WO2012117563A1 - シンクロトロンの電磁石電源制御システム及び制御方法並びにシンクロトロン - Google Patents

シンクロトロンの電磁石電源制御システム及び制御方法並びにシンクロトロン Download PDF

Info

Publication number
WO2012117563A1
WO2012117563A1 PCT/JP2011/054977 JP2011054977W WO2012117563A1 WO 2012117563 A1 WO2012117563 A1 WO 2012117563A1 JP 2011054977 W JP2011054977 W JP 2011054977W WO 2012117563 A1 WO2012117563 A1 WO 2012117563A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchrotron
deflection
electromagnet power
patterns
main pattern
Prior art date
Application number
PCT/JP2011/054977
Other languages
English (en)
French (fr)
Inventor
萌美 武田
真澄 梅澤
大春 千葉
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2011/054977 priority Critical patent/WO2012117563A1/ja
Priority to JP2013502127A priority patent/JP5581530B2/ja
Publication of WO2012117563A1 publication Critical patent/WO2012117563A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/04Synchrotrons

Definitions

  • the present invention relates to a synchrotron electromagnet power supply control system and control method for accelerating a charged particle beam, and a synchrotron.
  • the synchrotron accelerates a charged particle beam (hereinafter referred to as a beam) incident after being accelerated to some extent by a linear accelerator to a desired energy and emits it to a beam utilization facility such as a particle beam cancer treatment apparatus.
  • a beam a charged particle beam incident after being accelerated to some extent by a linear accelerator to a desired energy and emits it to a beam utilization facility such as a particle beam cancer treatment apparatus.
  • the beam circulates in an annular vacuum duct and accelerates to a desired energy by repeatedly passing through a high-frequency acceleration cavity.
  • the synchrotron has a deflecting electromagnet for deflecting the beam, a monitor for measuring the position of the beam, and a correction electromagnet (steering electromagnet) for adjusting the beam trajectory based on the measurement result in order to make the beam circulate on the same orbit.
  • Each synchrotron device is designed and installed so that the deflected beam circulates in the same orbit, but in reality, the axis of the beam slightly shifts due to the shape error and installation error of each device.
  • the beam trajectory is corrected by the steering electromagnet.
  • each deflecting electromagnet need only bend the beam at the same angle regardless of the beam trajectory shift, and is excited with the same intensity by a common power source.
  • the steering electromagnet for correcting the beam trajectory needs to change the excitation intensity in accordance with the deviation of the beam trajectory, it is excited with different intensity by each individual power source.
  • the synchrotron generally has a deflecting electromagnet excited by a common power supply to deflect the beam, and a steering electromagnet excited by an individual power supply corrects the beam trajectory.
  • a deflecting electromagnet excited by a common power supply to deflect the beam
  • a steering electromagnet excited by an individual power supply corrects the beam trajectory.
  • the deflection electromagnet corrects the beam trajectory by changing the excitation intensity and finely adjusting the deflection angle of the beam.
  • each deflecting electromagnet needs to change the excitation intensity in accordance with the beam trajectory shift, and is therefore excited with different intensities by an individual power source instead of a common power source.
  • Non-Patent Document 1 An example of a synchrotron in which a deflection electromagnet is controlled by an individual power source and performs beam deflection and trajectory correction is disclosed in Non-Patent Document 1.
  • This paper includes "The 12 main dipoles are excited in pairs by 6 Magnet Power Supplies (MPS). (Omitted) These errors can be corrected to around 1 mm with the 6 main dipole power supplies and the 6 vertical corrector magnet Are listed.
  • twelve deflection electromagnets are excited as a set by individual power sources, and the beam trajectory error in the horizontal direction is corrected.
  • the synchrotron repeats “incidence-acceleration-extraction-deceleration” of the beam in a predetermined cycle, and the deflecting electromagnet repeats the excitation intensity pattern in a predetermined cycle according to the change of the beam energy (acceleration).
  • excitation intensity pattern data is set for one common power source.
  • the deflecting electromagnet performs both beam deflection and trajectory correction, different pattern data is set for each deflecting electromagnet power source.
  • the excitation adjustment for correcting the beam trajectory of the excitation intensity pattern is difficult to distinguish on the graph.
  • an excitation intensity pattern corresponding to beam acceleration / deceleration is set in the deflection electromagnet power supply, and an excitation adjustment pattern for beam trajectory correction is set in the steering electromagnet power supply separately.
  • the deflecting electromagnet performs beam trajectory correction
  • the excitation intensity pattern set for each deflecting electromagnet power source has the excitation intensity slightly changed according to the amount of excitation greatly changed according to the beam acceleration / deceleration and the deviation of the beam trajectory. It also serves as an adjustment.
  • the excitation adjustment amount for correcting the beam trajectory is very small with respect to the excitation intensity corresponding to the beam acceleration / deceleration. Therefore, when creating pattern data on a graph, it is difficult to determine the excitation adjustment for beam trajectory correction, and adjustment is difficult.
  • An object of the present invention is to provide an electromagnet power supply control system and control method, and a synchrotron capable of easily adjusting excitation of the deflection electromagnet in a synchrotron in which the deflection electromagnet performs both beam deflection and trajectory correction. is there.
  • the excitation intensity pattern of each deflection electromagnet is created and managed by dividing it into a main pattern corresponding to beam acceleration / deceleration and a pattern for beam trajectory correction.
  • the main pattern is common to the deflection electromagnets of all the deflection units, and the correction pattern is individual for the deflection electromagnets of each deflection unit.
  • the result of adding the common main pattern and the individual correction patterns is set for each deflection electromagnet power source.
  • the excitation adjustment of the deflecting electromagnet can be performed easily and quickly, and the time for creating and adjusting the excitation intensity pattern can be shortened.
  • FIG. 1 is a block diagram of a synchrotron.
  • the synchrotron 100 includes a front stage accelerator 101, deflection electromagnets 102a, 102b, 102c, and 102d, a quadrupole electromagnet 103, a hexapole electromagnet 104, an electrostatic inflector 105, an electrostatic deflector 106, an exit septum electromagnet 107, an incident bump electromagnet 108, a beam. Position monitors 109a, 109b, 109c, 109d, a high-frequency acceleration cavity 110, and the like are provided.
  • the deflection electromagnets 102a, 102b, 102c, 102d are arranged one by one in the four deflection units 102-1, 102-2, 102-3, 102-4.
  • FIG. 2 is a diagram illustrating excitation intensity patterns of the deflection electromagnets 102a, 102b, 102c, and 102d.
  • the deflection electromagnets 102a, 102b, 102c, and 102d apply excitation strength as shown in FIG. 2 in accordance with the energy (acceleration) of the beam in order to deflect the beam. Since it is necessary to deflect the beam with a stronger force as the beam energy increases, the excitation intensity of the deflecting electromagnet is changed in accordance with the beam energy. Initially, the magnetic field is set low according to the low energy at the time of beam incidence (incident operation 201), and the magnetic field is strengthened every time the beam accelerates (acceleration operation 202), and the magnetic field is made constant according to the energy at the time of emission. After maintaining (extraction operation 203), the magnetic field is lowered for the next beam incidence (deceleration operation 204).
  • the excitation intensity of the deflection electromagnet has a large mountain shape. Since the synchrotron 100 repeats “incident-acceleration-exit-decelerate” of the beam at a predetermined cycle, the change of the excitation intensity shown in FIG.
  • the excitation intensity pattern is repeated in accordance with the period. This pattern needs to be changed according to the energy level at the time of emission, and a pattern corresponding to the desired type of emission energy is required.
