WO2012117868A1 - 発光ダイオード照明装置および発光ダイオード照明用部材 - Google Patents

発光ダイオード照明装置および発光ダイオード照明用部材 Download PDF

Info

Publication number
WO2012117868A1
WO2012117868A1 PCT/JP2012/053782 JP2012053782W WO2012117868A1 WO 2012117868 A1 WO2012117868 A1 WO 2012117868A1 JP 2012053782 W JP2012053782 W JP 2012053782W WO 2012117868 A1 WO2012117868 A1 WO 2012117868A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting diode
optical system
light emitting
naout
Prior art date
Application number
PCT/JP2012/053782
Other languages
English (en)
French (fr)
Inventor
修司 鹿野
堅治 梅津
Original Assignee
株式会社ユーテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユーテクノロジー filed Critical 株式会社ユーテクノロジー
Priority to KR1020137020697A priority Critical patent/KR20140040099A/ko
Publication of WO2012117868A1 publication Critical patent/WO2012117868A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0905Dividing and/or superposing multiple light beams
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a light emitting diode illuminating device and a light emitting diode illuminating member used in a light source for optical fiber illumination, a projector, and the like.
  • HID lamps and spheroid mirrors have been used in high-intensity illumination devices used in light sources for optical fiber illumination, projectors, and the like.
  • the area of the illumination surface of these illumination devices is small, about 10 to 20 mm in diameter for a light source for optical fiber illumination, and 24 ⁇ 18 mm for a 35 mm movie film projector.
  • the illumination device is required to irradiate light with high luminance efficiently in this small area.
  • the numerical aperture of the irradiated light needs to be less than or equal to the numerical aperture of the optical fiber in the light source device for optical fiber illumination and less than or equal to the numerical aperture of the projection lens in the projector.
  • a device using a light emitting diode has been proposed.
  • a light-emitting diode chip is smaller than that of an HID lamp, a plurality of light-emitting diodes are arranged on a plane, and the light from each light-emitting diode is collimated with an input lens in the same direction.
  • Condensing and irradiating an optical fiber for example, refer to Patent Document 1
  • irradiating a light valve after converting the numerical aperture of a plurality of light emitting diodes arranged on a flat surface with a taper rod See, for example, Patent Document 2.
  • the illuminating device described in Patent Document 1 is one in which an imaging optical system is applied to a plurality of light emitting diodes, and the total luminous flux emitted increases as the number of light emitting diodes increases.
  • the optical system is complicated and the distance between the light emitting surface and the irradiation surface of the light emitting diode is long, there is a problem that the luminance is greatly reduced due to the aberration of the optical system and the efficiency is low.
  • the illumination device described in Patent Document 2 uses a new optical system that does not use a lens, there has been a problem that consideration is not given to reducing the decrease in luminance and increasing the efficiency.
  • the present invention has been made by paying attention to such a problem, and can suppress a decrease in luminance of the light emitting surface with respect to the light emitting surface of the light emitting diode, and can improve the efficiency of light that irradiates the irradiated surface with respect to the total luminous flux of the light emitting diode. It aims at providing the light emitting diode illuminating device which can be heightened, and the member for light emitting diode illuminating.
  • a light-emitting diode illuminating device is a light-emitting diode illuminating device having a light-emitting diode and an optical system provided to convert the numerical aperture of light emitted from the light-emitting diode.
  • the representative dimension of the light emitting surface of the light emitting diode is L
  • the representative dimension of the optical system is Do
  • the numerical aperture of light emitted from the device is NAout, 0.8L / NAout ⁇ Do ⁇ 1.1L / NAout It is characterized by being.
  • the light-emitting diode illuminating device includes a plurality of the light-emitting diodes, the light-emitting surfaces are arranged on the same plane so as to emit light in the same direction, and the optical system includes a plurality of Each light emitting diode is provided corresponding to each light emitting diode so as to convert the numerical aperture of the emitted light of each light emitting diode, the representative dimension of the light emitting surface of each light emitting diode is L, the interval between adjacent light emitting diodes is Iled, When the representative dimension of the optical system is Do, the interval between adjacent optical systems is Io, and the numerical aperture of light emitted from the apparatus is NAout, 0.8L / NAout ⁇ Do ⁇ 1.1L / NAout Io ⁇ Iled Io ⁇ Do It is preferable that
  • the exit numerical aperture of the optical system needs to be matched with the irradiation numerical aperture NAout of the apparatus.
  • this irradiation numerical aperture NAout is equal to or less than the numerical aperture of the optical fiber to be connected (0.2 for quartz fiber, 0.5 for multicomponent fiber is often used).
  • the numerical aperture of the projection lens (F1.4 projection lens numerical aperture is 0.34) or less.
  • the light-emitting diode illuminating device can be adjusted to the irradiation numerical aperture NAout of the device while suppressing the output numerical aperture of the optical system. For this reason, it is possible to suppress a decrease in luminance of the irradiation surface with respect to the light emitting surface of the light emitting diode, and it is possible to increase the efficiency of light that irradiates the irradiation surface with respect to the total luminous flux of the light emitting diode.
  • the light emitting surfaces are arranged on the same plane as well as the case where the light emitting surfaces of the respective light emitting diodes are arranged on one plane, and are arranged within a range slightly deviated from the plane. Including cases. Further, it is preferable that L / NAout ⁇ Do.
  • the optical system is composed of a lens having a positive refractive power, and the light-emitting diode is disposed at or near the focal point of the optical system.
  • Do is the diameter of the lens and the focal length of the lens is f
  • each optical system is composed of a lens having a positive refractive power
  • each light-emitting diode is the focal point or focal point of each optical system.
  • the use of lenses can suppress a decrease in luminance of the light emitting surface with respect to the light emitting surface of the light emitting diode, and increase the efficiency of light that irradiates the light emitting surface with respect to the total luminous flux of the light emitting diode. be able to.
  • the light emitting diode is disposed at the focal position of the lens, and the collimating optical system has an irradiation surface in the vicinity of the lens emission position.
  • the lens system can be designed with a simple configuration so that the sine condition is satisfied and the incident numerical aperture is close to 1.
  • each light emitting diode and the collimating optical system as a unit and arranging the units on the plane without any gap, a larger surface can be irradiated with high illuminance. Further, in order to make the illuminance on the irradiation surface uniform, a mixing rod may be arranged on the exit side of each lens.
  • each optical system includes a taper rod
  • the representative dimension Do of each optical system is the exit dimension of the taper rod
  • the interval Io between adjacent optical systems is the taper rod.
  • each optical system includes a taper rod
  • the representative dimension Do of each optical system is the exit dimension of the taper rod
  • the interval Io between adjacent optical systems is the taper rod.
  • the taper rod can be used to suppress a decrease in brightness of the light emitting surface with respect to the light emitting surface of the light emitting diode, and the efficiency of light that irradiates the light emitting surface with respect to the total luminous flux of the light emitting diode. Can be increased.
  • a taper rod is also square. In a plane parallel to the light emitting surface, it is preferable that a unit composed of a set of a light emitting diode and a taper rod is disposed at each lattice point of a square lattice.
  • each optical system is composed of a compound parabolic concentrator, and a representative dimension Do of each optical system is set as an exit dimension of the compound parabolic concentrator, and the composite
  • the entrance dimension Din of the parabolic concentrator and the distance between each light emitting diode and each optical system is t
  • Do ⁇ Din / NAout ⁇ Io Iled L ⁇ Din ⁇ 1.1L 0 ⁇ t ⁇ 0.2L It may be.
  • this optical system is composed of a compound parabolic concentrator
  • the compound parabolic concentrator can be used to suppress a decrease in luminance of the irradiated surface with respect to the light emitting surface of the light emitting diode, and the total luminous flux of the light emitting diode.
  • the efficiency of light irradiating the irradiation surface with respect to can be increased.
  • a composite paraboloidal collector is also square.
  • a unit composed of a set of a light emitting diode and a compound parabolic concentrator is arranged at each lattice point of a square lattice.
  • the light-emitting diode illuminating member according to the present invention is a light-emitting diode illuminating member constituting the light-emitting diode illuminating device according to the present invention, so that each light-emitting diode can emit light in the same direction, 2L ⁇ Iled ⁇ 10L It is arranged densely or squarely at equal intervals on the plane at intervals that satisfy the above conditions, and each optical system is configured to be close to 0.4 L in the light emitting direction of each light emitting diode with respect to each light emitting diode. Is a feature.
  • the light-emitting diode illuminating device according to the present invention can be easily configured with a simple configuration.
  • the light-emitting diode illuminating member according to the present invention can increase the heat dissipation performance by providing the light-emitting diodes in a distributed manner, and can exhibit the performance of each light-emitting diode.
  • the light emitting diode illumination member according to the present invention is preferably disposed in the air without being sealed with a medium having a high refractive index.
  • the substrate on which the light emitting diodes are arranged is preferably made of a material with good heat dissipation such as aluminum or copper.
  • the interval Iled between the light emitting diodes is determined by the irradiation numerical aperture of the illumination system, but it is preferable that 2L ⁇ Iled ⁇ 10L since the irradiation numerical aperture that is easy to use as a high-luminance illumination device is 0.1 to 0.5. .
  • a light-emitting diode illuminating device and a light-emitting diode that can suppress a decrease in luminance of the irradiation surface with respect to the light-emitting surface of the light-emitting diode and can increase the efficiency of light that irradiates the irradiation surface with respect to the total luminous flux of the light-emitting diode
  • An illumination member can be provided.
  • FIG. 2 is a side view of ray tracing of one unit including a light emitting diode and an optical system of the light emitting diode illuminating device shown in FIG. 1. It is a graph which shows the correlation with the numerical aperture and light ray height of the light emitting diode and optical system which are shown in FIG.
  • FIG. 3A is an illuminance distribution diagram of an irradiation surface of the light-emitting diode and the optical system shown in FIG. 2, and FIG. FIG. 3 is an illuminance distribution diagram of a surface 1 m away from an irradiation surface of the light emitting diode and the optical system shown in FIG. 2.
  • 2A is an illuminance distribution diagram of an irradiation surface of the light-emitting diode illuminating device shown in FIG. 1
  • FIG. 2B is an illuminance distribution diagram of a surface 1 m away from the irradiation surface. It is a perspective view which shows the modification of the light emitting diode illuminating device of the 1st Embodiment of this invention.
  • FIG. 8A is an illuminance distribution diagram of an irradiation surface of the light-emitting diode illuminating device shown in FIG. 7, and FIG. 8B is an illuminance distribution diagram of a surface 1 m away from the irradiation surface.
  • FIG. 11A is an illuminance distribution diagram of an irradiation surface of the light emitting diode and the tapered rod shown in FIG. 10, and FIG.
  • 11B is an illuminance distribution diagram on a screen 1 m away from the tapered rod.
  • 10A is an illuminance distribution diagram of an irradiation surface of the light-emitting diode illuminating device shown in FIG. 9, and FIG. 10B is an illuminance distribution diagram on a screen 1 m away from the taper rod. It is a perspective view which shows the modification of the light emitting diode illuminating device of the 2nd Embodiment of this invention. It is a perspective view which shows the light emitting diode illuminating device of the 3rd Embodiment of this invention.
