TW201235142A - Laser processing device - Google Patents

Laser processing device Download PDF

Info

Publication number
TW201235142A
TW201235142A TW101103179A TW101103179A TW201235142A TW 201235142 A TW201235142 A TW 201235142A TW 101103179 A TW101103179 A TW 101103179A TW 101103179 A TW101103179 A TW 101103179A TW 201235142 A TW201235142 A TW 201235142A
Authority
TW
Taiwan
Prior art keywords
optical fiber
laser light
laser
lens
fiber
Prior art date
Application number
TW101103179A
Other languages
Chinese (zh)
Inventor
Yasunari Hata
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Publication of TW201235142A publication Critical patent/TW201235142A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0732Shaping the laser spot into a rectangular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0994Fibers, light pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

This invention aims to reduce the sectional area of the core of an optical fiber for transmitting a laser beam. A laser beam emitted from a laser oscillator 111 is reshaped by an optical fiber 115 such that the intensity distribution thereof is approximately uniform. The laser beam transmitted through the optical fiber 115 is condensed by a condenser lens 119, and then is emitted into an optical fiber 120. The laser beam emitting into the optical fiber 120 is transmitted to a processing optical system comprised of from a collimating lens 121 to a f θ lens 126. This invention is applicable to such as a laser processing device.

Description

201235142 六、發明說明: 【發明所屬之技術領域】 本發明係關於-種雷射加工裝置,特別是關於 使用光纖傳送雷射光的雷射加工裝置。 種 【先前技術】 以往在雷射加工裝置中,為了將由雷射振盪器 的雷射光傳送到加工光學系統而使用光纖(例如參閱直 利文獻1)。 间專 [先前技術文獻] [專利文獻] [專利文獻1]日本特開2002_16269號公報 【發明内容】 [發明欲解決之課題] 光纖之纖核的剖面積越大越可射入更強的雷射光。 另一方面,纖核的剖面積越大,光纖的價格越高。因 ,要提高雷射光的強度’增大加工能量,需要增大 之纖核的剖面積,所需的成本會上升。 β 此外,光纖由於伴隨具備加工光學系統的加工單 移動’會反覆彎曲或伸展而劣化,所以需要定期更換。因 此’光纖越昂貴’雷射加玉裝置的運轉成本越上升。 本發明係有鑑於此種狀況而完成,可縮小雷射加工 裝置的雷射光傳送用的光纖之纖核的剖面積。 [解決課題之手段] 本發明之-態樣的雷射加工裝置具備:光束整形器 ’其將由雷射振盈器射出的雷射光的強度分布整形成大 致均勻;透鏡,其將由光束整形器射㈣雷射光聚光; 201235142 及第1光纖’其供藉透鏡聚光的雷射光射入,並將所射入 的雷射光傳送到加工光學系統。 在本發明之一態樣中,由雷射振盪器射出的雷射光 的強度分布藉光束整形器整形成大致均勻,由光束整形 器射出的雷射光藉透鏡聚光,由透鏡所聚光的雷射光藉 第1光纖傳送到加工光學系統。 因此’可降低射入傳送用的第1光纖的雷射光的峰值 強度,其結果,可縮小第1光纖之纖核的剖面積。 此光束整形器係由例如光纖、均勻器、柱狀透鏡等 各種光束整形器構成。 此光束整开;ί器可由第2光纖構成,且設第1光纖的纖 核直徑為φ 1、數值孔徑為NA1 ’第2光纖的纖核直徑為 必2、數值孔徑為να2時’滿足φ2> φΐ、ΝΑ2$ΝΑ1χ( Φ 1 / φ 2)。 藉此’可廉價地實現光束整形器。 此光束整开> 器可由在供雷射光射入之側的端面安裝 有棒狀透鏡而成的第2光纖所構成。 藉此,可縮小作為光束整形器使用的第2光纖之纖核 的剖面積。 可將此第1光纖及第2光纖之纖核的剖面設為矩形。 、、藉此,在加工面上掃描雷射光時’可縮小重疊鄰接 的光點的面積,其結果,可縮短加工時間。 [發明之效果] 藉由本發明之一態樣,可縮小雷射加工裝置的雷射 光傳送用的光纖之纖核的剖面積。 -4 - 201235142 【實施方式】 [實施發明之形態] 以下,就用以實施本發明的形態(以下稱為實施形態 )進行說明。再者,說明係按以下的順序進行: 1 ·實施形態 2.變形例 圖1顯示適用本發明的雷射加工裝置1 〇 1的光學系統 的結構例。 雷射加工裝置101為使用雷射光對加工對象物1〇2進 行加工的裝置。再者,加工對象物1 0 2並不受特別限定, 例如為薄膜太陽能電池面板、顯示器面板等。 雷射加工裝置101包含雷射振盪器111、全反射鏡112 、113、聚光透鏡114、光纖115、準直透鏡116、全反射 鏡117、118、聚光透鏡119、光纖12〇、準直透鏡121、成 像透鏡124、掃描鏡125a、125b、及fe透鏡126。 雷射振盪器1 1 1係由射出脈衝狀雷射光的雷射振藍 器構成。再者,雷射振盪器111並不限於特定方式的雷射 振盪器,可採用任意方式的雷射振盪器。 由雷射振盪器ill射出的雷射光被全反射鏡112及全 反射鏡113反射後,藉由聚光透鏡114聚光而射入光纖ιΐ5 〇 光纖115係由纖核的剖面為i方料方形光纖構成 ,作為雷射光的光束整形用。具體而言,光纖115將射入 的雷射光的剖面形狀整形為正方开),幻吏強度分布大致 均勻化之後射出。 201235142 由光纖115射出的雷射光藉由準直透鏡U6準直,被 全反射鏡117及全反射鏡n8反射後,藉由聚光透鏡119 聚光而射入光纖120。 光纖120係和光纖! 15同樣,由纖核的剖面為正方形 的方形光纖構成’用作雷射光的傳送用。即,光纖12〇 將所射入的雷射光〈專送到由準直透鏡121至代透鏡126構 成的加工光學系統 由光纖120射出的雷射光藉由準直透鏡I?!準直,穿 透成像透鏡1 2 2 ’射入狹縫1 2 3。狹縫1 2 3具有正方形的開 口部’將雷射光的剖面限制為開口部的形狀。 通過狹縫123的雷射光穿透成像透鏡124,藉掃描鏡 125a、125b朝ίθ透鏡126的方向反射後,穿透邝透鏡126 ,在加工對象物102的加工面成像。此外,利用掃描鏡丨25a 、125b及f0透鏡12ί;掃描加工對象物1〇2加工面的雷射光 的成像位置、即加工位置。 再者’藉由將雷射光的刮面整形為正方形而照射於 加工對象物1 02,相較於例如剖面為圓形或橢圓形的雷射 光’在加工面上掃描雷射光時,可縮小重疊鄰接的光點 的面積。其結果,可縮短加工時間。 [.雷射加工裝置10 1的外觀結構例] 圖2為示意地顯示雷射加工裝置的外觀的結構例。然 而’圖2中未圖示與從圖!的雷射振盪器η1到聚光透鏡 1 1 9對應的結構部分。 雷射加工裝置101構成為包含平台151、托座152、支 架153、加工單元154、配線用構件155、托座156、及電 201235142 繞保護鍵條(cableveyor)157a至 157d。 再者,以下,將相對於平台151的上面(托座152的上 面)呈水平且為支架153延伸的方向(雷射加工裝置1〇1的 左右方向)設為X轴方向。此外’以下,將對於平台1 5 1 的上面(托座152的上面)呈水平且為與X軸正交的方向( 雷射加工裝置101的前後方向)設為Y軸方向。再者,將與 X軸及Y軸正交的方向(雷射加工裝置1〇1的上下方向)設 為Z轴方向。 再者’以下,在X軸方向,以圖内在跟前側看得見侧 面的方向為雷射加工裝置1 〇 1的右側,以其相反側為左側 。此外’以下,在Y軸方向’以圖内支架1 5 3位在的方向 為雷射加工裝置1 〇 1的後側,以其相反側為前側。 在平台151的上面設有托座152,加工對象物102被載 置於托座152的上面。此外’在平台151的上面,導件151A1 及導件1 5 1 A2(未圖示)以沿著Y軸方向延伸的方式設於托 座152的左右兩旁。 支架1 53以樑(beam)沿著X轴方向延伸的方式設於導 件1 5 1 A 1、1 5 1 A2之上,可沿著導件1 5 1 A1、1 5 1 A2而在Y 軸方向上移動。此外,在支架1 5 3的上面,以沿著X軸方 向延伸的方式設有導件1 53A。 加工單元154内建有準直透鏡121至f0透鏡126,是射 出雷射光且用以加工加工對象物102的單元。加工單元 154沿著導件153A而在X軸方向上可移動地支持於支架 153的樑上。此外,加工單元154係與支架153—起沿著Y 軸方向移動。 201235142 配線用構件1 55為用以配設光纖1 20等的構件,安事 於支架1 5 3的右側。 托座156安裝於支架153的後側,在其上面設有電镜 保護鏈條157c、157d。 再者,配線用構件155及托座156係與支架ι53一起沿 著Y軸方向移動。 電纜保護鏈條157a、157b設作光纖120等的配線用, 以沿著Y軸方向延伸且上下折返的方式配置於平台^ 51的 右側。電纜保護鏈條1 57a、1 57b上側的一端安装於配線 用構件155上,下側的一端固定於平台151右側的預定位 置上。因此’隨著支架153在Y軸方向的移動,電鐵保護 鏈條157a、157b上側的一端會在γ軸方向上移動,電纜保 護鏈條157a、157b彎折的位置會在γ軸方向上移動。 電繞保護鏈條157c、157d係以沿著X軸方向延伸且上 下折返的方式配置於托座1 56的上面。電纜保護鏈條1 57c 、157d上側的一端安裝於加工單元154的一部分上,下側 的一端固定於托座156的預定位置上。因此,隨著加工單 元154在X軸方向的移動,電纜保護鏈條157c、i57d上側 的一端會在X軸方向上移動,電纜保護鏈條15八、i57d 管折的位置會在χ軸方向上移動。 雖然圖示省略,但光纖12〇係通過電纜保護鏈條 ,電境保護鏈條157b之任-者、配線用構件155和電缓保 護鏈條1 5 7 c及電缓伴罐γ各丨q ^ , h 見保。隻鏈條157d之任一者,而連接於加 工早凡154。因此,隨著加工單元⑸在又軸方向的移動、 支架153在Y軸方向的移動’且伴隨電繞保護鏈條⑸& 201235142 至157d彎折的位置移動’光纖i2〇彎折的位置也會跟著移 動。藉此’光纖120會反覆彎曲或伸展而劣化,故必須定 期地更換。 [光纖1 15與光纖120的規格] 此處’參閱圖3 ’就光纖丄丨5及光纖i 2〇的規格進行探 討研究。 圖3顯示光纖11 5之纖核的射入面1丨5 a及射出面 Π 5B的雷射光的光束外形和剖面之例。左側顯示射入面 115 A的雷射光(即射入光纖ι15前的雷射光)的光束外形 及剖面。右側顯示射出面1 1 5B的雷射光(即由光纖i丨5射 出後的雷射光)的光束外形及剖面。 射入前的雷射光的剖面為圓形,強度分布按照大致 向斯分布。另一方面,射出後的雷射光的剖面成為大致 正方形,強度分布成為大致均勻的高頂帽(t〇p hat)型的分 布。此外,藉由使強度分布均勻化,相較於射入前,雷 射光的峰值強度降低,雷射光的功率密度的峰值降低。 若射入的雷射光的功率密度超過預定的額定值(以 下稱為額定功率密度),則形成光纖之纖核的素材(例如 石英玻璃等)在其與空氣的界面恐有燒壞之虞。 因此,藉由使用光纖11 5來降低雷射光的峰值強度, 可將更強(能量更大)的雷射光射入光纖丨2 〇。其結果, 可得到更大的加工能量。 相反地,藉由使用光纖11 5來降低雷射光的峰值強度 、在射入光纖120之纖核的雷射光的功率密度成為額定功 率密度以下的範圍内,可縮小射入光纖12〇的雷射光的剖 201235142 面積且提高峰值強度。因此,可使光纖1 20之纖核的剖面 積比光纖11 5之纖核的剖面積(即不設光纖11 5時所需的 光纖120之纖核的剖面積)更小。其結果,可降低光纖1 20 的成本。 此外,由光纖115射出的雷射光在射入光纖120之際 ,必須使其不會產生能量損失。為此,以滿足下式(1)的 方式設定光纖1 1 5之纖核直徑Φ a及數值孔徑NAa和光纖 1 20之纖核直徑φ b及數值孔徑NAb即可。再者,在光纖 之纖核的剖面為矩形的情況,能以射出側的纖核直徑作 為矩形的外接圓的直徑,且射入側的纖核直徑作為矩形 的内圓的直徑的方式進行計算。 NAax φ a ^ NAbx φ b ...(1) 總結以上,在雷射加工裝置1 0 1中,光纖1 1 5之纖核 直徑Φ a及數值孔徑NAa和光纖120之纖核直徑φ b及數 值孔徑Nab應滿足的條件為下式(2)及(3): Φ a> φ b ...(2) NAa^ NAbx( φ b/ φ a) ...(3) 例如,光纖1 15之纖核直徑φ a被設定為光纖120之纖 核直徑Φ b的2倍,光纖1 1 5之數值孔徑NAa被設定為光纖 1 20之數值孔徑NAb的1 /2。此外,此情況,例如聚光透鏡 Π 4與聚光透鏡11 9的焦點距離被設定為相同值,準直透 鏡116的焦點距離被設定為聚光透鏡Π4及聚光透鏡119 的2倍。 此外’光纖1 1 5只要具有足以至少進行雷射光的光束 整形的長度,即足以使雷射光的剖面形狀成為正方形且 -10- 201235142 使強度分布均勻化的長度即可。因此,雖然也取決於光 纖1 20的配線路徑等的規格,但光纖1 1 5可比光纖丨20短得 多 0 如以上,在雷射加工裝置丨0丨中,相較於不使用光纖 1 1 5的情況,對於相同強度 定期更換的傳送用光纖12〇的成本,並可降低雷射加 工裝置101的運轉成本。 另一方面,光纖i 15相較於光纖12〇短得多,並且也 不會如光纖1 2 0般地彎曲或伸展,無需定期更換。此外, 光纖115比均勻器或柱狀透鏡等的光束整形器廉價。因此 ,設置光纖1 1 5的成本增加程度小於上述光纖i 2〇的成本 降低程度。 < 2.變形例> 以下’就本發明的實施形態的變形例進行說明。 [變形例1 ] 例如’也可以使用圖4所示的附有棒狀透鏡的光纖 1 7 1取代光纖1 1 5。附有棒狀透鏡的光纖i 7丨係在纖核的剖 面形狀和光纖1 1 5及光纖1 20同樣為正方形的光纖1 8丨的 射入端面熔接有圓柱形的棒狀透鏡182而成的光纖。 此處’就將功率為200W、重複頻率為i〇kHz的雷射 光射入附有棒狀透鏡的光纖1 7 1的情況進行探討研究。 再者’以下’將形成光纖1 8 1之纖核1 8 1 A或包層1 8 1 B 、及棒狀透鏡1 8 2的素材(例如石英玻璃等)的額定功率密 度設為1.0MW/mm‘:。此外,將光纖1 8 1之纖核直徑設為 0_35mm、棒狀透鐘,182的剖面的直徑設為〇.64mm。 