  • the deflection electromagnets 102a, 102b, 102c, and 102d change the angle at which the beam is deflected by finely adjusting the excitation intensity so that the beam passes through the correct position at the positions of the beam position monitors 109a, 109b, 109c, and 109d. Correct the trajectory.
  • the deflection electromagnet 102a adjusts the beam deflection angle so that the beam trajectory coincides with a desired position at the point of the beam position monitor 109a. Since the deviation of the beam trajectory differs at each beam position monitor point, the correction angle of the beam trajectory is different for each electromagnet corresponding to each monitor, and the adjustment amount of the excitation intensity is also different.
  • FIG. 3 is a diagram showing the control principle of the present invention.
  • the pattern data of the deflection electromagnet is the main pattern 301 common to the deflection electromagnets 102a, 102b, 102c, 102d (deflection units 102-1, 102-2, 102-3, 102-4) as shown in FIG. And deflection electromagnets 102a, 102b, 102c, 102d (deflecting units 102-1, 102-2, 102-3, 102-4) for correcting the beam trajectory to individual correction patterns 302a, 302b, 303c, 302d. Create and manage separately.
  • the main pattern 301 is a pattern that matches the energy at the time of beam incidence and emission as shown in FIG.
  • the correction patterns 302a, 302b, 303c, and 302d are used to finely adjust the excitation intensity of the deflecting electromagnet to slightly change the beam deflection angle so that the beam trajectory matches the desired position at the position of the beam position monitor. This is an excitation adjustment pattern.
  • “Main pattern 301 + correction patterns 302a, 302b, 303c, 302d deflection electromagnet patterns 303a, 303b, 303c, 303d” (that is, the common main pattern 301 and the individual beam trajectory correction patterns 302a to 302d are added together.
  • FIG. 4 is a diagram showing an overall configuration of the electromagnet power supply control system of the synchrotron 100. As shown in FIG.
  • the electromagnet power supply control system 410 includes a computer 401 (management device) having a plurality of terminals (display devices) 400a, 400b, and 400c, and a control device 402.
  • the operator creates the main pattern 301 and the correction patterns 302a to 302d by displaying the data of the main pattern 301 and the data of the correction patterns 302a to 302d shown in FIG. 3 on the graph creation screen of the display unit of the terminals 400a, 400b, and 400c. And stored in the storage device of the computer 401.
  • the computer 401 converts a plurality of stored pattern data into a form that can be used for power supply control such as a current / voltage pattern, and sets it in the memory of the control device 402.
  • the control device 402 selects a pattern corresponding to the desired energy from a plurality of pattern data set in the memory in accordance with the timing of the “incidence-acceleration-extraction-deceleration” of the beam, and generates an electromagnet power supply (Bending Magnet Power Supply). 403a, 403b, 403c, 403d.
  • the electromagnet power supplies 403a, 403b, 403c, and 403d are individually provided in the deflection electromagnets 102a, 102b, 102c, and 102d (deflection units 102-1, 102-2, 102-3, and 102-4) and received from the control device 402.
  • FIG. 5 is a diagram showing details of functions of the computer 401 and the control device 402.
  • the computer 401 stores the main pattern 301 and the correction patterns 302a to 302d separately in the computer 401.
  • the computer 401 adds both patterns and sets them in the control device 402 as follows.
  • the “incidence-acceleration-extraction-deceleration” period of the beam is 3 seconds (excluding the time for permitting extraction, which is variable)
  • the pattern data is composed of a total of 3000 points of excitation intensity data per millisecond.
  • the computer 401 adds the data at the same time of 3000 points of the main pattern and 3000 points of the correction pattern.
  • the excitation intensity data is converted into a form that can be used for power supply control such as current / voltage data, and stored in the memory of the control device 402.
  • the addition of the main pattern / correction pattern and the conversion from the excitation intensity data to the current / voltage data may be performed in the reverse order.
  • the output device 402a of the control device 402 selects a pattern matching a desired emission energy from a plurality of patterns stored in the memory, and sets the current / voltage data 3000 points to the deflection electromagnet power supplies 403a to 403d in accordance with the timing of each time point. Output.
  • the control device 402 can also develop and output 3000 points of data to 30000 points.
  • the electromagnet power supplies 403a to 403d excite the deflection electromagnets 102a to 102d in accordance with the current / voltage data received from the control device 402. -Creation process of excitation pattern data-
  • FIG. 6 is a flowchart showing a process for creating pattern data used in deflection electromagnet power control.
  • ⁇ Pattern data used for deflection electromagnet power supply control is created as follows. First, the operator uses the terminal 400a of the computer 401 to create a main pattern 301 corresponding to desired output energy (step S501), sets only the main pattern 301 in the control device 402, and sets the synchrotron 100. drive. Then, the position of the beam at the time when the error is to be corrected (when the beam is incident, when the beam is emitted, etc.) is measured by the beam position monitors 109a, 109b, 109c, 109d, and the measurement result is displayed on the terminal 400a of the computer 401 (step 400a). S502).
  • FIG. 7 is a diagram showing the measurement results of each beam position monitor.
  • the measurement results of the first beam position monitors 109a, 109b, 109c, and 109d are, for example, a screen 601 in FIG.
  • 0 means that the beam trajectory is located at the center of the monitor, plus indicates that the trajectory is on the outside, and minus indicates that the trajectory is on the inside.
  • the beam deflection angles of all the deflecting electromagnets 102a to 102d are increased to make the trajectory as a whole. Therefore, the excitation intensity of the main pattern common to the deflection electromagnets is increased (step S501).
  • step S501 for creating the main pattern, the operation of the synchrotron 100, and the operation of step S502 for measuring the beam trajectory are performed as shown in the screen 602 of FIG. Repeat until.
  • step S502 in which the synchrotron 100 is operated using the generated main pattern the operator displays the generated main pattern on a graph, for example, on the terminal 400b of the computer 401 as appropriate, and the synchrotron according to the main pattern. Check if you are driving 100.
  • the display of the main pattern at this time is, for example, as shown in FIG.
  • different beam trajectory correction patterns 302a, 302b, 302c, and 302d are created for each deflection electromagnet (step S503).
  • an error amount (adjustment amount) of the beam trajectory at each of the beam position monitors 109a to 109d and a trajectory correction angle by each of the deflecting electromagnets 102a to 102d are correlated, and an orbit correction angle by each of the deflecting electromagnets 102a to 102d. Is uniquely determined from the error amount (adjustment amount) of the beam trajectory at each of the beam position monitors 109a to 109d.
  • the beam trajectory adjustment amounts ⁇ X1 to ⁇ Xn at the positions of the beam position monitors 1 to n are the trajectory correction angles ⁇ X′1 to ⁇ X′n by the deflection electromagnets 1 to n and the square matrix A.
  • the trajectory correction angles ⁇ X′1 to ⁇ X′n by the deflecting electromagnet are obtained by multiplying the beam trajectory adjustment amounts ⁇ X1 to ⁇ Xn at the point of the beam position monitor by the inverse matrix of the square matrix A from the left.
  • the synchrotron 100 of this embodiment includes four beam position monitors and four deflection magnets, A is a 4 ⁇ 4 square matrix.
  • the square matrix A is obtained analytically from the equipment arrangement and operating conditions of the synchrotron 100, or obtained experimentally from the amount of change in orbital error when only one deflection electromagnet is changed.
  • step S503 the operator sets an error amount (adjustment amount) of the beam trajectory at each of the beam position monitors 109a to 109d while viewing the screen 602 in FIG.