  • FIG. 15 It is a perspective view which shows one unit which consists of a light emitting diode and a compound parabolic mirror of the light emitting diode illuminating device shown in FIG. It is a side view which shows one surface of the compound parabolic mirror of the light emitting diode illuminating device shown in FIG. It is the (a) illuminance distribution figure of the irradiation surface of the light emitting diode and compound parabolic mirror shown in FIG. 15, (b) The illuminance distribution figure on the screen 1 m away from the irradiation surface. It is a perspective view which shows the member for light emitting diode illumination of embodiment of this invention. It is a graph which shows the change of the luminous intensity of light emitting diode output light, and incident efficiency with respect to angle (theta) which the normal line of a light emitting diode and emitted light make.
  • the light emitting diode illumination device 10 includes a plurality of LEDs (light emitting diodes) 11, a plurality of optical systems 12, and a mixing rod 13.
  • the LEDs 11 are composed of seven LEDs, arranged so that the light emitting surfaces are on the same plane, and arranged in a staggered manner at the apex and center of the hexagon. Each LED 11 emits light in the same direction.
  • Each optical system 12 includes two convex lenses 21a and 21b having a positive refractive power, and is provided corresponding to each LED 11 so as to convert the numerical aperture of the emitted light of each LED 11.
  • Each optical system 12 is disposed close to the light emitting surface of each LED 11.
  • the mixing rod 13 has a hexagonal column shape and is disposed on the exit side of each optical system 12.
  • the lenses 21 a and 21 b of the optical system 12 are arranged with the convex side facing the irradiation surface 14.
  • the curvature radius r (mm), center thickness and distance d (mm), refractive index n, and Abbe number ⁇ of each lens 21a and 21b are shown below.
  • r1 and r2 are the curvature radii of the lens 21a on the LED 11 side and the irradiation surface 14 side, respectively
  • r3 and r4 are the curvature radii of the lens 21b on the LED 11 side and the irradiation surface 14 side, respectively.
  • d0 is the distance between the LED 11 and the lens 21a on the optical axes of the lenses 21a and 21b
  • d1 and d3 are the center thicknesses of the lenses 21a and 21b
  • d2 is the distance between the lenses 21a and 21b
  • d4 is the distance between the lens 21b and the irradiation surface.
  • n1 and n2 are the refractive indexes of the lenses 21a and 21b, respectively
  • ⁇ 1 and ⁇ 2 are the Abbe numbers of the lenses 21a and 21b, respectively.
  • k4 is the conic constant of the lens 21b.
  • FIG. 3 shows sin ⁇ of the light beam emitted from the center of the LED 11 and the distance from the optical axis of the light beam on the irradiation surface 14.
  • is an angle formed between the light beam on the light emitting surface of the LED 11 and the optical axis.
  • FIG. 3 shows that the sine condition is almost satisfied.
  • FIG. 4 shows the illuminance distribution on the irradiation surface 14, and the irradiation diameter of 10% illuminance or higher is 8.4 mm.
  • FIG. 5 shows an illuminance distribution on a surface 1 m away from the irradiation surface 14, and an irradiation size of 10% illuminance or more is a 520 mm square.
  • the increase in numerical aperture was 2% or less. It can be said that the decrease in luminance is equivalent to the irradiation efficiency.
  • the output numerical aperture of the optical system 12 can be suppressed to match the irradiation numerical aperture NAout. For this reason, the reduction
  • the light-emitting diode illuminating device 10 can be configured according to FIG.
  • the light-emitting diode illuminating device 10 has a set of the LED 11 and the optical system 12 shown in FIG.
  • the irradiation surface 14 of the unit irradiates a mixing rod 13 of a regular hexagonal column having a side of 12.6 mm, and the output surface of the mixing rod 13 is used as the irradiation surface 15 of the light-emitting diode illuminating device 10.
  • FIG. 6 shows the results of Monte Carlo simulation under the following conditions.
  • FIG. 6A shows the illuminance distribution on the irradiation surface 15, and the irradiation shape is a regular hexagon having a side of 13.2 mm.
  • FIG. 6B shows the illuminance distribution on a surface 1 m away from the irradiation surface 15, and the irradiation dimension of 10% illuminance or more is 620 mm in the opposite direction.
  • the decrease in luminance was 25%.
  • the irradiation efficiency was 89%.
  • the increase in numerical aperture was 18% in the opposite direction and 1% in the diagonal direction.
  • the brightness is reduced due to the increase in the irradiation area and the numerical aperture of the mixing rod 13.
  • FIG. 8 shows the result of Monte Carlo simulation under the same conditions as in FIG.
  • FIG. 8A shows the illuminance distribution on the irradiation surface 15, and the irradiation shape is a regular hexagon having a side of 11.4 mm.
  • FIG. 8B shows the illuminance distribution on a surface 1 m away from the irradiation surface 15, and the irradiation dimension of 10% illuminance or less is 560 mm in the opposite direction.
  • the decrease in luminance was as small as 7%, but the irradiation efficiency was as low as 80%.
  • Io 0.8 Do, the luminance was reduced by 0% and the irradiation efficiency was 71%. Up to this condition is a range that can be used as a high-luminance lighting device.
  • the increase in the numerical aperture of irradiation is 8% in the opposite direction and 1% in the opposite direction, which is smaller than in the case of FIG. It can be said that the design emphasizes high brightness rather than efficiency. Further, since the illuminance distribution at the incident portion of the mixing rod 13 is relatively uniform, there is also an advantage that the mixing rod 13 can be shortened.
  • the light emitting diode illumination device 30 includes a plurality of LEDs 11 and a plurality of optical systems 12.
  • the same components as those of the light-emitting diode illuminating device 10 according to the first embodiment of the present invention are denoted by the same reference numerals, and redundant description is omitted.
  • the LED 11 is composed of six LEDs, which are arranged so that the light emitting surfaces are on the same plane, and are arranged at equal intervals three above and below. Each LED 11 emits light in the same direction.
  • Each optical system 12 includes a tapered rod 31 and is provided corresponding to each LED 11 so as to convert the numerical aperture of the emitted light of each LED 11.
  • FIG. 10 shows the incident surface of the square taper rod 31 in front of the square light emitting surface of each LED 11, and the irradiation surface 14 is disposed in front of the emission surface.
  • FIG. 11 shows the result of Monte Carlo simulation under the following conditions.
  • the irradiation shape is a square having the same size as the exit size, and the illuminance distribution is almost uniform. Even under other conditions, the illuminance shape is a square having the same size as the exit dimension, and the illuminance distribution is almost uniform.
  • FIG. 11B shows the illuminance distribution on the screen 1 m away from the taper rod 31.
  • the decrease in luminance occurs due to the spread of the irradiation area due to the spread of light between the tapered rod 31 and the irradiation surface 14 at a distance of 0.5 mm.
  • Table 1 shows irradiation numerical apertures of 10% illuminance or higher.
  • the irradiation numerical aperture approaches Din / Dout when the opening angle is small, and the angular distribution of irradiation light is 0 when the numerical aperture is greater than or equal to the numerical aperture and rises sharply near the numerical aperture.
  • the distribution becomes dull, and the irradiation numerical aperture becomes larger than Din / Dout.
  • Table 2 shows the change in irradiation efficiency depending on the distance between the LED 11 and the taper rod 31.
  • both the LED-taper rod interval and the taper rod inlet dimension are shown as relative values when the LED dimension is 1.
  • the irradiation efficiency is very high if the distance t between the LED 11 and the taper rod 31 is close to 0, but there is a limit to approaching 0.
  • Increasing the entrance dimension of the taper rod 31 increases the irradiation efficiency, but the exit dimension is also large, so the brightness decreases in inverse proportion to the square of the entrance dimension.
  • the entrance dimension of the taper rod 31 is 1.1 times or less of the LED dimension (L ⁇ Din ⁇ 1.1L).
  • the LED-taper rod spacing is preferably 0.2 times or less the LED size (0 ⁇ t ⁇ 0.2L).
  • the distance between the LED and the taper rod is a distance in air, which is n times in a medium having a refractive index n.
  • Dout the tapered rod outlet dimension
  • FIG. 12 shows the result of Monte Carlo simulation under the following conditions.
  • BK7 Screen size 30mm square ( Figure 12 (a)) 1m square (Fig. 12 (b)) Number of rays 1 million Fresnel loss Ignored
  • FIG. 12A shows the illuminance distribution on the irradiation surface 15.
  • FIG. 12B shows an illuminance distribution on a screen 1 m away from the taper rod 31.
  • the deterioration in luminance is smaller than in the case of FIG.
  • the light-emitting diode illuminating device 30 may increase the interval between the LEDs 11 and the interval between the entrances of the taper rods 31 more than the interval between the exits of the taper rods 31. In this case, the design of heat dissipation is facilitated by providing a space between the LEDs 11.
  • the light emitting diode illumination device 50 includes a plurality of LEDs 11 and a plurality of optical systems 12.
  • the same components as those of the light-emitting diode illuminating devices 10 and 30 according to the first and second embodiments of the present invention are denoted by the same reference numerals, and redundant description is omitted.
  • the LED 11 is composed of six LEDs, which are arranged so that the light emitting surfaces are on the same plane, and are arranged at equal intervals three above and below. Each LED 11 emits light in the same direction.
  • Each optical system 12 includes a compound parabolic mirror (composite parabolic concentrator) 51 and is provided corresponding to each LED 11 so as to convert the numerical aperture of the emitted light of each LED 11.
  • FIG. 16 shows the shape of one surface of the compound parabolic mirror 51.
  • 61 is a parabolic mirror
  • 62 is a focal position of the parabolic mirror
  • 63 is an optical axis of the parabolic mirror
  • 64 is an optical axis of the compound parabolic mirror 51
  • ⁇ cpc is a parabolic shape.
  • Din is the entrance dimension of the composite parabolic mirror 51
  • Dout is the exit dimension of the composite parabolic mirror 51.
  • the square composite parabolic mirror 51 includes four parabolic mirrors 61 rotated about 0, 90, 180, and 270 degrees around the optical axis 64 of the composite parabolic mirror 51.
  • FIG. 17 shows the result of Monte Carlo simulation under the following conditions.
  • LED size 2mm square LED total luminous flux 314lm LED brightness 25cd / mm 2 LED-compound parabolic mirror spacing 0.2mm
  • Compound parabolic mirror-irradiation surface interval 0.5mm
  • Compound parabolic mirror exit dimension Dout 8mm
  • Screen size 10mm square Fig. 17 (a)) 1m square (Fig. 17 (b)) Number of rays 1 million Reflectivity 100%
  • FIG. 17A shows the illuminance distribution on the irradiation surface 14
  • FIG. 17B shows the illuminance distribution on the screen 1 m away from the irradiation surface 14.
  • the decrease in luminance is 13% and the irradiation efficiency is 83.5%.
  • the illuminance distribution on the irradiation surface 14 is about half the center of the periphery, but has a feature that there is no deterioration of the numerical aperture as in the tapered rod 31.
  • the irradiation efficiency is shown in Table 2 as with the tapered rod 31. Therefore, the entrance dimension of the composite parabolic mirror 51 is 1.1 times or less (L ⁇ Din ⁇ 1.1L) of the LED 11 dimension, and the LED-composite parabolic mirror interval is 0.2 times or less of the LED 11 dimension (0 ⁇ t ⁇ 0.2L) is desirable. Although the hollow composite parabolic mirror 51 is shown here, a composite parabolic mirror using total internal reflection of glass may be used.
  • FIG. 18 shows a light-emitting diode illuminating member according to an embodiment of the present invention.
  • symbol is attached
  • the upper limit of the chip temperature of the LED is normally 150 ° C., and in order to protect this, it is necessary to reduce the heat generation amount to 1 / 2.7.
  • the total luminous flux is only 2.7 (square root of 7) times.
  • the flat substrate 71 is made of aluminum or copper with good heat dissipation.
  • the light emitting diode illumination member 70 is used to form the optical system 12 from the light emitting surface of the LED 11 with the same glass, the same focal length, and the same diameter as those of the light emitting diode illumination device 10 according to the first embodiment of the present invention.
  • a design example when the distance to the first surface is d0 0.8 is shown.
  • the distance d0 from the LED 11 to the first surface of the optical system 12 is increased, the luminance is not changed, but the irradiation efficiency is lowered.
  • the distance d0 to the first surface is preferably 0.4 times or less of the dimension L of the LED 11.
  • the wiring material of LED11, a cover glass, a structure, etc. must be within 0.4 times the LED dimension from the LED light emitting surface.
  • the luminance of the irradiated surface was 11 cd / mm 2 and the irradiation efficiency was 44%.
  • the irradiation surface of the light-emitting diode illuminating devices 10, 30, and 50 according to the first, second, and third embodiments of the present invention can be treated as a new light-emitting surface. That is, a new light emitting surface with a reduced numerical aperture and an increased light emitting area is obtained without reducing the luminance.
  • the irradiation surface of the light-emitting diode illuminating devices 10, 30, and 50 can be used by forming an image on a reflective display element.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Projection Apparatus (AREA)

