WO2012117589A1 - Seismoscope - Google Patents

Seismoscope Download PDF

Info

Publication number
WO2012117589A1
WO2012117589A1 PCT/JP2011/069683 JP2011069683W WO2012117589A1 WO 2012117589 A1 WO2012117589 A1 WO 2012117589A1 JP 2011069683 W JP2011069683 W JP 2011069683W WO 2012117589 A1 WO2012117589 A1 WO 2012117589A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
container
pressure
sensitivity
temperature
Prior art date
Application number
PCT/JP2011/069683
Other languages
French (fr)
Japanese (ja)
Inventor
文雄 西野
正之 木下
Original Assignee
立山科学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011046628A external-priority patent/JP4750910B1/en
Priority claimed from JP2011160778A external-priority patent/JP5054837B1/en
Application filed by 立山科学工業株式会社 filed Critical 立山科学工業株式会社
Publication of WO2012117589A1 publication Critical patent/WO2012117589A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/01Measuring or predicting earthquakes

Definitions

  • the present invention relates to a seismic device that detects vibration during an earthquake such as an earthquake.
  • Patent Document 1 a mechanical type seismic device or an acceleration sensor type seismic device is known (for example, Patent Document 1 and Patent Document 2).
  • FIG. 3 is a diagram schematically showing a conventional mechanical seismic device, where (a) is a diagram showing a steady state, and (b) is a diagram showing a state during vibration.
  • the mechanical seismic device 100 is configured to open and close an electrical contact 101 with a steel ball 102.
  • the electrical contact 101 is closed as shown in FIG. 3A, and during the vibration, the electrical contact is caused by the movement of the steel ball 102 as shown in FIG. 3B.
  • 101 is configured to be opened.
  • FIG. 4 is a block diagram of an accelerometer of the acceleration sensor type.
  • the acceleration sensor type seismic device 200 includes an acceleration sensor 201 and a sensor driver / microcomputer 202, and as shown in FIG. It is configured to measure and output in series.
  • FIG. 5 is a diagram showing time series data of acceleration when the vertical axis is output and the horizontal axis is time, (a) is a diagram showing steady-state data, and (b) is an additional graph. It is a figure which shows the data at the time of an earthquake.
  • the mechanical seismic device 100 has a simple structure, can be easily reduced in price, and does not require standby power because of mechanical operation. However, since the horizontal dependency at the time of installation is very large, it becomes impossible to operate depending on the level of installation, and since it is a mechanical contact, there is a problem that the number of operations is limited.
  • the acceleration sensor type seismic device 200 does not need to consider the horizontal dependency at the time of installation, and the magnitude of the vibration itself can be known in time series, and an ultrasensitive product can be easily made. it can. However, it is generally expensive and often overspec (excess performance). In addition, complicated signal processing is required, and accordingly, standby power is consumed by a driver and a microcomputer, resulting in a problem of increased power consumption.
  • the present invention has little dependency on horizontality, the number of operations is semi-permanent, is not over-spec, does not require complicated signal processing, is inexpensive, and has low power consumption.
  • the issue is to provide a seismic device.
  • the invention described in claim 1 A spherical container; A liquid filled in the container leaving an air space in a part of the container; A high-sensitivity thermosensitive element disposed in the container in a state immersed in the liquid, By self-heating by the measurement current of the high-sensitivity thermosensitive element, the liquid is heated to form a high-temperature region around the high-sensitivity thermosensitive element, It is a seismometer that detects a decrease in temperature around the high-sensitivity thermosensitive element due to the flow of the liquid during vibration.
  • the invention described in claim 2 The seismic sensor according to claim 1, wherein the high-sensitivity temperature sensing element is disposed in the vicinity of a spherical center of the spherical container.
  • the invention according to claim 3 The seismic device according to claim 1 or 2, wherein the liquid is a liquid having a low vapor pressure.
  • the invention according to claim 4 The seismic device according to any one of claims 1 to 3, further comprising a circuit that recognizes a temperature change of the high-sensitivity thermosensitive element.
  • the invention described in claim 5 A spherical container; A liquid filled in the container leaving an air space in a part of the container; A high-sensitivity pressure-sensitive element disposed in the container in a state immersed in the liquid, It is a seismic device that detects a change in pressure applied to the high-sensitivity pressure-sensitive element due to the flow of the liquid during vibration.
  • the invention described in claim 6 The seismic sensor according to claim 5, wherein the high-sensitivity pressure-sensitive element is disposed in the vicinity of a spherical center of the spherical container.
  • the invention according to claim 8 provides: 8.
  • FIG. 1 is a figure which shows typically the seismic device which concerns on the 1st Embodiment of this invention. It is a figure which shows typically the seismic device which concerns on the 2nd Embodiment of this invention. It is the figure which showed the mechanical type seismic device typically, Comprising: (a) is a figure which shows the state at the time of a steady state, (b) is a figure which shows the state at the time of an earthquake. It is a block diagram of an accelerometer of an acceleration sensor type. It is a figure which shows the time series data of the acceleration when taking an output on a vertical axis
  • FIG. 1 is a diagram schematically showing a seismic device according to the first embodiment of the present invention.
  • the seismic device 1 includes a spherical container 2, a liquid 3 filled in the container 2, a thermistor 5 that is a kind of a high-sensitivity thermosensitive element immersed in the liquid 3,
  • a circuit unit 8 having a differentiating circuit, an amplifier circuit, and a temperature compensation circuit, and an informing means (not shown) for informing vibration by a detection signal of the thermistor 5 are provided.
  • the high-sensitivity thermosensitive element it is also preferable to use a high-precision platinum resistance thermometer, a thermocouple, etc. in addition to the thermistor.
  • Container 2 is an empty sphere.
  • the material is preferably stainless steel, resin, glass or the like, but is not particularly limited as long as the liquid can be stably held.
  • liquid 3 a liquid having a low vapor pressure such as silicone oil is used.
  • An air space portion 4 is formed above the liquid 3 in the container 2 so that the liquid 3 has fluidity when the container 2 is vibrated.
  • the thermistor 5 is disposed in the center of the container 2 in a state where it is connected to the lead wire 5a of the thermistor 5.
  • the lead wire 5 a is connected to the circuit unit 8 through the sealing unit 7 formed in the upper part of the container 2. 2a is a through hole.
  • a flow stopper 6 is disposed around the lead wire 5a.
  • the flow stopper 6 is formed of a hollow tube having a predetermined strength, the lead wire 5 a is inserted inside, and is fixed to the container 2 by the sealing portion 7.
  • the sealing part 7 is sealed using a material corresponding to the material of the spherical container. For example, if the container is made of resin or stainless steel, resin sealing or the like is used. If the container is made of glass, glass sealing or the like is used.
  • the flow stop 6 prevents the position of the thermistor 5 from moving due to the fluid pressure of the liquid 3 even when the container 2 shakes during the vibration. When the lead wire 5a having strength is used, the flow stopper 6 is not necessary.
  • the thermistor 5 is made to be able to recognize the temperature difference between the steady state and the shaking state by constantly passing a measurement current.
  • the thermistor 5 causes self-heating due to the measurement current and heats the liquid 3 around the thermistor 5.
  • a high temperature region (in the region indicated by a one-dot chain line in FIG. 1) is formed around the thermistor 5, and the thermistor 5 detects the high temperature.
  • a highly sensitive temperature sensitive element such as a thermistor is immersed in a liquid in a spherical container provided with an air space at the upper part, and the flow of the liquid A method using the temperature change of the high-sensitivity thermosensitive element is adopted. And even if a seismoscope shakes at the time of an earthquake, the air space part is always above and the highly sensitive temperature sensing element is always immersed in the liquid.
  • the container is spherical, accurate detection is possible regardless of the installation direction.
  • the high-sensitivity thermosensitive element is disposed in the vicinity of the sphere center of a spherical container, the direction dependency with respect to the shaking direction is completely eliminated, so that extremely accurate detection is possible.
  • the seismic device has not only the horizontal dependency of the installation but also the direction dependency with respect to the shaking direction, so that extremely accurate detection is possible.
  • the signal from the high-sensitivity thermosensitive element only needs to be processed by a simple circuit such as a differentiation circuit, amplification circuit, and temperature compensation circuit. Since the power consumption is low and the operation can be performed at 100 ⁇ W or less, the battery can be operated for a long time.
  • the liquid heating method by self-heating using the measurement current of the high-sensitivity thermosensitive element is adopted, and the structure is simple such that the high-sensitivity thermosensitive element is simply immersed in the liquid.
  • the cost is low, and only a change in temperature during steady state and during shaking is detected, so that complicated signal processing as in the acceleration sensor type is not required.
  • FIG. FIG. 2 is a diagram schematically showing a seismic device according to the second embodiment of the present invention.
  • the seismic device 1 includes a spherical container 2, a liquid 3 filled in the container 2, and a piezoelectric element 5 ′ which is a kind of high-sensitivity pressure-sensitive element immersed in the liquid 3.
  • a circuit unit 8 having a differentiating circuit, an amplifying circuit, and a temperature compensation circuit, and a notifying means (not shown) for notifying vibration by a detection signal of the piezoelectric element 5 ′.
  • Container 2 is an empty sphere.
  • the material is preferably stainless steel, resin, glass or the like, but is not particularly limited as long as the liquid can be stably held.
  • liquid 3 a liquid having a low vapor pressure such as silicone oil is used.
  • An air space portion 4 is formed above the liquid 3 in the container 2 so that the liquid 3 has fluidity when the container 2 is vibrated.
  • the piezoelectric element 5 ′ is arranged at the center of the container 2 in a state of being connected to the lead wire 5 a of the piezoelectric element 5 ′.
  • the lead wire 5 a is connected to the circuit unit 8 through the sealing unit 7 formed in the upper part of the container 2. 2a is a through hole.
  • a flow stopper 6 is disposed around the lead wire 5a.
  • the flow stopper 6 is formed of a hollow tube having a predetermined strength, the lead wire 5 a is inserted inside, and is fixed to the container 2 by the sealing portion 7.
  • the sealing part 7 is sealed using a material corresponding to the material of the spherical container. For example, if the container is made of resin or stainless steel, resin sealing or the like is used. If the container is made of glass, glass sealing or the like is used.
  • the flow stop 6 prevents the position of the piezoelectric element 5 ′ from moving due to the fluid pressure of the liquid 3 even when the container 2 is shaken during the vibration. When the lead wire 5a having strength is used, the flow stopper 6 is not necessary.
  • a constant pressure corresponding to the liquid depth is constantly applied to the piezoelectric element 5 ′.
  • the piezoelectric element 5 ′ is further temperature-dependent, so the temperature compensation circuit corrects the temperature change error, and the pressure change is corrected. Recognize with high accuracy, and notify the supervisor appropriately through the notification means.
  • a piezoelectric element can be preferably used as described above.
  • the piezoelectric element is not limited to the piezoelectric element, and a quartz vibrator whose resonance frequency changes with pressure can also be preferably used.
  • a highly sensitive pressure sensitive element such as a piezoelectric element is immersed in a liquid in a spherical container provided with an air space at the top, and the liquid
  • a method that utilizes a pressure change of a high-sensitivity pressure-sensitive element due to flow is employed. And even if a shaker shakes at the time of an earthquake, the air space part is always above and the highly sensitive pressure sensitive element is always immersed in the liquid.
  • the container is spherical, accurate detection is possible regardless of the installation direction.
  • the high-sensitivity pressure-sensitive element is disposed in the vicinity of the spherical center of the spherical container, the direction dependency with respect to the shaking direction is completely eliminated, so that extremely accurate detection is possible.
  • the seismic device has not only the horizontal dependency of the installation but also the direction dependency with respect to the shaking direction, so that extremely accurate detection is possible.
  • the signal from the high-sensitivity pressure-sensitive element need only be processed by a simple circuit such as a differentiation circuit, amplification circuit, and temperature compensation circuit. Since the power consumption is low and the operation can be performed at 100 ⁇ W or less, the battery can be operated for a long time.
  • the container is filled with the liquid in a state where an air space is left in a part of the container, and the earthquake disposed in the container in a state immersed in the liquid.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

