WO2012117546A1 - 高耐食性を有する862MPa級低C高Cr鋼管及びその製造方法 - Google Patents

高耐食性を有する862MPa級低C高Cr鋼管及びその製造方法 Download PDF

Info

Publication number
WO2012117546A1
WO2012117546A1 PCT/JP2011/054851 JP2011054851W WO2012117546A1 WO 2012117546 A1 WO2012117546 A1 WO 2012117546A1 JP 2011054851 W JP2011054851 W JP 2011054851W WO 2012117546 A1 WO2012117546 A1 WO 2012117546A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
corrosion resistance
steel pipe
resistance
corrosion cracking
Prior art date
Application number
PCT/JP2011/054851
Other languages
English (en)
French (fr)
Inventor
修司 橋爪
南 雄介
友美 谷口
Original Assignee
エヌケーケーシームレス鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌケーケーシームレス鋼管株式会社 filed Critical エヌケーケーシームレス鋼管株式会社
Priority to PCT/JP2011/054851 priority Critical patent/WO2012117546A1/ja
Priority to JP2013502111A priority patent/JP5793556B2/ja
Priority to US14/002,931 priority patent/US9677160B2/en
Publication of WO2012117546A1 publication Critical patent/WO2012117546A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a 862 MPa class low C high Cr steel pipe having high corrosion resistance, particularly a high strength marten of 862 MPa class having high stress corrosion cracking resistance in an environment containing wet carbon dioxide and wet hydrogen sulfide in drilling and transportation of oil and natural gas.
  • the present invention relates to a site-based stainless steel pipe and a manufacturing method thereof.
  • Patent Documents 1 to 3 disclose martensitic stainless steels that satisfy requirements for stress corrosion cracking resistance in addition to strength, toughness, and corrosion resistance.
  • Patent Document 6 a high-strength martensitic stainless steel having high corrosion resistance is disclosed in Patent Document 6, and this steel has already been patented.
  • the martensitic stainless steels disclosed in Patent Documents 1 to 3 have stress corrosion cracking resistance in an environment containing a very small amount of hydrogen sulfide, but stress corrosion in an environment where the hydrogen sulfide partial pressure exceeds 0.01 atm. Since cracking occurs, there is a problem that it cannot be used in an environment containing a large amount of hydrogen sulfide.
  • the above-described martensitic stainless steels are significantly deteriorated in toughness and stress corrosion cracking resistance when attempting to increase the strength.
  • Patent Document 6 in order to solve the above-mentioned problems in the prior art, the strength, stress corrosion cracking resistance and toughness of the conventional martensitic stainless steel are improved at the same time, while maintaining the corrosion resistance, hydrogen sulfide. 862 MPa class low C high Cr steel pipe that can be used without causing stress corrosion cracking in an environment containing a large amount of steel, and a method for manufacturing the same.
  • Patent Document 1 Japanese Patent Publication No. 61-3391
  • Patent Document 2 Japanese Patent Laid-Open No. 58-199850
  • Patent Document 3 Japanese Patent Laid-Open No. 61-207550
  • Patent Document 4 Japanese Patent Laid-Open No. 60-174859
  • Patent Document 5 Japanese Patent Laid-Open No. 62-54063
  • Patent Document 6 Japanese Patent No. 3485034
  • an object of the present invention is to provide a steel pipe that exhibits high performance even in a very severe corrosive environment where the hydrogen sulfide partial pressure exceeds 0.03 atm.
  • the target performance was as follows in view of the performance required for excavation of carbon dioxide gas, petroleum containing hydrogen sulfide, natural gas, and steel pipe for transportation.
  • a steel pipe although an oil well pipe is a main object, a steel pipe for a transportation line pipe that requires the same performance can also be an object.
  • the present invention uses the following means.
  • the present invention is mass%, C: 0.005-0.05%, Cr: 12-16%, Si: 1.0% or less, Mn: 2.0% or less, Ni: 3.5 -7.5%, Mo: 1.5-3.5%, V: 0.01-0.05%, N: 0.02% or less, Ta: 0.01-0.06%, and It is a 862 MPa class low C high Cr steel pipe having high corrosion resistance, characterized in that the following formula (1) is satisfied and the balance is composed of Fe and inevitable impurities.
  • As an alloy steel component in addition to V which is a strong carbide generating element, it is characterized in that Ta having the same function is contained as an essential component. 25-25 [% Ni] +5 [% Cr] +25 [% Mo] ⁇ 0 (1)
  • the present invention is the 862 MPa class low C high Cr steel pipe having high corrosion resistance according to the above (1), further comprising Nb: 0.1% or less by mass%.
  • the alloy steel having the composition described in the above (1) or (2) is hot worked, and then austenitized at a temperature of Ac3 point or higher and 980 ° C or lower and then 100 ° C or lower.
  • carbides are uniformly precipitated in the grains and are not preferentially precipitated at the grain boundaries.
  • the toughness is excellent, and not only the corrosion resistance against carbon dioxide gas corrosion, but also the stress corrosion cracking resistance in a high concentration NaCl aqueous solution environment containing high-pressure hydrogen sulfide is good. It was possible to obtain a 862 MPa class low C high Cr steel pipe.
  • Increase of Cr is effective for improving the corrosion resistance of martensitic stainless steel.
  • an increase in Cr produces a ⁇ -ferrite phase and degrades strength and toughness.
  • there is a method of increasing the austenite-forming element Ni to suppress the formation of the ⁇ -ferrite phase but the increase in Ni is limited in terms of the tempering temperature.
