WO2012117759A1 - Thermosetting composition, adhesive film, and multilayer printed circuit board - Google Patents
Thermosetting composition, adhesive film, and multilayer printed circuit board Download PDFInfo
- Publication number
- WO2012117759A1 WO2012117759A1 PCT/JP2012/051034 JP2012051034W WO2012117759A1 WO 2012117759 A1 WO2012117759 A1 WO 2012117759A1 JP 2012051034 W JP2012051034 W JP 2012051034W WO 2012117759 A1 WO2012117759 A1 WO 2012117759A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- thermosetting composition
- resin
- epoxy
- epoxy resin
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J4/00—Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/62—Alcohols or phenols
- C08G59/621—Phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/08—Polyhydrazides; Polytriazoles; Polyaminotriazoles; Polyoxadiazoles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3472—Five-membered rings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J163/00—Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/30—Adhesives in the form of films or foils characterised by the adhesive composition
- C09J7/35—Heat-activated
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2203/00—Applications of adhesives in processes or use of adhesives in the form of films or foils
- C09J2203/326—Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2463/00—Presence of epoxy resin
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/032—Organic insulating material consisting of one material
- H05K1/0326—Organic insulating material consisting of one material containing O
Definitions
- the present invention relates to a thermosetting composition useful as an interlayer insulating material for a multilayer printed wiring board, an adhesive film using the thermosetting composition, and a multilayer printed wiring board using the thermosetting composition.
- a multilayer printed wiring board is usually manufactured by laminating an insulating material composed of a resin composition and a conductor circuit layer.
- a via hole is formed by a laser method, a photo method, or the like, instead of the conventional drilling process.
- insulating material between layers used for a multilayer printed wiring board is a prepreg in which a glass cloth is impregnated with a thermosetting resin.
- insulating materials between layers that do not use a substrate such as glass cloth are required to make the insulating layers extremely thin.
- an insulating material between layers used for a multilayer printed wiring board from the group consisting of two types of epoxy resins, phenolic curing agents, phenoxy resins, polyvinyl acetal resins, polyamide resins and polyamideimide resins.
- An adhesive film for a multilayer printed wiring board formed in has been proposed (for example, see Patent Document 1).
- an epoxy resin composition containing an epoxy resin, a phenol resin having a specific hydroxyl group content, and a polyvinyl acetal resin, and a resin composition layer made of the epoxy resin composition are formed on a support film.
- An adhesive film has been proposed (see, for example, Patent Document 2). However, these proposed techniques have a problem that insulation is not sufficient.
- Desmear treatment is, for example, chemical treatment, that is, by immersing the multilayer substrate with via holes in a solution of a chemical oxidizing agent such as potassium permanganate or potassium dichromate, and dissolving and removing smears in the via holes. Done.
- a chemical oxidizing agent such as potassium permanganate or potassium dichromate
- the proposed technique has a problem that the desmear property is not sufficient.
- the insulating layer is required to have good adhesion to the plating process, that is, anti-plating adhesion is required.
- the above proposed technique has a problem that the adhesion resistance to plating is not sufficient.
- thermosetting composition having excellent insulating properties, desmear properties, and plating-resistant adhesion.
- an object of the present invention is to provide a thermosetting composition having excellent insulating properties, desmearing properties, and plating-resistant adhesion.
- thermosetting composition of the present invention comprises an epoxy resin having two or more epoxy groups in one molecule, at least one of a group having a radically polymerizable double bond and a group capable of reacting with an epoxy group, and a triazole ring. And a compound having:
- thermosetting composition excellent in insulating properties, desmear properties, and plating-resistant adhesion properties can be provided.
- thermosetting composition comprises an epoxy resin having two or more epoxy groups in one molecule, at least one of a group having a radically polymerizable double bond and a group capable of reacting with an epoxy group, and a triazole ring. At least, preferably a phenolic curing agent, an inorganic filler, and, if necessary, other components.
- the epoxy resin having two or more epoxy groups in one molecule is not particularly limited and may be appropriately selected depending on the intended purpose.
- the epoxy resin having two or more epoxy groups in one molecule includes two or more epoxy groups in one molecule and is liquid at 20 ° C., and three or more epoxy resins in one molecule.
- an aromatic epoxy resin having an epoxy group and solid at 20 ° C. sufficient flexibility is exhibited when the thermosetting composition is used in the form of an adhesive film. It is preferable in that an adhesive film (excellent in properties) can be formed, and at the same time, the breaking strength of the cured product of the thermosetting composition is improved and the durability of the multilayer printed wiring board is improved.
- the epoxy resin having two or more epoxy groups in one molecule and being liquid at 20 ° C. is not particularly limited and may be appropriately selected depending on the intended purpose.
- a bisphenol A type epoxy resin examples thereof include bisphenol F type epoxy resin, phenol novolak type epoxy resin, tert-butyl-catechol type epoxy resin, naphthalene type epoxy resin, glycidylamine type epoxy resin, and alicyclic epoxy resin.
- aromatic epoxy resins are preferable from the viewpoint of physical properties of the cured product.
- the aromatic epoxy resin means an epoxy resin having an aromatic ring skeleton in the molecule.
- the epoxy resin having two or more epoxy groups in one molecule and being liquid at 20 ° C. is an aromatic resin having two or more epoxy groups in one molecule and being liquid at 20 ° C.
- An epoxy resin is preferable. These may be used individually by 1 type and may use 2 or more types together.
- the epoxy resin having two or more epoxy groups in one molecule and being liquid at 20 ° C. may be liquid at less than 20 ° C.
- an epoxy resin having two or more epoxy groups in one molecule and being liquid at 20 ° C. is used instead of a solid epoxy resin at 20 ° C., normal temperature (20 ° C. to 30 ° C.) for handling an adhesive film Degree)
- sufficient fluidity of a thermosetting composition that only fills via holes and through holes may not be obtained.
- Specific examples of the epoxy resin having two or more epoxy groups in one molecule and being liquid at 20 ° C. include HP4032 (manufactured by DIC), HP4032D (manufactured by DIC), and jER807 (Epicoat 807).
- HP4032 manufactured by DIC
- HP4032D manufactured by DIC
- jER807 Epicoat 807
- jER828EL Epicoat 828EL
- jER152 Epicoat 152
- YDF-170 Natural Chemical Co., Ltd.
- the aromatic epoxy resin having three or more epoxy groups in one molecule and being solid at 20 ° C. is not particularly limited and may be appropriately selected depending on the intended purpose.
- naphthalene type An epoxy resin, an epoxidized product of a condensate of phenols and an aromatic aldehyde having a phenolic hydroxyl group (trisphenol type epoxy resin), and the like can be mentioned. These may be used individually by 1 type and may use 2 or more types together.
- the aromatic epoxy resin having three or more epoxy groups in one molecule and solid at 20 ° C. may be solid at a temperature exceeding 20 ° C.
- the epoxy equivalent of the aromatic epoxy resin having 3 or more epoxy groups in one molecule and solid at 20 ° C. is not particularly limited and can be appropriately selected according to the purpose. 230 g / eq or less is preferable, and 150 g / eq to 230 g / eq is more preferable.
- the epoxy equivalent (g / eq) is a molecular weight per one epoxy group.
- HP4700 (EXA4700) (manufactured by DIC, naphthalene type tetrafunctional epoxy resin) , Epoxy equivalent 163 g / eq, solid at 20 ° C.), N-690 (manufactured by DIC, cresol novolac epoxy resin, epoxy equivalent 208 g / eq, solid at 20 ° C.), N-695 (manufactured by DIC, cresol Novolac type epoxy resin, epoxy equivalent 208 g / eq, solid at 20 ° C), EPPN-502H (manufactured by Nippon Kayaku Co., Ltd., trisphenol epoxy resin, epoxy equivalent 168 g / eq, solid at 20 ° C), NC7000L (Nipponization) Manufactured by Yakuhinsha Co., Ltd., naphthol novolac type epoxy resin, epoxy equivalent 228
- an epoxy resin having two or more epoxy groups in one molecule an epoxy resin (first epoxy resin) having two or more epoxy groups in one molecule and being liquid at 20 ° C.
- the aromatic epoxy resin (second epoxy resin) having three or more epoxy groups in one molecule and solid at 20 ° C. is used in combination
- the mixing ratio (A1: A2) of the second epoxy resin (A2) is not particularly limited and may be appropriately selected depending on the intended purpose.
- the mass ratio is 1: 0.3 to 1: 2.
- 1: 0.5 to 1: 1 is more preferable.
- the adhesive film is used in the form of an adhesive film, the deaeration property during vacuum lamination is lowered and voids are likely to be generated. Further, the peelability of the protective film and the support film may be lowered during vacuum lamination, and the heat resistance after curing may be lowered. Moreover, it may be difficult to obtain sufficient breaking strength in the cured product of the thermosetting composition.
- the content of the epoxy resin having two or more epoxy groups in one molecule in the thermosetting composition is not particularly limited and may be appropriately selected depending on the intended purpose.
- the content is preferably 10% by mass to 50% by mass, more preferably 20% by mass to 40% by mass, and particularly preferably 20% by mass to 35% by mass with respect to the nonvolatile content of the composition. When the content is less than 10% by mass, the curability of the thermosetting composition may be lowered.
- the compound having at least one of a group having a double bond capable of radical polymerization and a group capable of reacting with an epoxy group and a triazole ring includes a group having a radical polymerizable double bond and a group capable of reacting with an epoxy group. If it is a compound which has at least any of these and a triazole ring at least, there will be no restriction
- Examples of the radically polymerizable group having a double bond include an acryloyloxy group, a methacryloyloxy group, a vinylphenyl group, and an allyl group.
- Examples of the group capable of reacting with the epoxy group include a carboxyl group, an amino group, and a mercapto group.
- the triazole ring may be any of 1,2,3-triazole ring and 1,2,4-triazole ring.
- 1,2,3-triazole and 1,2,4-triazole are compounds represented by the following structural formula.
- a compound having a triazole ring and at least one of a group having a radical polymerizable double bond and a group capable of reacting with an epoxy group in other words, capable of reacting with a group having a radical polymerizable double bond and an epoxy group
- the bonding position of the organic group to the triazole ring is not particularly limited and may be appropriately selected depending on the purpose, and may be bonded to a nitrogen atom of the triazole ring or bonded to a carbon atom. May be.
- a compound represented by the following general formula (I) is preferable.
- X represents a triazole ring.
- Y represents an organic group having at least one of a group having a double bond capable of radical polymerization and a group capable of reacting with an epoxy group.
- n represents an integer of 1 to 3. When n is 2 to 3, Y may be the same or different.
- Y may be bonded to a nitrogen atom of the triazole ring which is X, or may be bonded to a carbon atom.
- n is preferably 1 to 2.
- Y in the general formula (I) is preferably a group represented by the following general formula (II).
- Y 1 represents an m + 1 valent organic group having 2 to 25 carbon atoms.
- Z 1 represents any of a carboxyl group, an acryloyloxy group, and a methacryloyloxy group.
- m represents an integer of 1 to 2. When m is 2, Z 1 may be the same or different.
- Z 1 is preferably a carboxyl group in terms of insulation and plating-resistant adhesion.
- m is 2, it is preferable that at least one of the Z 1 is a carboxyl group.
- the m + 1 valent organic group having 2 to 25 carbon atoms is not particularly limited and may be appropriately selected depending on the intended purpose. For example, at least one of a urea bond, an amide bond, an ester bond, and a thiourea bond is selected. And an m + 1 valent organic group having 2 to 25 carbon atoms.
- the carbon number of the organic group is preferably 2 to 20, and more preferably 2 to 15.
- the molecular weight of the compound having a triazole ring and at least one of a group having a radically polymerizable double bond and a group capable of reacting with an epoxy group is not particularly limited and may be appropriately selected depending on the purpose. 90 to 1,000 is preferable, and 100 to 800 is more preferable.
- the compound having at least one of a group having a radically polymerizable double bond and a group capable of reacting with an epoxy group and a triazole ring include a compound represented by the following formula.
- the content in the thermosetting composition of the compound having a triazole ring and at least one of a group having a radically polymerizable double bond and a group capable of reacting with an epoxy group is not particularly limited and depends on the purpose.
- the amount is preferably 1.0% by mass to 20% by mass and more preferably 1.5% by mass to 10% by mass with respect to the nonvolatile content of the thermosetting composition.
- the content is less than 1.0% by mass, sufficient insulating properties may not be exhibited.
- the content exceeds 20% by mass, heat resistance may be deteriorated.
- the phenolic curing agent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include phenol novolac resins, alkylphenol novolac resins, triazine structure-containing phenol novolac resins, bisphenol A novolac resins, and dicyclopentadiene types. Examples thereof include phenol resins such as phenol resins, Xylok type phenol resins, terpene-modified phenol resins, and polyvinyl phenols, naphthalene curing agents, and fluorene curing agents. These may be used individually by 1 type and may use 2 or more types together. A commercial item can be used as said phenol type hardening
- the content of the phenolic curing agent is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 2% by mass to 60% by mass with respect to the nonvolatile content of the thermosetting composition. 5% by mass to 50% by mass is more preferable. When the content is less than 2% by mass, the properties of the cured film may be deteriorated and the heat resistance may be inferior, and when it exceeds 60% by mass, the toughness may be deteriorated. When the content is within the more preferable range, it is advantageous in that good cured film properties can be obtained.
- the ratio of the total number of epoxy groups present in the thermosetting composition and the total number of phenolic hydroxyl groups of the phenolic curing agent is 1: 0.5 to 1: 1. It is preferable to contain so that it may become .5. When the content rate of the said phenol type hardening
- the inorganic filler is not particularly limited and may be appropriately selected depending on the intended purpose.
- examples thereof include magnesium, magnesium oxide, boron nitride, aluminum borate, barium titanate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, and calcium zirconate. These may be used individually by 1 type and may use 2 or more types together. Among these, silica is preferable.
- the average particle size (d50) of the inorganic filler is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 ⁇ m or less, more preferably 0.04 ⁇ m to 2.0 ⁇ m. When the average particle diameter (d50) exceeds 5 ⁇ m, it may be difficult to perform stably when forming a circuit pattern finely on the conductor layer.
- the inorganic filler is preferably surface-treated with a surface treatment agent such as a silane coupling agent in order to improve moisture resistance.
- the average particle size (d50) is defined as a particle size having an integrated value of 50% when expressed as an integrated (cumulative) weight percentage, and is defined as d50 (D50), for example.
- the measurement principle can be a dynamic light scattering method
- the size distribution analysis method can be a cumulant method and / or a histogram method.
- the other component is not particularly limited as long as it does not impair the effects of the present invention, and can be appropriately selected according to the purpose.
- phenoxy resin polyvinyl acetal resin, polyamide resin, polyamideimide resin , Thermoplastic elastomers, curing accelerators, other resins, additives and the like.
- thermosetting composition preferably contains at least one selected from phenoxy resin, polyvinyl acetal resin, polyamide resin, and polyamideimide resin.
- phenoxy resin include, for example, FX280 (manufactured by Nippon Steel Chemical), FX293 (manufactured by Nippon Steel Chemical), YX8100 (manufactured by Mitsubishi Chemical), YL6954 (manufactured by Mitsubishi Chemical), YL6974 (Mitsubishi). Chemical Co., Ltd.).
- polyvinyl acetal resin there is no restriction
- Specific examples of the polyvinyl acetal resin include, for example, ESREC KS series (manufactured by Sekisui Chemical Co., Ltd.).
- limiting in particular as said polyamide resin According to the objective, it can select suitably.
- Specific examples of the polyamide resin include KS5000 series (manufactured by Hitachi Chemical Co., Ltd.), BP series (manufactured by Nippon Kayaku Co., Ltd.), and the like.
- polyamideimide resin examples include KS9000 series (manufactured by Hitachi Chemical Co., Ltd.). These may be used individually by 1 type and may use 2 or more types together. Among these, phenoxy resin and polyvinyl acetal resin are preferable.
- the glass transition temperature of the phenoxy resin, polyvinyl acetal resin, polyamide resin, and polyamideimide resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 100 ° C or higher, preferably 100 ° C to 300 ° C. Is more preferable.
- the glass transition temperature is determined according to the method described in JIS (Japanese Industrial Standards) K7197. In addition, the case where the glass transition temperature is not actually observed because the glass transition temperature is higher than the decomposition temperature is also included in the definition of “glass transition temperature of 100 ° C. or higher” in the present invention.
- the decomposition temperature is defined as a temperature at which the mass reduction rate when measured according to the method described in JIS K 7120 is 5%.
- the phenoxy resin, polyvinyl acetal resin, polyamide resin, and polyamideimide resin have an important influence on the thermal fluidity during lamination of the thermosetting composition and the roughening property of the cured product by an oxidizing agent.
- the glass transition temperature of the phenoxy resin, polyvinyl acetal resin, polyamide resin, and polyamideimide resin is less than 100 ° C., the mechanical strength of the cured product is insufficient, and inorganic filler is deposited on the surface of the cured product after roughening. It is difficult to obtain sufficient plating peel strength.
- thermosetting composition there is no restriction
- thermoplastic elastomer There is no restriction
- thermoplastic elastomers are composed of a hard segment component and a soft segment component. In general, the former contributes to heat resistance and strength, and the latter contributes to flexibility and toughness.
- thermosetting composition examples include, for example, paragraphs of JP-A-2009-014745. [0087] to [0095].
- 1 mass% with respect to the non volatile matter of the said thermosetting composition Is preferably 50% by mass, more preferably 2% by mass to 20% by mass, and particularly preferably 3% by mass to 10% by mass.
- the content is less than 1% by mass, the toughness of the cured film may be inferior, and when it exceeds 50% by mass, the heat resistance of the cured film may be inferior.
- the content is within the particularly preferable range, it is advantageous in that the toughness and heat resistance of the cured film are improved.
- the curing accelerator is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include organic phosphine compounds, imidazole compounds, amine adduct compounds, and tertiary amine compounds. Examples of the organic phosphine compound include triphenylphosphine. A commercially available product can be used as the organic phosphine compound. Examples of commercially available organic phosphine compounds include TPP, TPP-K, TPP-S, and TPTP-S (all manufactured by Hokuko Chemical Co., Ltd.). Examples of the imidazole compound include 2-ethyl 4-methylimidazole. A commercial item can be used for the imidazole compound.
- Examples of commercially available products of the imidazole compound include Curezol 2MZ, 2E4MZ, C11Z, C11Z-CN, C11Z-CNS, C11Z-A, 2MZ-OK, 2MA-OK, and 2PHZ (both manufactured by Shikoku Chemical Industries). Etc.
- a commercial item can be used as said amine adduct compound.
- Examples of commercially available amine adduct compounds include NOVACURE (Asahi Kasei Kogyo Co., Ltd.), Fuji Cure (Fuji Kasei Kogyo Co., Ltd.), and the like.
- Examples of the tertiary amine compound include DBU (1,4-diazabicyclo [5,4,0] unde-7-ene).
- the content of the curing accelerator is not particularly limited and may be appropriately selected depending on the intended purpose, but is 0.2% by mass to 20% by mass with respect to the nonvolatile content of the thermosetting composition. preferable.
- an organic filler for example, an organic filler, a thickener, an antifoamer, a leveling agent, an adhesiveness imparting agent, a coloring agent etc. are mentioned.
- the organic filler include silicon powder, nylon powder, and fluorine powder.
- the thickener include olben and benton.
- the antifoaming agent and leveling agent include silicone-based, fluorine-based, and polymer-based antifoaming agents and leveling agents.
- the adhesion-imparting agent include imidazole-based, thiazole-based, and triazole-based silane coupling agents.
- the colorant include phthalocyanine / blue, phthalocyanine / green, iodin / green, disazo yellow, and carbon black.
- thermosetting composition can be applied on a circuit board or a conductor circuit layer to form an insulating layer of a multilayer printed wiring board. It is preferably used for formation.
- the adhesive film of the present invention has a support and a thermosetting composition layer formed from the thermosetting composition of the present invention on the support, and further includes other layers as necessary. Have.
- ⁇ Support> There is no restriction
- the polyolefin include polyethylene, polypropylene, and polyvinyl chloride.
- the polyester include polyethylene terephthalate and polyethylene naphthalate.
- the metal foil include copper foil and aluminum foil.
- the average thickness of the film-like support is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 4 ⁇ m to 300 ⁇ m, more preferably 5 ⁇ m to 175 ⁇ m.
- the support may be subjected to mat treatment, corona treatment, mold release treatment, and the like.
- thermosetting composition layer is a layer formed from the said thermosetting composition of this invention on the said support body.
- the thermosetting composition layer is softened under the lamination temperature condition (usually 70 ° C. to 140 ° C.) in the vacuum laminating method, and laminated (attached) to the circuit board, and at the same time, via holes or through holes existing in the circuit board It is preferable that the resin exhibits fluidity (resin flow) that can be filled with resin.
- the diameter of the through hole of the multilayer printed wiring board is usually 0.1 mm to 0.5 mm, and the depth is usually 0.1 mm to 1.2 mm. Usually, it is preferable that the resin can be filled in this range.
- When laminating the said thermosetting composition layer on both surfaces of a circuit board what is necessary is just to fill 1/2 of a through hole.
- Such physical properties can be characterized by a temperature-melt viscosity curve obtained by measuring dynamic viscoelasticity of the thermosetting composition.
- the average thickness of the thermosetting composition layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably equal to or greater than the average thickness of the conductor circuit layer of the multilayer printed wiring board. Since the average thickness of the conductor circuit layer is usually in the range of 5 ⁇ m to 70 ⁇ m, the average thickness of the thermosetting composition layer is preferably 10 ⁇ m to 100 ⁇ m.
- thermosetting composition layer there is no restriction
- the said thermosetting composition of this invention is organic on the said support body. Examples include a method in which a coating solution dissolved or dispersed in a solvent is prepared, and the coating solution is directly applied and dried.
- the organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose.
- alcohols include methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, and n-hexanol.
- ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisobutyl ketone and the like.
- esters examples include ethyl acetate, butyl acetate, n-amyl acetate, methyl sulfate, ethyl propionate, dimethyl phthalate, ethyl benzoate, and methoxypropyl acetate.
- aromatic hydrocarbons include toluene, xylene, benzene, ethylbenzene and the like.
- halogenated hydrocarbons include carbon tetrachloride, trichloroethylene, chloroform, 1,1,1-trichloroethane, methylene chloride, and monochlorobenzene.
- ethers examples include tetrahydrofuran, diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, 1-methoxy-2-propanol, and the like. These may be used individually by 1 type and may use 2 or more types together.
- the nonvolatile concentration of the coating solution is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10% by mass to 90% by mass, and more preferably 15% by mass to 50% by mass.
- the application method is not particularly limited and may be appropriately selected depending on the intended purpose. For example, using a spin coater, slit spin coater, roll coater, die coater, curtain coater, etc.
- coating is mentioned.
- the drying conditions are not particularly limited and may be appropriately selected depending on the purpose. The drying conditions vary depending on each component, the type of solvent, the use ratio, and the like, but are usually 60 ° C. to 110 ° C. for 30 seconds. About 15 minutes.
- thermosetting composition layer formed on the support is preferably formed so that the area of the layer is smaller than the area of the support.
- the protective layer is not particularly limited and may be appropriately selected depending on the intended purpose.
- the protective layer is made of the same material as that described in the description of the support, silicone paper, polyethylene, and polypropylene laminated paper. And polytetrafluoroethylene sheet.
- the average thickness of the protective layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 ⁇ m to 70 ⁇ m.
- the adhesive film can be wound and stored in a roll.
- the adhesive film can be suitably used as an adhesive film used for multilayer printed wiring boards.
- the multilayer printed wiring board of the present invention has at least an insulating layer formed of a cured product of the thermosetting composition of the present invention, and further includes other members such as a circuit board and a conductor circuit layer as necessary. Have.
- the insulating layer is formed of a cured product of the thermosetting composition of the present invention.
- the average thickness of the insulating layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably equal to or greater than the average thickness of the conductor circuit layer. Since the average thickness of the conductor circuit layer is usually in the range of 5 ⁇ m to 70 ⁇ m, the average thickness of the insulating layer is preferably 10 ⁇ m to 100 ⁇ m.
- the method for forming the insulating layer is not particularly limited and may be appropriately selected depending on the purpose.
- the thermosetting composition is applied onto the circuit board or the conductor circuit layer, A method of forming a cured product by heating (a method of applying), and the adhesive film of the present invention so that the thermosetting composition layer of the adhesive film is in contact with the circuit board or the conductor circuit layer.
- a method of laminating (lamination) on the circuit board or the conductor circuit layer and heating to form a cured product may be used.
- the coating method is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a spin coater, a slit spin coater, a roll coater, a die coater, and a curtain coater.
- the laminating conditions in the laminating method are not particularly limited and may be appropriately selected depending on the intended purpose.
- the pressure bonding temperature (laminating temperature) is preferably 70 ° C. to 140 ° C.
- the crimping pressure 1kgf / cm 2 ⁇ 11kgf / cm 2 (9.8 ⁇ 10 4 N / m 2 ⁇ 107.9 ⁇ 10 4 N / m 2) is preferred.
- a commercially available vacuum laminator can be used for the laminate.
- the lamination method may be a batch method or a continuous method using a roll or the like. Further, before the lamination, the adhesive film, the circuit board, and the conductor circuit layer may be heated (preheated) as necessary.
- the heating conditions for forming the cured product in the coating method and the laminating method are not particularly limited and can be appropriately selected depending on the purpose.
- the heating temperature is preferably 150 ° C. to 220 ° C., more preferably 160 ° C. to 200 ° C.
- the heating time is preferably 20 minutes to 180 minutes, more preferably 30 minutes to 120 minutes.
- holes are formed in the insulating layer as necessary to form via holes and through holes.