  • the computer 401 derives the trajectory correction angle by each of the deflecting electromagnets 102a to 102d by the above-described method, and obtains the excitation adjustment amount from the correction angle. Further, the calculator 401 obtains excitation adjustment amounts at a plurality of time points (at the time of beam incidence, at the time of emission, etc.) of the main pattern 301, and smoothly connects the points on the graph of the terminal 400b, for example, so that each deflection electromagnet Beam trajectory correction patterns 302a to 302d are created.
  • the computer 401 obtains the excitation adjustment amount, but another configuration (not shown) connected to the computer 401 may obtain the excitation adjustment amount.
  • the other computer outputs information on the obtained excitation adjustment amount to the computer 401.
  • the computer 401 creates beam trajectory correction patterns 302a to 302d for each deflection electromagnet based on the excitation adjustment amount.
  • FIG. 8 is a graph display of the beam trajectory correction pattern of the deflection electromagnet created by obtaining the excitation adjustment amount for beam trajectory correction at the time of beam entrance and exit and connecting the two points smoothly on the graph. It is a figure which shows an example. The operator performs fine adjustment of the correction pattern by manual operation while viewing the correction patterns 302a to 302d displayed on the terminal 400b of the computer 401 (that is, sets an error amount (adjustment amount) of the beam trajectory), The trajectory is adjusted to the desired position.
  • the upper limit of the excitation intensity (excitation intensity value on the vertical axis in FIG. 8) in the graph display of the excitation adjustment amount correction patterns 302a to 302d for beam trajectory correction is shown in FIG.
  • a value smaller than the main pattern 301 shown is displayed (main pattern> correction pattern).
  • the excitation amounts of the correction patterns 302a to 302d are enlarged and displayed as compared with the main pattern 301, and fine excitation adjustments are clarified.
  • the upper limit of the graph excitation intensity of the main pattern 301 is set to 3.00 Tm as shown in FIG. 2 and the upper and lower limits of the graph excitation intensity of the correction patterns 302a to 302d are set to ⁇ 0.01 Tm as shown in FIG.
  • the visibility (magnification rate) of the excitation intensity of the minute is 3000 times that of FIG. Therefore, it becomes easy for the operator to create and adjust the correction pattern.
  • the synchrotron 100 is again operated using the excitation adjustment pattern of each deflection electromagnet created in this way, and the position of the beam trajectory is measured (step S504).
  • the operation of step S503 for creating the correction patterns 302a to 302d, the operation of the synchrotron 100, and the operation of step S504 for measuring the beam trajectory are performed as shown in the screen 603 of FIG. Repeat until the position is reached.
  • step S504 in which the synchrotron 100 is operated using the generated correction pattern the operator displays the generated beam trajectory correction patterns 302a to 302d in a graph on, for example, the terminal 400c of the computer 401, and synchronizes according to the correction pattern.
  • the beam trajectory is first adjusted as a whole by the common main pattern 301, and then the points of the beam monitors 109a to 109d by the correction patterns 302a to 302d for the deflection electromagnets 102a to 102d. Adjust the beam trajectory at.
  • the method of dividing each deflection electromagnet pattern into a main pattern and a correction pattern has the following advantages.
  • the common main pattern 301 is changed, it is reflected in the patterns of all the deflecting electromagnets 109a to 109d. Therefore, if it is desired to uniformly change the strength of all the deflecting electromagnets 109a to 109d, one common main pattern is changed. do it.
  • the beam trajectory is entirely shifted outward (screen 601), when the excitation intensity of the main pattern 301 is increased, the beam deflection angles of all the deflecting electromagnets 109a to 109d are increased, and the beam trajectory can be brought to the center ( Screen 602).
  • the excitation adjustment for beam trajectory correction becomes clear.
  • the trajectory correction angle by each deflection electromagnet is 90 degrees, which is the original deflection angle. It remains at 0.2 to 0.3%.
  • the excitation intensity patterns of the respective deflection electromagnets 102a to 102d in which the main pattern and the correction pattern are not separated are as shown in FIG. 10 (the solid line indicates the pattern including the beam trajectory correction, and the broken line indicates the beam trajectory correction). It is difficult to distinguish the excitation adjustment amount of each of the deflection electromagnets 102a to 102d.
  • the main pattern 310 and the correction patterns 302a to 302d are created separately and the beam trajectory correction patterns 302a to 302d of the deflecting electromagnets 102a to 102d are displayed in a graph, as shown in FIG.
  • the visibility (magnification rate) of the excitation intensity corresponding to the trajectory correction can be enlarged and displayed 3000 times that of FIG. 2, and the operator can easily create and adjust the correction pattern.
  • FIG. 11 is a diagram showing details of the functions of the computer and the control device of the bending electromagnet power supply control system in the second embodiment of the present invention.
  • the deflection electromagnet power control system 410A is similar to the main pattern 301 common to the deflection electromagnet and the deflection, as in the first embodiment (FIG. 5).
  • the beam trajectory correction patterns 302a to 302d for the individual electromagnets are created separately and stored in the computer 401A.
  • the difference from the first embodiment is that the control device 402A does not add the common main pattern 301 and the individual correction patterns 302a to 302d, but the computer 401A.
  • FIG. 12 is a diagram showing details of the functions of the computer and the control device of the deflection electromagnet power supply control system in the third embodiment of the present invention.
  • the deflection electromagnet control system 410B is similar to the first embodiment (FIG. 5) and the second embodiment (FIG. 11) described above.
  • the main pattern 301 common to the deflection electromagnets and the beam trajectory correction patterns 302a to 302d for the respective deflection electromagnets are created separately and stored in the computer 401B.
  • the difference from the first and second embodiments is that the common main pattern 301 and the individual correction patterns 302a to 302d are not summed before the operation of the synchrotron 100, but the output device of the control device 402B during the operation.
  • a point 402b is output to the electromagnet power supplies 403a to 403d while adding up in real time.
  • the control device 402B stores the main pattern 301 and the correction patterns 302a to 302d separately in a memory, and selects the main pattern 301 and the correction patterns 302a to 302d corresponding to the desired energy when operating the synchrotron 100. Both patterns are added together and output to the respective deflection electromagnet power supplies 403a to 403d.
  • the synchrotron 100 shown in FIG. 1 includes four deflection units on which deflection electromagnets are arranged, but may include five or more deflection units.
  • FIG. 13 shows such a modification.
  • the left side of FIG. 13 shows the deflection unit of the above-described embodiment, and the deflection unit 102-2 is representatively shown among the four deflection units 102-1 to 102-4.
  • the deflection unit 102-2 includes one deflection electromagnet 102b, and the deflection electromagnet 102b and the electromagnet power source 403b are connected by a power supply line 1001 at 1: 1.
  • the deflecting unit 102-2 includes two deflecting electromagnets 102b1 and 102b2, and the deflecting electromagnets 102b1 and 102b2 and the electromagnet power source 403 are connected to each other via a power line 1002 at a ratio of 2: 1.
  • the present invention can be applied to various forms of synchrotron electromagnet power supply control for correcting the beam trajectory by minutely changing the excitation amount of the deflection electromagnet.
  • 402b Output device (FIG. 12) 403a, 403b, 403c, 403d Electromagnet power supply 410, 410A, 410B Electromagnet power supply control system 601, 602, 603 Measurement result display screen