This seismoscope is provided with: a spherical vessel; a fluid that fills the vessel leaving an air space at a portion of the vessel; and a highly sensitive temperature-sensing element or a highly sensitive pressure-sensing element disposed within the vessel in the state of being immersed in the fluid. The seismoscope is characterized by detecting the fluctuations in temperature or pressure resulting from the flow of the fluid when shaking is applied. The highly sensitive temperature-sensing element or the highly sensitive pressure-sensing element is disposed in the vicinity of the center of the spherical vessel. The fluid has a low vapor pressure. A circuit is provided that recognizes temperature fluctuations of the highly sensitive temperature-sensing element or fluctuations in pressure applied to the highly sensitive pressure-sensing element.

Description

感震器Seismograph
 本発明は、地震等の加震時の振動を検知する感震器に関する。 [Technical Field] The present invention relates to a seismic device that detects vibration during an earthquake such as an earthquake.
 この種の感震器としては、機械型の感震器や加速度センサ型の感震器が知られている(例えば、特許文献1、特許文献2)。 As this type of seismic device, a mechanical type seismic device or an acceleration sensor type seismic device is known (for example, Patent Document 1 and Patent Document 2).
 図3は、従来の機械型の感震器を模式的に示した図であって、(a)は定常時の状態を示す図、(b)は加震時の状態を示す図である。図3に示すように、機械型の感震器100は、電気接点101を鋼球102により開閉するように構成されている。そして、定常時は、図3(a)に示すように、電気接点101が閉の状態にされており、加震時に、図3(b)に示すように、鋼球102の移動により電気接点101が開放されるように構成されている。 FIG. 3 is a diagram schematically showing a conventional mechanical seismic device, where (a) is a diagram showing a steady state, and (b) is a diagram showing a state during vibration. As shown in FIG. 3, the mechanical seismic device 100 is configured to open and close an electrical contact 101 with a steel ball 102. In a steady state, the electrical contact 101 is closed as shown in FIG. 3A, and during the vibration, the electrical contact is caused by the movement of the steel ball 102 as shown in FIG. 3B. 101 is configured to be opened.
 図4は、加速度センサ型の感震器のブロック図である。図4に示すように、加速度センサ型の感震器200は、加速度センサ201およびセンサドライバ・マイコン202を備えており、図5に示すように、加震時には、加震の大きさそのものを時系列で測定して出力するように構成されている。なお、図5は、縦軸に出力をとり、横軸に時間をとったときの加速度の時系列データを示す図であり、(a)は定常時のデータを示す図、(b)は加震時のデータを示す図である。 Fig. 4 is a block diagram of an accelerometer of the acceleration sensor type. As shown in FIG. 4, the acceleration sensor type seismic device 200 includes an acceleration sensor 201 and a sensor driver / microcomputer 202, and as shown in FIG. It is configured to measure and output in series. FIG. 5 is a diagram showing time series data of acceleration when the vertical axis is output and the horizontal axis is time, (a) is a diagram showing steady-state data, and (b) is an additional graph. It is a figure which shows the data at the time of an earthquake.
特開平9-72778号公報Japanese Patent Laid-Open No. 9-72778 特開平11-173447号公報Japanese Patent Laid-Open No. 11-173447
 機械式の感震器100は、単純構造で、低価格化が容易となり、また、機械動作であるため、待機電力が不要になる。しかし、設置時の水平依存性が非常に大きいため、設置の水平度によっては動作不能になり、また、機械式接点であるため、動作回数が限定されるという問題がある。 The mechanical seismic device 100 has a simple structure, can be easily reduced in price, and does not require standby power because of mechanical operation. However, since the horizontal dependency at the time of installation is very large, it becomes impossible to operate depending on the level of installation, and since it is a mechanical contact, there is a problem that the number of operations is limited.
 一方、加速度センサ型の感震器200は、設置時の水平依存性を考慮しなくてもよく、また、加震の大きさそのものが時系列に分かり、超高感度品も容易に作ることができる。しかし、一般的に高価であり、オーバースペック(過剰性能)になることが多い。また、複雑な信号処理が必要であり、これに伴い待機電力がドライバ、マイコンで多く消費されるため、消費電力も多くなるという問題がある。 On the other hand, the acceleration sensor type seismic device 200 does not need to consider the horizontal dependency at the time of installation, and the magnitude of the vibration itself can be known in time series, and an ultrasensitive product can be easily made. it can. However, it is generally expensive and often overspec (excess performance). In addition, complicated signal processing is required, and accordingly, standby power is consumed by a driver and a microcomputer, resulting in a problem of increased power consumption.
 本発明は、これらの問題に鑑み、水平度依存性が少なく、動作回数が半永久的であり、さらに、オーバースペックにならず、また複雑な信号処理を必要とせず、安価で、消費電力も少ない感震器を提供することを課題とする。 In view of these problems, the present invention has little dependency on horizontality, the number of operations is semi-permanent, is not over-spec, does not require complicated signal processing, is inexpensive, and has low power consumption. The issue is to provide a seismic device.
 本発明者は、鋭意検討の結果、以下に示す発明により、上記の課題が解決できることを見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventor has found that the above-described problems can be solved by the invention shown below, and has completed the present invention.
 以下、各請求項の発明を説明する。 Hereinafter, the invention of each claim will be described.
 請求項1に記載の発明は、
 球状の容器と、
 前記容器に、前記容器の一部に空気空間を残した状態で充填された液体と、
 前記液体に浸漬した状態で前記容器内に配置された高感度感温素子と
を備えており、
 前記高感度感温素子の測定電流による自己発熱により、前記液体を加熱して前記高感度感温素子の周囲に高温域を形成し、
 加震時の前記液体の流動による前記高感度感温素子周囲の温度の低下を検知する
ことを特徴とする感震器である。
The invention described in claim 1
A spherical container;
A liquid filled in the container leaving an air space in a part of the container;
A high-sensitivity thermosensitive element disposed in the container in a state immersed in the liquid,
By self-heating by the measurement current of the high-sensitivity thermosensitive element, the liquid is heated to form a high-temperature region around the high-sensitivity thermosensitive element,
It is a seismometer that detects a decrease in temperature around the high-sensitivity thermosensitive element due to the flow of the liquid during vibration.
 請求項2に記載の発明は、
 前記高感度感温素子が、前記球状の容器の球心近傍に配置されている
ことを特徴とする請求項1に記載の感震器である。
The invention described in claim 2
The seismic sensor according to claim 1, wherein the high-sensitivity temperature sensing element is disposed in the vicinity of a spherical center of the spherical container.
 請求項3に記載の発明は、
 前記液体が、蒸気圧の低い液体である
ことを特徴とする請求項1または請求項2に記載の感震器である。