- a method of performing the said drilling According to the objective, it can select suitably, For example, the method using a drill, a laser, plasma etc. is mentioned. Moreover, it can carry out combining these methods as needed.
- the drilling method using a laser is preferable.
- the laser is preferably a carbon dioxide laser or a YAG laser.
- the surface of the insulating layer may be roughened with an oxidizing agent.
- an oxidizing agent for example, permanganate (potassium permanganate, sodium permanganate etc.), dichromate, ozone, peroxidation Examples include hydrogen / sulfuric acid and nitric acid.
- an alkaline permanganate solution for example, potassium permanganate, sodium permanganate hydroxide
- Sodium aqueous solution is preferred.
- ⁇ Circuit board> There is no restriction
- the said circuit board the said insulating layer and the said conductor circuit layer may be formed in the single side
- the conductor circuit layer is not particularly limited as long as it is a layer having a circuit formed of a conductor, and can be appropriately selected according to the purpose.
- the method for forming the conductor circuit layer is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include a subtractive method and a semi-additive method. Specifically, the conductor circuit layer may be formed on the insulating layer.
- Examples thereof include a method combining electroless plating and electrolytic plating, a method in which a plating resist having a pattern opposite to that of the conductor circuit layer is formed, and forming only by electroless plating, and a sputtering method. After the conductor circuit layer is formed, the peel strength of the conductor circuit layer can be improved and stabilized by annealing at 150 to 200 ° C. for 20 to 90 minutes.
- the structure of the multilayer printed wiring board is not particularly limited and may be appropriately selected depending on the purpose.
- the insulating layer and the conductor circuit layer are alternately arranged on one side or both sides of the circuit board.
- a stacked structure is exemplified.
- reaction solution was poured into 1.2 L of ion-exchanged water with strong stirring to crystallize the desired product. Washing with isopropanol / hexane (2/8 (mass ratio)), filtering and drying, 121.1 g of compound T-1 having the following structure was obtained.
- thermosetting composition 1- 20 parts by mass of liquid bisphenol F type epoxy resin (YDF-170, epoxy equivalent 172 g / eq, manufactured by Nippon Steel Chemical Co., Ltd.) and naphthalene type tetrafunctional epoxy resin (EXA-4700, epoxy equivalent 163 g / eq, manufactured by DIC) 12 parts by mass was added to 20 parts by mass of cyclohexanone with stirring and dissolved by heating.
- liquid bisphenol F type epoxy resin YDF-170, epoxy equivalent 172 g / eq, manufactured by Nippon Steel Chemical Co., Ltd.
- EXA-4700 epoxy equivalent 163 g / eq, manufactured by DIC
- thermosetting composition 1 3.5 parts by mass of the compound (T-1) synthesized in Synthesis Example 1, a triazine structure-containing phenol novolac resin MEK varnish (Phenolite LA-7052, manufactured by DIC, non-volatile content 60% by mass, non-volatile phenol 25 parts by mass of hydroxyl group equivalent 120), 20 parts by mass of phenoxy resin varnish (FX293, Nippon Steel Chemical Co., Ltd., nonvolatile content 40% by mass), and 60 parts by mass of spherical silica (average particle size 0.5 ⁇ m, aminosilane treatment)
- the thermosetting composition 1 was prepared by addition.
- thermosetting composition 1 On a polyethylene terephthalate film (thickness 38 ⁇ m, hereinafter abbreviated as PET film), the thermosetting composition 1 is applied using a die coater so that the average thickness after drying is 50 ⁇ m, and dried at 80 ° C. for 15 minutes. (A residual solvent amount of about 1% by mass), a thermosetting composition layer was formed. Next, an adhesive film 1 was produced by winding up a 15 ⁇ m-thick polypropylene film as a protective layer on the formed thermosetting composition layer in a roll shape.
- a circuit board was prepared using a FR4 double-sided copper-clad laminate (copper foil thickness 18 ⁇ m) having a thickness of 0.3 mm (with a through hole having a diameter of 0.2 mm). After the polypropylene film of the produced adhesive film 1 was peeled off, the thermosetting composition layer was in contact with the circuit surface of the circuit board, and a temperature of 110 ° C., a pressure of 7 kgf / cm 2 , and an atmospheric pressure of 5 mmHg (1) was applied by a vacuum laminator. .33 hPa) The adhesive film 1 was laminated on both sides of the circuit board under the following conditions.
- the PET film of the adhesive film 1 was peeled off and cured by heating at 180 ° C. for 30 minutes to form an insulating layer. After that, drilling with a laser to form a via hole, then roughening the surface of the insulating layer with an alkaline oxidizer of permanganate, electroless plating and electrolytic plating to form a conductor circuit layer according to the subtractive method A multilayer printed wiring board was obtained. Thereafter, an annealing treatment was further performed at 180 ° C. for 30 minutes. The thickness of the conductor plating of the obtained conductor circuit layer was about 30 ⁇ m, and the through hole was completely filled with resin.
- thermosetting composition layer is brought into contact with the comb-shaped electrode of the circuit board, and a temperature of 110 ° C., a pressure of 7 kgf / cm 2 , and a pressure of 5 mmHg (1. 33 hPa)
- the adhesive film 1 was laminated on the circuit board under the following conditions.
- the PET film of the adhesive film 1 was peeled off and cured by heating at 180 ° C. for 30 minutes, an insulating layer was formed, and a printed wiring board for evaluation was produced.
- the protective layer of the adhesive film is peeled off, and the adhesive film is subjected to FR4 double-sided copper-clad laminate using a vacuum laminator (MVLP-500) manufactured by Meiki Seisakusho at a pressure of 5 mmHg or less, a temperature of 100 ° C., and a pressure of 7 kgf / cm 2. Laminated on both sides simultaneously. Further, hot pressing with a SUS end plate was performed continuously under conditions of a temperature of 100 ° C. and a pressure of 5 kgf / cm 2 . And PET film was peeled and the thermosetting process was performed for 30 minutes at 180 degreeC.
- MVLP-500 vacuum laminator manufactured by Meiki Seisakusho
- a circuit board was prepared using a FR4 double-sided copper-clad laminate (copper foil thickness 18 ⁇ m) having a thickness of 0.3 mm (with a through hole having a diameter of 0.2 mm). After the polypropylene film of the adhesive film 1 is peeled off, the thermosetting composition layer is in contact with the circuit surface of the circuit board, and is heated by a vacuum laminator at a temperature of 110 ° C., a pressure of 7 kgf / cm 2 , and an atmospheric pressure of 5 mmHg (1.33 hPa). ) The adhesive film 1 was laminated on both sides of the circuit board under the following conditions.
- the PET film of the adhesive film 1 was peeled off and cured by heating at 180 ° C. for 30 minutes, an insulating layer was formed, and a printed wiring board for evaluation was produced.
- Evaluation of anti-plating adhesion The formed insulating layer was degreased to roughen the surface, and then palladium sulfate was added to add a catalyst.
- the insulation layer was turned up and peeled off visually, based on the following criteria: Then, the plating resistance was evaluated.
- Example 2 A thermosetting composition, an adhesive film, and a multilayer printed wiring board were produced in the same manner as in Example 1 except that the compound T-1 was replaced with the compound T-2 in Example 1. Evaluation similar to Example 1 was performed. The results are shown in Table 1.
- Example 3 A thermosetting composition, an adhesive film, and a multilayer printed wiring board were produced in the same manner as in Example 1 except that the compound T-1 was replaced with the compound T-3 in Example 1. Evaluation similar to Example 1 was performed. The results are shown in Table 1.
- Example 4 A thermosetting composition, an adhesive film, and a multilayer printed wiring board were produced in the same manner as in Example 1 except that the compound T-1 was replaced with the compound T-4 in Example 1. Evaluation similar to Example 1 was performed. The results are shown in Table 1.
- Example 5 In Example 1, except that the blending amount was changed so that the content of T-1 (content with respect to the nonvolatile content of the obtained thermosetting composition) was 3.0% by mass to 0.5% by mass. In the same manner as in Example 1, a thermosetting composition, an adhesive film, and a multilayer printed wiring board were produced. Evaluation similar to Example 1 was performed. The results are shown in Table 1.
- Example 6 In Example 1, except that the blending amount was changed so that the content of T-1 (content with respect to the nonvolatile content of the obtained thermosetting composition) was 3.0% by mass to 1.7% by mass. In the same manner as in Example 1, a thermosetting composition, an adhesive film, and a multilayer printed wiring board were produced. Evaluation similar to Example 1 was performed. The results are shown in Table 1.
- Example 7 In Example 1, except that the blending amount was changed so that the content of T-1 (content with respect to the nonvolatile content of the obtained thermosetting composition) was 3.0% by mass to 15.0% by mass.
- a thermosetting composition, an adhesive film, and a multilayer printed wiring board were produced. Evaluation similar to Example 1 was performed. The results are shown in Table 1.
- Example 8 In Example 1, except that liquid bisphenol F type epoxy resin (YDF-170) and naphthalene type tetrafunctional epoxy resin (EXA-4700) were replaced with trifunctional epoxy resin (VG-3101, manufactured by Printec). In the same manner as in Example 1, a thermosetting composition, an adhesive film, and a multilayer printed wiring board were produced. Evaluation similar to Example 1 was performed. The results are shown in Table 1.
- Example 9 The thermosetting composition was the same as in Example 1, except that the naphthalene type tetrafunctional epoxy resin (EXA-4700) was replaced with a cresol novolac type epoxy resin (N-697, manufactured by DIC) in Example 1. An adhesive film and a multilayer printed wiring board were produced. Evaluation similar to Example 1 was performed. The results are shown in Table 1.
- thermosetting composition was the same as Example 1 except that the liquid bisphenol F type epoxy resin, naphthalene type tetrafunctional epoxy resin, and compound T-1 were not added to the thermosetting composition. Articles, adhesive films, and multilayer printed wiring boards were produced. Evaluation similar to Example 1 was performed. The results are shown in Table 1.
- thermosetting composition An adhesive film, and a multilayer printed wiring board were produced in the same manner as in Example 1 except that Compound T-1 was not added. Evaluation similar to Example 1 was performed. The results are shown in Table 1.
- Example 3 (Comparative Example 3) In Example 1, except that the compound T-1 was replaced by the following compound TZ (1,2,4-triazole), the thermosetting composition, the adhesive film, and the multilayer print were the same as in Example 1. A wiring board was produced. Evaluation similar to Example 1 was performed. The results are shown in Table 1.
- the content of the triazole compound indicates the content (% by mass) relative to the nonvolatile content of the thermosetting composition.
- thermosetting composition characterized by containing.
- thermosetting composition according to ⁇ 1> further including a phenol-based curing agent.
- ⁇ 4> The above ⁇ 1>, wherein the compound having a triazole ring and at least one of a group having a radically polymerizable double bond and a group capable of reacting with an epoxy group is a compound represented by the following general formula (I): To ⁇ 3>.
- X represents a triazole ring.
- Y represents an organic group having at least one of a group having a double bond capable of radical polymerization and a group capable of reacting with an epoxy group.
- n represents an integer of 1 to 3. When n is 2 to 3, Y may be the same or different.
- thermosetting composition according to ⁇ 4> wherein Y in the general formula (I) is a group represented by the following general formula (II).
- Y 1 represents an m + 1 valent organic group having 2 to 25 carbon atoms.
- Z 1 represents any of a carboxyl group, an acryloyloxy group, and a methacryloyloxy group.
- m represents an integer of 1 to 2. When m is 2, Z 1 may be the same or different.
- ⁇ 6> The thermosetting composition according to any one of ⁇ 1> to ⁇ 5>, further including at least one selected from a phenoxy resin, a polyvinyl acetal resin, a polyamide resin, and a polyamideimide resin.
- Adhesive comprising a support and a thermosetting composition layer formed from the thermosetting composition according to any one of ⁇ 1> to ⁇ 6> on the support. It is a film.
- a multilayer printed wiring board comprising an insulating layer formed of a cured product of the thermosetting composition according to any one of ⁇ 1> to ⁇ 6>.
- thermosetting composition and adhesive film of the present invention are excellent in insulating properties, desmear properties, and plating-resistant adhesion, they can be suitably used for multilayer printed wiring boards.
- the multilayer printed wiring board of the present invention is excellent in insulation, desmearing properties, and plating-resistant adhesion, and therefore can be suitably used for a build-up type multilayer printed wiring board.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Adhesive Tapes (AREA)
- Epoxy Resins (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
A thermosetting composition that contains: an epoxy resin that has at least two epoxy groups per molecule; and a compound that has a triazole ring. Said compound also has: a group that has a radical-polymerizable double bond; and/or a group that can react with an epoxy group. The composition preferably also contains a phenol hardener.
Description
本発明は、多層プリント配線板の層間絶縁材料として有用な熱硬化性組成物、前記熱硬化性組成物を用いた接着フィルム、及び前記熱硬化性組成物を用いた多層プリント配線板に関する。
The present invention relates to a thermosetting composition useful as an interlayer insulating material for a multilayer printed wiring board, an adhesive film using the thermosetting composition, and a multilayer printed wiring board using the thermosetting composition.
現在の電子機器は、薄型化、高速伝送化、高密度集積化が進んでおり、これらの電子機器に用いられるプリント配線板としては、ビルドアップ方式の多層プリント配線板が多く採用されている。
Current electronic devices are progressing in thickness, high-speed transmission, and high-density integration, and build-up multilayer printed wiring boards are often used as printed wiring boards used in these electronic devices.
多層プリント配線板は、通常、樹脂組成物で構成される絶縁材料と導体回路層とを積層して製造される。導体回路層間の接続方法としては、従来のドリル加工に代わって、レーザー法、フォト法などによるビアホールの形成が挙げられる。これらの方法は、小径のビアホールを自由に配置することで高密度集積化を達成するものである。
A multilayer printed wiring board is usually manufactured by laminating an insulating material composed of a resin composition and a conductor circuit layer. As a connection method between conductor circuit layers, a via hole is formed by a laser method, a photo method, or the like, instead of the conventional drilling process. These methods achieve high-density integration by freely arranging small-diameter via holes.
従来、多層プリント配線板に用いられる層間の絶縁材料は、そのほとんどが熱硬化性樹脂をガラス布に含浸したプリプレグであった。ところが、近年の多層プリント配線板の薄型化、高密度集積化の要求に伴い、絶縁層を極めて薄くするためガラス布などの基材を用いない層間の絶縁材料が必要となっている。
Conventionally, most of the insulating material between layers used for a multilayer printed wiring board is a prepreg in which a glass cloth is impregnated with a thermosetting resin. However, with the recent demand for thinner multilayer printed wiring boards and higher density integration, insulating materials between layers that do not use a substrate such as glass cloth are required to make the insulating layers extremely thin.
そこで、多層プリント配線板に用いられる層間の絶縁材料に適用可能な材料として、2種類のエポキシ樹脂と、フェノール系硬化剤と、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂及びポリアミドイミド樹脂からなる群から選択される一種以上の樹脂と、無機充填材とを特定の割合で含有する多層プリント配線板の層間絶縁用樹脂組成物、及び前記層間絶縁用樹脂組成物からなる樹脂組成物層が支持フィルム上に形成されている多層プリント配線板用の接着フィルムが提案されている(例えば、特許文献1参照)。また、エポキシ樹脂と、特定の水酸基含有率を有するフェノール樹脂と、ポリビニルアセタール樹脂とを含有するエポキシ樹脂組成物、及び前記エポキシ樹脂組成物からなる樹脂組成物層が支持フィルム上に形成されている接着フィルムが提案されている(例えば、特許文献2参照)。
しかし、これらの提案の技術では、絶縁性が十分ではないという問題がある。 Therefore, as a material applicable to an insulating material between layers used for a multilayer printed wiring board, from the group consisting of two types of epoxy resins, phenolic curing agents, phenoxy resins, polyvinyl acetal resins, polyamide resins and polyamideimide resins. An interlayer insulating resin composition for a multilayer printed wiring board containing at least one selected resin and an inorganic filler in a specific ratio, and a resin composition layer comprising the interlayer insulating resin composition on a support film An adhesive film for a multilayer printed wiring board formed in has been proposed (for example, see Patent Document 1). In addition, an epoxy resin composition containing an epoxy resin, a phenol resin having a specific hydroxyl group content, and a polyvinyl acetal resin, and a resin composition layer made of the epoxy resin composition are formed on a support film. An adhesive film has been proposed (see, for example, Patent Document 2).
However, these proposed techniques have a problem that insulation is not sufficient.
しかし、これらの提案の技術では、絶縁性が十分ではないという問題がある。 Therefore, as a material applicable to an insulating material between layers used for a multilayer printed wiring board, from the group consisting of two types of epoxy resins, phenolic curing agents, phenoxy resins, polyvinyl acetal resins, polyamide resins and polyamideimide resins. An interlayer insulating resin composition for a multilayer printed wiring board containing at least one selected resin and an inorganic filler in a specific ratio, and a resin composition layer comprising the interlayer insulating resin composition on a support film An adhesive film for a multilayer printed wiring board formed in has been proposed (for example, see Patent Document 1). In addition, an epoxy resin composition containing an epoxy resin, a phenol resin having a specific hydroxyl group content, and a polyvinyl acetal resin, and a resin composition layer made of the epoxy resin composition are formed on a support film. An adhesive film has been proposed (see, for example, Patent Document 2).
However, these proposed techniques have a problem that insulation is not sufficient.
また、多層プリント配線板の製造では、レーザー照射によってビアホールが形成された後に、ビアホールに金属メッキ処理が行われるが、この金属メッキ処理を行う前には、レーザー照射により形成された下層導体回路上や絶縁層に残存する樹脂残渣(スミア)を除去する処理、即ち、デスミア処理が行われる。デスミア処理は、例えば、化学処理、即ち、過マンガン酸カリウムや重クロム酸カリウムといった化学酸化剤の溶液に、ビアホールが形成された多層基板を浸漬し、ビアホール内のスミアを溶解除去することなどで行われる。デスミア処理が不十分で、デスミア性が十分に確保されていないと、ビアホールに金属メッキ処理を行っても、スミアが原因で上層導体回路と下層導体回路との導通性が十分に確保されなくなるおそれがある。
しかし、上記提案の技術では、デスミア性が十分ではないという問題がある。 Also, in the manufacture of multilayer printed wiring boards, after via holes are formed by laser irradiation, metal plating is performed on the via holes. Before this metal plating processing is performed, on the lower conductor circuit formed by laser irradiation. In addition, a process for removing a resin residue (smear) remaining in the insulating layer, that is, a desmear process is performed. Desmear treatment is, for example, chemical treatment, that is, by immersing the multilayer substrate with via holes in a solution of a chemical oxidizing agent such as potassium permanganate or potassium dichromate, and dissolving and removing smears in the via holes. Done. If the desmear treatment is insufficient and the desmear property is not sufficiently secured, even if the metal plating is performed on the via hole, there is a risk that the conductivity between the upper layer conductor circuit and the lower layer conductor circuit may not be sufficiently secured due to smear. There is.
However, the proposed technique has a problem that the desmear property is not sufficient.
しかし、上記提案の技術では、デスミア性が十分ではないという問題がある。 Also, in the manufacture of multilayer printed wiring boards, after via holes are formed by laser irradiation, metal plating is performed on the via holes. Before this metal plating processing is performed, on the lower conductor circuit formed by laser irradiation. In addition, a process for removing a resin residue (smear) remaining in the insulating layer, that is, a desmear process is performed. Desmear treatment is, for example, chemical treatment, that is, by immersing the multilayer substrate with via holes in a solution of a chemical oxidizing agent such as potassium permanganate or potassium dichromate, and dissolving and removing smears in the via holes. Done. If the desmear treatment is insufficient and the desmear property is not sufficiently secured, even if the metal plating is performed on the via hole, there is a risk that the conductivity between the upper layer conductor circuit and the lower layer conductor circuit may not be sufficiently secured due to smear. There is.
However, the proposed technique has a problem that the desmear property is not sufficient.
更に、上記のように、多層プリント配線板の製造では、金属メッキ処理が行われるため、前記絶縁層は、メッキ処理に対して密着性がよいこと、即ち、耐メッキ密着性が要求されるが、上記提案の技術では、耐メッキ密着性が十分ではないという問題がある。
Furthermore, as described above, in the production of a multilayer printed wiring board, a metal plating process is performed. Therefore, the insulating layer is required to have good adhesion to the plating process, that is, anti-plating adhesion is required. However, the above proposed technique has a problem that the adhesion resistance to plating is not sufficient.
したがって、絶縁性、デスミア性、及び耐メッキ密着性に優れる熱硬化性組成物の提供が求められているのが現状である。
Therefore, at present, there is a demand for providing a thermosetting composition having excellent insulating properties, desmear properties, and plating-resistant adhesion.
本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、絶縁性、デスミア性、及び耐メッキ密着性に優れる熱硬化性組成物の提供を目的とする。
This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, an object of the present invention is to provide a thermosetting composition having excellent insulating properties, desmearing properties, and plating-resistant adhesion.
前記課題を解決するための手段としては、以下の通りである。即ち、
本発明の熱硬化性組成物は、一分子中に2個以上のエポキシ基を有するエポキシ樹脂と、ラジカル重合可能な二重結合を有する基及びエポキシ基と反応可能な基の少なくともいずれかとトリアゾール環とを有する化合物と、を含有することを特徴とする。 Means for solving the problems are as follows. That is,
The thermosetting composition of the present invention comprises an epoxy resin having two or more epoxy groups in one molecule, at least one of a group having a radically polymerizable double bond and a group capable of reacting with an epoxy group, and a triazole ring. And a compound having:
本発明の熱硬化性組成物は、一分子中に2個以上のエポキシ基を有するエポキシ樹脂と、ラジカル重合可能な二重結合を有する基及びエポキシ基と反応可能な基の少なくともいずれかとトリアゾール環とを有する化合物と、を含有することを特徴とする。 Means for solving the problems are as follows. That is,
The thermosetting composition of the present invention comprises an epoxy resin having two or more epoxy groups in one molecule, at least one of a group having a radically polymerizable double bond and a group capable of reacting with an epoxy group, and a triazole ring. And a compound having:
本発明によると、従来における前記諸問題を解決し、前記目的を達成することができ、絶縁性、デスミア性、及び耐メッキ密着性に優れる熱硬化性組成物を提供することができる。
According to the present invention, the above-described problems can be solved, the object can be achieved, and a thermosetting composition excellent in insulating properties, desmear properties, and plating-resistant adhesion properties can be provided.
(熱硬化性組成物)
本発明の熱硬化性組成物は、一分子中に2個以上のエポキシ基を有するエポキシ樹脂と、ラジカル重合可能な二重結合を有する基及びエポキシ基と反応可能な基の少なくともいずれかとトリアゾール環とを有する化合物とを少なくとも含有し、好ましくはフェノール系硬化剤、無機フィラー、更に必要に応じて、その他の成分を含有する。 (Thermosetting composition)
The thermosetting composition of the present invention comprises an epoxy resin having two or more epoxy groups in one molecule, at least one of a group having a radically polymerizable double bond and a group capable of reacting with an epoxy group, and a triazole ring. At least, preferably a phenolic curing agent, an inorganic filler, and, if necessary, other components.
本発明の熱硬化性組成物は、一分子中に2個以上のエポキシ基を有するエポキシ樹脂と、ラジカル重合可能な二重結合を有する基及びエポキシ基と反応可能な基の少なくともいずれかとトリアゾール環とを有する化合物とを少なくとも含有し、好ましくはフェノール系硬化剤、無機フィラー、更に必要に応じて、その他の成分を含有する。 (Thermosetting composition)
The thermosetting composition of the present invention comprises an epoxy resin having two or more epoxy groups in one molecule, at least one of a group having a radically polymerizable double bond and a group capable of reacting with an epoxy group, and a triazole ring. At least, preferably a phenolic curing agent, an inorganic filler, and, if necessary, other components.
<一分子中に2個以上のエポキシ基を有するエポキシ樹脂>
前記一分子中に2個以上のエポキシ基を有するエポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、直鎖状脂肪族エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミン型エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、ハロゲン化エポキシ樹脂などが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 <Epoxy resin having two or more epoxy groups in one molecule>
The epoxy resin having two or more epoxy groups in one molecule is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a cresol novolac epoxy resin, a phenol novolac epoxy resin, a tert- Butyl-catechol type epoxy resin, biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, naphthalene type epoxy resin, linear aliphatic epoxy resin, alicyclic epoxy resin, glycidylamine type epoxy resin, complex Examples thereof include cyclic epoxy resins, spiro ring-containing epoxy resins, and halogenated epoxy resins.
These may be used individually by 1 type and may use 2 or more types together.
前記一分子中に2個以上のエポキシ基を有するエポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、直鎖状脂肪族エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミン型エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、ハロゲン化エポキシ樹脂などが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 <Epoxy resin having two or more epoxy groups in one molecule>
The epoxy resin having two or more epoxy groups in one molecule is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a cresol novolac epoxy resin, a phenol novolac epoxy resin, a tert- Butyl-catechol type epoxy resin, biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, naphthalene type epoxy resin, linear aliphatic epoxy resin, alicyclic epoxy resin, glycidylamine type epoxy resin, complex Examples thereof include cyclic epoxy resins, spiro ring-containing epoxy resins, and halogenated epoxy resins.
These may be used individually by 1 type and may use 2 or more types together.
