WO2012119495A1 - 光功率调节方法和装置 - Google Patents

光功率调节方法和装置 Download PDF

Info

Publication number
WO2012119495A1
WO2012119495A1 PCT/CN2012/070872 CN2012070872W WO2012119495A1 WO 2012119495 A1 WO2012119495 A1 WO 2012119495A1 CN 2012070872 W CN2012070872 W CN 2012070872W WO 2012119495 A1 WO2012119495 A1 WO 2012119495A1
Authority
WO
WIPO (PCT)
Prior art keywords
attenuation value
power
service wavelength
power attenuation
optical
Prior art date
Application number
PCT/CN2012/070872
Other languages
English (en)
French (fr)
Inventor
韩建蕊
石礌
徐明明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12755623.1A priority Critical patent/EP2654221B1/en
Priority to ES12755623.1T priority patent/ES2559379T3/es
Publication of WO2012119495A1 publication Critical patent/WO2012119495A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07953Monitoring or measuring OSNR, BER or Q
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • H04J14/02216Power control, e.g. to keep the total optical power constant by gain equalization

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to an optical power adjustment method and apparatus. Background technique
  • optical fibers, devices, and the like have different physical effects on wavelengths of different frequencies.
  • the gain of an Erbium Doped Fiber Amplifier (EDFA) varies with wavelength, and the optical fiber changes.
  • the attenuation also varies with different wavelengths. Therefore, after the service wavelength is transmitted through the system, the performance of different channels becomes unbalanced, resulting in unsatisfactory received signal quality.
  • increasing the new wavelength or adjusting the power of the existing wavelengths in the network will also affect the performance of other wavelengths, resulting in a decrease in the quality of the received signals at some of the service wavelengths in the network. Therefore, in order to ensure the signal quality requirements of the service wavelength, it is necessary to set the optical parameters in the network reasonably.
  • a feedback adjustment method is generally adopted, and a performance detecting unit is disposed at a receiving end or an intermediate node of the wavelength division multiplexing system, and the optical power is adjusted by the detection result of the performance detecting unit.
  • the adjustment mode usually adopts the step adjustment mode, that is, each time a small step is adjusted, the detection result is obtained by the performance detecting unit, and it is judged according to the detection result whether the adjustment is in place or whether performance degradation occurs until the measurement target is reached or according to the detection result. Complete the commissioning.
  • the above prior art solutions have at least the following problems:
  • the prior art needs to rely on the performance detecting unit, and the performance detecting unit usually causes an increase in network cost, and the step adjusting mode may result in low debugging efficiency and accuracy. Summary of the invention
  • the technical solution of the present invention provides an optical power adjustment method and device, which reduces network cost and improves efficiency and accuracy of optical power adjustment.
  • An aspect of the present invention provides an optical power adjustment method, in which a new service wavelength is added to an optical network, and an existing service wavelength does not exist in the optical network, and the method includes:
  • Another aspect of the present invention provides another optical power adjustment method, in which a new service wavelength is added to an optical network, and an existing service wavelength exists in the optical network, and the method includes:
  • Another aspect of the present invention provides an optical power adjustment apparatus, the apparatus is located in an optical network, a new service wavelength is added to the optical network, and an existing service wavelength does not exist in the optical network, and the apparatus includes:
  • a first determining module configured to determine, according to the path of the new service wavelength and a structure of the optical network, a first power attenuation value of a power adjustment unit in the optical network related to the new service wavelength
  • a first calculating module configured to calculate, according to the first power attenuation value, a performance parameter of a channel corresponding to the new service wavelength
  • a first determining module configured to determine whether a performance parameter of a channel corresponding to the new service wavelength meets a preset tolerance requirement and a flatness requirement
  • a first adjusting module configured to: if the determination result of the first determining module is yes, adjust a power attenuation value of the power adjusting unit related to the new service wavelength to reach the first power attenuation value.
  • Another aspect of the present invention provides another optical power adjustment apparatus, where the apparatus is located in an optical network, a new service wavelength is added to the optical network, and an existing service wavelength exists in the optical network.
  • the device includes:
  • a second determining module configured to determine, according to the new service wavelength and the path of the existing service wavelength and the structure of the optical network
  • a second calculating module configured to calculate, according to the first power attenuation value and the second power attenuation value, a first performance parameter of the channel corresponding to the new service wavelength and a channel corresponding to the existing service wavelength Second performance parameter;
  • a second determining module configured to determine whether the first performance parameter meets a first preset tolerance requirement and a flatness requirement, and determine whether the second performance parameter meets a second preset tolerance requirement and a flatness requirement ;
  • a second adjusting module configured to: if the first determining result and the second determining result of the second determining module are both yes, adjusting a power attenuation value of the power adjusting unit related to the new service wavelength to reach the The first power attenuation value.
  • An optical power adjustment method and apparatus provided by the technical solution of the present invention calculates a performance parameter of a channel corresponding to a service wavelength according to the determined power attenuation value, and if the performance parameter satisfies a preset tolerance requirement and a flatness requirement, Then, the power attenuation value of the power adjustment unit is adjusted to reach the determined power attenuation value.
  • the technical solution does not depend on the performance detecting unit, and effectively reduces the network cost; and, since the technical solution determines the appropriate power attenuation value, the performance of the service wavelength in the optical network is guaranteed to meet the performance requirement. At the same time, the efficiency and accuracy of adjusting the optical power are improved.
  • Embodiment 1 is a flowchart of Embodiment 1 of an optical power adjustment method according to the present invention
  • Embodiment 2 is a flowchart of Embodiment 2 of an optical power adjustment method according to the present invention
  • FIG. 3 is a schematic diagram of a topology of an optical network according to Embodiment 2 of the optical power adjustment method of the present invention
  • FIG. 4 is a flowchart of Embodiment 3 of an optical power adjustment method according to the present invention
  • FIG. 5 is a flowchart of Embodiment 4 of an optical power adjustment method according to the present invention
  • FIG. 7 is a structural diagram of Embodiment 1 of an optical power adjusting device according to the present invention.
  • Embodiment 8 is a structural diagram of Embodiment 2 of an optical power adjustment device according to the present invention.
  • Embodiment 9 is a structural diagram of Embodiment 3 of an optical power adjusting device according to the present invention.
  • FIG. 10 is a structural diagram of Embodiment 4 of the optical power adjusting device of the present invention. detailed description
  • Embodiment 1 is a flowchart of Embodiment 1 of an optical power adjustment method according to the present invention. As shown in FIG. 1 , this embodiment provides an optical power adjustment method. The embodiment is applied to: adding a new service wavelength in an optical network, and There is no existing service wavelength in the optical network.
  • the optical power adjustment method provided in this embodiment may specifically include the following steps:
  • Step 101 Determine, according to the path of the new service wavelength and the structure of the optical network, a first power attenuation value of the power adjustment unit in the optical network related to the new service wavelength.
  • a new service wavelength is added to the optical network, and there is no existing service wavelength.
  • the Obtain a power attenuation value of a suitable power adjustment unit may specifically include a 40-channel multiplexing board with VOA (hereinafter referred to as M40V) and a 9-port wavelength selective switching beam splitter (9-port wavelength).
  • M40V 40-channel multiplexing board with VOA
  • WSD9 9-port wavelength selective switching beam splitter (9-port wavelength.
  • the first power attenuation value of the power adjustment unit in the optical network related to the new service wavelength is determined according to the path of the new service wavelength and the structure of the optical network.
  • the power adjustment unit in the optical network may include one or more of the following: M40V, WSD9, and WSM9, where the first power attenuation value of the power adjustment unit may be determined to be specifically determined.
  • the first power attenuation value of the power adjustment unit in this embodiment may be set to an arbitrary value, or may be set to an empirical value.
  • the first power attenuation value may be determined according to a path that the new service wavelength passes in the optical network and a structure of the optical network.
  • the path of the new service wavelength in the optical network may be expressed as a new service wavelength when the optical network operates in the optical network.
  • the transmitted traffic signal from the input to the output of the site usually one or more sites can form an optical network, each site can set each type of unit according to needs, you can set the power adjustment unit on one or more sites, different
  • the power adjustment unit set by the station can be different.
  • the parameters of other units connected to the power conditioning unit are set according to experience.
  • the parameters may include one or more of the following: input optical power, output optical power, single channel insertion loss, and input and output connections between them. Relationship to obtain a first power attenuation value of the power conditioning unit. For example, at one station, the input of one power conditioning unit is connected to the unit 1, and the output of the unit is connected to the unit 2. When the output optical power of the unit 1 and the input optical power of the unit 2 are set, the power can be easily obtained.
  • Step 102 Calculate performance parameters of the channel corresponding to the new service wavelength according to the first power attenuation value.
  • the performance parameter of the channel corresponding to the new service wavelength in the optical network is calculated according to the determined first power attenuation value of the power adjustment unit.
  • this embodiment Kind or more: M40V, WSD9,
  • the model of the optical network can be simulated, and the optical power of the channel corresponding to the new service wavelength can be obtained by analog calculation, and then the new service wavelength is corresponding.
  • the performance parameters of the channel are calculated.
  • the performance parameter here may be a combination of one or more of an optical signal noise ratio (OSNR) of the service wavelength, an OSNR margin, a bit error rate, a Q factor, and the like.
  • OSNR optical signal noise ratio
  • Step 103 Determine whether the performance parameter of the channel corresponding to the new service wavelength meets a preset tolerance requirement and a flatness requirement. If the determination result is yes, adjust the power adjustment unit related to the new service wavelength. The power attenuation value reaches the first power attenuation value.
  • the performance of the channel is evaluated according to the performance parameter, that is, whether the performance parameter of the channel corresponding to the new service wavelength meets the preset tolerance requirement and flatness. Request; if the judgment is yes, that is, new business The performance parameter of the channel corresponding to the wavelength meets the preset tolerance requirement and the flatness requirement, and then adjusts the power attenuation value of the power adjustment unit related to the new service wavelength to reach the first power attenuation value.
  • the tolerance requirement may be specifically whether the value of the performance parameter calculated once is greater than a preset performance parameter threshold, and the flatness requirement is whether the value of the performance parameter calculated multiple times tends to be stable, that is, whether the difference between them is Less than the preset difference threshold.
  • the optical power adjustment method provided in this embodiment may further include the following steps: If the determination result is no, the first power attenuation value is modified, and the performance parameter is recalculated until the calculated new performance parameter is satisfied. The preset tolerance requirement and the flatness requirement; obtaining the modified second power attenuation value, and adjusting a power attenuation value of the power adjustment unit related to the new service wavelength to reach the second power attenuation value . If the performance parameter of the channel corresponding to the new service wavelength calculated according to the first power attenuation value cannot meet the preset tolerance requirement and the flatness requirement, the first power attenuation value is modified according to the modified power attenuation value.
  • the second power attenuation value corresponding to the performance parameter satisfying the tolerance requirement and the flatness requirement may be obtained by iteratively modifying, and then the power attenuation value of the power adjustment unit is adjusted to reach the second power attenuation value.
  • the modified scale can usually be determined empirically or by using a heuristic algorithm.
  • the path of the new service wavelength there are multiple power adjustment units in the path, and all the power adjustment units can be selected to be adjusted.
  • the power attenuation values required for each power adjustment unit are separately obtained; Alternatively, one or more of the power conditioning units may be adjusted.
  • the method according to the present embodiment may obtain the power attenuation values that are required to be adjusted by one or more of the power conditioning units.
  • This embodiment is directed to an application scenario in which a new service wavelength is added to an optical network, and an existing service wavelength does not exist in the optical network. Compared with the prior art, this embodiment does not rely on the performance detecting unit, and effectively reduces the network cost. Moreover, in this embodiment, the appropriate power attenuation value is determined by setting the empirical value or the iterative modification manner, so that the efficiency of adjusting the optical power is improved while ensuring that the performance of the service wavelength in the optical network satisfies the performance requirement. And precision.
  • FIG. 2 is a flowchart of Embodiment 2 of an optical power adjustment method according to the present invention, as shown in FIG.
  • the embodiment provides an optical power adjustment method
  • FIG. 3 is a schematic diagram of the topology of the optical network in the second embodiment of the optical power adjustment method of the present invention.
  • the optical power adjustment method provided in this embodiment is specifically
  • the scene shown in FIG. 3 is taken as an example for description, mainly for a scene of a new service wavelength in an initial state.
  • the numerical symbols 1, 2, 3, 4, 5, and 6 in FIG. 3 represent optical amplifiers, and optical amplifiers. In order to complete the amplification of the optical signal.
  • FIG. 3 The numerical symbols 1, 2, 3, 4, 5, and 6 in FIG. 3 represent optical amplifiers, and optical amplifiers. In order to complete the amplification of the optical signal.
  • A, B, C, D, and E are five stations, wherein stations B and D are optical line amplifiers (hereinafter referred to as OLA) sites, and stations A and E are optical terminal complexes.
  • OTM optical line amplifier
  • Site C is a reconfigurable optical add-drop Multiplexer; hereinafter referred to as: ROADM) site.
  • a, b, c, d represent the fiber connection between different sites, and the length of the fiber set here is 80km.
  • Site A it mainly includes an Optical Transponder Unit (OTU), a Variable Optical Attenuator (VOA), an M40V, and an Optical Amplifier.
  • the service signal to be transmitted is accessed from the OTU and converted into a standard wavelength optical signal that meets the requirements of the WDM system.
  • the VOA enables adjustment of the total optical power of the input optical signal.
  • Site B includes VOA and Optical Amplifier 2.
  • Site C includes VOA, WSD9, WSM9 and No. 3 optical amplifiers, and No. 4 optical amplifiers. Among them, WSD9 and WSM9 are used together to implement wavelength scheduling in WDM network nodes, and each board can adjust the output optical power of each channel.
  • Site D includes VOA and Optical Amplifier #5.
  • Site E includes a VOA, a 40-channel demultiplexing board (hereinafter referred to as D40), an OTU, and an optical amplifier No. 6.
  • D40 is used to demultiplex one optical signal into a maximum of 40 standard wavelength optical signals that meet the requirements of the WDM system.
  • the service signal is accessed through the three OTU boards of the ⁇ site, and is multiplexed into one signal by M40V, and the signal optical power of each channel can be multiplexed.
  • the M40V is modified, and then the signal is amplified by the optical amplifier No. 1.
  • the total optical power can be adjusted by the VOA; then the signal is transmitted through the long fiber a to the station B, and the optical power drops after the signal is transmitted through the long fiber.
  • B's No. 2 optical amplifier performs signal amplification.
  • the total optical power can be adjusted by VOA before amplification.
  • the signal reaches the station C after the long fiber transmission, and the signal is amplified by the WSD9 and WSM9 after the site C is amplified.
  • the optical power of each channel can be adjusted.
  • the total optical power can be adjusted by VOA.
  • the signal is amplified by the optical amplifier No. 4 and transmitted to the station D, and then reaches the station E.
  • the total optical power is adjusted by the VOA; the site E is demultiplexed into three wavelength signals by the D40 to the three OTU boards for reception, and the total optical power can be adjusted by the VOA before the signal is amplified.
  • the adjustment of the signal can be divided into the total optical power adjustment of the line and the optical power adjustment of the single channel corresponding to the service wavelength.
  • the adjustment of the total optical power is adjusted by the illustrated VOA unit, and the optical power adjustment of the single channel can be passed.
  • the M40V, WSD9, and WSM9 shown in Figure 3 are adjusted.
  • the total optical power adjustment of the line and the optical power adjustment process of a single channel can be adjusted sequentially or cyclically, that is, the total optical power of the line can be adjusted first, and then the optical power of the single channel can be adjusted. It is also possible to adjust the total optical power of the line first, then adjust the optical power of the individual channels, and then optimize the total optical power of the line and the optical power of the individual channels.
  • the adjustment of the total optical power of the line belongs to the prior art, and is relatively easy to operate. This patent will not be described again.
  • the optical power adjustment of a single channel will be described.
  • the optical power adjustment method provided in this embodiment may specifically include the following steps: Step 201: Determine, according to the path of the new service wavelength and the structure of the optical network, the first power of the power adjustment unit in the optical network related to the new service wavelength. Attenuation value.
  • the power adjustment unit in the optical network includes M40V in station A and WSD9 and WSM9 in station C, and the adjustment values of the power adjustment units are respectively The power attenuation values of the three channels corresponding to the service wavelengths ⁇ 1 , ⁇ 2, and ⁇ 3 for the M40V, and the power attenuation values of the three channels corresponding to the service wavelengths ⁇ 1 , ⁇ 2, and ⁇ 3 for the WSD9 and WSM9 pairs.
  • the first power attenuation value of the power conditioning unit in this step is determined according to the path of the new service wavelength and the structure of the optical network.
  • the magnitude of the adjustment value of the VOA is known.
  • the adjustment value of the VOA can be assumed to be 5 dB. Assume that the single-wave typical input optical power of optical amplifier No.
  • the power attenuation value of the M40V for the three channels corresponding to the service wavelengths ⁇ 1, ⁇ 2, and ⁇ 3 can be calculated according to the following formula:
  • the transmitted optical power of the OTU board - the first power attenuation value of the M40V - M40V Single channel insertion loss value - VOA adjustment value 1 single-wave typical input of optical amplifier
  • the adjustment value of the VOA set before the optical amplifier No. 4 has been determined after the merging adjustment, assuming 3dB; assuming that the single-wave typical output optical power of the optical amplifier No. 3 is +ldBm, assuming 4
  • the single-wave input optical power of the optical amplifier is -19dBm.
  • the single-channel insertion loss value of the WSD9 and WSM9 boards can also be obtained in advance. Assuming 6dB, the WSD9 and WSM9 single-board pairs and the service wavelength ⁇ 1 and ⁇ 2.
  • the power attenuation values of the three channels corresponding to ⁇ 3 can be calculated according to the following formula: Single-wave typical output optical power of optical amplifier No.
  • the WSD9 and the WSM9 can share the first power attenuation value on average or in a certain proportion.
  • the first power attenuation value of the WSD9 to the service wavelengths ⁇ 1 , ⁇ 2, and ⁇ 3 can be set to 5 dB, and the WSM9 is The first power attenuation values for the service wavelengths ⁇ 1 , ⁇ 2, ⁇ 3 are all set to 0 dB.