201235142 此情況,雷射光的脈衝能量為2〇mJ( = 200W+ 1 〇kMz) ’峰值功率為 0.33MW(=20mJ + 60ns)。 例如,在雷射光不經由棒狀透鏡丨8 2而直接射入光纖 1 8 1的情況,射入光纖1 8 1的雷射光的峰值功率密度成為 2.7 MW/mm2 (= 0.33MW + (0.3 5mm)2),超過 了光纖 181 的 額定功率密度。 另一方面,在雷射光經由棒狀透鏡1 82直接射入光纖 1 8 1的情況’射入棒狀透鏡丄8 2的雷射光的功率密度成為 l_〇MW/mm2(=〇.33MW— { (〇.64mm/2)2x7t}),可抑制在 棒狀透鏡1 82的額定功率密度内。 然後,射入棒狀透鏡1 8 2的雷射光被聚光成剖面的半 徑為0.35mm以下而射入光纖ι81之纖核ι81Α。此時,光 纖1 8 1之纖核1 8 1A與棒狀透鏡1 8 2之炼接面因未接觸空氣 ,故具有和纖核1 8 1 A及棒狀透鏡丨82的素材的内部大致相 同的耐久性。因此,纖核1 8 1A與棒狀透鏡i 82之熔接面不 會有被雷射光燒壞之虞。 因此,可將例如和光纖1 20相同的纖核直徑及數值孔 徑的光纖用於光纖1 8 1。 順便一提,在雷射光未經由棒狀透鏡1 8 2直接射入光 纖1 8 1的情況’例如若將纖核直徑設為〇 6〇mm,則雷射 光的峰值功率逾、度成為比光纖1 8 1的額定功率密度更小 的 0.92 MW/mm2 (== 0.3 3MW + (0.6 0mm)2)。 如此,使用附有棒狀透鏡的光纖1 7丨的情況相較於使 用光纖1 1 5的情況,可縮小光纖} 8丨之纖核的剖面積。此 外’藉由使光纖1 8 1之纖核的刮面積變小,雷射光的光束 -12· 201235142 整形所需的距離變短,可縮短附有棒狀透鏡的光纖1 71 全體的長度6 [變形例2] 此外,也可以不設置光束整形用的光纖(光纖11 5或 附有棒狀透鏡的光纖171 ),而將附有棒狀透鏡的光纖用 於光纖1 20。即,如上述,附有棒狀透鏡的光纖相較於纖 核的剖面積相同的無棒狀透鏡的光纖,可射入更強的雷 射光。因此,藉由將附有棒狀透鏡的光纖用於光纖1 20 ’即使不設置光束整形用的光纖,也可以縮小光纖1 2 0 之纖核的剖面積。 [變形例3] 再者,各光纖之纖核的剖面可作成正方形以外的任 意的形狀。例如’可作成正方形以外的矩形或者為圓形 或糖圓形。然而’最好使光束整形用的光纖(光纖1 1 5或 附有棒狀透鏡的光纖171)與傳送用的光纖12〇之纖核的 剖面的形狀吻合。例如,光纖丨i 5之纖核的剖面的形狀是 長邊與短邊的長度之比為2: i的長方形時,光纖12〇之纖 核的剖面的形狀亦以長邊與短邊的長度之比為2 :丨的長 方形較佳。 [變形例4] 此外,在本發明的實施形態中,除了光纖1 15及附有 棒狀透鏡的光纖171之外,也可以使用例如均句器、柱狀 透鏡荨各種的光束整形器。 [變形例5 ] 再者在本發明中,如上述,傳送用光纖12〇的成本 -13- 201235142 降低效果大。因此,傳送用的光纖12〇越長,本發明的效 果越…外,例如如圖5所示,將雷射光分支而利用複 數根光纖傳送雷射光的情讶莖,楂.生m △ u』丨月况寻,傳送用的光纖的根數越 增加,本發明的效果越大。 再者,圖5顯示在圖1的雷射加工裝置1〇1的準直透鏡 116的後段設有將雷射光分支為6個的分支光學系統而成 的雷射加工裝置201之光學系統的結構例。再者,圖中在 與圖1對應的部分附上相$㈣?虎,其說明適當省略。此 外,在此圖中省略了加工光學系統的圖示。 雷射加工裝置201構成為包含雷射振盪器111、聚光 透鏡114、光纖115、準直透鏡116、部分反射鏡211、全 反射鏡212、及分支光學系統213&至分支光學系統^几 〇 分支光學系統2 1 3a構成為包含部分反射鏡22丨a、機 械式快H 222a、旋轉式衰減器223a、功率分配器224a、 聚光透鏡225a、光纖226a、及功率監視器227a。 分支光學系統213b具有和分支光學系統213a同樣的 結構。再者,分支光學系統2丨3b的各構成要素的符號係 將分支光學系統213a的各構成要素的符號末尾的&置換 為b。 分支光學系統214a構成為包含部分反射鏡231a、機 械式快門232a、旋轉式衰減器233a、功率分配器234a、 聚光透鏡235a、光纖236a、及功率監視器237a。再者, 機械式快門232a至功率監視器237a係與分支光學系統 21 3a的機械式快門222a至功率監視器227a相同。 -14- 201235142 分支光學系統214b具有和分支光學系統214a同樣的 :構。再者’ /分支光學系統21朴的各構成要素的符號係 將分支光學系統214a的各構成要素的符號末尾的&置換 為b 〇 分支光學系統215a構成為包含全反射鏡24U、機械 式陕門242a、旋轉式衰減器243a、功率分配器244a、聚 光透鏡245a、光纖246a、及功率監視器247a。再者,機 械式快門242a至功率監視器247a係與分支光學系統2na 的機械式快門222a至功率監視器227a相同。 分支光學系統2 1 5b具有和分支光學系統2丨5 a同樣的 結構。再者,分支光學系統2 1 5b的各構成要素的符號係 將分支光學系統21 5 a的各構成要素的符號末尾的&置換 為b。 再者’例如關於部分反射鏡2 1 1、2 3 1 a、2 3 1 b,係使 用穿透率50%及反射率50%的部分反射鏡,關於部分反 射鏡221a、221b,係使用穿透率33%及反射率67%的部 分反射鏡。 由光纖115射出且穿透準直透鏡116的雷射光被部分 反射鏡211分支成2個。 被部分反射鏡211反射的雷射光藉全反射鏡212反射 後’藉分支光學系統21 3a的部分反射鏡22 la分支成2個。 被部分反射鏡221a反射的雷射光藉旋轉式衰減器 223a衣減,一部分的雷射光藉由功率分配器224a反射, 剩餘的雷射光則穿透。穿透功率分配器224a的雷射光藉 聚光透鏡225a聚光,射入光纖226a,藉光纖226a傳送到 -15- 201235142 對應的加工光學系統。另一方面,藉功率分配器224£1反 射的雷射光射入功率監視器227a,檢測其強度。功率監 視器2 2 7 a將顯示所檢測出的雷射光強度的信號傳送到後 段。 另一方面’穿透部分反射鏡22 la的雷射光藉分支光 學系統214a的部分反射鏡231a分支成2個。 藉部分反射鏡23 la反射的雷射光係進行和藉分支光 學系統21 3a的部分反射鏡22 la反射的雷射光同樣的動作 ’而射入光纖236a及功率監視器237a。射入光纖236a的 雷射光藉由光纖236a傳送到對應的加工光學系統。 另一方面,穿透部分反射鏡23 la的雷射光係藉分支 光學系統215a的全反射鏡241a反射,進行和藉分支光學 系統21 3a的部分反射鏡221a反射的雷射光同樣的動作, 而射入光纖246a及功率監視器247a。射入光纖246a的雷 射光利用光纖246a傳送到對應的加工光學系統。 另一方面’穿透部分反射鏡21 1的雷射光係和藉全反 射鏡212反射的雷射光同樣地分支成3個,而分別射入分 支光學系統2 1 3b、分支光學系統2 1 4b、及分支光學系統 215b。然後’利用光纖226b、光纖236b、及光纖24“分 別傳送到對應的加工光學系統。 如此’由雷射振盪器1 1 1射出的雷射光被分支成6個 ’分別利用不同的光纖傳送到6個加工光學系統。因此, 可利用6個加工光學系統同時進行最大6處的加工。 再者’可使用機械式快門222a至224b個別停止來自 各分支光學系統的雷射光的射出,可調整同時進行加工 -16- 101 102 111 114 115 201235142 的場所的數量。 藉此,相較於如上述專利文獻丨所記載的 置那樣將強度分布均勻化後的雷射光射入由 構成的光纖束的情況’可抑制將雷射光分支 的損失。 再者,以上所示的雷射光的分支數量為 設定為任意的數量, 再者’本發明的實施形態並不限於上述 ,在不脫離本發明要旨的範圍内可進行各種 【圖式簡單說明】 圖1為顯示適用本發明的雷射加工裝置 的結構例的圖。 圖2為顯示適用本發明的雷射加工裝置 構例的圖。 圖3為顯示f射光庫月光束整㈣的光纖 出後其光束外形和剖面的形狀的圖。 圖4為顯示光束整形用的光纖之變形例否 圖5為顯示適用本發明的雷射加工裝置 的變形例的圖。 < 【主要元件符號說明】 雷射加工裝_置 加工對象物 雷射振盪器 聚光透鏡 光纖 雷射加工裝 複數根光纖 時的雷射光 其~例,可 的實施形態 變更。 之光學系統 之外觀的結 射入前和射 J圖。 之光學系統 -17- 201235142 116 119 120 121 122 123 124 125a、125b 126 151 153 154 155 157a〜157d 171 181 182 201 213a〜215b 225a > 225b 、 235a 、 235b、245a、245b 226a ' 226b、236a、 236b、246a > 246b 準直透鏡 聚光透鏡 光纖 準直透鏡 成像透鏡 狹缝 成像透鏡 掃描鏡 f 0透鏡 平台 支架 加工單元 配線用構件 電纜保護鏈條 附有棒狀透鏡的光纖 光纖 棒狀透鏡 雷射加工裝置 分支光學系統 聚光透鏡 光纖 -18-201235142 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a laser processing apparatus, and more particularly to a laser processing apparatus for transmitting laser light using an optical fiber. [Prior Art] Conventionally, in a laser processing apparatus, an optical fiber is used in order to transmit laser light from a laser oscillator to a processing optical system (for example, see Document 1). [Prior Art Document] [Patent Document 1] [Patent Document 1] JP-A-2002-16269 SUMMARY OF INVENTION [Problems to be Solved by the Invention] The larger the cross-sectional area of the fiber core of the optical fiber, the stronger the laser light can be injected. . On the other hand, the larger the cross-sectional area of the core, the higher the price of the fiber. Therefore, to increase the intensity of the laser light, increasing the processing energy, it is necessary to increase the sectional area of the core, and the cost required will increase. In addition, since the optical fiber is deteriorated by repeated bending or stretching accompanying the processing unit with the processing optical system, it needs to be periodically replaced. Therefore, the more expensive the fiber is, the higher the operating cost of the laser plus jade device. The present invention has been made in view of such a situation, and it is possible to reduce the sectional area of the core of the optical fiber for laser light transmission of the laser processing apparatus. [Means for Solving the Problem] The laser processing apparatus of the present invention includes: a beam shaper that integrally forms an intensity distribution of laser light emitted from a laser vibrator; and a lens that is to be irradiated by a beam shaper (4) Laser light concentrating; 201235142 and the first optical fiber 'the laser light that is condensed by the lens is incident, and the laser light that is incident is transmitted to the processing optical system. In one aspect of the invention, the intensity distribution of the laser light emitted by the laser oscillator is substantially uniform by the beam shaper, and the laser light emitted by the beam shaper is concentrated by the lens, and the light is collected by the lens. The light is transmitted to the processing optical system by the first optical fiber. Therefore, the peak intensity of the laser light of the first optical fiber for the transmission can be reduced, and as a result, the cross-sectional area of the core of the first optical fiber can be reduced. This beam shaper is composed of various beam shapers such as an optical fiber, a homogenizer, and a lenticular lens. The light beam is formed by the second optical fiber, and the first optical fiber has a core diameter of φ 1 and a numerical aperture of NA1. The second fiber has a core diameter of 2, and the numerical aperture is να2, which satisfies φ2. ; φΐ, ΝΑ2$ΝΑ1χ( Φ 1 / φ 2). Thereby, the beam shaper can be realized inexpensively. This beam splitting device can be constituted