前記一分子中に2個以上のエポキシ基を有するエポキシ樹脂としては、一分子中に2個以上のエポキシ基を有し、20℃で液状であるエポキシ樹脂と、一分子中に3個以上のエポキシ基を有し、20℃で固体状である芳香族系エポキシ樹脂とを併用することが、熱硬化性組成物を接着フィルムの形態で使用する場合に、十分な可撓性を示す(取扱い性に優れた)接着フィルムを形成できると同時に、熱硬化性組成物の硬化物の破断強度が向上し、多層プリント配線板の耐久性が向上する点で好ましい。
The epoxy resin having two or more epoxy groups in one molecule includes two or more epoxy groups in one molecule and is liquid at 20 ° C., and three or more epoxy resins in one molecule. When used together with an aromatic epoxy resin having an epoxy group and solid at 20 ° C., sufficient flexibility is exhibited when the thermosetting composition is used in the form of an adhesive film. It is preferable in that an adhesive film (excellent in properties) can be formed, and at the same time, the breaking strength of the cured product of the thermosetting composition is improved and the durability of the multilayer printed wiring board is improved.
-一分子中に2個以上のエポキシ基を有し、20℃で液状であるエポキシ樹脂-
前記一分子中に2個以上のエポキシ基を有し、20℃で液状であるエポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、脂環式エポキシ樹脂などが挙げられる。
これらの中でも、硬化物の物性などの点から芳香族系エポキシ樹脂が好ましい。
なお、本発明において芳香族系エポキシ樹脂とは、その分子内に芳香環骨格を有するエポキシ樹脂を意味する。
したがって、前記一分子中に2個以上のエポキシ基を有し、20℃で液状であるエポキシ樹脂としては、一分子中に2個以上のエポキシ基を有し、20℃で液状である芳香族系エポキシ樹脂が好ましい。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 -Epoxy resin that has two or more epoxy groups in one molecule and is liquid at 20 ° C-
The epoxy resin having two or more epoxy groups in one molecule and being liquid at 20 ° C. is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a bisphenol A type epoxy resin, Examples thereof include bisphenol F type epoxy resin, phenol novolak type epoxy resin, tert-butyl-catechol type epoxy resin, naphthalene type epoxy resin, glycidylamine type epoxy resin, and alicyclic epoxy resin.
Among these, aromatic epoxy resins are preferable from the viewpoint of physical properties of the cured product.
In the present invention, the aromatic epoxy resin means an epoxy resin having an aromatic ring skeleton in the molecule.
Accordingly, the epoxy resin having two or more epoxy groups in one molecule and being liquid at 20 ° C. is an aromatic resin having two or more epoxy groups in one molecule and being liquid at 20 ° C. An epoxy resin is preferable.
These may be used individually by 1 type and may use 2 or more types together.
前記一分子中に2個以上のエポキシ基を有し、20℃で液状であるエポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、脂環式エポキシ樹脂などが挙げられる。
これらの中でも、硬化物の物性などの点から芳香族系エポキシ樹脂が好ましい。
なお、本発明において芳香族系エポキシ樹脂とは、その分子内に芳香環骨格を有するエポキシ樹脂を意味する。
したがって、前記一分子中に2個以上のエポキシ基を有し、20℃で液状であるエポキシ樹脂としては、一分子中に2個以上のエポキシ基を有し、20℃で液状である芳香族系エポキシ樹脂が好ましい。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 -Epoxy resin that has two or more epoxy groups in one molecule and is liquid at 20 ° C-
The epoxy resin having two or more epoxy groups in one molecule and being liquid at 20 ° C. is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a bisphenol A type epoxy resin, Examples thereof include bisphenol F type epoxy resin, phenol novolak type epoxy resin, tert-butyl-catechol type epoxy resin, naphthalene type epoxy resin, glycidylamine type epoxy resin, and alicyclic epoxy resin.
Among these, aromatic epoxy resins are preferable from the viewpoint of physical properties of the cured product.
In the present invention, the aromatic epoxy resin means an epoxy resin having an aromatic ring skeleton in the molecule.
Accordingly, the epoxy resin having two or more epoxy groups in one molecule and being liquid at 20 ° C. is an aromatic resin having two or more epoxy groups in one molecule and being liquid at 20 ° C. An epoxy resin is preferable.
These may be used individually by 1 type and may use 2 or more types together.
なお、前記一分子中に2個以上のエポキシ基を有し、20℃で液状であるエポキシ樹脂は、20℃未満で液状であってもよい。前記一分子中に2個以上のエポキシ基を有し、20℃で液状であるエポキシ樹脂に変えて、20℃で固体のエポキシ樹脂を用いた場合、接着フィルムを取り扱う常温(20℃~30℃程度)で接着フィルムの十分な可撓性が得られにくく、接着フィルムの取り扱い性が低下することがある。また、回路基板へのラミネートの際に、ビアホールやスルーホール内を充填するだけの熱硬化性組成物の十分な流動性が得られないことがある。
Note that the epoxy resin having two or more epoxy groups in one molecule and being liquid at 20 ° C. may be liquid at less than 20 ° C. When an epoxy resin having two or more epoxy groups in one molecule and being liquid at 20 ° C. is used instead of a solid epoxy resin at 20 ° C., normal temperature (20 ° C. to 30 ° C.) for handling an adhesive film Degree), it is difficult to obtain sufficient flexibility of the adhesive film, and the handleability of the adhesive film may be lowered. In addition, when laminating to a circuit board, sufficient fluidity of a thermosetting composition that only fills via holes and through holes may not be obtained.
前記一分子中に2個以上のエポキシ基を有し、20℃で液状であるエポキシ樹脂としては、具体的には、HP4032(DIC社製)、HP4032D(DIC社製)、jER807(エピコート807)(三菱化学社製)、jER828EL(エピコート828EL)(三菱化学社製)、jER152(エピコート152)(三菱化学社製)、YDF-170(新日鐵化学社製)などが挙げられる。
Specific examples of the epoxy resin having two or more epoxy groups in one molecule and being liquid at 20 ° C. include HP4032 (manufactured by DIC), HP4032D (manufactured by DIC), and jER807 (Epicoat 807). (Mitsubishi Chemical Corporation), jER828EL (Epicoat 828EL) (Mitsubishi Chemical Corporation), jER152 (Epicoat 152) (Mitsubishi Chemical Corporation), YDF-170 (Nippon Chemical Co., Ltd.) and the like.
-一分子中に3個以上のエポキシ基を有し、20℃で固体状である芳香族系エポキシ樹脂-
前記一分子中に3個以上のエポキシ基を有し、20℃で固体状である芳香族系エポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ナフタレン型エポキシ樹脂、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物(トリスフェノール型エポキシ樹脂)などが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
なお、前記一分子中に3個以上のエポキシ基を有し、20℃で固体状である芳香族系エポキシ樹脂は、20℃を超える温度で固体状であってもよい。 -Aromatic epoxy resin having 3 or more epoxy groups in one molecule and solid at 20 ° C-
The aromatic epoxy resin having three or more epoxy groups in one molecule and being solid at 20 ° C. is not particularly limited and may be appropriately selected depending on the intended purpose. For example, naphthalene type An epoxy resin, an epoxidized product of a condensate of phenols and an aromatic aldehyde having a phenolic hydroxyl group (trisphenol type epoxy resin), and the like can be mentioned.
These may be used individually by 1 type and may use 2 or more types together.
The aromatic epoxy resin having three or more epoxy groups in one molecule and solid at 20 ° C. may be solid at a temperature exceeding 20 ° C.
前記一分子中に3個以上のエポキシ基を有し、20℃で固体状である芳香族系エポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ナフタレン型エポキシ樹脂、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物(トリスフェノール型エポキシ樹脂)などが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
なお、前記一分子中に3個以上のエポキシ基を有し、20℃で固体状である芳香族系エポキシ樹脂は、20℃を超える温度で固体状であってもよい。 -Aromatic epoxy resin having 3 or more epoxy groups in one molecule and solid at 20 ° C-
The aromatic epoxy resin having three or more epoxy groups in one molecule and being solid at 20 ° C. is not particularly limited and may be appropriately selected depending on the intended purpose. For example, naphthalene type An epoxy resin, an epoxidized product of a condensate of phenols and an aromatic aldehyde having a phenolic hydroxyl group (trisphenol type epoxy resin), and the like can be mentioned.
These may be used individually by 1 type and may use 2 or more types together.
The aromatic epoxy resin having three or more epoxy groups in one molecule and solid at 20 ° C. may be solid at a temperature exceeding 20 ° C.
前記一分子中に3個以上のエポキシ基を有し、20℃で固体状である芳香族系エポキシ樹脂のエポキシ当量としては、特に制限はなく、目的に応じて適宜選択することができるが、230g/eq以下が好ましく、150g/eq~230g/eqがより好ましい。なお、エポキシ当量(g/eq)は、エポキシ基1個当たりの分子量のことである。
The epoxy equivalent of the aromatic epoxy resin having 3 or more epoxy groups in one molecule and solid at 20 ° C. is not particularly limited and can be appropriately selected according to the purpose. 230 g / eq or less is preferable, and 150 g / eq to 230 g / eq is more preferable. The epoxy equivalent (g / eq) is a molecular weight per one epoxy group.
前記一分子中に3個以上のエポキシ基を有し、20℃で固体状である芳香族系エポキシ樹脂としては、具体的には、HP4700(EXA4700)(DIC社製、ナフタレン型4官能エポキシ樹脂、エポキシ当量163g/eq、20℃で固形状)、N-690(DIC社製、クレゾールノボラック型エポキシ樹脂、エポキシ当量208g/eq、20℃で固形状)、N-695(DIC社製、クレゾールノボラック型エポキシ樹脂、エポキシ当量208g/eq、20℃で固形状)、EPPN-502H(日本化薬社製、トリスフェノールエポキシ樹脂、エポキシ当量168g/eq、20℃で固形状)、NC7000L(日本化薬社製、ナフトールノボラック型エポキシ樹脂、エポキシ当量228g/eq、20℃で固形状)、NC3000H(日本化薬社製、ビフェニル型エポキシ樹脂、エポキシ当量290g/eq、20℃で固形状)、ESN185(新日鐵化学社製、ナフトールノボラック型エポキシ樹脂、エポキシ当量275g/eq、20℃で固形状)、ESN475(新日鐵化学社製、ナフトールノボラック型エポキシ樹脂、エポキシ当量350g/eq、20℃で固形状)などが挙げられる。
As an aromatic epoxy resin having three or more epoxy groups in one molecule and solid at 20 ° C., specifically, HP4700 (EXA4700) (manufactured by DIC, naphthalene type tetrafunctional epoxy resin) , Epoxy equivalent 163 g / eq, solid at 20 ° C.), N-690 (manufactured by DIC, cresol novolac epoxy resin, epoxy equivalent 208 g / eq, solid at 20 ° C.), N-695 (manufactured by DIC, cresol Novolac type epoxy resin, epoxy equivalent 208 g / eq, solid at 20 ° C), EPPN-502H (manufactured by Nippon Kayaku Co., Ltd., trisphenol epoxy resin, epoxy equivalent 168 g / eq, solid at 20 ° C), NC7000L (Nipponization) Manufactured by Yakuhinsha Co., Ltd., naphthol novolac type epoxy resin, epoxy equivalent 228 g / eq, solid at 20 ° C.), NC 000H (manufactured by Nippon Kayaku Co., Ltd., biphenyl type epoxy resin, epoxy equivalent of 290 g / eq, solid at 20 ° C.), ESN185 (manufactured by Nippon Steel Chemical Co., Ltd., naphthol novolac type epoxy resin, epoxy equivalent of 275 g / eq, at 20 ° C. Solid), ESN475 (manufactured by Nippon Steel Chemical Co., Ltd., naphthol novolac type epoxy resin, epoxy equivalent 350 g / eq, solid at 20 ° C.), and the like.
前記一分子中に2個以上のエポキシ基を有するエポキシ樹脂として、前記一分子中に2個以上のエポキシ基を有し、20℃で液状であるエポキシ樹脂(第一のエポキシ樹脂)と、前記一分子中に3個以上のエポキシ基を有し、20℃で固体状である芳香族系エポキシ樹脂(第二のエポキシ樹脂)とを併用する場合、前記第一のエポキシ樹脂(A1)と前記第二のエポキシ樹脂(A2)の配合割合(A1:A2)としては、特に制限はなく、目的に応じて適宜選択することができるが、質量比で、1:0.3~1:2が好ましく、1:0.5~1:1がより好ましい。前記質量比における前記第一のエポキシ樹脂(A1)の割合が多すぎる、即ちA1:A2=1:0.3よりも前記第一のエポキシ樹脂(A1)が多いと、前記熱硬化性組成物の粘着性が高くなり、接着フィルムの形態で使用する場合に、真空ラミネート時の脱気性が低下しボイドが発生しやすくなることがある。また真空ラミネート時に保護フィルムや支持フィルムの剥離性の低下や、硬化後の耐熱性が低下することがある。また、前記熱硬化性組成物の硬化物において十分な破断強度が得られにくいことがある。一方、前記質量比における前記第二のエポキシ樹脂(A2)の割合が多すぎる、即ちA1:A2=1:2よりも前記第二のエポキシ樹脂(A2)が多いと、接着フィルムの形態で使用する場合に、十分な可撓性が得られず、取り扱い性が低下すること、ラミネートの際の十分な流動性が得られにくいことがある。
As an epoxy resin having two or more epoxy groups in one molecule, an epoxy resin (first epoxy resin) having two or more epoxy groups in one molecule and being liquid at 20 ° C., and When the aromatic epoxy resin (second epoxy resin) having three or more epoxy groups in one molecule and solid at 20 ° C. is used in combination, the first epoxy resin (A1) and the above The mixing ratio (A1: A2) of the second epoxy resin (A2) is not particularly limited and may be appropriately selected depending on the intended purpose. However, the mass ratio is 1: 0.3 to 1: 2. Preferably, 1: 0.5 to 1: 1 is more preferable. When the ratio of the first epoxy resin (A1) in the mass ratio is too large, that is, when the first epoxy resin (A1) is more than A1: A2 = 1: 0.3, the thermosetting composition. When the adhesive film is used in the form of an adhesive film, the deaeration property during vacuum lamination is lowered and voids are likely to be generated. Further, the peelability of the protective film and the support film may be lowered during vacuum lamination, and the heat resistance after curing may be lowered. Moreover, it may be difficult to obtain sufficient breaking strength in the cured product of the thermosetting composition. On the other hand, when the ratio of the second epoxy resin (A2) in the mass ratio is too large, that is, when the second epoxy resin (A2) is more than A1: A2 = 1: 2, it is used in the form of an adhesive film. In such a case, sufficient flexibility may not be obtained, handling properties may deteriorate, and sufficient fluidity during lamination may be difficult to obtain.
前記熱硬化性組成物における、前記一分子中に2個以上のエポキシ基を有するエポキシ樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記熱硬化性組成物の不揮発分に対して、10質量%~50質量%が好ましく、20質量%~40質量%がより好ましく、20質量%~35質量%が特に好ましい。前記含有量が、10質量%未満であると、前記熱硬化性組成物の硬化性が低下することがある。
The content of the epoxy resin having two or more epoxy groups in one molecule in the thermosetting composition is not particularly limited and may be appropriately selected depending on the intended purpose. The content is preferably 10% by mass to 50% by mass, more preferably 20% by mass to 40% by mass, and particularly preferably 20% by mass to 35% by mass with respect to the nonvolatile content of the composition. When the content is less than 10% by mass, the curability of the thermosetting composition may be lowered.
<ラジカル重合可能な二重結合を有する基及びエポキシ基と反応可能な基の少なくともいずれかとトリアゾール環とを有する化合物>
前記ラジカル重合可能な二重結合を有する基及びエポキシ基と反応可能な基の少なくともいずれかとトリアゾール環とを有する化合物としては、ラジカル重合可能な二重結合を有する基及びエポキシ基と反応可能な基の少なくともいずれかと、トリアゾール環と、を少なくとも有する化合物であれば、特に制限はなく、目的に応じて適宜選択することができる。 <Compound having at least one of a group having a double bond capable of radical polymerization and a group capable of reacting with an epoxy group and a triazole ring>
The compound having at least one of a group having a radical polymerizable double bond and a group capable of reacting with an epoxy group and a triazole ring includes a group having a radical polymerizable double bond and a group capable of reacting with an epoxy group. If it is a compound which has at least any of these and a triazole ring at least, there will be no restriction | limiting in particular, According to the objective, it can select suitably.
前記ラジカル重合可能な二重結合を有する基及びエポキシ基と反応可能な基の少なくともいずれかとトリアゾール環とを有する化合物としては、ラジカル重合可能な二重結合を有する基及びエポキシ基と反応可能な基の少なくともいずれかと、トリアゾール環と、を少なくとも有する化合物であれば、特に制限はなく、目的に応じて適宜選択することができる。 <Compound having at least one of a group having a double bond capable of radical polymerization and a group capable of reacting with an epoxy group and a triazole ring>
The compound having at least one of a group having a radical polymerizable double bond and a group capable of reacting with an epoxy group and a triazole ring includes a group having a radical polymerizable double bond and a group capable of reacting with an epoxy group. If it is a compound which has at least any of these and a triazole ring at least, there will be no restriction | limiting in particular, According to the objective, it can select suitably.
前記ラジカル重合可能な二重結合を有する基としては、例えば、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルフェニル基、アリル基などが挙げられる。
Examples of the radically polymerizable group having a double bond include an acryloyloxy group, a methacryloyloxy group, a vinylphenyl group, and an allyl group.
前記エポキシ基と反応可能な基としては、例えば、カルボキシル基、アミノ基、メルカプト基などが挙げられる。
Examples of the group capable of reacting with the epoxy group include a carboxyl group, an amino group, and a mercapto group.
前記トリアゾール環としては、1,2,3-トリアゾール環、及び1,2,4-トリアゾール環のいずれであってもよい。
1,2,3-トリアゾール、及び1,2,4-トリアゾールは、下記構造式で表される化合物である。
The triazole ring may be any of 1,2,3-triazole ring and 1,2,4-triazole ring.
1,2,3-triazole and 1,2,4-triazole are compounds represented by the following structural formula.
1,2,3-トリアゾール、及び1,2,4-トリアゾールは、下記構造式で表される化合物である。
1,2,3-triazole and 1,2,4-triazole are compounds represented by the following structural formula.
前記ラジカル重合可能な二重結合を有する基及びエポキシ基と反応可能な基の少なくともいずれかとトリアゾール環とを有する化合物は、言い換えれば、ラジカル重合可能な二重結合を有する基及びエポキシ基と反応可能な基の少なくともいずれかを有する有機基がトリアゾール環に結合した化合物である。前記有機基の前記トリアゾール環への結合位置としては、特に制限はなく、目的に応じて適宜選択することができ、前記トリアゾール環の窒素原子と結合していてもよく、炭素原子と結合していてもよい。
A compound having a triazole ring and at least one of a group having a radical polymerizable double bond and a group capable of reacting with an epoxy group, in other words, capable of reacting with a group having a radical polymerizable double bond and an epoxy group A compound in which an organic group having at least one of these groups is bonded to a triazole ring. The bonding position of the organic group to the triazole ring is not particularly limited and may be appropriately selected depending on the purpose, and may be bonded to a nitrogen atom of the triazole ring or bonded to a carbon atom. May be.
前記ラジカル重合可能な二重結合を有する基及びエポキシ基と反応可能な基の少なくともいずれかとトリアゾール環とを有する化合物としては、下記一般式(I)で表される化合物が好ましい。
ただし、前記一般式(I)中、Xは、トリアゾール環を表す。Yは、ラジカル重合可能な二重結合を有する基及びエポキシ基と反応可能な基の少なくともいずれかを有する有機基を表す。nは、1~3の整数を表す。なお、nが2~3の時には、Yは、同一であってもよく、異なっていてもよい。
As the compound having at least one of a group having a radically polymerizable double bond and a group capable of reacting with an epoxy group and a triazole ring, a compound represented by the following general formula (I) is preferable.
However, in said general formula (I), X represents a triazole ring. Y represents an organic group having at least one of a group having a double bond capable of radical polymerization and a group capable of reacting with an epoxy group. n represents an integer of 1 to 3. When n is 2 to 3, Y may be the same or different.
なお、前記一般式(I)において、前記Yは、前記Xであるトリアゾール環の窒素原子と結合していてもよく、炭素原子と結合していてもよい。
In the general formula (I), Y may be bonded to a nitrogen atom of the triazole ring which is X, or may be bonded to a carbon atom.
前記一般式(I)におけるnとしては、1~2が好ましい。
In the general formula (I), n is preferably 1 to 2.
前記一般式(I)におけるYとしては、下記一般式(II)で表される基であることが好ましい。
ただし、前記一般式(II)中、Y1は、炭素数2~25のm+1価の有機基を表す。Z1は、カルボキシル基、アクリロイルオキシ基、及びメタクリロイルオキシ基のいずれかを表す。mは、1~2の整数を表す。なお、mが2の時には、Z1は、同一であってもよく、異なっていてもよい。
Y in the general formula (I) is preferably a group represented by the following general formula (II).
In the general formula (II), Y 1 represents an m + 1 valent organic group having 2 to 25 carbon atoms. Z 1 represents any of a carboxyl group, an acryloyloxy group, and a methacryloyloxy group. m represents an integer of 1 to 2. When m is 2, Z 1 may be the same or different.
前記Z1としては、カルボキシル基であることが絶縁性、耐メッキ密着性の点で好ましい。なお、mが2の時には、前記Z1の少なくとも1つがカルボキシル基であることが好ましい。
Z 1 is preferably a carboxyl group in terms of insulation and plating-resistant adhesion. In addition, when m is 2, it is preferable that at least one of the Z 1 is a carboxyl group.
前記炭素数2~25のm+1価の有機基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ウレア結合、アミド結合、エステル結合、及びチオウレア結合の少なくともいずれかを有する炭素数2~25のm+1価の有機基が挙げられる。また、前記有機基の炭素数は、2~20が好ましく、2~15がより好ましい。
The m + 1 valent organic group having 2 to 25 carbon atoms is not particularly limited and may be appropriately selected depending on the intended purpose. For example, at least one of a urea bond, an amide bond, an ester bond, and a thiourea bond is selected. And an m + 1 valent organic group having 2 to 25 carbon atoms. The carbon number of the organic group is preferably 2 to 20, and more preferably 2 to 15.
前記ラジカル重合可能な二重結合を有する基及びエポキシ基と反応可能な基の少なくともいずれかとトリアゾール環とを有する化合物の分子量としては、特に制限はなく、目的に応じて適宜選択することができるが、90~1,000が好ましく、100~800がより好ましい。
The molecular weight of the compound having a triazole ring and at least one of a group having a radically polymerizable double bond and a group capable of reacting with an epoxy group is not particularly limited and may be appropriately selected depending on the purpose. 90 to 1,000 is preferable, and 100 to 800 is more preferable.
前記ラジカル重合可能な二重結合を有する基及びエポキシ基と反応可能な基の少なくともいずれかとトリアゾール環とを有する化合物の具体例としては、例えば、下記式で表される化合物などが挙げられる。
Specific examples of the compound having at least one of a group having a radically polymerizable double bond and a group capable of reacting with an epoxy group and a triazole ring include a compound represented by the following formula.
前記ラジカル重合可能な二重結合を有する基及びエポキシ基と反応可能な基の少なくともいずれかとトリアゾール環とを有する化合物の前記熱硬化性組成物における含有量としては、特に制限はなく、目的に応じて適宜選択することができ、前記熱硬化性組成物の不揮発分に対して、1.0質量%~20質量%が好ましく、1.5質量%~10質量%がより好ましい。前記含有量が、1.0質量%未満であると、充分な絶縁性が発揮できないことがあり、20質量%を超えると、耐熱性が低下することがある。前記含有量が、前記より好ましい範囲内であると、硬化膜特性と絶縁性の両立の点で有利である。
The content in the thermosetting composition of the compound having a triazole ring and at least one of a group having a radically polymerizable double bond and a group capable of reacting with an epoxy group is not particularly limited and depends on the purpose. The amount is preferably 1.0% by mass to 20% by mass and more preferably 1.5% by mass to 10% by mass with respect to the nonvolatile content of the thermosetting composition. When the content is less than 1.0% by mass, sufficient insulating properties may not be exhibited. When the content exceeds 20% by mass, heat resistance may be deteriorated. When the content is within the more preferable range, it is advantageous in terms of both the cured film characteristics and the insulating properties.
<フェノール系硬化剤>
前記フェノール系硬化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フェノールノボラック樹脂、アルキルフェノールノボラック樹脂、トリアジン構造含有フェノールノボラック樹脂、ビスフェノールAノボラック樹脂、ジシクロペンタジエン型フェノール樹脂、ザイロック(Xylok)型フェノール樹脂、テルペン変性フェノール樹脂、ポリビニルフェノール類等のフェノール系硬化剤、ナフタレン系硬化剤、フルオレン系硬化剤などが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記フェノール系硬化剤としては、市販品を用いることができる。前記フェノール系硬化剤の市販品としては、例えば、フェノライトLA-7052(DIC社製、不揮発分60質量%)などが挙げられる。 <Phenolic curing agent>
The phenolic curing agent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include phenol novolac resins, alkylphenol novolac resins, triazine structure-containing phenol novolac resins, bisphenol A novolac resins, and dicyclopentadiene types. Examples thereof include phenol resins such as phenol resins, Xylok type phenol resins, terpene-modified phenol resins, and polyvinyl phenols, naphthalene curing agents, and fluorene curing agents.
These may be used individually by 1 type and may use 2 or more types together.
A commercial item can be used as said phenol type hardening | curing agent. Examples of commercially available phenolic curing agents include Phenolite LA-7052 (manufactured by DIC, nonvolatile content 60% by mass).