Abstract

 複数のLED11が、同一方向に光を出射するよう配置されている。複数の光学系12が、各LED11の出射光の開口数を変換するよう、各LED11に対応して設けられている。各LED11の発光面の代表的寸法をL、隣り合うLED11間の間隔をIled、各光学系12の代表的寸法をDo、隣り合う光学系12間の間隔をIo、装置から照射される光の開口数をNAoutとしたとき、 0.8L/NAout≦Do≦1.1L/NAout、 Io≦Iled、 Io≦Do である。

Description

発光ダイオード照明装置および発光ダイオード照明用部材
 本発明は、光ファイバ照明用光源や映写機などに用いられる発光ダイオード照明装置および発光ダイオード照明用部材に関する。
 従来、光ファイバ照明用光源や映写機などに用いられる高輝度照明装置には、HIDランプおよび回転楕円面ミラーが用いられてきた。これらの照明装置の照射面の面積は小さく、光ファイバ照明用光源では直径10~20mm程度、35mm映画フィルム映写機では24×18mmである。照明装置は、この小さな面積に効率良く、高い輝度で光を照射することが求められる。さらに、照射する光の開口数は、光ファイバ照明用光源装置では光ファイバの開口数以下、投影機では投影レンズの開口数以下である必要がある。
 このような照明装置として、従来、発光ダイオード(LED)を利用したものが提案されている。例えば、発光ダイオード1チップの出力はHIDランプに比べて小さいため、複数の発光ダイオードを平面上に配置し、各発光ダイオードの光をそれぞれ同一方向に入力レンズでコリメートした後、1つの出力レンズで集光し、光ファイバを照射するもの(例えば、特許文献1参照)や、同じく平面上に配置した複数の発光ダイオードの光を、テーパーロッドで開口数を変換した後、光バルブを照射するもの(例えば、特許文献2参照)が提案されている。
特開2009-15319号公報 特開2000-214532号公報
 特許文献1に記載の照明装置は、複数の発光ダイオードに結像光学系を適用したものであり、発光ダイオードの数が増えたことにより、発光する全光束は増える。しかしながら、光学系が複雑で、発光ダイオードの発光面と照射面との距離が長いため、光学系の収差により輝度の減少が大きく、効率も低いという課題があった。また、特許文献2に記載の照明装置は、レンズを使わない新たな光学系を用いているが、輝度の減少を少なくし、効率を上げる考慮はなされていないという課題があった。
 本発明は、このような課題に着目してなされたもので、発光ダイオードの発光面に対する照射面の輝度の減少を抑えることができ、発光ダイオードの全光束に対する照射面を照射する光の効率を高めることができる発光ダイオード照明装置および発光ダイオード照明用部材を提供することを目的としている。
 上記目的を達成するために、本発明に係る発光ダイオード照明装置は、発光ダイオードと、前記発光ダイオードの出射光の開口数を変換するよう設けられた光学系とを有する発光ダイオード照明装置であって、前記発光ダイオードの発光面の代表的寸法をL、前記光学系の代表的寸法をDo、装置から照射される光の開口数をNAoutとしたとき、
   0.8L/NAout≦Do≦1.1L/NAout
であることを、特徴とする。
 特に、本発明に係る発光ダイオード照明装置は、前記発光ダイオードは複数から成り、それぞれ同一方向に光を出射するよう、発光面が同一平面上に配置されており、前記光学系は複数から成り、各発光ダイオードの出射光の開口数を変換するよう、各発光ダイオードに対応して設けられており、各発光ダイオードの発光面の代表的寸法をL、隣り合う発光ダイオード間の間隔をIled、各光学系の代表的寸法をDo、隣り合う光学系間の間隔をIo、装置から照射される光の開口数をNAoutとしたとき、
   0.8L/NAout≦Do≦1.1L/NAout
   Io≦Iled
   Io≦Do
であることが好ましい。
 発光ダイオードの光の出射パターンは、ランベルト分布をしている。光学系の入射開口数をNAinとすると、発光ダイオードの出射光が光学系に入射する効率ηinは、ランベルト分布を入射開口数に対する角度まで積分した値であり、
   ηin=Sinθ=NAin
となる。図19に、発光ダイオードの法線と出射光とのなす角度θに対する、発光ダイオード出力光の光度およびその角度までの開口数を持つ光学系への入射効率のグラフを示す。NAin=1であれば入射効率ηinは100%となり、これに近いほど入射効率ηinが高くなる。
 一方、光学系の出射開口数は、装置の照射開口数NAoutに合わせる必要がある。この照射開口数NAoutは、光ファイバ光源では、接続される光ファイバの開口数(石英ファイバの場合0.2、多成分ファイバの場合0.5が多く用いられている)以下となり、映写機では、投影レンズの開口数(F1.4の投影レンズで開口数は0.34)以下となる。
 本発明に係る発光ダイオード照明装置は、光学系の出射開口数を抑えて、装置の照射開口数NAoutに合わせることができる。このため、発光ダイオードの発光面に対する照射面の輝度の減少を抑えることができ、発光ダイオードの全光束に対する照射面を照射する光の効率を高めることができる。なお、発光面が同一平面上に配置されたとは、各発光ダイオードの発光面がある一つの平面上に配置されている場合だけでなく、その平面から僅かにずれた範囲内に配置されている場合も含んでいる。また、L/NAout≒Doであることが好ましい。
 本発明に係る発光ダイオード照明装置で、前記光学系は正の屈折力を有するレンズから成り、前記発光ダイオードは前記光学系の焦点または焦点の近傍に配置されており、前記光学系の代表的寸法Doを前記レンズの径とし、前記レンズの焦点距離をfとしたとき、
   Do≒2f≒L/NAout
であってもよい。
 特に、発光ダイオードおよび光学系が複数から成る場合、本発明に係る発光ダイオード照明装置で、各光学系は正の屈折力を有するレンズから成り、各発光ダイオードはそれぞれ各光学系の焦点または焦点の近傍に配置されており、各光学系の代表的寸法Doを前記レンズの径とし、前記レンズの焦点距離をfとしたとき、
   Do≒2f≒L/NAout
   Io=Iled≦Do
であってもよい。
 これらの光学系がレンズから成る場合、レンズを利用して、発光ダイオードの発光面に対する照射面の輝度の減少を抑えることができ、発光ダイオードの全光束に対する照射面を照射する光の効率を高めることができる。また、照射光の効率をより高めるために、発光ダイオードをレンズの焦点位置に配置し、レンズの出射位置の近傍を照射面としたコリメート光学系から成ることが好ましい。この場合、レンズ系が正弦条件を満たし、入射開口数が1に近くなるよう簡単な構成で設計することができる。各発光ダイオードとコリメート光学系とをユニットとし、このユニットを平面上に隙間なく配列する事により、より大きな面を高い照度で照射することができる。また、照射面の照度を均一にするために、各レンズの出射側にミキシングロッドを配置してもよい。
 また、本発明に係る発光ダイオード照明装置で、各光学系はテーパーロッドから成り、各光学系の代表的寸法Doを前記テーパーロッドの出口寸法とし、隣り合う光学系間の間隔Ioを前記テーパーロッド出口での間隔とし、前記テーパーロッドの入口寸法をDin、前記テーパーロッドの開き角をφ、各発光ダイオードと各光学系との間隔をtとしたとき、
   Do≒Din/NAout≒Io=Iled
   φ<NAout/10
   L≦Din≦1.1L
   0<t≦0.2L
であってもよい。
 また、本発明に係る発光ダイオード照明装置で、各光学系はテーパーロッドから成り、各光学系の代表的寸法Doを前記テーパーロッドの出口寸法とし、隣り合う光学系間の間隔Ioを前記テーパーロッド出口での間隔とし、前記テーパーロッドの入口寸法をDinとしたとき、
   Do≒Din/NAout≒Io<Iled
であってもよい。
 これらの光学系がテーパーロッドから成る場合、テーパーロッドを利用して、発光ダイオードの発光面に対する照射面の輝度の減少を抑えることができ、発光ダイオードの全光束に対する照射面を照射する光の効率を高めることができる。また、発光ダイオードの発光面の形状が正方形の場合、テーパーロッドも正方形であることが好ましい。発光面に対して平行な面において、発光ダイオードとテーパーロッドとの組から成るユニットが、正方格子の各格子点に配置されていることが好ましい。
 また、本発明に係る発光ダイオード照明装置で、各光学系は複合放物面集光器から成り、各光学系の代表的寸法Doを前記複合放物面集光器の出口寸法とし、前記複合放物面集光器の入口寸法Din、各発光ダイオードと各光学系との間隔をtとしたとき、
   Do≒Din/NAout≒Io=Iled
   L≦Din≦1.1L
   0<t≦0.2L
であってもよい。