  • An increase in C is also effective in suppressing the formation of ⁇ -ferrite phase, but carbides precipitate during tempering, and rather deteriorate the corrosion resistance and stress corrosion cracking resistance, so the content should rather be limited.
  • the present inventors have made steel contain a certain amount of V and Ta or V and Ta and Nb, and have a strength of 862 MPa class, taking into account the above-mentioned metal structure restrictions.
  • the heat treatment conditions are adjusted within a certain range, and the carbides are uniformly dispersed and precipitated in the grains, with high toughness and high strength that could not be realized with conventional martensitic stainless steel, A new martensitic stainless steel excellent in stress corrosion cracking resistance and a method for producing the same were found, and the present invention was completed.
  • the present invention limits the alloy composition and production conditions to the following ranges, improves the stress corrosion cracking resistance and toughness of conventional high-strength martensitic stainless steel, and maintains the corrosion resistance while maintaining hydrogen sulfide. It is possible to provide a 862 MPa class low C high Cr steel pipe that can be used without causing stress corrosion cracking even in an environment including many.
  • Component composition range C 0.005 to 0.05%
  • C is a strong austenite-forming element and an element indispensable for obtaining high strength. However, it combines with Cr during tempering and precipitates as carbide, which deteriorates corrosion resistance, stress corrosion cracking resistance and toughness. If the C content is less than 0.005%, sufficient strength cannot be obtained, and if it exceeds 0.05%, the deterioration becomes significant, so the content is 0.005 to 0.05%, preferably 0.02%. -0.04%.
  • Cr 12-16% Cr is a basic element constituting martensitic stainless steel, and is an important element that exhibits corrosion resistance. However, if the content is less than 12%, sufficient corrosion resistance cannot be obtained, and if it exceeds 16% Regardless of how the alloy elements are adjusted, the amount of ⁇ -ferrite phase generated increases and the strength and toughness deteriorate, so the content is made 12 to 16%, preferably 12 to 13%.
  • Si 1.0% or less Si is an element necessary as a deoxidizing material, but it is also a strong ferrite-forming element, and if it exceeds 1.0%, it promotes the formation of ⁇ -ferrite phase, so the upper limit Is 1.0%, preferably 0.5%, more preferably 0.3%.
  • Mn 2.0% or less Mn is an austenite-forming element that is effective as a deoxidizing and desulfurizing agent and suppresses the appearance of a ⁇ -ferrite phase.
  • the upper limit is made 2.0%, preferably 0.5%, more preferably 0.3%.
  • Ni 3.5-7.5%
  • Ni is an element that improves corrosion resistance and is extremely effective for the formation of austenite. However, if it is less than 3.5%, its effect is small. On the other hand, if the content increases, the transformation point (Ac1 point) is lowered, so the tempering temperature. Therefore, the content is set to 3.5 to 7.5%, preferably 5.0 to 7.0%.
  • Mo 1.5-3.5%
  • Mo is an element particularly effective for stress corrosion cracking resistance and corrosion resistance, but its effect does not appear when the content is less than 1.5%, and excessive ⁇ -ferrite phase appears when the content exceeds 3.5%. Therefore, the content is set to 1.5 to 3.5%, preferably 2.0 to 3.3%.
  • V 0.01 to 0.05%
  • V is a strong carbide-forming element. By finely depositing fine carbides within the grains and not preferentially precipitating at the grain boundaries, the grains are refined, improving stress corrosion cracking resistance and contributing to strength improvement. To do. However, it is also a ferrite-forming element and increases the ⁇ -ferrite phase. If the content is less than 0.01%, the effect of improving the stress corrosion cracking resistance does not appear. If the content exceeds 0.05%, the effect is saturated and the ⁇ -ferrite phase increases. 01 to 0.05%, preferably 0.02 to 0.04%.
  • N 0.02% or less N is an element harmful to the improvement of corrosion resistance, but is also an austenite forming element. If the content exceeds 0.02%, it precipitates as nitride during tempering, and the corrosion resistance, stress corrosion cracking resistance and toughness deteriorate, so the upper limit is made 0.02%, preferably 0.015%. .
  • Ta 0.01 to 0.06% Ta is a strong carbide-forming element, and precipitates fine carbides uniformly in the grains, improving stress corrosion cracking resistance and contributing to strength improvement. If the content is less than 0.01%, the effect of improving the stress corrosion cracking resistance does not appear. If the content exceeds 0.06%, the effect is saturated, so the content is 0.01 to 0.06%, preferably 0. .02 to 0.05.
  • the A value in the formula (1) is a formula that gives the relationship between the Ac1 point and the main additive elements (Ni, Cr, Mo). When the Ac1 point is lowered, it becomes difficult to obtain a sufficient tempered martensite structure, and the stress corrosion cracking resistance deteriorates. Therefore, it is necessary to make the composition satisfying A value zero or more.
  • Nb may be contained in addition to the above basic components.
  • Nb 0.1% or less Nb is a strong carbide-forming element, which precipitates fine carbides to refine crystal grains and improve stress corrosion cracking resistance. However, it is also a ferrite-forming element and increases the ⁇ -ferrite phase. If the content exceeds 0.1%, the effect is saturated and the ⁇ -ferrite phase increases, so the content is made 0.1% or less, preferably 0.05% or less.