前記フェノール系硬化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フェノールノボラック樹脂、アルキルフェノールノボラック樹脂、トリアジン構造含有フェノールノボラック樹脂、ビスフェノールAノボラック樹脂、ジシクロペンタジエン型フェノール樹脂、ザイロック(Xylok)型フェノール樹脂、テルペン変性フェノール樹脂、ポリビニルフェノール類等のフェノール系硬化剤、ナフタレン系硬化剤、フルオレン系硬化剤などが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記フェノール系硬化剤としては、市販品を用いることができる。前記フェノール系硬化剤の市販品としては、例えば、フェノライトLA-7052(DIC社製、不揮発分60質量%)などが挙げられる。 <Phenolic curing agent>
The phenolic curing agent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include phenol novolac resins, alkylphenol novolac resins, triazine structure-containing phenol novolac resins, bisphenol A novolac resins, and dicyclopentadiene types. Examples thereof include phenol resins such as phenol resins, Xylok type phenol resins, terpene-modified phenol resins, and polyvinyl phenols, naphthalene curing agents, and fluorene curing agents.
These may be used individually by 1 type and may use 2 or more types together.
A commercial item can be used as said phenol type hardening | curing agent. Examples of commercially available phenolic curing agents include Phenolite LA-7052 (manufactured by DIC, nonvolatile content 60% by mass).
前記フェノール系硬化剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記熱硬化性組成物の不揮発分に対して、2質量%~60質量%が好ましく、5質量%~50質量%がより好ましい。前記含有量が、2質量%未満であると、硬化膜の物性が劣化し耐熱性に劣ることがあり、60質量%を超えると、強靭性が劣化することがある。前記含有量が、前記より好ましい範囲内であると、良好な硬化膜物性が得られる点で有利である。
The content of the phenolic curing agent is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 2% by mass to 60% by mass with respect to the nonvolatile content of the thermosetting composition. 5% by mass to 50% by mass is more preferable. When the content is less than 2% by mass, the properties of the cured film may be deteriorated and the heat resistance may be inferior, and when it exceeds 60% by mass, the toughness may be deteriorated. When the content is within the more preferable range, it is advantageous in that good cured film properties can be obtained.
また、前記フェノール系硬化剤は、前記熱硬化性組成物中に存在するエポキシ基の合計数と前記フェノール系硬化剤のフェノール性水酸基の合計数の割合が、1:0.5~1:1.5となるように含有されることが好ましい。前記フェノール系硬化剤の含有割合がこの範囲を外れると、前記熱硬化性組成物の硬化物の耐熱性が不十分となることがある。
In the phenolic curing agent, the ratio of the total number of epoxy groups present in the thermosetting composition and the total number of phenolic hydroxyl groups of the phenolic curing agent is 1: 0.5 to 1: 1. It is preferable to contain so that it may become .5. When the content rate of the said phenol type hardening | curing agent remove | deviates from this range, the heat resistance of the hardened | cured material of the said thermosetting composition may become inadequate.
<無機フィラー>
前記無機フィラーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウムなどが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、シリカが好ましい。 <Inorganic filler>
The inorganic filler is not particularly limited and may be appropriately selected depending on the intended purpose. For example, silica, alumina, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, carbonic acid Examples thereof include magnesium, magnesium oxide, boron nitride, aluminum borate, barium titanate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, and calcium zirconate.
These may be used individually by 1 type and may use 2 or more types together.
Among these, silica is preferable.
前記無機フィラーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウムなどが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、シリカが好ましい。 <Inorganic filler>
The inorganic filler is not particularly limited and may be appropriately selected depending on the intended purpose. For example, silica, alumina, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, carbonic acid Examples thereof include magnesium, magnesium oxide, boron nitride, aluminum borate, barium titanate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, and calcium zirconate.
These may be used individually by 1 type and may use 2 or more types together.
Among these, silica is preferable.
前記無機フィラーの平均粒径(d50)としては、特に制限はなく、目的に応じて適宜選択することができるが、5μm以下が好ましく、0.04μm~2.0μmがより好ましい。前記平均粒径(d50)が、5μmを超えると、導体層に回路パターンを微細に形成する際に安定的に行うのが困難になることがある。また、無機フィラーは耐湿性を向上させるため、シランカップリング剤などの表面処理剤で表面処理してあるものが好ましい。
なお、前記平均粒径(d50)は、積算(累積)重量百分率で表したときの積算値50%の粒度で定義されるもので、d50(D50)などと定義されるものであり、例えば、ダイナミック光散乱光度計(商品名DLS7000、大塚電子社製)を用いて、測定原理を動的光散乱法とし、サイズ分布解析手法をキュムラント法及び/又はヒストグラム法として、測定することができる。 The average particle size (d50) of the inorganic filler is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 μm or less, more preferably 0.04 μm to 2.0 μm. When the average particle diameter (d50) exceeds 5 μm, it may be difficult to perform stably when forming a circuit pattern finely on the conductor layer. The inorganic filler is preferably surface-treated with a surface treatment agent such as a silane coupling agent in order to improve moisture resistance.
The average particle size (d50) is defined as a particle size having an integrated value of 50% when expressed as an integrated (cumulative) weight percentage, and is defined as d50 (D50), for example. Using a dynamic light scattering photometer (trade name DLS7000, manufactured by Otsuka Electronics Co., Ltd.), the measurement principle can be a dynamic light scattering method, and the size distribution analysis method can be a cumulant method and / or a histogram method.
なお、前記平均粒径(d50)は、積算(累積)重量百分率で表したときの積算値50%の粒度で定義されるもので、d50(D50)などと定義されるものであり、例えば、ダイナミック光散乱光度計(商品名DLS7000、大塚電子社製)を用いて、測定原理を動的光散乱法とし、サイズ分布解析手法をキュムラント法及び/又はヒストグラム法として、測定することができる。 The average particle size (d50) of the inorganic filler is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 μm or less, more preferably 0.04 μm to 2.0 μm. When the average particle diameter (d50) exceeds 5 μm, it may be difficult to perform stably when forming a circuit pattern finely on the conductor layer. The inorganic filler is preferably surface-treated with a surface treatment agent such as a silane coupling agent in order to improve moisture resistance.
The average particle size (d50) is defined as a particle size having an integrated value of 50% when expressed as an integrated (cumulative) weight percentage, and is defined as d50 (D50), for example. Using a dynamic light scattering photometer (trade name DLS7000, manufactured by Otsuka Electronics Co., Ltd.), the measurement principle can be a dynamic light scattering method, and the size distribution analysis method can be a cumulant method and / or a histogram method.
<その他の成分>
前記その他の成分としては、本発明の効果を阻害しない範囲であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、熱可塑性エラストマー、硬化促進剤、その他の樹脂、添加剤などが挙げられる。 <Other ingredients>
The other component is not particularly limited as long as it does not impair the effects of the present invention, and can be appropriately selected according to the purpose. For example, phenoxy resin, polyvinyl acetal resin, polyamide resin, polyamideimide resin , Thermoplastic elastomers, curing accelerators, other resins, additives and the like.
前記その他の成分としては、本発明の効果を阻害しない範囲であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、熱可塑性エラストマー、硬化促進剤、その他の樹脂、添加剤などが挙げられる。 <Other ingredients>
The other component is not particularly limited as long as it does not impair the effects of the present invention, and can be appropriately selected according to the purpose. For example, phenoxy resin, polyvinyl acetal resin, polyamide resin, polyamideimide resin , Thermoplastic elastomers, curing accelerators, other resins, additives and the like.
-フェノキシ樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂、及びポリアミドイミド樹脂-
前記熱硬化性組成物は、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂、及びポリアミドイミド樹脂から選択される少なくともいずれかを含有することが好ましい。
前記フェノキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができる。前記フェノキシ樹脂の具体例としては、例えば、FX280(新日鐵化学社製)、FX293(新日鐵化学社製)、YX8100(三菱化学社製)、YL6954(三菱化学社製)、YL6974(三菱化学社製)などが挙げられる。
前記ポリビニルアセタール樹脂としては、特に制限はなく、目的に応じて適宜選択することができる。前記ポリビニルアセタール樹脂の具体例としては、例えば、エスレックKSシリーズ(積水化学工業社製)などが挙げられる。
前記ポリアミド樹脂としては、特に制限はなく、目的に応じて適宜選択することができる。前記ポリアミド樹脂の具体例としては、例えば、KS5000シリーズ(日立化成工業社製)、BPシリーズ(日本化薬社製)などが挙げられる。
前記ポリアミドイミド樹脂としては、特に制限はなく、目的に応じて適宜選択することができる。前記ポリアミドイミド樹脂の具体例としては、例えば、KS9000シリーズ(日立化成工業社製)などが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、フェノキシ樹脂、ポリビニルアセタール樹脂が好ましい。 -Phenoxy resin, polyvinyl acetal resin, polyamide resin, and polyamideimide resin-
The thermosetting composition preferably contains at least one selected from phenoxy resin, polyvinyl acetal resin, polyamide resin, and polyamideimide resin.
There is no restriction | limiting in particular as said phenoxy resin, According to the objective, it can select suitably. Specific examples of the phenoxy resin include, for example, FX280 (manufactured by Nippon Steel Chemical), FX293 (manufactured by Nippon Steel Chemical), YX8100 (manufactured by Mitsubishi Chemical), YL6954 (manufactured by Mitsubishi Chemical), YL6974 (Mitsubishi). Chemical Co., Ltd.).
There is no restriction | limiting in particular as said polyvinyl acetal resin, According to the objective, it can select suitably. Specific examples of the polyvinyl acetal resin include, for example, ESREC KS series (manufactured by Sekisui Chemical Co., Ltd.).
There is no restriction | limiting in particular as said polyamide resin, According to the objective, it can select suitably. Specific examples of the polyamide resin include KS5000 series (manufactured by Hitachi Chemical Co., Ltd.), BP series (manufactured by Nippon Kayaku Co., Ltd.), and the like.
There is no restriction | limiting in particular as said polyamideimide resin, According to the objective, it can select suitably. Specific examples of the polyamideimide resin include KS9000 series (manufactured by Hitachi Chemical Co., Ltd.).
These may be used individually by 1 type and may use 2 or more types together.
Among these, phenoxy resin and polyvinyl acetal resin are preferable.
前記熱硬化性組成物は、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂、及びポリアミドイミド樹脂から選択される少なくともいずれかを含有することが好ましい。
前記フェノキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができる。前記フェノキシ樹脂の具体例としては、例えば、FX280(新日鐵化学社製)、FX293(新日鐵化学社製)、YX8100(三菱化学社製)、YL6954(三菱化学社製)、YL6974(三菱化学社製)などが挙げられる。
前記ポリビニルアセタール樹脂としては、特に制限はなく、目的に応じて適宜選択することができる。前記ポリビニルアセタール樹脂の具体例としては、例えば、エスレックKSシリーズ(積水化学工業社製)などが挙げられる。
前記ポリアミド樹脂としては、特に制限はなく、目的に応じて適宜選択することができる。前記ポリアミド樹脂の具体例としては、例えば、KS5000シリーズ(日立化成工業社製)、BPシリーズ(日本化薬社製)などが挙げられる。
前記ポリアミドイミド樹脂としては、特に制限はなく、目的に応じて適宜選択することができる。前記ポリアミドイミド樹脂の具体例としては、例えば、KS9000シリーズ(日立化成工業社製)などが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、フェノキシ樹脂、ポリビニルアセタール樹脂が好ましい。 -Phenoxy resin, polyvinyl acetal resin, polyamide resin, and polyamideimide resin-
The thermosetting composition preferably contains at least one selected from phenoxy resin, polyvinyl acetal resin, polyamide resin, and polyamideimide resin.
There is no restriction | limiting in particular as said phenoxy resin, According to the objective, it can select suitably. Specific examples of the phenoxy resin include, for example, FX280 (manufactured by Nippon Steel Chemical), FX293 (manufactured by Nippon Steel Chemical), YX8100 (manufactured by Mitsubishi Chemical), YL6954 (manufactured by Mitsubishi Chemical), YL6974 (Mitsubishi). Chemical Co., Ltd.).
There is no restriction | limiting in particular as said polyvinyl acetal resin, According to the objective, it can select suitably. Specific examples of the polyvinyl acetal resin include, for example, ESREC KS series (manufactured by Sekisui Chemical Co., Ltd.).
There is no restriction | limiting in particular as said polyamide resin, According to the objective, it can select suitably. Specific examples of the polyamide resin include KS5000 series (manufactured by Hitachi Chemical Co., Ltd.), BP series (manufactured by Nippon Kayaku Co., Ltd.), and the like.
There is no restriction | limiting in particular as said polyamideimide resin, According to the objective, it can select suitably. Specific examples of the polyamideimide resin include KS9000 series (manufactured by Hitachi Chemical Co., Ltd.).
These may be used individually by 1 type and may use 2 or more types together.
Among these, phenoxy resin and polyvinyl acetal resin are preferable.
前記フェノキシ樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂、及びポリアミドイミド樹脂のガラス転移温度としては、特に制限はなく、目的に応じて適宜選択することができるが、100℃以上が好ましく、100℃~300℃がより好ましい。
The glass transition temperature of the phenoxy resin, polyvinyl acetal resin, polyamide resin, and polyamideimide resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 100 ° C or higher, preferably 100 ° C to 300 ° C. Is more preferable.
前記ガラス転移温度は、JIS(日本工業規格)K 7197に記載の方法に従って決定される。なお、ガラス転移温度が分解温度よりも高いために実際にはガラス転移温度が観測されない場合も本発明における「ガラス転移温度が100℃以上」の定義内に含まれる。なお、分解温度とは、JIS K 7120に記載の方法に従って測定したときの質量減少率が5%となる温度で定義される。
The glass transition temperature is determined according to the method described in JIS (Japanese Industrial Standards) K7197. In addition, the case where the glass transition temperature is not actually observed because the glass transition temperature is higher than the decomposition temperature is also included in the definition of “glass transition temperature of 100 ° C. or higher” in the present invention. The decomposition temperature is defined as a temperature at which the mass reduction rate when measured according to the method described in JIS K 7120 is 5%.
前記フェノキシ樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂、及びポリアミドイミド樹脂は、前記熱硬化性組成物のラミネート時における熱流動性と、酸化剤による硬化物の粗化性に重要な影響を及ぼす。また前記フェノキシ樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂、及びポリアミドイミド樹脂のガラス転移温度が100℃未満であると、硬化物の機械強度が十分でなく、粗化後の硬化物表面に無機フィラーが析出しやすく、十分なメッキピール強度を得る事が困難となる。
The phenoxy resin, polyvinyl acetal resin, polyamide resin, and polyamideimide resin have an important influence on the thermal fluidity during lamination of the thermosetting composition and the roughening property of the cured product by an oxidizing agent. In addition, when the glass transition temperature of the phenoxy resin, polyvinyl acetal resin, polyamide resin, and polyamideimide resin is less than 100 ° C., the mechanical strength of the cured product is insufficient, and inorganic filler is deposited on the surface of the cured product after roughening. It is difficult to obtain sufficient plating peel strength.
前記フェノキシ樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂、及びポリアミドイミド樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記熱硬化性組成物の不揮発分に対して、2質量%~20質量%が好ましい。前記含有量が、2質量%未満であると、前記熱硬化性組成物のラミネート時の熱流動性が大きくなりすぎて絶縁層の厚みが不均一となること、及び硬化物の十分な粗化性が得られないことがある。一方、前記含有量が、20質量%を超えると、熱流動性が低すぎて回路基板に存在するビアホールやスルーホールに十分に前記熱硬化性組成物が充填されないことがある。
There is no restriction | limiting in particular as content of the said phenoxy resin, polyvinyl acetal resin, a polyamide resin, and a polyamideimide resin, Although it can select suitably according to the objective, With respect to the non volatile matter of the said thermosetting composition 2% by mass to 20% by mass is preferable. When the content is less than 2% by mass, the heat fluidity at the time of laminating the thermosetting composition becomes too large, the thickness of the insulating layer becomes uneven, and the cured product is sufficiently roughened. Sexuality may not be obtained. On the other hand, if the content exceeds 20% by mass, the thermal fluidity is too low and the thermosetting composition may not be sufficiently filled in via holes and through holes present in the circuit board.
-熱可塑性エラストマー-
前記熱可塑性エラストマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スチレン系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、アクリル系エラストマー、シリコーン系エラストマーなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの熱可塑性エラストマーは、ハードセグメント成分とソフトセグメント成分から成り立っており、一般に前者が耐熱性、強度に、後者が柔軟性、強靭性に寄与している。
前記スチレン系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、アクリル系エラストマー、シリコーン系エラストマー、及びゴム変性したエポキシ樹脂としては、例えば、特開2009-014745号公報の段落〔0087〕~〔0095〕に記載のものなどが挙げられる。
前記熱硬化性組成物に、前記熱可塑性エラストマーを添加することで、前記熱硬化性組成物に耐熱性、柔軟性及び強靭性を付与することができる。 -Thermoplastic elastomer-
There is no restriction | limiting in particular as said thermoplastic elastomer, According to the objective, it can select suitably, For example, styrene-type elastomer, olefin-type elastomer, urethane-type elastomer, polyester-type elastomer, polyamide-type elastomer, acrylic-type elastomer, silicone Based elastomers and the like. These may be used individually by 1 type and may use 2 or more types together.
These thermoplastic elastomers are composed of a hard segment component and a soft segment component. In general, the former contributes to heat resistance and strength, and the latter contributes to flexibility and toughness.
Examples of the styrene-based elastomer, olefin-based elastomer, urethane-based elastomer, polyester-based elastomer, polyamide-based elastomer, acrylic-based elastomer, silicone-based elastomer, and rubber-modified epoxy resin include, for example, paragraphs of JP-A-2009-014745. [0087] to [0095].
By adding the thermoplastic elastomer to the thermosetting composition, heat resistance, flexibility and toughness can be imparted to the thermosetting composition.
前記熱可塑性エラストマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スチレン系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、アクリル系エラストマー、シリコーン系エラストマーなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの熱可塑性エラストマーは、ハードセグメント成分とソフトセグメント成分から成り立っており、一般に前者が耐熱性、強度に、後者が柔軟性、強靭性に寄与している。
前記スチレン系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、アクリル系エラストマー、シリコーン系エラストマー、及びゴム変性したエポキシ樹脂としては、例えば、特開2009-014745号公報の段落〔0087〕~〔0095〕に記載のものなどが挙げられる。
前記熱硬化性組成物に、前記熱可塑性エラストマーを添加することで、前記熱硬化性組成物に耐熱性、柔軟性及び強靭性を付与することができる。 -Thermoplastic elastomer-
There is no restriction | limiting in particular as said thermoplastic elastomer, According to the objective, it can select suitably, For example, styrene-type elastomer, olefin-type elastomer, urethane-type elastomer, polyester-type elastomer, polyamide-type elastomer, acrylic-type elastomer, silicone Based elastomers and the like. These may be used individually by 1 type and may use 2 or more types together.
These thermoplastic elastomers are composed of a hard segment component and a soft segment component. In general, the former contributes to heat resistance and strength, and the latter contributes to flexibility and toughness.
Examples of the styrene-based elastomer, olefin-based elastomer, urethane-based elastomer, polyester-based elastomer, polyamide-based elastomer, acrylic-based elastomer, silicone-based elastomer, and rubber-modified epoxy resin include, for example, paragraphs of JP-A-2009-014745. [0087] to [0095].
By adding the thermoplastic elastomer to the thermosetting composition, heat resistance, flexibility and toughness can be imparted to the thermosetting composition.
前記熱可塑性エラストマーの前記熱硬化性組成物における含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記熱硬化性組成物の不揮発分に対して、1質量%~50質量%が好ましく、2質量%~20質量%がより好ましく、3質量%~10質量%が特に好ましい。前記含有量が、1質量%未満であると、硬化膜の靭性が劣ることあり、50質量%を超えると、硬化膜の耐熱性が劣ることがある。一方、前記含有量が、前記特に好ましい範囲内であると、硬化膜の靭性と耐熱性が向上する点で有利である。
There is no restriction | limiting in particular as content in the said thermosetting composition of the said thermoplastic elastomer, Although it can select suitably according to the objective, 1 mass% with respect to the non volatile matter of the said thermosetting composition Is preferably 50% by mass, more preferably 2% by mass to 20% by mass, and particularly preferably 3% by mass to 10% by mass. When the content is less than 1% by mass, the toughness of the cured film may be inferior, and when it exceeds 50% by mass, the heat resistance of the cured film may be inferior. On the other hand, when the content is within the particularly preferable range, it is advantageous in that the toughness and heat resistance of the cured film are improved.
-硬化促進剤-
前記硬化促進剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機ホスフィン系化合物、イミダゾール系化合物、アミンアダクト化合物、3級アミン化合物などが挙げられる。
前記有機ホスフィン系化合物としては、例えば、トリフェニルホスフィンなどが挙げられる。前記有機ホスフィン系化合物は市販品を使用することができる。前記有機ホスフィン系化合物の市販品としては、例えば、TPP、TPP-K、TPP-S、TPTP-S(いずれも、北興化学工業社製)などが挙げられる。
前記イミダゾール系化合物としては、例えば、2-エチル4-メチルイミダゾールなどが挙げられる。前記イミダゾール系化合物は市販品を使用することができる。前記イミダゾール系化合物の市販品としては、例えば、キュアゾール2MZ、2E4MZ、C11Z、C11Z-CN、C11Z-CNS、C11Z-A、2MZ-OK、2MA-OK、2PHZ(いずれも、四国化成工業社製)などが挙げられる。
前記アミンアダクト化合物としては、市販品を使用することができる。前記アミンアダクト化合物の市販品としては、例えば、ノバキュア(旭化成工業社製)、フジキュア(富士化成工業社製)などが挙げられる。
前記3級アミン化合物としては、例えば、DBU(1,4-ジアザビシクロ[5,4,0]ウンデ-7-エン)などが挙げられる。
前記硬化促進剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記熱硬化性組成物の不揮発分に対して、0.2質量%~20質量%が好ましい。 -Curing accelerator-
The curing accelerator is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include organic phosphine compounds, imidazole compounds, amine adduct compounds, and tertiary amine compounds.
Examples of the organic phosphine compound include triphenylphosphine. A commercially available product can be used as the organic phosphine compound. Examples of commercially available organic phosphine compounds include TPP, TPP-K, TPP-S, and TPTP-S (all manufactured by Hokuko Chemical Co., Ltd.).
Examples of the imidazole compound include 2-ethyl 4-methylimidazole. A commercial item can be used for the imidazole compound. Examples of commercially available products of the imidazole compound include Curezol 2MZ, 2E4MZ, C11Z, C11Z-CN, C11Z-CNS, C11Z-A, 2MZ-OK, 2MA-OK, and 2PHZ (both manufactured by Shikoku Chemical Industries). Etc.
A commercial item can be used as said amine adduct compound. Examples of commercially available amine adduct compounds include NOVACURE (Asahi Kasei Kogyo Co., Ltd.), Fuji Cure (Fuji Kasei Kogyo Co., Ltd.), and the like.
Examples of the tertiary amine compound include DBU (1,4-diazabicyclo [5,4,0] unde-7-ene).
The content of the curing accelerator is not particularly limited and may be appropriately selected depending on the intended purpose, but is 0.2% by mass to 20% by mass with respect to the nonvolatile content of the thermosetting composition. preferable.
前記硬化促進剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機ホスフィン系化合物、イミダゾール系化合物、アミンアダクト化合物、3級アミン化合物などが挙げられる。
前記有機ホスフィン系化合物としては、例えば、トリフェニルホスフィンなどが挙げられる。前記有機ホスフィン系化合物は市販品を使用することができる。前記有機ホスフィン系化合物の市販品としては、例えば、TPP、TPP-K、TPP-S、TPTP-S(いずれも、北興化学工業社製)などが挙げられる。
前記イミダゾール系化合物としては、例えば、2-エチル4-メチルイミダゾールなどが挙げられる。前記イミダゾール系化合物は市販品を使用することができる。前記イミダゾール系化合物の市販品としては、例えば、キュアゾール2MZ、2E4MZ、C11Z、C11Z-CN、C11Z-CNS、C11Z-A、2MZ-OK、2MA-OK、2PHZ(いずれも、四国化成工業社製)などが挙げられる。
前記アミンアダクト化合物としては、市販品を使用することができる。前記アミンアダクト化合物の市販品としては、例えば、ノバキュア(旭化成工業社製)、フジキュア(富士化成工業社製)などが挙げられる。
前記3級アミン化合物としては、例えば、DBU(1,4-ジアザビシクロ[5,4,0]ウンデ-7-エン)などが挙げられる。
前記硬化促進剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記熱硬化性組成物の不揮発分に対して、0.2質量%~20質量%が好ましい。 -Curing accelerator-
The curing accelerator is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include organic phosphine compounds, imidazole compounds, amine adduct compounds, and tertiary amine compounds.
Examples of the organic phosphine compound include triphenylphosphine. A commercially available product can be used as the organic phosphine compound. Examples of commercially available organic phosphine compounds include TPP, TPP-K, TPP-S, and TPTP-S (all manufactured by Hokuko Chemical Co., Ltd.).
Examples of the imidazole compound include 2-ethyl 4-methylimidazole. A commercial item can be used for the imidazole compound. Examples of commercially available products of the imidazole compound include Curezol 2MZ, 2E4MZ, C11Z, C11Z-CN, C11Z-CNS, C11Z-A, 2MZ-OK, 2MA-OK, and 2PHZ (both manufactured by Shikoku Chemical Industries). Etc.
A commercial item can be used as said amine adduct compound. Examples of commercially available amine adduct compounds include NOVACURE (Asahi Kasei Kogyo Co., Ltd.), Fuji Cure (Fuji Kasei Kogyo Co., Ltd.), and the like.
Examples of the tertiary amine compound include DBU (1,4-diazabicyclo [5,4,0] unde-7-ene).
