WO2012120245A1 - Connection component provided with hollow inserts - Google Patents

Connection component provided with hollow inserts Download PDF

Info

Publication number
WO2012120245A1
WO2012120245A1 PCT/FR2012/050502 FR2012050502W WO2012120245A1 WO 2012120245 A1 WO2012120245 A1 WO 2012120245A1 FR 2012050502 W FR2012050502 W FR 2012050502W WO 2012120245 A1 WO2012120245 A1 WO 2012120245A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
inserts
metal
core
component
Prior art date
Application number
PCT/FR2012/050502
Other languages
French (fr)
Inventor
François Marion
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Publication of WO2012120245A1 publication Critical patent/WO2012120245A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/114Manufacturing methods by blanket deposition of the material of the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/114Manufacturing methods by blanket deposition of the material of the bump connector
    • H01L2224/11444Manufacturing methods by blanket deposition of the material of the bump connector in gaseous form
    • H01L2224/11452Chemical vapour deposition [CVD], e.g. laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/1147Manufacturing methods using a lift-off mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/116Manufacturing methods by patterning a pre-deposited material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/116Manufacturing methods by patterning a pre-deposited material
    • H01L2224/1161Physical or chemical etching
    • H01L2224/11616Chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/1182Applying permanent coating, e.g. in-situ coating
    • H01L2224/11827Chemical vapour deposition [CVD], e.g. laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13011Shape comprising apertures or cavities, e.g. hollow bump
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13016Shape in side view
    • H01L2224/13018Shape in side view comprising protrusions or indentations
    • H01L2224/13019Shape in side view comprising protrusions or indentations at the bonding interface of the bump connector, i.e. on the surface of the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13023Disposition the whole bump connector protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/13166Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13186Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/13187Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/1356Disposition
    • H01L2224/13562On the entire exposed surface of the core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/1357Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13601Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13609Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13601Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13611Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13601Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13616Lead [Pb] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/13618Zinc [Zn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/13624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13639Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81053Bonding environment
    • H01L2224/81095Temperature settings
    • H01L2224/81099Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8134Bonding interfaces of the bump connector
    • H01L2224/81355Bonding interfaces of the bump connector having an external coating, e.g. protective bond-through coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]