The invention according to claim 3
The seismic device according to claim 1 or 2, wherein the liquid is a liquid having a low vapor pressure.
 請求項4に記載の発明は、
 前記高感度感温素子の温度変化を認識する回路を備えている
ことを特徴とする請求項1ないし請求項3のいずれか1項に記載の感震器である。
The invention according to claim 4
The seismic device according to any one of claims 1 to 3, further comprising a circuit that recognizes a temperature change of the high-sensitivity thermosensitive element.
 請求項5に記載の発明は、
 球状の容器と、
 前記容器に、前記容器の一部に空気空間を残した状態で充填された液体と、
 前記液体に浸漬した状態で前記容器内に配置された高感度感圧素子と
を備えており、
 加震時の前記液体の流動により前記高感度感圧素子に加わる圧力の変化を検知する
ことを特徴とする感震器である。
The invention described in claim 5
A spherical container;
A liquid filled in the container leaving an air space in a part of the container;
A high-sensitivity pressure-sensitive element disposed in the container in a state immersed in the liquid,
It is a seismic device that detects a change in pressure applied to the high-sensitivity pressure-sensitive element due to the flow of the liquid during vibration.
 請求項6に記載の発明は、
 前記高感度感圧素子が、前記球状の容器の球心近傍に配置されている
ことを特徴とする請求項5に記載の感震器である。
The invention described in claim 6
The seismic sensor according to claim 5, wherein the high-sensitivity pressure-sensitive element is disposed in the vicinity of a spherical center of the spherical container.
 請求項7に記載の発明は、
 前記液体が、蒸気圧の低い液体である
ことを特徴とする請求項5または請求項6に記載の感震器である。
The invention described in claim 7
The seismic device according to claim 5 or 6, wherein the liquid is a liquid having a low vapor pressure.
 請求項8に記載の発明は、
 前記高感度感圧素子に加わる圧力の変化を認識する回路を備えている
ことを特徴とする請求項5ないし請求項7のいずれか1項に記載の感震器である。
The invention according to claim 8 provides:
8. The seismic sensor according to claim 5, further comprising a circuit for recognizing a change in pressure applied to the high-sensitivity pressure-sensitive element.
 本発明によれば、水平度依存性が少なく、動作回数が半永久的であり、さらに、オーバースペックにならず、また複雑な信号処理を必要とせず、安価で、消費電力も少ない感震器を提供することできる。 According to the present invention, it is possible to provide a seismic instrument that is less dependent on level, has a semi-permanent operation, does not become over-spec, does not require complicated signal processing, is inexpensive, and consumes less power. Can be offered.
本発明の第1の実施の形態に係る感震器を模式的に示す図である。It is a figure which shows typically the seismic device which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る感震器を模式的に示す図である。It is a figure which shows typically the seismic device which concerns on the 2nd Embodiment of this invention. 機械型の感震器を模式的に示した図であって、(a)は定常時の状態を示す図、(b)は加震時の状態を示す図である。It is the figure which showed the mechanical type seismic device typically, Comprising: (a) is a figure which shows the state at the time of a steady state, (b) is a figure which shows the state at the time of an earthquake. 加速度センサ型の感震器のブロック図である。It is a block diagram of an accelerometer of an acceleration sensor type. 縦軸に出力をとり、横軸に時間をとったときの加速度の時系列データを示す図であり、(a)は定常時のデータを示す図、(b)は加震時のデータを示す図である。It is a figure which shows the time series data of the acceleration when taking an output on a vertical axis | shaft and taking time on a horizontal axis, (a) is a figure which shows the data at the time of steady, (b) shows the data at the time of an earthquake. FIG.
 以下、本発明を実施の形態に基づいて説明する。 Hereinafter, the present invention will be described based on embodiments.
(A)第1の実施の形態
1.感震器の構成
 図1は、本発明の第1の実施の形態に係る感震器を模式的に示す図である。図1に示すように、感震器1は、球状の容器2と、容器2に充填される液体3と、液体3中に漬浸される高感度感温素子の一種であるサーミスタ5と、微分回路、増幅回路および温度補償回路を有する回路部8と、サーミスタ5の検知信号により振動を報知する報知手段(図示省略)とを備えている。高感度感温素子としては、サーミスタの外、高精度白金測温抵抗体、熱電対などを用いることも好ましい。
(A) First Embodiment FIG. 1 is a diagram schematically showing a seismic device according to the first embodiment of the present invention. As shown in FIG. 1, the seismic device 1 includes a spherical container 2, a liquid 3 filled in the container 2, a thermistor 5 that is a kind of a high-sensitivity thermosensitive element immersed in the liquid 3, A circuit unit 8 having a differentiating circuit, an amplifier circuit, and a temperature compensation circuit, and an informing means (not shown) for informing vibration by a detection signal of the thermistor 5 are provided. As the high-sensitivity thermosensitive element, it is also preferable to use a high-precision platinum resistance thermometer, a thermocouple, etc. in addition to the thermistor.
 容器2は、空球体である。材質としては、ステンレス、樹脂、ガラス等が好ましいが、液体を安定して保持できる限り、特に制限されない。 Container 2 is an empty sphere. The material is preferably stainless steel, resin, glass or the like, but is not particularly limited as long as the liquid can be stably held.
 液体3としては、シリコーン油等の蒸気圧の低い液体が使用される。 As the liquid 3, a liquid having a low vapor pressure such as silicone oil is used.
 容器2内の液体3の上部には、空気空間部4が形成されており、容器2が加震されたときに液体3に流動性を持たせている。 An air space portion 4 is formed above the liquid 3 in the container 2 so that the liquid 3 has fluidity when the container 2 is vibrated.
 サーミスタ5は、サーミスタ5のリード線5aに接続された状態で容器2の中心部に配置されている。リード線5aは、容器2の上部に形成された封止部7を通って回路部8に接続されている。なお、2aは貫通孔である。 The thermistor 5 is disposed in the center of the container 2 in a state where it is connected to the lead wire 5a of the thermistor 5. The lead wire 5 a is connected to the circuit unit 8 through the sealing unit 7 formed in the upper part of the container 2. 2a is a through hole.
 リード線5aの周囲には、流れ止め6が配置されている。流れ止め6は、所定の強度を有する中空管で形成され、内部にリード線5aが挿通され、容器2に封止部7により固定されている。封止部7は、球状の容器の材質に応じた材料を用いて封止がされている。例えば、容器が樹脂製あるいはステンレス製であれば、樹脂封止などが、ガラス製の容器であれば、ガラス封止などが採用される。 A flow stopper 6 is disposed around the lead wire 5a. The flow stopper 6 is formed of a hollow tube having a predetermined strength, the lead wire 5 a is inserted inside, and is fixed to the container 2 by the sealing portion 7. The sealing part 7 is sealed using a material corresponding to the material of the spherical container. For example, if the container is made of resin or stainless steel, resin sealing or the like is used. If the container is made of glass, glass sealing or the like is used.
 流れ止め6は、加震時に容器2が揺れた場合でも、サーミスタ5の位置が液体3の流体圧により移動しないようにしている。なお、強度のあるリード線5aを使用する場合は、流れ止め6は不要になる。 The flow stop 6 prevents the position of the thermistor 5 from moving due to the fluid pressure of the liquid 3 even when the container 2 shakes during the vibration. When the lead wire 5a having strength is used, the flow stopper 6 is not necessary.
