WO2012117569A1 - Laser processing device - Google Patents

Laser processing device Download PDF

Info

Publication number
WO2012117569A1
WO2012117569A1 PCT/JP2011/056290 JP2011056290W WO2012117569A1 WO 2012117569 A1 WO2012117569 A1 WO 2012117569A1 JP 2011056290 W JP2011056290 W JP 2011056290W WO 2012117569 A1 WO2012117569 A1 WO 2012117569A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
laser
laser light
lens
core
Prior art date
Application number
PCT/JP2011/056290
Other languages
French (fr)
Japanese (ja)
Inventor
泰成 波多
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2012117569A1 publication Critical patent/WO2012117569A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0732Shaping the laser spot into a rectangular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0994Fibers, light pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping

Definitions

  • the present invention relates to a laser processing apparatus, and more particularly, to a laser processing apparatus that transmits laser light using an optical fiber.
  • an optical fiber is used to transmit laser light emitted from a laser oscillator to a processing optical system (see, for example, Patent Document 1).
  • the optical fiber can enter a stronger laser beam as the cross-sectional area of the core increases.
  • the price of an optical fiber increases as the cross-sectional area of the core increases. Therefore, in order to increase the intensity of the laser beam and increase the processing energy, it is necessary to increase the cross-sectional area of the core of the optical fiber, which increases the necessary cost.
  • the optical fiber deteriorates due to repeated bending and stretching as the processing unit equipped with the processing optical system moves, it needs to be replaced periodically. Therefore, the more expensive the optical fiber, the higher the running cost of the laser processing apparatus.
  • the present invention has been made in view of such a situation, and makes it possible to reduce the cross-sectional area of the core of an optical fiber for transmitting laser light of a laser processing apparatus.
  • a laser processing apparatus includes a beam shaper that shapes the intensity distribution of laser light emitted from a laser oscillator substantially uniformly, a lens that condenses the laser light emitted from the beam shaper, and a lens. And a first optical fiber that transmits the incident laser light to the processing optical system.
  • the intensity distribution of the laser light emitted from the laser oscillator is shaped almost uniformly by the beam shaper, and the laser light emitted from the beam shaper is condensed by the lens and condensed by the lens.
  • the laser beam thus transmitted is transmitted to the processing optical system by the first optical fiber.
  • the peak intensity of the laser light incident on the first optical fiber for transmission can be reduced, and as a result, the cross-sectional area of the core of the first optical fiber can be reduced.
  • This beam shaper includes, for example, various beam shapers such as an optical fiber, a homogenizer, and a cylindrical lens.
  • This beam shaper can be composed of a second optical fiber, where the core diameter of the first optical fiber is ⁇ 1, the numerical aperture is NA1, the core diameter of the second optical fiber is ⁇ 2, and the numerical aperture is NA2.
  • ⁇ 2> ⁇ 1 and NA2 ⁇ NA1 ⁇ ( ⁇ 1 / ⁇ 2) can be satisfied.
  • This beam shaper can be constituted by a second optical fiber in which a rod lens is attached to an end face on the side on which laser light is incident.
  • the cross sections of the cores of the first optical fiber and the second optical fiber can be rectangular.
  • the processing time can be shortened.
  • the cross-sectional area of the core of the optical fiber for laser beam transmission of the laser processing apparatus can be reduced.
  • Embodiment 2 modes for carrying out the present invention (hereinafter referred to as embodiments) will be described. The description will be given in the following order. 1. Embodiment 2. FIG. Modified example
  • FIG. 1 shows a configuration example of an optical system of a laser processing apparatus 101 to which the present invention is applied.
  • the laser processing apparatus 101 is an apparatus for processing the processing object 102 using laser light.
  • the workpiece 102 is not particularly limited, and is, for example, a thin film solar cell panel or a display panel.
  • the laser processing apparatus 101 includes a laser oscillator 111, total reflection mirrors 112 and 113, a condensing lens 114, an optical fiber 115, a collimator lens 116, total reflection mirrors 117 and 118, a condensing lens 119, an optical fiber 120, a collimator lens 121, An imaging lens 124, scan mirrors 125a and 125b, and an f ⁇ lens 126 are included.
  • the laser oscillator 111 is composed of a laser oscillator that emits pulsed laser light.
  • the laser oscillator 111 is not limited to a specific type, and an arbitrary type can be adopted.
  • the laser light emitted from the laser oscillator 111 is reflected by the total reflection mirror 112 and the total reflection mirror 113, then collected by the condenser lens 114, and enters the optical fiber 115.
  • the optical fiber 115 is formed of a square optical fiber having a square cross section, and is used for laser beam shaping. Specifically, the optical fiber 115 shapes the cross-sectional shape of the incident laser light into a square and emits it after making the intensity distribution substantially uniform.
  • the laser light emitted from the optical fiber 115 is collimated by the collimator lens 116, reflected by the total reflection mirror 117 and the total reflection mirror 117, condensed by the condenser lens 119, and then incident on the optical fiber 120.
  • the optical fiber 120 is composed of a square optical fiber having a square cross section, and is used for transmitting laser light. That is, the optical fiber 120 transmits the incident laser light to a processing optical system including the collimator lens 121 to the f ⁇ lens 126.
  • the laser light emitted from the optical fiber 120 is collimated by the collimator lens 121, passes through the imaging lens 122, and enters the slit 123.
  • the slit 123 has a square opening, and limits the cross section of the laser beam to the shape of the opening.
  • the laser light that has passed through the slit 123 passes through the imaging lens 124, is reflected in the direction of the f ⁇ lens 126 by the scan mirrors 125a and 125b, passes through the f ⁇ lens 126, and forms an image on the processing surface of the workpiece 102. . Further, the scan mirrors 125 a and 125 b and the f ⁇ lens 126 scan the imaging position of the laser beam on the processing surface of the processing object 102, that is, the processing position.
  • the cross section of the laser light into a square and irradiating the processing object 102, for example, when scanning the laser light on the processing surface as compared with the laser light having a circular or elliptical cross section,
  • the area where the adjacent light spots overlap can be reduced.
  • the processing time can be shortened.
  • FIG. 2 schematically illustrates an external configuration example of the laser processing apparatus 101. However, in FIG. 2, the components corresponding to the laser oscillator 111 to the condenser lens 119 in FIG. 1 are not shown.
  • the laser processing apparatus 101 is configured to include a surface plate 151, a holder 152, a gantry 153, a processing unit 154, a wiring member 155, a holder 156, and cable bears 157a to 157d.
  • the direction that is horizontal to the upper surface of the surface plate 151 (the upper surface of the holder 152) and the gantry 153 extends is defined as the X-axis direction.
  • a direction that is horizontal to the upper surface of the surface plate 151 (the upper surface of the holder 152) and perpendicular to the X axis is defined as the Y-axis direction.
  • a direction (vertical direction of the laser processing apparatus 101) perpendicular to the X axis and the Y axis is defined as a Z axis direction.
  • the side whose side is visible in the figure is the right side of the laser processing apparatus 101, and the opposite side is the left side.
  • the side where the gantry 153 is located in the figure is the rear side of the laser processing apparatus 101, and the opposite side is the front side.
  • a holder 152 is installed on the upper surface of the surface plate 151, and the workpiece 102 is placed on the upper surface of the holder 152.
  • a guide 151A1 and a guide 151A2 are provided on both the left and right sides of the holder 152 so as to extend in the Y-axis direction.
  • the gantry 153 is installed on the guides 151A1 and 151A2 so that the beam (beam) extends in the X-axis direction, and can move in the Y-axis direction according to the guides 151A1 and 151A2.
  • a guide 153A is provided on the upper surface of the gantry 153 so as to extend in the X-axis direction.
  • the processing unit 154 includes a collimator lens 121 to an f ⁇ lens 126 and is a unit for emitting a laser beam and processing the workpiece 102.
  • the processing unit 154 is supported on the beam of the gantry 153 so as to be movable in the X-axis direction according to the guide 153A. Further, the machining unit 154 moves in the Y axis direction together with the gantry 153.
  • the wiring member 155 is a member for wiring the optical fiber 120 and the like, and is attached to the right side of the gantry 153.
  • the holder 156 is attached to the rear side of the gantry 153, and the cable bears 157c and 157d are installed thereon.
  • the cable bears 157a and 157b are provided for wiring of the optical fiber 120 and the like, and are arranged on the right side of the surface plate 151 so as to extend in the Y-axis direction and be folded up and down.
  • the upper ends of the cable carriers 157a and 157b are attached to the wiring member 155, and the lower end is fixed to a predetermined position on the right side of the surface plate 151. Therefore, as the gantry 153 moves in the Y-axis direction, the upper ends of the cable bears 157a and 157b move in the Y-axis direction, and the bent positions of the cable bears 157a and 157b move in the Y-axis direction.
  • the cable bears 157c and 157d are arranged on the upper surface of the holder 156 so as to extend in the X-axis direction and be folded up and down.
  • the upper ends of the cable bears 157 c and 157 d are attached to a part of the processing unit 154, and the lower end is fixed at a predetermined position of the holder 156. Accordingly, as the processing unit 154 moves in the X-axis direction, the upper ends of the cable bears 157c and 157d move in the X-axis direction, and the bending positions of the cable bears 157c and 157d move in the X-axis direction.
  • the optical fiber 120 is connected to the processing unit 154 through one of the cable bear 157a and the cable bear 157b, the wiring member 155, and the cable bear 157c and the cable bear 157d. Yes. Accordingly, as the position where the cable bearers 157a to 157d bend moves as the machining unit 154 moves in the X-axis direction and the gantry 153 moves in the Y-axis direction, the position where the optical fiber 120 bends also moves. As a result, the optical fiber 120 is deteriorated by being repeatedly bent or stretched, and therefore needs to be periodically replaced.
  • FIG. 3 shows an example of the beam profile and cross section of the laser beam on the entrance surface 115A and the exit surface 115B of the core of the optical fiber 115.
  • the left side shows a beam profile and a cross section of laser light (that is, laser light before entering the optical fiber 115) on the incident surface 115A.
  • the right side shows a beam profile and a cross section of laser light (that is, laser light after being emitted from the optical fiber 115) on the emission surface 115B.
  • the pre-incidence laser light has a circular cross section and an intensity distribution that follows a Gaussian distribution.
  • the emitted laser light has a top-hat type distribution with a substantially square cross section and a substantially uniform intensity distribution. Further, since the intensity distribution is made uniform, the peak intensity of the laser beam is lowered and the power density peak of the laser beam is lowered as compared with that before the incidence.
  • the material forming the core of the optical fiber burns out at the interface with air when the power density of the incident laser light exceeds a predetermined rated value (hereinafter referred to as the rated power density). There is a fear.
  • the laser light incident on the optical fiber 120 in a range where the power density of the laser light incident on the core of the optical fiber 120 is equal to or lower than the rated power density.
  • the peak intensity can be increased by reducing the cross-sectional area. Therefore, the cross-sectional area of the core of the optical fiber 120 can be made smaller than the cross-sectional area of the core of the optical fiber 115 (that is, the cross-sectional area of the core of the optical fiber 120 required when the optical fiber 115 is not provided). As a result, the cost of the optical fiber 120 can be reduced.
  • the core diameter ⁇ a and the numerical aperture NAa of the optical fiber 115 and the core diameter ⁇ b and the numerical aperture NAb of the optical fiber 120 may be set so as to satisfy the following expression (1).
  • the core diameter on the emission side can be calculated as the diameter of a rectangular circumscribed circle
  • the core diameter on the incident side can be calculated as the diameter of a rectangular inner circle.
  • the conditions that the core diameter ⁇ a and the numerical aperture NAa of the optical fiber 115 and the core diameter ⁇ b and the numerical aperture NAb of the optical fiber 120 should satisfy are expressed by the following equations (2) and (3 )
  • the core diameter ⁇ a of the optical fiber 115 is set to be twice the core diameter ⁇ b of the optical fiber 120, and the numerical aperture NAa of the optical fiber 115 is set to 1 ⁇ 2 of the numerical aperture NAb of the optical fiber 120.
  • the focal length of the condenser lens 114 and the condenser lens 119 is set to the same value, and the focal length of the collimator lens 116 is set to twice that of the condenser lens 114 and the condenser lens 119.
  • the optical fiber 115 is at least long enough to perform laser beam shaping, that is, the cross-sectional shape of the laser light is square, and is long enough to make the intensity distribution uniform. I just need it. Therefore, the optical fiber 115 can be made sufficiently shorter than the optical fiber 120, although it depends on the specifications such as the wiring path of the optical fiber 120.
  • the laser processing apparatus 101 can reduce the cross-sectional area of the core of the optical fiber 120 with respect to laser light having the same intensity as compared with the case where the optical fiber 115 is not used.
  • the optical fiber 115 is sufficiently shorter than the optical fiber 120, and is not bent or stretched like the optical fiber 120, so that there is no need for periodic replacement. Further, the optical fiber 115 is less expensive than a beam shaper such as a homogenizer or a cylindrical lens. Therefore, the cost increase due to the provision of the optical fiber 115 is smaller than the cost reduction of the optical fiber 120 described above.
  • an optical fiber 171 with a rod lens shown in FIG. 4 may be used instead of the optical fiber 115.
  • the optical fiber 171 with a rod lens is obtained by fusing a cylindrical rod lens 182 to the incident end surface of an optical fiber 181 having a square cross section similar to the optical fiber 115 and the optical fiber 120.
  • the rated power density of a material (for example, quartz glass) forming the core 181A, the clad 181B, and the rod lens 182 of the optical fiber 181 is 1.0 MW / mm 2 .
  • the core diameter of the optical fiber 181 is 0.35 mm, and the diameter of the cross section of the rod lens 182 is 0.64 mm.
  • the laser light incident on the rod lens 182 is condensed so that the radius of the cross section is 0.35 mm or less, and is incident on the core 181A of the optical fiber 181.
  • the fused surface between the core 181A of the optical fiber 181 and the rod lens 182 does not come into contact with air, and therefore has substantially the same durability as the inside of the material of the core 181A and the rod lens 182. Therefore, there is no fear that the fused surface of the core 181A and the rod lens 182 will be burned out by the laser beam.
  • an optical fiber having the same core diameter and numerical aperture as that of the optical fiber 120 can be used for the optical fiber 181.
  • the cross-sectional area of the core of the optical fiber 181 can be reduced as compared with the case where the optical fiber 115 is used. Further, since the cross-sectional area of the core of the optical fiber 181 is reduced, the distance necessary for beam shaping of the laser light is shortened, and the entire length of the optical fiber 171 with a rod lens can be shortened.
  • an optical fiber with a rod lens may be used as the optical fiber 120 without providing an optical fiber for beam shaping (the optical fiber 115 or the optical fiber with a rod lens 171). That is, as described above, the optical fiber with a rod lens can enter a stronger laser beam than an optical fiber without a rod lens having the same cross-sectional area of the core. Therefore, by using an optical fiber with a rod lens for the optical fiber 120, the cross-sectional area of the core of the optical fiber 120 can be reduced without providing an optical fiber for beam shaping.
  • the cross section of the core of each optical fiber can be any shape other than a square.
  • it can be a rectangle other than a square, or a circle or an ellipse.
  • it is desirable to match the shape of the cross section of the core of the optical fiber for beam shaping (the optical fiber 151 or the optical fiber 171 with the rod lens) and the optical fiber 120 for transmission.
  • the cross-sectional shape of the core of the optical fiber 115 is a rectangle having a ratio of the length of the long side to the short side of 2: 1
  • the cross-sectional shape of the core of the optical fiber 120 is also the long side and the short side. It is desirable to use a rectangle with a length ratio of 2: 1.
  • Modification 5 Furthermore, in the present invention, as described above, the cost reduction effect of the transmission optical fiber 120 is great. Accordingly, the longer the transmission optical fiber 120, the greater the effect of the present invention. Further, for example, as shown in FIG. 5, when the laser light is branched and the laser light is transmitted by a plurality of optical fibers, the effect of the present invention increases as the number of optical fibers for transmission increases.
  • FIG. 5 shows a configuration example of the optical system of the laser processing apparatus 201 provided with a branching optical system for branching the laser light into six at the subsequent stage of the collimator lens 116 of the laser processing apparatus 101 of FIG.
  • parts corresponding to those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted as appropriate. Further, in this drawing, the illustration of the processing optical system is omitted.
  • the laser processing apparatus 201 includes a laser oscillator 111, a condensing lens 114, an optical fiber 115, a collimator lens 116, a partial mirror 211, a total reflection mirror 212, and branching optical systems 213a to 215b. .
  • the branching optical system 213a is configured to include a partial mirror 221a, a mechanical shutter 222a, a rotary attenuator 223a, a power splitter 224a, a condenser lens 225a, an optical fiber 226a, and a power monitor 227a.
  • the branch optical system 213b has the same configuration as the branch optical system 213a.
  • symbol of each component of the branch optical system 213b replaced the code
  • the branching optical system 214a is configured to include a partial mirror 231a, a mechanical shutter 232a, a rotary attenuator 233a, a power splitter 234a, a condenser lens 235a, an optical fiber 236a, and a power monitor 237a.
  • the mechanical shutter 232a to power monitor 237a are the same as the mechanical shutter 222a to power monitor 227a of the branch optical system 213a.
  • the branch optical system 214b has the same configuration as the branch optical system 214a.
  • symbol of each component of the branch optical system 214b replaces the code
  • the branching optical system 215a is configured to include a total reflection mirror 241a, a mechanical shutter 242a, a rotor attenuator 243a, a power splitter 244a, a condenser lens 245a, an optical fiber 246a, and a power monitor 247a.
  • the mechanical shutter 242a to power monitor 247a are the same as the mechanical shutter 222a to power monitor 227a of the branch optical system 213a.
  • the branching optical system 215b has the same configuration as the branching optical system 215a.
  • symbol of each component of the branch optical system 215b replaces the code
  • the partial mirrors 211, 231a, and 231b have a transmittance of 50% and a reflectance of 50%, and the partial mirrors 221a and 221b have a transmittance of 33% and a reflectance of 67%. It is done.
  • the laser light emitted from the optical fiber 115 and transmitted through the collimator lens 116 is branched into two by the partial mirror 211.
  • the laser beam reflected by the partial mirror 211 is reflected by the total reflection mirror 212 and branched into two by the partial mirror 221a of the branching optical system 213a.
  • the laser light reflected by the partial mirror 221a is attenuated by the rotary attenuator 223a, partially reflected by the power splitter 224a, and the rest is transmitted.
  • the laser light transmitted through the power splitter 224a is collected by the condenser lens 225a, enters the optical fiber 226a, and is transmitted to the corresponding processing optical system by the optical fiber 226a.
  • the laser beam reflected by the power splitter 224a is incident on the power monitor 227a, and its intensity is detected.
  • the power monitor 227a transmits a signal indicating the intensity of the detected laser light to the subsequent stage.
  • the laser beam transmitted through the partial mirror 221a is branched into two by the partial mirror 231a of the branching optical system 214a.
  • the laser light reflected by the partial mirror 231a behaves in the same manner as the laser light reflected by the partial mirror 221a of the branching optical system 213a and enters the optical fiber 236a and the power monitor 237a.
  • the laser light incident on the optical fiber 236a is transmitted to the corresponding processing optical system through the optical fiber 236a.
  • the laser light transmitted through the partial mirror 231a is reflected by the total reflection mirror 241a of the branching optical system 215a, behaves in the same manner as the laser light reflected by the partial mirror 221a of the branching optical system 213a, and the optical fiber 246b. And enters the power monitor 247a.
  • the laser light incident on the optical fiber 246a is transmitted to the corresponding processing optical system through the optical fiber 246a.
  • the laser light transmitted through the partial mirror 211 is branched into three, similarly to the laser light reflected by the total reflection mirror 212, and is incident on the branch optical system 213b, the branch optical system 214b, and the branch optical system 215b, respectively. To do. Then, the optical fiber 226b, the optical fiber 236b, and the optical fiber 246b are transmitted to the corresponding processing optical systems.
  • the laser light emitted from the laser oscillator 111 is branched into six and transmitted to the six processing optical systems through different optical fibers. Therefore, it is possible to perform a maximum of 6 processing simultaneously by the 6 processing optical systems.
  • the mechanical shutters 222a to 224b can be used to individually stop the emission of the laser light from each branching optical system, and the number of places for processing can be adjusted at the same time.
  • the laser light with a uniform intensity distribution is compared with the case where the laser light is incident on a bundle fiber composed of a plurality of optical fibers. Loss of laser light at the time of branching can be suppressed.
  • the number of branches of the laser light described above is an example, and can be set to an arbitrary number.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