by a second optical fiber in which a rod lens is attached to an end surface on the side on which the laser light is incident. Thereby, the cross-sectional area of the core of the second optical fiber used as the beam shaper can be reduced. The cross section of the fibrils of the first optical fiber and the second optical fiber may be rectangular. Therefore, when the laser beam is scanned on the processing surface, the area of the light spot adjacent to the overlap can be reduced, and as a result, the processing time can be shortened. [Effect of the Invention] According to one aspect of the present invention, the cross-sectional area of the core of the optical fiber for laser light transmission of the laser processing apparatus can be reduced. [Embodiment] [Embodiment of the Invention] Hereinafter, a mode for carrying out the invention (hereinafter referred to as an embodiment) will be described. In addition, the description is made in the following order: 1. Embodiment 2. Modification FIG. 1 shows a configuration example of an optical system to which the laser processing apparatus 1 〇 1 of the present invention is applied. The laser processing apparatus 101 is a device that processes the object 1〇2 using laser light. Further, the object to be processed 1 0 2 is not particularly limited, and is, for example, a thin film solar cell panel, a display panel, or the like. The laser processing apparatus 101 includes a laser oscillator 111, total reflection mirrors 112, 113, a collecting lens 114, an optical fiber 115, a collimating lens 116, total reflection mirrors 117, 118, a collecting lens 119, an optical fiber 12, and collimation. The lens 121, the imaging lens 124, the scanning mirrors 125a, 125b, and the fe lens 126. The laser oscillator 1 1 1 is composed of a laser blue light that emits pulsed laser light. Further, the laser oscillator 111 is not limited to a specific type of laser oscillator, and a laser oscillator of any type may be employed. The laser beam emitted by the laser oscillator ill is reflected by the total reflection mirror 112 and the total reflection mirror 113, and then condensed by the condensing lens 114 to be incident on the optical fiber ΐ5 〇 the optical fiber 115 is a cross section of the core. It is composed of an optical fiber and is used for beam shaping of laser light. Specifically, the optical fiber 115 shapes the cross-sectional shape of the incident laser light into a square opening, and the illusion intensity distribution is substantially uniformized and then emitted. 201235142 The laser light emitted from the optical fiber 115 is collimated by the collimator lens U6, reflected by the total reflection mirror 117 and the total reflection mirror n8, and then concentrated by the condensing lens 119 to be incident on the optical fiber 120. Fiber optic 120 series and fiber! Similarly, 15 is composed of a square fiber having a square cross section of a core, which is used for transmission of laser light. That is, the optical fiber 12 准 passes the laser light incident to the processing optical system composed of the collimator lens 121 to the generation lens 126, and the laser light emitted from the optical fiber 120 is collimated by the collimator lens I?! The imaging lens 1 2 2 'injects into the slit 1 2 3 . The slit 1 2 3 has a square opening portion 'limiting the cross section of the laser light to the shape of the opening portion. The laser light passing through the slit 123 penetrates the imaging lens 124, is reflected by the scanning mirrors 125a and 125b in the direction of the ίθ lens 126, passes through the 邝 lens 126, and is imaged on the processing surface of the object 102. Further, the scanning mirrors 25a, 125b and the f0 lens 12 are used to scan the imaging position of the laser beam on the processing surface, that is, the processing position. Furthermore, by illuminating the object to be processed 102 by shaping the scraped surface of the laser light into a square shape, the overlap can be reduced when scanning the laser light on the processing surface as compared with, for example, a laser beam having a circular or elliptical cross section. The area of the adjacent spot. As a result, the processing time can be shortened. [Example of External Configuration of Laser Processing Apparatus 10 1] FIG. 2 is a view showing an example of the configuration of an external appearance of the laser processing apparatus. However, it is not shown in Figure 2 and from the figure! The laser oscillator η1 is connected to the corresponding portion of the condensing lens 1 1 9 . The laser processing apparatus 101 is configured to include a stage 151, a holder 152, a holder 153, a processing unit 154, a wiring member 155, a holder 156, and an electric 201235142 around the protection card 157a to 157d. In the following, the upper surface of the stage 151 (the upper surface of the bracket 152) is horizontal and the direction in which the bracket 153 extends (the left-right direction of the laser processing apparatus 1〇1) is set to the X-axis direction. Further, hereinafter, the upper surface of the stage 151 (the upper surface of the bracket 152) is horizontal and the direction orthogonal to the X-axis (the front-rear direction of the laser processing apparatus 101) is set to the Y-axis direction. Further, the direction orthogonal to the X-axis and the Y-axis (the vertical direction of the laser processing apparatus 1〇1) is set to the Z-axis direction. Further, in the X-axis direction, the direction in which the side surface is seen on the front side in the drawing is the right side of the laser processing apparatus 1 〇 1, and the opposite side is the left side. Further, hereinafter, in the Y-axis direction, the direction in which the holder 1535 is located is the rear side of the laser processing apparatus 1 〇 1, and the opposite side is the front side. A bracket 152 is provided on the upper surface of the platform 151, and the object 102 is placed on the upper surface of the bracket 152. Further, on the upper surface of the stage 151, the guide 151A1 and the guides 15 1 A2 (not shown) are provided on the left and right sides of the bracket 152 so as to extend in the Y-axis direction. The bracket 1 53 is disposed above the guides 1 5 1 A 1 and 1 5 1 A2 in such a manner that the beam extends in the X-axis direction, and can be along the guides 1 5 1 A1, 1 5 1 A2 and Y. Move in the direction of the axis. Further, on the upper surface of the bracket 153, a guide member 153A is provided to extend in the X-axis direction. The processing unit 154 has built-in collimating lenses 121 to f0 lenses 126, which are units for emitting laser light and for processing the object 102. The machining unit 154 is movably supported on the beam of the bracket 153 in the X-axis direction along the guide 153A. Further, the machining unit 154 moves along the Y-axis direction together with the bracket 153. 