2.感震器の動作
 前記のように構成される感震器1の基本的な動作を説明する。
2. Operation of the seismic device The basic operation of the seismic device 1 configured as described above will be described.
 サーミスタ5には、常に測定電流が流されることにより、定常時と加震時における温度差を認識できるようになっている。 The thermistor 5 is made to be able to recognize the temperature difference between the steady state and the shaking state by constantly passing a measurement current.
 このため、サーミスタ5は、測定電流による自己発熱を起こしてサーミスタ5の周囲の液体3を加熱する。 For this reason, the thermistor 5 causes self-heating due to the measurement current and heats the liquid 3 around the thermistor 5.
 したがって、定常時には、サーミスタ5の周囲に高温域(図1の一点鎖線で示す領域内)を形成して、サーミスタ5は高温度を検知することになる。 Therefore, in a steady state, a high temperature region (in the region indicated by a one-dot chain line in FIG. 1) is formed around the thermistor 5, and the thermistor 5 detects the high temperature.
 一方、加震時には、液体3が容器2の振動により流動するため、高温域の液体3とその周囲にあった低温域の液体3とが混ざり合う。このため、サーミスタ5の周囲の高温域の液体3の温度が低下する。そして、サーミスタ5の定常時と加震時における温度変化量を微分回路で検出し、増幅回路で増幅した後、温度補償回路で温度変化の誤差を修正し、定常時の温度との差を精度高く認識し、適宜、報知手段を通じて監視者に報知する。 On the other hand, at the time of vibration, since the liquid 3 flows due to the vibration of the container 2, the liquid 3 in the high temperature region and the liquid 3 in the low temperature region around it are mixed. For this reason, the temperature of the liquid 3 in the high temperature region around the thermistor 5 decreases. Then, the temperature change amount of the thermistor 5 during the steady state and during the shaking is detected by the differentiation circuit, amplified by the amplification circuit, and then the error of the temperature change is corrected by the temperature compensation circuit, and the difference from the steady state temperature is accurately measured. Recognize it high and notify the supervisor through the notification means as appropriate.
3.本実施の形態の効果
(1)本実施の形態においては、上部に空気空間部が設けられた球状の容器内の液体中にサーミスタのような高感度感温素子を浸漬して、液体の流動による高感度感温素子の温度変化を利用する方式が採用されている。そして、加震時に感震器が揺れた場合でも、空気空間部は常に上方にあり、高感度感温素子は常に液体中に浸漬されている。
3. Advantages of the present embodiment (1) In the present embodiment, a highly sensitive temperature sensitive element such as a thermistor is immersed in a liquid in a spherical container provided with an air space at the upper part, and the flow of the liquid A method using the temperature change of the high-sensitivity thermosensitive element is adopted. And even if a seismoscope shakes at the time of an earthquake, the air space part is always above and the highly sensitive temperature sensing element is always immersed in the liquid.
 このため、地震になどによる揺れの方向に影響されず、常に正確な検知が可能となる。即ち、従来の機械型の感震器の場合、水平に設置した場合でも、揺れの方向が上下の場合と、左右の場合とで検知結果に差が出やすい。また、加速度センサ型の感震器の場合、設置時の水平依存性は比較的考慮しなくてもよいが、揺れ方向が上下の場合と、左右の場合とで検知結果に差が出やすい。しかし、本実施の形態においては、液体の流動による高感度感温素子の温度変化を利用する方式が採用されているため、揺れの方向に影響されず、常に正確な検知が可能となる。 Therefore, accurate detection is always possible without being affected by the direction of shaking caused by an earthquake. That is, in the case of a conventional mechanical type seismic device, even if it is installed horizontally, the detection result tends to differ between the case where the direction of shaking is up and down and the case where it is left and right. In addition, in the case of an acceleration sensor type seismic device, the horizontal dependency at the time of installation does not need to be taken into consideration relatively, but the detection result tends to differ between when the shaking direction is up and down and when it is left and right. However, in the present embodiment, since a method using the temperature change of the high-sensitivity thermosensitive element due to the flow of the liquid is employed, accurate detection is always possible without being affected by the direction of shaking.
 さらに、容器が球状であるため、設置方向に拘わらず、正確な検知が可能になる。特に、高感度感温素子が、球状の容器の球心近傍に配置されている場合には、揺れ方向に対する方向依存性が全くなくなるため、極めて正確な検知が可能となる。 Furthermore, since the container is spherical, accurate detection is possible regardless of the installation direction. In particular, when the high-sensitivity thermosensitive element is disposed in the vicinity of the sphere center of a spherical container, the direction dependency with respect to the shaking direction is completely eliminated, so that extremely accurate detection is possible.
 このように、本実施の形態の感震器には、設置の水平依存性だけでなく、揺れ方向に対する方向依存性が全くなくなるため、極めて正確な検知が可能となる。 As described above, the seismic device according to the present embodiment has not only the horizontal dependency of the installation but also the direction dependency with respect to the shaking direction, so that extremely accurate detection is possible.
(2)定常時と加震時の温度変化が認識できるだけでよいため、高感度感温素子からの信号は、微分回路、増幅回路、温度補償回路程度の簡単な回路で処理するだけで済み、消費電力が少なく100μW以下での動作可能となるため、乾電池で長時間動作が可能となる。 (2) Since it is only necessary to recognize the temperature change during steady state and during shaking, the signal from the high-sensitivity thermosensitive element only needs to be processed by a simple circuit such as a differentiation circuit, amplification circuit, and temperature compensation circuit. Since the power consumption is low and the operation can be performed at 100 μW or less, the battery can be operated for a long time.
(3)高感度感温素子の測定電流による自己発熱により液体を加熱しているため、別途加熱手段を設ける必要がなく、構造が簡単であり、消費電力も少なくて済む。 (3) Since the liquid is heated by self-heating by the measurement current of the high-sensitivity thermosensitive element, it is not necessary to provide a separate heating means, the structure is simple, and the power consumption is small.
(4)機械式接点をなくす一方、容器内の液体に浸漬した高感度感温素子により加震時の温度の低下を検知する単純な方式であるため、動作回数が半永久的になる。 (4) While eliminating the mechanical contact, it is a simple method of detecting a decrease in temperature at the time of vibration by a highly sensitive thermosensitive element immersed in the liquid in the container, so that the number of operations becomes semi-permanent.