In order to reduce the cross-sectional area of the core of an optical fiber used to transmit laser light, the intensity distribution of the laser light emitted from a laser oscillator (111) is shaped by the optical fiber (115) so as to be virtually uniform. The laser light emitted from the optical fiber (115) is focused by a focus lens (119) and introduced into an optical fiber (120). The laser light entering the optical fiber (120) is transmitted to a processing optical system comprising a collimator lens (121) through an fθ lens (126). The present invention can be applied to a laser processing device, for example.

Description

レーザ加工装置Laser processing equipment
 本発明は、レーザ加工装置に関し、特に、光ファイバを用いてレーザ光を伝送するレーザ加工装置に関する。 The present invention relates to a laser processing apparatus, and more particularly, to a laser processing apparatus that transmits laser light using an optical fiber.
 従来、レーザ加工装置において、レーザ発振器から出射されたレーザ光を加工光学系に伝送するために、光ファイバが用いられている(例えば、特許文献1参照)。 Conventionally, in a laser processing apparatus, an optical fiber is used to transmit laser light emitted from a laser oscillator to a processing optical system (see, for example, Patent Document 1).
特開2002-16269号公報Japanese Patent Laid-Open No. 2002-16269
 光ファイバは、コアの断面積が大きくなるほど、より強いレーザ光を入射することができる。一方、光ファイバの価格は、コアの断面積が大きくなるほど高くなる。従って、レーザ光の強度を上げ、加工エネルギーを大きくするためには、光ファイバのコアの断面積を大きくする必要があり、必要なコストが上昇する。 The optical fiber can enter a stronger laser beam as the cross-sectional area of the core increases. On the other hand, the price of an optical fiber increases as the cross-sectional area of the core increases. Therefore, in order to increase the intensity of the laser beam and increase the processing energy, it is necessary to increase the cross-sectional area of the core of the optical fiber, which increases the necessary cost.
 また、光ファイバは、加工光学系を備える加工ユニットの移動に伴い、繰り返し曲げたり伸ばしたりされて劣化するため、定期的に交換する必要がある。従って、光ファイバが高価になるほど、レーザ加工装置のランニングコストが上昇する。 Also, since the optical fiber deteriorates due to repeated bending and stretching as the processing unit equipped with the processing optical system moves, it needs to be replaced periodically. Therefore, the more expensive the optical fiber, the higher the running cost of the laser processing apparatus.
 本発明は、このような状況に鑑みてなされたものであり、レーザ加工装置のレーザ光の伝送用の光ファイバのコアの断面積を小さくできるようにするものである。 The present invention has been made in view of such a situation, and makes it possible to reduce the cross-sectional area of the core of an optical fiber for transmitting laser light of a laser processing apparatus.
 本発明の一側面のレーザ加工装置は、レーザ発振器から出射されたレーザ光の強度分布をほぼ均一に整形するビーム整形器と、ビーム整形器から出射されたレーザ光を集光するレンズと、レンズにより集光されたレーザ光が入射され、入射されたレーザ光を加工光学系に伝送する第1の光ファイバとを備える。 A laser processing apparatus according to one aspect of the present invention includes a beam shaper that shapes the intensity distribution of laser light emitted from a laser oscillator substantially uniformly, a lens that condenses the laser light emitted from the beam shaper, and a lens. And a first optical fiber that transmits the incident laser light to the processing optical system.
 本発明の一側面においては、レーザ発振器から出射されたレーザ光の強度分布がビーム整形器によりほぼ均一に整形され、ビーム整形器から出射されたレーザ光がレンズにより集光され、レンズにより集光されたレーザ光が第1の光ファイバにより加工光学系に伝送される。 In one aspect of the present invention, the intensity distribution of the laser light emitted from the laser oscillator is shaped almost uniformly by the beam shaper, and the laser light emitted from the beam shaper is condensed by the lens and condensed by the lens. The laser beam thus transmitted is transmitted to the processing optical system by the first optical fiber.
 従って、伝送用の第1の光ファイバに入射するレーザ光のピーク強度を下げることができ、その結果、第1の光ファイバのコアの断面積を小さくすることができる。 Therefore, the peak intensity of the laser light incident on the first optical fiber for transmission can be reduced, and as a result, the cross-sectional area of the core of the first optical fiber can be reduced.
 このビーム整形器は、例えば、光ファイバ、ホモジナイザ、シリンドリカルレンズ等の各種のビーム整形器により構成される。 This beam shaper includes, for example, various beam shapers such as an optical fiber, a homogenizer, and a cylindrical lens.
 このビーム整形器は、第2の光ファイバにより構成することができ、第1の光ファイバのコア径をφ1、開口数をNA1とし、第2の光ファイバのコア径をφ2、開口数をNA2とした場合、φ2>φ1、NA2≦NA1×(φ1/φ2)を満たすようにすることができる。 This beam shaper can be composed of a second optical fiber, where the core diameter of the first optical fiber is φ1, the numerical aperture is NA1, the core diameter of the second optical fiber is φ2, and the numerical aperture is NA2. In this case, φ2> φ1 and NA2 ≦ NA1 × (φ1 / φ2) can be satisfied.
 これにより、ビーム整形器を安価に実現することができる。 This makes it possible to realize a beam shaper at a low cost.
 このビーム整形器は、レーザ光が入射される側の端面にロッドレンズが取り付けられている第2の光ファイバにより構成することができる。 This beam shaper can be constituted by a second optical fiber in which a rod lens is attached to an end face on the side on which laser light is incident.
 これにより、ビーム整形器として用いる第2の光ファイバのコアの断面積を小さくすることができる。 Thereby, the cross-sectional area of the core of the second optical fiber used as the beam shaper can be reduced.
 この第1の光ファイバおよび第2の光ファイバのコアの断面を矩形にすることができる。 The cross sections of the cores of the first optical fiber and the second optical fiber can be rectangular.
 これにより、加工面上でレーザ光を走査するときに、隣接する光スポットを重ねる面積を小さくすることができ、その結果、加工時間を短縮することができる。 Thereby, when the laser beam is scanned on the processing surface, the area where the adjacent light spots are overlapped can be reduced, and as a result, the processing time can be shortened.
 本発明の一側面によれば、レーザ加工装置のレーザ光の伝送用の光ファイバのコアの断面積を小さくすることができる。 According to one aspect of the present invention, the cross-sectional area of the core of the optical fiber for laser beam transmission of the laser processing apparatus can be reduced.
本発明を適用したレーザ加工装置の光学系の構成例を示す図である。It is a figure which shows the structural example of the optical system of the laser processing apparatus to which this invention is applied. 本発明を適用したレーザ加工装置の外観の構成例を示す図である。It is a figure which shows the structural example of the external appearance of the laser processing apparatus to which this invention is applied. ビーム整形用の光ファイバへの入射前と出射後のレーザ光のビームプロファイルと断面の形状を示す図である。It is a figure which shows the beam profile and cross-sectional shape of the laser beam before injecting into the optical fiber for beam shaping, and after emission. ビーム整形用の光ファイバの変形例を示す図である。It is a figure which shows the modification of the optical fiber for beam shaping. 本発明を適用したレーザ加工装置の光学系の変形例を示す図である。It is a figure which shows the modification of the optical system of the laser processing apparatus to which this invention is applied.
 以下、本発明を実施するための形態(以下、実施の形態という)について説明する。なお、説明は以下の順序で行う。
1.実施の形態
2.変形例
Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described. The description will be given in the following order.
1. Embodiment 2. FIG. Modified example
 図1は、本発明を適用したレーザ加工装置101の光学系の構成例を示している。 FIG. 1 shows a configuration example of an optical system of a laser processing apparatus 101 to which the present invention is applied.
 レーザ加工装置101は、レーザ光を用いて、加工対象物102の加工を行う装置である。なお、加工対象物102は、特に限定されるものではなく、例えば、薄膜太陽電池パネル、ディスプレイパネル等である。 The laser processing apparatus 101 is an apparatus for processing the processing object 102 using laser light. The workpiece 102 is not particularly limited, and is, for example, a thin film solar cell panel or a display panel.
 レーザ加工装置101は、レーザ発振器111、全反射ミラー112,113、集光レンズ114、光ファイバ115、コリメータレンズ116、全反射ミラー117,118、集光レンズ119、光ファイバ120、コリメータレンズ121、結像レンズ124、スキャンミラー125a,125b、および、fθレンズ126を含む。 The laser processing apparatus 101 includes a laser oscillator 111, total reflection mirrors 112 and 113, a condensing lens 114, an optical fiber 115, a collimator lens 116, total reflection mirrors 117 and 118, a condensing lens 119, an optical fiber 120, a collimator lens 121, An imaging lens 124, scan mirrors 125a and 125b, and an fθ lens 126 are included.
 レーザ発振器111は、パルス状のレーザ光を出射するレーザ発振器により構成される。なお、レーザ発振器111は、特定の方式のものに限定されるものではなく、任意の方式のものを採用することが可能である。 The laser oscillator 111 is composed of a laser oscillator that emits pulsed laser light. The laser oscillator 111 is not limited to a specific type, and an arbitrary type can be adopted.
 レーザ発振器111から出射されたレーザ光は、全反射ミラー112および全反射ミラー113により反射された後、集光レンズ114により集光されて、光ファイバ115に入射する。 The laser light emitted from the laser oscillator 111 is reflected by the total reflection mirror 112 and the total reflection mirror 113, then collected by the condenser lens 114, and enters the optical fiber 115.