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)

Abstract

 偏向電磁石がビームの偏向と軌道補正の両方を行うシンクロトロンにおいて、偏向電磁石の励磁調整を容易に行うことができるようにする。 計算機401は、偏向電磁石共通のビーム加減速分の主パターンと、偏向電磁石個別のビーム軌道補正分のパターンを分けて作成し管理する。制御装置402は主パターンと補正パターンを合算した結果を電磁石電源403a~403dに出力し、電磁石電源403a~403dはその合算結果に従って偏向電磁石102a~102dを励磁する。

Description

シンクロトロンの電磁石電源制御システム及び制御方法並びにシンクロトロン
 本発明は、荷電粒子ビームを加速するシンクロトロンの電磁石電源制御システム及び制御方法並びにシンクロトロンに関する。
 シンクロトロンは、線形加速器である程度加速した後に入射された荷電粒子ビーム(以下、ビームという)を、所望のエネルギーまで加速し、粒子線がん治療装置などのビーム利用設備に出射するものである。
 シンクロトロンにおいて、ビームは環状の真空ダクト内を周回し、高周波加速空胴を繰返し通過することで所望のエネルギーまで加速する。シンクロトロンはビームを同一軌道上で周回させるため、ビームを偏向する偏向電磁石と、ビームの位置を測定するモニタと、その測定結果にもとづきビーム軌道を調整する補正用電磁石(ステアリング電磁石)を有する。シンクロトロンの各機器は、偏向されたビームが同一軌道上を周回するように設計・設置されるが、実際には各機器の形状誤差や設置誤差によりビームの軸が微妙にずれてしまうため、ステアリング電磁石によってビームの軌道を補正する。
 ステアリング電磁石がある場合、各偏向電磁石はビーム軌道のずれに構わずそれぞれ同じ角度でビームを曲げようとするだけでよいため、共通の電源によって同じ強度で励磁される。それに対してビーム軌道補正を行うステアリング電磁石は、ビーム軌道のずれに応じて励磁強度を変える必要があるため、それぞれ個別の電源によって異なる強度で励磁される。
 以上のように、シンクロトロンは共通電源によって励磁される偏向電磁石がビームを偏向し、個別電源によって励磁されるステアリング電磁石がビーム軌道を補正するのが一般的である。この種のシンクロトロンの例としては、特許文献1に記載のものがある。
 それに対し、偏向電磁石がビームを単に偏向するだけでなくビーム軌道の補正も行うシンクロトロンにおいては、偏向電磁石は励磁強度を変えてビームの偏向角度を微調整することで、ビーム軌道の補正を行う。上述の一般的なシンクロトロンのステアリング電磁石と同じく、各偏向電磁石はビーム軌道のずれに応じて励磁強度を変える必要があるため、共通の電源ではなく個別の電源によって、異なる強度で励磁される。
 このように、偏向電磁石が個別の電源によって制御され、ビームの偏向と軌道補正を行うシンクロトロンの例としては、非特許文献1に記載のものがある。この論文には「The 12 main dipoles are excited in pairs by 6 Magnet Power Supplies (MPS).(中略)These errors can be corrected to around 1 mm with the 6 main dipole power supplies and the 6 vertical corrector magnets.」と記載されている。この例では、12の偏向電磁石が2つで一組としてそれぞれ個別の電源によって励磁され、水平方向のビーム軌道誤差を補正する。
 シンクロトロンはビームの「入射-加速-出射-減速」を所定の周期で繰返し、偏向電磁石はそのビームエネルギー(加速度)の変化に応じて、励磁強度のパターンを所定の周期で繰り返す。偏向電磁石がビームの偏向のみを行い、ステアリング電磁石がビームの軌道補正を行う場合は、共通の電源一つに励磁強度パターンデータを設定する。それに対して、偏向電磁石がビームの偏向と軌道補正の両方を行う場合は、各偏向電磁石電源にそれぞれ異なるパターンデータを設定する。
特開2006-228579号公報
S.P. Moller, "Status of the Particle Therapy Accelerator System Built by DANFYSIK A/S", EPAC08(TUPP124), 2008(Mollerのoはoに斜めスラッシュ)
 特許文献1に記載のように、偏向電磁石がビームの偏向のみを行い、ステアリング電磁石がビームの軌道補正を行うシンクロトロンでは、ステアリング電磁石の設置スペースが必要であり、その分、シンクロトロンが大型化する問題がある。
 非特許文献1に記載のシンクロトロンでは、偏向電磁石がビームの偏向と軌道補正の両方を行うため、ステアリング電磁石が不要となり、シンクロトロンを小型化することができる。
 しかし、偏向電磁石がビームの偏向と軌道補正の両方を行うシンクロトロンには、電磁石電源制御において二つの問題がある。
 第一に、励磁強度パターンの個別化による問題がある。上述のように、偏向電磁石がビーム軌道補正を行わない場合は、共通の電源一つにパターンを設定する。それに対して偏向電磁石がビーム軌道補正を行う場合は、それぞれの電源に異なるパターンを設定する必要があるため、パターンの数が多くなり、パターンの調整に手間がかかる。例えばビーム軌道が全体的に外側にずれていたとすると、全偏向電磁石の励磁強度を一律に上げてビームの偏向角度を大きくし、軌道を内側に寄せる。その際、各偏向電磁石を共通の電源によって励磁する場合は、共通の電源に設定するパターン一つを調整すればよい。それに対して、偏向電磁石を個別の電源によって励磁する場合は、偏向電磁石電源の台数分のパターンを調整しなければならない。
 第二に、励磁強度パターンのうち、ビーム軌道補正のための励磁調整分がグラフ上で見分けにくいという問題がある。偏向電磁石がビーム軌道補正を行わない場合は、ビーム加減速に応じた励磁強度パターンを偏向電磁石電源に設定し、それとは別にビーム軌道補正用の励磁調整パターンをステアリング電磁石電源に設定する。それに対して偏向電磁石がビーム軌道補正を行う場合、各偏向電磁石電源に設定する励磁強度パターンは、ビーム加減速に合わせて励磁を大きく変化させる分と、ビーム軌道のずれに応じて励磁強度を微調整する分を兼ねるものになる。ビーム加減速に応じた励磁強度に対して、ビーム軌道を補正するための励磁調整量は微小である。従ってパターンデータをグラフ上で作成する際、ビーム軌道補正用の励磁調整分を判別しにくく、調整が困難である。
 本発明の目的は、偏向電磁石がビームの偏向と軌道補正の両方を行うシンクロトロンにおいて、偏向電磁石の励磁調整を容易に行うことができる電磁石電源制御システム及び制御方法並びにシンクロトロンを提供することにある。
 上記目的を達成するために、本発明では、各偏向電磁石の励磁強度パターンを、ビーム加減速に応じた主パターンと、ビーム軌道補正用のパターンに分けて作成し管理する。主パターンは全偏向部の偏向電磁石に共通であり、補正パターンは各偏向部の偏向電磁石に個別である。運転時は、共通の主パターンと個別の補正パターンを合算した結果を、各偏向電磁石電源に設定する。
 本発明によれば次のような効果が得られる。
 第一に、全偏向電磁石の励磁量を一律に変更する際、ビームの曲げ量が大きく励磁調整に手間が掛かる主パターンひとつを変更すれば全偏向部の変更電磁石に反映されるため、偏向電磁石の励磁調整が容易となる。
 第二に、励磁強度が大きい主パターンとは別に励磁変化が微細な補正パターンを管理するため、パターンデータをグラフ表示する際にビーム軌道補正のための励磁調整分を見分けやすく、励磁強度の微調整が容易となる。
 以上の結果、偏向電磁石がビームの偏向と軌道補正の両方を行うシンクロトロンにおいて、偏向電磁石の励磁調整を容易かつ速やかに行うことができ、励磁強度パターンの作成・調整時間の短縮が可能となる。
本発明の適用対象である、ビーム位置モニタと、その測定結果に基づいてビーム軌道補正を行う偏向電磁石を備えるシンクロトロンの構成を示す図である。 粒子ビームを常に同一角度で偏向するため、ビーム加減速に合わせて励磁強度を変化させた偏向電磁石の励磁強度パターンを示す図である。 偏向電磁石共通の主パターンと、個別のビーム軌道補正パターンを分けて管理し、両パターンを合算した結果を各偏向電磁石のパターンとする、本発明の制御原理を示す図である。 シンクロトロンの電磁石電源制御システムの全体構成を示す図である。 電磁石電源制御システムを構成する計算機と制御装置の機能の詳細を示す図である。 偏向電磁石電源制御で用いるパターンデータの作成プロセスを示すフローチャートである。 偏向電磁石パターンを作成する際に用いる、各ビーム位置モニタの測定結果を示す図である。 ビーム入射時と出射時においてビーム軌道補正のための励磁調整量を求め、その2点をグラフ上でなめらかに結ぶことで作成した、偏向電磁石のビーム軌道補正用パターンのグラフ表示の一例を示す図である。 偏向電磁石のビーム偏向半径の説明図である。 本発明を実施しない場合の各偏向電磁石の励磁強度パターンを示す図である。 本発明の第2の実施の形態における偏向電磁石電源制御システムの計算機と制御装置の機能の詳細を示す図である。 本発明の第3の実施の形態における偏向電磁石電源制御システムの計算機と制御装置の機能の詳細を示す図である。 シンクロトロンが5つ以上の偏向電磁石を備える場合の偏向電磁石と電源の対応関係を示す図である。
 以下、本発明の実施の形態を図面を用いて説明する。
<第1の実施の形態>
 本発明の第1の実施の形態を説明する。
~シンクロトロンの全体構成~
 図1はシンクロトロンの構成図である。
 シンクロトロン100は、前段加速器101、偏向電磁石102a,102b,102c,102d、四極電磁石103、六極電磁石104、静電インフレクタ105、静電デフレクタ106、出射セプタム電磁石107、入射バンプ電磁石108、ビーム位置モニタ109a,109b,109c,109d、高周波加速空胴110などを備える。偏向電磁石102a,102b,102c,102dは4つの偏向部102-1,102-2,102-3,102-4に1つづつ配置されている。ビームは前段加速器101で予備加速された後に、静電インフレクタ105からシンクロトロン100に入射され、偏向電磁石102a,102b,102c,102dによって偏向されて環状の真空ダクト内を周回する。ビームは高周波加速空胴110を通過するたびに高周波電圧を印加されて加速していき、所望のエネルギーに達すると出射セプタム電磁石107からビーム利用設備へ出射される。