 この光学系が複合放物面集光器から成る場合、複合放物面集光器を利用して、発光ダイオードの発光面に対する照射面の輝度の減少を抑えることができ、発光ダイオードの全光束に対する照射面を照射する光の効率を高めることができる。また、発光ダイオードの発光面の形状が正方形の場合、複合放物面集光器も正方形であることが好ましい。発光面に対して平行な面において、発光ダイオードと複合放物面集光器との組から成るユニットが、正方格子の各格子点に配置されていることが好ましい。
 本発明に係る発光ダイオード照明用部材は、本発明に係る発光ダイオード照明装置を構成する発光ダイオード照明用部材であって、各発光ダイオードがそれぞれ同一方向に光を出射可能に、2L<Iled<10Lを満たす間隔で、平面上に等間隔で稠密配列または正方配列されており、各発光ダイオードに対して、各発光ダイオードの発光方向に各光学系を0.4Lまで近接可能に構成されていることを、特徴とする。
 本発明に係る発光ダイオード照明用部材によれば、本発明に係る発光ダイオード照明装置を簡単な構成で容易に構成することができる。本発明に係る発光ダイオード照明用部材は、発光ダイオードを分散配置することにより、放熱性を上げ、個々の発光ダイオードが持つ性能を出すことができる。本発明に係る発光ダイオード照明用部材は、発光ダイオードが屈折率の大きい媒質により封止されることなく、気中に配置されていることが好ましい。また、発光ダイオードの発光方向に光学系を配置できるよう、ボンディングワイヤ等の構造物をできるだけ発光方向に配置しないことが好ましい。発光ダイオードを配列する基板は、アルミや銅など、放熱性の良い材質から成ることが好ましい。発光ダイオードの間隔Iledは、照明系の照射開口数により決まるが、高輝度照明装置として使いやすい照射開口数が0.1~0.5であることから、2L<Iled<10Lであることが好ましい。
 本発明によれば、発光ダイオードの発光面に対する照射面の輝度の減少を抑えることができ、発光ダイオードの全光束に対する照射面を照射する光の効率を高めることができる発光ダイオード照明装置および発光ダイオード照明用部材を提供することができる。
本発明の第1の実施の形態の発光ダイオード照明装置を示す(a)発光ダイオードからの放射光の幾何光学的光線追跡側面図、(b)斜視図である。 図1に示す発光ダイオード照明装置の、発光ダイオードおよび光学系から成る1つのユニットの光線追跡側面図である。 図2に示す発光ダイオードおよび光学系の開口数と光線高さとの相関を示すグラフである。 図2に示す発光ダイオードおよび光学系の(a)照射面の照度分布図、(b)横軸方向の照度分布を示すグラフである。 図2に示す発光ダイオードおよび光学系の照射面から1m離れた面の照度分布図である。 図1に示す発光ダイオード照明装置の(a)照射面の照度分布図、(b)照射面から1m離れた面の照度分布図である。 本発明の第1の実施の形態の発光ダイオード照明装置の変形例を示す斜視図である。 図7に示す発光ダイオード照明装置の(a)照射面の照度分布図、(b)照射面から1m離れた面の照度分布図である。 本発明の第2の実施の形態の発光ダイオード照明装置を示す斜視図である。 図9に示す発光ダイオード照明装置の、発光ダイオードおよびテーパーロッドから成る1つのユニットを示す斜視図である。 図10に示す発光ダイオードおよびテーパーロッドの(a)照射面の照度分布図、(b)テーパーロッドから1m離れたスクリーン上での照度分布図である。 図9に示す発光ダイオード照明装置の(a)照射面の照度分布図、(b)テーパーロッドから1m離れたスクリーン上での照度分布図である。 本発明の第2の実施の形態の発光ダイオード照明装置の変形例を示す斜視図である。 本発明の第3の実施の形態の発光ダイオード照明装置を示す斜視図である。 図14に示す発光ダイオード照明装置の、発光ダイオードおよび複合放物面鏡から成る1つのユニットを示す斜視図である。 図14に示す発光ダイオード照明装置の、複合放物面鏡の1つの面を示す側面図である。 図15に示す発光ダイオードおよび複合放物面鏡の(a)照射面の照度分布図、(b)照射面から1m離れたスクリーン上での照度分布図である。 本発明の実施の形態の発光ダイオード照明用部材を示す斜視図である。 発光ダイオードの法線と出射光とのなす角度θに対する、発光ダイオード出力光の光度および入射効率の変化を示すグラフである。
 以下、図面に基づき、本発明の実施の形態について説明する。
 図1乃至図8に、本発明の第1の実施の形態の発光ダイオード照明装置を示す。
 図1に示すように、発光ダイオード照明装置10は、複数のLED(発光ダイオード)11と、複数の光学系12と、ミキシングロッド13とを有している。
 LED11は、7つから成り、発光面が同一平面上になるよう配置され、六角形の頂点と中心とに千鳥状に配列されている。各LED11は、同一方向に光を出射するようになっている。各光学系12は、正の屈折力を有する2つの凸レンズ21a、21bから成り、各LED11の出射光の開口数を変換するよう、各LED11に対応して設けられている。各光学系12は、各LED11の発光面に近接して配置されている。ミキシングロッド13は、六角柱状を成し、各光学系12の出射側に配置されている。
 具体的な一例では、図2に示すように、各LED11は、発光面が正方形であり、発光面の代表的寸法として、一辺の寸法L=2mmである。各光学系12のレンズ21a、21bは2群2枚構成で、焦点距離fは4mm、代表的寸法のレンズ径Do(=Dlens、レンズ21b出射面で光線が通過する最大径)は8mmである。光学系12の出射側の照射面14は、径約8mmである。したがって、
    Dlens=Do=2f
となっている。
 また、照射開口数NAoutの設計値は、レンズが正弦条件を満たすとすると、
    NAout=L/2f
であり、LED11の対辺方向で、NAout=2/(2×4)=0.25、LED11の対角方向で、NAout=2.8/(2×4)=0.35である。
 光学系12の各レンズ21a、21bは、凸側を照射面14に向けた状態で配置されている。各レンズ21a、21bの曲率半径r(mm)、中心厚および間隔d(mm)、屈折率n、アッベ数νを、以下に示す。ここで、r1およびr2はそれぞれレンズ21aのLED11側および照射面14側の曲率半径、r3およびr4はそれぞれレンズ21bのLED11側および照射面14側の曲率半径である。d0はレンズ21a,21bの光軸におけるLED11とレンズ21aとの間隔、d1およびd3はそれぞれ各レンズ21a,21bの中心厚、d2はレンズ21aとレンズ21bとの間隔、d4はレンズ21bと照射面14との間隔である。n1およびn2はそれぞれ各レンズ21a,21bの屈折率、ν1およびν2はそれぞれ各レンズ21a,21bのアッベ数である。k4はレンズ21bの円錐定数である。
         d0=0.5
r1=∞     d1=2.0 n1=1.5168 ν1=64.17
r2=-2.5  d2=1
r3=∞     d3=4.8 n2=1.8467 ν2=23.78
r4=-5.42 d4=0.5 k4=-1.33
 図3はLED11の中心から出た光線のsinθと照射面14での光線の光軸からの距離を示す。ここで、θはLED11の発光面での光線と光軸とのなす角度である。正弦条件では光線の高さ(光軸からの距離)hは、
    h=fsinθ
となる。ここで、fは光学系12の焦点距離(f=4mm)である。図3から、ほぼ正弦条件を満たしていることがわかる。
 図4および図5に、下記条件でのモンテカルロ・シミュレーションの結果を示す。
   LED寸法        2mm角
   LED全光束       314lm
   LED輝度        25cd/mm
   スクリーン寸法      10mm角(図4)
                1m角(図5)
   光線本数         100万本
   フレネル損失       無視
 図4は、照射面14の照度分布を示し、10%照度以上の照射径は、8.4mmとなっている。また、図5は、照射面14から1m離れた面の照度分布を示し、10%照度以上の照射寸法は、520mm角となっている。照射面14は、発光面として見ることができ、輝度(光軸方向平均輝度)は、
   1250/(4.2×4.2×3.14)=22.6cd/mm
で、LED11の発光面に対して約10%減少している。照射効率(=照射面14に到達した光束/LED11の全光束)は、87%であった。
 照射開口数は、
    sin(tan-1(260/1000)=0.252  (対辺方向)
    sin(tan-1(380/1000)=0.355  (対角方向)
で、開口数の増加は2%以下であった。輝度の減少は、照射効率分といえる。
 このように、図2の構成では、光学系12の出射開口数を抑えて、照射開口数NAoutに合わせることができる。このため、LED11の発光面に対する照射面14の輝度の減少を抑えることができ、LED11の全光束に対する照射面14を照射する光の効率を高めることができる。なお、LEDが1つの場合には、図2により発光ダイオード照明装置10を構成することができる。