  • the target stress corrosion cracking resistance of the present invention can be secured.
  • P 0.04% or less
  • S 0.01% or less
  • the target stress corrosion cracking resistance of the present invention can be secured.
  • all of these impurities are elements that degrade the hot workability and stress corrosion cracking resistance of steel, and the smaller the better.
  • O and other inevitable impurities are preferably as low as possible.
  • the stress corrosion cracking resistance of conventional high-strength martensitic stainless steel is improved, maintaining corrosion resistance, and stress corrosion cracking even in an environment rich in hydrogen sulfide. It becomes possible to obtain a 862 MPa class steel pipe (martensitic stainless steel) that can be used without being generated.
  • the steel having such characteristics can be manufactured by the following manufacturing method.
  • Steel pipe manufacturing process Steel adjusted to the above component composition range is melted in a converter or an electric furnace, and is made into a steel piece by a normal ingot casting method or a continuous casting method.
  • a steel slab is manufactured into a seamless steel pipe by hot working, or a steel slab is manufactured into a steel pipe after hot rolling to produce a steel sheet, and the steel pipe is austenitized by heating to a temperature of Ac3 to 980 ° C. It is quenched and cooled to the following temperature, and then tempered at a temperature of 700 ° C. or lower and 500 ° C. or higher.
  • Heating temperature Ac3 point or higher and 980 ° C. or lower If the heating temperature is lower than Ac3 point, austenite is not obtained and the quenching effect cannot be obtained, so the lower limit is set to Ac3 point. On the other hand, if the heating temperature exceeds 980 ° C., the crystal grains become coarse and sufficient strength cannot be obtained, and the toughness deteriorates, so the upper limit is 980 ° C.
  • Tempering temperature 700 ° C or lower and 500 ° C or higher
  • the tempering temperature is 700 ° C. or lower and 500 ° C. or higher. If the temperature exceeds 700 ° C., 0.2% proof stress of 852 MPa or higher cannot be obtained, so the upper limit is 700 ° C. On the other hand, if the temperature is lower than 500 ° C., the precipitation of carbide is not sufficient, and the target 0.2% proof stress and stress corrosion cracking resistance cannot be obtained, so the lower limit is set to 500 ° C.
  • the present inventors melted the inventive steels N1 to N7 and the comparative steels C1 to C4 having chemical compositions shown in Table 1 as test steels, and made a steel plate with a thickness of 12 mm by hot rolling, followed by heat treatment. Then, mechanical properties (strength and toughness), corrosion resistance and stress corrosion cracking resistance were tested.
  • the comparative steels C1 and C2 are steels that do not contain Ta, and are invention steels in Patent Document 6. Further, the comparative steel C3 is a steel not containing V, and the comparative steel C4 is a steel whose Ta content exceeds the upper limit value. Strength: 0.2% proof stress at room temperature.
  • Toughness Charpy impact value in a Charpy full size test at -20 ° C.
  • Corrosion resistance Corrosion rate of 2 weeks in an environment of 20% NaCl solution, 180 ° C., 10 atm CO 2 .
  • Table 2 shows the Ac1, Ac3 transformation temperature, heating temperature, and tempering temperature of the test steel.
  • Table 3 shows the results of testing the mechanical properties, corrosion resistance, and stress corrosion cracking resistance.
  • the steels of the present invention “N1, N2, N3, N4, N5A, N5B, N6, N7” all had 0.2% proof stress and Charpy impact values within the target range. Moreover, the corrosion resistance and stress corrosion cracking resistance also cleared the target values.
  • C1 and C2 are steels that do not contain Ta
  • C3 is a steel that does not contain V
  • C4 is a steel whose Ta content exceeds the upper limit. That is, since any component is out of the scope of the present invention, the test results also fail to achieve the targets of 0.2% proof stress and stress corrosion cracking resistance.
  • C1 and C2 are invention steels in Patent Document 6 that do not contain Ta, and have good SSC resistance in a 5% NaCl solution saturated with 0.01 atm of hydrogen sulfide gas. As confirmed, the test piece broke in a high-concentration (20%) NaCl solution with a pH of 4.5 saturated with hydrogen sulfide gas at a higher pressure (0.03 atm).
  • the Ta content significantly improves the stress corrosion cracking resistance in a more severe environment.
  • C3 could not obtain 862 MPa class strength even when tempered at a temperature lower than 600 ° C., and the test piece was broken in the stress corrosion cracking test.
  • the composite addition of V + Ta improved the characteristics that could not be achieved by each single addition, and a synergistic effect by the composite addition was recognized.
  • the 862 MPa class low C high Cr steel pipe with high corrosion resistance is not only resistant to carbon dioxide corrosion, but also exhibits high performance even in extremely severe corrosive environments where the hydrogen sulfide partial pressure exceeds 0.03 atm. It can be used for steel pipes for drilling and transportation of oil and natural gas containing carbon dioxide and hydrogen sulfide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 硫化水素分圧が0.03気圧を超えるような苛酷な腐食環境においても、高性能を発揮するマルテンサイト系ステンレス鋼を提供することを目的とする。 質量%で、C:0.005~0.05%、Cr:12~16%、Si:1.0%以下、Mn:2.0%以下、Ni:3.5~7.5%、Mo:1.5~3.5%、V:0.01~0.05%、N:0.02%以下、Ta:0.01~0.06%を含み、かつ下記(1)を満足し、残部がFe及び不可避的不純物からなることを特徴とする高耐食性を有する862MPa級低C高Cr合金鋼油井管である。 25-25[%Ni]+5[%Cr]+25[%Mo]≧0…(1)