  • Step 202 Acquire, according to the determined first power attenuation value of the power adjustment unit in the optical network, optical power of the channel corresponding to the new service wavelength, the optical power of the channel corresponding to the new service wavelength, and the gain and noise of the optical amplifier in the optical network.
  • the index calculates the optical signal-to-noise ratio of the channel corresponding to the new service wavelength.
  • the foregoing units may specifically include an OTU, an M40V, a VOA, a WSD9, a WSM9, and an optical amplifier in an optical network.
  • the fiber parameters may be, for example, a fiber type and a fiber length
  • the device parameters may be, for example, a type and a gain spectrum of the EDFA board.
  • the optical signal-to-noise ratio of the channel corresponding to each new service wavelength can be calculated, where Specifically, the optical signal to noise ratio can be obtained by using an existing optical signal to noise ratio calculation method.
  • the gain and noise figure of the optical amplifier can be obtained in various ways. For example, the device can be modeled for the optical amplifier. When a certain reference gain spectrum and noise spectrum are known, the gain at a specific power can be calculated. And noise figure.
  • the optical amplifier The gain spectrum and the noise medium model are known, and the optical signal to noise ratios of the three channels corresponding to the service wavelengths ⁇ 1 , ⁇ 2, and ⁇ 3 are calculated according to the gain spectrum and the noise medium model.
  • OSNR margin As a performance parameter as an example to describe the solution of the present invention.
  • OSNR margin may also be used.
  • OSNR margin, bit error rate, Q factor and other combinations are used as performance parameters.
  • the method is similar to OSNR, and will not be described here.
  • the following is a brief description of the OSNR margin, bit error rate, and Q factor calculation method.
  • the optical power of the channel corresponding to the new service wavelength can be obtained according to the determined power attenuation value, according to the device parameters related to the path of the new service wavelength, the type of the fiber, the pattern of each channel, and the residual dispersion.
  • the linear damage may include one or more of the following factors: Chromatic Dispersion (hereinafter referred to as CD), Polarization Mode Dispersion (hereinafter referred to as PMD), Crosstalk (hereinafter referred to as: Xtalk) And filter cascade; nonlinear damage can include one or more of the following factors: Self Phase Modulation (SPM), Cross-Phase Modulation (hereinafter referred to as XPM), Four-wave Mixing (FWM), Stimulated Brillouin Scattering (SBS) and Stimulated Raman Scattering (SRS).
  • SPM Self Phase Modulation
  • XPM Cross-Phase Modulation
  • FWM Four-wave Mixing
  • SBS Stimulated Brillouin Scattering
  • SRS Stimulated Raman Scattering
  • the OSNR margin can be further obtained by OSNR cost and OSNR.
  • the bit error rate and the Q factor can also be calculated, so that the bit error rate or the Q factor is used as a parameter to measure the performance of the service.
  • Step 203 Determine whether the optical signal-to-noise ratio of the channel corresponding to the new service wavelength satisfies the tolerance requirement of the preset optical signal-to-noise ratio and the flatness requirement of the optical signal-to-noise ratio. If the determination result is yes, step 204 is performed, if it is determined If the result is no, step 205 is performed.
  • the optical signal-to-noise ratio of the channel corresponding to each new service wavelength calculated in the above step 202 is used as a performance parameter for evaluating the performance of the channel.
  • the optical signal-to-noise ratio of each channel calculated by the above calculation is determined. Whether the tolerance of the preset optical signal to noise ratio and the flatness requirement of the optical signal to noise ratio are met. Assuming that the first power attenuation value of the power adjustment unit in the optical network acquired in the above step 201 is based on, the optical signal-to-noise ratio of the receiving end of the station E calculated by the above steps is 22 dB, 24 dB, and 26 dB, respectively.
  • step 204 Determining whether the calculated optical signal-to-noise ratio satisfies a preset optical signal-to-noise ratio tolerance requirement and an optical signal-to-noise ratio flatness requirement, for example, pre-setting light
  • the SNR value is not less than 15 dB and the flatness of the optical signal-to-noise ratio is less than IdB. If the requirement is met, step 204 is performed. If the requirement is not met, step 205 is performed, and the power attenuation value of the power adjustment unit is performed. Modify and then calculate a new optical signal to noise ratio.
  • Step 204 Adjust a power attenuation value of the power adjustment unit related to a new service wavelength to reach the first power attenuation value.
  • the optical signal-to-noise ratio of the channel corresponding to the new service wavelength obtained based on the first power attenuation value satisfies the tolerance requirement of the preset optical signal-to-noise ratio and the flatness requirement of the optical signal-to-noise ratio, and directly adjusts the power related to the new service wavelength.
  • the power attenuation value of the adjustment unit reaches a first power attenuation value.
  • Step 205 Modify a first power attenuation value of the power adjustment unit, and recalculate an optical signal to noise ratio until the calculated new optical signal to noise ratio satisfies a tolerance requirement and light of the preset optical signal to noise ratio. The flatness requirement of the signal to noise ratio is obtained; the modified second power attenuation value is obtained, and the power attenuation value of the power adjustment unit related to the new service wavelength is adjusted to reach the second power attenuation value.
  • the optical signal-to-noise ratio calculated according to the above steps does not meet the tolerance requirement of the preset optical signal-to-noise ratio and the flatness requirement of the optical signal-to-noise ratio, for example, the calculated optical signal-to-noise ratio associated with the new service wavelength is calculated.
  • the limit is 13dB, which is less than the preset tolerance value of 15dB.
  • the flatness of the optical signal-to-noise ratio is 2dB, which is greater than the preset flatness IdB.
  • the power attenuation value of the power adjustment unit needs to be modified. Modifying the power attenuation value of one or more power conditioning units can also modify the power attenuation values of all power conditioning units simultaneously.
  • the power attenuation value of one or more power adjustment units may be modified in steps of +/- 0.2 dB based on the first power attenuation value, and then the optical signal to noise ratio is recalculated until a predetermined light is obtained.
  • the tolerance of the signal-to-noise ratio and the new optical signal-to-noise ratio required for the flatness of the optical signal-to-noise ratio are obtained, thereby obtaining a modified power attenuation value corresponding to the new optical signal-to-noise ratio.
  • the modified second power attenuation value is obtained, and the second The power attenuation value is a modified power attenuation value corresponding to the required optical signal to noise ratio, and the power attenuation value of the power adjustment unit related to the new service wavelength is adjusted to reach a second power attenuation value.
  • the optical signal-to-noise ratios of the three channels corresponding to the service wavelengths ⁇ 1 , ⁇ 2, and ⁇ 3 that satisfy the performance requirements through 100 iterations are 25.5 dB, 25 dB, and 25.8 dB, respectively.
  • the power attenuation values of the power conditioning unit used in the combination of the optical signal to noise ratios are as follows: Site A
  • the power attenuation values of M40V for service wavelengths ⁇ 1, ⁇ 2, and ⁇ 3 are 4.2, 5.5, and 6.0, respectively.
  • the power attenuation values of WSD9 to service wavelengths ⁇ 1 , ⁇ 2, and ⁇ 3 in station C are 5.0, 4.8, and 4.9, respectively.
  • the WSM9 has a power attenuation value of 0 for the service wavelengths ⁇ 1, ⁇ 2, and ⁇ 3 , and the second power attenuation value of each power adjustment unit can be obtained.
  • the above iterative process can also be adopted to obtain a second power attenuation value corresponding to the required performance parameter, thereby realizing adjustment of the optical power.
  • This embodiment is directed to an application scenario in which a new service wavelength is added to an optical network, and an existing service wavelength does not exist in the optical network. Compared with the prior art, this embodiment does not rely on the performance detecting unit, and effectively reduces the network cost. Moreover, in this embodiment, the appropriate power attenuation value is determined by setting the empirical value or the iterative modification manner, so that the efficiency of adjusting the optical power is improved while ensuring that the performance of the service wavelength in the optical network satisfies the performance requirement. And precision.
  • Embodiment 3 is a flowchart of Embodiment 3 of an optical power adjustment method according to the present invention. As shown in FIG. 4, this embodiment provides an optical power adjustment method. In this embodiment, a new service wavelength is added to an optical network, and There are existing service wavelengths in the optical network.
  • the optical power adjustment method provided in this embodiment may specifically include the following steps:
  • Step 401 Determine, according to the new service wavelength and the path of the existing service wavelength, and the structure of the optical network, the first power attenuation value of the power adjustment unit in the optical network related to the new service wavelength and the related service wavelength. A second power attenuation value of the power conditioning unit in the optical network.
  • an existing service wavelength exists in the optical network, and a new service wavelength is added.
  • the actual activation is performed.
  • the power attenuation value of the appropriate power adjustment unit after the new service wavelength is added to the optical network is obtained, and the optical network is configured according to the obtained power attenuation value.
  • the first power attenuation value of the power adjustment unit in the optical network related to the new service wavelength and the light related to the existing service wavelength are determined according to the path of the new service wavelength and the existing service wavelength and the structure of the optical network.
  • the second power attenuation value of the power adjustment unit in the network is determined by a similar method to the foregoing steps 101 and 201, and details are not described herein again.
  • Step 402 Calculate, according to the first power attenuation value and the second power attenuation value, a first performance parameter of the channel corresponding to the new service wavelength and a second performance parameter of the channel corresponding to the existing service wavelength.
  • the model of the optical network can be simulated, and the optical power of the channel corresponding to the new service wavelength can be obtained by analog calculation.
  • the optical power of the channel corresponding to the service wavelength is calculated, and the first performance parameter of the channel corresponding to the new service wavelength and the second performance parameter of the channel corresponding to the existing service wavelength are calculated.
  • the first performance parameter or the second performance parameter herein may be a combination of one or more of optical OSNR, OSNR margin, bit error rate, Q factor, and the like of each service wavelength.
  • Step 403 Determine whether the first performance parameter meets the first preset tolerance requirement and the flatness requirement, and determine whether the second performance parameter meets the second preset tolerance requirement and the flatness requirement, if the first determination result and the first If the result of the determination is yes, then the power attenuation value of the power adjustment unit associated with the new service wavelength is adjusted to reach the first power attenuation value.
  • the performance of the channel is evaluated according to the first performance parameter and the second performance parameter, that is, whether the first performance parameter of the channel corresponding to the new service wavelength satisfies the first A preset tolerance requirement and flatness requirement, whether the second performance parameter of the channel corresponding to the existing service wavelength satisfies the second preset tolerance requirement and the flatness requirement.
  • the first determination result is whether the first performance parameter meets the first preset tolerance requirement and the flatness requirement
  • the second determination result is whether the second performance parameter meets the second preset content. The judgment result of the requirement and the flatness requirement.
  • the first judgment result and the second judgment result are both yes, that is, the first performance parameter of the channel corresponding to the new service wavelength meets the preset tolerance requirement and the flatness requirement, and the channel corresponding to the existing service wavelength is
  • the performance parameter satisfies the second preset tolerance requirement and the flatness requirement
  • the power attenuation value of the power adjustment unit related to the new service wavelength is adjusted to reach the first power attenuation value.
  • the first preset tolerance requirement and the flatness requirement in this embodiment are preset requirements for ensuring the performance of the new service wavelength, which are related to the new service wavelength; the second preset tolerance requirement and the flatness requirement It is a pre-set requirement for ensuring the performance of existing service wavelengths after the new service wavelength is increased, which is related to the existing service wavelength.
  • the first preset tolerance requirement and the flatness requirement may be consistent with the second preset tolerance requirement and the flatness requirement, and the first preset tolerance requirement and the flatness requirement may also be the second preset tolerance.
  • Requirements and flatness requirements are inconsistent.
  • tolerance requirements It may be specifically whether the value of the performance parameter calculated once is greater than a preset performance parameter threshold, and the flatness requirement is whether the value of the performance parameter calculated multiple times tends to be stable, that is, whether the difference between them is less than a preset difference. Threshold.
  • the optical power adjustment method provided in this embodiment may further include the following steps: the determination result is one or more of the following: if the first determination result is no, and the second determination result is negative, then the first The power attenuation value is modified, and the performance parameter is recalculated until the calculated third performance parameter satisfies the first preset tolerance requirement and the flatness requirement, and the fourth performance parameter satisfies the second preset capacity. Limiting requirements and flatness requirements; obtaining a modified third power attenuation value, and adjusting a power attenuation value of the power conditioning unit related to the new service wavelength to reach the third power attenuation value.
  • the judgment result is one or more of the following: the first judgment result is no, and the second judgment result is no; the first power attenuation value may be modified, and the performance parameter is recalculated according to the modified power attenuation value. Until the calculated third performance parameter can meet the first preset tolerance requirement and the flatness requirement, and the fourth performance parameter can satisfy the second preset tolerance requirement and the flatness requirement.
  • the third performance parameter is related to the new service wavelength, and the fourth performance parameter is related to the existing service wavelength. At this time, the modified third power attenuation value is obtained, and then the power attenuation value of the power conditioning unit associated with the new service wavelength is adjusted to reach the third power attenuation value.
  • the optical power adjustment method provided in this embodiment may further include the following steps: the determination result is one or more of the following: if the first determination result is no, and the second determination result is negative, then Modifying the second power attenuation value, recalculating the performance parameter, until the calculated fifth performance parameter satisfies the first preset tolerance requirement and the flatness requirement, and the sixth performance parameter satisfies the second Predetermined tolerance requirements and flatness requirements; obtaining a modified fourth power attenuation value, and adjusting a power attenuation value of the power adjustment unit related to the existing service wavelength to reach the fourth power attenuation value.
  • the judgment result is one or more of the following: the first judgment result is no, and the second judgment result is no; then the second power attenuation value may be modified, and the performance parameter is recalculated according to the modified power attenuation value. Until the calculated fifth performance parameter can meet the first preset tolerance requirement and the flatness requirement, and the sixth performance parameter can satisfy the second preset tolerance requirement and the flatness requirement.
  • the fifth performance parameter is related to the new service wavelength, and the sixth performance parameter is related to the existing service wavelength.
  • the modified fourth power attenuation value is obtained, and then the power attenuation value of the power conditioning unit associated with the existing service wavelength is adjusted to reach the fourth power attenuation value.
  • the optical power adjustment method provided in this embodiment may further include the following steps: the determination result is one or more of the following: if the first determination result is no, and the second determination result is negative, then Modifying the first power attenuation value and the second power attenuation value, recalculating performance parameters, until the calculated seventh performance parameter meets the first preset tolerance requirement and flatness requirement, and the first The eight performance parameters satisfy the second preset tolerance requirement and the flatness requirement; acquiring the modified fifth power attenuation value and the sixth power attenuation value, and adjusting the power adjustment unit related to the new service wavelength And the power attenuation value reaches the fifth power attenuation value, and the power attenuation value of the power adjustment unit related to the existing service wavelength reaches the sixth power attenuation value.
  • the judgment result is one or more of the following: the first judgment result is no, and the second judgment result is no; then the first power attenuation value and the second power attenuation value may be modified, and according to the modified power
  • the attenuation value recalculates the performance parameter until the calculated seventh performance parameter satisfies the first preset tolerance requirement and the flatness requirement, and the eighth performance parameter can satisfy the second preset tolerance requirement and the flatness requirement.
  • the seventh performance parameter is related to the new service wavelength
  • the eighth performance parameter is related to the existing service wavelength.
  • the modified fifth power attenuation value and the sixth power attenuation value are obtained, and then the power attenuation value of the power adjustment unit related to the new service wavelength is adjusted to reach the fifth power attenuation value, and the existing service is The power attenuation value of the wavelength dependent power conditioning unit is adjusted to achieve a sixth power attenuation value.
  • This embodiment is directed to an application scenario in which a new service wavelength is added to an optical network, and an existing service wavelength exists in the optical network. Compared with the prior art, this embodiment does not rely on the performance detecting unit, and effectively reduces the network cost. Moreover, in this embodiment, the appropriate power attenuation value is determined by setting the empirical value or the iterative modification manner, so that the efficiency of adjusting the optical power is improved while ensuring that the performance of the service wavelength in the optical network satisfies the performance requirement. And precision.
  • FIG. 5 is a flowchart of Embodiment 4 of an optical power adjustment method according to the present invention.
  • this embodiment provides an optical power adjustment method
  • FIG. 6 is an optical network in Embodiment 4 of the optical power adjustment method according to the present invention.
  • the schematic diagram of the topological structure is as shown in FIG. 6.
  • the optical power adjustment method provided in this embodiment is specifically illustrated by using the scenario shown in FIG.
  • the network configuration in FIG. 6 is consistent with FIG. 3 above.
  • This example increases the opening of a new service wavelength on the basis of the foregoing embodiment 2, that is, three service wavelengths ⁇ 1 , ⁇ 2 , and ⁇ 3 have been opened in the optical network. Based on the above, the optical network is expanded, and the three service wavelengths ⁇ 4, ⁇ 5, and ⁇ 6 are newly opened.
  • Performance requirements include: The newly opened service wavelength cannot adversely affect the existing service performance.
  • the optical power adjustment method provided in this embodiment may specifically include the following steps: Step 501: Determine, according to a new service wavelength and a path of an existing service wavelength, and a structure of the optical network, a first power attenuation value of the power adjustment unit in the optical network related to the new service wavelength, and a network related to the existing service wavelength.
  • the second power attenuation value of the power conditioning unit This step is similar to the above step 401, and details are not described herein again.
  • Step 502 Acquire, according to the determined first power attenuation value and the second power attenuation value of the power adjustment unit in the optical network, respectively, the first optical power of the channel corresponding to the new service wavelength and the second optical power of the channel corresponding to the existing service wavelength.
  • the optical fiber parameters and the device parameters are obtained to obtain the first optical power of the channel corresponding to the new service wavelength and the second optical power of the channel corresponding to the existing service wavelength.
  • the foregoing units may specifically include an OTU, an M40V, a VOA, a WSD9, a WSM9, and an optical amplifier in an optical network.