 図1に示すように、発光ダイオード照明装置10は、図2に示すLED11、光学系12の組を平面上に7ユニット稠密配置している。ユニットの間隔、すなわち隣り合うLED11間の間隔Iled、および隣り合う光学系12間の間隔Ioは、レンズ径Doと同じ8mmである(Io=Iled=Do=8mm)。ユニットの照射面14で、一辺12.6mmの正六角柱のミキシングロッド13を照射し、ミキシングロッド13の出力面を発光ダイオード照明装置10の照射面15としている。
 図6に、下記条件でのモンテカルロ・シミュレーションの結果を示す。
   LED寸法        2mm角
   LED全光束       314lm
   LED輝度        25cd/mm
   LED数量        7個
   スクリーン寸法      30mm角(図6(a))
                1m角(図6(b))
   光線本数         100万本
   フレネル損失       無視
 図6(a)は、照射面15の照度分布を示し、照射形状は1辺13.2mmの正六角形となっている。図6(b)は、照射面15から1m離れた面の照度分布を示し、10%照度以上の照射寸法は、対辺方向で620mmとなっている。照射面15の輝度は、
   8500/(13.2×13.2×1.73/2/2×6)
    =18.81cd/mm
で、輝度の減少は25%であった。照射効率は89%であった。
 照射開口数は、
    sin(tan-1(310/1000)=0.296  (対辺方向)
    sin(tan-1(380/1000)=0.355  (対角方向)
で、開口数の増加は対辺方向18%、対角方向1%であった。ミキシングロッド13による照射面積および照射開口数の増加により、輝度が減少している。
 なお、図7に示すように、発光ダイオード照明装置10は、LED11と光学系12とから成るユニットの間隔、すなわち隣り合うLED11間の間隔Iled、および隣り合う光学系12間の間隔Ioを、レンズ径Doより小さくしてもよい(Io=Iled<Do)。図7の場合、Io=Iled=6.92mm=0.86Doである。この場合、正六角柱のミキシングロッド13の一辺は、11mmである。
 図8に、図6と同じ条件でのモンテカルロ・シミュレーションの結果を示す。図8(a)は、照射面15の照度分布を示し、照射形状は1辺11.4mmの正六角形となっている。図8(b)は、照射面15から1m離れた面の照度分布を示し、10%照度以下の照射寸法は、対辺方向で560mmとなっている。照射面15の輝度は、
   7800/(11.4×11.4×1.73/2/2×6)
    =23.1cd/mm
で、輝度の減少は7%と少ないが、照射効率は80%と低い値となった。
 Io=0.8Doでは輝度減少0%、照射効率71%であった。この条件までが、高輝度照明装置として使用可能な範囲である。
 照射開口数は、
    sin(tan-1(280/1000)=0.27   (対辺方向)
    sin(tan-1(380/1000)=0.355  (対角方向)
で、照射開口数の増加は対辺方向8%、対角方向1%で、図6の場合よりも小さくなっている。効率よりも高輝度に重きを置いた設計になっているといえる。また、ミキシングロッド13の入射部の照度分布が比較的均一なため、ミキシングロッド13を短くできるという利点もある。
 図9乃至図13に、本発明の第2の実施の形態の発光ダイオード照明装置を示す。
 図9に示すように、発光ダイオード照明装置30は、複数のLED11と、複数の光学系12とを有している。なお、以下の説明では、本発明の第1の実施の形態の発光ダイオード照明装置10と同一の構成には同一の符号を付して、重複する説明を省略する。
 LED11は、6つから成り、発光面が同一平面上になるよう配置され、上下に3つずつ等間隔で配列されている。各LED11は、同一方向に光を出射するようになっている。各光学系12は、テーパーロッド31から成り、各LED11の出射光の開口数を変換するよう、各LED11に対応して設けられている。
 具体的な一例では、図10に示すように、各LED11の正方形の発光面の正面に、正方形テーパーロッド31の入射面を配置し、出射面の正面に照射面14を配置する。
 図11に、下記条件でのモンテカルロ・シミュレーションの結果を示す。
   LED寸法            2mm角
   LED全光束           314lm
   LED輝度            25cd/mm2
   LED-テーパーロッド間隔    0.2mm
   テーパーロッド-照射面間隔    0.5mm
   テーパーロッド入口寸法Din   2mm
   テーパーロッド出口寸法Dout  5mm、8mm
   テーパーロッド開き角
      φ/(Din/Dout)  0.01、0.1、0.2
   テーパーロッド材質        BK7
   スクリーン寸法          10mm角(図11(a))
                    1m角(図11(b))
   光線本数             100万本
   フレネル損失           無視
 図11(a)に、Din/Dout=0.25、φ/(Din/Dout)=0.1の場合の照射面14の照度分布を示す。照射形状は出口寸法と同程度の寸法の正方形で、照度分布はほぼ均一となっている。他の条件でも、照度形状は、出口寸法と同程度の寸法の正方形で、照度分布はほぼ均一となる。図11(b)に、テーパーロッド31から1m離れたスクリーン上での照度分布を示す。
 照射面14の輝度は、
    1600/(8.4×8.4)=22.8cd/mm
                    (Din/Dout=0.25のとき)
     600/(5.4×5.4)=20.6cd/mm
                    (Din/Dout=0.4のとき)
である。輝度の減少は、テーパーロッド31と照射面14との間隔0.5mmの間の光の広がりによる照射面積の広がりによって起こっている。
[規則26に基づく補充 21.03.2012] 
 10%照度以上の照射開口数を、表1に示す。
Figure WO-DOC-TABLE-1
 表1に示すように、照射開口数は、開き角が小さければDin/Doutに近づき、照射光の角度分布も開口数以上では0、開口数付近で鋭く立ち上がる形状となる。開き角が大きくなると分布が鈍って、照射開口数はDin/Doutより大きくなる。このように、照射開口数は、φ/(Din/Dout)と相関が大きく、φ/(Din/Dout)=0.1以下であれば、分布がシャープで高輝度照明装置として望ましいことがわかる。
[規則26に基づく補充 21.03.2012] 
 LED11とテーパーロッド31との間隔による、照射効率の変化を表2に示す。
Figure WO-DOC-TABLE-2
 表2では、LED-テーパーロッド間隔、テーパーロッド入口寸法とも、LED寸法を1とした時の相対値で示している。表2に示すように、LED11とテーパーロッド31との間隔tが0に近ければ照射効率は非常に高いが、0に近づけるには限界がある。テーパーロッド31の入口寸法を大きくすれば照射効率は上がるが、出口寸法も大きなるため、入口寸法の2乗に反比例して輝度は小さくなる。高輝度照明装置では、輝度劣化が30%以下、照射効率70%以上が求められるため、表2から、テーパーロッド31の入口寸法はLED寸法の1.1倍以下(L≦Din≦1.1L)、LED-テーパーロッド間隔はLED寸法の0.2倍以下(0<t≦0.2L)が望ましい。ここで、LED-テーパーロッド間隔は空気中の距離で、屈折率nの媒質中ではn倍になる。
 図9に示すように、発光ダイオード照明装置30は、図10に示すLED11とテーパーロッド31の組を、テーパーロッド出口寸法Doutと同じ間隔で(Io=Dout=Do)、6組正方配列したもので、図10の6倍の面積を照射することができる。
 図12に、下記条件でのモンテカルロ・シミュレーションの結果を示す。
   LED寸法            2mm角
   LED全光束           314lm
   LED数量            6個
   LED輝度            25cd/mm
   LED-テーパーロッド間隔    0.2mm
   テーパーロッド-照射面間隔    0.5mm
   テーパーロッド入口寸法Din   2mm
   テーパーロッド出口寸法Dout  8mm
   テーパーロッド出口間隔      8mm
   LEDの間隔           8mm
   テーパーロッド開き角
      φ/(Din/Dout)  0.1
   テーパーロッド材質        BK7
   スクリーン寸法          30mm角(図12(a))
                    1m角   (図12(b))
   光線本数             100万本
   フレネル損失           無視
 図12(a)は、照射面15の照度分布を示す。図12(b)は、テーパーロッド31から1m離れたスクリーン上での照度分布を示す。照射面15の輝度は、