(5)前記の通り、高感度感温素子の測定電流を利用した自己発熱による液体加熱方式を採用しており、高感度感温素子を液体に浸漬させるだけの単純な構造であり、処理回路も単純な回路で済むため、安価であり、定常時と加震時の温度変化を検知するだけであるため、加速度センサ型のような複雑な信号処理を必要としない。 (5) As described above, the liquid heating method by self-heating using the measurement current of the high-sensitivity thermosensitive element is adopted, and the structure is simple such that the high-sensitivity thermosensitive element is simply immersed in the liquid. However, since a simple circuit is sufficient, the cost is low, and only a change in temperature during steady state and during shaking is detected, so that complicated signal processing as in the acceleration sensor type is not required.
(B)第2の実施の形態
1.感震器の構成
 図2は、本発明の第2の実施の形態に係る感震器を模式的に示す図である。図2に示すように、感震器1は、球状の容器2と、容器2に充填される液体3と、液体3中に浸漬される高感度感圧素子の一種である圧電素子5´と、微分回路、増幅回路および温度補償回路を有する回路部8と、圧電素子5´の検知信号により振動を報知する報知手段(図示省略)とを備えている。
(B) Second Embodiment 1. FIG. FIG. 2 is a diagram schematically showing a seismic device according to the second embodiment of the present invention. As shown in FIG. 2, the seismic device 1 includes a spherical container 2, a liquid 3 filled in the container 2, and a piezoelectric element 5 ′ which is a kind of high-sensitivity pressure-sensitive element immersed in the liquid 3. A circuit unit 8 having a differentiating circuit, an amplifying circuit, and a temperature compensation circuit, and a notifying means (not shown) for notifying vibration by a detection signal of the piezoelectric element 5 ′.
 容器2は、空球体である。材質としては、ステンレス、樹脂、ガラス等が好ましいが、液体を安定して保持できる限り、特に制限されない。 Container 2 is an empty sphere. The material is preferably stainless steel, resin, glass or the like, but is not particularly limited as long as the liquid can be stably held.
 液体3としては、シリコーン油等の蒸気圧の低い液体が使用される。 As the liquid 3, a liquid having a low vapor pressure such as silicone oil is used.
 容器2内の液体3の上部には、空気空間部4が形成されており、容器2が加震されたときに液体3に流動性を持たせている。 An air space portion 4 is formed above the liquid 3 in the container 2 so that the liquid 3 has fluidity when the container 2 is vibrated.
 圧電素子5´は、圧電素子5´のリード線5aに接続された状態で容器2の中心部に配置されている。リード線5aは、容器2の上部に形成された封止部7を通って回路部8に接続されている。なお、2aは貫通孔である。 The piezoelectric element 5 ′ is arranged at the center of the container 2 in a state of being connected to the lead wire 5 a of the piezoelectric element 5 ′. The lead wire 5 a is connected to the circuit unit 8 through the sealing unit 7 formed in the upper part of the container 2. 2a is a through hole.
 リード線5aの周囲には、流れ止め6が配置されている。流れ止め6は、所定の強度を有する中空管で形成され、内部にリード線5aが挿通され、容器2に封止部7により固定されている。封止部7は、球状の容器の材質に応じた材料を用いて封止がされている。例えば、容器が樹脂製あるいはステンレス製であれば、樹脂封止などが、ガラス製の容器であれば、ガラス封止などが採用される。 A flow stopper 6 is disposed around the lead wire 5a. The flow stopper 6 is formed of a hollow tube having a predetermined strength, the lead wire 5 a is inserted inside, and is fixed to the container 2 by the sealing portion 7. The sealing part 7 is sealed using a material corresponding to the material of the spherical container. For example, if the container is made of resin or stainless steel, resin sealing or the like is used. If the container is made of glass, glass sealing or the like is used.
 流れ止め6は、加震時に容器2が揺れた場合でも、圧電素子5´の位置が液体3の流体圧により移動しないようにしている。なお、強度のあるリード線5aを使用する場合は、流れ止め6は不要になる。 The flow stop 6 prevents the position of the piezoelectric element 5 ′ from moving due to the fluid pressure of the liquid 3 even when the container 2 is shaken during the vibration. When the lead wire 5a having strength is used, the flow stopper 6 is not necessary.
2.感震器の動作
 前記のように構成される感震器1の基本的な動作を説明する。
2. Operation of the seismic device The basic operation of the seismic device 1 configured as described above will be described.
 圧電素子5´には、常に液深に応じた一定の圧力が持続的に加わっている。 A constant pressure corresponding to the liquid depth is constantly applied to the piezoelectric element 5 ′.
加震時には、液体3が容器2の振動により流動するため、圧電素子5´に対して流動抵抗が発生する。この流動抵抗は微少な圧力差を生み、前記した液深に応じて一定の圧力が持続的に加わっている圧電素子に対して、微少な差圧が加えられ、圧力の変化が生じる。この圧力の変化は圧電素子より変位信号として取り出すことができる。 At the time of vibration, since the liquid 3 flows due to the vibration of the container 2, a flow resistance is generated with respect to the piezoelectric element 5 '. This flow resistance generates a slight pressure difference, and a slight pressure difference is applied to the piezoelectric element to which a constant pressure is continuously applied according to the liquid depth described above, resulting in a change in pressure. This change in pressure can be taken out as a displacement signal from the piezoelectric element.
 そして、この圧力の変化量を微分回路で検出し、増幅回路で増幅した後、さらに圧電素子5´は温度依存性があるため、温度補償回路で温度変化の誤差を修正し、圧力の変化を精度高く認識し、適宜、報知手段を通じて監視者に報知する。 Then, after detecting the amount of change in pressure with a differential circuit and amplifying it with an amplifier circuit, the piezoelectric element 5 ′ is further temperature-dependent, so the temperature compensation circuit corrects the temperature change error, and the pressure change is corrected. Recognize with high accuracy, and notify the supervisor appropriately through the notification means.
 高感度感圧素子としては、前記のように圧電素子を好ましく用いることができるが、圧電素子には限られず、圧力によって共振周波数が変化する水晶振動子なども好ましく用いることができる。 As the high-sensitivity pressure-sensitive element, a piezoelectric element can be preferably used as described above. However, the piezoelectric element is not limited to the piezoelectric element, and a quartz vibrator whose resonance frequency changes with pressure can also be preferably used.
 水晶振動子を用いる場合には、水晶振動子を振動させるための電流を流しておき、水晶振動子の共振周波数を検知しておくことになる。そして、加震時には、液体3の流動により水晶振動子に加震による圧力が加わるため、水晶のひずみに応じて共振周波数が変化する。このため、この変化量を回路部8で検出することにより加震されたことを認識することができる。この場合も、圧力の変化量を微分回路で検出し、増幅回路で増幅し、さらに圧電素子と同様、温度補償回路で温度変化の誤差を修正することにより、圧力の変化を精度高く認識することができる。 When a crystal resonator is used, a current for vibrating the crystal resonator is allowed to flow, and the resonance frequency of the crystal resonator is detected. At the time of vibration, since the pressure due to the vibration is applied to the quartz vibrator by the flow of the liquid 3, the resonance frequency changes according to the distortion of the quartz. For this reason, it can recognize that it was shaken by detecting this variation | change_quantity in the circuit part 8. FIG. Also in this case, the pressure change amount is detected by the differentiation circuit, amplified by the amplification circuit, and the temperature change error is corrected by the temperature compensation circuit in the same manner as the piezoelectric element, so that the pressure change can be recognized with high accuracy. Can do.