  • the fiber parameters may be, for example, a fiber type and a fiber length
  • the device parameters may be, for example, an EDFA board type and a gain medium.
  • the optical network is expanded in the presence of an existing service wavelength (for example, the service wavelengths ⁇ 1 , ⁇ 2, and ⁇ 3 in FIG. 6), and a new service wavelength is added to the optical network (for example, The service wavelengths ⁇ 4, ⁇ 5, ⁇ 6 ) in FIG. 6 not only acquire the first optical power of the channel corresponding to the new service wavelength, but also obtain the corresponding service wavelength corresponding to the new service wavelength after the new service wavelength is turned on.
  • the second optical power of the channel After obtaining the first optical power and the second optical power, if the gain and the noise figure of the optical amplifier are known, the first optical signal-to-noise ratio of the channel corresponding to the new service wavelength can be calculated according to the existing service wavelength.
  • the second optical signal to noise ratio of the channel Therefore, in the present embodiment, for example, device modeling can be performed for an optical amplifier, and it can be assumed that the gain spectrum and the noise medium model of the optical amplifier are known, and the existing service is calculated according to the gain spectrum and the noise medium model of each optical amplifier.
  • Step 503 Determine whether the first optical signal to noise ratio satisfies the tolerance requirement of the first preset optical signal to noise ratio and the flatness requirement of the optical signal to noise ratio, and whether the second optical signal to noise ratio satisfies the second preset optical signal.
  • the tolerance requirement of the noise ratio and the flatness requirement of the optical signal to noise ratio if the determination result is yes, step 504 is performed, and if the determination result is no, step 505 is performed.
  • the first channel corresponding to the new service wavelength calculated in step 502 above The optical signal-to-noise ratio and the second optical signal-to-noise ratio of the channel corresponding to the existing service wavelength are used as performance parameters for evaluating the performance of the channel.
  • the tolerance of the optical signal-to-noise ratio associated with the new service wavelength and the existing service wavelength is preset to be not less than 15 dB and the flatness of the optical signal-to-noise ratio is less than ldB.
  • Step 504 adjusting a power attenuation value of the power adjustment unit related to the new service wavelength to reach the first power attenuation value.
  • the first optical signal to noise ratio of the channel corresponding to the new service wavelength obtained based on the first power attenuation value satisfies the tolerance requirement of the first preset optical signal to noise ratio and the flatness requirement of the optical signal to noise ratio
  • the second optical signal-to-noise ratio of the channel corresponding to the existing service wavelength obtained by the value satisfies the tolerance requirement of the second preset optical signal-to-noise ratio and the flatness requirement of the optical signal-to-noise ratio, and directly adjusts the power related to the new service wavelength.
  • the power attenuation value of the adjustment unit reaches a first power attenuation value.
  • the judgment result is one or more of the following: the first optical signal-to-noise ratio does not satisfy the tolerance requirement of the first preset optical signal-to-noise ratio and the flatness requirement of the optical signal-to-noise ratio, and the second optical signal-to-noise ratio Compared with the tolerance requirement of the optical signal to noise ratio of the second preset and the flatness requirement of the optical signal to noise ratio; the embodiment may modify the first power attenuation value, and may also modify the second power attenuation value.
  • the first power attenuation value and the second power attenuation value may be modified, and then the optical signal to noise ratio corresponding to the new service wavelength and the existing service wavelength is recalculated until the calculated new optical signal to noise of the channel corresponding to the new service wavelength is calculated.
  • the new optical signal-to-noise ratio of the channel corresponding to the existing service wavelength satisfies the second preset tolerance requirement and flatness requirement; the modified power attenuation is obtained, which satisfies the first preset tolerance requirement and the flatness requirement.
  • the modified power attenuation value performing the following corresponding adjustments: adjusting the power attenuation value of the power adjustment unit related to the new service wavelength to the modified power attenuation value adjustment, or Adjusting the power attenuation value of the power adjustment unit related to the existing service wavelength to the modified power attenuation value adjustment, or separately adjusting the power attenuation value of the power adjustment unit related to the new service wavelength and the existing service wavelength to the modified power Attenuation value adjustment.
  • the optical signal to noise ratio corresponding to the new service wavelength and the existing service wavelength is recalculated according to the modified power attenuation value, and then the recalculation is continued.
  • the optical signal-to-noise ratio of the channel corresponding to the new service wavelength can meet the tolerance requirement of the first preset optical signal-to-noise ratio and the flatness requirement of the optical signal-to-noise ratio, and the optical signal of the channel corresponding to the recalculated existing service wavelength
  • the noise ratio can meet the tolerance requirement of the second preset optical signal to noise ratio and the flatness requirement of the optical signal to noise ratio; if one of the noise ratios is not satisfied, continue to return the power attenuation value of the power adjustment unit corresponding to the new service wavelength.
  • the fourth optical signal-to-noise ratio can satisfy the tolerance requirement of the second preset optical signal-to-noise ratio and the flatness requirement of the optical signal-to-noise ratio.
  • the third optical signal to noise ratio is related to the new service wavelength
  • the fourth optical signal to noise ratio is related to the existing service wavelength.
  • the optical signal to noise ratio corresponding to the new service wavelength and the existing service wavelength is recalculated according to the modified power attenuation value, and then the new recalculated value is continuously determined.
  • the optical signal-to-noise ratio of the channel corresponding to the service wavelength can meet the tolerance requirement of the first preset optical signal-to-noise ratio and the flatness requirement of the optical signal-to-noise ratio, and the optical signal-to-noise of the channel corresponding to the recalculated existing service wavelength Whether the ratio can meet the tolerance requirement of the second preset optical signal-to-noise ratio and the flatness requirement of the optical signal-to-noise ratio; if one of the requirements is not satisfied, continue to return the power attenuation value of the power adjustment unit corresponding to the existing service wavelength.
  • the sixth optical signal-to-noise ratio can satisfy the second preset light.
  • the fifth optical signal to noise ratio is related to the new service wavelength
  • the sixth optical signal to noise ratio is related to the existing service wave.
  • the new service wavelength and the existing service are recalculated according to the modified power attenuation value.
  • the optical signal to noise ratio corresponding to the wavelength and then continue to determine whether the optical signal to noise ratio of the channel corresponding to the recalculated new service wavelength can meet the tolerance requirement of the first preset optical signal to noise ratio and the flatness requirement of the optical signal to noise ratio.
  • optical signal to noise ratio of the channel corresponding to the recalculated existing service wavelength can meet the tolerance requirement of the second preset optical signal to noise ratio and the flatness requirement of the optical signal to noise ratio; if one of the channels is not satisfied, continue Returning to modify the power attenuation value of the power adjustment unit corresponding to the new service wavelength and the power attenuation value of the power adjustment unit corresponding to the existing service wavelength, until the calculated seventh optical signal to noise ratio can satisfy the first preset optical signal to noise ratio
  • the tolerance requirement and the flatness requirement of the optical signal to noise ratio, and the eighth optical signal to noise ratio can satisfy the tolerance of the second preset optical signal to noise ratio and the flatness of the optical signal to noise ratio Too demanded.
  • the seventh optical signal to noise ratio is related to the new service wavelength
  • the eighth optical signal to noise ratio is related to the existing service wavelength.
  • the fifth power attenuation value and the sixth power attenuation value obtained after the modification are obtained.
  • the fifth power attenuation value and the new The service wavelength is related
  • the sixth power attenuation value is related to the existing service wavelength
  • the power attenuation value of the power adjustment unit related to the new service wavelength is adjusted to reach the fifth power attenuation value, and the power related to the existing service wavelength is used.
  • the power attenuation value of the adjustment unit is adjusted to reach the sixth power attenuation value.
  • the above iterative process can also be adopted to obtain the power attenuation value corresponding to the required optical signal to noise ratio, thereby realizing the adjustment of the optical power.
  • This embodiment is directed to an application scenario in which a new service wavelength is added to an optical network, and an existing service wavelength exists in the optical network. Compared with the prior art, this embodiment does not rely on the performance detecting unit, and effectively reduces the network cost. Moreover, in this embodiment, the appropriate power attenuation value is determined by setting the empirical value or the iterative modification manner, so that the efficiency of adjusting the optical power is improved while ensuring that the performance of the service wavelength in the optical network satisfies the performance requirement. And precision.
  • FIG. 7 is a structural diagram of Embodiment 1 of an optical power adjustment apparatus according to the present invention.
  • the embodiment provides an optical power adjustment apparatus.
  • the optical power adjustment apparatus provided in this embodiment is located in an optical network.
  • a new service wavelength is added to the optical network, and the existing service wavelength is not present in the optical network.
  • the specific determination module 701, the first calculation module 702, the first determination module 703, and the first adjustment module 704 are specifically included.
  • the first determining module 701 is configured to determine, according to the path of the new service wavelength and the structure of the optical network, a first power attenuation value of a power adjustment unit in the optical network related to the new service wavelength.
  • the first calculating module 702 is configured to calculate a performance parameter of the channel corresponding to the new service wavelength according to the first power attenuation value.
  • the first determining module 703 is configured to determine whether the performance parameter of the channel corresponding to the new service wavelength meets a preset tolerance requirement and a flatness requirement.
  • the first adjustment module 704 is configured to adjust, if the determination result of the first determining module 703 is YES, the power attenuation value of the power adjustment unit related to the new service wavelength to reach the first power attenuation value.
  • the optical power adjustment device of the present embodiment has the same processing mechanism for implementing the optical power adjustment by using the above module, and the implementation process of the first embodiment is the same. The description of the embodiments will not be repeated here.
  • FIG. 8 is a structural diagram of Embodiment 2 of the optical power adjustment apparatus of the present invention.
  • the embodiment provides an optical power adjustment apparatus.
  • the optical power adjustment apparatus provided in this embodiment is shown in FIG.
  • the first modification module 801 is further configured to include a first modification module 801, and the first modification module 801 is configured to use the first determination module 703 to determine whether the first power attenuation value is modified.
  • the first calculation module 702 is further configured to recalculate the performance parameters until the calculated new performance parameters meet the predetermined tolerance requirements and flatness requirements.
  • the first determining module 701 is further configured to obtain the modified second power attenuation value.
  • the first adjustment module 704 is further configured to adjust a power attenuation value of the power adjustment unit associated with the new service wavelength to the second power attenuation value.
  • the performance parameters in this embodiment may include one or more of the following: optical signal to noise ratio, optical signal to noise ratio margin, bit error rate, and Q factor.
  • the performance parameters in this embodiment include an optical signal to noise ratio.
  • the first calculation module 702 is specifically configured to acquire optical power of the channel corresponding to the new service wavelength according to the first power attenuation value, and calculate according to the optical power and the gain and noise index of the optical amplifier in the optical network.
  • the first determining module 703 is specifically configured to determine whether the optical signal to noise ratio satisfies a preset optical signal to noise ratio tolerance requirement and an optical signal to noise ratio flatness requirement.
  • optical power adjustment apparatus of the present embodiment is the same as the implementation process of the first embodiment and the second embodiment of the foregoing method, and the details of the implementation of the foregoing method embodiments are omitted.
  • This embodiment is directed to an application scenario in which a new service wavelength is added to an optical network, and an existing service wavelength does not exist in the optical network. Compared with the prior art, this embodiment does not rely on the performance detecting unit, and effectively reduces the network cost. Moreover, in this embodiment, the appropriate power attenuation value is determined by setting the empirical value or the iterative modification manner, so that the efficiency of adjusting the optical power is improved while ensuring that the performance of the service wavelength in the optical network satisfies the performance requirement. And precision.
  • FIG. 9 is a structural diagram of Embodiment 3 of the optical power adjustment apparatus of the present invention.
  • the embodiment provides an optical power adjustment apparatus.
  • the optical power adjustment apparatus provided in this embodiment is specifically located in an optical network.
  • a new service wavelength is added to the optical network, and an existing service wavelength exists in the optical network, which may include a second determining module 901, a second calculating module 902, a second determining module 903, and a second adjusting module 904.
  • the second determining module 901 is configured to determine, according to the new service wavelength and the path of the existing service wavelength and the structure of the optical network, the new service.
  • the second calculating module 902 is configured to calculate, according to the first power attenuation value and the second power attenuation value, a first performance parameter of the channel corresponding to the new service wavelength and a channel corresponding to the existing service wavelength.
  • the second determining module 903 is configured to determine whether the first performance parameter meets the first preset tolerance requirement and the flatness requirement, and determine whether the second performance parameter meets the second preset tolerance requirement and the flatness requirement. .
  • the second adjustment module 904 is configured to: if the first determination result and the second determination result of the second determining module 903 are both yes, adjust a power attenuation value of the power adjustment unit related to the new service wavelength to reach the first A power attenuation value.
  • optical power adjustment device of the present embodiment is the same as the implementation process of the third embodiment of the foregoing method. The detailed description of the embodiment of the method is not described herein.
  • the second modification module 1001 may further include a second modification module 1001, where the determination result of the second determination module 903 is one or more of the following: the first determination result is no, the first If the result of the determination is no, the first power attenuation value is modified.
  • the second calculation module 902 is further configured to recalculate the performance parameter until the calculated third performance parameter satisfies the first preset tolerance requirement and the flatness requirement, and the fourth performance parameter satisfies the second preset Tolerance requirements and flatness requirements.
  • the second determining module 901 is further configured to obtain the modified third power attenuation value.
  • the second adjustment module 904 is further configured to adjust a power attenuation value of the power adjustment unit associated with the new service wavelength to the third power attenuation value.
  • the optical power adjustment apparatus provided in this embodiment may further include a third modification module 1002, where the third modification module 1002 is used by the second determination module 903 to determine one or more of the following: If the determination result is no, the second determination result is no, and the second power attenuation value is modified.
  • the second calculating module 902 is further configured to recalculate the performance parameter, until the calculated fifth performance parameter satisfies the first preset tolerance requirement and the flatness requirement, and the sixth performance parameter satisfies the second preset Tolerance requirements and flatness requirements.
  • the second determining module 901 is further configured to obtain the modified fourth power attenuation value.
  • the second adjustment module 904 is further configured to adjust a power attenuation value of the power adjustment unit related to the existing service wavelength to reach the fourth power attenuation value.
  • the optical power adjustment apparatus provided in this embodiment may further include a fourth modification module.
  • the fourth modification module 1003 is used by the second determining module 903 to determine one or more of the following: the first determining result is no, the second determining result is no, and the first determining The power attenuation value and the second power attenuation value are modified.
  • the second calculating module 902 is further configured to recalculate the performance parameter until the calculated seventh performance parameter satisfies the first preset tolerance requirement and the flatness requirement, and the eighth performance parameter satisfies the second preset Tolerance requirements and flatness requirements.
  • the second determining module 901 is further configured to obtain the modified fifth power attenuation value and the sixth power attenuation value.
  • the second adjustment module 904 is further configured to adjust a power attenuation value of the power adjustment unit related to the new service wavelength to reach the fifth power attenuation value, and the power adjustment unit related to the existing service wavelength The power attenuation value reaches the sixth power attenuation value.
  • the performance parameters in this embodiment may include one or more of the following: optical signal to noise ratio, optical signal to noise ratio margin, bit error rate, and Q factor.
  • the performance parameter in this embodiment specifically includes an optical signal to noise ratio.
  • the second calculation module 902 is specifically configured to separately acquire the new service wavelength according to the first power attenuation value and the second power attenuation value. a first optical power of the corresponding channel and a second optical power of the channel corresponding to the existing service wavelength, according to the first optical power, the second optical power, and an optical amplifier to the service wavelength in the optical network The gain and noise figure, the first optical signal to noise ratio of the channel corresponding to the new service wavelength and the second optical signal to noise ratio of the channel corresponding to the existing service wavelength are calculated.
  • the second determining module 903 may specifically include a first determining submodule 913 and a second determining submodule 923.
  • the first determining sub-module 913 is configured to determine whether the first optical signal to noise ratio satisfies the tolerance requirement of the first preset optical signal to noise ratio and the flatness requirement of the optical signal to noise ratio.
  • the second determining sub-module 923 is configured to determine whether the second optical signal-to-noise ratio satisfies the tolerance requirement of the second preset optical signal-to-noise ratio and the flatness requirement of the optical signal-to-noise ratio.
  • optical power adjustment device of the present embodiment is the same as the implementation process of the third and fourth embodiments of the foregoing method, and the details of the implementation of the foregoing method embodiments are not described herein.
  • This embodiment is directed to an application scenario in which a new service wavelength is added to an optical network, and an existing service wavelength exists in the optical network. Compared with the prior art, this embodiment does not rely on the performance detecting unit, and effectively reduces the network cost. Moreover, in this embodiment, the appropriate power attenuation value is determined by setting the empirical value or the iterative modification manner, so that the efficiency of adjusting the optical power is improved while ensuring that the performance of the service wavelength in the optical network satisfies the performance requirement. And precision.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as the cells may or may not be physical units, ie may be located in one Places, or they can be distributed to at least two network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without deliberate labor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Description