Definitions

  • the invention relates to the field of the connection of two components according to the technique of face-to-face hybridization, called "flip chip”, and more particularly the connection of two electronic components by insertion of the metal type in metal inserts in pads at room temperature.
  • the invention thus finds particular application in assemblies known as “chip on chip”, “chip on wafer” and “wafer on wafer”.
  • a first solution used to avoid the insertion of oxidized inserts is to cover the inserts before their oxidation of a noble metal layer, and therefore non-oxidizable, such as gold or platinum.
  • the inserts and their noble metal layer are thus inserted together in the studs without the appearance of oxide likely to affect the quality of the electrical connections.
  • this solution has a certain number of disadvantages, among which: ⁇ a high cost, on the one hand, because of the cost of the noble metals and, on the other hand, because of the complex and numerous steps to be taken in to cover only the inserts with a layer of such a metal; ⁇ an impossibility of reducing the interconnection steps, that is to say the minimum space between two interconnections inserts / pads, if low-cost manufacturing techniques of the noble metal layer covering the inserts are used.
  • the low-cost manufacturing techniques consist in making a full-plate deposit of a noble metal layer on the face of the component comprising the inserts, then in then etching the noble metal layer present between the inserts.
  • the only low-cost etching technique applicable to noble metals such as gold and platinum is a liquid-phase etching that currently does not allow the etching of surfaces smaller than 10 microns. Only etching or ionic machining now makes it possible to engrave interconnection steps of less than 10 micrometers. However, this technique has a very low efficiency especially due to the necessary cleaning between each deposit, and is therefore expensive;
  • interconnections end up being constituted by a complex multilayer formed of the material of the inserts, the noble metal and the material of the pads, which makes the interconnections very sensitive to solid / solid type diffusion, to the creation of holes of the type Kirkendall and holes at the interfaces of areas made of different metals;
  • gold is a very doping material for silicon usually present in electronic components. All manufacturing steps using gold must therefore be performed in manufacturing areas different from those where silicon is exposed.
  • Another solution to prevent the inserts are introduced into the pads with a native oxide layer is to perform the hybridization under a deoxidation flow that removes the native oxide inserts before their introduction into the pads.
  • the object of the present invention is to propose a "flip chip" hybridization by inserting metal inserts in metal pads providing an electrical connection without the use of noble metals or deoxidation flux and allowing the realization of a hybridization at room temperature .
  • the subject of the invention is a process for producing an electromechanical connection component provided with conductive inserts each formed of a hollow cylinder intended to be inserted at ambient temperature into respective aluminum conductive pads of another connection component for face-to-face hybridization.
  • the method consists for each insert:
  • native oxide layer is meant an oxide layer obtained by the natural oxidation of the metal when in contact with oxygen.
  • ambient temperature is meant here a temperature which is distant from the melting temperature of the material constituting the first layer and the pads, for example temperatures of the order of 300 ° K, for which there is therefore not observed a important softening of this first layer and pads in which are intended to be inserted inserts.
  • the "cold” or “room temperature” hybridization of the invention is thus distinguished from “thermo-compression” type hybridizations during which both a pressure and a heating are exerted, the heating being intended to soften or melt the pads to facilitate insertion of the inserts. In other words, under the effect of the insertion in a pad, the different regions of an insert undergo a deformation.
  • the first layer will therefore undergo a greater deformation than the latter during penetration into a stud. Since, on the other hand, the second native oxide layer has a plasticity lower than that of the first layer, this second layer can not deform as much as the first layer without breaking. Not being able to conform to the deformation undergone by the first layer, the second layer is "cracking".
  • the native oxide layer has the dual property of being very brittle and very little adhere to the metal from which it is derived. Under the effect of the penetration of ⁇ insert in the pad, there is thus observed a phenomenon of "ice on mud", that is to say that the native oxide layer crackles in the form of plates that slide on the first layer during insertion.
  • the second layer is “peeled” and remains outside the pad.
  • the native oxide layer has the advantage of having a very thin thickness, of the order of a few nanometers, completely defined by the nature of the metal. Thus whatever the time of exposure of the first layer to oxygen, the thickness of the second layer remains constant.
  • the electronic component provided with inserts can therefore be stored under oxidizing conditions, such as air for example, without special precautions.
  • the first layer not a noble metal but also in a preferred manner, oxidizable metals are sought for it so as to form a native oxide layer.
  • Aluminum has the advantage of being a material both ductile while maintaining a constant hardness for a wide temperature range because of its high melting temperature above 500 ° C. In addition, aluminum is a low cost material.
  • the advantage of the implementation of a hollow insert lies in the reduction of the bearing surface of the insert on the pad, and thus to facilitate insertion, or even to allow a cold insertion at room temperature . Because of the reduced bearing surface, the surface pressure exerted on the surface of the first and second layers bearing on the pad is also increased, which facilitates the deformation of the first layer, and corollary the cracking of the second layer. This also increases the effect of shearing and peeling aid of the second layer in case of poor adhesion thereof on the first layer.
  • the cylinder is the shape that optimizes these effects.
  • the pressure exerted on a bearing surface of each insert during their insertion into the pads is greater than 1800 megaPascals, which allows effective peeling of the oxide layer.
  • the core is made under a non-oxidizing atmosphere
  • the first layer consists of a metal film of greater ductility than the metal of the core deposited in a non-oxidizing atmosphere.
  • the first layer covers substantially the entire core, and in that the first layer is oxidized over substantially its entire surface.
  • the invention also relates to a method for producing an electromechanical connection component provided with conductive inserts each formed of a hollow cylinder intended to be inserted at ambient temperature in respective conductive pads of another component of connection for face-to-face hybridization.
  • the different regions of an insert undergo a deformation. Having a plasticity greater than that of the core, the first layer will therefore undergo a greater deformation than the latter during penetration into a stud. Since, on the other hand, the second layer has a plasticity lower than that of the first layer, this second layer can not deform as much as the first layer without breaking. Not being able to conform to the deformation undergone by the first layer, the second layer is "cracking". If the adhesion of the second layer to the first layer is weak, the second layer "peels" by sliding on the first layer during insertion and remains outside the pad, then fully discovering the first layer which is not oxidized and therefore a good conductor of electricity.
  • the second layer also penetrates into the stud while having cracks due to the plasticity differential with the first layer.
  • the cracks thus define so many unoxidized electrical "paths" towards the first non-oxidized layer, and therefore good conductors of electricity, thus ensuring good electrical conduction of the interconnection formed by the insert and the pad.
  • the first layer is made of a metal selected from the group consisting of aluminum, tin, indium, lead, silver, copper, zinc and alloys. based on these metals. These materials are advantageously very plastic, and can be implemented in inexpensive etching processes exploitable for low interconnection steps of less than 10 micrometers, or even 5 micrometers.
  • Aluminum also has the advantage of being a material both ductile while maintaining a constant hardness over a wide temperature range because of its high melting temperature above 500 ° C.
  • the adhesion of the second layer to the first layer is low so that the second layer slides on the first layer under the effect of a shear applied to the stack of first and second layers. In this way, during insertion of the insert in a pad, the second layer peels and remains outside the stud.
  • the second layer consists of a photosensitive epoxy resin, a polymer layer, such as parylene for example, a hard metal layer or a hard and brittle insulating layer such as SiO 2 or SiN
  • the first layer has a ductility substantially equal to that of the pads, which facilitates the deformation undergone by the first layer during insertion, and thus also facilitates the cracking of the second layer.
  • the first layer substantially covers the entire core.
  • the formation of the second layer thus uses conventional manufacturing methods, such as, for example, a full-plate deposit followed by etching of the metal deposited between the inserts.
  • the insert is hollow.
  • the invention also relates to a method of electromechanical connection between a first micro-electronic component provided with inserts made according to one or the other of the aforementioned type of method and a second micro-electronic component provided with pads , in which the inserts of the first microelectronic component are able to be respectively inserted, said method comprising inserting the inserts of the first component into the pads of the second component.
  • the subject of the invention is also an electromechanical connection method for face-to-face hybridization between a first microelectronic component obtained according to the above-mentioned first method and a second micro-electronic component provided with aluminum conductive pads. wherein the inserts of the first micro-electronic component are respectively insertable, said method comprising inserting the inserts of the first component at ambient temperature into the pads of the second component.
  • the invention also relates to a microelectronic system obtained according to this method.
  • FIGS. 1 and 2 are schematic sectional views of the hybridization of a first and a second microelectronic components by inserting inserts into pads;
  • FIG. 3 is a sectional view of an insert according to an embodiment of the invention.
  • ⁇ figure 4 is a schematic sectional view of ⁇ insert of Figure 3 along the line AA;
  • FIG. 5 is a diagrammatic sectional view illustrating the penetration of the insert of FIG. 3 into a ductile stud.
  • ⁇ 6 to 13 are schematic sectional views illustrating an F insert manufacturing method of Figure 3.
  • FIGS. 1 and 2 schematically illustrate the "flip-chip” hybridization of a first and a second microelectronic component 10, 12.
  • the first component 10 comprises, on one of its faces 14, a set of inserts 16 electrically conductive, intended to penetrate into respective electrically conductive pads 18, the pads 18 being arranged on a face 20 of the second component 12.
  • the electronic components 10 and 12 are aligned so as to present each insert 16 in front of a stud 18, and an appropriate pressure, illustrated by the arrows, is for example exerted on the first component which is mobile ( Figure 1).
  • Interconnections 22 between the first and the second microelectronic components 10, 12 are thus produced (FIG. 2).
  • the interconnections 22 mechanically join the two components 10, 12, while creating electrical connections therebetween.
  • the first component 10 is a detection matrix consisting of a plurality of detection sensitive elements
  • the second component 12 is a circuit for reading the sensitive elements.
  • the interconnections 22 thus make the electrical connection of the read circuit with each of the sensitive elements of the first component 10.
  • the inserts 16 can take any shape, although the inserts having a reduced bearing surface, such as hollow cylinders for example, are preferred to reduce the pressure required for their insertion into the studs 18.
  • cylindrical and hollow inserts 16 will be described, this form constituting a preferred embodiment.
  • the considerations relating to the constituent materials of the inserts 16 and pads 18 are independent of the form adopted for them.
  • the inserts may be solid and / or triangular, square, and more generally polygonal, star-shaped, etc.
  • the inserts 16 each comprise a central core 24 covered by a metal layer 26, the latter being itself covered by a protective layer 28.
  • the central core 24 is metallic, cylindrical and hollow, of U-shaped cross-section. It has a hardness greater than that of the pads 18 to be able to be inserted therein.
  • the central core 24 preferably has a Young's modulus greater than 1.5 times the Young's modulus of the material of the studs 18.
  • the central core 24 is made of a hard metal, such as nitride titanium (Ti), tungsten nitride (TiW), copper (Cu), vanadium (V), molybdenum (Mo), nickel (Ni), titanium tungstenate (TiW), WSi, or tungsten (W) for example, and the pads 18 are made of a ductile metal, for example aluminum, tin, indium, lead, silver, copper, zinc , or an alloy of these metals. Moreover, the central core 24 is not oxidized.
  • the metal layer 26, in addition to its function of being electrically conductive and strongly adhering to the central core 24 because of the metal-metal interface that it forms with the core 24, has the function of deform, while remaining attached to the core 24, during the penetration of ⁇ insert in a stud. For this purpose, it has a plasticity greater than that of the core 24.
  • the layer 26 may thus consist of a ductile metal.
  • a ductile metal having a Young's modulus greater than 1.5 times that of the material of the core 24 has a suitable plasticity.
  • the layer 26 has a ductility substantially equal to that of the pads 18 so as to allow penetration of the hard core 24 without breaking and obtain relative deformations of the layer 26 and the pad 18 substantially equal.
  • the layer 26 is thus advantageously made of aluminum, tin, indium, lead, silver, copper, zinc or an alloy of these metals.
  • the metal layer 26 is not oxidized.
  • the layer 26 is preferably made of aluminum, this metal having the advantage of having a very high melting temperature greater than 500 ° C.
  • the primary function of the protective layer 28 is to protect the metal layer 26 from oxidation, and for the second function to release at least a portion of the metal layer 26 during insertion of the insert 16 into a stud 18 of the to create an electrical connection between the material of the pad 18 and the central core 24.
  • the protective layer 28 is chosen to crack under the effect of the deformation of the metal layer 26.
  • the protective layer 28 thus has a plasticity lower than that of the metal layer 26.
  • the protective layer 28 is chosen so as to have a breaking point under very low deformation stresses, in other words it is very "brittle".
  • the protective layer 28 may be a protective film attached to the metal layer 26, for example a photosensitive epoxy resin or a polymer layer such as parylene for example, or a hard metal layer or a layer of hard insulation and brittle such as SiO 2 or Si.
  • the protective layer 28 consists of the native oxide of the constituent metal of the metal layer 26, which has the triple advantage:
  • this embodiment has the advantage that it is not necessary to take special measures to prevent oxidation of the inserts during storage, since the inserts 26 are voluntarily allowed to be oxidized.
  • FIG. 5 during the penetration of the insert 16 in the stud 18, a deformation, even a small one of the metal layer 26, breaks the oxide layer into plates, and under the effect of shearing, the plates of Native oxides slide on the metal layer 26 remaining outside the stud 18. The oxide layer 28 is thus "peeled" during insertion by exposing the metal layer 26, thereby creating a quality electrical connection, including without oxide.
  • the inserts 16 are hollow cylinders, preferably cylinders of revolution.
  • the inserts have very small bearing surfaces S (FIG.
  • the pressure exerted on the bearing surface S during insertion of the insert comprising a first layer 26 of aluminum covered with a layer of native oxide 28 (alumina Al 2 O 3 ) in pads 18 Aluminum is greater than 1800 megaPascal (MPa).
  • MPa megaPascal
  • the inventors have indeed observed that for lower pressure values, the interconnections formed inserts 16 in the pads 18 have a high electrical resistance, which means that the peel of the oxide layer 28 is not sufficient.
  • the inventors have, on the other hand, observed that for the above configuration of inserts and pads, pressures greater than 1800 megaPascal produce good quality interconnections, that is to say having an electrical resistance close to that of aluminum. which means that the oxide layer has been peeled optimally.
  • the global insertion force or equivalently the global insertion pressure, exerted on the circuits 10 and 12 to hybridize them, for example that exerted on the circuit 10 as illustrated by the arrows. in FIG. 1, and the bearing surface S of the hollow cylinders are thus chosen so as to obtain the said minimum pressure.
  • a hollow cylinder with a diameter equal to 4 ⁇ , with a wall thickness equal to 0.2 ⁇ has a bearing surface S equal to 2.512 ⁇ 2 .
  • the pressure exerted on its bearing surface S is equal to 1990 MPa. Knowing the overall insertion force and the number of interconnections between circuits
  • the process starts with the deposition of a sacrificial layer 40 of a thickness e on the face 14 of the component 10, for example a resin layer of the polyimide type, followed by photolithography to produce circular holes 42 in the sacrificial layer. 40 to the face 14 of the component 10 ( Figure 6).
  • the thickness e corresponds to the desired height for the core 24 of the inserts and the diameter of the circular holes 42 corresponds to the outside diameter of the core 24.
  • a hard metal layer or multilayer 44 for example titanium nitride or a titanium nitride-based alloy, of a thickness corresponding to the thickness of the metal. 24.
  • the deposit is for example a chemical vapor deposition, or deposit "CVD" (for the acronym “Chemical Vapor Deposition”) made at a temperature compatible with the electronic micro elements of the component 10, in particular a temperature below 425 ° C for a component 10 implementing a CMOS technology (FIG. 7).
  • a withdrawal of the portion of the hard metal layer 44 deposited between the holes 42 is then performed, for example using a "damascene” etch or "gap wire" well known per se.
  • a fluid resin layer 46 is deposited full plate and thus fills the holes 42 and planarize the assembly obtained in the previous step ( Figure 8).
  • the resin layer 46 is then etched uniformly, for example by mechanical or mechanochemical polishing, up to to reach the metal layer surface 46.
  • the holes 42 remain filled with resin 46 to protect the metal covering them in the subsequent steps ( Figure 9).
  • An etching of the metal 44 arranged between the holes 42 is then implemented in a manner known per se (FIG. 10).
  • the process is then continued by the removal of the resin 46 included in the holes 42, for example using a deletion based on a plasma O 2 followed by removal of the sacrificial layer 40, for example by means of a deletion based on a 0 2 plasma (FIG. 11).
  • the webs 24 of the inserts 16 are thus made.
  • a layer 26 of ductile and naturally oxidizable metal is then deposited full plate, for example a layer of aluminum, tin, indium, lead, silver, copper, zinc, or an alloy of these metals for example by means of a CVD deposit (FIG. 12), then the layer portion 26 arranged between the cores 24 is removed, for example by means of the technique of a conventional photolithography technology (FIG. 13).
  • the process ends with the oxidation of the layer 26, for example leaving the component in the open air. It has been described a layer 26 completely covering the core 24. Of course this layer may cover only part of the core 24 if the application requires it.
  • a non-oxidized central core 24 has been described on its entire surface. Alternatively, only a portion of the surface of the central core 24 is unoxidized. The central core 24 is then covered with the layer 26 at least on this non-oxidized portion, and the layer 28 covers at least the portion of the layer 26, covering the non-oxidized portion of the core 24, this portion of the layer 26 being unoxidized.

Abstract

The invention relates to an electro-mechanical connection component (10) provided with conductive inserts (16) to be inserted into respective conductive pads of another connection component for a flip-chip-type hybridisation. Each insert (16) comprises: a metal core (24) that is non-oxidised on at least part of its surface and has a higher hardness than that of the pads; a first metal layer (26) that is non-oxidised on at least part of its surface, and covers at least said non-oxidised portion of the core (24), the first layer having a higher plasticity than that of the core; and a second layer (28) covering at least the first layer (26), over its non-oxidised part, and having a lower plasticity than that of the first layer.