    9600/(24.4×16.4)=24.0cd/mm   
で、テーパーロッド31と照射面15との間隔で起きる照射面積の広がりが、6つのテーパーロッド群の周辺でしか起こらないため、輝度の劣化は図10の場合よりも小さくなる。
 なお、図13に示すように、発光ダイオード照明装置30は、LED11の間隔およびテーパーロッド31の入口の間隔を、テーパーロッド31の出口の間隔より広げてもよい。この場合、LED11の間隔を空けることにより、放熱設計が容易になる。
 図14乃至図17に、本発明の第3の実施の形態の発光ダイオード照明装置を示す。
 図14に示すように、発光ダイオード照明装置50は、複数のLED11と、複数の光学系12とを有している。なお、以下の説明では、本発明の第1および第2の実施の形態の発光ダイオード照明装置10、30と同一の構成には同一の符号を付して、重複する説明を省略する。
 LED11は、6つから成り、発光面が同一平面上になるよう配置され、上下に3つずつ等間隔で配列されている。各LED11は、同一方向に光を出射するようになっている。各光学系12は、複合放物面鏡(複合放物面集光器)51から成り、各LED11の出射光の開口数を変換するよう、各LED11に対応して設けられている。
 具体的な一例では、図15に示すように、各LED11の正方形の発光面の正面に、正方形複合放物面鏡51の入射面を配置し、出射面の正面に照射面14を配置する。図16に、複合放物面鏡51の1つの面の形状を示す。図16に示すように、61は放物面鏡、62は放物面鏡の焦点位置、63は放物面鏡の光軸、64は複合放物面鏡51の光軸、φcpcは放物面鏡の光軸と複合放物面鏡51の光軸とのなす角、Dinは複合放物面鏡51の入口寸法、Doutは複合放物面鏡51の出口寸法である。
 正方形複合放物面鏡51は、複合放物面鏡51の光軸64を中心に0度、90度、180度、270度回転した4枚の放物面鏡61により構成されている。正方形複合放物面鏡51の照射開口数NAoutは、
    NAout=sin(φcpc)=Din/Dout
である。
 図17に、下記条件でのモンテカルロ・シミュレーションの結果を示す。
   LED寸法           2mm角
   LED全光束          314lm
   LED輝度           25cd/mm
   LED-複合放物面鏡間隔    0.2mm
   複合放物面鏡-照射面間隔    0.5mm
   複合放物面鏡入口寸法Din   2mm
   複合放物面鏡出口寸法Dout  8mm
   スクリーン寸法         10mm角(図17(a))
                   1m角(図17(b))
   光線本数            100万本
   反射率             100%   
 図17(a)は、照射面14の照度分布を示し、図17(b)は、照射面14から1m離れたスクリーンの照度分布を示している。照射面14の輝度は、
   1530/(8.4×8.4)=21.7cd/mm
で、輝度の減少は13%、照射効率は83.5%である。
 照射開口数は、
    sin(tan-1(260/1000)=0.252  (対辺方向)
    sin(tan-1(350/1000)=0.33   (対角方向)
である。照射面14の照度分布は、中心が周辺の約半分であるが、テーパーロッド31のような開口数の劣化が無いという特徴がある。
 照射効率は、テーパーロッド31と同じく表2となる。したがって、複合放物面鏡51の入口寸法はLED11寸法の1.1倍以下(L≦Din≦1.1L)、LED-複合放物面鏡間隔はLED11寸法の0.2倍以下(0<t≦0.2L)が望ましい。なお、ここでは中空の複合放物面鏡51を示したが、ガラスの内面全反射を用いた複合放物面鏡であってもよい。
 図14に示すように、発光ダイオード照明装置50は、図15に示すLED11と複合放物面鏡51のユニットを、複合放物面鏡出口寸法Doutと同じ間隔で(Io=Dout=Do)、6組正方配列したもので、図15の6倍の面積を照射することができる。この場合にも、テーパーロッド31を用いた発光ダイオード照明装置30と同様に、図15の場合よりも輝度が高くなる。
 図18に、本発明の実施の形態の発光ダイオード照明用部材を示す。
 図18に示すように、発光ダイオード照明用部材70は、7つのLED11を平面基板71に、Iled=8mmの間隔で、等間隔で稠密配列して形成されている。なお、以下の説明では、本発明の第1、第2および第3の実施の形態の発光ダイオード照明装置10、30、50と同一の構成には同一の符号を付して、重複する説明を省略する。
 各LED11は、高輝度照明装置として使いやすい照射開口数が0.1~0.5であることから、2L<Iled<10Lの間隔Iledで配列されている。なお、7つのLED11と同じ面積を、1個のLEDにすると5.3mm角のチップとなる。このLEDを2mm角のLEDと相似形で作ると、発熱量は7倍に増える。このとき、放熱抵抗は、2/5.3=1/2.7倍に減るが、結果としてチップの温度上昇は、5.3/2=2.7倍に増える。ここで、LEDのチップ温度上限は通常150℃とされており、これを守るためには、発熱量を1/2.7に減らす必要が生じ、結果として、発光面積を7倍にしても、全光束は2.7(7の平方根)倍にしかならない。
 放熱のための多くの提案がなされているが、高輝度LEDの発光面積を大きくするには、放熱による限界がある。このため、発光ダイオード照明用部材70では、LED11を分散配置して放熱性を上げ、結果として個々のLED11が持つ性能を出すことができるようにしている。
 平面基板71は、放熱性の良い、アルミまたは銅製である。
 以下に、発光ダイオード照明用部材70を使用して、本発明の第1の実施の形態の発光ダイオード照明装置10と同じガラス、同じ焦点距離、同じ径で、LED11の発光面から光学系12の第1面までの距離をd0=0.8としたときの設計例を示す。
         d0=0.8
r1=∞     d1=2   n1=1.5168 ν1=64.17
r2=-3.2  d2=1
r3=∞     d3=3.8 n2=1.8467 ν2=23.78
r4=-5.1  d4=0.5 k4=-1.6
 同様にd0=1とした時の設計例を示す。
         d0=1
r1=∞     d1=2.4 n1=1.5168 ν1=64.17
r2=-3.6  d2=1
r3=∞     d3=2.8 n2=1.8467 ν2=23.78
r4=-5.3  d4=0.5 k4=-1.9
[規則26に基づく補充 21.03.2012] 
 これらの設計における発光ダイオード照明装置10(d0=0.5)と同じ条件でのモンテカルロ・シミュレーション結果を、表3に示す。
Figure WO-DOC-TABLE-3
 表3に示すように、LED11から光学系12の第1面までの距離d0が大きくなると、輝度の変化はないが、照射効率が低くなる。表3より、第1面までの距離d0がLED11の寸法Lの0.4倍以下が好ましい。このため、LED11の配線材、カバーガラス、構造物等は、LED発光面からLED寸法の0.4倍以内になくてはならない。
 次に、発光ダイオード照明用部材70を使用して、発光ダイオード照明装置10においてLED11と第一レンズ21aとの間をシリコーン(屈折率=1.4)で封止した場合の設計例を示す。
         d0=0.5 n1=1.4    ν1=50
r1=∞     d1=1.4 n1=1.5168 ν1=64.17
r2=-2.1  d2=1
r3=∞     d3=5.6 n2=1.8467 ν2=23.78
r4=-5    d4=0.5 k4=-0.67
 この設計における発光ダイオード照明装置10と同一条件でのモンテカルロ・シミュレーション結果は、照射面の輝度11cd/mm、照射効率44%であった。封止することにより、LED出射光の開口数は、1.4(=屈折率)倍になりる。これは、開口数=1とすると、LED寸法が1.4倍、面積が2倍、輝度が1/2になったと同じ効果が生じる。照射面の輝度、照射効率とも発光ダイオード照明装置10の半分になったのは、この効果による。このことから、高輝度LED照明装置においては、LED11を気中に配置することが重要である。
 本発明の第1、第2および第3の実施の形態の発光ダイオード照明装置10、30、50の照射面を、新たな発光面として扱うこともできる。すなわち、輝度を落とすことなく、開口数を下げ、発光面積を上げた新たな発光面となる。例えば、発光ダイオード照明装置10、30、50の照射面を、反射型の表示素子に結像して使用することもできる。
 10、30、50 発光ダイオード照明装置
 11 LED(発光ダイオード)
 12 光学系
 13 ミキシングロッド
 14、15 照射面
 21a、21b レンズ
 31 テーパーロッド
 51 複合放物面鏡
 70 発光ダイオード照明用部材
 71 平面基板
 