Description

高耐食性を有する862MPa級低C高Cr鋼管及びその製造方法
 本発明は、高耐食性を有する862MPa級低C高Cr鋼管、特に石油、天然ガスの掘削、輸送における湿潤炭酸ガス、湿潤硫化水素を含む環境で高い応力腐食割れ抵抗を有する862MPa級の高強度マルテンサイト系ステンレス鋼管及びその製造方法に係わる。
 近年生産される石油、天然ガスは、湿潤炭酸ガス、湿潤硫化水素を多量に含む場合が増加しており、その掘削、輸送においては、従来の炭素鋼に替わって13Cr系ステンレス鋼などのマルテンサイト系ステンレス鋼が用いられてきている。しかし、従来のマルテンサイト系ステンレス鋼は、湿潤炭酸ガスに対する耐食性(以下、「耐食性」という。)は優れているものの、湿潤硫化水素に対する耐応力腐食割れ性(以下、「耐応力腐食割れ性」という。)は十分ではなく、強度、靭性、耐食性を維持しつつ耐応力腐食割れ性を向上させたマルテンサイト系ステンレス鋼が望まれていた。
 強度、靭性、耐食性に加え耐応力腐食割れ性の要求を満たすマルテンサイト系ステンレス鋼が、特許文献1~3に開示されている。
 一方、硫化水素分圧が0.01気圧を超える環境での耐応力腐食割れ性を改善したマルテンサイト系ステンレス鋼も提案されており、例えば、特許文献4、5などに開示されている。
 さらに、高耐食性を有する高強度マルテンサイト系ステンレス鋼が特許文献6に開示され、この鋼はすでに特許されている。
 しかしながら、特許文献1~3に開示されたマルテンサイト系ステンレス鋼は、硫化水素を極微量含む環境では耐応力腐食割れ性を有するものの、硫化水素分圧が0.01気圧を超える環境では応力腐食割れが生じるため、硫化水素を多く含む環境では使用できないという問題があった。
 また、特許文献4、5などに記載されたマルテンサイト系ステンレス鋼も硫化水素による応力腐食割れを完全に防止できるものではない。
 さらに、強度の観点から言うと、前記したマルテンサイト系ステンレス鋼はいずれも高強度化を試みると靭性及び耐応力腐食割れ性が著しく劣化し、そのため、強度あるいは靭性と耐応力腐食割れ性の一方を犠牲にせざるを得ないという問題もあった。そのため、例えば、高強度、耐応力腐食割れ性、耐食性及び靭性が同時に要求される高深度の油井には適用できないという難点があった。
 特許文献6には、上記の従来技術における問題点を解決すべく、従来のマルテンサイト系ステンレス鋼の強度、耐応力腐食割れ性及び靭性を同時に改善することにより、耐食性を維持しつつ、硫化水素を多く含む環境でも応力腐食割れを生じることなく使用できる862MPa級低C高Cr鋼管及びその製造方法が開示されている。
特許文献1:特公昭61-3391号公報
特許文献2:特開昭58-199850号公報
特許文献3:特開昭61-207550号公報
特許文献4:特開昭60-174859号公報
特許文献5:特開昭62-54063号公報
特許文献6:特許3485034号公報
 しかしながら、鋼管、特に油井管が遭遇する環境はますます苛酷化し、特許文献6において開発された高耐食性を有する高強度マルテンサイト系ステンレス鋼管でも、硫化水素分圧が0.03気圧を超えるような、より苛酷な環境では耐応力腐食割れ性が十分ではないことが明らかになった。そこで、本発明は、硫化水素分圧が0.03気圧を超えるような非常に苛酷な腐食環境においても、高性能を発揮する鋼管を提供することを目的とする。
 ここで、目標とする性能は、炭酸ガス、硫化水素を含む石油、天然ガスの掘削、輸送用鋼管に要求される性能に鑑み、以下の如くとした。また鋼管としては、油井管が主たる対象ではあるものの、同様の性能が要求される輸送用のラインパイプ用鋼管も対象となり得る。
 強度:0.2%耐力で862MPa以上965MPa以下。
 靭性:-20℃でのシャルピー・フルサイズ試験における吸収エネルギー値(シャルピー衝撃値と呼ぶ。)が100J以上。
 耐食性:20%NaCl水溶液、180℃、10気圧COの環境下で、腐食速度が0.5mm/year以下。
 耐応力腐食割れ性:0.03気圧の硫化水素ガスを飽和させたpH4.5の20%NaCl水溶液中で、試験片に0.2%耐力の90%の応力を負荷し、720時間以上破断せずに持ちこたえること。
 前記の目標性能を達成するために、本発明は以下に示す手段を用いている。
(1)本発明は、質量%で、C:0.005~0.05%、Cr:12~16%、Si:1.0%以下、Mn:2.0%以下、Ni:3.5~7.5%、Mo:1.5~3.5%、V:0.01~0.05%、N:0.02%以下、Ta:0.01~0.06%を含み、かつ下記の式(1)を満足し、残部がFe及び不可避的不純物からなることを特徴とする高耐食性を有する862MPa級低C高Cr鋼管である。合金鋼成分として、強力な炭化物生成元素であるVに加え、同じ機能を有するTaを必須成分として含有する点に特徴がある。
 25-25[%Ni]+5[%Cr]+25[%Mo]≧0…(1)
(2)本発明は、質量%で、Nb:0.1%以下をさらに含むことを特徴とする、上記(1)に記載の高耐食性を有する862MPa級低C高Cr鋼管である。
(3)本発明の製造方法は、上記(1)または(2)に記載の組成を有する合金鋼を熱間加工した後、Ac3点以上980℃以下の温度でオーステナイト化した後100℃以下の温度に冷却し、次いで700℃以下500℃以上の温度で焼戻しを行うことにより、炭化物を粒内に均一に析出させ、粒界に優先析出させないことを特徴とする方法である。
 本発明によれば、合金組成及び製造条件を特定することにより、靭性に優れ、また炭酸ガス腐食に対する耐食性はもとより、高圧硫化水素を含む高濃度のNaCl水溶液環境での耐応力腐食割れ性が良好である862MPa級低C高Cr鋼管を得ることが可能となった。