~偏向電磁石の励磁強度パターン~
 図2は、偏向電磁石102a,102b,102c,102dの励磁強度パターンを示す図である。
 偏向電磁石102a,102b,102c,102dはビームを偏向するために、ビームのエネルギー(加速度)に合わせて、図2のように励磁の強弱をつける。ビームのエネルギーが高まるほど強い力でビームを偏向する必要があるため、ビームのエネルギーに応じて偏向電磁石の励磁強度を変化させる。最初はビーム入射時の低いエネルギーに合わせて磁場を低く設定し(入射運転201)、ビームが加速するごとに磁場を強めていき(加速運転202)、出射時のエネルギーに合わせて磁場を一定に保った後(出射運転203)、次のビーム入射のため磁場を低くする(減速運転204)。このように偏向電磁石の励磁強度は大きな山形となる。シンクロトロン100はビームの「入射-加速-出射-減速」を所定の周期で繰り返すため、図2の励磁強度の変化を一つのパターンとし、偏向電磁石はビームの「入射-加速-出射-減速」の周期に合わせて励磁強度パターンを繰り返す。このパターンは出射時のエネルギーの高さに応じて変える必要があり、所望する出射エネルギーの種類分のパターンが必要である。
~ビーム軌道補正~
 また偏向電磁石102a,102b,102c,102dは、ビーム位置モニタ109a,109b,109c,109dの地点においてビームが正しい位置を通るように、励磁強度を微調整してビームを偏向する角度を変え、ビーム軌道の補正を行う。例えば偏向電磁石102aは、ビーム位置モニタ109aの地点においてビーム軌道が所望の位置と一致するように、ビーム偏向角度を調整する。ビーム軌道のずれは各ビーム位置モニタの地点でそれぞれ異なるため、各モニタに対応する電磁石ごとにビーム軌道の補正角度はそれぞれ異なり、励磁強度の調整量も異なる。従って、従来は、偏向電磁石の台数分のパターンが必要であった。つまり、4台の偏向電磁石を備えるシンクロトロン100で300種類のエネルギーのビームを出射するためには、「4台分のパターンの組み合わせ×300通り」が必要であった。
~本発明の制御原理~
 図3は本発明の制御原理を示す図である。
 本発明では、偏向電磁石のパターンデータは、図3のように偏向電磁石102a,102b,102c,102d(偏向部102-1,102-2,102-3,102-4)に共通の主パターン301と、ビーム軌道を補正するための偏向電磁石102a,102b,102c,102d(偏向部102-1,102-2,102-3,102-4)に個別の補正パターン302a,302b,303c,302dに分けて作成し管理する。主パターン301とは、図2のようにビーム入射時と出射時のエネルギーに合わせたパターン、すなわちビームエネルギーが高いほど強い励磁でビームを偏向させるという励磁強度のパターンである。補正パターン302a,302b,303c,302dとは、偏向電磁石の励磁強度を微調整してビームの偏向角度をわずかに変え、ビーム位置モニタの地点においてビーム軌道が所望の位置と一致するように補正するための励磁調整パターンである。「主パターン301+補正パターン302a,302b,303c,302d=偏向電磁石パターン303a,303b,303c,303d」とし(すなわち、共通の主パターン301と個別のビーム軌道補正パターン302a~302dを合算し、合算した結果を偏向電磁石パターン303a,303b,303c,303dとして求め)、そのパターン303a~303dに従って各偏向電磁石を励磁する。本発明では、主パターン301は、エネルギー数分の300パターンがあればよい。
~電磁石電源制御システムの全体構成~
 図4は、シンクロトロン100の電磁石電源制御システムの全体構成を示す図である。
 電磁石電源制御システム410は、複数の端末(表示装置)400a,400b,400cを有する計算機401(管理装置)と、制御装置402とを備えている。
 オペレータは、端末400a,400b,400cの表示部のグラフ作成画面に図3に示した主パターン301のデータと補正パターン302a~302dのデータを表示して主パターン301と補正パターン302a~302dを作成し、計算機401の記憶装置に保存する。計算機401は保存された複数のパターンデータを、電流・電圧パターンなど電源制御で使用できる形に変換し、制御装置402のメモリに設定する。制御装置402はビームの「入射-加速-出射-減速」のタイミングに合わせて,メモリに設定された複数のパターンデータの中から所望のエネルギーに対応したパターンを選び出し、電磁石電源(Bending Magnet Power Supply)403a,403b,403c,403dに出力する。電磁石電源403a,403b,403c,403dは偏向電磁石102a,102b,102c,102d(偏向部102-1,102-2,102-3,102-4)に個別に設けられ、制御装置402から受け取った値に従って、偏向電磁石102a,102b,102c,102dを励磁する。
~電磁石電源制御システムの機能の詳細~
 図5は、計算機401と制御装置402の機能の詳細を示す図である。
 図5に示すように、計算機401は主パターン301と補正パターン302a~302dを分けたまま計算機401に保存する。計算機401は以下のように、両パターンを合算して制御装置402に設定する。例えばビームの「入射-加速-出射-減速」の周期が(可変である出射許可の時間を除いて)3秒であり、パターンデータが1ミリ秒ごとの計3000点の励磁強度データから構成される場合、計算機401は主パターン3000点と補正パターン3000点の同じ時点のデータを合算する。その励磁強度データを、電流・電圧データなど電源制御で使用できる形に変換し、制御装置402のメモリに保存する。なお、主パターン・補正パターンの合算と、励磁強度データから電流・電圧データへの変換は、逆の順序で行ってもよい。
 制御装置402の出力装置402aは、メモリに保存された複数のパターンから所望の出射エネルギーに合うものを選び出し、電流・電圧データ3000点を各時点のタイミングに合わせて、偏向電磁石電源403a~403dに出力する。なお、制御装置402は、3000点のデータを30000点などに展開して出力することもできる。電磁石電源403a~403dは、制御装置402から受け取った電流・電圧データに従って、偏向電磁石102a~102dを励磁する。
~励磁パターンデータの作成プロセス~
 図6は、偏向電磁石電源制御で用いるパターンデータの作成プロセスを示すフローチャートである。
 偏向電磁石電源制御で用いるパターンデータは次のように作成する。まず、オペレータは、計算機401の例えば端末400aを用いて、所望の出射エネルギーに対応した主パターン301を作成し(ステップS501)、その主パターン301のみを制御装置402に設定してシンクロトロン100を運転する。そして、誤差を補正したい時点(ビーム入射時、出射時など)におけるビームの位置をビーム位置モニタ109a,109b,109c,109dにより測定し、その測定結果を計算機401の例えば端末400aに表示する(ステップS502)。
 図7は、各ビーム位置モニタの測定結果を示す図である。最初のビーム位置モニタ109a,109b,109c,109dの測定結果は、例えば図7の画面601のようになる。画面中、0はビーム軌道がモニタの中心に位置することを意味し、プラスは軌道が外側に、マイナスは軌道が内側に寄っていることを示す。画面601に示すように、所望のビーム軌道位置が0であり、軌道が全体的に所望位置の外側にずれていた場合、全偏向電磁石102a~102dのビーム偏向角度を大きくして軌道を全体的に内側に寄せるため、偏向電磁石共通である主パターンの励磁強度を強める(ステップS501)。軌道全体を内側に寄せるための主パターンの調整は、オペレータが例えば端末400aにおいて画面601を見ながら行い、計算機401は、その操作結果に基づいて主パターンの励磁強度を増大させる。主パターンを作成するステップS501の操作とシンクロトロン100の運転及びビーム軌道の測定を行うステップS502の操作は、図7の画面602に示すようにビームの平均軌道が0を基準とした所望の位置になるまで繰り返す。
 また、作成した主パターンを用いてシンクロトロン100の運転を行うステップS502では、オペレータは、作成した主パターンを、適宜、計算機401の例えば端末400bにグラフ表示し、どのような主パターンに従ってシンクロトロン100を運転しているかを確認する。このときの主パターンの表示は例えば図2に示すようなものである。
 次に、偏向電磁石ごとに異なるビーム軌道補正パターン302a,302b,302c,302dを作成する(ステップS503)。ここで、各ビーム位置モニタ109a~109dの地点におけるビーム軌道の誤差量(調整量)と各偏向電磁石102a~102dによる軌道補正角度とは相関関係にあり、各偏向電磁石102a~102dによる軌道補正角度は各ビーム位置モニタ109a~109dの地点におけるビーム軌道の誤差量(調整量)から一意に決まる。式(1)に示すように、ビーム位置モニタ1~nの地点におけるビーム軌道の調整量ΔX1~ΔXnは、偏向電磁石1~nによる軌道補正の角度ΔX'1~ΔX'nと正方行列Aの積で表される。従って偏向電磁石による軌道補正の角度ΔX'1~ΔX'nは、ビーム位置モニタの地点におけるビーム軌道の調整量ΔX1~ΔXnに、正方行列Aの逆行列を左からかけることにより求められる。なお、本実施形態のシンクロトロン100はビーム位置モニタおよび偏向電磁石を4台ずつ備えているため、Aは4×4の正方行列となる。また正方行列Aは、シンクロトロン100の機器配置及び運転条件から解析的に求めるか、もしくは偏向電磁石の励磁量を一台のみ変化させた際の軌道誤差の変化量から試験的に求める。
Figure JPOXMLDOC01-appb-M000001