Description

COMPOSANT DE CONNEXION MUNI D'INSERTS CREUX  CONNECTING COMPONENT HAVING HOLLOW INSERTS
DOMAINE DE L'INVENTION L'invention a trait au domaine de la connexion de deux composants selon la technique d'hybridation face contre face, dite de «flip chip», et plus particulièrement la connexion de deux composants électroniques par insertion du type métal dans métal d'inserts dans des plots à température ambiante. L'invention trouve ainsi particulièrement application dans les assemblages dits « puce sur puce », « puce sur wafer » et « wafer sur wafer ».  FIELD OF THE INVENTION The invention relates to the field of the connection of two components according to the technique of face-to-face hybridization, called "flip chip", and more particularly the connection of two electronic components by insertion of the metal type in metal inserts in pads at room temperature. The invention thus finds particular application in assemblies known as "chip on chip", "chip on wafer" and "wafer on wafer".
ETAT DE LA TECHNIQUE Pour remplacer les hybridations « flip chip » par billes de soudure, il est connu de prévoir sur une face d'un premier composant électronique des inserts réalisés en un métal dur, par exemple en nitrure de titane, et sur une face d'un deuxième composant électronique des plots réalisé en un métal ductile, par exemple en argent, puis d'hybrider les deux composants en insérant à froid les inserts dans les plots, ce qui crée ainsi des interconnexions mécaniques et électriques entre les composants. STATE OF THE ART To replace "flip chip" hybridizations by solder balls, it is known to provide on one face of a first electronic component inserts made of a hard metal, for example titanium nitride, and on one side a second electronic component pads made of a ductile metal, for example silver, and then hybridize the two components by cold inserting the inserts in the pads, thereby creating mechanical and electrical interconnections between the components.
Toutefois, un problème récurrent dans ce type d'hybridation par insertion « métal dans métal » réside dans le fait que, sans mesure particulière, la surface des inserts s'oxyde, ce qui crée des connexions électriques de mauvaise qualité entre les inserts et les plots dans lesquels ils sont enfichés. However, a recurring problem in this type of "metal-in-metal" insertion hybridization is that, without particular measurement, the surface of the inserts oxidizes, which creates poor electrical connections between the inserts and the inserts. studs in which they are plugged.
Une première solution utilisée pour éviter l'insertion d'inserts oxydés est de recouvrir les inserts avant leur oxydation d'une couche de métal noble, et donc non oxydable, comme de l'or ou du platine. Les inserts et leur couche de métal noble sont ainsi insérés ensemble dans les plots sans qu'il y ait apparition d'oxyde susceptible d'affecter la qualité des connexions électriques. A first solution used to avoid the insertion of oxidized inserts is to cover the inserts before their oxidation of a noble metal layer, and therefore non-oxidizable, such as gold or platinum. The inserts and their noble metal layer are thus inserted together in the studs without the appearance of oxide likely to affect the quality of the electrical connections.
Cependant, cette solution présente un certain nombre d'inconvénients, au rang desquels : ■ un coût élevé, d'une part, en raison du coût des métaux noble et, d'autre part, en raison des étapes complexes et nombreuses à mettre en œuvre pour recouvrir uniquement les inserts d'une couche d'un tel métal ; une impossibilité de réduire les pas d'interconnexion, c'est-à-dire l'espace minimal entre deux interconnexions inserts/plots, si des techniques de fabrication à bas coût de la couche de métal noble recouvrant les inserts sont utilisées. En effet les techniques de fabrication à bas coût consistent à réaliser un dépôt pleine plaque d'une couche de métal noble sur la face du composant comportant les inserts, puis à graver ensuite la couche de métal noble présente entre les inserts. Or, la seule technique de gravure à bas coût applicable aux métaux nobles comme l'or et le platine est une gravure en phase liquide qui ne permet pas à l'heure actuelle de graver des surfaces de dimensions inférieures à 10 micromètres. Seule une gravure ou un usinage ionique permet aujourd'hui de graver des pas d'interconnexion inférieurs à 10 micromètres. Cependant, cette technique a un rendement très faible en raison notamment des nettoyages nécessaires entre chaque dépôt, et s'avère donc onéreuse ; However, this solution has a certain number of disadvantages, among which: ■ a high cost, on the one hand, because of the cost of the noble metals and, on the other hand, because of the complex and numerous steps to be taken in to cover only the inserts with a layer of such a metal; an impossibility of reducing the interconnection steps, that is to say the minimum space between two interconnections inserts / pads, if low-cost manufacturing techniques of the noble metal layer covering the inserts are used. In fact the low-cost manufacturing techniques consist in making a full-plate deposit of a noble metal layer on the face of the component comprising the inserts, then in then etching the noble metal layer present between the inserts. However, the only low-cost etching technique applicable to noble metals such as gold and platinum is a liquid-phase etching that currently does not allow the etching of surfaces smaller than 10 microns. Only etching or ionic machining now makes it possible to engrave interconnection steps of less than 10 micrometers. However, this technique has a very low efficiency especially due to the necessary cleaning between each deposit, and is therefore expensive;
une inter-diffusion et une électro-migration du métal noble recouvrant les inserts. inter-diffusion and electro-migration of the noble metal covering the inserts.
Ainsi les interconnexions finissent par être constitué d'un multicouche complexe formé du matériau des inserts, du métal noble et du matériau des plots, ce qui rend les interconnexions très sensibles à la diffusion du type solide/solide, à la création de trous de type Kirkendall et de trous aux interfaces des zones constituées de métaux différents ; et  Thus the interconnections end up being constituted by a complex multilayer formed of the material of the inserts, the noble metal and the material of the pads, which makes the interconnections very sensitive to solid / solid type diffusion, to the creation of holes of the type Kirkendall and holes at the interfaces of areas made of different metals; and
■ une contamination croisée de l'or. En effet, l'or est un matériau très dopant pour le silicium usuellement présent dans les composants électroniques. Toutes les étapes de fabrication utilisant de l'or doivent donc être réalisées dans des zones de fabrications différentes de celles où du silicium est à nu. Une autre solution pour éviter que les inserts ne soient introduits dans les plots avec une couche d'oxyde natif consiste à réaliser l'hybridation sous un flux de désoxydation qui retire l'oxyde natif des inserts avant leur introduction dans les plots.  ■ cross-contamination of gold. Indeed, gold is a very doping material for silicon usually present in electronic components. All manufacturing steps using gold must therefore be performed in manufacturing areas different from those where silicon is exposed. Another solution to prevent the inserts are introduced into the pads with a native oxide layer is to perform the hybridization under a deoxidation flow that removes the native oxide inserts before their introduction into the pads.
Cependant cette solution est complexe à mettre en œuvre, notamment en raison de l'étalement et du nettoyage des flux résiduels après l'insertion. En effet, lorsqu'un flux de désoxydation est utilisé pour ôter l'oxyde natif, une partie de ce flux, qui comprend également du liquide et des résidus de matériau, reste coincé entre les interconnexions. Il faut donc nettoyer ces résidus. De fait, cette technique limite elle aussi la réduction du pas d'interconnexion. En effet, à l'heure actuelle, il n'est pas possible de nettoyer les flux résiduels présents entre les interconnexions, et formant donc des courts circuits entre celles-ci, lorsque les interconnexions sont espacées de moins de 10 micromètres. EXPOSE DE L'INVENTION However, this solution is complex to implement, in particular because of the spreading and the cleaning of the residual flows after the insertion. Indeed, when a deoxidation flow is used to remove the native oxide, part of this flux, which also includes liquid and material residues, remains stuck between the interconnections. We must clean these residues. In fact, this technique also limits the reduction of the interconnection step. Indeed, at present, it is not possible to clean the residual flows present between the interconnections, and therefore forming short circuits between them, when the interconnections are spaced less than 10 micrometers. SUMMARY OF THE INVENTION
Le but de la présente invention est de proposer une hybridation « flip chip » par insertion d'inserts métalliques dans des plots métalliques assurant une connexion électrique sans utilisation de métaux nobles ni de flux de désoxydation et permettant la réalisation d'une hybridation à température ambiante. The object of the present invention is to propose a "flip chip" hybridization by inserting metal inserts in metal pads providing an electrical connection without the use of noble metals or deoxidation flux and allowing the realization of a hybridization at room temperature .
A cet effet, l'invention a pour objet un procédé de réalisation d'un composant de connexion électro-mécanique muni d'inserts conducteurs formés chacun d'un cylindre creux destinés à être insérés à température ambiante dans des plots conducteurs en aluminium respectifs d'un autre composant de connexion pour une hybridation du type face contre face. To this end, the subject of the invention is a process for producing an electromechanical connection component provided with conductive inserts each formed of a hollow cylinder intended to be inserted at ambient temperature into respective aluminum conductive pads of another connection component for face-to-face hybridization.
Selon l'invention, le procédé consiste pour chaque insert : According to the invention, the method consists for each insert:
■ à réaliser une âme métallique, non oxydée sur au moins une portion de sa surface, et de plasticité supérieure à celle de l'aluminium; ■ to achieve a metal core, not oxidized on at least a portion of its surface, and plasticity greater than that of aluminum;
à réaliser une première couche métallique en aluminium, sur au moins une portion de sa surface, recouvrant au moins ladite portion non oxydée de l'âme ; et to produce a first aluminum metal layer, on at least a portion of its surface, covering at least said unoxidized portion of the core; and
à réaliser une oxydation sous oxygène de l'aluminium de la première couche de manière à créer une seconde couche constituée d'oxyde natif d'aluminium sur une partie seulement de l'épaisseur de la première couche, et ladite seconde couche ayant une plasticité inférieure à celle de la première couche. Performing oxygen oxidation of the aluminum of the first layer so as to create a second layer of native aluminum oxide on only a portion of the thickness of the first layer, and said second layer having a plasticity less than that of the first layer.