201235142 The wiring member 1 55 is a member for arranging the optical fiber 1 20 and the like, and is placed on the right side of the bracket 153. The bracket 156 is attached to the rear side of the bracket 153, and is provided with electron mirror protection chains 157c, 157d thereon. Further, the wiring member 155 and the bracket 156 are moved together with the holder ι53 in the Y-axis direction. The cable protection chains 157a and 157b are provided for wiring such as the optical fiber 120, and are disposed on the right side of the stage 501 so as to extend in the Y-axis direction and fold back and forth. One end of the upper side of the cable protection chain 1 57a, 1 57b is attached to the wiring member 155, and one end of the lower side is fixed to a predetermined position on the right side of the stage 151. Therefore, as the holder 153 moves in the Y-axis direction, one end of the upper side of the electric iron protection chains 157a, 157b moves in the γ-axis direction, and the bent position of the cable protection chains 157a, 157b moves in the γ-axis direction. The electric wound protection chains 157c and 157d are disposed on the upper surface of the bracket 156 so as to extend in the X-axis direction and fold back and forth. One end of the upper side of the cable protection chain 1 57c, 157d is mounted on a portion of the machining unit 154, and one end of the lower side is fixed to a predetermined position of the bracket 156. Therefore, as the processing unit 154 moves in the X-axis direction, one end of the upper side of the cable protection chains 157c, i57d moves in the X-axis direction, and the position of the cable protection chain 15 and i57d is folded in the direction of the x-axis. Although the illustration is omitted, the optical fiber 12 is passed through the cable protection chain, the electrical protection chain 157b, the wiring member 155, the electric protection chain 1 5 7 c, and the electric slow-moving can γ 丨q ^ , h See insurance. Only one of the chains 157d is connected to the processing 154. Therefore, as the machining unit (5) moves in the axial direction, the movement of the bracket 153 in the Y-axis direction, and the position where the electric-wound protection chain (5) & 201235142 to 157d is bent, the position of the optical fiber i2 is also bent. mobile. Thereby, the optical fiber 120 is repeatedly bent or stretched to deteriorate, so it must be replaced periodically. [Specifications of the optical fiber 1 15 and the optical fiber 120] Here, the specifications of the optical fiber 丄丨 5 and the optical fiber i 2 ’ are examined with reference to Fig. 3 '. Fig. 3 shows an example of the beam profile and cross section of the laser beam of the incident surface 1丨5 a of the fiber nucleus 11 5 and the exit surface Π 5B. The left side shows the beam profile and cross section of the laser light incident on the surface 115 A (i.e., the laser light incident on the fiber 135). On the right side, the beam shape and cross section of the laser beam of the exit surface 1 1 5B (i.e., the laser light emitted from the fiber i 丨 5) are shown. The cross section of the laser light before the injection is circular, and the intensity distribution is distributed in a substantially uniform direction. On the other hand, the cross section of the laser light after the emission is substantially square, and the intensity distribution is a distribution of a substantially uniform top hat type. Further, by equalizing the intensity distribution, the peak intensity of the laser light is lowered before the injection, and the peak value of the power density of the laser light is lowered. If the power density of the incident laser light exceeds a predetermined rated value (hereinafter referred to as the rated power density), the material forming the core of the optical fiber (for example, quartz glass or the like) may be burned after the interface with the air. . Therefore, by using the optical fiber 11 5 to reduce the peak intensity of the laser light, a stronger (energetic) laser light can be incident on the fiber 丨 2 〇. As a result, a larger processing energy can be obtained. Conversely, by using the optical fiber 11 5 to reduce the peak intensity of the laser light and the power density of the laser light incident on the core of the optical fiber 120 to be equal to or lower than the rated power density, the laser light incident on the optical fiber 12 可 can be reduced. Cut the area of 201235142 and increase the peak intensity. Therefore, the cross-sectional area of the core of the optical fiber 1 20 can be made smaller than the cross-sectional area of the core of the optical fiber 11 5 (i.e., the sectional area of the core of the optical fiber 120 required when the optical fiber 11 is not provided). As a result, the cost of the optical fiber 1 20 can be reduced. Further, the laser light emitted from the optical fiber 115 must be such that it does not cause energy loss when it is incident on the optical fiber 120. For this reason, the core diameter Φ a of the optical fiber 1 15 and the numerical aperture NAa and the core diameter φ b of the optical fiber 1 and the numerical aperture NAb may be set in such a manner as to satisfy the following formula (1). In the case where the cross section of the core of the optical fiber is rectangular, the diameter of the core on the emitting side can be calculated as the diameter of the circumscribed circle of the rectangle, and the diameter of the core on the incident side can be calculated as the diameter of the inner circle of the rectangle. . NAax φ a ^ NAbx φ b (1) In summary, in the laser processing apparatus 101, the core diameter Φ a of the optical fiber 1 15 and the numerical aperture NAa and the core diameter φ b of the optical fiber 120 and The numerical aperture Nab should satisfy the following equations (2) and (3): Φ a > φ b (2) NAa^ NAbx( φ b / φ a) (3) For example, the optical fiber 1 15 The core diameter φ a is set to twice the core diameter Φ b of the optical fiber 120, and the numerical aperture NAa of the optical fiber 115 is set to 1 /2 of the numerical aperture NAb of the optical fiber 120. Further, in this case, for example, the focal lengths of the condensing lens Π 4 and the condensing lens 119 are set to the same value, and the focal length of the collimating lens 116 is set to be twice as large as that of the condensing lens Π4 and the condensing lens 119. Further, the optical fiber 1 15 may have a length sufficient to shape at least the beam of the laser light, that is, a length sufficient to make the cross-sectional shape of the laser light square and -10-201235142 to uniformize the intensity distribution. Therefore, although depending on the specifications of the wiring path and the like of the optical fiber 120, the optical fiber 115 may be much shorter than the optical fiber 20, such as