 ステップS503では、オペレータは、図7の画面602を見ながら各ビーム位置モニタ109a~109dの地点におけるビーム軌道の誤差量(調整量)を設定する。計算機401は、上述の手法で各偏向電磁石102a~102dによる軌道補正の角度を導き出し、その補正角度から励磁調整量を求める。また、計算機401は、主パターン301の複数の時点(ビーム入射時、出射時など)における励磁調整量を求め、例えば端末400bのグラフ上でその点同士をなめらかに結ぶことで、各偏向電磁石のビーム軌道補正パターン302a~302dを作成する。
 本実施の形態では、計算機401が励磁調整量を求める例を示したが、計算機401に接続された外部の他の計算機(図示せず)が励磁調整量を求める構成であってもよい。この場合、他の計算機は、求めた励磁調整量の情報を計算機401に出力する。計算機401は、この励磁調整量に基づいて、各偏向電磁石のビーム軌道補正パターン302a~302dを作成する。
 図8は、ビーム入射時と出射時においてビーム軌道補正のための励磁調整量を求め、その2点をグラフ上でなめらかに結ぶことで作成した、偏向電磁石のビーム軌道補正用パターンのグラフ表示の一例を示す図である。オペレータは、計算機401の端末400bにグラフ表示された補正パターン302a~302dを見ながら、手操作入力で補正パターンの微調整を行い(すなわち、ビーム軌道の誤差量(調整量)を設定し)、軌道が所望の位置に合うようにする。
 ここで、図8に示すように、ビーム軌道補正のための励磁調整量の補正パターン302a~302dのグラフ表示における励磁強度の上限(図8の縦軸の励磁強度の値)は、図2に示す主パターン301よりも小さい値で表示する(主パターン>補正パターン)。これにより補正パターン302a~302dの励磁量は主パターン301に比べて拡大表示され、微細な励磁調整分が明確になる。例えば図2のように主パターン301のグラフ励磁強度の上限を3.00Tmとし、図8のように補正パターン302a~302dのグラフ励磁強度の上下限を±0.01Tmとした場合、ビーム軌道補正分の励磁強度の視認性(拡大率)は図2の3000倍となる。従って、オペレータによる補正パターンの作成・調整が容易になる。
 こうして作成した各偏向電磁石の励磁調整パターンを用いて、再びシンクロトロン100を運転し、ビーム軌道の位置を測定する(ステップS504)。補正パターン302a~302dを作成するステップS503の操作とシンクロトロン100の運転及びビーム軌道の測定を行うステップS504の操作は、図7の画面603に示すように各ビーム位置モニタにおけるビーム軌道が所望の位置になるまで繰り返す。
 また、作成した補正パターンを用いてシンクロトロン100を運転するステップS504において、オペレータは、作成したビーム軌道補正パターン302a~302dを計算機401の例えば端末400cにグラフ表示し、どのような補正パターンに従ってシンクロトロン100を運転しているかを確認する。
~効果~
 以上のように本実施の形態においては、まず共通の主パターン301によって全体的にビーム軌道を調整し、次に偏向電磁石102a~102dごとの補正パターン302a~302dによって各ビームモニタ109a~109dの地点におけるビーム軌道を調整する。この過程において、各偏向電磁石のパターンを主パターンと補正パターンに分ける手法は、以下の利点がある。
 第一に、共通の主パターン301を変更すれば全偏向電磁石109a~109dのパターンに反映されるため、全偏向電磁石109a~109dの強度を一律で変更したい場合は共通の主パターン一つを変更すればよい。ビーム軌道が全体的に外側にずれていた場合(画面601)、主パターン301の励磁強度を強めると全偏向電磁石109a~109dのビーム偏向角度が大きくなり、ビーム軌道を中心に寄せることができる(画面602)。
 前述のように、パターンデータは出射エネルギーごとに作成する必要があり、例えば所望の出射エネルギーが300種類ある場合は300組のパターンデータが必要である。偏向電磁石を4つ備えるシンクロトロン100において、300組のパターンデータについて同様の調整を行うとすると、全偏向電磁石分の「300×4=1200」パターンを変更することになる。このとき偏向電磁石共通の主パターンがあれば、エネルギー数分の300パターンを変更すればよい。
 所望の出射エネルギーごとの、ビームを大きく曲げる主パターン301の作成には、ビームの軌道を微調整する補正パターンの作成に比べて多くの時間を要する。従って、ビームを大きく曲げる主パターン301を共通パターンとすることで、全体パターンの作成時間を短縮することができる。
 第二に、励磁強度が大きい主パターンと励磁強度が微細な補正パターンを分けることで、ビーム軌道補正用の励磁調整分が明確になる。例えば図9に示すように偏向半径が1.4mの偏向電磁石を4つ備えるシンクロトロン100において、エネルギー250MeVのビームを偏向する場合、各偏向電磁石による軌道補正角度は本来の偏向角度である90度の0.2~0.3%にとどまる。このとき主パターンと補正パターンを分けない従来の場合の各偏向電磁石102a~102dの励磁強度パターンは図10に示すようであり(実線がビーム軌道補正分を含むパターン、破線がビーム軌道補正分を含まないパターン)、各偏向電磁石102a~102dの励磁調整分を見分けにくい。
 これに対して主パターン310と補正パターン302a~302dを分けて作成し、偏向電磁石102a~102dのビーム軌道補正用パターン302a~302dをグラフ表示する場合は、図8に示したように、例えばビーム軌道補正分の励磁強度の視認性(拡大率)を図2の3000倍にも拡大表示することができ、オペレータによる補正パターンの作成・調整が容易になる。
 以上の二つの利点により、励磁強度パターンの作成・調整時間の短縮が可能となる。
<第2の実施の形態>
 図11は本発明の第2の実施の形態における偏向電磁石電源制御システムの計算機と制御装置の機能の詳細を示す図である。
 本発明の第2の実施の形態における偏向電磁石電源制御システム410Aは、図11に示すように、上述した第1の実施の形態(図5)と同様に、偏向電磁石共通の主パターン301と偏向電磁石個別のビーム軌道補正パターン302a~302dを分けて作成し、計算機401Aに保存する。第1の実施の形態と異なる点は、共通の主パターン301と個別の補正パターン302a~302dの合算を計算機401Aが行うのではなく、制御装置402Aが行う点である。すなわち、計算機401Aは主パターン301と補正パターン302a~302dを分けたまま制御装置402Aに設定し、制御装置402Aは自身が主パターン301と補正パターン302a~302dを合算してメモリに保存する。制御装置402Aは、シンクロトロン100を運転する際は、主パターン301と補正パターン302a~302dの合算結果303a~303dから所望の出射エネルギーに対応したものを選び出し、各偏向電磁石電源403a~403dに出力する。
<第3の実施の形態>
 図12は本発明の第3の実施の形態における偏向電磁石電源制御システムの計算機と制御装置の機能の詳細を示す図である。
 本発明の第3の実施の形態における偏向電磁石制御システム410Bは、図12に示すように、上述した第1の実施の形態(図5)及び第2の実施の形態(図11)と同様に、偏向電磁石共通の主パターン301と偏向電磁石個別のビーム軌道補正パターン302a~302dを分けて作成し、計算機401Bに保存する。第1及び第2の実施の形態と異なる点は、共通の主パターン301と個別の補正パターン302a~302dをシンクロトロン100の運転前に合算するのではなく、運転中に制御装置402Bの出力装置402bがリアルタイムで合算しながら電磁石電源403a~403dに出力する点である。すなわち、制御装置402Bは主パターン301と補正パターン302a~302dを分けたままメモリに保存し、シンクロトロン100を運転する際は所望のエネルギーに対応した主パターン301と補正パターン302a~302dを選び出し、両パターンを合算して各偏向電磁石電源403a~403dに出力する。
<その他>
 本発明は上述した実施の形態に限定されるものではなく、様々な変形が可能である。例えば、図1で示したシンクロトロン100は、偏向電磁石を配置した偏向部を4つ備えるが、5つ以上の偏向部を備えていてもよい。また、水平方向(ビームを偏向する方向)のビーム軌道補正を行う偏向電磁石とは別に、垂直方向の軌道補正を行う電磁石を備えていてもよい。図13はそのような変形を示す図である。図13の左側は、上述した実施の形態の偏向部を示すものであり、4つの偏向部102-1~102-4のうち偏向部102-2で代表して示している。偏向部102-2は偏向電磁石102bを1つ備え、偏向電磁石102bと電磁石電源403bは1:1で電源線1001を介して接続されている。図13の右側は、各偏向部に複数の偏向電磁石を配置する場合を、左側と同様に、偏向部102-2で代表して示すものである。偏向部102-2は2つの偏向電磁石102b1,102b2を備え、偏向電磁石102b1,102b2と電磁石電源403は2:1で電源線1002を介して接続されている。このように各偏向部に複数の偏向電磁石を配置する場合においても、本発明を適用し、同様の効果を得ることができる。本発明は、偏向電磁石の励磁量を微小に変えることで、ビーム軌道を補正する様々な形態のシンクロトロン電磁石電源制御に適用可能である。
100 シンクロトロン
101 前段加速器
102a,102b,102c,102d 偏向電磁石
102b1.102b2 偏向電磁石
102-1,102-2,102-3,102-4 偏向部
103 四極電磁石
104 六極電磁石
105 静電インフレクタ
106 静電デフレクタ
107 出射セプタム電磁石
108 入射バンプ電磁石
109a,109b,109c,109d ビーム位置モニタ
110 高周波加速空洞
201 入射運転
202 加速運転
203 出射運転
204 減速運転
301 偏向電磁石共通の主パターン
302a,302b,302c,302d 偏向電磁石個別の補正パターン
303a,303b,303c,303d 偏向電磁石パターン(主パターンと補正パターンの合算結果)
400a,400b,400c 端末(表示装置)
401 計算機(管理装置)
401A 計算機(管理装置)
401B 計算機(管理装置)
402 制御装置
402A 制御装置
402B 制御装置
402a 出力装置(図5、図11)
402b 出力装置(図12)
403a,403b,403c,403d 電磁石電源
410,410A,410B 電磁石電源制御システム
601,602,603 測定結果表示画面