3.本実施の形態の効果
(1)本実施の形態においては、上部に空気空間部が設けられた球状の容器内の液体中に圧電素子のような高感度感圧素子を浸漬して、液体の流動による高感度感圧素子の圧力変化を利用する方式が採用されている。そして、加震時に感震器が揺れた場合でも、空気空間部は常に上方にあり、高感度感圧素子は常に液体中に浸漬されている。
3. Effects of this embodiment (1) In this embodiment, a highly sensitive pressure sensitive element such as a piezoelectric element is immersed in a liquid in a spherical container provided with an air space at the top, and the liquid A method that utilizes a pressure change of a high-sensitivity pressure-sensitive element due to flow is employed. And even if a shaker shakes at the time of an earthquake, the air space part is always above and the highly sensitive pressure sensitive element is always immersed in the liquid.
 このため、地震などによる揺れの方向に影響されず、常に正確な検知が可能となる。即ち、従来の機械型の感震器の場合、水平に設置した場合でも、揺れの方向が上下の場合と、左右の場合とで検知結果に差が出やすい。また、加速度センサ型の感震器の場合、設置時の水平依存性は比較的考慮しなくてもよいが、揺れ方向が上下の場合と、左右の場合とで検知結果に差が出やすい。しかし、本実施の形態においては、液体の流動による高感度感圧素子の圧力変化を利用する方式が採用されているため、揺れの方向に影響されず、常に正確な検知が可能となる。 Therefore, accurate detection is always possible without being affected by the direction of shaking caused by an earthquake or the like. That is, in the case of a conventional mechanical type seismic device, even if it is installed horizontally, the detection result tends to differ between the case where the direction of shaking is up and down and the case where it is left and right. In addition, in the case of an acceleration sensor type seismic device, the horizontal dependency at the time of installation does not need to be taken into consideration relatively, but the detection result tends to differ between when the shaking direction is up and down and when it is left and right. However, in the present embodiment, since a method using the pressure change of the high-sensitivity pressure-sensitive element due to the flow of liquid is adopted, accurate detection is always possible without being affected by the direction of shaking.
 さらに、容器が球状であるため、設置方向に拘わらず、正確な検知が可能になる。特に、高感度感圧素子が、球状の容器の球心近傍に配置されている場合には、揺れ方向に対する方向依存性が全くなくなるため、極めて正確な検知が可能となる。 Furthermore, since the container is spherical, accurate detection is possible regardless of the installation direction. In particular, when the high-sensitivity pressure-sensitive element is disposed in the vicinity of the spherical center of the spherical container, the direction dependency with respect to the shaking direction is completely eliminated, so that extremely accurate detection is possible.
 このように、本実施の形態の感震器には、設置の水平依存性だけでなく、揺れ方向に対する方向依存性が全くなくなるため、極めて正確な検知が可能となる。 As described above, the seismic device according to the present embodiment has not only the horizontal dependency of the installation but also the direction dependency with respect to the shaking direction, so that extremely accurate detection is possible.
(2)定常時と加震時の圧力変化が認識できるだけでよいため、高感度感圧素子からの信号は、微分回路、増幅回路、温度補償回路程度の簡単な回路で処理するだけで済み、消費電力が少なく100μW以下での動作可能となるため、乾電池で長時間動作が可能となる。 (2) Since it is only necessary to recognize the pressure change during steady state and shaking, the signal from the high-sensitivity pressure-sensitive element need only be processed by a simple circuit such as a differentiation circuit, amplification circuit, and temperature compensation circuit. Since the power consumption is low and the operation can be performed at 100 μW or less, the battery can be operated for a long time.
(3)機械式接点をなくす一方、容器内の液体に浸漬した高感度感圧素子により加震時の圧力変化を検知する単純な方式であるため、動作回数が半永久的になる。 (3) While the mechanical contact is eliminated, the number of operations is semi-permanent because it is a simple method of detecting a pressure change at the time of vibration by a highly sensitive pressure sensitive element immersed in the liquid in the container.
(4)前記の通り、高感度感圧素子を液体に浸漬させるだけの単純な構造であり、処理回路も単純な回路で済むため、安価であり、定常時と加震時の圧力変化を検知するだけであるため、加速度センサ型のような複雑な信号処理を必要としない。 (4) As mentioned above, it has a simple structure in which a high-sensitivity pressure-sensitive element is simply immersed in a liquid, and the processing circuit can be a simple circuit, so it is inexpensive and can detect pressure changes during steady-state and vibration. Therefore, complicated signal processing as in the acceleration sensor type is not required.
 このように本発明の実施の形態によれば、容器に、前記容器の一部に空気空間を残した状態で充填された液体と、前記液体に浸漬した状態で前記容器内に配置された地震などによる揺れに伴う前記容器内の液体の状態変化を検知する素子とを備えているため、地震などによる揺れの方向に影響されず、極めて正確な検知が可能となる。 As described above, according to the embodiment of the present invention, the container is filled with the liquid in a state where an air space is left in a part of the container, and the earthquake disposed in the container in a state immersed in the liquid. And an element for detecting a change in the state of the liquid in the container due to the shaking due to the above, and therefore, it is possible to perform extremely accurate detection without being affected by the direction of shaking due to an earthquake or the like.
 以上、本発明を実施の形態に基づいて説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることができる。 As mentioned above, although this invention was demonstrated based on embodiment, this invention is not limited to said embodiment. Various modifications can be made to the above-described embodiments within the same and equivalent scope as the present invention.
1        感震器
2        容器
2a       貫通孔
3        液体
4        空気空間部
5        サーミスタ
5´       圧電素子
5a       リード線
6        流れ止め
7        封止部
8        回路部
100      機械型の感震器
101      電気接点
102      鋼球
200      加速度センサ型の感震器
201      加速度センサ
202      センサドライバ・マイコン
DESCRIPTION OF SYMBOLS 1 Seismic device 2 Container 2a Through-hole 3 Liquid 4 Air space part 5 Thermistor 5 'Piezoelectric element 5a Lead wire 6 Flow stop 7 Sealing part 8 Circuit part 100 Mechanical type seismic device 101 Electric contact 102 Steel ball 200 Acceleration sensor Type seismic sensor 201 Acceleration sensor 202 Sensor driver / microcomputer