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、以下の知見を得るに至った。
 マルテンサイト系ステンレス鋼の耐食性向上にはCrの増加が有効である。しかし、Crの増加は、一方でδ-フェライト相を生成させ、強度及び靭性を劣化させる。そこで、オーステナイト生成元素であるNiを増加してδ-フェライト相の生成を抑制する方法が挙げられるが、Niの増加は焼き戻し温度の面から制約がある。Cの増加もδ-フェライト相の生成抑制に有効であるが、焼き戻し時に炭化物が析出し、かえって耐食性及び耐応力腐食割れ性を劣化させるため、その含有量はむしろ制限されるべきである。
 一般に、鋼を高強度化させると靭性及び耐応力腐食割れ性が劣化する。本発明者らは、Vを適量含有させた上で、適量のTaを必須成分として同時に含有させたマルテンサイト系ステンレス鋼は、個々の添加よりも、熱処理後に炭化物をステンレス鋼のマトリックスに微細な析出物を分散させやすく、高強度化が容易であるという相乗効果を見出し、靭性を劣化させることなく高強度化を図り、かつ高圧の硫化水素環境における耐応力腐食割れ性を向上させることが可能であることを新たに知見した。さらに、Nbを加えることによりその効果がより顕著となる。
 以上の知見に基づき、本発明者らは、上記のような金属組織の制約を考慮しつつ、鋼にVとTa、またはVとTaとNbとを一定量含有させ、かつ862MPa級の強度を安定して得るために熱処理条件を一定範囲内に調整し、炭化物を粒内に均一に分散析出させるようにして、従来のマルテンサイト系ステンレス鋼では実現しえなかった高靭性、高強度で、耐応力腐食割れ性に優れた新しいマルテンサイト系ステンレス鋼及びその製造方法を見出し、本発明を完成させた。
 すなわち、本発明は、合金組成及び製造条件を下記範囲に限定して、従来の高強度マルテンサイト系ステンレス鋼の耐応力腐食割れ性及び靭性を改善して、耐食性を維持しつつ、硫化水素を多く含む環境でも応力腐食割れを生じることなく使用できる862MPa級低C高Cr鋼管を提供することができる。
 以下に、本発明における合金元素の添加理由、その量の限定理由及び製造条件の限定理由について、説明する。なお、鋼中の各合金元素の含有量は質量%である。
(1)成分組成範囲
 C:0.005~0.05%
 Cは強力なオーステナイト生成元素であり、また、高強度を得るためにも欠かせない元素である。しかし、焼き戻し時にCrと結合して炭化物として析出し、これが耐食性、耐応力腐食割れ性及び靭性を劣化させる。Cの含有量が0.005%未満では十分な強度が得られず、0.05%を超えると劣化が顕著になるため、含有量を0.005~0.05%、好ましくは0.02~0.04%とする。
 Cr:12~16%
 Crはマルテンサイト系ステンレス鋼を構成する基本的な元素で、しかも耐食性を発現する重要な元素であるが、含有量が12%未満では十分な耐食性が得られず、16%を超えると他の合金元素を如何に調整してもδ-フェライト相の生成量が増し、強度及び靭性が劣化するため、含有量を12~16%、好ましくは12~13%とする。
 Si:1.0%以下
 Siは脱酸材として必要な元素であるが、強力なフェライト生成元素でもあり、1.0%を超えて含有させるとδ-フェライト相の生成を助長するため、上限を1.0%、好ましくは0.5%、より好ましくは0.3%とする。
 Mn:2.0%以下
 Mnは脱酸、脱硫剤として有効であるとともに、δ-フェライト相の出現を抑えるオーステナイト生成元素である。しかし、Mnは耐食性に対して有害であるので、上限を2.0%、好ましくは0.5%、より好ましくは0.3%とする。
 Ni:3.5~7.5%
 Niは耐食性を向上させるとともに、オーステナイトの生成に極めて有効な元素であるが、3.5%未満ではその効果が少なく、一方、含有量が増加すると変態点(Ac1点)を下げるので焼き戻し温度に制約を与えるため、含有量を3.5~7.5%、好ましくは5.0~7.0%とする。
 Mo:1.5~3.5%
 Moは特に耐応力腐食割れ性及び耐食性に有効な元素であるが、1.5%未満の含有量ではその効果が現れず、また3.5%を超えると過剰なδ-フェライト相を出現させるため、含有量を1.5~3.5%、好ましくは2.0~3.3%とする。
 V:0.01~0.05%
 Vは強力な炭化物生成元素で、微細な炭化物を粒内に均一に析出させ、粒界に優先析出させないことにより結晶粒を微細化し、耐応力腐食割れ性を向上させるとともに、強度向上にも寄与する。しかし、フェライト生成元素でもあり、δ-フェライト相を増加させる。含有量が0.01%未満では耐応力腐食割れ性の向上効果が現れず、0.05%を超えるとその効果は飽和し、かつ、δ-フェライト相が増加するため、含有量を0.01~0.05%、好ましくは0.02~0.04%とする。
 N:0.02%以下
 Nは耐食性向上に有害な元素であるが、オーステナイト生成元素でもある。0.02%を超えて含有させると焼き戻し時に窒化物となって析出し、耐食性、耐応力腐食割れ性及び靭性が劣化するため、上限を0.02%、好ましくは0.015%とする。
 Ta:0.01~0.06%
 Taは強力な炭化物生成元素で、微細な炭化物を粒内に均一に析出させ、耐応力腐食割れ性を向上させるとともに、強度向上にも寄与する。含有量が0.01%未満では耐応力腐食割れ性の向上効果が現れず、0.06%を超えるとその効果は飽和するため、含有量を0.01~0.06%、好ましくは0.02~0.05とする。
 A値:25-25[%Ni]+5[%Cr]+25[%Mo]≧0・・・(1)