光功率调节方法和装置
技术领域
本发明实施例涉及通信技术, 尤其涉及一种光功率调节方法和装置。 背景技术
在光网络波分复用系统中, 光纤、 器件等对不同频率的波长的物理效 应不同, 如掺铒光纤放大器(Erbium Doped Fiber Amplifier; 以下简称: EDFA )的增益随波长的变化而改变, 光纤的衰耗也随不同波长而改变。 因 此, 业务波长经过系统传输后, 不同通道的性能会变得不再均衡, 从而造 成接收信号质量不理想。 同时, 增加新波长或者调节网络中已有波长的功 率大小也会对其它波长的性能产生影响, 从而导致网络中部分业务波长的 接收信号的质量下降。 因此, 为了保证业务波长的信号质量要求, 需要对 网络中光参数进行合理的设置。
现有技术中通常采用反馈式的调节方式, 在波分复用系统的接收端或 者某个中间节点上设置性能检测单元, 通过性能检测单元的检测结果来进 行光功率的调节。 调节方式通常采取步进调节方式, 即每次调节一小步, 便通过性能检测单元获取检测结果, 根据检测结果判断本次调节是否到位 或者是否出现性能劣化, 直到达到调测目标或者根据检测结果完成调测为 止。
上述现有技术方案存在的问题至少包括: 现有技术需要依赖于性能检 测单元, 而性能检测单元通常导致网络成本的增加, 且步进调节方式可能 导致调测效率和准确性低下。 发明内容
本发明的技术方案在于提供了一种光功率调节方法和装置, 降低网络 成本, 提高光功率调节的效率和精度。
本发明的一方面提供了一种光功率调节方法, 在光网络中增加新业务 波长, 且所述光网络中不存在已有业务波长, 该方法包括:
根据所述新业务波长的路径和所述光网络的结构, 确定与所述新业务 波长相关的所述光网络中的功率调节单元的第一功率衰减值; 根据所述第一功率衰减值计算出所述新业务波长对应的通道的性能参 数; 判断所述新业务波长对应的通道的性能参数是否满足预设的容限要求 和平坦度要求, 若判断结果为是, 则调节与所述新业务波长相关的所述功 率调节单元的功率衰减值达到所述第一功率衰减值。
本发明的另一方面提供了另一种光功率调节方法, 在光网络中增加新 业务波长, 且所述光网络中存在已有业务波长, 该方法包括:
根据所述新业务波长和所述已有业务波长的路径及所述光网络的结 构, 确定与所述新业务波长相关的所述光网络中的功率调节单元的第一功 率衰减值和与所述已有业务波长相关的所述光网络中的功率调节单元的第 二功率衰减值;
根据所述第一功率衰减值和所述第二功率衰减值, 分别计算出所述新 业务波长对应的通道的第一性能参数及所述已有业务波长对应的通道的第 二性能参数, 判断所述第一性能参数是否满足第一预设的容限要求和平坦 度要求 , 判断所述第二性能参数是否满足第二预设的容限要求和平坦度要 求, 若第一判断结果和第二判断结果都为是, 则调节与所述新业务波长相 关的所述功率调节单元的功率衰减值达到所述第一功率衰减值。
本发明的另一方面提供了一种光功率调节装置, 该装置位于光网络内, 所述光网络中增加新业务波长, 且所述光网络中不存在已有业务波长, 该 装置包括:
第一确定模块, 用于根据所述新业务波长的路径和所述光网络的结构, 确定与所述新业务波长相关的所述光网络中的功率调节单元的第一功率衰 减值;
第一计算模块, 用于根据所述第一功率衰减值计算出所述新业务波长 对应的通道的性能参数;
第一判断模块, 用于判断所述新业务波长对应的通道的性能参数是否 满足预设的容限要求和平坦度要求;
第一调节模块, 用于若所述第一判断模块的判断结果为是, 则调节与 所述新业务波长相关的所述功率调节单元的功率衰减值达到所述第一功率 衰减值。
本发明的另一方面提供了另一种光功率调节装置, 该装置位于光网络 内, 所述光网络中增加新业务波长, 且所述光网络中存在已有业务波长, 该装置包括:
第二确定模块, 用于根据所述新业务波长和所述已有业务波长的路径 及所述光网络的结构, 确定与所述;
第二计算模块, 用于根据所述第一功率衰减值和所述第二功率衰减值, 分别计算出所述新业务波长对应的通道的第一性能参数及所述已有业务波 长对应的通道的第二性能参数;
第二判断模块, 用于判断所述第一性能参数是否满足第一预设的容限 要求和平坦度要求 , 判断所述第二性能参数是否满足第二预设的容限要求 和平坦度要求;
第二调节模块, 用于若所述第二判断模块的第一判断结果和第二判断 结果都为是, 则调节与所述新业务波长相关的所述功率调节单元的功率衰 减值达到所述第一功率衰减值。
本发明的技术方案提供的一种光功率调节方法和装置, 根据确定的功 率衰减值计算出业务波长对应的通道的性能参数, 若所述性能参数满足预 设的容限要求和平坦度要求, 则调节功率调节单元的功率衰减值达到所述 确定的功率衰减值。 该技术方案与现有技术相比, 不依赖于性能检测单元, 有效地降低网络成本; 并且, 由于该技术方案确定了合适的功率衰减值, 所以在保证光网络中业务波长的性能满足性能要求的同时, 提高了调节光 功率的效率和精度。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其它的附图。
图 1为本发明光功率调节方法实施例一的流程图;
图 2为本发明光功率调节方法实施例二的流程图;
图 3为本发明光功率调节方法实施例二中的光网络的拓朴结构示意图; 图 4为本发明光功率调节方法实施例三的流程图;
图 5为本发明光功率调节方法实施例四的流程图; 图 7为本发明光功率调节装置实施例一的结构图;
图 8为本发明光功率调节装置实施例二的结构图;
图 9为本发明光功率调节装置实施例三的结构图;
图 10为本发明光功率调节装置实施例四的结构图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其它实施例, 都属于本发明保护的范围。
图 1为本发明光功率调节方法实施例一的流程图, 如图 1所示, 本实 施例提供了一种光功率调节方法, 本实施例应用于: 在光网络中增加新业 务波长, 且该光网络中不存在已有业务波长。 本实施例提供的光功率调节 方法可以具体包括如下步骤:
步骤 101 ,根据新业务波长的路径和光网络的结构,确定与新业务波长 相关的光网络中的功率调节单元的第一功率衰减值。
在本实施例中, 光网络中增加新业务波长, 且不存在已有业务波长, 为了保证在光网络中增加新业务波长后的信号质量符合要求, 在实际开通 该新业务波长之前, 需要先获取合适的功率调节单元的功率衰减值, 根据 获取的功率衰减值来配置光网络。 此处的功率调节单元可以具体包括光网 络中 40波可调光衰减合波板 ( 40-channel multiplexing board with VOA; 以 下简称: M40V )、 9端口波长选择性倒换分波板 ( 9-port wavelength selective switching demultiplexing board; 以下简称: WSD9 )、 9端口波长选择性倒换 合波板 ( 9-port wavelength selective switching multiplexing board; 以下简称: WSM9 )。
本步骤为根据新业务波长的路径和光网络的结构, 确定与该新业务波 长相关的光网络中功率调节单元的第一功率衰减值。 对于单个通道的光功 率调节来说,光网络中的功率调节单元可以包括下述的一种或多种: M40V、 WSD9和 WSM9, 此处确定功率调节单元的第一功率衰减值可以具体为确 定 M40V对新业务波长的功率衰减值,以及 WSD9和 WSM9对新业务波长 的功率衰减值。 本实施例中的功率调节单元的第一功率衰减值可以设定为 任意值, 也可以设定为经验值, 如果是一个合适的经验值, 则可以减少后 续的迭代次数, 提高效率。 具体地, 可以根据新业务波长在光网络中经过 的路径和光网络的结构来确定该第一功率衰减值; 新业务波长在光网络中 的路径可以表现为新业务波长工作在光网络中时其传输的业务信号从输入 到输出所经过的站点, 通常一个或多个站点可以组成光网络, 每个站点可 以根据需要设置各类型单元, 可以在一个或多个站点上设置功率调节单元, 不同的站点设置的功率调节单元可以不同。 先依照经验设定与功率调节单 元相连的其它单元的参数, 该参数可以包括下述的一种或多种: 输入光功 率、 输出光功率、 单通道插损, 通过它们之间的输入输出连接关系来获取 功率调节单元的第一功率衰减值。 例如, 在一个站点上, 一个功率调节单 元的输入端连接单元 1 , 其输出端连接单元 2, 当设定单元 1的输出光功率 以及单元 2 的输入光功率之后, 便可以很容易得到该功率调节单元的第一 功率衰减值, 即满足以下条件: 单元 1的输出光功率-功率调节单元的第一 功率衰减值 =单元 2的输入光功率。
步骤 102,根据所述第一功率衰减值计算出所述新业务波长对应的通道 的性能参数。
本步骤具体为根据确定的功率调节单元的第一功率衰减值来计算光网 络中新业务波长对应的通道的性能参数, 在不同的实际情况下, 本实施例
Figure imgf000007_0001
种或多种: M40V、 WSD9、
WSM9。 在本步骤中, 在功率调节单元的第一功率衰减值确定之后, 则可以 模拟出光网络的模型, 通过模拟计算的方式可以得到新业务波长对应的通 道的光功率, 进而对新业务波长对应的通道的性能参数进行计算。 此处的 性能参数可以为业务波长的光信噪比( Optical Signal Noise Rate; 以下简称: OSNR )、 OSNR余量、 误码率、 Q因子等中的一种或者多种的组合。
步骤 103 ,判断所述新业务波长对应的通道的性能参数是否满足预设的 容限要求和平坦度要求, 若判断结果为是, 则调节与所述新业务波长相关 的所述功率调节单元的功率衰减值达到所述第一功率衰减值。
在通过上述步骤计算得到新业务波长对应的通道的性能参数后, 根据 该性能参数对通道的性能进行评估, 即判断新业务波长对应的通道的性能 参数是否满足预设的容限要求和平坦度要求; 如果判断结果为是, 即新业 务波长对应的通道的性能参数满足预设的容限要求和平坦度要求,则调节与 新业务波长相关的所述功率调节单元的功率衰减值, 以使其达到第一功率 衰减值。 其中, 容限要求可以具体为一次计算的性能参数的值是否大于预 设的性能参数门限值, 平坦度要求为多次计算的性能参数的值是否趋于稳 定, 即它们之间的差异是否小于预设的差异门限。
进一步地, 本实施例提供的光功率调节方法还可以包括如下步骤: 若 判断结果为否, 则对所述第一功率衰减值进行修改, 重新计算性能参数, 直至计算得到的新的性能参数满足所述预设的容限要求和平坦度要求; 获 取修改后的第二功率衰减值, 则调节与所述新业务波长相关的所述功率调 节单元的功率衰减值达到所述第二功率衰减值。 若根据第一功率衰减值计 算得到的新业务波长对应的通道的性能参数不能满足预设的容限要求和平 坦度要求, 则对该第一功率衰减值进行修改, 根据修改后的功率衰减值重 新计算性能参数, 然后继续判断重新计算的性能参数是否能满足容限要求 和平坦度要求, 直到计算得到的新的性能参数能够满足容限要求和平坦度 要求为止。 此时, 获取修改后的第二功率衰减值, 该第二功率衰减值对应 的新的性能参数满足容限要求和平坦度要求, 然后调节与新业务波长相关 的功率调节单元的功率衰减值, 以使其达到第二功率衰减值。
本实施例可以通过迭代修改的方式来获取满足容限要求和平坦度要求 的性能参数对应的第二功率衰减值, 然后调节功率调节单元的功率衰减值 达到第二功率衰减值。 对于功率衰减值的修改, 通常可以依据经验或采用 启发式算法确定修改的尺度。 对于新业务波长的路径, 该路径存在多个功 率调节单元, 可以选择对所有功率调节单元进行调节, 那么, 根据本实施 例的方法得分别获取每个功率调节单元所需调节的功率衰减值; 也可以选 择对其中一个或多个功率调节单元进行调节, 那么, 根据本实施例的方法 得获取一个或多个功率调节单元所需调节的功率衰减值。
本实施例针对的是在光网络中增加新业务波长、 且光网络中不存在已 有业务波长的应用场景。 本实施例与现有技术相比, 不依赖于性能检测单 元, 有效地降低网络成本。 并且, 在本实施例中, 通过设定经验值的方式 或者迭代修改的方式确定合适的功率衰减值, 所以在保证光网络中业务波 长的性能满足性能要求的同时, 提高了调节光功率的效率和精度。