Par « couche d'oxyde natif », on entend une couche d'oxyde obtenue par l'oxydation naturelle du métal lorsqu'il est au contact avec l'oxygène. By "native oxide layer" is meant an oxide layer obtained by the natural oxidation of the metal when in contact with oxygen.
Par « température ambiante », on entend ici une température éloignée de la température de fusion du matériau constitutif de la première couche et des plots, par exemple des températures de l'ordre de 300°K, pour lesquels on n'observe donc pas un ramollissement important de cette première couche et des plots dans lesquels sont destinés à être insérer les inserts. L'hybridation « à froid », ou « à température ambiante » de l'invention se distingue donc des hybridations de type « thermo-compression » au cours desquelles à la fois une pression et un chauffage sont exercés, le chauffage ayant pour but de ramollir ou fondre les plots afin de faciliter l'insertion des inserts. En d'autres termes, sous l'effet de l'insertion dans un plot, les différentes régions d'un insert subissent une déformation. Ayant une plasticité supérieure à celle de l'âme, la première couche va donc subir une plus forte déformation que celle-ci lors de la pénétration dans un plot. Comme par ailleurs la seconde couche d'oxyde natif a une plasticité inférieure à celle de la première couche, cette seconde couche ne peut se déformer autant que la première couche sans casser. Ne pouvant se conformer à la déformation subie par la première couche, la seconde couche se « craquelle ». By "ambient temperature" is meant here a temperature which is distant from the melting temperature of the material constituting the first layer and the pads, for example temperatures of the order of 300 ° K, for which there is therefore not observed a important softening of this first layer and pads in which are intended to be inserted inserts. The "cold" or "room temperature" hybridization of the invention is thus distinguished from "thermo-compression" type hybridizations during which both a pressure and a heating are exerted, the heating being intended to soften or melt the pads to facilitate insertion of the inserts. In other words, under the effect of the insertion in a pad, the different regions of an insert undergo a deformation. Having a plasticity greater than that of the core, the first layer will therefore undergo a greater deformation than the latter during penetration into a stud. Since, on the other hand, the second native oxide layer has a plasticity lower than that of the first layer, this second layer can not deform as much as the first layer without breaking. Not being able to conform to the deformation undergone by the first layer, the second layer is "cracking".
En outre, la couche d'oxyde natif présente la double propriété d'être très cassante et de très peu adhérer au métal dont elle est issu. Sous l'effet de la pénétration de Γ insert dans le plot, on observe ainsi un phénomène de « ice on mud », c'est-à-dire que la couche d'oxyde natif se craquelle en forme de plaques qui glissent sur la première couche lors de l'insertion. La seconde couche est donc « pelée » et reste à l'extérieur du plot. En outre, la couche d'oxyde natif a l'avantage de présenter une épaisseur très fine, de l'ordre de quelques nano mètres, complètement définie par la nature du métal. Ainsi quel que soit le temps d'exposition de la première couche à l'oxygène, l'épaisseur de la seconde couche reste constante. En outre, le composant électronique pourvu d'inserts peut donc être stocké dans des conditions oxydantes, comme l'air par exemple, sans précaution particulière. In addition, the native oxide layer has the dual property of being very brittle and very little adhere to the metal from which it is derived. Under the effect of the penetration of Γ insert in the pad, there is thus observed a phenomenon of "ice on mud", that is to say that the native oxide layer crackles in the form of plates that slide on the first layer during insertion. The second layer is "peeled" and remains outside the pad. In addition, the native oxide layer has the advantage of having a very thin thickness, of the order of a few nanometers, completely defined by the nature of the metal. Thus whatever the time of exposure of the first layer to oxygen, the thickness of the second layer remains constant. In addition, the electronic component provided with inserts can therefore be stored under oxidizing conditions, such as air for example, without special precautions.
Ainsi donc, non seulement, la première couche n'est pas un métal noble mais en outre de manière privilégiée, on recherche pour celle-ci des métaux oxydables de manière à former une couche d'oxyde natif. Thus, not only is the first layer not a noble metal but also in a preferred manner, oxidizable metals are sought for it so as to form a native oxide layer.
L'aluminium présente quand à lui l'avantage d'être un matériau à la fois ductile tout en gardant une dureté constante pour une large plage de températures en raison de sa température de fusion élevée supérieure à 500°C. En outre, l'aluminium est un matériau bas coût. Aluminum has the advantage of being a material both ductile while maintaining a constant hardness for a wide temperature range because of its high melting temperature above 500 ° C. In addition, aluminum is a low cost material.
L'avantage de la mise en œuvre d'un insert creux réside dans la réduction de la surface d'appui de l'insert sur le plot, et donc de faciliter l'insertion, voire même de permettre une insertion à froid à température ambiante. Du fait de la surface d'appui réduite, la pression surfacique exercée sur la surface des première et seconde couches en appui sur le plot est également augmentée, ce qui facilite la déformation de la première couche, et corollairement la craquelure de la seconde couche. Ceci augmente également l'effet de cisaillement et aide au pelage de la seconde couche en cas de faible adhérence de celle-ci sur la première couche. On remarque que le cylindre est la forme qui optimise ces effets. The advantage of the implementation of a hollow insert lies in the reduction of the bearing surface of the insert on the pad, and thus to facilitate insertion, or even to allow a cold insertion at room temperature . Because of the reduced bearing surface, the surface pressure exerted on the surface of the first and second layers bearing on the pad is also increased, which facilitates the deformation of the first layer, and corollary the cracking of the second layer. This also increases the effect of shearing and peeling aid of the second layer in case of poor adhesion thereof on the first layer. We note that the cylinder is the shape that optimizes these effects.
Selon un mode de réalisation, la pression exercée sur une surface d'appui de chaque insert lors de leur insertion dans les plots est supérieure à 1800 mégaPascals, ce qui permettant un pelage efficace de la couche d'oxyde. According to one embodiment, the pressure exerted on a bearing surface of each insert during their insertion into the pads is greater than 1800 megaPascals, which allows effective peeling of the oxide layer.
Selon un mode de réalisation, According to one embodiment,
que l'âme est réalisée sous atmosphère non oxydante; the core is made under a non-oxidizing atmosphere;
■ en ce que la première couche est constitué d'un film de métal de ductilité supérieure à celle du métal de l'âme déposé sous une atmosphère non oxydante. In that the first layer consists of a metal film of greater ductility than the metal of the core deposited in a non-oxidizing atmosphere.
Selon un mode de réalisation, la première couche recouvre sensiblement la totalité de l'âme, et en ce que la première couche est oxydée sur sensiblement toute sa surface. According to one embodiment, the first layer covers substantially the entire core, and in that the first layer is oxidized over substantially its entire surface.
L'invention a également pour objet un procédé de réalisation d'un composant de connexion électro-mécanique muni d'inserts conducteurs formés chacun d'un cylindre creux destinés à être insérés à température ambiante dans des plots conducteurs respectifs d'un autre composant de connexion pour une hybridation du type face contre face. The invention also relates to a method for producing an electromechanical connection component provided with conductive inserts each formed of a hollow cylinder intended to be inserted at ambient temperature in respective conductive pads of another component of connection for face-to-face hybridization.
Ce procédé consiste pour chaque insert : This process consists for each insert:
à réaliser une âme métallique, non oxydée sur au moins une portion de sa surface ; to achieve a metal core, non-oxidized on at least a portion of its surface;
à réaliser une première couche métallique, non oxydée sur au moins une portion de sa surface, recouvrant au moins ladite portion non oxydée de l'âme, la première couche ayant une plasticité supérieure à celle de l'âme ; et to achieve a first metal layer, not oxidized on at least a portion of its surface, covering at least said unoxidized portion of the core, the first layer having a plasticity greater than that of the core; and
à réaliser, sous atmosphère non oxydante, une seconde couche recouvrant au moins la première couche sur sa portion non oxydée, la seconde couche étant réalisée dans un matériau différent du matériau de la première couche ou des oxydes de ce matériau, la seconde couche ayant une plasticité inférieure à celle de la première couche. to produce, under a non-oxidizing atmosphere, a second layer covering at least the first layer on its non-oxidized portion, the second layer being made of a material different from the material of the first layer or oxides of this material, the second layer having plasticity lower than that of the first layer.
En d'autres termes, sous l'effet de l'insertion dans un plot, les différentes régions d'un insert subissent une déformation. Ayant une plasticité supérieure à celle de l'âme, la première couche va donc subir une plus forte déformation que celle-ci lors de la pénétration dans un plot. Comme par ailleurs la seconde couche a une plasticité inférieure à celle de la première couche, cette seconde couche ne peut se déformer autant que la première couche sans casser. Ne pouvant se conformer à la déformation subie par la première couche, la seconde couche se « craquelle ». Si l'adhérence de la seconde couche sur la première couche est faible, la seconde couche « pèle » en glissant sur la première couche lors de l'insertion et demeure à l'extérieur du plot, découvrant alors entièrement la première couche qui est non oxydée et donc bonne conductrice d'électricité. In other words, under the effect of the insertion in a pad, the different regions of an insert undergo a deformation. Having a plasticity greater than that of the core, the first layer will therefore undergo a greater deformation than the latter during penetration into a stud. Since, on the other hand, the second layer has a plasticity lower than that of the first layer, this second layer can not deform as much as the first layer without breaking. Not being able to conform to the deformation undergone by the first layer, the second layer is "cracking". If the adhesion of the second layer to the first layer is weak, the second layer "peels" by sliding on the first layer during insertion and remains outside the pad, then fully discovering the first layer which is not oxidized and therefore a good conductor of electricity.