above, in the laser processing apparatus ,0, compared to the non-use optical fiber 1 1 In the case of 5, the cost of the transmission optical fiber 12〇 which is periodically replaced with the same strength can reduce the running cost of the laser processing apparatus 101. On the other hand, fiber i 15 is much shorter than fiber 12 , and does not bend or stretch as fiber 120 without periodic replacement. Further, the optical fiber 115 is cheaper than a beam shaper such as a homogenizer or a lenticular lens. Therefore, the cost increase of the optical fiber 1 15 is set to be smaller than the cost reduction of the above-mentioned optical fiber i 2 . < 2. Modified Example> Hereinafter, a modification of the embodiment of the present invention will be described. [Modification 1] For example, the optical fiber 117 with the rod lens shown in Fig. 4 may be used instead of the optical fiber 1 15 . The optical fiber i 7 attached with a rod lens is formed by welding a cylindrical rod lens 182 to the end surface of the fiber core and the fiber end surface of the optical fiber 1 15 and the optical fiber 1 20 which are square. optical fiber. Here, the case where the laser light having a power of 200 W and the repetition frequency of i 〇 kHz is incident on the optical fiber 171 with the rod lens is investigated. Further, 'the following' is to set the rated power density of the material (for example, quartz glass, etc.) of the fiber core 1 8 1 A or the cladding 1 8 1 B of the optical fiber 18 1 and the rod lens 1 8 2 to 1.0 MW / Mm':. Further, the diameter of the core of the optical fiber 181 was set to 0 mm to 35 mm, and the diameter of the cross section of the 182 was set to 〇.64 mm. 201235142 In this case, the pulse energy of the laser light is 2〇mJ (= 200W+ 1 〇kMz) ’ peak power is 0.33MW (=20mJ + 60ns). For example, in the case where laser light is directly incident on the optical fiber 1 8 1 without passing through the rod lens 丨 8 2 , the peak power density of the laser light incident on the optical fiber 18 1 becomes 2.7 MW/mm 2 (= 0.33 MW + (0.3 5 mm) 2), exceeding the rated power density of the fiber 181. On the other hand, in the case where the laser light is directly incident on the optical fiber 1 8 1 via the rod lens 1 82, the power density of the laser light incident on the rod lens 丄 8 2 becomes l_〇 MW/mm 2 (= 〇. 33 MW - { (〇.64mm/2) 2x7t}) can be suppressed within the rated power density of the rod lens 182. Then, the laser beam incident on the rod lens 182 is condensed to have a half-diameter of a cross section of 0.35 mm or less and is incident on the fiber nucleus Δ81 of the optical fiber ι81. At this time, since the refining surface of the fiber core 1 8 1A of the optical fiber 181 and the rod lens 18 2 is not in contact with the air, it has substantially the same interior as the material of the fiber core 18 1 A and the rod lens 丨 82. Durability. Therefore, the welded surface of the core 1 8 1A and the rod lens i 82 is not burned by the laser light. Therefore, an optical fiber having the same core diameter and numerical aperture as that of the optical fiber 1 20 can be used for the optical fiber 81. Incidentally, in the case where the laser light is directly incident on the optical fiber 181 through the rod lens 182, for example, if the diameter of the core is set to 〇6 〇 mm, the peak power of the laser light exceeds the degree of the fiber. The rated power density of 1 8 1 is 0.92 MW/mm2 (== 0.3 3MW + (0.6 0mm) 2). Thus, the case where the optical fiber with the rod lens is used is 7 7 turns, and the cross-sectional area of the fiber core of the optical fiber can be reduced as compared with the case where the optical fiber 1 15 is used. In addition, by making the scraping area of the fiber core of the optical fiber 181 smaller, the distance required for shaping the laser beam -12·201235142 becomes shorter, and the length 6 of the entire fiber 171 with the rod lens can be shortened [ Modification 2] Further, an optical fiber for optical beam shaping (optical fiber 11 5 or optical fiber 171 with a rod lens attached thereto) may be omitted, and an optical fiber with a rod lens may be used for the optical fiber 190. That is, as described above, the optical fiber with the rod lens can emit stronger laser light than the optical fiber without the rod lens having the same sectional area of the core. Therefore, by using the optical fiber with the rod lens for the optical fiber 1 20 ', the cross-sectional area of the core of the optical fiber 1 2 0 can be reduced even if the optical fiber for beam shaping is not provided. [Modification 3] Further, the cross section of the core of each optical fiber can be formed into any shape other than a square. For example, 'can be made into a rectangle other than a square or a circle or a sugar circle. However, it is preferable that the optical fiber for beam shaping (the optical fiber 115 or the optical fiber 171 with the rod lens attached) conforms to the shape of the cross section of the core of the optical fiber 12 for transmission. For example, when the shape of the cross section of the core of the fiber 丨i 5 is a rectangle having a ratio of the length of the long side to the short side of 2: i, the shape of the cross section of the core of the optical fiber 12 亦 is also the length of the long side and the short side. The ratio is 2: the rectangle of 丨 is preferred. [Modification 4] Further, in the embodiment of the present invention, in addition to the optical fiber 1 15 and the optical fiber 171 to which the rod lens is attached, various beam shapers such as a homophone and a cylindrical lens may be used. [Variation 5] In the present invention, as described above, the cost of the transmission optical fiber 12〇-13-201235142 has a large reduction effect. Therefore, the longer the effect of the present invention is, the more the effect of the present invention is. For example, as shown in FIG. 5, the laser beam is branched and the laser beam is transmitted by a plurality of optical fibers, and the m △ u is generated. The more the number of fibers for transmission increases, the greater the effect of the present invention. Further, Fig. 5 shows a structure of an optical system of a laser processing apparatus 201 in which a branch optical system that branches laser light into six branches is provided in the rear stage of the collimator lens 116 of the laser processing apparatus 1A of Fig. 1. example. Furthermore, in the figure, the part corresponding to Fig. 1 is attached with a phase $(4)? Tiger, its description is omitted appropriately. Further, illustration of the processing optical system is omitted in this figure. The laser processing apparatus 201 is configured to include a laser oscillator 111, a collecting lens 114, an optical fiber 115, a collimating lens 116, a partial mirror 211, a total reflection mirror 212, and a branching optical