arranged at a position higher than the inflow port. When the heating liquid subsequently collides with the second end wall, an upward flow of the heating liquid occurs. The uplift of the liquid level of the heating liquid is suppressed by the upward flow of the heating liquid colliding with the lid member.
 上記の構成に関して、前記蓋部材には、鉛直方向において前記蓋部材を貫通する貫通孔が形成されていてもよい。 Regarding the above configuration, the lid member may be formed with a through hole that penetrates the lid member in the vertical direction.
 上記の構成によれば、上向きに流れる加熱用液体の一部は、蓋部材の貫通孔を通じて蓋部材の上側の空間に流入することができる。加熱用液体が貫通孔を通過するときに抵抗が加熱用液体に加わるので、蓋部材の上側の空間に流入する加熱用液体の圧力は低下する。この結果、第2端壁の近くでの液面の隆起が抑制される。 According to the above configuration, a part of the heating liquid flowing upward can flow into the space above the lid member through the through hole of the lid member. Since resistance is applied to the heating liquid as the heating liquid passes through the through hole, the pressure of the heating liquid flowing into the space above the lid member is reduced. As a result, the uplift of the liquid level near the second end wall is suppressed.
 上記の構成に関して、前記隆起抑制部は、前記流入口から前記第1トラフ内に流入した前記加熱用液体が、前記第2端壁に衝突する前に衝突することにより前記加熱用液体の衝突力を抑制するように前記第1端壁と前記第2端壁との間に配置された抵抗部材を含んでいてもよい。 With respect to the above configuration, the uplift suppressing portion collides with the heating liquid that has flowed into the first trough from the inflow port before colliding with the second end wall, thereby causing a collision force of the heating liquid. It may include a resistance member arranged between the first end wall and the second end wall so as to suppress the above.
 上記の構成によれば、流入口から流入した加熱用液体は、第2端壁に衝突する前に抵抗部材に衝突するので、第1端壁から第2端壁に向かう方向における加熱用液体の速度成分は、第2端壁との衝突前に低減される。加熱用液体は、第2端壁との衝突前に抵抗部材によって減速されているので、加熱用液体が第2端壁に衝突しても、大きな衝突力は生じず、上方に大きな速度成分を有する加熱用液体の流れは生じにくい。すなわち、第2端壁の近くでの液面の隆起は抑制される。 According to the above configuration, the heating liquid flowing in from the inflow port collides with the resistance member before colliding with the second end wall, so that the heating liquid in the direction from the first end wall to the second end wall The velocity component is reduced before the collision with the second edge wall. Since the heating liquid is decelerated by the resistance member before it collides with the second end wall, even if the heating liquid collides with the second end wall, a large collision force is not generated and a large velocity component is generated upward. The flow of the heating liquid to have is unlikely to occur. That is, the uplift of the liquid level near the second end wall is suppressed.
 上記の構成に関して、前記抵抗部材には、前記第2端壁へ向けた前記加熱用液体の通過を許容する貫通孔が形成されていてもよい。 With respect to the above configuration, the resistance member may be formed with a through hole that allows the passage of the heating liquid toward the second end wall.
 上記の構成によれば、抵抗部材には、貫通孔が形成されているので、第1端壁に形成された流入口から流入した加熱用液体の一部は、抵抗部材の貫通孔を通じて第2端壁に向けて流れる。加熱用液体が貫通孔を通過するときに大きな抵抗が加熱用液体に加わるので、第2端壁へ向かう加熱用液体の圧力は低下する。この結果、第2端壁の近くでの液面の隆起が抑制される。 According to the above configuration, since the resistance member is formed with a through hole, a part of the heating liquid flowing in from the inflow port formed in the first end wall is passed through the through hole of the resistance member to the second. It flows toward the end wall. As the heating liquid passes through the through hole, a large resistance is applied to the heating liquid, so that the pressure of the heating liquid toward the second end wall decreases. As a result, the uplift of the liquid level near the second end wall is suppressed.
 上述の実施形態に関連して説明された技術は、液化ガスから気化ガスへの相変化が必要とされる様々な技術分野に好適に利用される。 The techniques described in connection with the above embodiments are suitably used in various technical fields where a phase change from a liquefied gas to a vaporized gas is required.