 式(1)のA値はAc1点と主要添加元素(Ni、Cr、Mo)の関係を与える式である。Ac1点が低下すると、十分な焼き戻しマルテンサイト組織を得ることが困難になり、耐応力腐食割れ性が悪化する。そのため、A値がゼロ以上を満たす組成にする必要がある。
 本発明では、上記の基本成分以外にNbを含有してよい。
 Nb:0.1%以下
 Nbは強力な炭化物生成元素で、微細な炭化物を析出させることにより結晶粒を微細化し、耐応力腐食割れ性を向上させる。しかし、フェライト生成元素でもあり、δ-フェライト相を増加させる。含有量が0.1%を超えるとその効果は飽和し、かつ、δ-フェライト相が増加するため、含有量を0.1%以下、好ましくは0.05%以下とする。
 また、P、S、Oに代表される不可避的不純物のうち、Pは0.04%以下、Sは0.01%以下であれば、本発明の目的とする耐応力腐食割れ性を確保でき、また、継目無鋼管あるいは熱間圧延鋼板を素材とする電縫鋼管の製造に支障がない。しかし、これらの不純物はいずれも鋼の熱間加工性及び耐応力腐食割れ性を劣化させる元素であり、少ないほど好ましい。またO及びその余の不可避的不純物についても、極力低い方が好ましい。
 鋼を上記の組成成分範囲に調整することにより、従来の高強度マルテンサイト系ステンレス鋼の耐応力腐食割れ性を改善して、耐食性を維持しつつ、硫化水素を多く含む環境でも応力腐食割れを生じることなく使用できる862MPa級鋼管(マルテンサイト系ステンレス鋼)を得ることが可能となる。
 このような特性の鋼は以下の製造方法により、製造することができる。
(2)鋼管製造工程
 上記の成分組成範囲に調整した鋼を転炉あるいは電気炉にて溶製し、普通造塊法または連続鋳造法により鋼片にする。鋼片を熱間加工により継目無鋼管に製造し、あるいは鋼片を熱間圧延で鋼板を製造した後鋼管に成形し、鋼管をAc3点以上980℃以下の温度に加熱してオーステナイト化し100℃以下の温度に焼入れ冷却し、次いで700℃以下500℃以上の温度で焼戻しを行う。
a.加熱温度:Ac3点以上980℃以下
 加熱温度がAc3点未満では、オーステナイト化せず、焼入れの効果が得られないため、下限はAc3点とする。一方、加熱温度が980℃を超えると、結晶粒が粗大化し、十分な強度が得られないばかりでなく、靭性が劣化するため、上限は980℃である。
b.焼戻し温度:700℃以下500℃以上
 焼戻し処理は、前述したように、V、Taの微細な炭化物を均一に分散析出させて、耐応力腐食割れ性を劣化させることなく、高強度化を図るために必須である。焼戻し温度は700℃以下500℃以上にするが、その温度が700℃を超えると、852MPa以上の0.2%耐力が得られないので、上限は700℃とする。また、500℃より低いと炭化物の析出が十分ではなく、目標とする0.2%耐力及び耐応力腐食割れ性が得られないので、下限を500℃とする。
 以下、本発明の具体的な実施例について説明する。本発明者らは表1に示す化学組成の発明鋼N1~N7及び比較鋼C1~C4を試験鋼として溶製し、熱間圧延にて厚み12mmの鋼板とした後熱処理を行い、以下の条件で、機械的特性(強度と靭性)、耐食性及び耐応力腐食割れ性の試験を行った。なお、比較鋼C1及びC2は、Taを含有しない鋼であり、特許文献6における発明鋼である。また、比較鋼C3はVを含有しない鋼であり、比較鋼C4はTa含有量が上限値を超える鋼である。
 強度:常温での0.2%耐力。
 靭性:-20℃でのシャルピー・フルサイズ試験におけシャルピー衝撃値。
 耐食性:20%NaCl溶液、180℃、10気圧COの環境下での2週間の腐食速度。
 耐応力腐食割れ性(SSC):0.03気圧の硫化水素ガスを飽和させたpH:4.5の20%NaCl溶液中で、試験片に0.2%耐力の90%の応力を負荷し、720時間後における破断の有無。
 表2に、試験鋼のAc1、Ac3変態温度、加熱温度、焼戻し温度を示す。また、機械的特性、耐食性及び耐応力腐食割れ性を試験した結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明鋼の「N1,N2,N3,N4,N5A,N5B,N6,N7」は、0.2%耐力、シャルピー衝撃値はすべて目標範囲に入った。また、耐食性及び耐応力腐食割れ性も目標値をクリアした。
 一方、比較鋼のうち、C1及びC2は、Taを含有しない鋼であり、C3はVを含有しない鋼であり、C4はTa含有量が上限値を超える鋼である。すなわち、いずれかの成分が本発明の範囲を外れているため、試験結果も0.2%耐力や耐応力腐食割れ性が目標を達成し得ていない。特に、C1及びC2は、Taを含有しない特許文献6における発明鋼であり、0.01気圧の硫化水素ガスを飽和させた5%NaCl溶液中では良好な耐SSC性を有していることを確認しているが、より高圧(0.03気圧)の硫化水素ガスを飽和させたpH:4.5の高濃度(20%)NaCl溶液中では、試験片は破断した。より苛酷な環境下では、Ta含有が耐応力腐食割れ性を顕著に改善させることが理解できる。同様に、C3は、600℃を下回る温度で焼き戻しを行っても、862MPa級の強度を得ることができず、応力腐食割れ試験においても試験片は破断した。以上から、V+Taの複合添加は、各々の単独添加では達成できなかった特性の向上が図られ、複合添加による相乗効果が認められた。
 高耐食性を有する862MPa級低C高Cr鋼管は、炭酸ガス腐食に対する耐食性はもとより、硫化水素分圧が0.03気圧を超えるような非常に苛酷な腐食環境においても高性能を発揮することができ、炭酸ガス、硫化水素を含む石油、天然ガスの掘削、輸送用鋼管に利用可能である。