Claims (8)

  1.  球状の容器と、
     前記容器に、前記容器の一部に空気空間を残した状態で充填された液体と、
     前記液体に浸漬した状態で前記容器内に配置された高感度感温素子と
    を備えており、
     前記高感度感温素子の測定電流による自己発熱により、前記液体を加熱して前記高感度感温素子の周囲に高温域を形成し、
     加震時の前記液体の流動による前記高感度感温素子周囲の温度の低下を検知する
    ことを特徴とする感震器。
    A spherical container;
    A liquid filled in the container leaving an air space in a part of the container;
    A high-sensitivity thermosensitive element disposed in the container in a state immersed in the liquid,
    By self-heating by the measurement current of the high-sensitivity thermosensitive element, the liquid is heated to form a high-temperature region around the high-sensitivity thermosensitive element,
    A seismometer that detects a decrease in temperature around the high-sensitivity thermosensitive element due to the flow of the liquid during vibration.
  2.  前記高感度感温素子が、前記球状の容器の球心近傍に配置されている
    ことを特徴とする請求項1に記載の感震器。
    The seismic device according to claim 1, wherein the high-sensitivity temperature sensing element is disposed in the vicinity of a spherical center of the spherical container.
  3.  前記液体が、蒸気圧の低い液体である
    ことを特徴とする請求項1または請求項2に記載の感震器。
    The seismic device according to claim 1, wherein the liquid is a liquid having a low vapor pressure.
  4.  前記高感度感温素子の温度変化を認識する回路を備えている
    ことを特徴とする請求項1ないし請求項3のいずれか1項に記載の感震器。
    The seismic sensor according to any one of claims 1 to 3, further comprising a circuit for recognizing a temperature change of the high-sensitivity thermosensitive element.
  5.  球状の容器と、
     前記容器に、前記容器の一部に空気空間を残した状態で充填された液体と、
     前記液体に浸漬した状態で前記容器内に配置された高感度感圧素子と
    を備えており、
     加震時の前記液体の流動により前記高感度感圧素子に加わる圧力の変化を検知する
    ことを特徴とする感震器。
    A spherical container;
    A liquid filled in the container leaving an air space in a part of the container;
    A high-sensitivity pressure-sensitive element disposed in the container in a state immersed in the liquid,
    A seismometer that detects a change in pressure applied to the high-sensitivity pressure-sensitive element by the flow of the liquid during vibration.
  6.  前記高感度感圧素子が、前記球状の容器の球心近傍に配置されている
    ことを特徴とする請求項5に記載の感震器。
    The seismic sensor according to claim 5, wherein the high-sensitivity pressure-sensitive element is disposed in the vicinity of a spherical center of the spherical container.
  7.  前記液体が、蒸気圧の低い液体である
    ことを特徴とする請求項5または請求項6に記載の感震器。
    The seismic device according to claim 5 or 6, wherein the liquid is a liquid having a low vapor pressure.
  8.  前記高感度感圧素子に加わる圧力の変化を認識する回路を備えている
    ことを特徴とする請求項5ないし請求項7のいずれか1項に記載の感震器。
    The seismometer according to any one of claims 5 to 7, further comprising a circuit for recognizing a change in pressure applied to the high-sensitivity pressure-sensitive element.
PCT/JP2011/069683 2011-03-03 2011-08-31 Seismoscope WO2012117589A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011046628A JP4750910B1 (en) 2011-03-03 2011-03-03 Seismograph
JP2011-046628 2011-03-03
JP2011160778A JP5054837B1 (en) 2011-07-22 2011-07-22 Seismoscope
JP2011-160778 2011-07-22