The content of the curing accelerator is not particularly limited and may be appropriately selected depending on the intended purpose, but is 0.2% by mass to 20% by mass with respect to the nonvolatile content of the thermosetting composition. preferable.
-その他の樹脂-
前記その他の樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ブロックイソシアネート樹脂、キシレン樹脂、ラジカル発生剤と重合性樹脂などが挙げられる。 -Other resins-
There is no restriction | limiting in particular as said other resin, According to the objective, it can select suitably, For example, block isocyanate resin, xylene resin, a radical generator, polymeric resin, etc. are mentioned.
前記その他の樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ブロックイソシアネート樹脂、キシレン樹脂、ラジカル発生剤と重合性樹脂などが挙げられる。 -Other resins-
There is no restriction | limiting in particular as said other resin, According to the objective, it can select suitably, For example, block isocyanate resin, xylene resin, a radical generator, polymeric resin, etc. are mentioned.
-添加剤-
前記添加剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機フィラー、増粘剤、消泡剤、レベリング剤、密着性付与剤、着色剤などが挙げられる。
前記有機フィラーとしては、例えば、シリコンパウダー、ナイロンパウダー、フッ素パウダーなどが挙げられる。
前記増粘剤としては、例えば、オルベン、ベントンなどが挙げられる。
前記消泡剤、及びレベリング剤としては、例えば、シリコーン系、フッ素系、高分子系などの消泡剤及びレベリング剤が挙げられる。
前記密着性付与剤としては、例えば、イミダゾール系、チアゾール系、トリアゾール系等のシランカップリング剤などが挙げられる。
前記着色剤としては、例えば、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、カーボンブラックなどが挙げられる。 -Additive-
There is no restriction | limiting in particular as said additive, According to the objective, it can select suitably, For example, an organic filler, a thickener, an antifoamer, a leveling agent, an adhesiveness imparting agent, a coloring agent etc. are mentioned.
Examples of the organic filler include silicon powder, nylon powder, and fluorine powder.
Examples of the thickener include olben and benton.
Examples of the antifoaming agent and leveling agent include silicone-based, fluorine-based, and polymer-based antifoaming agents and leveling agents.
Examples of the adhesion-imparting agent include imidazole-based, thiazole-based, and triazole-based silane coupling agents.
Examples of the colorant include phthalocyanine / blue, phthalocyanine / green, iodin / green, disazo yellow, and carbon black.
前記添加剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機フィラー、増粘剤、消泡剤、レベリング剤、密着性付与剤、着色剤などが挙げられる。
前記有機フィラーとしては、例えば、シリコンパウダー、ナイロンパウダー、フッ素パウダーなどが挙げられる。
前記増粘剤としては、例えば、オルベン、ベントンなどが挙げられる。
前記消泡剤、及びレベリング剤としては、例えば、シリコーン系、フッ素系、高分子系などの消泡剤及びレベリング剤が挙げられる。
前記密着性付与剤としては、例えば、イミダゾール系、チアゾール系、トリアゾール系等のシランカップリング剤などが挙げられる。
前記着色剤としては、例えば、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、カーボンブラックなどが挙げられる。 -Additive-
There is no restriction | limiting in particular as said additive, According to the objective, it can select suitably, For example, an organic filler, a thickener, an antifoamer, a leveling agent, an adhesiveness imparting agent, a coloring agent etc. are mentioned.
Examples of the organic filler include silicon powder, nylon powder, and fluorine powder.
Examples of the thickener include olben and benton.
Examples of the antifoaming agent and leveling agent include silicone-based, fluorine-based, and polymer-based antifoaming agents and leveling agents.
Examples of the adhesion-imparting agent include imidazole-based, thiazole-based, and triazole-based silane coupling agents.
Examples of the colorant include phthalocyanine / blue, phthalocyanine / green, iodin / green, disazo yellow, and carbon black.
前記熱硬化性組成物は、回路基板上、又は導体回路層上に塗布して多層プリント配線板の絶縁層を形成することができるが、後述する接着フィルムの形態として多層プリント配線板の絶縁層形成に用いられることが好ましい。
The thermosetting composition can be applied on a circuit board or a conductor circuit layer to form an insulating layer of a multilayer printed wiring board. It is preferably used for formation.
(接着フィルム)
本発明の接着フィルムは、支持体と、該支持体上に本発明の前記熱硬化性組成物から形成される熱硬化性組成物層とを有し、更に必要に応じて、その他の層を有する。 (Adhesive film)
The adhesive film of the present invention has a support and a thermosetting composition layer formed from the thermosetting composition of the present invention on the support, and further includes other layers as necessary. Have.
本発明の接着フィルムは、支持体と、該支持体上に本発明の前記熱硬化性組成物から形成される熱硬化性組成物層とを有し、更に必要に応じて、その他の層を有する。 (Adhesive film)
The adhesive film of the present invention has a support and a thermosetting composition layer formed from the thermosetting composition of the present invention on the support, and further includes other layers as necessary. Have.
<支持体>
前記支持体の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリオレフィン、ポリエステル、ポリカーボネート、ポリイミド、離型紙、金属箔などが挙げられる。
前記ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニルなどが挙げられる。
前記ポリエステルとしては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレートなどが挙げられる。
前記金属箔としては、例えば、銅箔、アルミニウム箔などが挙げられる。 <Support>
There is no restriction | limiting in particular as a material of the said support body, According to the objective, it can select suitably, For example, polyolefin, polyester, a polycarbonate, a polyimide, a release paper, metal foil etc. are mentioned.
Examples of the polyolefin include polyethylene, polypropylene, and polyvinyl chloride.
Examples of the polyester include polyethylene terephthalate and polyethylene naphthalate.
Examples of the metal foil include copper foil and aluminum foil.
前記支持体の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリオレフィン、ポリエステル、ポリカーボネート、ポリイミド、離型紙、金属箔などが挙げられる。
前記ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニルなどが挙げられる。
前記ポリエステルとしては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレートなどが挙げられる。
前記金属箔としては、例えば、銅箔、アルミニウム箔などが挙げられる。 <Support>
There is no restriction | limiting in particular as a material of the said support body, According to the objective, it can select suitably, For example, polyolefin, polyester, a polycarbonate, a polyimide, a release paper, metal foil etc. are mentioned.
Examples of the polyolefin include polyethylene, polypropylene, and polyvinyl chloride.
Examples of the polyester include polyethylene terephthalate and polyethylene naphthalate.
Examples of the metal foil include copper foil and aluminum foil.
前記支持体の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フィルム状が挙げられる。
前記フィルム状の支持体の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、4μm~300μmが好ましく、5μm~175μmがより好ましい。 There is no restriction | limiting in particular as a shape of the said support body, According to the objective, it can select suitably, For example, a film form is mentioned.
The average thickness of the film-like support is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 4 μm to 300 μm, more preferably 5 μm to 175 μm.
前記フィルム状の支持体の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、4μm~300μmが好ましく、5μm~175μmがより好ましい。 There is no restriction | limiting in particular as a shape of the said support body, According to the objective, it can select suitably, For example, a film form is mentioned.
The average thickness of the film-like support is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 4 μm to 300 μm, more preferably 5 μm to 175 μm.
前記支持体は、マット処理、コロナ処理、離型処理などが施してあってもよい。
The support may be subjected to mat treatment, corona treatment, mold release treatment, and the like.
<熱硬化性組成物層>
前記熱硬化性組成物層は、前記支持体上に本発明の前記熱硬化性組成物から形成される層である。 <Thermosetting composition layer>
The said thermosetting composition layer is a layer formed from the said thermosetting composition of this invention on the said support body.
前記熱硬化性組成物層は、前記支持体上に本発明の前記熱硬化性組成物から形成される層である。 <Thermosetting composition layer>
The said thermosetting composition layer is a layer formed from the said thermosetting composition of this invention on the said support body.
前記熱硬化性組成物層は、真空ラミネート法におけるラミネートの温度条件(通常70℃~140℃)で軟化し、回路基板にラミネート(貼付)されると同時に、回路基板に存在するビアホール又はスルーホール内の樹脂充填が可能な流動性(樹脂流れ)を示すものであることが好ましい。多層プリント配線板のスルーホールの直径は通常0.1mm~0.5mm、深さは通常0.1mm~1.2mmであり、通常この範囲で樹脂充填を可能とするのが好ましい。なお、回路基板の両面に前記熱硬化性組成物層をラミネートする場合はスルーホールの1/2が充填されればよい。このような物性は、前記熱硬化性組成物の動的粘弾性の測定による温度-溶融粘度曲線によって特徴づけることができる。
The thermosetting composition layer is softened under the lamination temperature condition (usually 70 ° C. to 140 ° C.) in the vacuum laminating method, and laminated (attached) to the circuit board, and at the same time, via holes or through holes existing in the circuit board It is preferable that the resin exhibits fluidity (resin flow) that can be filled with resin. The diameter of the through hole of the multilayer printed wiring board is usually 0.1 mm to 0.5 mm, and the depth is usually 0.1 mm to 1.2 mm. Usually, it is preferable that the resin can be filled in this range. In addition, when laminating the said thermosetting composition layer on both surfaces of a circuit board, what is necessary is just to fill 1/2 of a through hole. Such physical properties can be characterized by a temperature-melt viscosity curve obtained by measuring dynamic viscoelasticity of the thermosetting composition.
前記熱硬化性組成物層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、多層プリント配線板の導体回路層の平均厚み以上が好ましい。導体回路層の平均厚みは、通常5μm~70μmの範囲であるので、前記熱硬化性組成物層の平均厚みとしては、10μm~100μmが好ましい。
The average thickness of the thermosetting composition layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably equal to or greater than the average thickness of the conductor circuit layer of the multilayer printed wiring board. Since the average thickness of the conductor circuit layer is usually in the range of 5 μm to 70 μm, the average thickness of the thermosetting composition layer is preferably 10 μm to 100 μm.
前記熱硬化性組成物層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記支持体の上に、本発明の前記熱硬化性組成物を、有機溶剤に溶解又は分散させた塗布液を調製し、該塗布液を直接塗布し、乾燥させることにより形成する方法などが挙げられる。
There is no restriction | limiting in particular as a formation method of the said thermosetting composition layer, According to the objective, it can select suitably, For example, the said thermosetting composition of this invention is organic on the said support body. Examples include a method in which a coating solution dissolved or dispersed in a solvent is prepared, and the coating solution is directly applied and dried.
前記有機溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アルコール類、ケトン類、エステル類、芳香族炭化水素類、ハロゲン化炭化水素類、エーテル類、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホオキサイド、スルホランなどが挙げられる。
前記アルコール類としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、sec-ブタノール、n-ヘキサノールなどが挙げられる。
前記ケトン類としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトンなどが挙げられる。
前記エステル類としては、例えば、酢酸エチル、酢酸ブチル、酢酸-n-アミル、硫酸メチル、プロピオン酸エチル、フタル酸ジメチル、安息香酸エチル、メトキシプロピルアセテートなどが挙げられる。
前記芳香族炭化水素類としては、例えば、トルエン、キシレン、ベンゼン、エチルベンゼンなどが挙げられる。
前記ハロゲン化炭化水素類としては、例えば、四塩化炭素、トリクロロエチレン、クロロホルム、1,1,1-トリクロロエタン、塩化メチレン、モノクロロベンゼンなどが挙げられる。
前記エーテル類としては、例えば、テトラヒドロフラン、ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、1-メトキシ-2-プロパノールなどが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 The organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, alcohols, ketones, esters, aromatic hydrocarbons, halogenated hydrocarbons, ethers, dimethylformamide Dimethylacetamide, dimethylsulfoxide, sulfolane and the like.
Examples of the alcohols include methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, and n-hexanol.
Examples of the ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisobutyl ketone and the like.
Examples of the esters include ethyl acetate, butyl acetate, n-amyl acetate, methyl sulfate, ethyl propionate, dimethyl phthalate, ethyl benzoate, and methoxypropyl acetate.
Examples of the aromatic hydrocarbons include toluene, xylene, benzene, ethylbenzene and the like.
Examples of the halogenated hydrocarbons include carbon tetrachloride, trichloroethylene, chloroform, 1,1,1-trichloroethane, methylene chloride, and monochlorobenzene.
Examples of the ethers include tetrahydrofuran, diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, 1-methoxy-2-propanol, and the like.
These may be used individually by 1 type and may use 2 or more types together.
前記アルコール類としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、sec-ブタノール、n-ヘキサノールなどが挙げられる。
前記ケトン類としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトンなどが挙げられる。
前記エステル類としては、例えば、酢酸エチル、酢酸ブチル、酢酸-n-アミル、硫酸メチル、プロピオン酸エチル、フタル酸ジメチル、安息香酸エチル、メトキシプロピルアセテートなどが挙げられる。
前記芳香族炭化水素類としては、例えば、トルエン、キシレン、ベンゼン、エチルベンゼンなどが挙げられる。
前記ハロゲン化炭化水素類としては、例えば、四塩化炭素、トリクロロエチレン、クロロホルム、1,1,1-トリクロロエタン、塩化メチレン、モノクロロベンゼンなどが挙げられる。
前記エーテル類としては、例えば、テトラヒドロフラン、ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、1-メトキシ-2-プロパノールなどが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 The organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, alcohols, ketones, esters, aromatic hydrocarbons, halogenated hydrocarbons, ethers, dimethylformamide Dimethylacetamide, dimethylsulfoxide, sulfolane and the like.
Examples of the alcohols include methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, and n-hexanol.
Examples of the ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisobutyl ketone and the like.
Examples of the esters include ethyl acetate, butyl acetate, n-amyl acetate, methyl sulfate, ethyl propionate, dimethyl phthalate, ethyl benzoate, and methoxypropyl acetate.
Examples of the aromatic hydrocarbons include toluene, xylene, benzene, ethylbenzene and the like.
Examples of the halogenated hydrocarbons include carbon tetrachloride, trichloroethylene, chloroform, 1,1,1-trichloroethane, methylene chloride, and monochlorobenzene.
Examples of the ethers include tetrahydrofuran, diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, 1-methoxy-2-propanol, and the like.
These may be used individually by 1 type and may use 2 or more types together.
前記塗布液の不揮発分濃度としては、特に制限はなく、目的に応じて適宜選択することができるが、10質量%~90質量%が好ましく、15質量%~50質量%がより好ましい。
The nonvolatile concentration of the coating solution is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10% by mass to 90% by mass, and more preferably 15% by mass to 50% by mass.
前記塗布の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スピンコーター、スリットスピンコーター、ロールコーター、ダイコーター、カーテンコーターなどを用いて、前記支持体に直接塗布する方法が挙げられる。
前記乾燥の条件としては、特に制限はなく、目的に応じて適宜選択することができ、各成分、溶媒の種類、使用割合などによっても異なるが、通常、60℃~110℃の温度で30秒間~15分間程度である。 The application method is not particularly limited and may be appropriately selected depending on the intended purpose. For example, using a spin coater, slit spin coater, roll coater, die coater, curtain coater, etc. The method of apply | coating is mentioned.
The drying conditions are not particularly limited and may be appropriately selected depending on the purpose. The drying conditions vary depending on each component, the type of solvent, the use ratio, and the like, but are usually 60 ° C. to 110 ° C. for 30 seconds. About 15 minutes.
前記乾燥の条件としては、特に制限はなく、目的に応じて適宜選択することができ、各成分、溶媒の種類、使用割合などによっても異なるが、通常、60℃~110℃の温度で30秒間~15分間程度である。 The application method is not particularly limited and may be appropriately selected depending on the intended purpose. For example, using a spin coater, slit spin coater, roll coater, die coater, curtain coater, etc. The method of apply | coating is mentioned.
The drying conditions are not particularly limited and may be appropriately selected depending on the purpose. The drying conditions vary depending on each component, the type of solvent, the use ratio, and the like, but are usually 60 ° C. to 110 ° C. for 30 seconds. About 15 minutes.
前記支持体上に形成される前記熱硬化性組成物層は、層の面積が前記支持体の面積より小さくなるように形成されるのが好ましい。
The thermosetting composition layer formed on the support is preferably formed so that the area of the layer is smaller than the area of the support.
<その他の層>
前記その他の層としては、例えば、保護層などが挙げられる。 <Other layers>
Examples of the other layers include a protective layer.
前記その他の層としては、例えば、保護層などが挙げられる。 <Other layers>
Examples of the other layers include a protective layer.
-保護層-
前記熱硬化性組成物層を前記保護層で保護することにより、ゴミの付着防止、汚れの付着防止、及び傷の防止ができる。
前記保護層としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記支持体の説明において記載したものと同じ材質のもの、シリコーン紙、ポリエチレン、ポリプロピレンがラミネートされた紙、ポリテトラフルオルエチレンシートなどが挙げられる。
前記保護層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、1μm~70μmが好ましい。 -Protective layer-
By protecting the thermosetting composition layer with the protective layer, it is possible to prevent the adhesion of dust, the adhesion of dirt, and the prevention of scratches.
The protective layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the protective layer is made of the same material as that described in the description of the support, silicone paper, polyethylene, and polypropylene laminated paper. And polytetrafluoroethylene sheet.
The average thickness of the protective layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 μm to 70 μm.
前記熱硬化性組成物層を前記保護層で保護することにより、ゴミの付着防止、汚れの付着防止、及び傷の防止ができる。
前記保護層としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記支持体の説明において記載したものと同じ材質のもの、シリコーン紙、ポリエチレン、ポリプロピレンがラミネートされた紙、ポリテトラフルオルエチレンシートなどが挙げられる。
前記保護層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、1μm~70μmが好ましい。 -Protective layer-
By protecting the thermosetting composition layer with the protective layer, it is possible to prevent the adhesion of dust, the adhesion of dirt, and the prevention of scratches.
The protective layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the protective layer is made of the same material as that described in the description of the support, silicone paper, polyethylene, and polypropylene laminated paper. And polytetrafluoroethylene sheet.
The average thickness of the protective layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 μm to 70 μm.
前記接着フィルムは、ロール状に巻き取って、保存、貯蔵することができる。
The adhesive film can be wound and stored in a roll.
前記接着フィルムは、多層プリント配線板に用いる接着フィルムとして好適に使用できる。
The adhesive film can be suitably used as an adhesive film used for multilayer printed wiring boards.
(多層プリント配線板)
本発明の多層プリント配線板は、本発明の前記熱硬化性組成物の硬化物により形成される絶縁層を少なくとも有し、更に必要に応じて、回路基板、導体回路層などのその他の部材を有する。 (Multilayer printed wiring board)
The multilayer printed wiring board of the present invention has at least an insulating layer formed of a cured product of the thermosetting composition of the present invention, and further includes other members such as a circuit board and a conductor circuit layer as necessary. Have.
本発明の多層プリント配線板は、本発明の前記熱硬化性組成物の硬化物により形成される絶縁層を少なくとも有し、更に必要に応じて、回路基板、導体回路層などのその他の部材を有する。 (Multilayer printed wiring board)
The multilayer printed wiring board of the present invention has at least an insulating layer formed of a cured product of the thermosetting composition of the present invention, and further includes other members such as a circuit board and a conductor circuit layer as necessary. Have.
<絶縁層>
前記絶縁層は、本発明の前記熱硬化性組成物の硬化物により形成される。 <Insulating layer>
The insulating layer is formed of a cured product of the thermosetting composition of the present invention.
前記絶縁層は、本発明の前記熱硬化性組成物の硬化物により形成される。 <Insulating layer>
The insulating layer is formed of a cured product of the thermosetting composition of the present invention.
前記絶縁層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、前記導体回路層の平均厚み以上が好ましい。前記導体回路層の平均厚みは、通常5μm~70μmの範囲であるので、前記絶縁層の平均厚みは、10μm~100μmが好ましい。
The average thickness of the insulating layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably equal to or greater than the average thickness of the conductor circuit layer. Since the average thickness of the conductor circuit layer is usually in the range of 5 μm to 70 μm, the average thickness of the insulating layer is preferably 10 μm to 100 μm.
前記絶縁層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記熱硬化性組成物を、前記回路基板上、又は前記導体回路層上に塗布し、加熱して硬化物とすることにより形成する方法(塗布する方法)、本発明の前記接着フィルムを、前記接着フィルムの前記熱硬化性組成物層が前記回路基板、又は前記導体回路層に接するように、前記回路基板、又は前記導体回路層に貼付(ラミネート)し、加熱して硬化物とすることにより形成する方法(ラミネートする方法)などが挙げられる。
The method for forming the insulating layer is not particularly limited and may be appropriately selected depending on the purpose.For example, the thermosetting composition is applied onto the circuit board or the conductor circuit layer, A method of forming a cured product by heating (a method of applying), and the adhesive film of the present invention so that the thermosetting composition layer of the adhesive film is in contact with the circuit board or the conductor circuit layer. In addition, a method of laminating (lamination) on the circuit board or the conductor circuit layer and heating to form a cured product (laminating method) may be used.
前記塗布する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スピンコーター、スリットスピンコーター、ロールコーター、ダイコーター、カーテンコーターなどが挙げられる。
The coating method is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a spin coater, a slit spin coater, a roll coater, a die coater, and a curtain coater.
前記ラミネートする方法におけるラミネート条件としては、特に制限はなく、目的に応じて適宜選択することができるが、圧着温度(ラミネート温度)としては、70℃~140℃が好ましい。圧着圧力としては、1kgf/cm2~11kgf/cm2(9.8×104N/m2~107.9×104N/m2)が好ましい。また、空気圧が20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。
ラミネートは、市販の真空ラミネーターを使用することができる。前記真空ラミネーターの市販品としては、例えば、バキュームアプリケーター(ニチゴー・モートン社製)、真空加圧式ラミネーター(名機製作所製)、ロール式ドライコータ(日立インダストリイズ社製)、真空ラミネーター(日立エーアイーシー社製)などが挙げられる。
前記ラミネートの方法としては、バッチ式であってもよいし、ロールなどを用いた連続式であってもよい。またラミネートを行う前に、前記接着フィルム、前記回路基板、前記導体回路層を必要により加熱(プレヒート)しておいてもよい。 The laminating conditions in the laminating method are not particularly limited and may be appropriately selected depending on the intended purpose. The pressure bonding temperature (laminating temperature) is preferably 70 ° C. to 140 ° C. The crimping pressure, 1kgf / cm 2 ~ 11kgf / cm 2 (9.8 × 10 4 N / m 2 ~ 107.9 × 10 4 N / m 2) is preferred. Moreover, it is preferable to laminate under a reduced pressure of 20 mmHg (26.7 hPa) or less.
A commercially available vacuum laminator can be used for the laminate. Commercially available products of the vacuum laminator include, for example, a vacuum applicator (manufactured by Nichigo Morton), a vacuum pressure laminator (manufactured by Meiki Seisakusho), a roll type dry coater (manufactured by Hitachi Industries), and a vacuum laminator (Hitachi Air). Etc.).
The lamination method may be a batch method or a continuous method using a roll or the like. Further, before the lamination, the adhesive film, the circuit board, and the conductor circuit layer may be heated (preheated) as necessary.
ラミネートは、市販の真空ラミネーターを使用することができる。前記真空ラミネーターの市販品としては、例えば、バキュームアプリケーター(ニチゴー・モートン社製)、真空加圧式ラミネーター(名機製作所製)、ロール式ドライコータ(日立インダストリイズ社製)、真空ラミネーター(日立エーアイーシー社製)などが挙げられる。
前記ラミネートの方法としては、バッチ式であってもよいし、ロールなどを用いた連続式であってもよい。またラミネートを行う前に、前記接着フィルム、前記回路基板、前記導体回路層を必要により加熱(プレヒート)しておいてもよい。 The laminating conditions in the laminating method are not particularly limited and may be appropriately selected depending on the intended purpose. The pressure bonding temperature (laminating temperature) is preferably 70 ° C. to 140 ° C. The crimping pressure, 1kgf / cm 2 ~ 11kgf / cm 2 (9.8 × 10 4 N / m 2 ~ 107.9 × 10 4 N / m 2) is preferred. Moreover, it is preferable to laminate under a reduced pressure of 20 mmHg (26.7 hPa) or less.
A commercially available vacuum laminator can be used for the laminate. Commercially available products of the vacuum laminator include, for example, a vacuum applicator (manufactured by Nichigo Morton), a vacuum pressure laminator (manufactured by Meiki Seisakusho), a roll type dry coater (manufactured by Hitachi Industries), and a vacuum laminator (Hitachi Air). Etc.).
The lamination method may be a batch method or a continuous method using a roll or the like. Further, before the lamination, the adhesive film, the circuit board, and the conductor circuit layer may be heated (preheated) as necessary.
前記塗布する方法、及び前記ラミネートする方法において硬化物を形成するための加熱の条件としては、特に制限はなく、目的に応じて適宜選択することができる。前記加熱の条件において、加熱温度としては、150℃~220℃が好ましく、160℃~200℃がより好ましい。加熱時間としては、20分間~180分間が好ましく、30分間~120分間がより好ましい。
The heating conditions for forming the cured product in the coating method and the laminating method are not particularly limited and can be appropriately selected depending on the purpose. In the heating conditions, the heating temperature is preferably 150 ° C. to 220 ° C., more preferably 160 ° C. to 200 ° C. The heating time is preferably 20 minutes to 180 minutes, more preferably 30 minutes to 120 minutes.
前記絶縁層が、前記回路基板上、又は前記導体回路層上に形成された後には、必要に応じて、前記絶縁層に穴開けを行い、ビアホール、スルーホールを形成する。前記穴開けを行う方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ドリル、レーザー、プラズマなどを用いた方法が挙げられる。また、必要によりこれらの方法を組み合わせて行うことができる。これらの中でも、レーザーを用いた穴開け方法が好ましい。前記レーザーとしては、炭酸ガスレーザー、YAGレーザーが好ましい。
After the insulating layer is formed on the circuit board or the conductor circuit layer, holes are formed in the insulating layer as necessary to form via holes and through holes. There is no restriction | limiting in particular as a method of performing the said drilling, According to the objective, it can select suitably, For example, the method using a drill, a laser, plasma etc. is mentioned. Moreover, it can carry out combining these methods as needed. Among these, the drilling method using a laser is preferable. The laser is preferably a carbon dioxide laser or a YAG laser.