Claims (8)

  1.  発光ダイオードと、前記発光ダイオードの出射光の開口数を変換するよう設けられた光学系とを有する発光ダイオード照明装置であって、
     前記発光ダイオードの発光面の代表的寸法をL、前記光学系の代表的寸法をDo、装置から照射される光の開口数をNAoutとしたとき、
       0.8L/NAout≦Do≦1.1L/NAout
    であることを、
     特徴とする発光ダイオード照明装置。
  2.  前記光学系は正の屈折力を有するレンズから成り、
     前記発光ダイオードは前記光学系の焦点または焦点の近傍に配置されており、
     前記光学系の代表的寸法Doを前記レンズの径とし、前記レンズの焦点距離をfとしたとき、
       Do≒2f≒L/NAout
    であることを、
     特徴とする請求項1記載の発光ダイオード照明装置。
  3.  前記発光ダイオードは複数から成り、それぞれ同一方向に光を出射するよう、発光面が同一平面上に配置されており、
     前記光学系は複数から成り、各発光ダイオードの出射光の開口数を変換するよう、各発光ダイオードに対応して設けられており、
     各発光ダイオードの発光面の代表的寸法をL、隣り合う発光ダイオード間の間隔をIled、各光学系の代表的寸法をDo、隣り合う光学系間の間隔をIo、装置から照射される光の開口数をNAoutとしたとき、
       0.8L/NAout≦Do≦1.1L/NAout
       Io≦Iled
       Io≦Do
    であることを、
     特徴とする請求項1記載の発光ダイオード照明装置。
  4.  各光学系は正の屈折力を有するレンズから成り、
     各発光ダイオードはそれぞれ各光学系の焦点または焦点の近傍に配置されており、
     各光学系の代表的寸法Doを前記レンズの径とし、前記レンズの焦点距離をfとしたとき、
       Do≒2f≒L/NAout
       Io=Iled≦Do
    であることを、
     特徴とする請求項3記載の発光ダイオード照明装置。
  5.  各光学系はテーパーロッドから成り、
     各光学系の代表的寸法Doを前記テーパーロッドの出口寸法とし、隣り合う光学系間の間隔Ioを前記テーパーロッド出口での間隔とし、前記テーパーロッドの入口寸法をDin、前記テーパーロッドの開き角をφ、各発光ダイオードと各光学系との間隔をtとしたとき、
       Do≒Din/NAout≒Io=Iled
       φ<NAout/10
       L≦Din≦1.1L
       0<t≦0.2L
    であることを、
     特徴とする請求項3記載の発光ダイオード照明装置。
  6.  各光学系はテーパーロッドから成り、
     各光学系の代表的寸法Doを前記テーパーロッドの出口寸法とし、隣り合う光学系間の間隔Ioを前記テーパーロッド出口での間隔とし、前記テーパーロッドの入口寸法をDinとしたとき、
       Do≒Din/NAout≒Io<Iled
    であることを、
     特徴とする請求項3記載の発光ダイオード照明装置。
  7.  各光学系は複合放物面集光器から成り、
     各光学系の代表的寸法Doを前記複合放物面集光器の出口寸法とし、前記複合放物面集光器の入口寸法Din、各発光ダイオードと各光学系との間隔をtとしたとき、
       Do≒Din/NAout≒Io=Iled
       L≦Din≦1.1L
       0<t≦0.2L
    であることを、
     特徴とする請求項3記載の発光ダイオード照明装置。
  8.  請求項3乃至7のいずれか1項に記載の発光ダイオード照明装置を構成する発光ダイオード照明用部材であって、
     各発光ダイオードがそれぞれ同一方向に光を出射可能に、2L<Iled<10Lを満たす間隔で、平面上に等間隔で稠密配列または正方配列されており、各発光ダイオードに対して、各発光ダイオードの発光方向に各光学系を0.4Lまで近接可能に構成されていることを、
     特徴とする発光ダイオード照明用部材。
     