Si l'adhérence de la seconde couche sur la première couche est forte, la seconde couche pénètre également dans le plot tout en présentant des craquelures en raison du différentiel de plasticité avec la première couche. Les craquelures définissent ainsi autant de « chemins » électriques non oxydés vers la première couche non oxydée, et donc bons conducteurs d'électricité, assurant ainsi une bonne conduction électrique de l'interconnexion formée de l'insert et du plot. If the adhesion of the second layer to the first layer is strong, the second layer also penetrates into the stud while having cracks due to the plasticity differential with the first layer. The cracks thus define so many unoxidized electrical "paths" towards the first non-oxidized layer, and therefore good conductors of electricity, thus ensuring good electrical conduction of the interconnection formed by the insert and the pad.
Ce résultat est obtenu indépendamment de la nature oxydable de la première couche qui est donc choisie avantageusement parmi des matériaux non nobles. Il n'est pas non plus nécessaire d'utiliser un flux désoxydant lors de l'insertion puisque les chemins électriques sont formés, et cela même si la seconde couche est oxydée. This result is obtained independently of the oxidizable nature of the first layer which is therefore advantageously chosen from non-noble materials. It is also not necessary to use a deoxidizing flux during insertion since the electrical paths are formed, even if the second layer is oxidized.
Selon un mode de réalisation de l'invention, la première couche est réalisée en un métal choisi dans le groupe comprenant l'aluminium, l'étain, l'indium, le plomb, l'argent, le cuivre, le zinc et les alliages à base de ces métaux. Ces matériaux sont avantageusement très plastiques, et peuvent être mise en œuvre dans des processus de gravure bas coût exploitables pour des pas d'interconnexion faibles inférieurs à 10 micromètres, voire même 5 micromètres. L'aluminium présente également l'avantage d'être un matériau à la fois ductile tout en gardant une dureté constante pour une large plage de températures en raison de sa température de fusion élevée supérieure à 500°C. According to one embodiment of the invention, the first layer is made of a metal selected from the group consisting of aluminum, tin, indium, lead, silver, copper, zinc and alloys. based on these metals. These materials are advantageously very plastic, and can be implemented in inexpensive etching processes exploitable for low interconnection steps of less than 10 micrometers, or even 5 micrometers. Aluminum also has the advantage of being a material both ductile while maintaining a constant hardness over a wide temperature range because of its high melting temperature above 500 ° C.
Selon un mode de réalisation de l'invention, l'adhérence de la seconde couche sur la première couche est faible de manière à ce que la seconde couche glisse sur la première couche sous l'effet d'un cisaillement appliqué à l'empilement des première et seconde couches. De cette manière, lors de l'insertion de l'insert dans un plot, la seconde couche pèle et reste à l'extérieur du plot. According to one embodiment of the invention, the adhesion of the second layer to the first layer is low so that the second layer slides on the first layer under the effect of a shear applied to the stack of first and second layers. In this way, during insertion of the insert in a pad, the second layer peels and remains outside the stud.
Selon un mode de réalisation, la seconde couche est constituée d'une résine époxy photosensible, une couche de polymère, tel que du parylène par exemple, une couche de métal dur ou une couche d'isolant dur et cassant comme par exemple du Si02 ou du SiN Selon un mode de réalisation, la première couche a une ductilité sensiblement égale à celle des plots, ce qui facilite la déformation subie par la première couche lors de l'insertion, et donc facilite également le craquelage de la seconde couche. Selon une mode de réalisation privilégié, la première couche recouvre sensiblement la totalité de l'âme. La formation de la seconde couche utilise ainsi des procédés classiques de fabrication, comme par exemple un dépôt pleine plaque suivi d'une gravure du métal déposé entre les inserts. Selon un mode de réalisation, l'insert est creux. According to one embodiment, the second layer consists of a photosensitive epoxy resin, a polymer layer, such as parylene for example, a hard metal layer or a hard and brittle insulating layer such as SiO 2 or SiN According to one embodiment, the first layer has a ductility substantially equal to that of the pads, which facilitates the deformation undergone by the first layer during insertion, and thus also facilitates the cracking of the second layer. According to a preferred embodiment, the first layer substantially covers the entire core. The formation of the second layer thus uses conventional manufacturing methods, such as, for example, a full-plate deposit followed by etching of the metal deposited between the inserts. According to one embodiment, the insert is hollow.
L'invention a également pour objet un procédé de connexion électro-mécanique entre un premier composant micro-électronique muni d'inserts réalisée selon l'un ou l'autre des procédé type précité et d'un second composant micro-électronique muni de plots, dans lequel les inserts du premier composant micro-électronique sont aptes à être respectivement insérés, ledit procédé comportant l'insertion des inserts du premier composant dans les plots du second composant. The invention also relates to a method of electromechanical connection between a first micro-electronic component provided with inserts made according to one or the other of the aforementioned type of method and a second micro-electronic component provided with pads , in which the inserts of the first microelectronic component are able to be respectively inserted, said method comprising inserting the inserts of the first component into the pads of the second component.
Notamment, l'invention a également pour objet un procédé de connexion électro- mécanique pour une hybridation de type face contre face entre un premier composant micro-électronique obtenu selon le premier procédé précité et un second composant micro-électronique muni de plots conducteurs en aluminium dans lesquels les inserts du premier composant micro-électronique sont aptes à être respectivement insérés, ledit procédé comportant l'insertion à température ambiante des inserts du premier composant dans les plots du second composant. In particular, the subject of the invention is also an electromechanical connection method for face-to-face hybridization between a first microelectronic component obtained according to the above-mentioned first method and a second micro-electronic component provided with aluminum conductive pads. wherein the inserts of the first micro-electronic component are respectively insertable, said method comprising inserting the inserts of the first component at ambient temperature into the pads of the second component.
L'invention a également pour objet un système micro-électronique obtenu conformément à ce procédé. BRÈVE DESCRIPTION DES FIGURES The invention also relates to a microelectronic system obtained according to this method. BRIEF DESCRIPTION OF THE FIGURES
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et réalisée en relation avec les dessins annexés, dans lesquels des références identiques désignent des éléments identiques ou analogues, et dans lesquels : The invention will be better understood on reading the following description, given solely by way of example, and made with reference to the accompanying drawings, in which identical references designate identical or similar elements, and in which:
les figures 1 et 2 sont des vues schématiques en coupe de l'hybridation d'un premier et d'un second composants micro électroniques par insertion d'inserts dans des plots ; la figure 3 est une vue en coupe d'un insert selon un mode de réalisation de l'invention ; Figures 1 and 2 are schematic sectional views of the hybridization of a first and a second microelectronic components by inserting inserts into pads; Figure 3 is a sectional view of an insert according to an embodiment of the invention;
la figure 4 est une vue schématique en coupe de Γ insert de la figure 3 selon le plan A-A ; figure 4 is a schematic sectional view of Γ insert of Figure 3 along the line AA;
■ la figure 5 est une vue schématique en coupe illustrant la pénétration de Γ insert de la figure 3 dans un plot ductile ; et FIG. 5 is a diagrammatic sectional view illustrating the penetration of the insert of FIG. 3 into a ductile stud; and
les 6 à 13 sont des vues schématique en coupe illustrant un procédé de fabrication de F insert de la figure 3. DESCRIPTION DÉTAILLÉE DE L 'INVENTION 6 to 13 are schematic sectional views illustrating an F insert manufacturing method of Figure 3. DETAILED DESCRIPTION OF THE INVENTION
Les figures 1 et 2 illustrent de manière schématique, l'hybridation « flip-chip » d'un premier et d'un second composants microélectroniques 10, 12. Le premier composant 10 comporte, sur l'une de ses faces 14, un ensemble d'inserts 16 électriquement conducteurs, destinés à pénétrer dans des plots 18 électriquement conducteurs respectifs, les plots 18 étant agencés sur une face 20 du second composant 12. FIGS. 1 and 2 schematically illustrate the "flip-chip" hybridization of a first and a second microelectronic component 10, 12. The first component 10 comprises, on one of its faces 14, a set of inserts 16 electrically conductive, intended to penetrate into respective electrically conductive pads 18, the pads 18 being arranged on a face 20 of the second component 12.
Pour réaliser l'hybridation préférentiellement à froid, les composants électroniques 10 et 12 sont alignés de manière à présenter chaque insert 16 en face d'un plot 18, et une pression appropriée, illustrée par les flèches, est par exemple exercée sur le premier composant qui est mobile (figure 1). Les inserts 16, qui ont une dureté supérieure à celle des plots 18, pénètrent alors dans ceux-ci. Des interconnexions 22 entre le premier et les second composants microélectroniques 10, 12 sont ainsi réalisées (figure 2). Les interconnexions 22 solidarisent mécaniquement les deux composants 10, 12, tout en créant des connexions électriques entre ceux-ci. To carry out the hybridization preferably cold, the electronic components 10 and 12 are aligned so as to present each insert 16 in front of a stud 18, and an appropriate pressure, illustrated by the arrows, is for example exerted on the first component which is mobile (Figure 1). The inserts 16, which have a hardness greater than that of the pads 18, then penetrate into them. Interconnections 22 between the first and the second microelectronic components 10, 12 are thus produced (FIG. 2). The interconnections 22 mechanically join the two components 10, 12, while creating electrical connections therebetween.
A titre d'exemple, le premier composant 10 est une matrice de détection constituée d'une pluralité d'éléments sensibles de détection, et le second composant 12 est un circuit de lecture des éléments sensibles. Les interconnexions 22 réalisent ainsi la connexion électrique du circuit de lecture avec chacun des éléments sensibles du premier composant 10. By way of example, the first component 10 is a detection matrix consisting of a plurality of detection sensitive elements, and the second component 12 is a circuit for reading the sensitive elements. The interconnections 22 thus make the electrical connection of the read circuit with each of the sensitive elements of the first component 10.