 光ファイバ115は、コアの断面が正方形の角形光ファイバにより構成され、レーザ光のビーム整形用として用いられる。具体的には、光ファイバ115は、入射したレーザ光の断面の形状を正方形に整形し、かつ、強度分布をほぼ均一にしてから出射する。 The optical fiber 115 is formed of a square optical fiber having a square cross section, and is used for laser beam shaping. Specifically, the optical fiber 115 shapes the cross-sectional shape of the incident laser light into a square and emits it after making the intensity distribution substantially uniform.
 光ファイバ115から出射されたレーザ光は、コリメータレンズ116によりコリメートされ、全反射ミラー117および全反射ミラー117により反射された後、集光レンズ119により集光されて、光ファイバ120に入射する。 The laser light emitted from the optical fiber 115 is collimated by the collimator lens 116, reflected by the total reflection mirror 117 and the total reflection mirror 117, condensed by the condenser lens 119, and then incident on the optical fiber 120.
 光ファイバ120は、光ファイバ115と同様に、コアの断面が正方形の角形光ファイバにより構成され、レーザ光の伝送用として用いられる。すなわち、光ファイバ120は、入射されたレーザ光を、コリメータレンズ121乃至fθレンズ126からなる加工光学系に伝送する。 As with the optical fiber 115, the optical fiber 120 is composed of a square optical fiber having a square cross section, and is used for transmitting laser light. That is, the optical fiber 120 transmits the incident laser light to a processing optical system including the collimator lens 121 to the fθ lens 126.
 光ファイバ120から出射されたレーザ光は、コリメータレンズ121によりコリメートされ、結像レンズ122を透過し、スリット123に入射する。スリット123は、正方形の開口部を有しており、レーザ光の断面を開口部の形状に制限する。 The laser light emitted from the optical fiber 120 is collimated by the collimator lens 121, passes through the imaging lens 122, and enters the slit 123. The slit 123 has a square opening, and limits the cross section of the laser beam to the shape of the opening.
 スリット123を通過したレーザ光は、結像レンズ124を透過し、スキャンミラー125a,125bによりfθレンズ126の方向に反射され、fθレンズ126を透過し、加工対象物102の加工面において結像する。また、スキャンミラー125a,125bおよびfθレンズ126により、加工対象物102の加工面におけるレーザ光の結像位置、すなわち加工位置が走査される。 The laser light that has passed through the slit 123 passes through the imaging lens 124, is reflected in the direction of the fθ lens 126 by the scan mirrors 125a and 125b, passes through the fθ lens 126, and forms an image on the processing surface of the workpiece 102. . Further, the scan mirrors 125 a and 125 b and the fθ lens 126 scan the imaging position of the laser beam on the processing surface of the processing object 102, that is, the processing position.
 なお、レーザ光の断面を正方形に整形して加工対象物102に照射することにより、例えば、断面が円形や楕円形のレーザ光と比較して、加工面上でレーザ光を走査するときに、隣接する光スポットを重ねる面積を小さくすることができる。その結果、加工時間を短縮することができる。 In addition, by shaping the cross section of the laser light into a square and irradiating the processing object 102, for example, when scanning the laser light on the processing surface as compared with the laser light having a circular or elliptical cross section, The area where the adjacent light spots overlap can be reduced. As a result, the processing time can be shortened.
[レーザ加工装置101の外観構成例]
 図2は、レーザ加工装置101の外観の構成例を模式的に示している。ただし、図2では、図1のレーザ発振器111から集光レンズ119までに対応する構成部分は図示していない。
[External configuration example of laser processing apparatus 101]
FIG. 2 schematically illustrates an external configuration example of the laser processing apparatus 101. However, in FIG. 2, the components corresponding to the laser oscillator 111 to the condenser lens 119 in FIG. 1 are not shown.
 レーザ加工装置101は、定盤151、ホルダ152、ガントリ153、加工ユニット154、配線用部材155、ホルダ156、および、ケーブルベア157a乃至157dを含むように構成される。 The laser processing apparatus 101 is configured to include a surface plate 151, a holder 152, a gantry 153, a processing unit 154, a wiring member 155, a holder 156, and cable bears 157a to 157d.
 なお、以下、定盤151の上面(ホルダ152の上面)に対して水平、かつ、ガントリ153が延伸する方向(レーザ加工装置101の左右方向)をX軸方向とする。また、以下、定盤151の上面(ホルダ152の上面)に対して水平、かつ、X軸に直交する方向(レーザ加工装置101の前後方向)をY軸方向とする。さらに、以下、X軸およびY軸に直交する方向(レーザ加工装置101の上下方向)をZ軸方向とする。 In the following, the direction that is horizontal to the upper surface of the surface plate 151 (the upper surface of the holder 152) and the gantry 153 extends (the left-right direction of the laser processing apparatus 101) is defined as the X-axis direction. In the following description, a direction that is horizontal to the upper surface of the surface plate 151 (the upper surface of the holder 152) and perpendicular to the X axis (the front-rear direction of the laser processing apparatus 101) is defined as the Y-axis direction. Further, hereinafter, a direction (vertical direction of the laser processing apparatus 101) perpendicular to the X axis and the Y axis is defined as a Z axis direction.
 なお、以下、X軸方向において、図内で側面が手前側に見えている方を、レーザ加工装置101の右側とし、その反対側を左側とする。また、以下、Y軸方向において、図内でガントリ153が位置している方をレーザ加工装置101の後ろ側とし、その反対側を前側とする。 In the following, in the X-axis direction, the side whose side is visible in the figure is the right side of the laser processing apparatus 101, and the opposite side is the left side. In the following, in the Y-axis direction, the side where the gantry 153 is located in the figure is the rear side of the laser processing apparatus 101, and the opposite side is the front side.
 定盤151の上面にはホルダ152が設置されており、加工対象物102はホルダ152の上面に載置される。また、定盤151の上面において、ホルダ152の左右の両隣に、ガイド151A1およびガイド151A2(不図示)が、Y軸方向に延伸するように設けられている。 A holder 152 is installed on the upper surface of the surface plate 151, and the workpiece 102 is placed on the upper surface of the holder 152. In addition, on the upper surface of the surface plate 151, a guide 151A1 and a guide 151A2 (not shown) are provided on both the left and right sides of the holder 152 so as to extend in the Y-axis direction.
 ガントリ153は、梁(ビーム)がX軸方向に延伸するようにガイド151A1,151A2の上に設置されており、ガイド151A1,151A2に従ってY軸方向に移動することができる。また、ガントリ153の上面には、ガイド153Aが、X軸方向に延伸するように設けられている。 The gantry 153 is installed on the guides 151A1 and 151A2 so that the beam (beam) extends in the X-axis direction, and can move in the Y-axis direction according to the guides 151A1 and 151A2. A guide 153A is provided on the upper surface of the gantry 153 so as to extend in the X-axis direction.
 加工ユニット154は、コリメータレンズ121乃至fθレンズ126が内蔵されており、レーザ光を出射し、加工対象物102を加工するためのユニットである。加工ユニット154は、ガントリ153の梁に、ガイド153Aに従ってX軸方向に移動可能に支持されている。また、加工ユニット154は、ガントリ153とともにY軸方向に移動する。 The processing unit 154 includes a collimator lens 121 to an fθ lens 126 and is a unit for emitting a laser beam and processing the workpiece 102. The processing unit 154 is supported on the beam of the gantry 153 so as to be movable in the X-axis direction according to the guide 153A. Further, the machining unit 154 moves in the Y axis direction together with the gantry 153.
 配線用部材155は、光ファイバ120等を配線するための部材であり、ガントリ153の右側に取り付けられている。 The wiring member 155 is a member for wiring the optical fiber 120 and the like, and is attached to the right side of the gantry 153.
 ホルダ156は、ガントリ153の後ろ側に取り付けられており、その上にケーブルベア157c,157dが設置されている。 The holder 156 is attached to the rear side of the gantry 153, and the cable bears 157c and 157d are installed thereon.
 なお、配線用部材155およびホルダ156は、ガントリ153とともにY軸方向に移動する。 Note that the wiring member 155 and the holder 156 move together with the gantry 153 in the Y-axis direction.
 ケーブルベア157a,157bは、光ファイバ120等の配線用に設けられ、定盤151の右横に、Y軸方向に延伸し、かつ、上下に折り返すように配置されている。ケーブルベア157a,157bの上側の一端は、配線用部材155に取り付けられ、下側の一端は、定盤151の右側の所定の位置に固定されている。従って、ガントリ153のY軸方向の移動に従って、ケーブルベア157a,157bの上側の一端がY軸方向に移動し、ケーブルベア157a,157bの折れ曲がる位置がY軸方向に移動する。 The cable bears 157a and 157b are provided for wiring of the optical fiber 120 and the like, and are arranged on the right side of the surface plate 151 so as to extend in the Y-axis direction and be folded up and down. The upper ends of the cable carriers 157a and 157b are attached to the wiring member 155, and the lower end is fixed to a predetermined position on the right side of the surface plate 151. Therefore, as the gantry 153 moves in the Y-axis direction, the upper ends of the cable bears 157a and 157b move in the Y-axis direction, and the bent positions of the cable bears 157a and 157b move in the Y-axis direction.
 ケーブルベア157c,157dは、ホルダ156の上面に、X軸方向に延伸し、かつ、上下に折り返すように配置されている。ケーブルベア157c,157dの上側の一端は、加工ユニット154の一部に取り付けられ、下側の一端は、ホルダ156の所定の位置に固定されている。従って、加工ユニット154のX軸方向の移動に従って、ケーブルベア157c,157dの上側の一端がX軸方向に移動し、ケーブルベア157c,157dの折れ曲がる位置がX軸方向に移動する。 The cable bears 157c and 157d are arranged on the upper surface of the holder 156 so as to extend in the X-axis direction and be folded up and down. The upper ends of the cable bears 157 c and 157 d are attached to a part of the processing unit 154, and the lower end is fixed at a predetermined position of the holder 156. Accordingly, as the processing unit 154 moves in the X-axis direction, the upper ends of the cable bears 157c and 157d move in the X-axis direction, and the bending positions of the cable bears 157c and 157d move in the X-axis direction.