图 2为本发明光功率调节方法实施例二的流程图, 如图 2所示, 本实 施例提供了一种光功率调节方法, 图 3 为本发明光功率调节方法实施例二 中的光网络的拓朴结构示意图, 如图 3 所示, 本实施例提供的光功率调节 方法具体以图 3 所示的场景为例进行说明, 主要为在初始状态下新业务波 长的场景, 图 3中的数字标号 1、 2、 3、 4、 5、 6所代表的为光放大器, 光 放大器用于完成光信号的放大功能。 如图 3所示, A、 B、 C、 D、 E是五个 站点, 其中, 站点 B和 D为光线路放大(Optical Line Amplifier; 以下简称: OLA )站点, 站点 A和 E为光终端复用 (Optical Terminal Multiplexer; 以 下简称: OTM)站点,站点 C为可重构光分插复用设^ Reconfigurable Optical Add-Drop Multiplexer; 以下简称: ROADM )站点。 a、 b、 c、 d表示不同 站点之间的光纤连接, 此处设定的光纤长度均为 80km。 在站点 A中, 主要 包括光波长转换类单板 ( Optical Transponder Unit; 以下简称: OTU )、 可变 光衰减板(Variable Optical Attenuator; 以下简称: VOA )、 M40V和 1号光 放大器。 其中, 需要传输的业务信号从 OTU接入, 转换成符合 WDM系统 要求的标准波长光信号。 M40V实现将最多 40路符合 WDM系统要求的标 准波长光信号复用为 1 路合波信号, 并且可以调节各通道的输入光功率。 VOA可实现对输入光信号的总光功率的调节。 站点 B包括 VOA和 2号光 放大器。 站点 C包括 VOA、 WSD9、 WSM9和 3号光放大器、 4号光放大 器。 其中, WSD9和 WSM9配合使用, 实现在 WDM网络节点中的波长调 度, 并且每块单板均可以调节各通道的输出光功率。 站点 D包括 VOA和 5 号光放大器。 站点 E包括 VOA、 40波分波板 ( 40-channel demultiplexing board; 以下简称: D40 )、 OTU和 6号光放大器。 D40用于实现将 1路光信 号解复用为最多 40路符合 WDM系统要求的标准波长光信号。
在本实施例中, 假设用户需要开通三条新业务波长, 分别是业务波长 λ 1、 λ 2、 λ 3 , 经过的路径为 A-B-C-D-E。 业务波长 λ 1、 λ 2、 λ 3的具 体路径将是:业务信号通过 Α站点的三块 OTU单板接入, 经过 M40V复用 成一路信号, 复用时每个通道的信号光功率可以通过 M40V修改, 然后, 经过 1号光放大器进行信号放大,信号放大之前可以通过 VOA调节总光功 率大小; 然后信号经过长纤 a传输到达站点 B,信号经过长纤传输后光功率 会下降, 经过站点 B的 2号光放大器进行信号放大, 同样, 放大之前可以 通过 VOA调节总光功率的大小; 然后, 信号经过长纤传输后达到站点 C, 信号在站点 C经过放大后通过 WSD9和 WSM9进行波长选择,在进行波长 选择时,可以对每个通道的光功率进行调节,信号放大之前也可以通过 VOA 调节总光功率大小; 然后信号通过 4号光放大器放大后传输到站点 D,然后 到达站点 E, 信号放大之前可以通过 VOA调节总光功率大小; 在站点 E通 过 D40将解复用成 3路波长信号分别到三块 OTU单板进行接收,信号放大 之前也可以通过 VOA调节总光功率大小。
通常, 信号的调节可以分为线路的总光功率调节和与业务波长对应的 单个通道的光功率调节, 总光功率的调节通过图示的 VOA单元进行调节, 单个通道的光功率调节,可以通过图 3中所示的 M40V、 WSD9以及 WSM9 进行调节。 线路的总光功率调节和单个通道的光功率调节过程可以顺序调 节也可以是循环调节, 就是说, 可以先调节线路的总光功率, 再调节单个 通道的光功率。 也可以先调节线路的总光功率, 再调节单个通道的光功率, 然后再优化线路的总光功率和单个通道的光功率。 其中, 线路的总光功率 的调节属于现有技术, 比较容易操作, 本专利不再赘述, 此处重点对单个 通道的光功率调节进行说明。
具体地, 本实施例提供的光功率调节方法可以具体包括如下步骤: 步骤 201 ,根据新业务波长的路径和光网络的结构,确定与新业务波长 相关的光网络中的功率调节单元的第一功率衰减值。
继续参照上述图 3 ,经过上述分析可知,对于单个通道的功率调节来说, 光网络中的功率调节单元包括站点 A中的 M40V以及站点 C中的 WSD9和 WSM9, 各功率调节单元的调节值分别为 M40V对与业务波长 λ 1、 λ 2、 λ 3对应的三个通道的功率衰减值,以及 WSD9和 WSM9对与业务波长 λ 1、 λ 2、 λ 3对应的三个通道的功率衰减值。 本步骤中功率调节单元的第一功 率衰减值根据新业务波长的路径和光网络的结构来确定。 与步骤 101 类似 于站点 Α来说, 当合波功率调节点的调节值确定之后, VOA的调节值的大 小已知, 本实施例中可以假设 VOA的调节值为 5dB。 假设 1号光放大器的 单波典型输入光功率也已知, 假设为 -19dBm; M40V 的单个通道插损值也 可以提前获取到, 假设为 6dB; OTU单板的发送光功率也是已知, 假设为 -2dBm, 则 M40V对与业务波长 λ 1、 λ 2、 λ 3对应的三个通道的功率衰减 值可以按照如下公式计算: OTU单板的发送光功率 -M40V的第一功率衰减 值 -M40V的单个通道插损值 -VOA的调节值 =1号光放大器的单波典型输入 光功率, 即 -2- M40V的第一功率衰减值 -6-5=-19, 因此得到 M40V对业务 波长 λ 1、 λ 2、 λ 3的第一功率衰减值均为 6dB。 对于站点 C来说, 设置在 4号光放大器之前的 VOA的调节值在合波调测完之后已确定,假设为 3dB; 假设 3号光放大器的单波典型输出光功率为 +ldBm, 假设 4号光放大器的 单波典型输入光功率为 -19dBm,假设 WSD9和 WSM9单板的单个通道插损 值也可以提前获取到, 假设为 6dB, 则 WSD9和 WSM9单板对与业务波长 λ 1、 λ 2、 λ 3对应的三个通道的功率衰减值可以按照如下公式计算: 3号 光放大器的单波典型输出光功率- ( WSD9和 WSM9单板的第一功率衰减值) - ( WSD9和 WSM9单板的单个通道插损值 ) -VOA的调节值 =4号光放大器 的单波典型输入光功率, 即 +1- ( WSD9和 WSM9单板的第一功率衰减值) -6-6-3=-19, 因此得到 WSD9和 WSM9单板对业务波长 λ 1、 λ 2、 λ 3的第 一功率衰减值均为 5dB。 其中, WSD9和 WSM9可以平均或者按照一定比 例分担该第一功率衰减值, 例如, 此处可以将 WSD9对业务波长 λ 1、 λ 2、 λ 3的第一功率衰减值均设置为 5dB, 将 WSM9对业务波长 λ 1、 λ 2、 λ 3 的第一功率衰减值均设置为 0dB。
步骤 202,根据确定的光网络中功率调节单元的第一功率衰减值获取新 业务波长对应的通道的光功率, 根据新业务波长对应的通道的光功率以及 光网络中的光放大器的增益和噪声指数, 计算新业务波长对应的通道的光 信噪比。
在通过上述步骤获取到光网络中功率调节单元的第一功率衰减值后, 根据光网络中各单元的位置关系, 以及各输入的业务波长的路径、 业务波 长的频率、 业务波长所经过的光纤参数和器件参数等, 来获取各新业务波 长对应的通道的光功率。其中, 上述各单元可以具体包括光网络中的 OTU、 M40V、 VOA、 WSD9、 WSM9、 光放大器, 光纤参数例如可以为光纤类型 和光纤长度, 器件参数例如可以为 EDFA单板的类型和增益谱。 当获取到 各新业务波长对应的通道的光功率后, 若已知光放大器对不同业务波长的 增益和噪声指数, 则可以以此计算各新业务波长对应的通道的光信噪比 , 此处具体可以采用现有的光信噪比的计算方法来得到光信噪比。 其中, 光 放大器的增益和噪声指数可以通过各种方式获取, 例如可以针对光放大器 进行器件建模, 在已知某个参考增益谱和噪声谱的情况下, 便能计算出特 定功率下的增益和噪声指数。 由此, 在本实施例中, 可以假设光放大器的 增益谱和噪声媒模型为已知, 根据该增益谱和噪声媒模型计算业务波长 λ 1、 λ 2、 λ 3对应的三个通道的光信噪比。
需要指出的是, 本实施例以 OSNR作为性能参数为例对本发明方案进 行说明, 本领域技术人员可以理解, 还可以采用 OSNR余量、 误码率、 Q 因子等中的一种, 或者 OSNR、 OSNR余量、 误码率、 Q因子等多种的组合 作为性能参数, 方法与 OSNR类似, 此处不再赘述, 以下对 OSNR余量、 误码率、 Q因子的计算方法来进行简单的说明。 其中, 对于 OSNR余量来 说, 可以根据确定的功率衰减值获取新业务波长对应的通道的光功率, 根 据与新业务波长的路径相关的器件参数、 光纤类型、 各通道的码型和残余 色散等参数, 以及考虑各种线性物理损伤和非线性物理损伤, 分别计算出 各新业务对应的 OSNR代价。 其中, 线性损伤可以包括如下因素的一种或 者多种: 色度色散( Chromatic Dispersion ; 以下简称: CD )、 偏振模色散 (Polarization Mode Dispersion; 以下简称: PMD )、 串扰( Crosstalk; 以下简 称: Xtalk )和滤波器级联; 非线性损伤可以包括如下因素的一种或者多种: 自相位调制 ( Self Phase Modulation; 以下简称: SPM )、 交叉相位调制 ( Cross-Phase Modulation; 以下简称: XPM )、四波混频( Four- Wave Mixing; 以下简称: FWM )、 受激布里渊散射(Stimulated Brillouin Scattering; 以下 简称: SBS )和受激拉曼散射 ( Stimulated Raman Scattering; 以下简称: SRS )。在计算得到 OSNR代价后,通过 OSNR代价和 OSNR可进一步得到 OSNR余量。 类似地, 通过上述参数, 也可以计算出误码率以及 Q因子, 从而以误码率或者 Q因子作为衡量业务性能好坏的参数。
步骤 203 ,判断新业务波长对应的通道的光信噪比是否满足预设的光信 噪比的容限要求和光信噪比的平坦度要求, 如果判断结果为是, 则执行步 骤 204, 如果判断结果为否, 则执行步骤 205。
在本实施例中, 以上述步骤 202计算的各新业务波长对应的通道的光 信噪比作为评价通道的性能好坏的性能参数, 本步骤为判断上述计算得到 的各通道的光信噪比是否满足预设的光信噪比的容限要求和光信噪比的平 坦度要求。 假设在上述步骤 201 获取的光网络中的功率调节单元的第一功 率衰减值的基础之上, 通过上述步骤计算得到的在站点 E的接收端的光信 噪比分别为 22dB、 24dB和 26dB。 判断上述计算得到的光信噪比是否满足 预设的光信噪比的容限要求和光信噪比的平坦度要求, 例如, 预先设置光 信噪比的容限值为不小于 15dB和光信噪比的平坦度为小于 IdB,如果满足 要求, 则执行步骤 204, 如果不满足要求, 则执行步骤 205, 对功率调节单 元的功率衰减值进行修改, 然后计算得到新的光信噪比。
步骤 204,调节与新业务波长相关的所述功率调节单元的功率衰减值达 到所述第一功率衰减值。
基于第一功率衰减值得到的新业务波长对应的通道的光信噪比满足预 设的光信噪比的容限要求和光信噪比的平坦度要求, 则直接调节与新业务 波长相关的功率调节单元的功率衰减值达到第一功率衰减值。
步骤 205,对所述功率调节单元的第一功率衰减值进行修改, 重新计算 光信噪比, 直到计算得到的新的光信噪比满足所述预设的光信噪比的容限 要求和光信噪比的平坦度要求; 获取修改后的第二功率衰减值, 调节与所 述新业务波长相关的所述功率调节单元的功率衰减值达到所述第二功率衰 减值。
若根据上述步骤计算得到的光信噪比不满足预设的光信噪比的容限要 求和光信噪比的平坦度要求, 例如, 计算得到的与新业务波长相关的光信 噪比的容限值为 13dB, 小于预设的容限值 15dB, 相应的, 光信噪比的平坦 度为 2dB, 大于预设的平坦度 IdB; 显然, 需要对功率调节单元的功率衰减 值进行修改, 可以修改其中一个或多个功率调节单元的功率衰减值, 也可 以同时修改所有功率调节单元的功率衰减值。 例如, 可以基于第一功率衰 减值,以 +/-0.2dB为步进对某一个或多个功率调节单元的功率衰减值进行修 改, 然后重新计算光信噪比, 直到获得满足预设的光信噪比的容限要求和 光信噪比的平坦度要求的新的光信噪比为止, 从而获得与新的光信噪比对 应的修改后的功率衰减值。 在通常情况下, 需要通过迭代修改的方式获得 满足光信噪比的容限要求和光信噪比的平坦度要求的新的光信噪比对应的 功率衰减值。
经过上述迭代过程, 若获取到的各通道的光信噪比满足预设的光信噪 比的容限要求和光信噪比的平坦度要求, 获取修改后的第二功率衰减值, 该第二功率衰减值为上述满足要求的光信噪比对应的修改后的功率衰减 值, 调节与新业务波长相关的所述功率调节单元的功率衰减值达到第二功 率衰减值。例如,假设通过 100次迭代获取到满足性能要求的业务波长 λ 1、 λ 2、 λ 3对应的三个通道的光信噪比分别是 25.5dB、 25dB、 25.8dB, 而计 算该光信噪比的组合所使用的功率调节单元的功率衰减值如下: 站点 A中
M40V对业务波长 λ 1、 λ 2、 λ 3的功率衰减值分别为 4.2、 5.5、 6.0, 站点 C中 WSD9对业务波长 λ 1、 λ 2、 λ 3的功率衰减值分别为 5.0、 4.8、 4.9, WSM9对业务波长 λ 1、 λ 2、 λ 3的功率衰减值均为 0, 此时则可以获取到 各功率调节单元的第二功率衰减值。