前記絶縁層は、その表面を酸化剤より粗化処理されてもよい。前記酸化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、過マンガン酸塩(過マンガン酸カリウム、過マンガン酸ナトリウム等)、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸などが挙げられる。これらの中でも、ビルトアップ工法による多層プリント配線板の製造における絶縁層の粗化に汎用されている酸化剤である、アルカリ性過マンガン酸溶液(例えば、過マンガン酸カリウム、過マンガン酸ナトリウムの水酸化ナトリウム水溶液)が好ましい。
The surface of the insulating layer may be roughened with an oxidizing agent. There is no restriction | limiting in particular as said oxidizing agent, According to the objective, it can select suitably, For example, permanganate (potassium permanganate, sodium permanganate etc.), dichromate, ozone, peroxidation Examples include hydrogen / sulfuric acid and nitric acid. Among these, an alkaline permanganate solution (for example, potassium permanganate, sodium permanganate hydroxide), which is an oxidizing agent generally used for roughening an insulating layer in the production of a multilayer printed wiring board by a built-up method. Sodium aqueous solution) is preferred.
<回路基板>
前記回路基板としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板などが挙げられる。
前記回路基板は、前記絶縁層、及び前記導体回路層が、その片面に形成されていてもよいし、両面に形成されていてもよい。 <Circuit board>
There is no restriction | limiting in particular as said circuit board, According to the objective, it can select suitably, For example, a glass epoxy board | substrate, a metal board | substrate, a polyester board | substrate, a polyimide board | substrate, a BT resin board | substrate, a thermosetting type polyphenylene ether board | substrate etc. are mentioned. It is done.
As for the said circuit board, the said insulating layer and the said conductor circuit layer may be formed in the single side | surface, and may be formed in both surfaces.
前記回路基板としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板などが挙げられる。
前記回路基板は、前記絶縁層、及び前記導体回路層が、その片面に形成されていてもよいし、両面に形成されていてもよい。 <Circuit board>
There is no restriction | limiting in particular as said circuit board, According to the objective, it can select suitably, For example, a glass epoxy board | substrate, a metal board | substrate, a polyester board | substrate, a polyimide board | substrate, a BT resin board | substrate, a thermosetting type polyphenylene ether board | substrate etc. are mentioned. It is done.
As for the said circuit board, the said insulating layer and the said conductor circuit layer may be formed in the single side | surface, and may be formed in both surfaces.
<導体回路層>
前記導体回路層としては、導体により形成された回路を有する層であれば、特に制限はなく、目的に応じて適宜選択することができる。
前記導体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、銅、ニッケル、金、チタン、白金、タングステン、アルミニウム、コバルト、クロム、銀、鉛、亜鉛、ニッケル鉄合金などが挙げられる。
前記導体回路層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、サブトラクティブ法、セミアディティブ法などが挙げられ、具体的には、前記絶縁層上に、無電解メッキと電解メッキを組合せた方法、導体回路層とは逆パターンのメッキレジストを形成し、無電解めっきのみで形成する方法、スパッタリング法などが挙げられる。
前記導体回路層は、形成された後に、150℃~200℃で20分間~90分間アニール(anneal)処理されることにより、前記導体回路層のピール強度を向上、安定化させることができる。 <Conductor circuit layer>
The conductor circuit layer is not particularly limited as long as it is a layer having a circuit formed of a conductor, and can be appropriately selected according to the purpose.
There is no restriction | limiting in particular as said conductor, According to the objective, it can select suitably, For example, copper, nickel, gold | metal | money, titanium, platinum, tungsten, aluminum, cobalt, chromium, silver, lead, zinc, nickel iron alloy Etc.
The method for forming the conductor circuit layer is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include a subtractive method and a semi-additive method. Specifically, the conductor circuit layer may be formed on the insulating layer. Examples thereof include a method combining electroless plating and electrolytic plating, a method in which a plating resist having a pattern opposite to that of the conductor circuit layer is formed, and forming only by electroless plating, and a sputtering method.
After the conductor circuit layer is formed, the peel strength of the conductor circuit layer can be improved and stabilized by annealing at 150 to 200 ° C. for 20 to 90 minutes.
前記導体回路層としては、導体により形成された回路を有する層であれば、特に制限はなく、目的に応じて適宜選択することができる。
前記導体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、銅、ニッケル、金、チタン、白金、タングステン、アルミニウム、コバルト、クロム、銀、鉛、亜鉛、ニッケル鉄合金などが挙げられる。
前記導体回路層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、サブトラクティブ法、セミアディティブ法などが挙げられ、具体的には、前記絶縁層上に、無電解メッキと電解メッキを組合せた方法、導体回路層とは逆パターンのメッキレジストを形成し、無電解めっきのみで形成する方法、スパッタリング法などが挙げられる。
前記導体回路層は、形成された後に、150℃~200℃で20分間~90分間アニール(anneal)処理されることにより、前記導体回路層のピール強度を向上、安定化させることができる。 <Conductor circuit layer>
The conductor circuit layer is not particularly limited as long as it is a layer having a circuit formed of a conductor, and can be appropriately selected according to the purpose.
There is no restriction | limiting in particular as said conductor, According to the objective, it can select suitably, For example, copper, nickel, gold | metal | money, titanium, platinum, tungsten, aluminum, cobalt, chromium, silver, lead, zinc, nickel iron alloy Etc.
The method for forming the conductor circuit layer is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include a subtractive method and a semi-additive method. Specifically, the conductor circuit layer may be formed on the insulating layer. Examples thereof include a method combining electroless plating and electrolytic plating, a method in which a plating resist having a pattern opposite to that of the conductor circuit layer is formed, and forming only by electroless plating, and a sputtering method.
After the conductor circuit layer is formed, the peel strength of the conductor circuit layer can be improved and stabilized by annealing at 150 to 200 ° C. for 20 to 90 minutes.
前記多層プリント配線板の構造としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記回路基板の片面、又は両面に、前記絶縁層、及び前記導体回路層が交互に積層されている構造が挙げられる。
The structure of the multilayer printed wiring board is not particularly limited and may be appropriately selected depending on the purpose. For example, the insulating layer and the conductor circuit layer are alternately arranged on one side or both sides of the circuit board. A stacked structure is exemplified.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明は、これらの実施例に何ら制限されるものではない。なお、以下の実施例において、特に明記のない限り、「部」、「%」は、それぞれ「質量部」、「質量%」を意味する。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. In the following examples, unless otherwise specified, “part” and “%” mean “part by mass” and “% by mass”, respectively.
(合成例1)
<化合物T-1の合成>
還流管、及び温度計を備えた2,000mLの3口フラスコに、N-メチルピロリドン250g、及び3,5-ジアミノ-1,2,4-トリアゾール49.5g(デグサ社製)を加えた。攪拌下、N-メチルピロリドン80g、及びテトラヒドロフタル酸無水物152.2g(リカジッドTH、新日本理化社製)を2時間かけて滴下した。その後、40℃で1時間攪拌後、100℃で12時間反応させた。室温に冷却後、反応液を強攪拌下のイオン交換水1.2L中に投入し、目的物を晶析させた。イソプロパノール/ヘキサン(2/8(質量比))で洗浄し濾取、乾燥することで下記構造の化合物T-1を121.1g得た。
(Synthesis Example 1)
<Synthesis of Compound T-1>
To a 2,000 mL 3-neck flask equipped with a reflux tube and a thermometer, 250 g of N-methylpyrrolidone and 49.5 g of 3,5-diamino-1,2,4-triazole (manufactured by Degussa) were added. Under stirring, 80 g of N-methylpyrrolidone and 152.2 g of tetrahydrophthalic anhydride (Rikazide TH, manufactured by Shin Nippon Chemical Co., Ltd.) were added dropwise over 2 hours. Thereafter, the mixture was stirred at 40 ° C. for 1 hour and then reacted at 100 ° C. for 12 hours. After cooling to room temperature, the reaction solution was poured into 1.2 L of ion-exchanged water with strong stirring to crystallize the desired product. Washing with isopropanol / hexane (2/8 (mass ratio)), filtering and drying, 121.1 g of compound T-1 having the following structure was obtained.
<化合物T-1の合成>
還流管、及び温度計を備えた2,000mLの3口フラスコに、N-メチルピロリドン250g、及び3,5-ジアミノ-1,2,4-トリアゾール49.5g(デグサ社製)を加えた。攪拌下、N-メチルピロリドン80g、及びテトラヒドロフタル酸無水物152.2g(リカジッドTH、新日本理化社製)を2時間かけて滴下した。その後、40℃で1時間攪拌後、100℃で12時間反応させた。室温に冷却後、反応液を強攪拌下のイオン交換水1.2L中に投入し、目的物を晶析させた。イソプロパノール/ヘキサン(2/8(質量比))で洗浄し濾取、乾燥することで下記構造の化合物T-1を121.1g得た。
<Synthesis of Compound T-1>
To a 2,000 mL 3-neck flask equipped with a reflux tube and a thermometer, 250 g of N-methylpyrrolidone and 49.5 g of 3,5-diamino-1,2,4-triazole (manufactured by Degussa) were added. Under stirring, 80 g of N-methylpyrrolidone and 152.2 g of tetrahydrophthalic anhydride (Rikazide TH, manufactured by Shin Nippon Chemical Co., Ltd.) were added dropwise over 2 hours. Thereafter, the mixture was stirred at 40 ° C. for 1 hour and then reacted at 100 ° C. for 12 hours. After cooling to room temperature, the reaction solution was poured into 1.2 L of ion-exchanged water with strong stirring to crystallize the desired product. Washing with isopropanol / hexane (2/8 (mass ratio)), filtering and drying, 121.1 g of compound T-1 having the following structure was obtained.
(合成例2)
<化合物T-2の合成>
還流管、及び温度計を備えた2,000mLの3口フラスコに、N-メチルピロリドン250g、及び3-アミノ-1,2,4-トリアゾール42.0g(純正化学社製)を加えた。攪拌下、N-メチルピロリドン80g、及び5-メタクリロイルオキシエチル-トリメリット酸-1,2-無水物152.2g(和光純薬社製)を2時間かけて滴下した。その後、40℃で1時間攪拌後、100℃で5時間反応させた。室温に冷却後、反応液を強攪拌下のイオン交換水1.2L中に投入し、目的物を晶析させた。イソプロパノール/メタノール(22/78(質量比))で洗浄し濾取、乾燥することで下記構造の化合物T-2を112.3g得た。
(Synthesis Example 2)
<Synthesis of Compound T-2>
To a 2,000 mL three-necked flask equipped with a reflux tube and a thermometer, 250 g of N-methylpyrrolidone and 42.0 g of 3-amino-1,2,4-triazole (manufactured by Junsei Chemical Co., Ltd.) were added. Under stirring, 80 g of N-methylpyrrolidone and 152.2 g of 5-methacryloyloxyethyl-trimellitic acid-1,2-anhydride (manufactured by Wako Pure Chemical Industries, Ltd.) were added dropwise over 2 hours. Thereafter, the mixture was stirred at 40 ° C. for 1 hour and then reacted at 100 ° C. for 5 hours. After cooling to room temperature, the reaction solution was poured into 1.2 L of ion-exchanged water with strong stirring to crystallize the desired product. By washing with isopropanol / methanol (22/78 (mass ratio)), filtering and drying, 112.3 g of compound T-2 having the following structure was obtained.
<化合物T-2の合成>
還流管、及び温度計を備えた2,000mLの3口フラスコに、N-メチルピロリドン250g、及び3-アミノ-1,2,4-トリアゾール42.0g(純正化学社製)を加えた。攪拌下、N-メチルピロリドン80g、及び5-メタクリロイルオキシエチル-トリメリット酸-1,2-無水物152.2g(和光純薬社製)を2時間かけて滴下した。その後、40℃で1時間攪拌後、100℃で5時間反応させた。室温に冷却後、反応液を強攪拌下のイオン交換水1.2L中に投入し、目的物を晶析させた。イソプロパノール/メタノール(22/78(質量比))で洗浄し濾取、乾燥することで下記構造の化合物T-2を112.3g得た。
<Synthesis of Compound T-2>
To a 2,000 mL three-necked flask equipped with a reflux tube and a thermometer, 250 g of N-methylpyrrolidone and 42.0 g of 3-amino-1,2,4-triazole (manufactured by Junsei Chemical Co., Ltd.) were added. Under stirring, 80 g of N-methylpyrrolidone and 152.2 g of 5-methacryloyloxyethyl-trimellitic acid-1,2-anhydride (manufactured by Wako Pure Chemical Industries, Ltd.) were added dropwise over 2 hours. Thereafter, the mixture was stirred at 40 ° C. for 1 hour and then reacted at 100 ° C. for 5 hours. After cooling to room temperature, the reaction solution was poured into 1.2 L of ion-exchanged water with strong stirring to crystallize the desired product. By washing with isopropanol / methanol (22/78 (mass ratio)), filtering and drying, 112.3 g of compound T-2 having the following structure was obtained.
(合成例3)
<化合物T-3の合成>
還流管、及び温度計を備えた2,000mLの3口フラスコに、テトラヒドロフラン120g、N-メチルピロリドン70g、3,5-ジアミノ-1,2,4-トリアゾール49.5g(デグサ社製)、及び2,4-ジ-t-ブチル-4-メチルフェノール1.8g(PN-01、大内新興化学工業社製)を加えた。攪拌下、テトラヒドロフラン80g、及び2-イソシアナトエチルアクリレート141.1g(カレンズAOI、昭和電工社製)を2時間かけて滴下した。その後、40℃で20時間反応させた。室温に冷却後、反応液を強攪拌下のイオン交換水2L中に投入し、目的物を晶析させた。メタノールで洗浄し濾取、乾燥することで下記構造の化合物T-3を165.1g得た。
(Synthesis Example 3)
<Synthesis of Compound T-3>
In a 2,000 mL three-necked flask equipped with a reflux tube and a thermometer, 120 g of tetrahydrofuran, 70 g of N-methylpyrrolidone, 49.5 g of 3,5-diamino-1,2,4-triazole (manufactured by Degussa), and 1.8 g of 2,4-di-tert-butyl-4-methylphenol (PN-01, manufactured by Ouchi Shinsei Chemical Co., Ltd.) was added. Under stirring, 80 g of tetrahydrofuran and 141.1 g of 2-isocyanatoethyl acrylate (Karenz AOI, manufactured by Showa Denko KK) were added dropwise over 2 hours. Then, it was made to react at 40 degreeC for 20 hours. After cooling to room temperature, the reaction solution was poured into 2 L of ion-exchanged water under strong stirring to crystallize the target product. By washing with methanol, filtering and drying, 165.1 g of compound T-3 having the following structure was obtained.
<化合物T-3の合成>
還流管、及び温度計を備えた2,000mLの3口フラスコに、テトラヒドロフラン120g、N-メチルピロリドン70g、3,5-ジアミノ-1,2,4-トリアゾール49.5g(デグサ社製)、及び2,4-ジ-t-ブチル-4-メチルフェノール1.8g(PN-01、大内新興化学工業社製)を加えた。攪拌下、テトラヒドロフラン80g、及び2-イソシアナトエチルアクリレート141.1g(カレンズAOI、昭和電工社製)を2時間かけて滴下した。その後、40℃で20時間反応させた。室温に冷却後、反応液を強攪拌下のイオン交換水2L中に投入し、目的物を晶析させた。メタノールで洗浄し濾取、乾燥することで下記構造の化合物T-3を165.1g得た。
<Synthesis of Compound T-3>
In a 2,000 mL three-necked flask equipped with a reflux tube and a thermometer, 120 g of tetrahydrofuran, 70 g of N-methylpyrrolidone, 49.5 g of 3,5-diamino-1,2,4-triazole (manufactured by Degussa), and 1.8 g of 2,4-di-tert-butyl-4-methylphenol (PN-01, manufactured by Ouchi Shinsei Chemical Co., Ltd.) was added. Under stirring, 80 g of tetrahydrofuran and 141.1 g of 2-isocyanatoethyl acrylate (Karenz AOI, manufactured by Showa Denko KK) were added dropwise over 2 hours. Then, it was made to react at 40 degreeC for 20 hours. After cooling to room temperature, the reaction solution was poured into 2 L of ion-exchanged water under strong stirring to crystallize the target product. By washing with methanol, filtering and drying, 165.1 g of compound T-3 having the following structure was obtained.
(合成例4)
<化合物T-4の合成>
還流管、及び温度計を備えた1,000mLの3口フラスコに、t-ブチルメチルケトン250g、1,2,4-トリアゾール34.5g(純正化学工業社製)、ジシクロペンタニルジメタノールジアクリレート145.7g(A-DCP、新中村化学工業社製)、及び2,4-ジ-t-ブチル-4-メチルフェノール1.9g(PN-01、大内新興化学工業社製)を加えた。40℃で1時間攪拌後、80℃で52時間反応させた。室温に冷却後、有機溶媒を減圧濃縮により除去することで下記構造の化合物T-4を178g得た。
(Synthesis Example 4)
<Synthesis of Compound T-4>
In a 1,000 mL three-necked flask equipped with a reflux tube and a thermometer, 250 g of t-butyl methyl ketone, 34.5 g of 1,2,4-triazole (manufactured by Junsei Chemical Co., Ltd.), dicyclopentanyl dimethanol dimer Add 145.7 g of acrylate (A-DCP, Shin-Nakamura Chemical Co., Ltd.) and 1.9 g of 2,4-di-t-butyl-4-methylphenol (PN-01, Ouchi Shinsei Chemical Co., Ltd.) It was. After stirring at 40 ° C. for 1 hour, the reaction was carried out at 80 ° C. for 52 hours. After cooling to room temperature, the organic solvent was removed by concentration under reduced pressure to obtain 178 g of compound T-4 having the following structure.
<化合物T-4の合成>
還流管、及び温度計を備えた1,000mLの3口フラスコに、t-ブチルメチルケトン250g、1,2,4-トリアゾール34.5g(純正化学工業社製)、ジシクロペンタニルジメタノールジアクリレート145.7g(A-DCP、新中村化学工業社製)、及び2,4-ジ-t-ブチル-4-メチルフェノール1.9g(PN-01、大内新興化学工業社製)を加えた。40℃で1時間攪拌後、80℃で52時間反応させた。室温に冷却後、有機溶媒を減圧濃縮により除去することで下記構造の化合物T-4を178g得た。
<Synthesis of Compound T-4>
In a 1,000 mL three-necked flask equipped with a reflux tube and a thermometer, 250 g of t-butyl methyl ketone, 34.5 g of 1,2,4-triazole (manufactured by Junsei Chemical Co., Ltd.), dicyclopentanyl dimethanol dimer Add 145.7 g of acrylate (A-DCP, Shin-Nakamura Chemical Co., Ltd.) and 1.9 g of 2,4-di-t-butyl-4-methylphenol (PN-01, Ouchi Shinsei Chemical Co., Ltd.) It was. After stirring at 40 ° C. for 1 hour, the reaction was carried out at 80 ° C. for 52 hours. After cooling to room temperature, the organic solvent was removed by concentration under reduced pressure to obtain 178 g of compound T-4 having the following structure.
(実施例1)
<多層プリント配線板1の作製>
-熱硬化性組成物1の調製-
液状ビスフェノールF型エポキシ樹脂(YDF-170、エポキシ当量172g/eq、新日鐵化学社製)20質量部、及びナフタレン型4官能エポキシ樹脂(EXA-4700、エポキシ当量163g/eq、DIC社製)12質量部を、シクロヘキサノン20質量部に撹拌しながら添加し、加熱溶解させた。そこへ、合成例1で合成した化合物(T-1)3.5質量部、トリアジン構造含有フェノールノボラック樹脂MEKワニス(フェノライトLA-7052、DIC社製、不揮発分60質量%、不揮発分のフェノール性水酸基当量120)25質量部、フェノキシ樹脂ワニス(FX293、新日鐵化学社製、不揮発分40質量%)20質量部、及び球形シリカ(平均粒径0.5μm、アミノシラン処理)60質量部を添加し熱硬化性組成物1を作製した。 Example 1
<Preparation of multilayer printed wiring board 1>
-Preparation of thermosetting composition 1-
20 parts by mass of liquid bisphenol F type epoxy resin (YDF-170, epoxy equivalent 172 g / eq, manufactured by Nippon Steel Chemical Co., Ltd.) and naphthalene type tetrafunctional epoxy resin (EXA-4700, epoxy equivalent 163 g / eq, manufactured by DIC) 12 parts by mass was added to 20 parts by mass of cyclohexanone with stirring and dissolved by heating. Thereto, 3.5 parts by mass of the compound (T-1) synthesized in Synthesis Example 1, a triazine structure-containing phenol novolac resin MEK varnish (Phenolite LA-7052, manufactured by DIC, non-volatile content 60% by mass, non-volatile phenol 25 parts by mass of hydroxyl group equivalent 120), 20 parts by mass of phenoxy resin varnish (FX293, Nippon Steel Chemical Co., Ltd., nonvolatile content 40% by mass), and 60 parts by mass of spherical silica (average particle size 0.5 μm, aminosilane treatment) The thermosetting composition 1 was prepared by addition.
<多層プリント配線板1の作製>
-熱硬化性組成物1の調製-
液状ビスフェノールF型エポキシ樹脂(YDF-170、エポキシ当量172g/eq、新日鐵化学社製)20質量部、及びナフタレン型4官能エポキシ樹脂(EXA-4700、エポキシ当量163g/eq、DIC社製)12質量部を、シクロヘキサノン20質量部に撹拌しながら添加し、加熱溶解させた。そこへ、合成例1で合成した化合物(T-1)3.5質量部、トリアジン構造含有フェノールノボラック樹脂MEKワニス(フェノライトLA-7052、DIC社製、不揮発分60質量%、不揮発分のフェノール性水酸基当量120)25質量部、フェノキシ樹脂ワニス(FX293、新日鐵化学社製、不揮発分40質量%)20質量部、及び球形シリカ(平均粒径0.5μm、アミノシラン処理)60質量部を添加し熱硬化性組成物1を作製した。 Example 1
<Preparation of multilayer printed wiring board 1>
-Preparation of thermosetting composition 1-
20 parts by mass of liquid bisphenol F type epoxy resin (YDF-170, epoxy equivalent 172 g / eq, manufactured by Nippon Steel Chemical Co., Ltd.) and naphthalene type tetrafunctional epoxy resin (EXA-4700, epoxy equivalent 163 g / eq, manufactured by DIC) 12 parts by mass was added to 20 parts by mass of cyclohexanone with stirring and dissolved by heating. Thereto, 3.5 parts by mass of the compound (T-1) synthesized in Synthesis Example 1, a triazine structure-containing phenol novolac resin MEK varnish (Phenolite LA-7052, manufactured by DIC, non-volatile content 60% by mass, non-volatile phenol 25 parts by mass of hydroxyl group equivalent 120), 20 parts by mass of phenoxy resin varnish (FX293, Nippon Steel Chemical Co., Ltd., nonvolatile content 40% by mass), and 60 parts by mass of spherical silica (average particle size 0.5 μm, aminosilane treatment) The thermosetting composition 1 was prepared by addition.
-接着フィルム1の作製-
ポリエチレンテレフタレートフィルム(厚み38μm、以下PETフィルムと略す)上に、前記熱硬化性組成物1を乾燥後の平均厚みが50μmとなるようにダイコーターを用いて塗布し、80℃で15分間乾燥し(残留溶媒量約1質量%)、熱硬化性組成物層を形成した。次いで、形成した前記熱硬化性組成物層上に、保護層として厚み15μmのポリプロピレンフィルムを貼り合わせながらロール状に巻き取り、接着フィルム1を作製した。 -Production of adhesive film 1-
On a polyethylene terephthalate film (thickness 38 μm, hereinafter abbreviated as PET film), the thermosetting composition 1 is applied using a die coater so that the average thickness after drying is 50 μm, and dried at 80 ° C. for 15 minutes. (A residual solvent amount of about 1% by mass), a thermosetting composition layer was formed. Next, an adhesive film 1 was produced by winding up a 15 μm-thick polypropylene film as a protective layer on the formed thermosetting composition layer in a roll shape.
ポリエチレンテレフタレートフィルム(厚み38μm、以下PETフィルムと略す)上に、前記熱硬化性組成物1を乾燥後の平均厚みが50μmとなるようにダイコーターを用いて塗布し、80℃で15分間乾燥し(残留溶媒量約1質量%)、熱硬化性組成物層を形成した。次いで、形成した前記熱硬化性組成物層上に、保護層として厚み15μmのポリプロピレンフィルムを貼り合わせながらロール状に巻き取り、接着フィルム1を作製した。 -Production of adhesive film 1-
On a polyethylene terephthalate film (thickness 38 μm, hereinafter abbreviated as PET film), the thermosetting composition 1 is applied using a die coater so that the average thickness after drying is 50 μm, and dried at 80 ° C. for 15 minutes. (A residual solvent amount of about 1% by mass), a thermosetting composition layer was formed. Next, an adhesive film 1 was produced by winding up a 15 μm-thick polypropylene film as a protective layer on the formed thermosetting composition layer in a roll shape.