 図示は省略しているが、光ファイバ120は、ケーブルベア157aおよびケーブルベア157bのいずれか、配線用部材155、並びに、ケーブルベア157cおよびケーブルベア157dのいずれかを通して、加工ユニット154に接続されている。従って、加工ユニット154のX軸方向の移動、および、ガントリ153のY軸方向に移動に従って、ケーブルベア157a乃至157dが折れ曲がる位置が移動するのに伴い、光ファイバ120が折れ曲がる位置も移動する。これにより、光ファイバ120は、繰り返し曲げたり伸ばしたりされて劣化するため、定期的に交換する必要が生じる。 Although not shown, the optical fiber 120 is connected to the processing unit 154 through one of the cable bear 157a and the cable bear 157b, the wiring member 155, and the cable bear 157c and the cable bear 157d. Yes. Accordingly, as the position where the cable bearers 157a to 157d bend moves as the machining unit 154 moves in the X-axis direction and the gantry 153 moves in the Y-axis direction, the position where the optical fiber 120 bends also moves. As a result, the optical fiber 120 is deteriorated by being repeatedly bent or stretched, and therefore needs to be periodically replaced.
[光ファイバ115と光ファイバ120の仕様]
 ここで、図3を参照して、光ファイバ115および光ファイバ120の仕様について検討する。
[Specifications of optical fiber 115 and optical fiber 120]
Here, the specifications of the optical fiber 115 and the optical fiber 120 will be examined with reference to FIG.
 図3は、光ファイバ115のコアの入射面115Aおよび出射面115Bにおけるレーザ光のビームプロファイルと断面の例を示している。左側が、入射面115Aにおけるレーザ光(すなわち、光ファイバ115に入射する前のレーザ光)のビームプロファイルおよび断面を示している。右側が、出射面115Bにおけるレーザ光(すなわち、光ファイバ115から出射された後のレーザ光)のビームプロファイルおよび断面を示している。 FIG. 3 shows an example of the beam profile and cross section of the laser beam on the entrance surface 115A and the exit surface 115B of the core of the optical fiber 115. The left side shows a beam profile and a cross section of laser light (that is, laser light before entering the optical fiber 115) on the incident surface 115A. The right side shows a beam profile and a cross section of laser light (that is, laser light after being emitted from the optical fiber 115) on the emission surface 115B.
 入射前のレーザ光は、断面が円形で、強度分布がほぼガウシアン分布に従う。一方、出射後のレーザ光は、断面がほぼ正方形になり、強度分布がほぼ均一のトップハット型の分布になる。また、強度分布が均一化されることにより、入射前と比べてレーザ光のピーク強度が下がり、レーザ光のパワー密度のピークが低下する。 The pre-incidence laser light has a circular cross section and an intensity distribution that follows a Gaussian distribution. On the other hand, the emitted laser light has a top-hat type distribution with a substantially square cross section and a substantially uniform intensity distribution. Further, since the intensity distribution is made uniform, the peak intensity of the laser beam is lowered and the power density peak of the laser beam is lowered as compared with that before the incidence.
 ところで、光ファイバのコアを形成する素材(例えば、石英ガラスなど)は、入射するレーザ光のパワー密度が所定の定格値(以下、定格パワー密度と称する)を超えると、空気との界面において焼損する恐れがある。 By the way, the material forming the core of the optical fiber (for example, quartz glass) burns out at the interface with air when the power density of the incident laser light exceeds a predetermined rated value (hereinafter referred to as the rated power density). There is a fear.
 従って、光ファイバ115を用いてレーザ光のピーク強度を下げることにより、より強い(よりエネルギーが大きい)レーザ光を光ファイバ120に入射することが可能になる。その結果、より大きな加工エネルギーを得ることができる。 Therefore, by reducing the peak intensity of the laser light using the optical fiber 115, it becomes possible to make the stronger (more energy) laser light incident on the optical fiber 120. As a result, a larger processing energy can be obtained.
 逆に、光ファイバ115を用いてレーザ光のピーク強度を下げることにより、光ファイバ120のコアに入射するレーザ光のパワー密度が定格パワー密度以下となる範囲で、光ファイバ120に入射するレーザ光の断面積を小さくして、ピーク強度を上げることができる。従って、光ファイバ120のコアの断面積を、光ファイバ115のコアの断面積(すなわち、光ファイバ115を設けない場合に必要となる光ファイバ120のコアの断面積)より小さくすることができる。その結果、光ファイバ120のコストを下げることができる。 Conversely, by reducing the peak intensity of the laser light using the optical fiber 115, the laser light incident on the optical fiber 120 in a range where the power density of the laser light incident on the core of the optical fiber 120 is equal to or lower than the rated power density. The peak intensity can be increased by reducing the cross-sectional area. Therefore, the cross-sectional area of the core of the optical fiber 120 can be made smaller than the cross-sectional area of the core of the optical fiber 115 (that is, the cross-sectional area of the core of the optical fiber 120 required when the optical fiber 115 is not provided). As a result, the cost of the optical fiber 120 can be reduced.
 また、光ファイバ115から出射されたレーザ光が、光ファイバ120に入射する際にエネルギーロスが発生しないようにする必要がある。そのためには、次式(1)を満たすように、光ファイバ115のコア径φaおよび開口数NAa、並びに、光ファイバ120のコア径φbおよび開口数NAbを設定すればよい。なお、光ファイバのコアの断面が矩形の場合、出射側のコア径は矩形の外接円の直径として、また入射側のコア径は矩形の内円の直径として計算することができる。 Also, it is necessary to prevent energy loss when the laser light emitted from the optical fiber 115 enters the optical fiber 120. For that purpose, the core diameter φa and the numerical aperture NAa of the optical fiber 115 and the core diameter φb and the numerical aperture NAb of the optical fiber 120 may be set so as to satisfy the following expression (1). When the cross section of the core of the optical fiber is rectangular, the core diameter on the emission side can be calculated as the diameter of a rectangular circumscribed circle, and the core diameter on the incident side can be calculated as the diameter of a rectangular inner circle.
 NAa×φa≦NAb×φb ・・・(1) NAa × φa ≦ NAb × φb (1)
 以上をまとめると、レーザ加工装置101において、光ファイバ115のコア径φaおよび開口数NAa、並びに、光ファイバ120のコア径φbおよび開口数NAbが満たすべき条件は、次式(2)および(3)となる。 In summary, in the laser processing apparatus 101, the conditions that the core diameter φa and the numerical aperture NAa of the optical fiber 115 and the core diameter φb and the numerical aperture NAb of the optical fiber 120 should satisfy are expressed by the following equations (2) and (3 )
 φa>φb ・・・(2)
 NAa≦NAb×(φb/φa) ・・・(3)
φa> φb (2)
NAa ≦ NAb × (φb / φa) (3)
 例えば、光ファイバ115のコア径φaは、光ファイバ120のコア径φbの2倍に設定され、光ファイバ115の開口数NAaは、光ファイバ120の開口数NAbの1/2に設定される。また、この場合、例えば、集光レンズ114と集光レンズ119の焦点距離が同じ値に設定され、コリメータレンズ116の焦点距離が、集光レンズ114および集光レンズ119の2倍に設定される。 For example, the core diameter φa of the optical fiber 115 is set to be twice the core diameter φb of the optical fiber 120, and the numerical aperture NAa of the optical fiber 115 is set to ½ of the numerical aperture NAb of the optical fiber 120. In this case, for example, the focal length of the condenser lens 114 and the condenser lens 119 is set to the same value, and the focal length of the collimator lens 116 is set to twice that of the condenser lens 114 and the condenser lens 119. .
 また、光ファイバ115は、少なくともレーザ光のビーム整形を行うのに十分な長さ、すなわち、レーザ光の断面の形状が正方形になり、かつ、強度分布を均一化するのに十分な長さがあればよい。従って、光ファイバ120の配線経路等の仕様にもよるが、光ファイバ115は、光ファイバ120よりも十分短くすることができる。 The optical fiber 115 is at least long enough to perform laser beam shaping, that is, the cross-sectional shape of the laser light is square, and is long enough to make the intensity distribution uniform. I just need it. Therefore, the optical fiber 115 can be made sufficiently shorter than the optical fiber 120, although it depends on the specifications such as the wiring path of the optical fiber 120.
 以上のように、レーザ加工装置101では、光ファイバ115を用いない場合と比較して、同じ強度のレーザ光に対して、光ファイバ120のコアの断面積を小さくすることができる。 As described above, the laser processing apparatus 101 can reduce the cross-sectional area of the core of the optical fiber 120 with respect to laser light having the same intensity as compared with the case where the optical fiber 115 is not used.
 従って、定期交換が必要な伝送用の光ファイバ120をコストダウンすることができ、レーザ加工装置101のランニングコストを下げることができる。 Therefore, it is possible to reduce the cost of the transmission optical fiber 120 that needs to be periodically replaced, and to reduce the running cost of the laser processing apparatus 101.
 一方、光ファイバ115は、光ファイバ120と比較して十分短く、また、光ファイバ120のように曲げたり伸ばしたりすることもなく、定期交換の必要がない。また、光ファイバ115は、ホモジナイザやシリンドリカルレンズ等のビーム整形器と比較して安価である。従って、光ファイバ115を設けることによるコストアップは、上述した光ファイバ120のコストダウンと比較して小さくなる。 On the other hand, the optical fiber 115 is sufficiently shorter than the optical fiber 120, and is not bent or stretched like the optical fiber 120, so that there is no need for periodic replacement. Further, the optical fiber 115 is less expensive than a beam shaper such as a homogenizer or a cylindrical lens. Therefore, the cost increase due to the provision of the optical fiber 115 is smaller than the cost reduction of the optical fiber 120 described above.
<2.変形例>
 以下、本発明の実施の形態の変形例について説明する。
<2. Modification>
Hereinafter, modifications of the embodiment of the present invention will be described.
[変形例1]
 例えば、光ファイバ115の代わりに、図4に示されるロッドレンズ付き光ファイバ171を用いるようにしてもよい。ロッドレンズ付き光ファイバ171は、コアの断面の形状が光ファイバ115および光ファイバ120と同様に正方形である光ファイバ181の入射端面に、円柱形のロッドレンズ182が融着されたものである。
[Modification 1]