Claims (15)

  1.  液化ガスと前記液化ガスよりも高温の加熱用液体との間での熱交換の下で前記液化ガスを気化させる気化装置であって、
     前記液化ガスを案内するように立設された複数の伝熱管が水平方向に並ぶようにそれぞれ構成された複数の伝熱パネルと、
     前記複数の伝熱パネルのうち1つの前記複数の伝熱管の外表面へ前記加熱用液体を供給するように構成された第1トラフと、
     前記複数の伝熱パネルのうち他のもう1つの前記複数の伝熱管の外表面へ前記加熱用液体を供給するように構成された第2トラフと、
     前記加熱用液体が流れるマニホールドと、
     前記マニホールドから前記第1トラフへ前記加熱用液体を供給するように前記マニホールドと前記第1トラフとに接続された第1供給管と、
     前記マニホールドから前記第2トラフへ前記加熱用液体を供給するように前記マニホールドと前記第2トラフとに接続されているとともに前記第1トラフよりも小さな流路断面積を有している第2供給管と、を備えている
     気化装置。
    A vaporizer that vaporizes the liquefied gas under heat exchange between the liquefied gas and a heating liquid having a temperature higher than that of the liquefied gas.
    A plurality of heat transfer panels, each of which is configured such that a plurality of heat transfer tubes erected so as to guide the liquefied gas are arranged in the horizontal direction, and
    A first trough configured to supply the heating liquid to the outer surface of one of the plurality of heat transfer tubes among the plurality of heat transfer panels.
    A second trough configured to supply the heating liquid to the outer surface of the other plurality of heat transfer tubes among the plurality of heat transfer panels.
    The manifold through which the heating liquid flows and
    A first supply pipe connected to the manifold and the first trough so as to supply the heating liquid from the manifold to the first trough.
    A second supply that is connected to the manifold and the second trough so as to supply the heating liquid from the manifold to the second trough and has a flow path cross-sectional area smaller than that of the first trough. A vaporizer equipped with a tube.
  2.  前記第2トラフは、前記複数の伝熱パネルの列の外側に配置され、
     前記第1トラフは、隣り合う伝熱パネルの間に配置されている
     請求項1に記載の気化装置。
    The second trough is located outside the row of the plurality of heat transfer panels.
    The vaporizer according to claim 1, wherein the first trough is arranged between adjacent heat transfer panels.
  3.  前記第1トラフは、前記複数の伝熱管の整列方向に延設された底壁と、前記整列方向において前記マニホールド側に位置する前記底壁の端部に立設した第1端壁と、前記整列方向において前記第1端壁から離間する前記底壁の他のもう1つの端部に立設した第2端壁と含み、
     前記第1端壁には、前記加熱用液体が流入する流入口が形成されている
     請求項1又は2に記載の気化装置。
    The first trough includes a bottom wall extending in the alignment direction of the plurality of heat transfer tubes, a first end wall erected at an end of the bottom wall located on the manifold side in the alignment direction, and the above. Included with the second end wall erected at another end of the bottom wall away from the first end wall in the alignment direction.
    The vaporizer according to claim 1 or 2, wherein an inflow port into which the heating liquid flows is formed on the first end wall.
  4.  前記第2端壁には、前記加熱用液体が流入する流入口が形成されている
     請求項3に記載の気化装置。
    The vaporizer according to claim 3, wherein an inflow port into which the heating liquid flows is formed on the second end wall.
  5.  前記第1トラフは、前記加熱用液体が流入する流入口が形成された底壁を有している
     請求項1又は2に記載の気化装置。
    The vaporizer according to claim 1 or 2, wherein the first trough has a bottom wall formed with an inflow port into which the heating liquid flows.
  6.  前記第1供給管は、前記第1トラフの上方に配置されている
     請求項1又は2に記載の気化装置。
    The vaporizer according to claim 1 or 2, wherein the first supply pipe is arranged above the first trough.
  7.  前記流入口を部分的に閉じるように前記第1トラフ内に配置された閉塞部材を更に備え、
     前記閉塞部材は、前記第1トラフから取り外し可能である
     請求項3に記載の気化装置。
    Further comprising a closing member arranged in the first trough so as to partially close the inflow port.
    The vaporizer according to claim 3, wherein the closing member is removable from the first trough.