Claims (11)

  1.  荷電粒子ビームの偏向とビーム軌道の補正の役割を兼ねる少なくとも1つの偏向電磁石(102a~102d)を配置した複数の偏向部(102-1~102-4)と、
     前記複数の偏向部に配置された偏向電磁石を個別に励磁するための複数の電磁石電源(403a~403d)とを備え、
     前記荷電粒子ビームを所望のエネルギーまで加速してビーム利用設備に出射するシンクロトロン(100)の電磁石電源制御システムにおいて、
     前記複数の偏向部に配置された偏向電磁石のそれぞれの励磁強度パターンを、前記複数の偏向部に共通の主パターン(301)と、前記複数の偏向部に個別のビーム軌道補正パターン(302a~302d)に分けて作成する管理装置(401)と、
     前記荷電粒子ビームの加減速時に、前記管理装置で作成した前記共通の主パターンと前記個別のビーム軌道補正パターンを合算した結果に従って前記複数の偏向部に配置された偏向電磁石をそれぞれ励磁するよう前記複数の電磁石電源を制御する制御装置(402)とを備えることを特徴とするシンクロトロンの電磁石電源制御システム。
  2.  請求項1に記載のシンクロトロンの電磁石電源制御システムにおいて、
     前記管理装置(401)は、前記共通の主パターン(301)と前記個別のビーム軌道補正パターン(302a~302d)を作成する際に、前記共通の主パターンデータと前記個別のビーム軌道補正パターンデータを表示する表示装置(400a~400c)を有し、
     前記表示装置は、前記共通の主パターンのデータと前記個別のビーム軌道補正パターンデータを別々にグラフ表示し、かつ前記共通の主パターンデータに対して前記個別のビーム軌道補正パターンデータを拡大してグラフ表示することを特徴とするシンクロトロンの電磁石電源制御システム。
  3.  請求項1に記載のシンクロトロンの電磁石電源制御システムにおいて、
     前記制御装置(402)は、前記共通の主パターン(301)と前記個別のビーム軌道補正パターン(302a~302d)をあらかじめ合算し、その合算した結果のパターン(303a~303d)のみを保存することを特徴とするシンクロトロンの電磁石電源制御システム。
  4.  請求項1に記載のシンクロトロンの電磁石電源制御システムにおいて、
     前記制御装置(402A)は、前記共通の主パターン(301)と前記個別のビーム軌道補正パターン(302a~302d)を分けたまま別々に保存し、さらに両パターンを合算した結果のパターン(303a~303d)を保存することを特徴とするシンクロトロンの電磁石電源制御システム。
  5.  請求項1に記載のシンクロトロンの電磁石電源制御システムにおいて、
     前記制御装置は、前記共通の主パターン(301)と前記個別のビーム軌道補正パターン(302a~302d)を分けたまま別々に保存し、前記荷電粒子ビームの加減速時に、両パターンを合算しながら前記複数の電磁石電源(403a~403d)を制御することを特徴とするシンクロトロンの電磁石電源制御システム。
  6.  請求項1~5のいずれか1項記載の電磁石源源制御システム(410;410A;410B)を備えることを特徴とするシンクロトロン。
  7.  荷電粒子ビームの偏向とビーム軌道の補正の役割を兼ねる少なくとも1つの偏向電磁石(102a~102d)を配置した複数の偏向部(102-1~102-4)と、
     前記複数の偏向部に配置された偏向電磁石を個別に励磁するための複数の電磁石電源(403a~403d)とを備え、
     前記荷電粒子ビームを所望のエネルギーまで加速してビーム利用設備に出射するシンクロトロン(100)の電磁石電源制御方法において、
     前記複数の偏向部に配置された偏向電磁石のそれぞれの励磁強度パターンを、前記複数の偏向部に共通の主パターン(301)と、前記複数の偏向部に個別のビーム軌道補正パターン(302a~302d)に分けて作成する第1手順と、
     前記荷電粒子ビームの加減速時に、前記第1手順で作成した前記共通の主パターンと前記個別のビーム軌道補正パターンを合算した結果に従って前記複数の偏向部に配置された偏向電磁石をそれぞれ励磁するよう前記複数の電磁石電源を制御する第2手順とを有することを特徴とするシンクロトロンの電磁石電源制御システム。
  8.  請求項7に記載のシンクロトロンの電磁石電源制御方法において、
     前記第1手順は、前記共通の主パターン(301)と前記個別のビーム軌道補正パターン(302a~302d)を作成する際に、前記共通の主パターンデータと前記個別のビーム軌道補正パターンデータを別々にグラフ表示し、かつ前記共通の主パターンデータに対して前記個別のビーム軌道補正パターンデータを拡大してグラフ表示することを特徴とするシンクロトロンの電磁石電源制御方法。
  9.  請求項7に記載のシンクロトロンの電磁石電源制御方法において、
     前記第2手順は、前記共通の主パターン(301)と前記個別のビーム軌道補正パターン(302a~302d)をあらかじめ合算し、その合算した結果のパターン(303a~303d)のみを保存することを特徴とするシンクロトロンの電磁石電源制御方法。
  10.  請求項7に記載のシンクロトロンの電磁石電源制御方法において、
     前記第2手順は、前記共通の主パターン(301)と前記個別のビーム軌道補正パターン(302a~302d)を分けたまま別々に保存し、さらに両パターンを合算した結果のパターン(303a~303dを保存することを特徴とするシンクロトロンの電磁石電源制御方法。
  11.  請求項7に記載のシンクロトロンの電磁石電源制御方法において、
     前記第2手順は、前記共通の主パターン(301)と前記個別のビーム軌道補正パターン(302a~302d)を分けたまま別々に保存し、前記荷電粒子ビームの加減速時に、両パターンを合算しながら前記複数の電磁石電源(403a~403d)を制御することを特徴とするシンクロトロンの電磁石電源制御方法。
PCT/JP2011/054977 2011-03-03 2011-03-03 シンクロトロンの電磁石電源制御システム及び制御方法並びにシンクロトロン WO2012117563A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/054977 WO2012117563A1 (ja) 2011-03-03 2011-03-03 シンクロトロンの電磁石電源制御システム及び制御方法並びにシンクロトロン
JP2013502127A JP5581530B2 (ja) 2011-03-03 2011-03-03 シンクロトロンの電磁石電源制御システム及び制御方法並びにシンクロトロン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/054977 WO2012117563A1 (ja) 2011-03-03 2011-03-03 シンクロトロンの電磁石電源制御システム及び制御方法並びにシンクロトロン