Les inserts 16 peuvent prendre n'importe quelle forme, bien que les inserts présentant une surface d'appui réduite, comme des cylindres creux par exemple, soient privilégiés pour diminuer la pression nécessaire à leur insertion dans les plots 18. Dans ce qui suit, il va être décrit des inserts 16 cylindriques et creux, cette forme constituant un mode de réalisation privilégié. Cependant, on comprendra que les considérations portant sur les matériaux constitutifs des inserts 16 et des plots 18 sont indépendantes de la forme adoptée pour ceux-ci. Par exemple, les inserts peuvent être pleins et/ou de forme triangulaire, carrée, et de manière plus générale polygonale, en forme d'étoile, etc... The inserts 16 can take any shape, although the inserts having a reduced bearing surface, such as hollow cylinders for example, are preferred to reduce the pressure required for their insertion into the studs 18. In what follows, cylindrical and hollow inserts 16 will be described, this form constituting a preferred embodiment. However, it will be understood that the considerations relating to the constituent materials of the inserts 16 and pads 18 are independent of the form adopted for them. For example, the inserts may be solid and / or triangular, square, and more generally polygonal, star-shaped, etc.
En se référant aux figures 3 et 4, les inserts 16 comportent chacun une âme centrale 24 recouverte par une couche métallique 26, cette dernière étant elle-même recouverte par une couche de protection 28. Referring to FIGS. 3 and 4, the inserts 16 each comprise a central core 24 covered by a metal layer 26, the latter being itself covered by a protective layer 28.
L'âme centrale 24 est métallique, cylindrique et creuse, de section transversale en forme de U. Elle présente une dureté supérieure à celle des plots 18 pour pouvoir y être insérée. A cet effet, l'âme centrale 24 a de préférence un module de Young supérieur à 1,5 fois le module de Young du matériau des plots 18. Avantageusement, l'âme centrale 24 est constituée d'un métal dur, comme du nitrure de titane (Ti ), du nitrure de tungstène (TiW), du cuivre (Cu), du vanadium (V), du molybdène (Mo), du nickel (Ni), du tungstènate de titane (TiW), du WSi, ou du tungstène (W) par exemple, et les plots 18 sont constitués d'un métal ductile, par exemple de l'aluminium, de l'étain, de l'indium, du plomb, de l'argent, du cuivre, du zinc, ou un alliage de ces métaux. Par ailleurs, l'âme centrale 24 n'est pas oxydée. The central core 24 is metallic, cylindrical and hollow, of U-shaped cross-section. It has a hardness greater than that of the pads 18 to be able to be inserted therein. For this purpose, the central core 24 preferably has a Young's modulus greater than 1.5 times the Young's modulus of the material of the studs 18. Advantageously, the central core 24 is made of a hard metal, such as nitride titanium (Ti), tungsten nitride (TiW), copper (Cu), vanadium (V), molybdenum (Mo), nickel (Ni), titanium tungstenate (TiW), WSi, or tungsten (W) for example, and the pads 18 are made of a ductile metal, for example aluminum, tin, indium, lead, silver, copper, zinc , or an alloy of these metals. Moreover, the central core 24 is not oxidized.
La couche métallique 26, outre sa fonction d'être conductrice de l'électricité et d'adhérer fortement à l'âme centrale 24 en raison de l'interface métal-métal qu'elle forme avec l'âme 24, a pour fonction de se déformer, tout en restant accrochée à l'âme 24, lors de la pénétration de Γ insert dans un plot. Elle présente à cet effet une plasticité supérieure à celle de l'âme 24. La couche 26 peut ainsi être constituée d'un métal ductile. Notamment, un métal ductile ayant un module de Young supérieur à 1,5 fois celui du matériau de l'âme 24 présente une plasticité appropriée. The metal layer 26, in addition to its function of being electrically conductive and strongly adhering to the central core 24 because of the metal-metal interface that it forms with the core 24, has the function of deform, while remaining attached to the core 24, during the penetration of Γ insert in a stud. For this purpose, it has a plasticity greater than that of the core 24. The layer 26 may thus consist of a ductile metal. In particular, a ductile metal having a Young's modulus greater than 1.5 times that of the material of the core 24 has a suitable plasticity.
De préférence, la couche 26 présente une ductilité sensiblement égale à celle des plots 18 de manière à permettre la pénétration de l'âme dure 24 sans se casser et obtenir des déformations relatives de la couche 26 et du plot 18 de manière sensiblement égales. La couche 26 est ainsi avantageusement constituée d'aluminium, d'étain, d'indium, de plomb, d'argent, de cuivre, de zinc ou d'un alliage de ces métaux. Par ailleurs, la couche métallique 26 n'est pas oxydée. La couche 26 est de préférence constituée d'aluminium, ce métal présentant l'avantage d'avoir une température de fusion très élevée supérieure à 500°C. Preferably, the layer 26 has a ductility substantially equal to that of the pads 18 so as to allow penetration of the hard core 24 without breaking and obtain relative deformations of the layer 26 and the pad 18 substantially equal. The layer 26 is thus advantageously made of aluminum, tin, indium, lead, silver, copper, zinc or an alloy of these metals. Moreover, the metal layer 26 is not oxidized. The layer 26 is preferably made of aluminum, this metal having the advantage of having a very high melting temperature greater than 500 ° C.
La couche de protection 28 a pour première fonction de protéger la couche métallique 26 de l'oxydation, et pour seconde fonction de libérer au moins une portion de la couche métallique 26 lors de l'insertion de l'insert 16 dans un plot 18 de manière à créer une connexion électrique entre le matériau du plot 18 et l'âme centrale 24. Pour ce faire, la couche de protection 28 est choisie pour se craqueler sous l'effet de la déformation de la couche métallique 26. La couche de protection 28 présente ainsi une plasticité inférieure à celle de la couche métallique 26. The primary function of the protective layer 28 is to protect the metal layer 26 from oxidation, and for the second function to release at least a portion of the metal layer 26 during insertion of the insert 16 into a stud 18 of the to create an electrical connection between the material of the pad 18 and the central core 24. To do this, the protective layer 28 is chosen to crack under the effect of the deformation of the metal layer 26. The protective layer 28 thus has a plasticity lower than that of the metal layer 26.
De préférence, la couche de protection 28 est choisie de manière à présenter un seuil de rupture sous des contraintes de déformation très bas, autrement dit est très « cassante ». La couche de protection 28 peut être un film de protection rapporté sur la couche métallique 26, comme par exemple une résine époxy photosensible ou une couche de polymère tel que du parylène par exemple, ou une couche de métal dur ou une couche d'isolant dur et cassant comme par exemple du Si02 ou du Si . Preferably, the protective layer 28 is chosen so as to have a breaking point under very low deformation stresses, in other words it is very "brittle". The protective layer 28 may be a protective film attached to the metal layer 26, for example a photosensitive epoxy resin or a polymer layer such as parylene for example, or a hard metal layer or a layer of hard insulation and brittle such as SiO 2 or Si.
De préférence, la couche de protection 28 est constituée de l'oxyde natif du métal constitutif de la couche métallique 26, ce qui présente le triple avantage : Preferably, the protective layer 28 consists of the native oxide of the constituent metal of the metal layer 26, which has the triple advantage:
d'avoir une couche de protection très fine 26 de l'ordre de quelques nanomètres, d'être dure et cassante, et notamment de plasticité et de ductilités très inférieures à celles du métal 26 lui-même, et  to have a very thin protective layer 26 of the order of a few nanometers, to be hard and brittle, and in particular of plasticity and ductilities much lower than those of metal 26 itself, and
• d'adhérer très faiblement à la couche métallique 26.  • adhere very weakly to the metal layer 26.
De plus ce mode de réalisation présente l'avantage qu'il n'est pas besoin de prendre des mesures particulières pour éviter l'oxydation des inserts lors de leur stockage, puisqu'on laisse volontairement s'oxyder les inserts 26. Comme illustré à la figure 5, lors de la pénétration de l'insert 16 dans le plot 18, une déformation, même faible de la couche métallique 26, casse la couche d'oxyde en plaques, et sous l'effet du cisaillement, les plaques d'oxydes natifs glissent sur la couche métallique 26 en demeurant en dehors du plot 18. La couche d'oxyde 28 est ainsi « pelée » lors de l'insertion en mettant à nue la couche métallique 26, créant ainsi une connexion électrique de qualité, notamment sans oxyde. Comme dit plus haut, les inserts 16 sont des cylindres creux, de préférence des cylindres de révolution. Les inserts présentent des surfaces d'appui S (figure 3 et 4) très faibles, de manière à pouvoir réaliser une insertion à froid, sous atmosphère ambiante, c'est-à-dire sous une température ambiante très inférieure à la température de fusion des plots 18, par exemple une température d'environ 300°K, et sous pression atmosphérique. Outre ceci, des surfaces d'appui très faible ont pour effet d'augmenter les contraintes exercées sur les différentes régions des inserts et donc notamment les forces de déformation et de cisaillement, ce qui facilite la craquelure des la couche de protection 28 ainsi que son pelage dans le cas d'une couche de protection faiblement adhérente à la couche métallique 26. On se reportera avantageusement au document FR 2 928 033 pour le calcul de la surface d'appui permettant une insertion à froid sous atmosphère ambiante. In addition, this embodiment has the advantage that it is not necessary to take special measures to prevent oxidation of the inserts during storage, since the inserts 26 are voluntarily allowed to be oxidized. FIG. 5, during the penetration of the insert 16 in the stud 18, a deformation, even a small one of the metal layer 26, breaks the oxide layer into plates, and under the effect of shearing, the plates of Native oxides slide on the metal layer 26 remaining outside the stud 18. The oxide layer 28 is thus "peeled" during insertion by exposing the metal layer 26, thereby creating a quality electrical connection, including without oxide. As mentioned above, the inserts 16 are hollow cylinders, preferably cylinders of revolution. The inserts have very small bearing surfaces S (FIG. 3 and 4), so as to be able to perform a cold insertion under ambient atmosphere, that is to say at an ambient temperature much lower than the melting temperature. pads 18, for example a temperature of about 300 ° K, and at atmospheric pressure. In addition to this, very low bearing surfaces have the effect of increasing the stresses exerted on the different regions of the inserts and therefore in particular the deformation and shearing forces, which facilitates the cracking of the protective layer 28 as well as its peeling in the case of a protective layer slightly adherent to the metal layer 26. It is advantageous to refer to document FR 2 928 033 for calculating the bearing surface for cold insertion under ambient atmosphere.