system 213 & The branch optical system 2 1 3a is configured to include a partial mirror 22A, a mechanical fast H 222a, a rotary attenuator 223a, a power splitter 224a, a collecting lens 225a, an optical fiber 226a, and a power monitor 227a. The branch optical system 213b has the same structure as the branch optical system 213a. In addition, the symbol of each component of the branch optical system 2丨3b is replaced by b at the end of the symbol of each component of the branch optical system 213a. The branch optical system 214a is configured to include a partial mirror 231a, a mechanical shutter 232a, a rotary attenuator 233a, a power splitter 234a, a collecting lens 235a, an optical fiber 236a, and a power monitor 237a. Further, the mechanical shutter 232a to the power monitor 237a are the same as the mechanical shutter 222a to the power monitor 227a of the branch optical system 21 3a. -14- 201235142 The branching optical system 214b has the same configuration as the branching optical system 214a. Further, the symbol of each component of the '/branch optical system 21' is replaced by the end of the symbol of each component of the branching optical system 214a, and the branching optical system 215a is configured to include a total reflection mirror 24U and a mechanical type of Shaanxi. A door 242a, a rotary attenuator 243a, a power splitter 244a, a collecting lens 245a, an optical fiber 246a, and a power monitor 247a. Further, the mechanical shutter 242a to the power monitor 247a are the same as the mechanical shutter 222a to the power monitor 227a of the branch optical system 2na. The branching optical system 2 1 5b has the same structure as the branching optical system 2丨5 a. Further, the symbol of each component of the branch optical system 2 1 5b is replaced by b at the end of the symbol of each component of the branch optical system 215 a. Further, for example, regarding the partial mirrors 2 1 1 , 2 3 1 a, 2 3 1 b, a partial mirror having a transmittance of 50% and a reflectance of 50% is used, and the partial mirrors 221a and 221b are worn. Partial mirror with a penetration rate of 33% and a reflectivity of 67%. The laser light emitted from the optical fiber 115 and penetrating the collimator lens 116 is branched into two by the partial mirror 211. The laser light reflected by the partial mirror 211 is reflected by the total reflection mirror 212, and the partial mirror 22 la of the branch optical system 21 3a is branched into two. The laser light reflected by the partial mirror 221a is reduced by the rotary attenuator 223a, and part of the laser light is reflected by the power splitter 224a, and the remaining laser light is transmitted. The laser light transmitted through the power splitter 224a is collected by the collecting lens 225a, incident on the optical fiber 226a, and transmitted to the processing optical system corresponding to -15-201235142 by the optical fiber 226a. On the other hand, the laser light reflected by the power splitter 224 £1 is incident on the power monitor 227a, and its intensity is detected. The power monitor 2 2 7 a transmits a signal indicating the detected intensity of the laser light to the subsequent stage. On the other hand, the laser beam penetrating the partial mirror 22 la is branched into two by the partial mirror 231a of the branch optical system 214a. The laser light reflected by the partial mirror 23 la is incident on the optical fiber 236a and the power monitor 237a in the same manner as the laser light reflected by the partial mirror 22 la of the branch optical system 21 3a. The laser light incident on the optical fiber 236a is transmitted to the corresponding processing optical system via the optical fiber 236a. On the other hand, the laser light transmitted through the partial mirror 23 la is reflected by the total reflection mirror 241a of the branch optical system 215a, and performs the same action as the laser light reflected by the partial mirror 221a of the branch optical system 21 3a. The optical fiber 246a and the power monitor 247a are inserted. The laser light incident on the optical fiber 246a is transmitted to the corresponding processing optical system using the optical fiber 246a. On the other hand, the laser light transmitted through the partial mirror 21 1 and the laser light reflected by the total reflection mirror 212 are equally branched into three, and are incident on the branch optical system 2 1 3b and the branch optical system 2 1 4b, respectively. And branch optical system 215b. Then, the optical fiber 226b, the optical fiber 236b, and the optical fiber 24 are respectively transmitted to the corresponding processing optical system. Thus, the laser light emitted by the laser oscillator 11 is branched into six 'transferred to 6 by different optical fibers respectively. Therefore, the processing optical system can be used for simultaneous processing of up to six places by using six processing optical systems. Furthermore, the mechanical shutters 222a to 224b can be used to individually stop the emission of laser light from each branch optical system, and can be adjusted simultaneously. The number of places of the processing -16-101 102 111 114 115 201235142. Thereby, the laser light obtained by homogenizing the intensity distribution is incident on the fiber bundle constituted by the fiber bundle as described in the above-mentioned Patent Document ' In addition, the number of branches of the laser light shown above is set to an arbitrary number, and the embodiment of the present invention is not limited to the above, and does not deviate from the gist of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a configuration example of a laser processing apparatus to which the present invention is applied. Fig. 3 is a view showing the shape of the beam and the shape of the cross section of the fiber of the beam of the moonlight beam (4). Fig. 4 is a view showing a modification of the fiber for beam shaping. Fig. 1 is a view showing a modification of a laser processing apparatus to which the present invention is applied. [Explanation of main component symbols] Laser processing apparatus _ processing object laser oscillator concentrating lens fiber laser processing when a plurality of optical fibers are mounted In the case of laser light, the embodiment can be changed. The appearance of the optical system is before and after the J. The optical system -17- 201235142 116 119 120 121 122 123 124 125a, 125b 126 151 153 154 155 157a ~157d 171 181 182 201 213a~215b 225a > 225b, 235a, 235b, 245a, 245b 226a '226b, 236a, 236b, 246a > 246b Collimating lens concentrating lens fiber collimating lens imaging lens slit imaging lens scanning Mirror f 0 lens platform bracket processing unit wiring component cable protection chain fiber optic fiber rod lens laser lens with rod lens branch optical system concentrating lens light -18-