Claims (3)

  1.  質量%で、C:0.005~0.05%、Cr:12~16%、Si:1.0%以下、Mn:2.0%以下、Ni:3.5~7.5%、Mo:1.5~3.5%、V:0.01~0.05%、N:0.02%以下、Ta:0.01~0.06%を含み、かつ下記(1)を満足し、残部がFe及び不可避的不純物からなることを特徴とする高耐食性を有する862MPa級低C高Cr鋼管。
     25-25[%Ni]+5[%Cr]+25[%Mo]≧0…(1)
  2.  質量%で、Nb:0.1%以下をさらに含む、請求項1に記載の高耐食性を有する862MPa級低C高Cr鋼管。
  3.  請求項1または2に記載の組成を有する低C高Cr鋼を熱間加工した後、Ac3点以上980℃以下の温度でオーステナイト化した後100℃以下の温度に冷却し、次いで700℃以下500℃以上の温度で焼戻しを行う、高耐食性を有する862MPa級低C高Cr鋼管の製造方法。
PCT/JP2011/054851 2011-03-03 2011-03-03 高耐食性を有する862MPa級低C高Cr鋼管及びその製造方法 WO2012117546A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2011/054851 WO2012117546A1 (ja) 2011-03-03 2011-03-03 高耐食性を有する862MPa級低C高Cr鋼管及びその製造方法
JP2013502111A JP5793556B2 (ja) 2011-03-03 2011-03-03 高耐食性を有する862MPa級低C高Cr鋼管及びその製造方法
US14/002,931 US9677160B2 (en) 2011-03-03 2011-03-03 Low C-high Cr 862 MPa-class steel tube having excellent corrosion resistance and a manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/054851 WO2012117546A1 (ja) 2011-03-03 2011-03-03 高耐食性を有する862MPa級低C高Cr鋼管及びその製造方法

Publications (1)

Publication Number Publication Date
WO2012117546A1 true WO2012117546A1 (ja) 2012-09-07

Family

ID=46757506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054851 WO2012117546A1 (ja) 2011-03-03 2011-03-03 高耐食性を有する862MPa級低C高Cr鋼管及びその製造方法

Country Status (3)