在本实施例中, 对于网络规模较大、 波长数目较多的情况, 同样可以 采取上述迭代过程来获得满足要求的性能参数所对应的第二功率衰减值, 从而实现对光功率的调节。
本实施例针对的是在光网络中增加新业务波长、 且光网络中不存在已 有业务波长的应用场景。 本实施例与现有技术相比, 不依赖于性能检测单 元, 有效地降低网络成本。 并且, 在本实施例中, 通过设定经验值的方式 或者迭代修改的方式确定合适的功率衰减值, 所以在保证光网络中业务波 长的性能满足性能要求的同时, 提高了调节光功率的效率和精度。
图 4为本发明光功率调节方法实施例三的流程图, 如图 4所示, 本实 施例提供了一种光功率调节方法, 在本实施例中, 在光网络中增加新业务 波长, 且该光网络中存在已有业务波长。 本实施例提供的光功率调节方法 可以具体包括如下步骤:
步骤 401 ,根据新业务波长和已有业务波长的路径及光网络的结构, 确 定与新业务波长相关的所述光网络中的功率调节单元的第一功率衰减值和 与已有业务波长相关的光网络中的功率调节单元的第二功率衰减值。
在本实施例中, 光网络中存在已有业务波长, 且增加新业务波长, 为 了保证在光网络中增加新业务波长后已有业务波长和新业务波长的信号质 量符合要求, 在实际开通该新业务波长之前, 需要先获取光网络中增加该 新业务波长后合适的功率调节单元的功率衰减值, 根据获取的功率衰减值 来配置光网络。 本步骤为根据新业务波长和已有业务波长的路径及光网络 的结构, 确定与该新业务波长相关的光网络中功率调节单元的第一功率衰 减值, 以及与已有业务波长相关的光网络中的功率调节单元的第二功率衰 减值, 具体确定方法与上述步骤 101、 201类似, 此处不再赘述。
步骤 402,根据第一功率衰减值和第二功率衰减值, 分别计算出新业务 波长对应的通道的第一性能参数及已有业务波长对应的通道的第二性能参 数。 本步骤具体为根据确定的功率调节单元的第一功率衰减值和第二功率 衰减值来计算光网络中新业务波长对应的通道的第一性能参数; 同理, 根 据确定的功率调节单元的第一功率衰减值和第二功率衰减值来计算光网络 中已有业务波长对应的通道的第二性能参数。 在本步骤中, 在功率调节单 元的第一功率衰减值和第二功率衰减值确定之后, 则可以模拟出光网络的 模型, 通过模拟计算的方式可以得到新业务波长对应的通道的光功率及已 有业务波长对应的通道的光功率, 进而对新业务波长对应的通道的第一性 能参数和已有业务波长对应的通道的第二性能参数进行计算。 此处的第一 性能参数或第二性能参数可以为各业务波长的光 OSNR、 OSNR余量、误码 率、 Q因子等中的一种或者多种的组合。
步骤 403 ,判断第一性能参数是否满足第一预设的容限要求和平坦度要 求, 判断第二性能参数是否满足第二预设的容限要求和平坦度要求, 若第 一判断结果和第二判断结果都为是, 则调节与新业务波长相关的所述功率 调节单元的功率衰减值达到第一功率衰减值。
在通过上述步骤计算得到第一性能参数和第二性能参数后 , 根据第一 性能参数和第二性能参数对通道的性能进行评估, 即判断新业务波长对应 的通道的第一性能参数是否满足第一预设的容限要求和平坦度要求, 已有 业务波长对应的通道的第二性能参数是否满足第二预设的容限要求和平坦 度要求。 在本实施例中, 第一判断结果为第一性能参数是否满足第一预设 的容限要求和平坦度要求的判断结果, 第二判断结果为第二性能参数是否 满足第二预设的容限要求和平坦度要求的判断结果。 如果上述的第一判断 结果和第二判断结果均为是, 即新业务波长对应的通道的第一性能参数满 足预设的容限要求和平坦度要求, 且已有业务波长对应的通道的第二性能 参数满足第二预设的容限要求和平坦度要求,则对新业务波长相关的所述功 率调节单元的功率衰减值进行调节, 以使其达到第一功率衰减值。 本实施 例中的第一预设的容限要求和平坦度要求是为了保证新业务波长的性能而 预先设置的要求, 其与新业务波长相关; 第二预设的容限要求和平坦度要 求是为了保证在新业务波长增加后不影响已有业务波长的性能而预先设置 的要求, 其与已有业务波长相关。 第一预设的容限要求和平坦度要求可以 与第二预设的容限要求和平坦度要求一致, 第一预设的容限要求和平坦度 要求也可以与第二预设的容限要求和平坦度要求不一致。 其中, 容限要求 可以具体为一次计算的性能参数的值是否大于预设的性能参数门限值, 平 坦度要求为多次计算的性能参数的值是否趋于稳定, 即它们之间的差异是 否小于预设的差异门限。
进一步地, 本实施例提供的光功率调节方法还可以包括如下步骤: 判 断结果为下述的一种或多种: 第一判断结果为否、 第二判断结果为否, 则 对所述第一功率衰减值进行修改, 重新计算性能参数, 直至计算得到的第 三性能参数满足所述第一预设的容限要求和平坦度要求及所述第四性能参 数满足所述第二预设的容限要求和平坦度要求; 获取修改后的第三功率衰 减值, 调节与所述新业务波长相关的所述功率调节单元的功率衰减值达到 所述第三功率衰减值。 判断结果为下述的一种或多种: 第一判断结果为否、 第二判断结果为否; 则可以对该第一功率衰减值进行修改, 并根据修改后 的功率衰减值重新计算性能参数, 直到计算得到的第三性能参数能够满足 第一预设的容限要求和平坦度要求、 及第四性能参数能够满足第二预设的 容限要求和平坦度要求。 其中, 第三性能参数与新业务波长相关, 第四性 能参数与已有业务波长相关。 此时, 获取修改后的第三功率衰减值, 然后 对新业务波长相关的功率调节单元的功率衰减值进行调节, 以使其达到第 三功率衰减值。
进一步地, 本实施例提供的光功率调节方法还可以包括如下步骤: 判 断结果为下述的一种或多种: 所述第一判断结果为否、 所述第二判断结果 为否, 则对所述第二功率衰减值进行修改, 重新计算性能参数, 直至计算 得到的第五性能参数满足所述第一预设的容限要求和平坦度要求及所述第 六性能参数满足所述第二预设的容限要求和平坦度要求; 获取修改后的第 四功率衰减值, 调节与所述已有业务波长相关的所述功率调节单元的功率 衰减值达到所述第四功率衰减值。 判断结果为下述的一种或多种: 第一判 断结果为否、 第二判断结果为否; 则可以对该第二功率衰减值进行修改, 并根据修改后的功率衰减值重新计算性能参数, 直到计算得到的第五性能 参数能够满足第一预设的容限要求和平坦度要求、 及第六性能参数能够满 足第二预设的容限要求和平坦度要求。 其中, 第五性能参数与新业务波长 相关, 第六性能参数与已有业务波长相关。 此时, 获取修改后的第四功率 衰减值, 然后对已有业务波长相关的功率调节单元的功率衰减值进行调节, 以使其达到第四功率衰减值。 进一步地, 本实施例提供的光功率调节方法还可以包括如下步骤: 判 断结果为下述的一种或多种: 所述第一判断结果为否、 所述第二判断结果 为否, 则对所述第一功率衰减值和所述第二功率衰减值进行修改, 重新计 算性能参数, 直至计算得到的第七性能参数满足所述第一预设的容限要求 和平坦度要求及所述第八性能参数满足所述第二预设的容限要求和平坦度 要求; 获取修改后的第五功率衰减值和第六功率衰减值, 调节与所述新业 务波长相关的所述功率调节单元的功率衰减值达到所述第五功率衰减值、 及与所述已有业务波长相关的所述功率调节单元的功率衰减值达到所述第 六功率衰减值。 判断结果为下述的一种或多种: 第一判断结果为否、 第二 判断结果为否; 则可以对该第一功率衰减值和第二功率衰减值进行修改, 并根据修改后的功率衰减值重新计算性能参数, 直到计算得到的第七性能 参数能够满足第一预设的容限要求和平坦度要求、 及第八性能参数能够满 足第二预设的容限要求和平坦度要求, 其中, 第七性能参数与新业务波长 相关, 第八性能参数与已有业务波长相关。 此时, 获取修改后的第五功率 衰减值和第六功率衰减值, 然后对新业务波长相关的功率调节单元的功率 衰减值进行调节, 以使其达到第五功率衰减值, 对已有业务波长相关的功 率调节单元的功率衰减值进行调节, 以使其达到第六功率衰减值。
本实施例针对的是在光网络中增加新业务波长、 且光网络中存在已有 业务波长的应用场景。 本实施例与现有技术相比, 不依赖于性能检测单元, 有效地降低网络成本。 并且, 在本实施例中, 通过设定经验值的方式或者 迭代修改的方式确定合适的功率衰减值, 所以在保证光网络中业务波长的 性能满足性能要求的同时, 提高了调节光功率的效率和精度。
图 5为本发明光功率调节方法实施例四的流程图, 如图 5所示, 本实 施例提供了一种光功率调节方法, 图 6为本发明光功率调节方法实施例四 中的光网络的拓朴结构示意图, 如图 6所示, 本实施例提供的光功率调节 方法具体以图 6所示的场景为例进行说明。 图 6中的网络配置与上述图 3 一致, 本实例在上述实施例二的基础之上增加开通新的业务波长, 即在光 网络中已经开通三个业务波长 λ 1、 λ 2、 λ 3的基础之上, 对光网络进行扩 容, 新开通三个业务波长 λ 4、 λ 5、 λ 6, 性能要求包括: 新开通的业务波 长不能对已有的业务性能产生不良影响。
具体地, 本实施例提供的光功率调节方法可以具体包括如下步骤: 步骤 501 , 根据新业务波长和已有业务波长的路径以及光网络的结构, 确定与新业务波长相关的光网络中的功率调节单元的第一功率衰减值和与 已有业务波长相关的所网络中的功率调节单元的第二功率衰减值。 本步骤 与上述步骤 401类似, 此处不再赘述。
步骤 502,根据确定的光网络中功率调节单元的第一功率衰减值和第二 功率衰减值, 分别获取新业务波长对应的通道的第一光功率和已有业务波 长对应的通道的第二光功率, 并根据第一光功率、 第二光功率以及光网络 中的光放大器的增益和噪声指数, 计算新业务波长对应的通道的第一光信 噪比以及已有业务波长对应的通道的第二光信噪比。
在获取到光网络中功率调节单元的第一功率衰减值和第二功率衰减值 后, 根据光网络中各单元的位置关系, 以及各输入的业务波长的路径、 业 务波长的频率、 业务波长所经过的光纤参数和器件参数等, 来获取新业务 波长对应的通道的第一光功率和已有业务波长对应的通道的第二光功率。 其中, 上述各单元可以具体包括光网络中的 OTU、 M40V、 VOA、 WSD9、 WSM9、 光放大器, 光纤参数例如可以为光纤类型和光纤长度, 器件参数例 如可以为 EDFA单板的类型和增益媒。 本实施例针对光网络中存在已有业 务波长(例如附图 6中的业务波长 λ 1、 λ 2、 λ 3 ) 的情况下对光网络进行 扩容, 在光网络中添加新业务波长(例如附图 6 中的业务波长 λ 4、 λ 5、 λ 6 ), 此时则不仅获取新业务波长对应的通道的第一光功率, 还获取 4叚设 在新业务波长开通后已有业务波长对应的通道的第二光功率。 当获取到第 一光功率和第二光功率后, 若已知光放大器的增益和噪声指数, 则可以以 此计算新业务波长对应的通道的第一光信噪比和已有业务波长对应的通道 的第二光信噪比。 由此, 在本实施例中, 例如可以针对光放大器进行器件 建模, 可以假设光放大器的增益谱和噪声媒模型为已知, 根据各光放大器 的增益谱和噪声媒模型, 计算已有业务波长 λ 1、 λ 2、 λ 3对应的三个通道 的光信噪比以及新业务波长 λ 4、 λ 5、 λ 6对应的三个通道的光信噪比。
步骤 503 ,判断第一光信噪比是否满足第一预设的光信噪比的容限要求 和光信噪比的平坦度要求, 以及第二光信噪比是否满足第二预设的光信噪 比的容限要求和光信噪比的平坦度要求, 如果判断结果为是, 则执行步骤 504, 如果判断结果为否, 则执行步骤 505。
在本实施例中, 以上述步骤 502计算的新业务波长对应的通道的第一 光信噪比和已有业务波长对应的通道的第二光信噪比作为评价通道的性能 好坏的性能参数。 例如, 预先设置与新业务波长和已有业务波长相关的光 信噪比的容限值都为不小于 15dB和光信噪比的平坦度都为小于 ldB。
步骤 504,调节与新业务波长相关的功率调节单元的功率衰减值达到所 述第一功率衰减值。
基于第一功率衰减值得到的新业务波长对应的通道的第一光信噪比满 足第一预设的光信噪比的容限要求和光信噪比的平坦度要求, 并且, 第二 功率衰减值得到的已有业务波长对应的通道的第二光信噪比满足第二预设 的光信噪比的容限要求和光信噪比的平坦度要求, 则直接调节与新业务波 长相关的功率调节单元的功率衰减值达到第一功率衰减值。
步骤 505, 判断结果为下述的一种或多种: 第一光信噪比不满足第一预 设的光信噪比的容限要求和光信噪比的平坦度要求, 第二光信噪比不满足 第二预设的光信噪比的容限要求和光信噪比的平坦度要求; 本实施例可以 对第一功率衰减值进行修改, 也可以对第二功率衰减值进行修改, 还可以 对第一功率衰减值和第二功率衰减值进行修改, 然后重新计算新业务波长 和已有业务波长对应的光信噪比, 直至计算得到的新业务波长对应的通道 的新的光信噪比满足第一预设的容限要求和平坦度要求, 且已有业务波长 对应的通道的新的光信噪比满足第二预设的容限要求和平坦度要求; 获取 修改后的功率衰减值, 根据该修改后的功率衰减值, 执行下述相应的调节: 调节与新业务波长相关的功率调节单元的功率衰减值达到修改后的功率衰 减值调节, 或者调节与已有业务波长相关的功率调节单元的功率衰减值达 到修改后的功率衰减值调节, 或者分别调节与新业务波长和已有业务波长 相关的功率调节单元的功率衰减值达到修改后的功率衰减值调节。