Claims (1)

201235142 七、申請專利範圍: 1. 一種雷射加工裝置’其特徵在於具備: 光束整形器,其將由雷射振盪器射出的雷射光的 強度分布整形成大致均勻; 透鏡’其將由該光束整形器射出的雷射光聚光; 及 第1光纖,其供藉該透鏡聚光的雷射光射入,並將 所射入的雷射光傳送到加工光學系統。 2. 如申請專利範圍第1項之雷射加工裝置,其中該光束整 形器係由第2光纖構成; 认忒第1光纖的纖核直徑為φ i、數值孔徑為NA i ,該第2光纖的纖核直徑為φ2、數值孔徑為na2時,滿 足: Φ 2 > φ 1 ΝΑ2^ ΝΑ1χ(φ 1/ φ 2) 〇 射加工裝置,其中該光束整 之側的端面熔接有棒狀透鏡 3 .如申請專利範圍第1項之雷 形器係由在供雷射光射入 而成的第2光纖所構成。 4 ·如申請專利範圍第2或 光纖及該第2光纖之纖 3項之雷射加工裝置,其中該第i 核的剖面為矩形。 Ί9-201235142 VII. Patent Application Range: 1. A laser processing apparatus characterized by: a beam shaper that integrally forms an intensity distribution of laser light emitted by a laser oscillator; a lens 'which will be used by the beam shaper The emitted laser light is concentrated; and the first optical fiber is incident on the laser light condensed by the lens, and the incident laser light is transmitted to the processing optical system. 2. The laser processing apparatus of claim 1, wherein the beam shaper is composed of a second optical fiber; the first optical fiber has a core diameter of φ i and a numerical aperture of NA i , the second optical fiber When the diameter of the core is φ2 and the numerical aperture is na2, it satisfies: Φ 2 > φ 1 ΝΑ 2^ ΝΑ 1 χ (φ 1 / φ 2) The 加工-ray processing apparatus in which the end face of the entire beam is welded with the rod lens 3 The lightning device of claim 1 is composed of a second optical fiber that is incident on laser light. 4. A laser processing apparatus according to claim 2 or an optical fiber and a fiber of the second optical fiber, wherein the i-th core has a rectangular cross section. Ί9-
TW101103179A 2011-02-28 2012-02-01 Laser processing device TW201235142A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011042533A JP5348155B2 (en) 2011-02-28 2011-02-28 Laser processing equipment