De manière avantageuse, la pression exercée sur la surface d'appui S lors de l'insertion d'insert comprenant une première couche 26 en aluminium recouverte d'une couche d'oxyde natif 28 (alumine AI2O3) dans des plots 18 en aluminium est supérieure à 1800 megaPascal (MPa). Les inventeurs ont en effet observé que pour des valeurs de pression inférieures, les interconnexions formées des inserts 16 dans les plots 18 présentent une résistance électrique importante, ce qui signifie que le pelage de la couche d'oxyde 28 n'est pas suffisante. Les inventeurs ont par contre observé que pour la configuration d'inserts et de plots précédente des pressions supérieures à 1800 megaPascal produisent des interconnexions de bonne qualité, c'est-à-dire présentant une résistance électrique proche de celle de l'aluminium, ce qui signifie que la couche d'oxyde a été pelée de manière optimale. De manière avantageuse, la force d'insertion globale, ou de manière équivalente la pression d'insertion globale, exercée sur les circuits 10 et 12 pour hybrider ceux-ci, par exemple celle exercée sur le circuit 10 tel qu'illustré par les flèches à la figure 1, et la surface d'appui S des cylindres creux sont donc choisies de manière à obtenir ladite pression minimale. Advantageously, the pressure exerted on the bearing surface S during insertion of the insert comprising a first layer 26 of aluminum covered with a layer of native oxide 28 (alumina Al 2 O 3 ) in pads 18 Aluminum is greater than 1800 megaPascal (MPa). The inventors have indeed observed that for lower pressure values, the interconnections formed inserts 16 in the pads 18 have a high electrical resistance, which means that the peel of the oxide layer 28 is not sufficient. The inventors have, on the other hand, observed that for the above configuration of inserts and pads, pressures greater than 1800 megaPascal produce good quality interconnections, that is to say having an electrical resistance close to that of aluminum. which means that the oxide layer has been peeled optimally. Advantageously, the global insertion force, or equivalently the global insertion pressure, exerted on the circuits 10 and 12 to hybridize them, for example that exerted on the circuit 10 as illustrated by the arrows. in FIG. 1, and the bearing surface S of the hollow cylinders are thus chosen so as to obtain the said minimum pressure.
Par exemple, un cylindre creux d'un diamètre égal à 4μιη, avec une épaisseur de paroi égale à 0,2 μιη a une surface d'appui S égale à 2,512 μιη2. Lorsqu'un tel insert subit une force d'insertion de 5mN, la pression exercée sur sa surface d'appui S est égale à 1990 MPa. Connaissant la force d'insertion globale et le nombre d'interconnexions entre les circuitsFor example, a hollow cylinder with a diameter equal to 4μιη, with a wall thickness equal to 0.2 μιη has a bearing surface S equal to 2.512 μιη 2 . When such an insert undergoes an insertion force of 5mN, the pressure exerted on its bearing surface S is equal to 1990 MPa. Knowing the overall insertion force and the number of interconnections between circuits
10 et 12, on en déduit donc la force d'insertion unitaire subit par chaque insert 16. Connaissant la force d'insertion unitaire, on est donc capable d'en déduire une aire maximale d'appui pour obtenir au moins la pression minimale de 1800MPa. Enfin, la surface d'appui S d'un cylindre creux étant donnée par la relation S = 2 x π x (R2 - x R2 , où R2 - Rx est l'épaisseur des parois des inserts 16 et 2 x R2 est le diamètre externe des inserts 16 (figure 4), on en déduit aisément des couples d'épaisseur et de diamètre. Le choix de valeur particulière pour l'épaisseur et le diamètre peut alors être réalisé selon d'autres considérations, notamment des considérations pourtant sur des épaisseurs atteignables en fonction du procédé de fabrication utilisé ou des considérations portant sur la robustesse mécanique des inserts. 10 and 12, we therefore deduce the unitary insertion force experienced by each insert 16. Knowing the unitary insertion force, it is therefore possible to deduce a maximum support area to obtain at least the minimum pressure of 1800 MPa. Finally, the bearing surface S of a hollow cylinder is given by the relation S = 2 x π x (R 2 - x R 2 , where R 2 - R x is the thickness of the walls of the inserts 16 and 2 x R 2 is the external diameter of the inserts 16 (Figure 4), it is easy to deduce pairs of thickness and diameter.The particular value choice for the thickness and the diameter can then be made according to other considerations, including considerations however thicknesses achievable depending on the manufacturing process used or considerations of the mechanical strength of the inserts.
11 va être à présent décrit en relation avec les figures schématiques en coupe 6 à 13, un exemple de procédé de fabrication des inserts 16 venant d'être décrits. 11 will now be described in connection with the schematic figures in section 6 to 13, an example of a method of manufacturing inserts 16 just described.
Le procédé débute par le dépôt d'une couche sacrificielle 40 d'une épaisseur e sur la face 14 du composant 10, par exemple une couche de résine du type polyimide, suivi d'une photolithographie pour réaliser des trous circulaires 42 dans la couche sacrificielle 40 jusqu'à la face 14 du composant 10 (figure 6). L'épaisseur e correspond à la hauteur désirée pour l'âme 24 des inserts et le diamètre des trous circulaires 42 correspond au diamètre extérieur de l'âme 24. The process starts with the deposition of a sacrificial layer 40 of a thickness e on the face 14 of the component 10, for example a resin layer of the polyimide type, followed by photolithography to produce circular holes 42 in the sacrificial layer. 40 to the face 14 of the component 10 (Figure 6). The thickness e corresponds to the desired height for the core 24 of the inserts and the diameter of the circular holes 42 corresponds to the outside diameter of the core 24.
Le procédé se poursuit par le dépôt pleine plaque d'une couche ou d'un multicouche de métal dur 44, par exemple du nitrure de titane ou un alliage à base de nitrure de titane, d'une épaisseur correspondant à l'épaisseur de l'âme 24. Le dépôt est par exemple un dépôt chimique en phase vapeur, ou dépôt « CVD » (pour l'acronyme anglo-saxon « Chemical Vapor Déposition ») réalisé à une température compatible avec les éléments micro électroniques du composant 10, notamment une température inférieure à 425°C pour un composant 10 mettant en œuvre une technologie CMOS (figure 7). The process is followed by the full-plate deposition of a hard metal layer or multilayer 44, for example titanium nitride or a titanium nitride-based alloy, of a thickness corresponding to the thickness of the metal. 24. The deposit is for example a chemical vapor deposition, or deposit "CVD" (for the acronym "Chemical Vapor Deposition") made at a temperature compatible with the electronic micro elements of the component 10, in particular a temperature below 425 ° C for a component 10 implementing a CMOS technology (FIG. 7).
Un retrait de la portion de la couche de métal dur 44 déposée entre les trous 42 est alors effectué, par exemple à l'aide d'une gravure « damascène » ou de « gap fil » bien connu en soi. Par exemple, selon la gravure « gap-fil », une couche de résine fluide 46 est déposée pleine plaque et vient ainsi combler les trous 42 et planariser l'ensemble obtenu à l'étape précédente (figure 8). Une fois solidifiée, la couche de résine 46 est alors gravée uniformément, par exemple par un polissage mécanique ou mécanochimique, jusqu'à atteindre la surface de couche métallique 46. Les trous 42 restent quant à eux remplis de résine 46 afin de protéger le métal les recouvrant lors des étapes ultérieures (figure 9). Une gravure du métal 44 agencé entre les trous 42 est alors mise en œuvre de manière connue en soi (figure 10). A withdrawal of the portion of the hard metal layer 44 deposited between the holes 42 is then performed, for example using a "damascene" etch or "gap wire" well known per se. For example, according to the etching "gap-wire", a fluid resin layer 46 is deposited full plate and thus fills the holes 42 and planarize the assembly obtained in the previous step (Figure 8). Once solidified, the resin layer 46 is then etched uniformly, for example by mechanical or mechanochemical polishing, up to to reach the metal layer surface 46. The holes 42 remain filled with resin 46 to protect the metal covering them in the subsequent steps (Figure 9). An etching of the metal 44 arranged between the holes 42 is then implemented in a manner known per se (FIG. 10).
Le procédé se poursuit alors par le retrait de la résine 46 comprise dans les trous 42, par exemple à l'aide d'un délaquage à base d'un plasma 02 suivi du retrait de la couche sacrificielle 40, par exemple au moyen d'un délaquage à base d'un plasma 02 (figure 11). Les âmes 24 des inserts 16 sont ainsi réalisées. The process is then continued by the removal of the resin 46 included in the holes 42, for example using a deletion based on a plasma O 2 followed by removal of the sacrificial layer 40, for example by means of a deletion based on a 0 2 plasma (FIG. 11). The webs 24 of the inserts 16 are thus made.
Une couche 26 en métal ductile et naturellement oxydable est ensuite déposée pleine plaque, par exemple une couche d'aluminium, d'étain, d'indium, de plomb, d'argent, de cuivre, de zinc, ou un alliage de ces métaux, par exemple au moyen d'un dépôt CVD (figure 12), puis la portion de couche 26 agencée entre les âmes 24 est ôtée, par exemple au moyen de la technique d'une technologie de photolithographie classique (figure 13). A layer 26 of ductile and naturally oxidizable metal is then deposited full plate, for example a layer of aluminum, tin, indium, lead, silver, copper, zinc, or an alloy of these metals for example by means of a CVD deposit (FIG. 12), then the layer portion 26 arranged between the cores 24 is removed, for example by means of the technique of a conventional photolithography technology (FIG. 13).
Enfin le procédé se termine par l'oxydation de la couche 26, par exemple en laissant le composant à l'air libre. II a été décrit une couche 26 recouvrant entièrement l'âme 24. Bien entendu cette couche peut ne recouvrir qu'une partie de l'âme 24 si l'application le nécessite. Finally, the process ends with the oxidation of the layer 26, for example leaving the component in the open air. It has been described a layer 26 completely covering the core 24. Of course this layer may cover only part of the core 24 if the application requires it.
De même, il a été décrit une âme centrale 24 non oxydée sur la totalité de sa surface. En variante, seule une portion de la surface de l'âme centrale 24 est non oxydée. L'âme centrale 24 est alors recouverte de la couche 26 au moins sur cette portion non oxydée, et la couche 28 recouvre au moins la portion de la couche 26, recouvrant la partie non oxydée de l'âme 24, cette portion de la couche 26 étant non oxydée. Likewise, a non-oxidized central core 24 has been described on its entire surface. Alternatively, only a portion of the surface of the central core 24 is unoxidized. The central core 24 is then covered with the layer 26 at least on this non-oxidized portion, and the layer 28 covers at least the portion of the layer 26, covering the non-oxidized portion of the core 24, this portion of the layer 26 being unoxidized.