-多層プリント配線板1の作製-
厚み0.3mmのFR4両面銅張積層板(銅箔の厚み18μm)を用い回路基板を作製した(直径0.2mmのスルーホールあり)。作製した接着フィルム1のポリプロピレンフィルムを剥離した後、熱硬化性組成物層が前記回路基板の回路面に接するようにして、真空ラミネーターにより、温度110℃、圧力7kgf/cm2、気圧5mmHg(1.33hPa)以下の条件で、接着フィルム1を回路基板の両面にラミネートした。次いで接着フィルム1のPETフィルムを剥離し、180℃で30分間加熱硬化させ、絶縁層を形成した。その後、レーザーにより穴開けを行い、ビアホールを形成させ、次いで過マンガン酸塩のアルカリ性酸化剤で絶縁層表面を粗化処理し、無電解メッキ及び電解メッキを行いサブトラクティブ法に従って導体回路層を形成し、多層プリント配線板を得た。その後、さらに180℃で30分間アニール処理を行った。得られた導体回路層の導体メッキの厚みは約30μmであり、スルーホールは完全に樹脂充填されていた。 -Fabrication of multilayer printed wiring board 1-
A circuit board was prepared using a FR4 double-sided copper-clad laminate (copper foil thickness 18 μm) having a thickness of 0.3 mm (with a through hole having a diameter of 0.2 mm). After the polypropylene film of the produced adhesive film 1 was peeled off, the thermosetting composition layer was in contact with the circuit surface of the circuit board, and a temperature of 110 ° C., a pressure of 7 kgf / cm 2 , and an atmospheric pressure of 5 mmHg (1) was applied by a vacuum laminator. .33 hPa) The adhesive film 1 was laminated on both sides of the circuit board under the following conditions. Next, the PET film of the adhesive film 1 was peeled off and cured by heating at 180 ° C. for 30 minutes to form an insulating layer. After that, drilling with a laser to form a via hole, then roughening the surface of the insulating layer with an alkaline oxidizer of permanganate, electroless plating and electrolytic plating to form a conductor circuit layer according to the subtractive method A multilayer printed wiring board was obtained. Thereafter, an annealing treatment was further performed at 180 ° C. for 30 minutes. The thickness of the conductor plating of the obtained conductor circuit layer was about 30 μm, and the through hole was completely filled with resin.
厚み0.3mmのFR4両面銅張積層板(銅箔の厚み18μm)を用い回路基板を作製した(直径0.2mmのスルーホールあり)。作製した接着フィルム1のポリプロピレンフィルムを剥離した後、熱硬化性組成物層が前記回路基板の回路面に接するようにして、真空ラミネーターにより、温度110℃、圧力7kgf/cm2、気圧5mmHg(1.33hPa)以下の条件で、接着フィルム1を回路基板の両面にラミネートした。次いで接着フィルム1のPETフィルムを剥離し、180℃で30分間加熱硬化させ、絶縁層を形成した。その後、レーザーにより穴開けを行い、ビアホールを形成させ、次いで過マンガン酸塩のアルカリ性酸化剤で絶縁層表面を粗化処理し、無電解メッキ及び電解メッキを行いサブトラクティブ法に従って導体回路層を形成し、多層プリント配線板を得た。その後、さらに180℃で30分間アニール処理を行った。得られた導体回路層の導体メッキの厚みは約30μmであり、スルーホールは完全に樹脂充填されていた。 -Fabrication of multilayer printed wiring board 1-
A circuit board was prepared using a FR4 double-sided copper-clad laminate (copper foil thickness 18 μm) having a thickness of 0.3 mm (with a through hole having a diameter of 0.2 mm). After the polypropylene film of the produced adhesive film 1 was peeled off, the thermosetting composition layer was in contact with the circuit surface of the circuit board, and a temperature of 110 ° C., a pressure of 7 kgf / cm 2 , and an atmospheric pressure of 5 mmHg (1) was applied by a vacuum laminator. .33 hPa) The adhesive film 1 was laminated on both sides of the circuit board under the following conditions. Next, the PET film of the adhesive film 1 was peeled off and cured by heating at 180 ° C. for 30 minutes to form an insulating layer. After that, drilling with a laser to form a via hole, then roughening the surface of the insulating layer with an alkaline oxidizer of permanganate, electroless plating and electrolytic plating to form a conductor circuit layer according to the subtractive method A multilayer printed wiring board was obtained. Thereafter, an annealing treatment was further performed at 180 ° C. for 30 minutes. The thickness of the conductor plating of the obtained conductor circuit layer was about 30 μm, and the through hole was completely filled with resin.
<評価>
下記評価を行った。結果を表1に示す。
-絶縁性-
--評価用プリント配線板の作製--
厚み0.3mmのFR4両面銅張積層板(銅箔の厚み18μm)の片面にエッチングを施して、ライン幅/スペース幅が50μm/50μmであり、互いのラインが接触しておらず、互いに対向した同一面上の櫛形電極が形成された回路基板を作製した。接着フィルム1のポリプロピレンフィルムを剥離した後、熱硬化性組成物層が前記回路基板の櫛型電極に接するようにして、真空ラミネーターにより、温度110℃、圧力7kgf/cm2、気圧5mmHg(1.33hPa)以下の条件で、接着フィルム1を回路基板にラミネートした。次いで接着フィルム1のPETフィルムを剥離し、180℃で30分間加熱硬化させ、絶縁層を形成し、評価用プリント配線板を作製した。
--絶縁性評価--
評価用プリント配線板に形成された櫛形電極間に電圧が印加されるように、ポリテトラフルオロエチレン製のシールド線をSn/Pbはんだによりそれらの櫛形電極に接続した後、評価用プリント配線板に5Vの電圧を印可した状態で、該評価用プリント配線板を130℃、85%RHの超加速高温高湿寿命試験(HAST)槽内に200時間静置した。その後の評価用プリント配線板の絶縁層のマイグレーションの発生程度を100倍の金属顕微鏡により観察し、以下の評価基準にしたがって評価した。
[評価基準]
◎ :マイグレーションの発生が確認できず、絶縁性に優れる
○ :マイグレーションの発生が銅上僅かに確認されるが、絶縁性は良好である
○△:マイグレーションが絶縁層中に僅かに確認されるが、絶縁性はやや良好である
△ :マイグレーションの発生が確認され、絶縁性にやや劣る
× :電極間が短絡し、絶縁性に劣る <Evaluation>
The following evaluation was performed. The results are shown in Table 1.
-Insulation-
--- Fabrication of printed wiring board for evaluation ---
One side of 0.3 mm thick FR4 double-sided copper clad laminate (copper foil thickness 18 μm) is etched, the line width / space width is 50 μm / 50 μm, and the lines are not in contact with each other, facing each other A circuit board on which comb-shaped electrodes on the same surface were formed was produced. After the polypropylene film of the adhesive film 1 is peeled off, the thermosetting composition layer is brought into contact with the comb-shaped electrode of the circuit board, and a temperature of 110 ° C., a pressure of 7 kgf / cm 2 , and a pressure of 5 mmHg (1. 33 hPa) The adhesive film 1 was laminated on the circuit board under the following conditions. Next, the PET film of the adhesive film 1 was peeled off and cured by heating at 180 ° C. for 30 minutes, an insulating layer was formed, and a printed wiring board for evaluation was produced.
--- Insulation evaluation ---
After connecting the polytetrafluoroethylene shield wires to the comb electrodes by Sn / Pb solder so that a voltage is applied between the comb electrodes formed on the evaluation printed wiring board, With the voltage of 5 V applied, the printed wiring board for evaluation was left in a super accelerated high temperature and high humidity test (HAST) bath at 130 ° C. and 85% RH for 200 hours. Thereafter, the degree of migration of the insulating layer of the printed wiring board for evaluation was observed with a 100-fold metal microscope and evaluated according to the following evaluation criteria.
[Evaluation criteria]
◎: The occurrence of migration is not confirmed and the insulation is excellent. ○: The occurrence of migration is slightly confirmed on copper, but the insulation is good. ○ △: The migration is slightly confirmed in the insulating layer. , Insulation is slightly good △: migration is confirmed, insulation is slightly inferior ×: short between electrodes, insulation is inferior
下記評価を行った。結果を表1に示す。
-絶縁性-
--評価用プリント配線板の作製--
厚み0.3mmのFR4両面銅張積層板(銅箔の厚み18μm)の片面にエッチングを施して、ライン幅/スペース幅が50μm/50μmであり、互いのラインが接触しておらず、互いに対向した同一面上の櫛形電極が形成された回路基板を作製した。接着フィルム1のポリプロピレンフィルムを剥離した後、熱硬化性組成物層が前記回路基板の櫛型電極に接するようにして、真空ラミネーターにより、温度110℃、圧力7kgf/cm2、気圧5mmHg(1.33hPa)以下の条件で、接着フィルム1を回路基板にラミネートした。次いで接着フィルム1のPETフィルムを剥離し、180℃で30分間加熱硬化させ、絶縁層を形成し、評価用プリント配線板を作製した。
--絶縁性評価--
評価用プリント配線板に形成された櫛形電極間に電圧が印加されるように、ポリテトラフルオロエチレン製のシールド線をSn/Pbはんだによりそれらの櫛形電極に接続した後、評価用プリント配線板に5Vの電圧を印可した状態で、該評価用プリント配線板を130℃、85%RHの超加速高温高湿寿命試験(HAST)槽内に200時間静置した。その後の評価用プリント配線板の絶縁層のマイグレーションの発生程度を100倍の金属顕微鏡により観察し、以下の評価基準にしたがって評価した。
[評価基準]
◎ :マイグレーションの発生が確認できず、絶縁性に優れる
○ :マイグレーションの発生が銅上僅かに確認されるが、絶縁性は良好である
○△:マイグレーションが絶縁層中に僅かに確認されるが、絶縁性はやや良好である
△ :マイグレーションの発生が確認され、絶縁性にやや劣る
× :電極間が短絡し、絶縁性に劣る <Evaluation>
The following evaluation was performed. The results are shown in Table 1.
-Insulation-
--- Fabrication of printed wiring board for evaluation ---
One side of 0.3 mm thick FR4 double-sided copper clad laminate (copper foil thickness 18 μm) is etched, the line width / space width is 50 μm / 50 μm, and the lines are not in contact with each other, facing each other A circuit board on which comb-shaped electrodes on the same surface were formed was produced. After the polypropylene film of the adhesive film 1 is peeled off, the thermosetting composition layer is brought into contact with the comb-shaped electrode of the circuit board, and a temperature of 110 ° C., a pressure of 7 kgf / cm 2 , and a pressure of 5 mmHg (1. 33 hPa) The adhesive film 1 was laminated on the circuit board under the following conditions. Next, the PET film of the adhesive film 1 was peeled off and cured by heating at 180 ° C. for 30 minutes, an insulating layer was formed, and a printed wiring board for evaluation was produced.
--- Insulation evaluation ---
After connecting the polytetrafluoroethylene shield wires to the comb electrodes by Sn / Pb solder so that a voltage is applied between the comb electrodes formed on the evaluation printed wiring board, With the voltage of 5 V applied, the printed wiring board for evaluation was left in a super accelerated high temperature and high humidity test (HAST) bath at 130 ° C. and 85% RH for 200 hours. Thereafter, the degree of migration of the insulating layer of the printed wiring board for evaluation was observed with a 100-fold metal microscope and evaluated according to the following evaluation criteria.
[Evaluation criteria]
◎: The occurrence of migration is not confirmed and the insulation is excellent. ○: The occurrence of migration is slightly confirmed on copper, but the insulation is good. ○ △: The migration is slightly confirmed in the insulating layer. , Insulation is slightly good △: migration is confirmed, insulation is slightly inferior ×: short between electrodes, insulation is inferior
-デスミア性-
接着フィルムの保護層を剥離し、前記接着フィルムを、名機製作所製真空ラミネーター(MVLP-500)により、気圧5mmHg以下、温度100℃、圧力7kgf/cm2の条件で、FR4両面銅張積層板に両面に同時にラミネートした。さらに連続的に温度100℃、圧力5kgf/cm2の条件でSUS鏡板による熱プレスを行った。そして、PETフィルムを剥離し、180℃で30分間熱硬化処理を行った。次に、デスミア処理を想定して、酸化剤溶液であるアトテックジャパン社製の粗化液(スウェリング・ディップ・セキュリガンスP(膨潤処理液)、コンセントレート・コンパクトCP(酸化処理液)、リダクションソリューション・セキュリガントP(中和処理液))を用いて、積層板に、膨潤処理を60℃×5分間、酸化処理を80℃×20分間、中和処理を40℃×5分間、この順で行った。
得られた硬化膜の浮き膨れ、剥れを目視により観察し、デスミア性を評価した。評価基準は以下の通りである。
[評価基準]
○ :疎化面にムラが無く、浮き、剥れ及び膨れが発生せず、デスミア耐性に優れる。
△ :やや疎化面にムラがあるものの、浮き、剥れ及び膨れは発生せず、デスミア耐性が良好である。
× :浮き、剥れ及び膨れが発生し、デスミア耐性に劣る。 -Desmear property-
The protective layer of the adhesive film is peeled off, and the adhesive film is subjected to FR4 double-sided copper-clad laminate using a vacuum laminator (MVLP-500) manufactured by Meiki Seisakusho at a pressure of 5 mmHg or less, a temperature of 100 ° C., and a pressure of 7 kgf / cm 2. Laminated on both sides simultaneously. Further, hot pressing with a SUS end plate was performed continuously under conditions of a temperature of 100 ° C. and a pressure of 5 kgf / cm 2 . And PET film was peeled and the thermosetting process was performed for 30 minutes at 180 degreeC. Next, assuming desmear treatment, roughening solution (Swelling Dip Securigans P (swelling treatment solution), Concentrate Compact CP (oxidation treatment solution), reduction, made by Atotech Japan Co., which is an oxidizer solution Solution Securigant P (neutralization solution)) is used to swell the laminate at 60 ° C for 5 minutes, oxidation treatment at 80 ° C for 20 minutes, and neutralization treatment at 40 ° C for 5 minutes in this order. I went there.
The resulting cured film was visually observed for bulging and peeling to evaluate desmearability. The evaluation criteria are as follows.
[Evaluation criteria]
○: There is no unevenness on the sparse surface, no floating, peeling or swelling occurs, and the desmear resistance is excellent.
Δ: Despite some unevenness on the roughened surface, no floatation, peeling or swelling occurs, and desmear resistance is good.
X: Floating, peeling and swelling occur and inferior in desmear resistance.
接着フィルムの保護層を剥離し、前記接着フィルムを、名機製作所製真空ラミネーター(MVLP-500)により、気圧5mmHg以下、温度100℃、圧力7kgf/cm2の条件で、FR4両面銅張積層板に両面に同時にラミネートした。さらに連続的に温度100℃、圧力5kgf/cm2の条件でSUS鏡板による熱プレスを行った。そして、PETフィルムを剥離し、180℃で30分間熱硬化処理を行った。次に、デスミア処理を想定して、酸化剤溶液であるアトテックジャパン社製の粗化液(スウェリング・ディップ・セキュリガンスP(膨潤処理液)、コンセントレート・コンパクトCP(酸化処理液)、リダクションソリューション・セキュリガントP(中和処理液))を用いて、積層板に、膨潤処理を60℃×5分間、酸化処理を80℃×20分間、中和処理を40℃×5分間、この順で行った。
得られた硬化膜の浮き膨れ、剥れを目視により観察し、デスミア性を評価した。評価基準は以下の通りである。
[評価基準]
○ :疎化面にムラが無く、浮き、剥れ及び膨れが発生せず、デスミア耐性に優れる。
△ :やや疎化面にムラがあるものの、浮き、剥れ及び膨れは発生せず、デスミア耐性が良好である。
× :浮き、剥れ及び膨れが発生し、デスミア耐性に劣る。 -Desmear property-
The protective layer of the adhesive film is peeled off, and the adhesive film is subjected to FR4 double-sided copper-clad laminate using a vacuum laminator (MVLP-500) manufactured by Meiki Seisakusho at a pressure of 5 mmHg or less, a temperature of 100 ° C., and a pressure of 7 kgf / cm 2. Laminated on both sides simultaneously. Further, hot pressing with a SUS end plate was performed continuously under conditions of a temperature of 100 ° C. and a pressure of 5 kgf / cm 2 . And PET film was peeled and the thermosetting process was performed for 30 minutes at 180 degreeC. Next, assuming desmear treatment, roughening solution (Swelling Dip Securigans P (swelling treatment solution), Concentrate Compact CP (oxidation treatment solution), reduction, made by Atotech Japan Co., which is an oxidizer solution Solution Securigant P (neutralization solution)) is used to swell the laminate at 60 ° C for 5 minutes, oxidation treatment at 80 ° C for 20 minutes, and neutralization treatment at 40 ° C for 5 minutes in this order. I went there.
The resulting cured film was visually observed for bulging and peeling to evaluate desmearability. The evaluation criteria are as follows.
[Evaluation criteria]
○: There is no unevenness on the sparse surface, no floating, peeling or swelling occurs, and the desmear resistance is excellent.
Δ: Despite some unevenness on the roughened surface, no floatation, peeling or swelling occurs, and desmear resistance is good.
X: Floating, peeling and swelling occur and inferior in desmear resistance.
-耐メッキ密着性-
--評価用プリント配線板の作製--
厚み0.3mmのFR4両面銅張積層板(銅箔の厚み18μm)を用い回路基板を作製した(直径0.2mmのスルーホールあり)。接着フィルム1のポリプロピレンフィルムを剥離した後、熱硬化性組成物層が前記回路基板の回路面に接するようにして、真空ラミネーターにより、温度110℃、圧力7kgf/cm2、気圧5mmHg(1.33hPa)以下の条件で、接着フィルム1を回路基板の両面にラミネートした。次いで接着フィルム1のPETフィルムを剥離し、180℃で30分間加熱硬化させ、絶縁層を形成し、評価用プリント配線板を作製した。
--耐メッキ密着性評価--
形成された絶縁層を脱脂し表面の粗化を行った後、硫酸パラジウムを添加して触媒付加を行った。次に、評価用プリント配線板を、70℃の硫酸ニッケル/希硫酸溶液中に40分間浸漬してメッキ処理を行った後、目視により絶縁層のめくれ、剥がれを観察し、下記基準に基づいて、耐メッキ密着性の評価を行った。
[評価基準]
◎ :絶縁層にめくれ、剥がれがなく、耐メッキ密着性に極めて優れる
○ :絶縁層の一部に変色があるが、実用上問題とならず、耐メッキ密着性に優れる
○△:絶縁層に変色があるが、実用上問題とならず、耐メッキ密着性が良好である
△ :絶縁層にめくれがあり、耐メッキ密着性に劣る
× :絶縁層に浮き(剥がれ)が観られ、耐メッキ密着性に極めて劣る -Plating-resistant adhesion-
--- Fabrication of printed wiring board for evaluation ---
A circuit board was prepared using a FR4 double-sided copper-clad laminate (copper foil thickness 18 μm) having a thickness of 0.3 mm (with a through hole having a diameter of 0.2 mm). After the polypropylene film of the adhesive film 1 is peeled off, the thermosetting composition layer is in contact with the circuit surface of the circuit board, and is heated by a vacuum laminator at a temperature of 110 ° C., a pressure of 7 kgf / cm 2 , and an atmospheric pressure of 5 mmHg (1.33 hPa). ) The adhesive film 1 was laminated on both sides of the circuit board under the following conditions. Next, the PET film of the adhesive film 1 was peeled off and cured by heating at 180 ° C. for 30 minutes, an insulating layer was formed, and a printed wiring board for evaluation was produced.
--- Evaluation of anti-plating adhesion ---
The formed insulating layer was degreased to roughen the surface, and then palladium sulfate was added to add a catalyst. Next, after immersing the printed wiring board for evaluation in a nickel sulfate / dilute sulfuric acid solution at 70 ° C. for 40 minutes for plating treatment, the insulation layer was turned up and peeled off visually, based on the following criteria: Then, the plating resistance was evaluated.
[Evaluation criteria]
◎: Insulation layer is not turned over and peeled off, and extremely excellent in plating-resistant adhesion ○: Part of the insulating layer is discolored, but there is no practical problem and excellent in plating-resistant adhesion ○ △: Insulating layer Discoloration, but no problem in practical use, good adhesion resistance against plating △: Insulation layer is turned over, poor adhesion to plating area ×: Floating (peeling) is observed in insulation layer, anti-plating Very poor adhesion
--評価用プリント配線板の作製--
厚み0.3mmのFR4両面銅張積層板(銅箔の厚み18μm)を用い回路基板を作製した(直径0.2mmのスルーホールあり)。接着フィルム1のポリプロピレンフィルムを剥離した後、熱硬化性組成物層が前記回路基板の回路面に接するようにして、真空ラミネーターにより、温度110℃、圧力7kgf/cm2、気圧5mmHg(1.33hPa)以下の条件で、接着フィルム1を回路基板の両面にラミネートした。次いで接着フィルム1のPETフィルムを剥離し、180℃で30分間加熱硬化させ、絶縁層を形成し、評価用プリント配線板を作製した。
--耐メッキ密着性評価--
形成された絶縁層を脱脂し表面の粗化を行った後、硫酸パラジウムを添加して触媒付加を行った。次に、評価用プリント配線板を、70℃の硫酸ニッケル/希硫酸溶液中に40分間浸漬してメッキ処理を行った後、目視により絶縁層のめくれ、剥がれを観察し、下記基準に基づいて、耐メッキ密着性の評価を行った。
[評価基準]
◎ :絶縁層にめくれ、剥がれがなく、耐メッキ密着性に極めて優れる
○ :絶縁層の一部に変色があるが、実用上問題とならず、耐メッキ密着性に優れる
○△:絶縁層に変色があるが、実用上問題とならず、耐メッキ密着性が良好である
△ :絶縁層にめくれがあり、耐メッキ密着性に劣る
× :絶縁層に浮き(剥がれ)が観られ、耐メッキ密着性に極めて劣る -Plating-resistant adhesion-
--- Fabrication of printed wiring board for evaluation ---
A circuit board was prepared using a FR4 double-sided copper-clad laminate (copper foil thickness 18 μm) having a thickness of 0.3 mm (with a through hole having a diameter of 0.2 mm). After the polypropylene film of the adhesive film 1 is peeled off, the thermosetting composition layer is in contact with the circuit surface of the circuit board, and is heated by a vacuum laminator at a temperature of 110 ° C., a pressure of 7 kgf / cm 2 , and an atmospheric pressure of 5 mmHg (1.33 hPa). ) The adhesive film 1 was laminated on both sides of the circuit board under the following conditions. Next, the PET film of the adhesive film 1 was peeled off and cured by heating at 180 ° C. for 30 minutes, an insulating layer was formed, and a printed wiring board for evaluation was produced.
--- Evaluation of anti-plating adhesion ---
The formed insulating layer was degreased to roughen the surface, and then palladium sulfate was added to add a catalyst. Next, after immersing the printed wiring board for evaluation in a nickel sulfate / dilute sulfuric acid solution at 70 ° C. for 40 minutes for plating treatment, the insulation layer was turned up and peeled off visually, based on the following criteria: Then, the plating resistance was evaluated.
[Evaluation criteria]
◎: Insulation layer is not turned over and peeled off, and extremely excellent in plating-resistant adhesion ○: Part of the insulating layer is discolored, but there is no practical problem and excellent in plating-resistant adhesion ○ △: Insulating layer Discoloration, but no problem in practical use, good adhesion resistance against plating △: Insulation layer is turned over, poor adhesion to plating area ×: Floating (peeling) is observed in insulation layer, anti-plating Very poor adhesion
(実施例2)
実施例1において、化合物T-1を化合物T-2に代えた以外は、実施例1と同様にして、熱硬化性組成物、接着フィルム、及び多層プリント配線板を作製した。
実施例1と同様の評価を行った。結果を表1に示す。 (Example 2)
A thermosetting composition, an adhesive film, and a multilayer printed wiring board were produced in the same manner as in Example 1 except that the compound T-1 was replaced with the compound T-2 in Example 1.
Evaluation similar to Example 1 was performed. The results are shown in Table 1.
実施例1において、化合物T-1を化合物T-2に代えた以外は、実施例1と同様にして、熱硬化性組成物、接着フィルム、及び多層プリント配線板を作製した。
実施例1と同様の評価を行った。結果を表1に示す。 (Example 2)
A thermosetting composition, an adhesive film, and a multilayer printed wiring board were produced in the same manner as in Example 1 except that the compound T-1 was replaced with the compound T-2 in Example 1.
Evaluation similar to Example 1 was performed. The results are shown in Table 1.
(実施例3)
実施例1において、化合物T-1を化合物T-3に代えた以外は、実施例1と同様にして、熱硬化性組成物、接着フィルム、及び多層プリント配線板を作製した。
実施例1と同様の評価を行った。結果を表1に示す。 (Example 3)
A thermosetting composition, an adhesive film, and a multilayer printed wiring board were produced in the same manner as in Example 1 except that the compound T-1 was replaced with the compound T-3 in Example 1.
Evaluation similar to Example 1 was performed. The results are shown in Table 1.
実施例1において、化合物T-1を化合物T-3に代えた以外は、実施例1と同様にして、熱硬化性組成物、接着フィルム、及び多層プリント配線板を作製した。
実施例1と同様の評価を行った。結果を表1に示す。 (Example 3)
A thermosetting composition, an adhesive film, and a multilayer printed wiring board were produced in the same manner as in Example 1 except that the compound T-1 was replaced with the compound T-3 in Example 1.
Evaluation similar to Example 1 was performed. The results are shown in Table 1.
(実施例4)
実施例1において、化合物T-1を化合物T-4に代えた以外は、実施例1と同様にして、熱硬化性組成物、接着フィルム、及び多層プリント配線板を作製した。
実施例1と同様の評価を行った。結果を表1に示す。 Example 4
A thermosetting composition, an adhesive film, and a multilayer printed wiring board were produced in the same manner as in Example 1 except that the compound T-1 was replaced with the compound T-4 in Example 1.