Publications (1)

Publication Number Publication Date
WO2012117563A1 true WO2012117563A1 (ja) 2012-09-07

Family

ID=46757522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054977 WO2012117563A1 (ja) 2011-03-03 2011-03-03 シンクロトロンの電磁石電源制御システム及び制御方法並びにシンクロトロン

Country Status (2)

Country Link
JP (1) JP5581530B2 (ja)
WO (1) WO2012117563A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186214A (ja) * 2018-04-09 2019-10-24 東芝エネルギーシステムズ株式会社 加速器の制御方法、加速器の制御装置、及び粒子線治療システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02181399A (ja) * 1989-01-06 1990-07-16 Toshiba Corp シンクロトロン装置
JP2003086399A (ja) * 2001-09-13 2003-03-20 Mitsubishi Electric Corp 荷電粒子ビームの出射装置及び円形加速器並びに円形加速器システム
JP2003100500A (ja) * 2001-09-21 2003-04-04 Mitsubishi Electric Corp 周波数可変空洞の制御装置
JP2008112693A (ja) * 2006-10-31 2008-05-15 Hitachi Ltd 環状型加速装置及びその運転方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2600075B2 (ja) * 1988-01-29 1997-04-16 工業技術院長 X線発生装置
JP3133155B2 (ja) * 1992-06-23 2001-02-05 株式会社東芝 電子ビーム加速器および該加速器に用いる偏向電磁石
JP2003124000A (ja) * 2001-10-10 2003-04-25 Toshiba Corp 電子ビーム冷却装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02181399A (ja) * 1989-01-06 1990-07-16 Toshiba Corp シンクロトロン装置
JP2003086399A (ja) * 2001-09-13 2003-03-20 Mitsubishi Electric Corp 荷電粒子ビームの出射装置及び円形加速器並びに円形加速器システム
JP2003100500A (ja) * 2001-09-21 2003-04-04 Mitsubishi Electric Corp 周波数可変空洞の制御装置
JP2008112693A (ja) * 2006-10-31 2008-05-15 Hitachi Ltd 環状型加速装置及びその運転方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186214A (ja) * 2018-04-09 2019-10-24 東芝エネルギーシステムズ株式会社 加速器の制御方法、加速器の制御装置、及び粒子線治療システム
JP7244814B2 (ja) 2018-04-09 2023-03-23 東芝エネルギーシステムズ株式会社 加速器の制御方法、加速器の制御装置、及び粒子線治療システム

Also Published As

Publication number Publication date
JP5581530B2 (ja) 2014-09-03
JPWO2012117563A1 (ja) 2014-07-07

Similar Documents

Publication Publication Date Title
Rao et al. An engineering guide to photoinjectors
CN105428193B (zh) 离子注入装置及离子束的调整方法
JP6662549B2 (ja) イオン注入方法およびイオン注入装置
Penco et al. Optimization of a high brightness photoinjector for a seeded FEL facility
TWI716659B (zh) 離子植入方法以及離子植入裝置
JP5581530B2 (ja) シンクロトロンの電磁石電源制御システム及び制御方法並びにシンクロトロン
TWI530310B (zh) 射束輸送系統及粒子射線治療裝置
KR20220108726A (ko) 이온주입방법 및 이온주입장치
Scheinker et al. Advanced control methods for particle accelerators (acm4pa) 2019 workshop report
Zhu et al. Inhibition of current-spike formation based on longitudinal phase space manipulation for high-repetition-rate X-ray FEL
JP5393564B2 (ja) 荷電粒子ビーム輸送装置及び粒子線治療システム
JP5542703B2 (ja) 荷電粒子ビーム照射システムおよび円形加速器の運転方法
Lindstrøm et al. Emittance preservation in a plasma-wakefield accelerator
JP4399604B2 (ja) 荷電粒子ビームの軌道制御装置及びその制御方法
Brown et al. The NASA Space Radiation Laboratory at Brookhaven National Laboratory: Preparation and delivery of ion beams for space radiation research
JP5604185B2 (ja) シンクロトロン
EP4217799A1 (en) Method and apparatus for producing a high gain free electron laser using a large energy spread electron beam
McKenzie Longitudinal beam characterisation on VELA using a transverse deflecting cavity
Scheinker et al. Advanced control methods for particle accelerators (ACM4PA) 2019
Pulampong et al. Online optimisation applications at SPS
Emma et al. Femtosecond electron bunch lengths in the SLAC FFTB beamline
JP2002141199A (ja) 電子ビームの軌道補正装置及び軌道補正方法
Schröder External injection of electron beams into plasma-wakefield accelerators
JP5618860B2 (ja) イオンシンクロトロン
Beutner Measurement and analysis of coherent synchrotron radiation effects at FLASH

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860016

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013502127

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860016

Country of ref document: EP

Kind code of ref document: A1