Claims

REVENDICATIONS
Procédé de réalisation d'un composant de connexion électro-mécanique (10) muni d'inserts conducteurs (16) formés chacun d'un cylindre creux destinés à être insérés à température ambiante dans des plots conducteurs (18) en aluminium respectifs d'un autre composant de connexion pour une hybridation du type face contre face, caractérisé en ce que le procédé consiste pour chaque insert : A method of producing an electromechanical connection component (10) having conductive inserts (16) each formed of a hollow cylinder for insertion at ambient temperature into respective aluminum conductive pads (18) of a another connection component for face-to-face hybridization, characterized in that the method consists for each insert:
à réaliser une âme métallique (24), non oxydée sur au moins une portion de sa surface, et de plasticité supérieure à celle de l'aluminium; to achieve a metal core (24), not oxidized on at least a portion of its surface, and plasticity greater than that of aluminum;
à réaliser une première couche (26) métallique en aluminium, sur au moins une portion de sa surface, recouvrant au moins ladite portion non oxydée de l'âme (24); et to produce a first layer (26) of aluminum metal, on at least a portion of its surface, covering at least said non-oxidized portion of the core (24); and
à réaliser une oxydation sous oxygène de l'aluminium de la première couche (26) de manière à créer une seconde couche (28) constituée d'oxyde natif d'aluminium sur une partie seulement de l'épaisseur de la première couche, et ladite seconde couche ayant une plasticité inférieure à celle de la première couche. to perform oxidation by oxygen of the aluminum of the first layer (26) so as to create a second layer (28) consisting of native aluminum oxide on only a portion of the thickness of the first layer, and said second layer having a plasticity lower than that of the first layer.
Procédé de réalisation d'un composant de connexion électro-mécanique selon la revendication 1 , caractérisé : Method of producing an electromechanical connection component according to Claim 1, characterized:
en ce que l'âme (24) est réalisée sous atmosphère non oxydante; in that the core (24) is in a nonoxidative atmosphere;
en ce que la première couche (26) est constitué d'un film de métal de ductilité supérieure à celle du métal de l'âme (24) déposé sous une atmosphère non oxydante. in that the first layer (26) consists of a metal film ductility exceeding that of the metal of the core (24) deposited in a non-oxidizing atmosphere.
Procédé de réalisation d'un composant de connexion électro-mécanique selon l'une quelconque des revendications précédentes, caractérisé en ce que la première couche (26) recouvre sensiblement la totalité de l'âme (24), et en ce que la première couche (26) est oxydée sur sensiblement toute sa surface. Process for producing an electromechanical connection component according to any one of the preceding claims, characterized in that the first layer (26) substantially covers the entire core (24), and in that the first layer (26) is oxidized over substantially its entire surface.
Procédé de connexion électro-mécanique pour une hybridation de type face contre face entre un premier composant micro-électronique (10) obtenu selon l'une quelconque des revendications 1 à 3 et un second composant micro-électronique (12) muni de plots conducteurs (18) en aluminium dans lesquels les inserts (16) du premier composant micro-électronique (10) sont aptes à être respectivement insérés, ledit procédé comportant l'insertion à température ambiante des inserts (16) du premier composant (10) dans les plots (18) du second composant (12). Electro-mechanical connection method for face-to-face hybridization between a first microelectronic component (10) obtained according to any one of claims 1 to 3 and a second microelectronic component (12) provided with conductive pads ( 18) in which the inserts (16) of the first microelectronic component (10) are respectively insertable, said method comprising the insertion at ambient temperature of the inserts (16) of the first component (10) in the pads. (18) of the second component (12).
5. Procédé de connexion selon la revendication 4, caractérisé en ce que la pression exercée sur une surface d'appui (S) de chaque insert (16) lors de son insertion dans un plot (18) est supérieure à 1800 mégaPascals. 6. Système micro-électronique obtenu conformément à la revendication 4 ou 5. 5. A method of connection according to claim 4, characterized in that the pressure exerted on a bearing surface (S) of each insert (16) when inserted into a stud (18) is greater than 1800 megaPascals. Microelectronic system obtained according to claim 4 or 5.
PCT/FR2012/050502 2011-03-10 2012-03-09 Connection component provided with hollow inserts WO2012120245A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1151950A FR2972569A1 (en) 2011-03-10 2011-03-10 CONNECTING COMPONENT HAVING HOLLOW INSERTS
FR1151950 2011-03-10

Publications (1)

Publication Number Publication Date
WO2012120245A1 true WO2012120245A1 (en) 2012-09-13

Family

ID=45937417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/050502 WO2012120245A1 (en) 2011-03-10 2012-03-09 Connection component provided with hollow inserts

Country Status (2)

Country Link
FR (1) FR2972569A1 (en)
WO (1) WO2012120245A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016512929A (en) * 2013-03-22 2016-05-09 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Flip chip assembly method including pre-coating interconnect member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025540A (en) * 1988-06-24 1990-01-10 Nec Corp Formation of bonding of bump electrode
JPH0410446A (en) * 1990-04-26 1992-01-14 Nec Corp Formation of bump electrode combination
US5669548A (en) * 1995-03-24 1997-09-23 Nippondenso Co., Ltd. Soldering method
WO2003075337A1 (en) * 2002-03-01 2003-09-12 Agng, Llc Fluxless assembly of chip size semiconductor packages
JP2008098319A (en) * 2006-10-11 2008-04-24 Matsushita Electric Ind Co Ltd Semiconductor device, method of manufacturing the same, and method of mounting the same
FR2928033A1 (en) 2008-02-22 2009-08-28 Commissariat Energie Atomique CONNECTING COMPONENT HAVING HOLLOW INSERTS.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025540A (en) * 1988-06-24 1990-01-10 Nec Corp Formation of bonding of bump electrode
JPH0410446A (en) * 1990-04-26 1992-01-14 Nec Corp Formation of bump electrode combination
US5669548A (en) * 1995-03-24 1997-09-23 Nippondenso Co., Ltd. Soldering method
WO2003075337A1 (en) * 2002-03-01 2003-09-12 Agng, Llc Fluxless assembly of chip size semiconductor packages
JP2008098319A (en) * 2006-10-11 2008-04-24 Matsushita Electric Ind Co Ltd Semiconductor device, method of manufacturing the same, and method of mounting the same
FR2928033A1 (en) 2008-02-22 2009-08-28 Commissariat Energie Atomique CONNECTING COMPONENT HAVING HOLLOW INSERTS.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016512929A (en) * 2013-03-22 2016-05-09 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Flip chip assembly method including pre-coating interconnect member

Also Published As

Publication number Publication date
FR2972569A1 (en) 2012-09-14

Similar Documents

Publication Publication Date Title
EP2727144B1 (en) Method for connecting a component equipped with hollow inserts
EP2175485B1 (en) Connection between two plugged and soldered inserts and method of manufacturing the same
EP2870654B1 (en) Method for assembling and encapsulating lithium microbatteries and microbatteries produced thereby
EP2423160B1 (en) Assembly of objects by means of a sealing bead comprising intermetallic compounds
EP3207564B1 (en) Method for direct adhesion via low-roughness metal layers
EP3031076B1 (en) Process for manufacturing a semiconductor structure with temporary bonding via metal layers
EP2618368A1 (en) Connection component with hollow inserts and method of making the same
EP0709886A1 (en) Anisotropic film conductor for microconnections
EP1008176B1 (en) Method for making an anisotropic conductive coating with conductive inserts
EP2965346B1 (en) Method for producing conductive direct metal bonding
WO2014147355A1 (en) Flip-chip assembly process comprising pre-coating interconnect elements
EP3425657A1 (en) Method for producing an interface for temporarily joining a microelectronic support and a control handle, and temporary assembly interface
EP2718226A1 (en) Anodic bonding for a mems device
EP3501042A1 (en) Method for connecting cross-components at optimised density
WO2012120245A1 (en) Connection component provided with hollow inserts
EP3591724B1 (en) Method for realising a piezoelectric transducer device
EP2791969B1 (en) Forming a via electrical connection
EP3588595A1 (en) Mim structure and its manufacturing process
EP2636064B1 (en) Connecting elements for producing hybrid electronic circuits
FR2994331A1 (en) METHOD FOR ASSEMBLING TWO ELECTRONIC COMPONENTS BETWEEN THEM, OF THE FLIP-CHIP TYPE
FR2848339A1 (en) Adhesion of two elements comprises nickel-silicon welding at low temperature, for encapsulation of components in integrated circuits and microelectromechanical systems
FR2857782A1 (en) Anisotropic conductive film for e.g. micro electro mechanical system, has multiple conductive inserts, each having body that is asymmetrical with respect to normal at film main plane after assembling inserts with two contact zones
FR3018151A1 (en) METHOD FOR MAKING AN ELECTRIC INTERCONNECTION LEVEL
FR2978610A1 (en) Method for making electrically conductive connection in semiconductor substrate of three-dimensional integrated structure, involves thinning substrate from face of substrate up to pillar that is guided on another face of substrate
WO2008012481A1 (en) Process for fabricating an encapsulated integrated circuit and associated encapsulated integrated circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12713218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12713218

Country of ref document: EP

Kind code of ref document: A1