Publications (1)

Publication Number Publication Date
TW201235142A true TW201235142A (en) 2012-09-01

Family

ID=46757526

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101103179A TW201235142A (en) 2011-02-28 2012-02-01 Laser processing device

Country Status (3)

Country Link
JP (1) JP5348155B2 (en)
TW (1) TW201235142A (en)
WO (1) WO2012117569A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013211523B3 (en) * 2013-06-19 2014-08-07 Trumpf Laser- Und Systemtechnik Gmbh Processing machine for workpiece machining
JP2015196170A (en) * 2014-03-31 2015-11-09 トヨタ自動車株式会社 Processing method of zirconia
JP6722994B2 (en) * 2015-10-19 2020-07-15 株式会社片岡製作所 Laser processing machine
CN115144978B (en) * 2021-07-29 2024-05-17 武汉帝尔激光科技股份有限公司 Laser shaping device and optical fiber coupling method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273805A (en) * 1987-05-01 1988-11-10 Nec Corp Optical fiber device for power transmission
JPH07281053A (en) * 1994-04-11 1995-10-27 Mitsui Petrochem Ind Ltd Fiber photocoupler
JPH1158665A (en) * 1997-08-27 1999-03-02 Asahi Chem Ind Co Ltd Laser plate making apparatus
JP4048016B2 (en) * 2000-03-10 2008-02-13 三菱電機株式会社 Semiconductor laser light source and semiconductor laser processing apparatus using the same
JP2003112281A (en) * 2001-09-28 2003-04-15 Matsushita Electric Ind Co Ltd Laser beam machine and production equipment using the machine
JP4112355B2 (en) * 2002-12-11 2008-07-02 日立造船株式会社 Beam forming method and apparatus
JP4003658B2 (en) * 2003-02-17 2007-11-07 日立電線株式会社 Lens array spot size conversion optical circuit
GB0328370D0 (en) * 2003-12-05 2004-01-14 Southampton Photonics Ltd Apparatus for providing optical radiation
JP2008087000A (en) * 2006-09-29 2008-04-17 Mitsubishi Electric Corp Laser beam machining apparatus
JP2009119521A (en) * 2007-11-19 2009-06-04 Miyachi Technos Corp Laser welding method

Also Published As

Publication number Publication date
JP5348155B2 (en) 2013-11-20
JP2012179612A (en) 2012-09-20
WO2012117569A1 (en) 2012-09-07

Similar Documents

Publication Publication Date Title
US6567164B2 (en) Entangled-photon microscope and confocal microscope
TW201235142A (en) Laser processing device
US7787179B2 (en) Optical arrangement for the production of a light-sheet
JP5639182B2 (en) Beam splitter device, light source device, and scanning observation device
CN104460207B (en) A kind of LASER Light Source and projection display equipment
JP5254205B2 (en) Optical scanning device and two-dimensional image display device using the same
US20150078031A1 (en) Light source apparatus
JP2010271569A (en) Scanning microscope device
JP2012159749A (en) Bessel beam generator
CN101900873A (en) Multi-mode fiber optically coupling a radiation source module to a multi-focal confocal microscope
JP2007121590A (en) Confocal scanner
KR102198779B1 (en) Device for generating laser radiation having a linear intensity distribution
JP2011189389A (en) Laser beam machining apparatus
US8294984B2 (en) Microscope
JP6640094B2 (en) Laser light irradiation device
JP2011221191A (en) Beam uniformizing device and optical processing device
JP2017084620A (en) Light source device
JP2006220953A5 (en)
US10274745B2 (en) System for uniformly illuminating target to reduce speckling
JP5417143B2 (en) UV irradiation equipment
JP5129399B2 (en) Apparatus for guiding electromagnetic radiation to a projection exposure apparatus
JP5389554B2 (en) Laser apparatus and laser beam adjustment method
JP2015037474A5 (en)
JP6299021B2 (en) Light guide, illumination device, and image reading device
KR101424601B1 (en) Apparatus for transforming laser beam using optical waveguide film