For example, instead of the optical fiber 115, an optical fiber 171 with a rod lens shown in FIG. 4 may be used. The optical fiber 171 with a rod lens is obtained by fusing a cylindrical rod lens 182 to the incident end surface of an optical fiber 181 having a square cross section similar to the optical fiber 115 and the optical fiber 120.
 ここで、パワーが200W、繰り返し周波数が10kHzのレーザ光をロッドレンズ付き光ファイバ171に入射する場合について検討する。 Here, a case where laser light having a power of 200 W and a repetition frequency of 10 kHz is incident on the optical fiber 171 with a rod lens will be considered.
 なお、以下、光ファイバ181のコア181Aやクラッド181B、および、ロッドレンズ182を形成する素材(例えば、石英ガラスなど)の定格パワー密度を1.0MW/mmとする。また、光ファイバ181のコア径を0.35mm、ロッドレンズ182の断面の直径を0.64mmとする。 Hereinafter, the rated power density of a material (for example, quartz glass) forming the core 181A, the clad 181B, and the rod lens 182 of the optical fiber 181 is 1.0 MW / mm 2 . The core diameter of the optical fiber 181 is 0.35 mm, and the diameter of the cross section of the rod lens 182 is 0.64 mm.
 この場合、レーザ光のパルスエネルギーは20mJ(=200W÷10kHz)、ピークパワーは0.33MW(=20mJ÷60ns)になる。 In this case, the pulse energy of the laser beam is 20 mJ (= 200 W ÷ 10 kHz), and the peak power is 0.33 MW (= 20 mJ ÷ 60 ns).
 例えば、ロッドレンズ182を介さずに光ファイバ181に直接レーザ光を入射する場合、光ファイバ181に入射されるレーザ光のピークパワー密度は、2.7MW/mm(=0.33MW÷(0.35mm))となり、光ファイバ181の定格パワー密度を超えてしまう。 For example, when laser light is directly incident on the optical fiber 181 without passing through the rod lens 182, the peak power density of the laser light incident on the optical fiber 181 is 2.7 MW / mm 2 (= 0.33 MW ÷ (0 .35 mm) 2 ), which exceeds the rated power density of the optical fiber 181.
 一方、ロッドレンズ182を介して光ファイバ181にレーザ光を入射する場合、ロッドレンズ182に入射されるレーザ光のパワー密度は、1.0MW/mm(=0.33MW÷{(0.64mm/2)×π})となり、ロッドレンズ182の定格パワー密度内に抑えることができる。 On the other hand, when the laser light is incident on the optical fiber 181 through the rod lens 182, the power density of the laser light incident on the rod lens 182 is 1.0 MW / mm 2 (= 0.33 MW ÷ {(0.64 mm / 2) 2 × π}), and can be suppressed within the rated power density of the rod lens 182.
 そして、ロッドレンズ182に入射したレーザ光は、断面の半径が0.35mm以下になるように集光されて、光ファイバ181のコア181Aに入射する。このとき、光ファイバ181のコア181Aとロッドレンズ182の融着面は、空気に触れないため、コア181Aおよびロッドレンズ182の素材の内部とほぼ同じ耐久性を有する。従って、コア181Aとロッドレンズ182の融着面が、レーザ光により焼損する恐れはない。 The laser light incident on the rod lens 182 is condensed so that the radius of the cross section is 0.35 mm or less, and is incident on the core 181A of the optical fiber 181. At this time, the fused surface between the core 181A of the optical fiber 181 and the rod lens 182 does not come into contact with air, and therefore has substantially the same durability as the inside of the material of the core 181A and the rod lens 182. Therefore, there is no fear that the fused surface of the core 181A and the rod lens 182 will be burned out by the laser beam.
 従って、例えば、光ファイバ120と同じコア径および開口数の光ファイバを光ファイバ181に用いることができる。 Therefore, for example, an optical fiber having the same core diameter and numerical aperture as that of the optical fiber 120 can be used for the optical fiber 181.
 ちなみに、ロッドレンズ182を介さずに光ファイバ181に直接レーザ光を入射する場合、例えば、コア径を0.60mmにすると、レーザ光のピークパワー密度が、光ファイバ181の定格パワー密度より小さい0.92MW/mm(=0.33MW÷(0.60mm))となる。 Incidentally, when laser light is directly incident on the optical fiber 181 without going through the rod lens 182, for example, when the core diameter is 0.60 mm, the peak power density of the laser light is smaller than the rated power density of the optical fiber 181. .92 MW / mm 2 (= 0.33 MW ÷ (0.60 mm) 2 ).
 このように、ロッドレンズ付き光ファイバ171を用いた場合、光ファイバ115を用いる場合と比べて、光ファイバ181のコアの断面積を小さくすることができる。また、光ファイバ181のコアの断面積が小さくなることにより、レーザ光のビーム整形に必要な距離が短くなり、ロッドレンズ付き光ファイバ171全体の長さを短くすることができる。 As described above, when the optical fiber 171 with the rod lens is used, the cross-sectional area of the core of the optical fiber 181 can be reduced as compared with the case where the optical fiber 115 is used. Further, since the cross-sectional area of the core of the optical fiber 181 is reduced, the distance necessary for beam shaping of the laser light is shortened, and the entire length of the optical fiber 171 with a rod lens can be shortened.
[変形例2]
 また、ビーム整形用の光ファイバ(光ファイバ115またはロッドレンズ付き光ファイバ171)を設けずに、光ファイバ120に、ロッドレンズ付き光ファイバを用いるようにしてもよい。すなわち、上述したように、ロッドレンズ付き光ファイバは、コアの断面積が同じロッドレンズなしの光ファイバと比べて、より強いレーザ光を入射可能である。従って、光ファイバ120にロッドレンズ付き光ファイバを用いることにより、ビーム整形用の光ファイバを設けなくても、光ファイバ120のコアの断面積を小さくすることができる。
[Modification 2]
Further, an optical fiber with a rod lens may be used as the optical fiber 120 without providing an optical fiber for beam shaping (the optical fiber 115 or the optical fiber with a rod lens 171). That is, as described above, the optical fiber with a rod lens can enter a stronger laser beam than an optical fiber without a rod lens having the same cross-sectional area of the core. Therefore, by using an optical fiber with a rod lens for the optical fiber 120, the cross-sectional area of the core of the optical fiber 120 can be reduced without providing an optical fiber for beam shaping.
[変形例3]
 さらに、各光ファイバのコアの断面は、正方形以外の任意の形状にすることが可能である。例えば、正方形以外の矩形にしたり、円形や楕円形にすることが可能である。ただし、ビーム整形用の光ファイバ(光ファイバ151またはロッドレンズ付き光ファイバ171)と伝送用の光ファイバ120のコアの断面の形状を合わせるようにすることが望ましい。例えば、光ファイバ115のコアの断面の形状が、長辺と短辺の長さの比が2:1の長方形である場合、光ファイバ120のコアの断面の形状も、長辺と短辺の長さの比が2:1の長方形にすることが望ましい。
[Modification 3]
Furthermore, the cross section of the core of each optical fiber can be any shape other than a square. For example, it can be a rectangle other than a square, or a circle or an ellipse. However, it is desirable to match the shape of the cross section of the core of the optical fiber for beam shaping (the optical fiber 151 or the optical fiber 171 with the rod lens) and the optical fiber 120 for transmission. For example, when the cross-sectional shape of the core of the optical fiber 115 is a rectangle having a ratio of the length of the long side to the short side of 2: 1, the cross-sectional shape of the core of the optical fiber 120 is also the long side and the short side. It is desirable to use a rectangle with a length ratio of 2: 1.
[変形例4]
 また、本発明の実施の形態において、光ファイバ115およびロッドレンズ付き光ファイバ171の他にも、例えば、ホモジナイザ、シリンドリカルレンズ等の各種のビーム整形器を用いることが可能である。
[Modification 4]
In the embodiment of the present invention, various beam shapers such as a homogenizer and a cylindrical lens can be used in addition to the optical fiber 115 and the optical fiber 171 with the rod lens.
[変形例5]
 さらに、本発明では、上述したように伝送用の光ファイバ120のコストダウンの効果が大きい。従って、伝送用の光ファイバ120が長くなるほど、本発明の効果は大きくなる。また、例えば、図5に示されるようにレーザ光を分岐して、複数の光ファイバによりレーザ光を伝送する場合など、伝送用の光ファイバの本数が増えるほど、本発明の効果は大きくなる。
[Modification 5]
Furthermore, in the present invention, as described above, the cost reduction effect of the transmission optical fiber 120 is great. Accordingly, the longer the transmission optical fiber 120, the greater the effect of the present invention. Further, for example, as shown in FIG. 5, when the laser light is branched and the laser light is transmitted by a plurality of optical fibers, the effect of the present invention increases as the number of optical fibers for transmission increases.
 なお、図5は、図1のレーザ加工装置101のコリメータレンズ116の後段にレーザ光を6つに分岐する分岐光学系を設けたレーザ加工装置201の光学系の構成例を示している。なお、図中、図1と対応する部分には、同じ符号を付してあり、その説明は適宜省略する。また、この図において、加工光学系の図示を省略している。 5 shows a configuration example of the optical system of the laser processing apparatus 201 provided with a branching optical system for branching the laser light into six at the subsequent stage of the collimator lens 116 of the laser processing apparatus 101 of FIG. In the figure, parts corresponding to those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted as appropriate. Further, in this drawing, the illustration of the processing optical system is omitted.
 レーザ加工装置201は、レーザ発振器111、集光レンズ114、光ファイバ115、コリメータレンズ116、パーシャルミラー211、全反射ミラー212、および、分岐光学系213a乃至分岐光学系215bを含むように構成される。 The laser processing apparatus 201 includes a laser oscillator 111, a condensing lens 114, an optical fiber 115, a collimator lens 116, a partial mirror 211, a total reflection mirror 212, and branching optical systems 213a to 215b. .
 分岐光学系213aは、パーシャルミラー221a、メカニカルシャッタ222a、ロータリアッテネータ223a、パワースプリッタ224a、集光レンズ225a、光ファイバ226a、および、パワーモニタ227aを含むように構成される。 The branching optical system 213a is configured to include a partial mirror 221a, a mechanical shutter 222a, a rotary attenuator 223a, a power splitter 224a, a condenser lens 225a, an optical fiber 226a, and a power monitor 227a.