  8.  前記第1トラフは、前記複数の伝熱パネルのうち1つに対向して立設された側壁を含み、
     前記側壁は、前記閉塞部材が差し込まれる溝部が形成された内面を有している
     請求項7に記載の気化装置。
    The first trough includes a side wall erected facing one of the plurality of heat transfer panels.
    The vaporizer according to claim 7, wherein the side wall has an inner surface on which a groove into which the closing member is inserted is formed.
  9.  前記第2供給管が前記マニホールドに接続された接続部位と前記第1供給管が前記マニホールドに接続された接続部位との間で前記マニホールド内の流路を部分的に閉じる閉塞部材を更に備え、
     前記加熱用液体が前記マニホールドに流入する流入部は、前記加熱用液体が前記閉塞部材を通じて前記第2供給管に流入するように前記第2供給管の前記接続部位よりも前記第1供給管の前記接続部位の近くに形成されている
     請求項1又は2に記載の気化装置。
    Further provided is a closing member that partially closes the flow path in the manifold between the connection portion where the second supply pipe is connected to the manifold and the connection portion where the first supply pipe is connected to the manifold.
    The inflow portion where the heating liquid flows into the manifold is located in the first supply pipe rather than the connection portion of the second supply pipe so that the heating liquid flows into the second supply pipe through the closing member. The vaporizer according to claim 1 or 2, which is formed near the connection portion.
  10.  前記第2供給管内の流路を部分的に閉じる閉塞部材を更に備えている
     請求項1又は2に記載の気化装置。
    The vaporizer according to claim 1 or 2, further comprising a closing member that partially closes the flow path in the second supply pipe.
  11.  前記第1トラフ内に流入した前記加熱用液体が前記第2端壁に衝突することに起因して生ずる前記加熱用液体の液面の隆起を抑制するように構成された隆起抑制部を更に備えている
     請求項3に記載の気化装置。
    Further provided is a ridge suppressing portion configured to suppress the bulge of the liquid surface of the heating liquid caused by the collision of the heating liquid flowing into the first trough with the second end wall. The vaporizer according to claim 3.
  12.  前記隆起抑制部は、前記第1トラフ内において前記流入口よりも高い位置で前記第2端壁側から前記整列方向に延設された蓋部材を含む
     請求項11に記載の気化装置。
    The vaporization device according to claim 11, wherein the ridge suppressing portion includes a lid member extending from the second end wall side in the alignment direction at a position higher than the inflow port in the first trough.
  13.  前記蓋部材には、前記蓋部材を貫通する貫通孔が形成されている
     請求項12に記載の気化装置。
    The vaporizer according to claim 12, wherein the lid member is formed with a through hole penetrating the lid member.
  14.  前記隆起抑制部は、前記流入口から前記第1トラフ内に流入した前記加熱用液体が、前記第2端壁に衝突する前に衝突することにより前記加熱用液体の衝突力を抑制するように前記第1端壁と前記第2端壁との間に配置された抵抗部材を含んでいる
     請求項11に記載の気化装置。
    The ridge suppressing portion suppresses the collision force of the heating liquid by colliding the heating liquid flowing into the first trough from the inflow port before colliding with the second end wall. The vaporizer according to claim 11, further comprising a resistance member arranged between the first end wall and the second end wall.
  15.  前記抵抗部材には、前記第2端壁へ向けた前記加熱用液体の通過を許容する貫通孔が形成されている
     請求項14に記載の気化装置。
    The vaporizer according to claim 14, wherein the resistance member is formed with a through hole that allows the passage of the heating liquid toward the second end wall.
PCT/JP2019/037863 2019-03-11 2019-09-26 Vaporization device WO2020183765A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217031871A KR20210134743A (en) 2019-03-11 2019-09-26 vaporizer
EP19918713.9A EP3922937B1 (en) 2019-03-11 2019-09-26 Vaporization device
ES19918713T ES2964460T3 (en) 2019-03-11 2019-09-26 Vaporization device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019043442 2019-03-11
JP2019-043442 2019-03-11
JP2019163411A JP7242481B2 (en) 2019-03-11 2019-09-06 Vaporizer
JP2019-163411 2019-09-06