Evaluation similar to Example 1 was performed. The results are shown in Table 1.
実施例1において、化合物T-1を化合物T-4に代えた以外は、実施例1と同様にして、熱硬化性組成物、接着フィルム、及び多層プリント配線板を作製した。
実施例1と同様の評価を行った。結果を表1に示す。 Example 4
A thermosetting composition, an adhesive film, and a multilayer printed wiring board were produced in the same manner as in Example 1 except that the compound T-1 was replaced with the compound T-4 in Example 1.
Evaluation similar to Example 1 was performed. The results are shown in Table 1.
(実施例5)
実施例1において、T-1の含有量(得られる熱硬化性組成物の不揮発分に対する含有量)が3.0質量%から0.5質量%になるように配合量を代えた以外は、実施例1と同様にして、熱硬化性組成物、接着フィルム、及び多層プリント配線板を作製した。
実施例1と同様の評価を行った。結果を表1に示す。 (Example 5)
In Example 1, except that the blending amount was changed so that the content of T-1 (content with respect to the nonvolatile content of the obtained thermosetting composition) was 3.0% by mass to 0.5% by mass. In the same manner as in Example 1, a thermosetting composition, an adhesive film, and a multilayer printed wiring board were produced.
Evaluation similar to Example 1 was performed. The results are shown in Table 1.
実施例1において、T-1の含有量(得られる熱硬化性組成物の不揮発分に対する含有量)が3.0質量%から0.5質量%になるように配合量を代えた以外は、実施例1と同様にして、熱硬化性組成物、接着フィルム、及び多層プリント配線板を作製した。
実施例1と同様の評価を行った。結果を表1に示す。 (Example 5)
In Example 1, except that the blending amount was changed so that the content of T-1 (content with respect to the nonvolatile content of the obtained thermosetting composition) was 3.0% by mass to 0.5% by mass. In the same manner as in Example 1, a thermosetting composition, an adhesive film, and a multilayer printed wiring board were produced.
Evaluation similar to Example 1 was performed. The results are shown in Table 1.
(実施例6)
実施例1において、T-1の含有量(得られる熱硬化性組成物の不揮発分に対する含有量)が3.0質量%から1.7質量%になるように配合量を代えた以外は、実施例1と同様にして、熱硬化性組成物、接着フィルム、及び多層プリント配線板を作製した。
実施例1と同様の評価を行った。結果を表1に示す。 (Example 6)
In Example 1, except that the blending amount was changed so that the content of T-1 (content with respect to the nonvolatile content of the obtained thermosetting composition) was 3.0% by mass to 1.7% by mass. In the same manner as in Example 1, a thermosetting composition, an adhesive film, and a multilayer printed wiring board were produced.
Evaluation similar to Example 1 was performed. The results are shown in Table 1.
実施例1において、T-1の含有量(得られる熱硬化性組成物の不揮発分に対する含有量)が3.0質量%から1.7質量%になるように配合量を代えた以外は、実施例1と同様にして、熱硬化性組成物、接着フィルム、及び多層プリント配線板を作製した。
実施例1と同様の評価を行った。結果を表1に示す。 (Example 6)
In Example 1, except that the blending amount was changed so that the content of T-1 (content with respect to the nonvolatile content of the obtained thermosetting composition) was 3.0% by mass to 1.7% by mass. In the same manner as in Example 1, a thermosetting composition, an adhesive film, and a multilayer printed wiring board were produced.
Evaluation similar to Example 1 was performed. The results are shown in Table 1.
(実施例7)
実施例1において、T-1の含有量(得られる熱硬化性組成物の不揮発分に対する含有量)が3.0質量%から15.0質量%になるように配合量を代えた以外は、実施例1と同様にして、熱硬化性組成物、接着フィルム、及び多層プリント配線板を作製した。
実施例1と同様の評価を行った。結果を表1に示す。 (Example 7)
In Example 1, except that the blending amount was changed so that the content of T-1 (content with respect to the nonvolatile content of the obtained thermosetting composition) was 3.0% by mass to 15.0% by mass. In the same manner as in Example 1, a thermosetting composition, an adhesive film, and a multilayer printed wiring board were produced.
Evaluation similar to Example 1 was performed. The results are shown in Table 1.
実施例1において、T-1の含有量(得られる熱硬化性組成物の不揮発分に対する含有量)が3.0質量%から15.0質量%になるように配合量を代えた以外は、実施例1と同様にして、熱硬化性組成物、接着フィルム、及び多層プリント配線板を作製した。
実施例1と同様の評価を行った。結果を表1に示す。 (Example 7)
In Example 1, except that the blending amount was changed so that the content of T-1 (content with respect to the nonvolatile content of the obtained thermosetting composition) was 3.0% by mass to 15.0% by mass. In the same manner as in Example 1, a thermosetting composition, an adhesive film, and a multilayer printed wiring board were produced.
Evaluation similar to Example 1 was performed. The results are shown in Table 1.
(実施例8)
実施例1において、液状ビスフェノールF型エポキシ樹脂(YDF-170)及びナフタレン型4官能エポキシ樹脂(EXA-4700)を3官能エポキシ樹脂(VG-3101、プリンテック社製)に代えた以外は、実施例1と同様にして、熱硬化性組成物、接着フィルム、及び多層プリント配線板を作製した。
実施例1と同様の評価を行った。結果を表1に示す。 (Example 8)
In Example 1, except that liquid bisphenol F type epoxy resin (YDF-170) and naphthalene type tetrafunctional epoxy resin (EXA-4700) were replaced with trifunctional epoxy resin (VG-3101, manufactured by Printec). In the same manner as in Example 1, a thermosetting composition, an adhesive film, and a multilayer printed wiring board were produced.
Evaluation similar to Example 1 was performed. The results are shown in Table 1.
実施例1において、液状ビスフェノールF型エポキシ樹脂(YDF-170)及びナフタレン型4官能エポキシ樹脂(EXA-4700)を3官能エポキシ樹脂(VG-3101、プリンテック社製)に代えた以外は、実施例1と同様にして、熱硬化性組成物、接着フィルム、及び多層プリント配線板を作製した。
実施例1と同様の評価を行った。結果を表1に示す。 (Example 8)
In Example 1, except that liquid bisphenol F type epoxy resin (YDF-170) and naphthalene type tetrafunctional epoxy resin (EXA-4700) were replaced with trifunctional epoxy resin (VG-3101, manufactured by Printec). In the same manner as in Example 1, a thermosetting composition, an adhesive film, and a multilayer printed wiring board were produced.
Evaluation similar to Example 1 was performed. The results are shown in Table 1.
(実施例9)
実施例1において、ナフタレン型4官能エポキシ樹脂(EXA-4700)をクレゾールノボラック型エポキシ樹脂(N-697、DIC社製)に代えた以外は、実施例1と同様にして、熱硬化性組成物、接着フィルム、及び多層プリント配線板を作製した。
実施例1と同様の評価を行った。結果を表1に示す。 Example 9
The thermosetting composition was the same as in Example 1, except that the naphthalene type tetrafunctional epoxy resin (EXA-4700) was replaced with a cresol novolac type epoxy resin (N-697, manufactured by DIC) in Example 1. An adhesive film and a multilayer printed wiring board were produced.
Evaluation similar to Example 1 was performed. The results are shown in Table 1.
実施例1において、ナフタレン型4官能エポキシ樹脂(EXA-4700)をクレゾールノボラック型エポキシ樹脂(N-697、DIC社製)に代えた以外は、実施例1と同様にして、熱硬化性組成物、接着フィルム、及び多層プリント配線板を作製した。
実施例1と同様の評価を行った。結果を表1に示す。 Example 9
The thermosetting composition was the same as in Example 1, except that the naphthalene type tetrafunctional epoxy resin (EXA-4700) was replaced with a cresol novolac type epoxy resin (N-697, manufactured by DIC) in Example 1. An adhesive film and a multilayer printed wiring board were produced.
Evaluation similar to Example 1 was performed. The results are shown in Table 1.
(比較例1)
実施例1において、熱硬化性組成物に液状ビスフェノールF型エポキシ樹脂、ナフタレン型4官能エポキシ樹脂、及び化合物T-1を添加しなかった以外は、実施例1と同様にして、熱硬化性組成物、接着フィルム、及び多層プリント配線板を作製した。
実施例1と同様の評価を行った。結果を表1に示す。 (Comparative Example 1)
In Example 1, the thermosetting composition was the same as Example 1 except that the liquid bisphenol F type epoxy resin, naphthalene type tetrafunctional epoxy resin, and compound T-1 were not added to the thermosetting composition. Articles, adhesive films, and multilayer printed wiring boards were produced.
Evaluation similar to Example 1 was performed. The results are shown in Table 1.
実施例1において、熱硬化性組成物に液状ビスフェノールF型エポキシ樹脂、ナフタレン型4官能エポキシ樹脂、及び化合物T-1を添加しなかった以外は、実施例1と同様にして、熱硬化性組成物、接着フィルム、及び多層プリント配線板を作製した。
実施例1と同様の評価を行った。結果を表1に示す。 (Comparative Example 1)
In Example 1, the thermosetting composition was the same as Example 1 except that the liquid bisphenol F type epoxy resin, naphthalene type tetrafunctional epoxy resin, and compound T-1 were not added to the thermosetting composition. Articles, adhesive films, and multilayer printed wiring boards were produced.
Evaluation similar to Example 1 was performed. The results are shown in Table 1.
(比較例2)
実施例1において、化合物T-1を添加しなかった以外は、実施例1と同様にして、熱硬化性組成物、接着フィルム、及び多層プリント配線板を作製した。
実施例1と同様の評価を行った。結果を表1に示す。 (Comparative Example 2)
A thermosetting composition, an adhesive film, and a multilayer printed wiring board were produced in the same manner as in Example 1 except that Compound T-1 was not added.
Evaluation similar to Example 1 was performed. The results are shown in Table 1.
実施例1において、化合物T-1を添加しなかった以外は、実施例1と同様にして、熱硬化性組成物、接着フィルム、及び多層プリント配線板を作製した。
実施例1と同様の評価を行った。結果を表1に示す。 (Comparative Example 2)
A thermosetting composition, an adhesive film, and a multilayer printed wiring board were produced in the same manner as in Example 1 except that Compound T-1 was not added.
Evaluation similar to Example 1 was performed. The results are shown in Table 1.
(比較例3)
実施例1において、化合物T-1を下記化合物T-Z(1,2,4-トリアゾール)に代えた以外は、実施例1と同様にして、熱硬化性組成物、接着フィルム、及び多層プリント配線板を作製した。
実施例1と同様の評価を行った。結果を表1に示す。
(Comparative Example 3)
In Example 1, except that the compound T-1 was replaced by the following compound TZ (1,2,4-triazole), the thermosetting composition, the adhesive film, and the multilayer print were the same as in Example 1. A wiring board was produced.
Evaluation similar to Example 1 was performed. The results are shown in Table 1.
実施例1において、化合物T-1を下記化合物T-Z(1,2,4-トリアゾール)に代えた以外は、実施例1と同様にして、熱硬化性組成物、接着フィルム、及び多層プリント配線板を作製した。
実施例1と同様の評価を行った。結果を表1に示す。
In Example 1, except that the compound T-1 was replaced by the following compound TZ (1,2,4-triazole), the thermosetting composition, the adhesive film, and the multilayer print were the same as in Example 1. A wiring board was produced.
Evaluation similar to Example 1 was performed. The results are shown in Table 1.
本発明の態様としては、例えば、以下の態様が挙げられる。
<1> 一分子中に2個以上のエポキシ基を有するエポキシ樹脂と、ラジカル重合可能な二重結合を有する基及びエポキシ基と反応可能な基の少なくともいずれかとトリアゾール環とを有する化合物と、を含有することを特徴とする熱硬化性組成物である。
<2> 更にフェノール系硬化剤を含有する前記<1>に記載の熱硬化性組成物である。
<3> 更に無機フィラーを含有する前記<1>から<2>のいずれかに記載の熱硬化性組成物である。
<4> ラジカル重合可能な二重結合を有する基及びエポキシ基と反応可能な基の少なくともいずれかとトリアゾール環とを有する化合物が、下記一般式(I)で表される化合物である前記<1>から<3>のいずれかに記載の熱硬化性組成物である。
ただし、前記一般式(I)中、Xは、トリアゾール環を表す。Yは、ラジカル重合可能な二重結合を有する基及びエポキシ基と反応可能な基の少なくともいずれかを有する有機基を表す。nは、1~3の整数を表す。なお、nが2~3の時には、Yは、同一であってもよく、異なっていてもよい。
<5> 一般式(I)におけるYが、下記一般式(II)で表される基である前記<4>に記載の熱硬化性組成物である。
ただし、前記一般式(II)中、Y1は、炭素数2~25のm+1価の有機基を表す。Z1は、カルボキシル基、アクリロイルオキシ基、及びメタクリロイルオキシ基のいずれかを表す。mは、1~2の整数を表す。なお、mが2の時には、Z1は、同一であってもよく、異なっていてもよい。
<6> 更にフェノキシ樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂、及びポリアミドイミド樹脂から選択される少なくともいずれかを含有する前記<1>から<5>のいずれかに記載の熱硬化性組成物である。
<7> 支持体と、該支持体上に前記<1>から<6>のいずれかに記載の熱硬化性組成物から形成される熱硬化性組成物層とを有することを特徴とする接着フィルムである。
<8> 前記<1>から<6>のいずれかに記載の熱硬化性組成物の硬化物により形成される絶縁層を有することを特徴とする多層プリント配線板である。 As an aspect of this invention, the following aspects are mentioned, for example.
<1> An epoxy resin having two or more epoxy groups in one molecule, a compound having a triazole ring and at least one of a group having a radically polymerizable double bond and a group capable of reacting with an epoxy group, It is a thermosetting composition characterized by containing.
<2> The thermosetting composition according to <1>, further including a phenol-based curing agent.
<3> The thermosetting composition according to any one of <1> to <2>, further including an inorganic filler.
<4> The above <1>, wherein the compound having a triazole ring and at least one of a group having a radically polymerizable double bond and a group capable of reacting with an epoxy group is a compound represented by the following general formula (I): To <3>.
However, in said general formula (I), X represents a triazole ring. Y represents an organic group having at least one of a group having a double bond capable of radical polymerization and a group capable of reacting with an epoxy group. n represents an integer of 1 to 3. When n is 2 to 3, Y may be the same or different.
<5> The thermosetting composition according to <4>, wherein Y in the general formula (I) is a group represented by the following general formula (II).
In the general formula (II), Y 1 represents an m + 1 valent organic group having 2 to 25 carbon atoms. Z 1 represents any of a carboxyl group, an acryloyloxy group, and a methacryloyloxy group. m represents an integer of 1 to 2. When m is 2, Z 1 may be the same or different.
<6> The thermosetting composition according to any one of <1> to <5>, further including at least one selected from a phenoxy resin, a polyvinyl acetal resin, a polyamide resin, and a polyamideimide resin.
<7> Adhesive comprising a support and a thermosetting composition layer formed from the thermosetting composition according to any one of <1> to <6> on the support. It is a film.
<8> A multilayer printed wiring board comprising an insulating layer formed of a cured product of the thermosetting composition according to any one of <1> to <6>.
<1> 一分子中に2個以上のエポキシ基を有するエポキシ樹脂と、ラジカル重合可能な二重結合を有する基及びエポキシ基と反応可能な基の少なくともいずれかとトリアゾール環とを有する化合物と、を含有することを特徴とする熱硬化性組成物である。
<2> 更にフェノール系硬化剤を含有する前記<1>に記載の熱硬化性組成物である。
<3> 更に無機フィラーを含有する前記<1>から<2>のいずれかに記載の熱硬化性組成物である。
<4> ラジカル重合可能な二重結合を有する基及びエポキシ基と反応可能な基の少なくともいずれかとトリアゾール環とを有する化合物が、下記一般式(I)で表される化合物である前記<1>から<3>のいずれかに記載の熱硬化性組成物である。
<5> 一般式(I)におけるYが、下記一般式(II)で表される基である前記<4>に記載の熱硬化性組成物である。
<6> 更にフェノキシ樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂、及びポリアミドイミド樹脂から選択される少なくともいずれかを含有する前記<1>から<5>のいずれかに記載の熱硬化性組成物である。
<7> 支持体と、該支持体上に前記<1>から<6>のいずれかに記載の熱硬化性組成物から形成される熱硬化性組成物層とを有することを特徴とする接着フィルムである。
<8> 前記<1>から<6>のいずれかに記載の熱硬化性組成物の硬化物により形成される絶縁層を有することを特徴とする多層プリント配線板である。 As an aspect of this invention, the following aspects are mentioned, for example.
<1> An epoxy resin having two or more epoxy groups in one molecule, a compound having a triazole ring and at least one of a group having a radically polymerizable double bond and a group capable of reacting with an epoxy group, It is a thermosetting composition characterized by containing.
<2> The thermosetting composition according to <1>, further including a phenol-based curing agent.
<3> The thermosetting composition according to any one of <1> to <2>, further including an inorganic filler.
<4> The above <1>, wherein the compound having a triazole ring and at least one of a group having a radically polymerizable double bond and a group capable of reacting with an epoxy group is a compound represented by the following general formula (I): To <3>.
<5> The thermosetting composition according to <4>, wherein Y in the general formula (I) is a group represented by the following general formula (II).
<6> The thermosetting composition according to any one of <1> to <5>, further including at least one selected from a phenoxy resin, a polyvinyl acetal resin, a polyamide resin, and a polyamideimide resin.
<7> Adhesive comprising a support and a thermosetting composition layer formed from the thermosetting composition according to any one of <1> to <6> on the support. It is a film.
<8> A multilayer printed wiring board comprising an insulating layer formed of a cured product of the thermosetting composition according to any one of <1> to <6>.
本発明の熱硬化性組成物及び接着フィルムは、絶縁性、デスミア性、及び耐メッキ密着性に優れることから、多層プリント配線板に好適に用いることができる。
本発明の多層プリント配線板は、絶縁性、デスミア性、及び耐メッキ密着性に優れることからビルドアップ方式の多層プリント配線板に好適に用いることができる。 Since the thermosetting composition and adhesive film of the present invention are excellent in insulating properties, desmear properties, and plating-resistant adhesion, they can be suitably used for multilayer printed wiring boards.
The multilayer printed wiring board of the present invention is excellent in insulation, desmearing properties, and plating-resistant adhesion, and therefore can be suitably used for a build-up type multilayer printed wiring board.
本発明の多層プリント配線板は、絶縁性、デスミア性、及び耐メッキ密着性に優れることからビルドアップ方式の多層プリント配線板に好適に用いることができる。 Since the thermosetting composition and adhesive film of the present invention are excellent in insulating properties, desmear properties, and plating-resistant adhesion, they can be suitably used for multilayer printed wiring boards.
The multilayer printed wiring board of the present invention is excellent in insulation, desmearing properties, and plating-resistant adhesion, and therefore can be suitably used for a build-up type multilayer printed wiring board.
Claims (8)
- 一分子中に2個以上のエポキシ基を有するエポキシ樹脂と、ラジカル重合可能な二重結合を有する基及びエポキシ基と反応可能な基の少なくともいずれかとトリアゾール環とを有する化合物と、を含有することを特徴とする熱硬化性組成物。 Containing an epoxy resin having two or more epoxy groups in one molecule and a compound having a triazole ring and at least one of a group having a radically polymerizable double bond and a group capable of reacting with an epoxy group A thermosetting composition characterized by the above.
- 更にフェノール系硬化剤を含有する請求項1に記載の熱硬化性組成物。 Furthermore, the thermosetting composition of Claim 1 containing a phenol type hardening | curing agent.
- 更に無機フィラーを含有する請求項1から2のいずれかに記載の熱硬化性組成物。 The thermosetting composition according to claim 1, further comprising an inorganic filler.
- ラジカル重合可能な二重結合を有する基及びエポキシ基と反応可能な基の少なくともいずれかとトリアゾール環とを有する化合物が、下記一般式(I)で表される化合物である請求項1から3のいずれかに記載の熱硬化性組成物。
- 一般式(I)におけるYが、下記一般式(II)で表される基である請求項4に記載の熱硬化性組成物。
- 更にフェノキシ樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂、及びポリアミドイミド樹脂から選択される少なくともいずれかを含有する請求項1から5のいずれかに記載の熱硬化性組成物。 The thermosetting composition according to any one of claims 1 to 5, further comprising at least one selected from a phenoxy resin, a polyvinyl acetal resin, a polyamide resin, and a polyamideimide resin.
- 支持体と、該支持体上に請求項1から6のいずれかに記載の熱硬化性組成物から形成される熱硬化性組成物層とを有することを特徴とする接着フィルム。 An adhesive film comprising: a support; and a thermosetting composition layer formed from the thermosetting composition according to any one of claims 1 to 6 on the support.
- 請求項1から6のいずれかに記載の熱硬化性組成物の硬化物により形成される絶縁層を有することを特徴とする多層プリント配線板。
A multilayer printed wiring board comprising an insulating layer formed of a cured product of the thermosetting composition according to claim 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011042945 | 2011-02-28 | ||
JP2011-042945 | 2011-02-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012117759A1 true WO2012117759A1 (en) | 2012-09-07 |
Family
ID=46757701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/051034 WO2012117759A1 (en) | 2011-02-28 | 2012-01-19 | Thermosetting composition, adhesive film, and multilayer printed circuit board |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012193340A (en) |
WO (1) | WO2012117759A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020195883A1 (en) * | 2019-03-27 | 2020-10-01 | 住友ベークライト株式会社 | Resin composition for sealing and semiconductor device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62161820A (en) * | 1986-01-10 | 1987-07-17 | Hitachi Chem Co Ltd | Epoxy resin composition |
JPH06253963A (en) * | 1992-07-17 | 1994-09-13 | Miller Paint:Kk | Improved mirror |
JPH09100392A (en) * | 1995-10-03 | 1997-04-15 | Hitachi Chem Co Ltd | Thermosetting resin composition, adhesive sheet, and metal foil with adhesive |
JP2002105672A (en) * | 2000-09-29 | 2002-04-10 | Wako Pure Chem Ind Ltd | Anticorrosive for copper and method for preventing corrosion |
JP2005154727A (en) * | 2003-05-27 | 2005-06-16 | Ajinomoto Co Inc | Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film, and prepreg |
JP2006117711A (en) * | 2004-10-19 | 2006-05-11 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor apparatus |
JP2006176555A (en) * | 2004-12-21 | 2006-07-06 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2007254710A (en) * | 2005-11-29 | 2007-10-04 | Ajinomoto Co Inc | Resin composition for interlayer insulation layer of multi-layer printed circuit board |
-
2012
- 2012-01-12 JP JP2012003863A patent/JP2012193340A/en active Pending
- 2012-01-19 WO PCT/JP2012/051034 patent/WO2012117759A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62161820A (en) * | 1986-01-10 | 1987-07-17 | Hitachi Chem Co Ltd | Epoxy resin composition |
JPH06253963A (en) * | 1992-07-17 | 1994-09-13 | Miller Paint:Kk | Improved mirror |
JPH09100392A (en) * | 1995-10-03 | 1997-04-15 | Hitachi Chem Co Ltd | Thermosetting resin composition, adhesive sheet, and metal foil with adhesive |
JP2002105672A (en) * | 2000-09-29 | 2002-04-10 | Wako Pure Chem Ind Ltd | Anticorrosive for copper and method for preventing corrosion |
JP2005154727A (en) * | 2003-05-27 | 2005-06-16 | Ajinomoto Co Inc | Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film, and prepreg |
JP2006117711A (en) * | 2004-10-19 | 2006-05-11 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor apparatus |
JP2006176555A (en) * | 2004-12-21 | 2006-07-06 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2007254710A (en) * | 2005-11-29 | 2007-10-04 | Ajinomoto Co Inc | Resin composition for interlayer insulation layer of multi-layer printed circuit board |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020195883A1 (en) * | 2019-03-27 | 2020-10-01 | 住友ベークライト株式会社 | Resin composition for sealing and semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP2012193340A (en) | 2012-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5950005B2 (en) | Resin composition | |
JP6024783B2 (en) | Resin composition | |
JP6776749B2 (en) | Resin composition | |
JP7385344B2 (en) | Thermosetting resin composition and multilayer substrate | |
JP2020023714A (en) | Resin material and multilayer printed board | |
CN104910823A (en) | Adhesive film | |
US20070088134A1 (en) | Thermosetting resin composition containing modified polyimide resin | |
TWI619761B (en) | Curable resin composition | |
KR20140121783A (en) | Curable resin composition | |
JP6545924B2 (en) | Roughened hardened body, laminate, printed wiring board and semiconductor device | |
JP2014015608A (en) | Resin composition | |
JP2016084413A (en) | Resin composition | |
KR20220091448A (en) | Resin composition | |
JP5293065B2 (en) | Resin composition | |
JP2017125211A (en) | Resin composition | |
JP5752071B2 (en) | B-stage film and multilayer substrate | |
TWI613251B (en) | Curable resin composition | |
JP6356587B2 (en) | Epoxy resin composition and use thereof | |
KR101021047B1 (en) | Thermosetting resin composition containing modified polyimide resin | |
JP2011246406A (en) | Organosilicon compound | |
TW201420346A (en) | Resin composition | |
WO2012117759A1 (en) | Thermosetting composition, adhesive film, and multilayer printed circuit board | |
JP6816566B2 (en) | Resin compositions, adhesive films, prepregs, multilayer printed wiring boards and semiconductor devices | |
TWI470021B (en) | Resin composition | |
JP2019011481A (en) | Resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12752215 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12752215 Country of ref document: EP Kind code of ref document: A1 |