 分岐光学系213bは、分岐光学系213aと同様の構成を有している。なお、分岐光学系213bの各構成要素の符号は、分岐光学系213aの各構成要素の符号の末尾のaをbに置き換えたものである。 The branch optical system 213b has the same configuration as the branch optical system 213a. In addition, the code | symbol of each component of the branch optical system 213b replaced the code | symbol of the code | symbol of each component of the branch optical system 213a with b.
 分岐光学系214aは、パーシャルミラー231a、メカニカルシャッタ232a、ロータリアッテネータ233a、パワースプリッタ234a、集光レンズ235a、光ファイバ236a、および、パワーモニタ237aを含むように構成される。なお、メカニカルシャッタ232a乃至パワーモニタ237aは、分岐光学系213aのメカニカルシャッタ222a乃至パワーモニタ227aと同様のものである。 The branching optical system 214a is configured to include a partial mirror 231a, a mechanical shutter 232a, a rotary attenuator 233a, a power splitter 234a, a condenser lens 235a, an optical fiber 236a, and a power monitor 237a. The mechanical shutter 232a to power monitor 237a are the same as the mechanical shutter 222a to power monitor 227a of the branch optical system 213a.
 分岐光学系214bは、分岐光学系214aと同様の構成を有している。なお、分岐光学系214bの各構成要素の符号は、分岐光学系214aの各構成要素の符号の末尾のaをbに置き換えたものである。 The branch optical system 214b has the same configuration as the branch optical system 214a. In addition, the code | symbol of each component of the branch optical system 214b replaces the code | symbol of the code | symbol of each component of the branch optical system 214a with b.
 分岐光学系215aは、全反射ミラー241a、メカニカルシャッタ242a、ロータリアッテネータ243a、パワースプリッタ244a、集光レンズ245a、光ファイバ246a、および、パワーモニタ247aを含むように構成される。なお、メカニカルシャッタ242a乃至パワーモニタ247aは、分岐光学系213aのメカニカルシャッタ222a乃至パワーモニタ227aと同様のものである。 The branching optical system 215a is configured to include a total reflection mirror 241a, a mechanical shutter 242a, a rotor attenuator 243a, a power splitter 244a, a condenser lens 245a, an optical fiber 246a, and a power monitor 247a. The mechanical shutter 242a to power monitor 247a are the same as the mechanical shutter 222a to power monitor 227a of the branch optical system 213a.
 分岐光学系215bは、分岐光学系215aと同様の構成を有している。なお、分岐光学系215bの各構成要素の符号は、分岐光学系215aの各構成要素の符号の末尾のaをbに置き換えたものである。 The branching optical system 215b has the same configuration as the branching optical system 215a. In addition, the code | symbol of each component of the branch optical system 215b replaces the code | symbol of the code | symbol of each component of the branch optical system 215a with b.
 なお、例えば、パーシャルミラー211,231a,231bには、透過率50%および反射率50%のものが用いられ、パーシャルミラー221a,221bには、透過率33%および反射率67%のものが用いられる。 For example, the partial mirrors 211, 231a, and 231b have a transmittance of 50% and a reflectance of 50%, and the partial mirrors 221a and 221b have a transmittance of 33% and a reflectance of 67%. It is done.
 光ファイバ115から出射され、コリメータレンズ116を透過したレーザ光は、パーシャルミラー211により2つに分岐される。 The laser light emitted from the optical fiber 115 and transmitted through the collimator lens 116 is branched into two by the partial mirror 211.
 パーシャルミラー211により反射されたレーザ光は、全反射ミラー212により反射され、分岐光学系213aのパーシャルミラー221aにより2つに分岐される。 The laser beam reflected by the partial mirror 211 is reflected by the total reflection mirror 212 and branched into two by the partial mirror 221a of the branching optical system 213a.
 パーシャルミラー221aにより反射されたレーザ光は、ロータリアッテネータ223aにより減衰され、パワースプリッタ224aにより一部が反射され、残りが透過する。パワースプリッタ224aを透過したレーザ光は、集光レンズ225aにより集光され、光ファイバ226aに入射し、光ファイバ226aにより対応する加工光学系に伝送される。一方、パワースプリッタ224aにより反射されたレーザ光は、パワーモニタ227aに入射し、その強度が検出される。パワーモニタ227aは、検出したレーザ光の強度を示す信号を後段に送信する。 The laser light reflected by the partial mirror 221a is attenuated by the rotary attenuator 223a, partially reflected by the power splitter 224a, and the rest is transmitted. The laser light transmitted through the power splitter 224a is collected by the condenser lens 225a, enters the optical fiber 226a, and is transmitted to the corresponding processing optical system by the optical fiber 226a. On the other hand, the laser beam reflected by the power splitter 224a is incident on the power monitor 227a, and its intensity is detected. The power monitor 227a transmits a signal indicating the intensity of the detected laser light to the subsequent stage.
 一方、パーシャルミラー221aを透過したレーザ光は、分岐光学系214aのパーシャルミラー231aにより2つに分岐される。 On the other hand, the laser beam transmitted through the partial mirror 221a is branched into two by the partial mirror 231a of the branching optical system 214a.
 パーシャルミラー231aにより反射されたレーザ光は、分岐光学系213aのパーシャルミラー221aにより反射されたレーザ光と同様の振る舞いをして、光ファイバ236aおよびパワーモニタ237aに入射する。光ファイバ236aに入射したレーザ光は、光ファイバ236aにより対応する加工光学系に伝送される。 The laser light reflected by the partial mirror 231a behaves in the same manner as the laser light reflected by the partial mirror 221a of the branching optical system 213a and enters the optical fiber 236a and the power monitor 237a. The laser light incident on the optical fiber 236a is transmitted to the corresponding processing optical system through the optical fiber 236a.
 一方、パーシャルミラー231aを透過したレーザ光は、分岐光学系215aの全反射ミラー241aにより反射され、分岐光学系213aのパーシャルミラー221aにより反射されたレーザ光と同様の振る舞いをして、光ファイバ246bおよびパワーモニタ247aに入射する。光ファイバ246aに入射したレーザ光は、光ファイバ246aにより対応する加工光学系に伝送される。 On the other hand, the laser light transmitted through the partial mirror 231a is reflected by the total reflection mirror 241a of the branching optical system 215a, behaves in the same manner as the laser light reflected by the partial mirror 221a of the branching optical system 213a, and the optical fiber 246b. And enters the power monitor 247a. The laser light incident on the optical fiber 246a is transmitted to the corresponding processing optical system through the optical fiber 246a.
 一方、パーシャルミラー211を透過したレーザ光は、全反射ミラー212により反射されたレーザ光と同様に3つに分岐され、それぞれ分岐光学系213b、分岐光学系214b、および、分岐光学系215bに入射する。そして、光ファイバ226b、光ファイバ236b、および、光ファイバ246bにより、それぞれ対応する加工光学系に伝送される。 On the other hand, the laser light transmitted through the partial mirror 211 is branched into three, similarly to the laser light reflected by the total reflection mirror 212, and is incident on the branch optical system 213b, the branch optical system 214b, and the branch optical system 215b, respectively. To do. Then, the optical fiber 226b, the optical fiber 236b, and the optical fiber 246b are transmitted to the corresponding processing optical systems.
 このように、レーザ発振器111から出射されたレーザ光が6つに分岐され、それぞれ異なる光ファイバにより、6つの加工光学系に伝送される。従って、6つの加工光学系により、同時に最大6ヶ所の加工を行うことができる。 In this way, the laser light emitted from the laser oscillator 111 is branched into six and transmitted to the six processing optical systems through different optical fibers. Therefore, it is possible to perform a maximum of 6 processing simultaneously by the 6 processing optical systems.
 なお、メカニカルシャッタ222a乃至224bを用いて、各分岐光学系からのレーザ光の出射を個別に停止することができ、同時に加工を行う場所の数を調整することができる。 The mechanical shutters 222a to 224b can be used to individually stop the emission of the laser light from each branching optical system, and the number of places for processing can be adjusted at the same time.
 これにより、上述した特許文献1に記載されたレーザ加工装置のように、強度分布を均一化したレーザ光を、複数本の光ファイバからなるバンドルファイバに入射する場合と比較して、レーザ光を分岐する際の、レーザ光のロスを抑制することができる。 Thereby, as in the laser processing apparatus described in Patent Document 1 described above, the laser light with a uniform intensity distribution is compared with the case where the laser light is incident on a bundle fiber composed of a plurality of optical fibers. Loss of laser light at the time of branching can be suppressed.
 なお、以上に示したレーザ光の分岐数は、その一例であり、任意の数に設定することが可能である。 Note that the number of branches of the laser light described above is an example, and can be set to an arbitrary number.
 なお、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。 The embodiment of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
 101 レーザ加工装置
 102 加工対象物
 111 レーザ発振器
 114 集光レンズ
 115 光ファイバ
 116 コリメータレンズ
 119 集光レンズ
 120 光ファイバ
 121 コリメータレンズ
 122 結像レンズ
 123 スリット
 124 結像レンズ
 125a,125b スキャンミラー
 126 fθレンズ
 151 定盤
 153 ガントリ
 154 加工ユニット
 155 配線用部材
 157a乃至157d ケーブルベア
 171 ロッドレンズ付き光ファイバ
 181 光ファイバ
 182 ロッドレンズ
 211 レーザ加工装置
 213a乃至215b 分岐光学系
 225a,225b,235a,235b,245a,245b 集光レンズ
 226a,226b,236a,236b,246a,246b 光ファイバ
DESCRIPTION OF SYMBOLS 101 Laser processing apparatus 102 Processing object 111 Laser oscillator 114 Condensing lens 115 Optical fiber 116 Collimating lens 119 Condensing lens 120 Optical fiber 121 Collimating lens 122 Imaging lens 123 Slit 124 Imaging lens 125a, 125b Scan mirror 126 f (theta) lens 151 Surface plate 153 Gantry 154 Processing unit 155 Wiring member 157a to 157d Cable bear 171 Optical fiber with rod lens 181 Optical fiber 182 Rod lens 211 Laser processing device 213a to 215b Branch optical system 225a, 225b, 235a, 235b, 245a, 245b Optical lens 226a, 226b, 236a, 236b, 246a, 246b Optical fiber