Publications (1)

Publication Number Publication Date
WO2012117589A1 true WO2012117589A1 (en) 2012-09-07

Family

ID=46757543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069683 WO2012117589A1 (en) 2011-03-03 2011-08-31 Seismoscope

Country Status (1)

Country Link
WO (1) WO2012117589A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245930A (en) * 1986-04-18 1987-10-27 Toshiba Corp Monitoring device for transport vibration
JPH01239426A (en) * 1988-03-19 1989-09-25 Akashi Seisakusho Co Ltd Seismoscope
JPH0579896A (en) * 1991-09-24 1993-03-30 Idec Izumi Corp Earthquake sensor
JP2006105632A (en) * 2004-09-30 2006-04-20 Daiwa House Ind Co Ltd Seismoscope
JP2007187577A (en) * 2006-01-13 2007-07-26 Sharp Corp Vibration detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245930A (en) * 1986-04-18 1987-10-27 Toshiba Corp Monitoring device for transport vibration
JPH01239426A (en) * 1988-03-19 1989-09-25 Akashi Seisakusho Co Ltd Seismoscope
JPH0579896A (en) * 1991-09-24 1993-03-30 Idec Izumi Corp Earthquake sensor
JP2006105632A (en) * 2004-09-30 2006-04-20 Daiwa House Ind Co Ltd Seismoscope
JP2007187577A (en) * 2006-01-13 2007-07-26 Sharp Corp Vibration detector

Similar Documents

Publication Publication Date Title
JP5778619B2 (en) Pressure sensor
US8997582B2 (en) Method and apparatus for determining flow characteristics of a medium in a pipeline
TWI470227B (en) Fluid density measurement device
JP4316083B2 (en) Thermal flow meter with fluid discrimination function
US9513150B2 (en) Method for operating a coriolis mass flowmeter
KR101920832B1 (en) Verification of a meter sensor for a vibratory meter
Tang et al. An electrothermally excited dual beams silicon resonant pressure sensor with temperature compensation
US20230057869A1 (en) Resonant frequency-based magnetic sensor at veering zone and method
JP4750910B1 (en) Seismograph
JP5355278B2 (en) Calibration parameter determination method and density calculation method for vibration type density meter
US9423287B2 (en) Apparatus for determining at least one process variable
JP5473455B2 (en) Vibrating density meter
WO2012117589A1 (en) Seismoscope
US6079266A (en) Fluid-level measurement by dynamic excitation of a pressure- and fluid-load-sensitive diaphragm
US20150300864A1 (en) Liquid level sensor system
JP5054837B1 (en) Seismoscope
CN111044095A (en) Multifunctional sensing device for tank container
US20220011188A1 (en) Magnetically coupled pressure sensor
CN107014453B (en) Method for operating a coriolis mass flow measuring device and coriolis mass flow measuring device for this purpose
JPH0515975B2 (en)
CN210166258U (en) Magnetic fluid thermal expansion coefficient measuring system
CN208818255U (en) A kind of multifunctional sensing device for tank container
CN110208132B (en) Magnetic fluid thermal expansion coefficient measurement system and method
JP5295028B2 (en) Vibrating density meter
SU612160A1 (en) Vibration-type viscosimeter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860081

Country of ref document: EP

Kind code of ref document: A1