具体地, 若修改新业务波长对应的功率调节单元的第一功率衰减值, 根据修改后的功率衰减值重新计算新业务波长和已有业务波长对应的光信 噪比, 然后继续判断重新计算的新业务波长对应的通道的光信噪比是否能 满足第一预设的光信噪比的容限要求和光信噪比的平坦度要求, 以及重新 计算的已有业务波长对应的通道的光信噪比是否能满足第二预设的光信噪 比的容限要求和光信噪比的平坦度要求; 若其中之一不满足, 则继续返回 修改新业务波长对应的功率调节单元的功率衰减值, 直到计算得到的第三 光信噪比能够满足第一预设的光信噪比的容限要求和光信噪比的平坦度要 求, 且第四光信噪比能够满足第二预设的光信噪比的容限要求和光信噪比 的平坦度要求。 其中, 第三光信噪比与新业务波长相关, 第四光信噪比与 已有业务波长相关。 此时, 获取修改后得到的第三功率衰减值, 对新业务 波长相关的功率调节单元的功率衰减值进行调节, 以使其达到第三功率衰 减值。
若修改已有业务波长对应的功率调节单元的第二功率衰减值时, 根据 修改后的功率衰减值重新计算新业务波长和已有业务波长对应的光信噪 比, 然后继续判断重新计算的新业务波长对应的通道的光信噪比是否能满 足第一预设的光信噪比的容限要求和光信噪比的平坦度要求, 以及重新计 算的已有业务波长对应的通道的光信噪比是否能满足第二预设的光信噪比 的容限要求和光信噪比的平坦度要求; 若其中之一不满足, 则继续返回修 改已有业务波长对应的功率调节单元的功率衰减值, 直到计算得到的第五 光信噪比能够满足第一预设的光信噪比的容限要求和光信噪比的平坦度要 求, 且第六光信噪比能够满足第二预设的光信噪比的容限要求和光信噪比 的平坦度要求。 其中, 第五光信噪比与新业务波长相关, 第六光信噪比与 已有业务波相关。 此时, 获取修改后得到的第四功率衰减值, 对已有业务 波长相关的功率调节单元的功率衰减值进行调节, 以使其达到第四功率衰 减值。
若修改新业务波长对应的功率调节单元的第一功率衰减值和已有业务 波长对应的功率调节单元的第二功率衰减值时, 根据修改后的功率衰减值 重新计算新业务波长和已有业务波长对应的光信噪比, 然后继续判断重新 计算的新业务波长对应的通道的光信噪比是否能满足第一预设的光信噪比 的容限要求和光信噪比的平坦度要求, 以及重新计算的已有业务波长对应 的通道的光信噪比是否能满足第二预设的光信噪比的容限要求和光信噪比 的平坦度要求; 若其中之一不满足, 则继续返回修改新业务波长对应的功 率调节单元的功率衰减值和已有业务波长对应的功率调节单元的功率衰减 值, 直到计算得到的第七光信噪比能够满足第一预设的光信噪比的容限要 求和光信噪比的平坦度要求, 且第八光信噪比能够满足第二预设的光信噪 比的容限要求和光信噪比的平坦度要求为止。 其中, 第七光信噪比为与新 业务波长相关, 第八光信噪比为与已有业务波长相关。 此时, 获取修改后 得到的第五功率衰减值和第六功率衰减值。 其中, 该第五功率衰减值与新 业务波长相关, 第六功率衰减值与已有业务波长相关, 对新业务波长相关 的功率调节单元的功率衰减值进行调节, 以使其达到第五功率衰减值, 对 已有业务波长相关的功率调节单元的功率衰减值进行调节, 以使其达到第 六功率衰减值。
在本实施例中, 对于网络规模较大、 波长数目较多的情况, 同样可以 采取上述迭代过程来获得满足要求的光信噪比所对应的功率衰减值, 从而 实现对光功率的调节。
本实施例针对的是在光网络中增加新业务波长、 且光网络中存在已有 业务波长的应用场景。 本实施例与现有技术相比, 不依赖于性能检测单元, 有效地降低网络成本。 并且, 在本实施例中, 通过设定经验值的方式或者 迭代修改的方式确定合适的功率衰减值, 所以在保证光网络中业务波长的 性能满足性能要求的同时, 提高了调节光功率的效率和精度。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机 可读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序 代码的介质。
图 7为本发明光功率调节装置实施例一的结构图, 如图 7所示, 本实 施例提供了一种光功率调节装置, 本实施例提供的光功率调节装置位于光 网络内, 所述光网络中增加新业务波长、 且所述光网络中不存在已有业务 波长, 其可以具体包括第一确定模块 701、 第一计算模块 702、 第一判断模 块 703和第一调节模块 704。 其中, 第一确定模块 701用于根据所述新业务 波长的路径和所述光网络的结构, 确定与所述新业务波长相关的所述光网 络中的功率调节单元的第一功率衰减值。 第一计算模块 702用于根据所述 第一功率衰减值计算出所述新业务波长对应的通道的性能参数。 第一判断 模块 703 用于判断所述新业务波长对应的通道的性能参数是否满足预设的 容限要求和平坦度要求。 第一调节模块 704用于若第一判断模块 703的判 断结果为是, 则调节与所述新业务波长相关的所述功率调节单元的功率衰 减值达到所述第一功率衰减值。
本实施例的光功率调节装置, 通过采用上述模块实现光功率调节的处 理机制与上述方法实施例一的实现过程相同, 详细可以参考上述相关方法 实施例的记载, 在此不再赘述。
图 8为本发明光功率调节装置实施例二的结构图, 如图 8所示, 本实 施例提供了一种光功率调节装置, 本实施例提供的光功率调节装置在上述 图 7所示的基础之上,还可以包括第一修改模块 801 , 第一修改模块 801用 于第一判断模块 703 的判断结果为否, 对所述第一功率衰减值进行修改。 第一计算模块 702还用于重新计算性能参数, 直至计算得到的新的性能参 数满足所述预设的容限要求和平坦度要求。 第一确定模块 701 还用于获取 修改后的第二功率衰减值。 第一调节模块 704还用于调节与所述新业务波 长相关的所述功率调节单元的功率衰减值达到所述第二功率衰减值。
具体地, 本实施例中的性能参数可以包括下述的一种或多种: 光信噪 比、 光信噪比余量、 误码率和 Q因子。
更具体地, 本实施例中的性能参数包括光信噪比。 第一计算模块 702 具体用于根据所述第一功率衰减值获取所述新业务波长对应的通道的光功 率, 根据所述光功率以及所述光网络中的光放大器的增益和噪声指数, 计 算出所述新业务波长对应的通道的光信噪比。 第一判断模块 703 具体用于 判断所述光信噪比是否满足预设的光信噪比的容限要求和光信噪比的平坦 度要求。
本实施例的光功率调节装置, 通过采用上述模块实现光功率调节的处 理机制与上述方法实施例一、 二的实现过程相同, 详细可以参考上述相关 方法实施例的记载, 在此不再赘述。
本实施例针对的是在光网络中增加新业务波长、 且光网络中不存在已 有业务波长的应用场景。 本实施例与现有技术相比, 不依赖于性能检测单 元, 有效地降低网络成本。 并且, 在本实施例中, 通过设定经验值的方式 或者迭代修改的方式确定合适的功率衰减值, 所以在保证光网络中业务波 长的性能满足性能要求的同时, 提高了调节光功率的效率和精度。
图 9为本发明光功率调节装置实施例三的结构图, 如图 9所示, 本实 施例提供了一种光功率调节装置, 本实施例提供的光功率调节装置具体位 于光网络中, 该光网络中增加新业务波长、 且所述光网络中存在已有业务 波长, 其可以具体包括第二确定模块 901、 第二计算模块 902、 第二判断模 块 903和第二调节模块 904。 其中, 第二确定模块 901用于根据所述新业务 波长和所述已有业务波长的路径及所述光网络的结构, 确定与所述新业务 波长相关的所述光网络中的功率调节单元的第一功率衰减值和与所述已有 业务波长相关的所述光网络中的功率调节单元的第二功率衰减值。 第二计 算模块 902用于根据所述第一功率衰减值和所述第二功率衰减值, 分别计 算出所述新业务波长对应的通道的第一性能参数及所述已有业务波长对应 的通道的第二性能参数。 第二判断模块 903 用于判断所述第一性能参数是 否满足第一预设的容限要求和平坦度要求, 判断所述第二性能参数是否满 足第二预设的容限要求和平坦度要求。 第二调节模块 904用于若第二判断 模块 903 的第一判断结果和第二判断结果都为是, 则调节与所述新业务波 长相关的所述功率调节单元的功率衰减值达到所述第一功率衰减值。
本实施例的光功率调节装置, 通过采用上述模块实现光功率调节的处 理机制与上述方法实施例三的实现过程相同, 详细可以参考上述相关方法 实施例的记载, 在此不再赘述。
图 10为本发明光功率调节装置实施例四的结构图, 如图 10所示, 本 实施例提供了一种光功率调节装置, 本实施例提供的光功率调节装置在上 述图 9所示的基础之上,还可以包括第二修改模块 1001 ,第二修改模块 1001 用于第二判断模块 903 的判断结果为下述的一种或多种: 所述第一判断结 果为否、 所述第二判断结果为否, 对所述第一功率衰减值进行修改。 第二 计算模块 902还用于重新计算性能参数, 直至计算得到的第三性能参数满 足所述第一预设的容限要求和平坦度要求及所述第四性能参数满足所述第 二预设的容限要求和平坦度要求。 第二确定模块 901 还用于获取修改后的 第三功率衰减值。 第二调节模块 904还用于调节与所述新业务波长相关的 所述功率调节单元的功率衰减值达到所述第三功率衰减值。
进一步地, 本实施例提供的光功率调节装置还可以包括第三修改模块 1002, 第三修改模块 1002用于第二判断模块 903的判断结果为下述的一种 或多种: 所述第一判断结果为否、 所述第二判断结果为否, 对所述第二功 率衰减值进行修改。 第二计算模块 902还用于重新计算性能参数, 直至计 算得到的第五性能参数满足所述第一预设的容限要求和平坦度要求及所述 第六性能参数满足所述第二预设的容限要求和平坦度要求。 第二确定模块 901还用于获取修改后的第四功率衰减值。第二调节模块 904还用于调节与 所述已有业务波长相关的所述功率调节单元的功率衰减值达到所述第四功 率衰减值。 进一步地, 本实施例提供的光功率调节装置还可以包括第四修改模块
1003 , 第四修改模块 1003用于第二判断模块 903的判断结果为下述的一种 或多种: 所述第一判断结果为否、 所述第二判断结果为否, 对所述第一功 率衰减值和所述第二功率衰减值进行修改。 第二计算模块 902还用于重新 计算性能参数, 直至计算得到的第七性能参数满足所述第一预设的容限要 求和平坦度要求及所述第八性能参数满足所述第二预设的容限要求和平坦 度要求。 第二确定模块 901 还用于获取修改后的第五功率衰减值和第六功 率衰减值。 第二调节模块 904还用于调节与所述新业务波长相关的所述功 率调节单元的功率衰减值达到所述第五功率衰减值、 及与所述已有业务波 长相关的所述功率调节单元的功率衰减值达到所述第六功率衰减值。
具体地, 本实施例中的性能参数可以包括下述的一种或多种: 光信噪 比、 光信噪比余量、 误码率和 Q因子。
更具体地, 本实施例中的性能参数具体包括光信噪比; 第二计算模块 902具体用于根据所述第一功率衰减值和所述第二功率衰减值,分别获取所 述新业务波长对应的通道的第一光功率和所述已有业务波长对应的通道的 第二光功率, 根据所述第一光功率、 所述第二光功率以及所述光网络中的 光放大器对业务波长的增益和噪声指数, 计算出所述新业务波长对应的通 道的第一光信噪比和所述已有业务波长对应的通道的第二光信噪比。 第二 判断模块 903可以具体包括第一判断子模块 913和第二判断子模块 923。其 中, 第一判断子模块 913 用于判断所述第一光信噪比是否满足第一预设的 光信噪比的容限要求和光信噪比的平坦度要求。 第二判断子模块 923用于 判断所述第二光信噪比是否满足第二预设的光信噪比的容限要求和光信噪 比的平坦度要求。
本实施例的光功率调节装置, 通过采用上述模块实现光功率调节的处 理机制与上述方法实施例三、 四的实现过程相同, 详细可以参考上述相关 方法实施例的记载, 在此不再赘述。
本实施例针对的是在光网络中增加新业务波长、 且光网络中存在已有 业务波长的应用场景。 本实施例与现有技术相比, 不依赖于性能检测单元, 有效地降低网络成本。 并且, 在本实施例中, 通过设定经验值的方式或者 迭代修改的方式确定合适的功率衰减值, 所以在保证光网络中业务波长的 性能满足性能要求的同时, 提高了调节光功率的效率和精度。 以上所描述的装置实施例仅仅是示意性的, 其中, 作为分离部件说明 的单元可以是或者也可以不是物理上分开的, 作为单元显示的部件可以是 或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到至少 两个网络单元上。 可以根据实际的需要选择其中的部分或者全部模块来实 现本实施例方案的目的。 本领域普通技术人员在不付出创造性的劳动的情 况下, 即可以理解并实施。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述实施例所记载的技术方案进行修改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相 应技术方案的本质脱离本发明实施例技术方案的原理和范围。