Claims (4)

  1.  レーザ発振器から出射されたレーザ光の強度分布をほぼ均一に整形するビーム整形器と、
     前記ビーム整形器から出射されたレーザ光を集光するレンズと、
     前記レンズにより集光されたレーザ光が入射され、入射されたレーザ光を加工光学系に伝送する第1の光ファイバと
     を備えることを特徴とするレーザ加工装置。
    A beam shaper that shapes the intensity distribution of the laser light emitted from the laser oscillator almost uniformly;
    A lens for condensing the laser light emitted from the beam shaper;
    A laser processing apparatus comprising: a first optical fiber that receives the laser beam condensed by the lens and transmits the incident laser beam to a processing optical system.
  2.  前記ビーム整形器は、第2の光ファイバにより構成され、
     前記第1の光ファイバのコア径をφ1、開口数をNA1とし、前記第2の光ファイバのコア径をφ2、開口数をNA2とした場合、
      φ2>φ1
      NA2≦NA1×(φ1/φ2)
     を満たすことを特徴とする請求項1に記載のレーザ加工装置。
    The beam shaper is constituted by a second optical fiber,
    When the core diameter of the first optical fiber is φ1, the numerical aperture is NA1, the core diameter of the second optical fiber is φ2, and the numerical aperture is NA2,
    φ2> φ1
    NA2 ≦ NA1 × (φ1 / φ2)
    The laser processing apparatus according to claim 1, wherein:
  3.  前記ビーム整形器は、レーザ光が入射される側の端面にロッドレンズが融着されている第2の光ファイバにより構成される
     ことを特徴とする請求項1に記載のレーザ加工装置。
    2. The laser processing apparatus according to claim 1, wherein the beam shaper is configured by a second optical fiber in which a rod lens is fused to an end surface on a laser beam incident side.
  4.  前記第1の光ファイバおよび前記第2の光ファイバのコアの断面が矩形である
     ことを特徴とする請求項2または3に記載のレーザ加工装置。
    The laser processing apparatus according to claim 2 or 3, wherein a cross section of a core of the first optical fiber and the second optical fiber is rectangular.
PCT/JP2011/056290 2011-02-28 2011-03-16 Laser processing device WO2012117569A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011042533A JP5348155B2 (en) 2011-02-28 2011-02-28 Laser processing equipment
JP2011-042533 2011-02-28