Publications (1)

Publication Number Publication Date
WO2020183765A1 true WO2020183765A1 (en) 2020-09-17

Family

ID=72427396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037863 WO2020183765A1 (en) 2019-03-11 2019-09-26 Vaporization device

Country Status (3)

Country Link
EP (1) EP3922937B1 (en)
ES (1) ES2964460T3 (en)
WO (1) WO2020183765A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757998A (en) * 1980-09-20 1982-04-07 Sumitomo Precision Prod Co Ltd Water spinkler for open rack type evaporator
JPS57124700A (en) * 1981-01-26 1982-08-03 Fuji Electric Co Ltd Protecting device for water cooling type cooler
JPH0775087A (en) * 1992-12-22 1995-03-17 Tokyo Gas Co Ltd Method for monitoring carburetor panel
JP2014202320A (en) * 2013-04-08 2014-10-27 株式会社神戸製鋼所 Vaporizer of cold temperature liquid gas
JP2015178880A (en) * 2014-03-19 2015-10-08 住友精密工業株式会社 Spray mechanism for open rack vaporizer
JP2017040296A (en) 2015-08-19 2017-02-23 株式会社神戸製鋼所 Gas vaporizer and method for operating the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5789386B2 (en) * 2011-03-10 2015-10-07 株式会社神戸製鋼所 Low temperature liquefied gas vaporizer
JP6118534B2 (en) * 2012-10-30 2017-04-19 住友精密工業株式会社 Open rack type vaporizer
JP6769715B2 (en) * 2016-02-26 2020-10-14 株式会社神戸製鋼所 Sprinkler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757998A (en) * 1980-09-20 1982-04-07 Sumitomo Precision Prod Co Ltd Water spinkler for open rack type evaporator
JPS57124700A (en) * 1981-01-26 1982-08-03 Fuji Electric Co Ltd Protecting device for water cooling type cooler
JPH0775087A (en) * 1992-12-22 1995-03-17 Tokyo Gas Co Ltd Method for monitoring carburetor panel
JP2014202320A (en) * 2013-04-08 2014-10-27 株式会社神戸製鋼所 Vaporizer of cold temperature liquid gas
JP2015178880A (en) * 2014-03-19 2015-10-08 住友精密工業株式会社 Spray mechanism for open rack vaporizer
JP2017040296A (en) 2015-08-19 2017-02-23 株式会社神戸製鋼所 Gas vaporizer and method for operating the same

Also Published As

Publication number Publication date
EP3922937A4 (en) 2022-05-11
ES2964460T3 (en) 2024-04-08
EP3922937A1 (en) 2021-12-15
EP3922937B1 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
JP2020148448A (en) Vaporization device
KR20030036920A (en) Heat exchangers with flow distributing orifice partitions
WO2014032488A1 (en) Heat exchanger for micro channel
JP2017150784A (en) Sprinkler system
WO2014167779A1 (en) Vaporization device for low-temperature liquefied gas
WO2014079357A1 (en) Heat exchanger
WO2020183765A1 (en) Vaporization device
JP2010038363A (en) Spray mechanism of open-rack evaporator
CN109780925A (en) A kind of plate-fin heat exchanger baffle nozzle structure end socket
JP6764734B2 (en) Heat exchanger
KR102084549B1 (en) Gas vaporizer
WO2020183764A1 (en) Vaporization device
CN103644688A (en) Convection type refrigerant distribution device and heat exchanger adopting same
JP2021148206A (en) Open rack type vaporization device
JP2012052730A (en) Sprinkler system in open rack type vaporizer
JP6741820B1 (en) How to replace the vaporizer
JP7119200B2 (en) Cooling system
JP2013064569A (en) Plate fin type heat exchanger and its control method
US20160290731A1 (en) Heat exchanger with collecting channel for discharging a liquid phase
JP4341483B2 (en) Heat exchanger
KR20080086073A (en) Heat exchanger
KR101603901B1 (en) Evaporator
JPH0654195B2 (en) Heat storage tank

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019918713

Country of ref document: EP

Effective date: 20210907

ENP Entry into the national phase

Ref document number: 20217031871

Country of ref document: KR

Kind code of ref document: A