Country Link
US (1) US9677160B2 (ja)
JP (1) JP5793556B2 (ja)
WO (1) WO2012117546A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3112492A1 (en) 2015-06-29 2017-01-04 Vallourec Oil And Gas France Corrosion resistant steel, method for producing said steel and its use thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104099527B (zh) * 2013-04-08 2016-06-01 宝山钢铁股份有限公司 一种超级13Cr加厚钻杆的制造方法
EP3042968B1 (en) * 2013-09-04 2020-12-09 JFE Steel Corporation Method of manufacturing a high-strength stainless steel pipe and high-strength stainless steel pipe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105604A (ja) * 2000-10-05 2002-04-10 Kawasaki Steel Corp 耐食性および溶接性に優れたラインパイプ用高Crマルテンサイト系ステンレス鋼管およびその製造方法
JP2005298840A (ja) * 2004-04-06 2005-10-27 Hitachi Metals Ltd 靭性に優れた高強度析出硬化型マルテンサイト系ステンレス鋼
JP2010242163A (ja) * 2009-04-06 2010-10-28 Jfe Steel Corp 油井管用マルテンサイト系ステンレス継目無鋼管の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147545A (ja) 1982-02-27 1983-09-02 Nippon Kokan Kk <Nkk> 硫化水素による応力腐食割れ抵抗性に優れたマルテンサイト系ステンレス鋼及びその製造方法
JPS58199850A (ja) 1982-05-15 1983-11-21 Kobe Steel Ltd 酸性油井用マルテンサイト系ステンレス鋼
JPS60174859A (ja) 1984-02-20 1985-09-09 Kawasaki Steel Corp 油井管用マルテンサイト系ステンレス鋼
JPS613391A (ja) 1984-06-15 1986-01-09 Mitsubishi Electric Corp 入力バツフア回路
JPS61207550A (ja) 1985-03-11 1986-09-13 Kawasaki Steel Corp 酸性油井用マルテンサイト系ステンレス鋼
JPH0643626B2 (ja) 1985-08-31 1994-06-08 川崎製鉄株式会社 油井管用マルテンサイト系ステンレス鋼
US5496421A (en) * 1993-10-22 1996-03-05 Nkk Corporation High-strength martensitic stainless steel and method for making the same
JP3485034B2 (ja) 1999-07-19 2004-01-13 Jfeスチール株式会社 高耐食性を有する862N/mm2級低C高Cr合金油井管およびその製造方法
SE526501C2 (sv) * 2003-01-13 2005-09-27 Sandvik Intellectual Property Metod för att ytmodifiera ett utskiljningshärdat rostfritt stål
JP4887506B2 (ja) * 2008-03-26 2012-02-29 防衛省技術研究本部長 フェライト系耐熱鋼の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105604A (ja) * 2000-10-05 2002-04-10 Kawasaki Steel Corp 耐食性および溶接性に優れたラインパイプ用高Crマルテンサイト系ステンレス鋼管およびその製造方法
JP2005298840A (ja) * 2004-04-06 2005-10-27 Hitachi Metals Ltd 靭性に優れた高強度析出硬化型マルテンサイト系ステンレス鋼
JP2010242163A (ja) * 2009-04-06 2010-10-28 Jfe Steel Corp 油井管用マルテンサイト系ステンレス継目無鋼管の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3112492A1 (en) 2015-06-29 2017-01-04 Vallourec Oil And Gas France Corrosion resistant steel, method for producing said steel and its use thereof

Also Published As

Publication number Publication date
US20140041770A1 (en) 2014-02-13
JP5793556B2 (ja) 2015-10-14
US9677160B2 (en) 2017-06-13
JPWO2012117546A1 (ja) 2014-07-07

Similar Documents

Publication Publication Date Title
US8608872B2 (en) High-strength stainless steel pipe excellent in sulfide stress cracking resistance and high-temperature carbonic-acid gas corrosion resistance
JP5487689B2 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管の製造方法
JP6045256B2 (ja) 高強度高靭性高耐食マルテンサイト系ステンレス鋼
JP4978073B2 (ja) 耐食性に優れる油井用高靭性超高強度ステンレス鋼管およびその製造方法
WO2011061812A1 (ja) 高靱性耐摩耗鋼およびその製造方法
JP6128291B2 (ja) マルテンサイト系ステンレス鋼
JP5974623B2 (ja) 時効硬化型ベイナイト非調質鋼
JP5499575B2 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
KR20140117547A (ko) 용접부 인성이 우수한 고인성 클래드 강판의 모재 및 그 클래드 강판의 제조 방법
KR101539520B1 (ko) 2상 스테인리스강
WO2016079920A1 (ja) 油井用高強度ステンレス継目無鋼管
JP4273338B2 (ja) マルテンサイト系ステンレス鋼管及びその製造方法
JP4645307B2 (ja) 低温靭性に優れた耐摩耗鋼およびその製造方法
JP5793556B2 (ja) 高耐食性を有する862MPa級低C高Cr鋼管及びその製造方法
JP2000178692A (ja) 高耐応力腐食割れ性を有する655Nmm−2級低C高Cr合金油井管およびその製造方法
JP2001026820A (ja) 耐応力腐食割れ性に優れた95ksiグレードマルテンサイト系ステンレス鋼の製造方法
JP3485034B2 (ja) 高耐食性を有する862N/mm2級低C高Cr合金油井管およびその製造方法
CN100507056C (zh) 110钢级耐co2及微量硫化氢腐蚀不锈钢油井管用钢
JP4645306B2 (ja) 低温靭性に優れた耐摩耗鋼およびその製造方法
JP3536687B2 (ja) 高耐食性および高強度を有する低C高Cr合金鋼及びその製造方法
JP3228008B2 (ja) 耐応力腐食割れ性に優れた高強度マルテンサイト系ステンレス鋼とその製造方法
CN107974613B (zh) 抗硫化物应力腐蚀开裂的x80级管线钢的生产方法
JP6519025B2 (ja) 油井用低合金高強度継目無鋼管
WO2016039136A1 (ja) 高強度鋼板
CN117568704A (zh) 一种厚规格高韧性无缝管线管及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013502111

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14002931

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11859924

Country of ref document: EP

Kind code of ref document: A1