Publications (1)

Publication Number Publication Date
WO2012117569A1 true WO2012117569A1 (en) 2012-09-07

Family

ID=46757526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056290 WO2012117569A1 (en) 2011-02-28 2011-03-16 Laser processing device

Country Status (3)

Country Link
JP (1) JP5348155B2 (en)
TW (1) TW201235142A (en)
WO (1) WO2012117569A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115144978A (en) * 2021-07-29 2022-10-04 武汉帝尔激光科技股份有限公司 Laser shaping device and optical fiber coupling method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013211523B3 (en) * 2013-06-19 2014-08-07 Trumpf Laser- Und Systemtechnik Gmbh Processing machine for workpiece machining
JP2015196170A (en) * 2014-03-31 2015-11-09 トヨタ自動車株式会社 Processing method of zirconia
JP6722994B2 (en) * 2015-10-19 2020-07-15 株式会社片岡製作所 Laser processing machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273805A (en) * 1987-05-01 1988-11-10 Nec Corp Optical fiber device for power transmission
JPH07281053A (en) * 1994-04-11 1995-10-27 Mitsui Petrochem Ind Ltd Fiber photocoupler
JPH1158665A (en) * 1997-08-27 1999-03-02 Asahi Chem Ind Co Ltd Laser plate making apparatus
JP2004246282A (en) * 2003-02-17 2004-09-02 Hitachi Cable Ltd Lens row spot size conversion version optical circuit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4048016B2 (en) * 2000-03-10 2008-02-13 三菱電機株式会社 Semiconductor laser light source and semiconductor laser processing apparatus using the same
JP2003112281A (en) * 2001-09-28 2003-04-15 Matsushita Electric Ind Co Ltd Laser beam machine and production equipment using the machine
JP4112355B2 (en) * 2002-12-11 2008-07-02 日立造船株式会社 Beam forming method and apparatus
GB0328370D0 (en) * 2003-12-05 2004-01-14 Southampton Photonics Ltd Apparatus for providing optical radiation
JP2008087000A (en) * 2006-09-29 2008-04-17 Mitsubishi Electric Corp Laser beam machining apparatus
JP2009119521A (en) * 2007-11-19 2009-06-04 Miyachi Technos Corp Laser welding method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273805A (en) * 1987-05-01 1988-11-10 Nec Corp Optical fiber device for power transmission
JPH07281053A (en) * 1994-04-11 1995-10-27 Mitsui Petrochem Ind Ltd Fiber photocoupler
JPH1158665A (en) * 1997-08-27 1999-03-02 Asahi Chem Ind Co Ltd Laser plate making apparatus
JP2004246282A (en) * 2003-02-17 2004-09-02 Hitachi Cable Ltd Lens row spot size conversion version optical circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115144978A (en) * 2021-07-29 2022-10-04 武汉帝尔激光科技股份有限公司 Laser shaping device and optical fiber coupling method
CN115144978B (en) * 2021-07-29 2024-05-17 武汉帝尔激光科技股份有限公司 Laser shaping device and optical fiber coupling method

Also Published As

Publication number Publication date
TW201235142A (en) 2012-09-01
JP2012179612A (en) 2012-09-20
JP5348155B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5147834B2 (en) Laser processing apparatus and laser processing method
US8059930B2 (en) Optical fiber and method for fabricating the same
US8835804B2 (en) Beam homogenizer
KR101062192B1 (en) Caution for harmonic laser light, laser light harmonic light source and exposure apparatus
US10095016B2 (en) High power laser system
KR20130037679A (en) Method and arrangement for generating a laser beam having a differing beam profile characteristic by means of a multi-clad fibre
JP5348155B2 (en) Laser processing equipment
CN108602157B (en) Optical fiber coupling device
KR102103867B1 (en) High power spatial filter
JP5585135B2 (en) Laser processing equipment
KR20100024423A (en) Illumination system
JP2011076092A (en) Device for shaping laser beam
KR102198779B1 (en) Device for generating laser radiation having a linear intensity distribution
Kim et al. Micro Fresnel zone plate lens inscribed on a hard polymer clad fiber using femtosecond pulsed laser
JP7252198B2 (en) Optical fiber bundle with beam stacking mechanism
JP2008203598A (en) Laser beam condensing unit
JP6640094B2 (en) Laser light irradiation device
JP2011221191A (en) Beam uniformizing device and optical processing device
JP2003112281A (en) Laser beam machine and production equipment using the machine
CN106646505B (en) Probe light homogenizing system and homogenizing method for arbitrary reflection surface speed interferometer
KR102425180B1 (en) Line beam forming device
JP2012003131A (en) Laser irradiation device
JP5250318B2 (en) Endoscope light guide
JP2022041195A (en) Optical fiber bundle and optical fiber bundle device
KR101567985B1 (en) optical fiber having dual core and laser machining apparatus using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859763

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859763

Country of ref document: EP

Kind code of ref document: A1