PCT/JP2012/053782 2011-03-01 2012-02-17 発光ダイオード照明装置および発光ダイオード照明用部材 WO2012117868A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020137020697A KR20140040099A (ko) 2011-03-01 2012-02-17 발광 다이오드 조명 장치 및 발광 다이오드 조명용 부재

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-043441 2011-03-01
JP2011043441A JP5548153B2 (ja) 2011-03-01 2011-03-01 発光ダイオード照明装置および発光ダイオード照明用部材

Publications (1)

Publication Number Publication Date
WO2012117868A1 true WO2012117868A1 (ja) 2012-09-07

Family

ID=46757807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053782 WO2012117868A1 (ja) 2011-03-01 2012-02-17 発光ダイオード照明装置および発光ダイオード照明用部材

Country Status (3)

Country Link
JP (1) JP5548153B2 (ja)
KR (1) KR20140040099A (ja)
WO (1) WO2012117868A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102178817B1 (ko) * 2013-12-20 2020-11-13 에스엘 주식회사 차량용 램프
KR102244461B1 (ko) * 2014-06-17 2021-04-26 루미리즈 홀딩 비.브이. 인광체-변환형 led들에 대한 반사기 컵들의 어레이를 포함하는 플래시 모듈
JP7060932B2 (ja) * 2017-08-21 2022-04-27 株式会社ユーテクノロジー Led照明装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318922A (ja) * 2006-06-05 2006-11-24 Olympus Corp 照明装置及び画像投影装置
JP2007033860A (ja) * 2005-07-27 2007-02-08 Canon Inc 照明装置及び撮像装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW380213B (en) * 1999-01-21 2000-01-21 Ind Tech Res Inst Illumination apparatus and image projection apparatus includes the same
EP1998102B8 (en) * 2007-05-31 2018-03-21 OSRAM Opto Semiconductors GmbH Light source
DE102007027615B4 (de) * 2007-06-12 2012-02-16 Schott Ag Vorrichtung zur Einkopplung von Licht in einen faseroptischen Lichtleiter
US8382293B2 (en) * 2008-05-05 2013-02-26 3M Innovative Properties Company Light source module
KR101012014B1 (ko) * 2010-10-12 2011-01-31 다성전자기술 주식회사 광학렌즈 및 이를 이용한 도로전광표지판

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033860A (ja) * 2005-07-27 2007-02-08 Canon Inc 照明装置及び撮像装置
JP2006318922A (ja) * 2006-06-05 2006-11-24 Olympus Corp 照明装置及び画像投影装置

Also Published As

Publication number Publication date
KR20140040099A (ko) 2014-04-02
JP2012181974A (ja) 2012-09-20
JP5548153B2 (ja) 2014-07-16

Similar Documents

Publication Publication Date Title
US9791132B2 (en) Light source and illuminating device
US10295153B2 (en) Optical system for producing uniform illumination
JP5974242B2 (ja) 一様な投影照明を供給するための方法及び装置
US8106568B2 (en) Lighting device capable of suppressing occurrence of ovelap of multiple shades
US10473292B2 (en) Solid state illumination devices including spatially-extended light sources and reflectors
US20090129084A1 (en) Optical device for altering light shape and light source module comprising same
EP2802809B1 (en) A lens and an illumination device having the lens
KR20100080384A (ko) 원격 인광물질 led 조명 시스템
EP2721656B1 (en) Led light source
US9857057B2 (en) Lighting apparatus that utilizes honey-comb structured optical component to reduce light unevenness while maintaining light transmissivity in the irradiation region
JP5667177B2 (ja) スポット照明のための照明システム
US10955111B2 (en) Lens and lamp having a lens
JP5548153B2 (ja) 発光ダイオード照明装置および発光ダイオード照明用部材
JP2013045530A (ja) 発光装置及び照明器具
JP5785551B2 (ja) 照明器具及び光学部品
WO2010146664A1 (ja) Led照明器及び薄型面出光装置
Sun et al. Design of a high‐power collimating optical system based on Fresnel lenses
Feng et al. New LED illumination optical engine for micro-projection display
Asakawa et al. Development of light distribution controllable luminaire using high-power LEDs
CN114593379A (zh) 一种激光照明灯具光学结构
Parkyn et al. LED downlights with non-circular spots
Miñano Dominguez et al. Applications of the SMS method to the design of compact optics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752620

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137020697

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12752620

Country of ref document: EP

Kind code of ref document: A1