Claims

权 利 要求 书
1、 一种光功率调节方法, 其特征在于, 在光网络中增加新业务波长, 且所述光网络中不存在已有业务波长, 该方法包括:
根据所述新业务波长的路径和所述光网络的结构, 确定与所述新业务 波长相关的所述光网络中的功率调节单元的第一功率衰减值;
根据所述第一功率衰减值计算出所述新业务波长对应的通道的性能参 数; 判断所述新业务波长对应的通道的性能参数是否满足预设的容限要求 和平坦度要求, 若判断结果为是, 则调节与所述新业务波长相关的所述功 率调节单元的功率衰减值达到所述第一功率衰减值。
2、 根据权利要求 1所述的方法, 其特征在于, 该方法还包括: 若判断 结果为否, 则对所述第一功率衰减值进行修改, 重新计算性能参数, 直至 计算得到的新的性能参数满足所述预设的容限要求和平坦度要求; 获取修 改后的第二功率衰减值, 调节与所述新业务波长相关的所述功率调节单元 的功率衰减值达到所述第二功率衰减值。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述性能参数包括 下述的一种或多种: 光信噪比、 光信噪比余量、 误码率和 Q因子。
4、 根据权利要求 1-3中任意一项权利要求所述的方法, 其特征在于, 所述性能参数包括光信噪比;
所述根据所述第一功率衰减值计算出所述新业务波长对应的通道的性 能参数包括: 根据所述第一功率衰减值获取所述新业务波长对应的通道的 光功率, 根据所述光功率以及所述光网络中的光放大器的增益和噪声指数, 计算出所述新业务波长对应的通道的光信噪比;
所述判断所述性能参数是否满足预设的容限要求和平坦度要求包括: 判断所述光信噪比是否满足预设的光信噪比的容限要求和光信噪比的平坦 度要求。
5、 一种光功率调节方法, 其特征在于, 在光网络中增加新业务波长, 且所述光网络中存在已有业务波长, 该方法包括:
根据所述新业务波长和所述已有业务波长的路径及所述光网络的结 构, 确定与所述新业务波长相关的所述光网络中的功率调节单元的第一功 率衰减值和与所述已有业务波长相关的所述光网络中的功率调节单元的第 二功率衰减值;
根据所述第一功率衰减值和所述第二功率衰减值, 分别计算出所述新 业务波长对应的通道的第一性能参数及所述已有业务波长对应的通道的第 二性能参数, 判断所述第一性能参数是否满足第一预设的容限要求和平坦 度要求 , 判断所述第二性能参数是否满足第二预设的容限要求和平坦度要 求, 若第一判断结果和第二判断结果都为是, 则调节与所述新业务波长相 关的所述功率调节单元的功率衰减值达到所述第一功率衰减值。
6、 根据权利要求 5所述的方法, 其特征在于, 该方法还包括: 判断结 果为下述的一种或多种: 所述第一判断结果为否、 所述第二判断结果为否; 则对所述第一功率衰减值进行修改, 重新计算性能参数, 直至计算得到的 第三性能参数满足所述第一预设的容限要求和平坦度要求及所述第四性能 参数满足所述第二预设的容限要求和平坦度要求; 获取修改后的第三功率 衰减值, 调节与所述新业务波长相关的所述功率调节单元的功率衰减值达 到所述第三功率衰减值。
7、 根据权利要求 5所述的方法, 其特征在于, 该方法还包括: 判断结 果为下述的一种或多种: 所述第一判断结果为否、 所述第二判断结果为否; 则对所述第二功率衰减值进行修改, 重新计算性能参数, 直至计算得到的 第五性能参数满足所述第一预设的容限要求和平坦度要求及所述第六性能 参数满足所述第二预设的容限要求和平坦度要求; 获取修改后的第四功率 衰减值, 调节与所述已有业务波长相关的所述功率调节单元的功率衰减值 达到所述第四功率衰减值。
8、 根据权利要求 5所述的方法, 其特征在于, 该方法还包括: 判断结 果为下述的一种或多种: 所述第一判断结果为否、 所述第二判断结果为否; 则对所述第一功率衰减值和所述第二功率衰减值进行修改, 重新计算性能 参数, 直至计算得到的第七性能参数满足所述第一预设的容限要求和平坦 度要求及所述第八性能参数满足所述第二预设的容限要求和平坦度要求; 获取修改后的第五功率衰减值和第六功率衰减值, 调节与所述新业务波长 相关的所述功率调节单元的功率衰减值达到所述第五功率衰减值、 及与所 述已有业务波长相关的所述功率调节单元的功率衰减值达到所述第六功率 衰减值。
9、 根据权利要求 5-8中任意一项权利要求所述的方法, 其特征在于, 所述性能参数包括下述的一种或多种: 光信噪比、 光信噪比余量、 误码率 和 Q因子。
10、 根据权利要求 5-9中任意一项权利要求所述的方法, 其特征在于, 所述性能参数包括光信噪比;
所述根据所述第一功率衰减值和所述第二功率衰减值, 分别计算出所 述新业务波长对应的通道的第一性能参数及所述已有业务波长对应的通道 的第二性能参数包括: 根据所述第一功率衰减值和所述第二功率衰减值, 分别获取所述新业务波长对应的通道的第一光功率和所述已有业务波长对 应的通道的第二光功率, 根据所述第一光功率、 所述第二光功率以及所述 光网络中的光放大器对业务波长的增益和噪声指数, 计算出所述新业务波 长对应的通道的第一光信噪比和所述已有业务波长对应的通道的第二光信 噪比;
所述判断所述第一性能参数是否满足第一预设的容限要求和平坦度要 求包括: 判断所述第一光信噪比是否满足第一预设的光信噪比的容限要求 和光信噪比的平坦度要求;
所述判断所述第二性能参数是否满足第二预设的容限要求和平坦度要 求包括: 判断所述第二光信噪比是否满足第二预设的光信噪比的容限要求 和光信噪比的平坦度要求。
11、 一种光功率调节装置, 其特征在于, 该装置位于光网络内, 所述 光网络中增加新业务波长, 且所述光网络中不存在已有业务波长, 该装置 包括:
第一确定模块, 用于根据所述新业务波长的路径和所述光网络的结构, 确定与所述新业务波长相关的所述光网络中的功率调节单元的第一功率衰 减值;
第一计算模块, 用于根据所述第一功率衰减值计算出所述新业务波长 对应的通道的性能参数;
第一判断模块, 用于判断所述新业务波长对应的通道的性能参数是否 满足预设的容限要求和平坦度要求;
第一调节模块, 用于若所述第一判断模块的判断结果为是, 则调节与 所述新业务波长相关的所述功率调节单元的功率衰减值达到所述第一功率 衰减值。
12、 根据权利要求 11所述的装置, 其特征在于, 还包括: 第一修改模块, 用于所述第一判断模块的判断结果为否, 对所述第一 功率衰减值进行修改;
所述第一计算模块还用于重新计算性能参数, 直至计算得到的新的性 能参数满足所述预设的容限要求和平坦度要求;
所述第一确定模块还用于获取修改后的第二功率衰减值;
所述第一调节模块还用于调节与所述新业务波长相关的所述功率调节 单元的功率衰减值达到所述第二功率衰减值。
13、 根据权利要求 11或 12所述的装置, 其特征在于, 所述性能参数 包括下述的一种或多种: 光信噪比、 光信噪比余量、 误码率和 Q因子。
14、根据权利要求 11-13中任意一项权利要求所述的装置,其特征在于, 所述性能参数包括光信噪比;
所述第一计算模块具体用于根据所述第一功率衰减值获取所述新业务 波长对应的通道的光功率, 根据所述光功率以及所述光网络中的光放大器 的增益和噪声指数, 计算出所述新业务波长对应的通道的光信噪比;
所述第一判断模块具体用于判断所述光信噪比是否满足预设的光信噪 比的容限要求和光信噪比的平坦度要求。
15、 一种光功率调节装置, 其特征在于, 该装置位于光网络内, 所述 光网络中增加新业务波长, 且所述光网络中存在已有业务波长, 该装置包 括:
第二确定模块, 用于根据所述新业务波长和所述已有业务波长的路径 及所述光网络的结构, 确定与所述新业务波长相关的所述光网络中的功率 调节单元的第一功率衰减值和与所述已有业务波长相关的所述光网络中的 功率调节单元的第二功率衰减值;
第二计算模块, 用于根据所述第一功率衰减值和所述第二功率衰减值, 分别计算出所述新业务波长对应的通道的第一性能参数及所述已有业务波 长对应的通道的第二性能参数;
第二判断模块, 用于判断所述第一性能参数是否满足第一预设的容限 要求和平坦度要求 , 判断所述第二性能参数是否满足第二预设的容限要求 和平坦度要求;
第二调节模块, 用于若所述第二判断模块的第一判断结果和第二判断 结果都为是, 则调节与所述新业务波长相关的所述功率调节单元的功率衰 减值达到所述第一功率衰减值。
16、 根据权利要求 15所述的装置, 其特征在于, 还包括:
第二修改模块, 用于所述第二判断模块的判断结果为下述的一种或多 种: 所述第一判断结果为否、 所述第二判断结果为否; 对所述第一功率衰 减值进行修改;
所述第二计算模块还用于重新计算性能参数, 直至计算得到的第三性 能参数满足所述第一预设的容限要求和平坦度要求及所述第四性能参数满 足所述第二预设的容限要求和平坦度要求;
所述第二确定模块还用于获取修改后的第三功率衰减值;
所述第二调节模块还用于调节与所述新业务波长相关的所述功率调节 单元的功率衰减值达到所述第三功率衰减值。
17、 根据权利要求 15所述的装置, 其特征在于, 还包括:
第三修改模块, 用于所述第二判断模块的判断结果为下述的一种或多 种: 所述第一判断结果为否、 所述第二判断结果为否; 对所述第二功率衰 减值进行修改;
所述第二计算模块还用于重新计算性能参数, 直至计算得到的第五性 能参数满足所述第一预设的容限要求和平坦度要求及所述第六性能参数满 足所述第二预设的容限要求和平坦度要求;
所述第二确定模块还用于获取修改后的第四功率衰减值;
所述第二调节模块还用于调节与所述已有业务波长相关的所述功率调 节单元的功率衰减值达到所述第四功率衰减值。
18、 根据权利要求 15所述的装置, 其特征在于, 还包括:
第四修改模块, 用于所述第二判断模块的判断结果为下述的一种或多 种: 所述第一判断结果为否、 所述第二判断结果为否; 对所述第一功率衰 减值和所述第二功率衰减值进行修改;
所述第二计算模块还用于重新计算性能参数, 直至计算得到的第七性 能参数满足所述第一预设的容限要求和平坦度要求及所述第八性能参数满 足所述第二预设的容限要求和平坦度要求;
所述第二确定模块还用于获取修改后的第五功率衰减值和第六功率衰 减值; 所述第二调节模块还用于调节与所述新业务波长相关的所述功率调节 单元的功率衰减值达到所述第五功率衰减值、 及与所述已有业务波长相关 的所述功率调节单元的功率衰减值达到所述第六功率衰减值。
19、 根据权利要求 15-18中任一项权利要求所述的装置, 其特征在于, 所述性能参数包括下述的一种或多种: 光信噪比、 光信噪比余量、 误码率 和 Q因子。
20、根据权利要求 15-19中任意一项权利要求所述的装置,其特征在于, 所述性能参数包括光信噪比;
所述第二计算模块具体用于根据所述第一功率衰减值和所述第二功率 衰减值, 分别获取所述新业务波长对应的通道的第一光功率和所述已有业 务波长对应的通道的第二光功率, 根据所述第一光功率、 所述第二光功率 以及所述光网络中的光放大器对业务波长的增益和噪声指数, 计算出所述 新业务波长对应的通道的第一光信噪比和所述已有业务波长对应的通道的 第二光信噪比;
所述第二判断模块包括:
第一判断子模块, 用于判断所述第一光信噪比是否满足第一预设的光 信噪比的容限要求和光信噪比的平坦度要求;
第二判断子模块, 用于判断所述第二光信噪比是否满足第二预设的光 信噪比的容限要求和光信噪比的平坦度要求。
PCT/CN2012/070872 2011-07-29 2012-02-03 光功率调节方法和装置 WO2012119495A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12755623.1A EP2654221B1 (en) 2011-07-29 2012-02-03 Method and device for regulating optical power
ES12755623.1T ES2559379T3 (es) 2011-07-29 2012-02-03 Método y dispositivo para regular la potencia óptica

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110215555.4A CN102281110B (zh) 2011-07-29 2011-07-29 光功率调节方法和装置
CN201110215555.4 2011-07-29

Publications (1)

Publication Number Publication Date
WO2012119495A1 true WO2012119495A1 (zh) 2012-09-13

Family

ID=45106314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070872 WO2012119495A1 (zh) 2011-07-29 2012-02-03 光功率调节方法和装置

Country Status (4)

Country Link
EP (2) EP2981011B1 (zh)
CN (1) CN102281110B (zh)
ES (2) ES2632452T3 (zh)
WO (1) WO2012119495A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220140906A1 (en) * 2019-02-01 2022-05-05 Nippon Telegraph And Telephone Corporation Optical transmission system and output adjustment apparatus

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281110B (zh) * 2011-07-29 2014-04-16 华为技术有限公司 光功率调节方法和装置
CN102598707B (zh) * 2011-12-28 2014-04-02 华为技术有限公司 一种均衡链路性能的方法和装置
CN103222215B (zh) * 2012-12-07 2016-05-25 华为技术有限公司 自动功率调测方法和第一roadm站点
CN105323005B (zh) * 2014-07-16 2019-07-26 中兴通讯股份有限公司 一种传输性能优化方法和装置
CN108234016B (zh) * 2016-12-09 2023-01-17 中兴通讯股份有限公司 光网络保护控制方法、装置及网管服务器
CN110120839B (zh) * 2018-02-07 2021-11-02 中兴通讯股份有限公司 Wss通道衰减量的控制方法及装置、存储介质、处理器
EP3832907B1 (en) 2018-08-20 2024-05-15 Huawei Technologies Co., Ltd. Method and apparatus for establishing data model
CN111327357B (zh) * 2018-12-14 2022-08-02 中兴通讯股份有限公司 一种业务开通的方法、终端和控制器
CN111416665B (zh) * 2019-01-07 2022-04-15 中国移动通信有限公司研究院 一种光纤通信方法、装置、设备及存储介质
CN112039598B (zh) * 2020-08-12 2022-01-07 烽火通信科技股份有限公司 一种基于误码率的通道功率自动搜索调整方法及系统
CN112217569B (zh) * 2020-09-27 2021-11-16 武汉光迅科技股份有限公司 一种功率调节方法、装置及存储介质
CN115704956A (zh) * 2021-08-03 2023-02-17 中兴通讯股份有限公司 一种波长选择开关的通道衰减调整方法、装置及电子设备
CN114745048B (zh) * 2022-04-14 2023-10-31 中国电信股份有限公司 业务实现方法和装置、计算机可读存储介质、电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005004359A1 (en) * 2003-06-30 2005-01-13 Fujitsu Limited Optical regenerator in optical fiber communication system
CN101075446A (zh) * 2006-05-17 2007-11-21 上海乐金广电电子有限公司 光盘装置的激光功率调整方法
CN101141220A (zh) * 2007-05-23 2008-03-12 中兴通讯股份有限公司 一种光功率显示和调节装置
CN101364845A (zh) * 2007-08-08 2009-02-11 华为技术有限公司 一种波分网络中光功率调整的方法及系统
CN101505190A (zh) * 2008-02-04 2009-08-12 华为技术有限公司 一种光功率调测方法和设备
CN102281110A (zh) * 2011-07-29 2011-12-14 华为技术有限公司 光功率调节方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6539148B1 (en) * 1997-06-06 2003-03-25 Novera Optics, Inc. Channel equalizer with acousto-optic variable attenuators
US20030063343A1 (en) * 1999-09-03 2003-04-03 Oni Systems Corp. Optical power management in an optical network
US6961525B2 (en) * 2000-11-17 2005-11-01 Sycamore Networks, Inc. Method for channel balance
US6661946B2 (en) * 2001-07-09 2003-12-09 Lucent Technologies Inc. Method of controlling optical signal power at an add/drop node in a WDM optical communication system
JP4303710B2 (ja) * 2005-07-15 2009-07-29 富士通株式会社 光伝送装置
JP4657907B2 (ja) * 2005-12-14 2011-03-23 富士通株式会社 光分岐挿入装置、光分岐挿入装置の制御方法、光分岐挿入装置の制御プログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005004359A1 (en) * 2003-06-30 2005-01-13 Fujitsu Limited Optical regenerator in optical fiber communication system
CN101075446A (zh) * 2006-05-17 2007-11-21 上海乐金广电电子有限公司 光盘装置的激光功率调整方法
CN101141220A (zh) * 2007-05-23 2008-03-12 中兴通讯股份有限公司 一种光功率显示和调节装置
CN101364845A (zh) * 2007-08-08 2009-02-11 华为技术有限公司 一种波分网络中光功率调整的方法及系统
CN101505190A (zh) * 2008-02-04 2009-08-12 华为技术有限公司 一种光功率调测方法和设备
CN102281110A (zh) * 2011-07-29 2011-12-14 华为技术有限公司 光功率调节方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220140906A1 (en) * 2019-02-01 2022-05-05 Nippon Telegraph And Telephone Corporation Optical transmission system and output adjustment apparatus
US11575443B2 (en) * 2019-02-01 2023-02-07 Nippon Telegraph And Telephone Corporation Optical transmission system and output adjustment apparatus

Also Published As

Publication number Publication date
CN102281110B (zh) 2014-04-16
EP2654221B1 (en) 2015-11-04
EP2981011B1 (en) 2017-04-26
ES2559379T3 (es) 2016-02-11
EP2654221A4 (en) 2014-06-25
EP2654221A1 (en) 2013-10-23
ES2632452T3 (es) 2017-09-13
CN102281110A (zh) 2011-12-14
EP2981011A1 (en) 2016-02-03

Similar Documents

Publication Publication Date Title
WO2012119495A1 (zh) 光功率调节方法和装置
JP6485189B2 (ja) 光伝送システムおよび光伝送装置
JP5633266B2 (ja) Wdm光伝送システムおよびその制御方法
JP4727485B2 (ja) 光伝送装置
US9172475B2 (en) Method and apparatus for equalizing link performance
Ferrari et al. Power control strategies in C+ L optical line systems
EP2765717B1 (en) Method for capacity expansion and commissioning of wavelength multiplexing optical network, and controller
JP4601676B2 (ja) 分布ラマン増幅を用いた波長多重光通信システム
JP2014187671A (ja) 光伝送装置及びダミー光挿入方法
CN112585889B (zh) 一种建立数据模型的方法及装置
US20140334814A1 (en) Adaptive Optical Amplifier for WDM Systems
WO2019041682A1 (zh) 一种分布式拉曼光纤放大器的增益瞬态控制系统和方法
WO2020171103A1 (ja) 光増幅器、及びその制御方法
CN115296732B (zh) 光传输系统和光传输系统的配置参数优化方法
WO2014019631A1 (en) Method of optimizing optical signal quality in an optical communications link, optical network element and optical communications link
US20060285846A1 (en) Wdm system
Souza et al. Accurate and scalable quality of transmission estimation for wideband optical systems
US10630416B2 (en) System and method for optical channel reconfiguration
JP5909154B2 (ja) コヒーレント光受信回路及びコヒーレント光受信方法
JP6422799B2 (ja) 光伝送システム、光送信装置及びその制御方法
US9419741B2 (en) Optical transmission system, management device, and signal adjustment method
WO2005002009A1 (ja) 増幅媒体性能シミュレーションの装置および方法並びに光増幅器
Gao et al. Power Control with Online Gain Optimization for Multi-Band Optical Networks
Tang et al. Experimental verification of EGN model in 11-THz C+ L broadband 400G real-time transmission with digital sub-carrier multiplexing
Zervas et al. Experimental demonstration of a self-optimised multi-bit-rate optical network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12755623

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012755623

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE