WO2012115017A1 - Method for producing phase difference film - Google Patents

Method for producing phase difference film Download PDF

Info

Publication number
WO2012115017A1
WO2012115017A1 PCT/JP2012/053910 JP2012053910W WO2012115017A1 WO 2012115017 A1 WO2012115017 A1 WO 2012115017A1 JP 2012053910 W JP2012053910 W JP 2012053910W WO 2012115017 A1 WO2012115017 A1 WO 2012115017A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
composition
retardation film
solvent
alkyl group
Prior art date
Application number
PCT/JP2012/053910
Other languages
French (fr)
Japanese (ja)
Inventor
幸樹 椿
茂樹 阿波
小林 武史
剛知 松山
喜弘 川月
Original Assignee
大阪有機化学工業株式会社
兵庫県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪有機化学工業株式会社, 兵庫県 filed Critical 大阪有機化学工業株式会社
Priority to KR1020137024756A priority Critical patent/KR101888220B1/en
Priority to CN201280004819.4A priority patent/CN103443668B/en
Publication of WO2012115017A1 publication Critical patent/WO2012115017A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/003Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/12Spreading-out the material on a substrate, e.g. on the surface of a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/50Shaping under special conditions, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/08Polymers of acrylic acid esters, e.g. PMA, i.e. polymethylacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0079Liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs

Abstract

The purpose of the present invention is to provide a method for producing a phase difference film offering greater ease of use and convenience. This method for producing a phase difference film is characterized in comprising: a step for coating a substrate with a composition containing a solvent and a liquid crystal polymer having a photoreactive group; a step for drying the composition under reduced pressure, or by heat-assisted drying after unassisted drying, to evaporate off the solvent in the composition and form a photoreactive layer; a step for irradiating the photoreactive layer with linearly polarized light and forming a thermal alignment layer; and a step for heat-treating the thermal alignment layer.

Description

位相差フィルムの製造方法Method for producing retardation film
 本発明は,位相差フィルムの製造方法に関する。 The present invention relates to a method for producing a retardation film.
 近年,ディスプレー(液晶ディスプレーの他,フレキシブルディスプレーなども含む)分野では,位相差フィルムが様々な形で利用されている。かかる位相差フィルムは,通常,基板上に液晶配向能を有する層(液晶配向層)を形成させた後,該液晶配向層の上に液晶性化合物を塗布,配向させて製造される。この場合において,基板に液晶配向層を付与する方法として,例えば,基板の表面にポリイミドなどの高分子樹脂膜を被覆し,これを一方向に布などで擦るラビング処理が知られているが,かかる方法においては,微細な埃の発生による液晶製造ラインの汚染や,静電気によるTFT(薄膜トランジスタ)素子の破壊などが,液晶パネルの製造工程における歩留まりの低下を引き起こす原因となったり,定量的な配向制御が困難であることなどの問題があった。また,ラビング処理に代わり,光反応性化合物を用いて,これを基板に被覆し,光照射により,液晶配向能を有する光配向膜を形成させる方法も種々提案されている(特許文献1~3)。しかし,これらいずれの方法においても,液晶を配向させるための膜を別に作製する必要があり,煩雑であった。 In recent years, retardation films have been used in various forms in the field of displays (including liquid crystal displays as well as flexible displays). Such a retardation film is usually produced by forming a layer having liquid crystal alignment ability (liquid crystal alignment layer) on a substrate and then applying and aligning a liquid crystalline compound on the liquid crystal alignment layer. In this case, as a method for applying a liquid crystal alignment layer to the substrate, for example, a rubbing process is known in which a polymer resin film such as polyimide is coated on the surface of the substrate, and this is rubbed with a cloth or the like in one direction. In such a method, contamination of the liquid crystal production line due to generation of fine dust, destruction of TFT (thin film transistor) elements due to static electricity, etc. may cause a decrease in yield in the liquid crystal panel production process, and quantitative alignment. There were problems such as difficulty in control. In addition, various methods have been proposed in which a photoreactive compound is used instead of rubbing, and this is coated on a substrate, and a photo-alignment film having liquid crystal alignment ability is formed by light irradiation (Patent Documents 1 to 3). ). However, in any of these methods, it is necessary to separately prepare a film for aligning the liquid crystal, which is complicated.
 そこで,液晶配向層を別途形成させることなく位相差フィルムを直接得る方法が検討されている。例えば,特許文献4には,基材上に形成した,液晶性を発現し得る感光性化合物を含む感光性層を,等方相転移温度以上に加熱した後,かかる状態からガラス相-液晶相転移温度以下に急冷し,偏光を照射し,加熱処理することによって,位相差フィルムを得る製造方法が記載されている。しかし,かかる方法においては,速やかな冷却が達成できないと,位相差フィルムの品質が低下するなどの問題があり,より簡便かつ確実な方法の提供が求められている。 Therefore, a method for directly obtaining a retardation film without separately forming a liquid crystal alignment layer has been studied. For example, in Patent Document 4, a photosensitive layer containing a photosensitive compound capable of exhibiting liquid crystallinity formed on a substrate is heated to an isotropic phase transition temperature or higher, and then from this state, a glass phase-liquid crystal phase is obtained. A manufacturing method is described in which a retardation film is obtained by quenching to below the transition temperature, irradiation with polarized light, and heat treatment. However, in such a method, if rapid cooling cannot be achieved, there is a problem that the quality of the retardation film deteriorates, and there is a demand for providing a simpler and more reliable method.
特開平08-015681号公報Japanese Patent Application Laid-Open No. 08-015681 特開2007-304215号公報JP 2007-304215 A 特開2008-276149号公報JP 2008-276149 A 特開2009-109757号公報JP 2009-109757 A
 上記背景において,本発明は,より簡単かつ簡便な位相差フィルムの製造方法を提供することを目的とする。また,本発明は,かかる位相差フィルムの製造に使用できる新規位相差フィルム用組成物を提供することを目的とする。 In the above background, an object of the present invention is to provide a simpler and simpler method for producing a retardation film. Moreover, an object of this invention is to provide the composition for novel retardation films which can be used for manufacture of this retardation film.
 本発明者らは,鋭意検討を行った結果,光反応性基を有する液晶性ポリマーと溶媒とを含んでなる組成物を基板に塗布し,該塗膜から溶媒を留去するに際し,減圧乾燥するか,又は自然乾燥した後加熱乾燥すれば,その後直線偏光照射,加熱処理を経て,直接位相差フィルムを製造できることを見出し,さらに検討を重ねて本発明を完成させた。 As a result of intensive studies, the present inventors applied a composition comprising a liquid crystalline polymer having a photoreactive group and a solvent to a substrate, and when the solvent was distilled off from the coating film, drying was performed under reduced pressure. In addition, it was found that if the film was air-dried and then dried by heating, a retardation film could be directly produced through linearly polarized light irradiation and heat treatment, and the present invention was completed through further studies.
 すなわち,本発明は,
〔1〕基板に,光反応性基を有する液晶性ポリマーと溶媒とを含んでなる組成物を塗布する工程と,
 該組成物を減圧乾燥するか,又は自然乾燥した後加熱乾燥することにより,該組成物中の溶媒を留去して,光反応性層を形成する工程と,
 該光反応性層に直線偏光を照射して,熱配向性層を形成する工程と,
 該熱配向性層を加熱処理する工程とを含むことを特徴とする,位相差フィルムの製造方法,
〔2〕光反応性層を形成する工程が,該組成物を減圧乾燥することにより,該組成物中の溶媒を留去するものである,上記〔1〕の製造方法,
〔3〕一般式(I)
Figure JPOXMLDOC01-appb-C000007
〔式中,R1は水素原子又はメチル基であり,R2はアルキル基,又はアルキル基,アルコキシ基,シアノ基及びハロゲン原子から選ばれる基で置換されたフェニル基であり,環A及び環Bはそれぞれ独立して,
Figure JPOXMLDOC01-appb-C000008
〔但し,X1~X38の各々はそれぞれ独立して,水素原子,アルキル基,アルコキシ基,ハロゲン原子又はシアノ基である。〕
で示される基であり,p及びqはそれぞれ独立して,1~12のいずれかの整数であり,m及びnは,0.65≦m≦0.95,0.05≦n≦0.35,m+n=1の関係を満たす共重合体に占める各モノマーのモル分率である。〕
で示される繰り返し単位を有する共重合性(メタ)アクリル酸ポリマーを含んでなる,位相差フィルム用組成物,
〔4〕一般式(I-a)
Figure JPOXMLDOC01-appb-C000009
〔式中,R1は水素原子又はメチル基であり,R2はアルキル基,又はアルキル基,アルコキシ基,シアノ基及びハロゲン原子から選ばれる基で置換されたフェニル基であり,X1A~X4Aの各々はそれぞれ独立して,水素原子,アルキル基,アルコキシ基,ハロゲン原子又はシアノ基であり,環Bは,
Figure JPOXMLDOC01-appb-C000010
〔但し,X1B~X4B及びX31B~X38Bの各々はそれぞれ独立して,水素原子,アルキル基,アルコキシ基,ハロゲン原子又はシアノ基である。〕
で示される基であり,p及びqはそれぞれ独立して,1~12のいずれかの整数であり,m及びnは,0.65≦m≦0.95,0.05≦n≦0.35,m+n=1の関係を満たす共重合体に占める各モノマーのモル分率である。〕
で示される繰り返し単位を有する共重合性(メタ)アクリル酸ポリマーを含んでなる,位相差フィルム用組成物,
〔5〕一般式(I-b)
Figure JPOXMLDOC01-appb-C000011
〔式中,R1は水素原子又はメチル基であり,R2はアルキル基,又はアルキル基,アルコキシ基,シアノ基及びハロゲン原子から選ばれる基で置換されたフェニル基であり,X1A~X4A及びX31B~X38Bの各々はそれぞれ独立して,水素原子,アルキル基,アルコキシ基,ハロゲン原子又はシアノ基であり,p及びqはそれぞれ独立して,1~12のいずれかの整数であり,m及びnは,0.65≦m≦0.95,0.05≦n≦0.35,m+n=1の関係を満たす共重合体に占める各モノマーのモル分率である。〕
で示される繰り返し単位を有する共重合性(メタ)アクリル酸ポリマーを含んでなる,位相差フィルム用組成物,
〔6〕一般式(I-c)
Figure JPOXMLDOC01-appb-C000012
〔式中,R1は水素原子又はメチル基であり,R2はアルキル基,又はアルキル基,アルコキシ基,シアノ基及びハロゲン原子から選ばれる基で置換されたフェニル基であり,X1A~X4A及びX1B~X4Bの各々はそれぞれ独立して,水素原子,アルキル基,アルコキシ基,ハロゲン原子又はシアノ基であり,p及びqはそれぞれ独立して,1~12のいずれかの整数であり,m及びnは,0.65≦m≦0.95,0.05≦n≦0.35,m+n=1の関係を満たす共重合体に占める各モノマーのモル分率である。〕
で示される繰り返し単位を有する共重合性(メタ)アクリル酸ポリマーを含んでなる,位相差フィルム用組成物,に関する。
That is, the present invention
[1] A step of applying a composition comprising a liquid crystalline polymer having a photoreactive group and a solvent to a substrate;
A step of forming a photoreactive layer by distilling off the solvent in the composition by drying the composition under reduced pressure or by air drying and then drying by heating;
Irradiating the photoreactive layer with linearly polarized light to form a thermally oriented layer;
A process for producing a retardation film, comprising a step of heat-treating the thermally-oriented layer.
[2] The process according to the above [1], wherein the step of forming the photoreactive layer is such that the solvent in the composition is distilled off by drying the composition under reduced pressure.
[3] General formula (I)
Figure JPOXMLDOC01-appb-C000007
[Wherein, R 1 is a hydrogen atom or a methyl group, R 2 is an alkyl group, or a phenyl group substituted with an alkyl group, an alkoxy group, a cyano group, or a halogen atom; Each B is independently
Figure JPOXMLDOC01-appb-C000008
[However, X 1 to X 38 are each independently a hydrogen atom, an alkyl group, an alkoxy group, a halogen atom, or a cyano group. ]
Wherein p and q are each independently an integer of 1 to 12, and m and n are 0.65 ≦ m ≦ 0.95, 0.05 ≦ n ≦ 0. 35, the molar fraction of each monomer in the copolymer satisfying the relationship of m + n = 1. ]
A retardation film composition comprising a copolymerizable (meth) acrylic acid polymer having a repeating unit represented by:
[4] General formula (Ia)
Figure JPOXMLDOC01-appb-C000009
[Wherein R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkyl group, or a phenyl group substituted with an alkyl group, an alkoxy group, a cyano group, or a halogen atom, and X 1A to X Each of 4A is independently a hydrogen atom, alkyl group, alkoxy group, halogen atom or cyano group, and ring B is
Figure JPOXMLDOC01-appb-C000010
[However, X 1B to X 4B and X 31B to X 38B are each independently a hydrogen atom, an alkyl group, an alkoxy group, a halogen atom, or a cyano group. ]
Wherein p and q are each independently an integer of 1 to 12, and m and n are 0.65 ≦ m ≦ 0.95, 0.05 ≦ n ≦ 0. 35, the molar fraction of each monomer in the copolymer satisfying the relationship of m + n = 1. ]
A retardation film composition comprising a copolymerizable (meth) acrylic acid polymer having a repeating unit represented by:
[5] General formula (Ib)
Figure JPOXMLDOC01-appb-C000011
[Wherein R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkyl group, or a phenyl group substituted with an alkyl group, an alkoxy group, a cyano group, or a halogen atom, and X 1A to X 4A and X 31B to X 38B are each independently a hydrogen atom, an alkyl group, an alkoxy group, a halogen atom or a cyano group, and p and q are each independently an integer of 1 to 12 Yes, m and n are mole fractions of each monomer in the copolymer satisfying the relationship of 0.65 ≦ m ≦ 0.95, 0.05 ≦ n ≦ 0.35, m + n = 1. ]
A retardation film composition comprising a copolymerizable (meth) acrylic acid polymer having a repeating unit represented by:
[6] General formula (Ic)
Figure JPOXMLDOC01-appb-C000012
[Wherein, R 1 is a hydrogen atom or a methyl group, R 2 is an alkyl group, or a phenyl group substituted with an alkyl group, an alkoxy group, a cyano group or a halogen atom, and X 1A to X 4A and X 1B to X 4B are each independently a hydrogen atom, an alkyl group, an alkoxy group, a halogen atom or a cyano group, and p and q are each independently an integer of 1 to 12 Yes, m and n are mole fractions of each monomer in the copolymer satisfying the relationship of 0.65 ≦ m ≦ 0.95, 0.05 ≦ n ≦ 0.35, m + n = 1. ]
The composition for retardation films which comprises the copolymerizable (meth) acrylic acid polymer which has a repeating unit shown by these.
 上記本発明の製造方法によれば,液晶配向層を別途形成させることなく,基板上に形成した,光反応性基を有する液晶性ポリマーを含む層から,位相差フィルムを直接得ることができる。また,このことが,基板に塗布された組成物を減圧乾燥するか,又は自然乾燥した後加熱乾燥して,該組成物中から溶媒を留去することにより達成できる。したがって,本発明の製造方法は,簡単かつ簡便に,延いては低コストで,位相差フィルムを提供することができる,優れた製造方法である。 According to the production method of the present invention, a retardation film can be obtained directly from a layer containing a liquid crystalline polymer having a photoreactive group formed on a substrate without separately forming a liquid crystal alignment layer. This can be achieved by drying the composition applied to the substrate under reduced pressure, or by natural drying followed by heat drying, and distilling off the solvent from the composition. Therefore, the production method of the present invention is an excellent production method capable of providing a retardation film easily and simply and at low cost.
 本発明に用いる基板としては,例えば,アルカリガラス,無アルカリガラスなどのガラス材料,ポリイミド,ポリアミド,アクリル樹脂,ポリビニルアルコール,トリアセチルセルロース,ポリエチレンテレフタレート,シクロオレフィンポリマー,ポリエチレン,ポリカーボネート,ポリスチレン,ポリ三フッ化塩化エチレンなどの樹脂材料,鉄,アルミニウム,銅などの金属材料などからなる基板が挙げられ,このうちガラス材料からなる基板が好ましい。 Examples of the substrate used in the present invention include glass materials such as alkali glass and non-alkali glass, polyimide, polyamide, acrylic resin, polyvinyl alcohol, triacetyl cellulose, polyethylene terephthalate, cycloolefin polymer, polyethylene, polycarbonate, polystyrene, and poly (III). A substrate made of a resin material such as fluorinated ethylene chloride, or a metal material such as iron, aluminum, or copper can be used. Of these, a substrate made of a glass material is preferable.
 基板の厚さは,特に限定されないが,通常,ガラス材料からなる基板であれば,0.1mm~3mm,樹脂材料からなる基板であれば,10μm~300μm,金属材料からなる基板であれば,1~100μmである。 The thickness of the substrate is not particularly limited. Usually, a substrate made of a glass material is 0.1 mm to 3 mm, a substrate made of a resin material is 10 μm to 300 μm, and a substrate made of a metal material is 1-100 μm.
 基板は,位相差フィルムを作成した後に剥離してもよく,また,基板自身が透明で光学的に等方性であれば剥離せず,そのまま使用することもできる。 The substrate may be peeled off after forming the retardation film, or if the substrate itself is transparent and optically isotropic, it can be used without being peeled off.
 本発明に係る光反応性基を有する液晶性ポリマー(以下,単に「液晶性ポリマー」ということがある。)としては,例えば,液晶性高分子のメソゲン成分として多用されているビフェニル基,ターフェニル基,ナフタレン基,フェニルベンゾエート基,アゾベンゼン基,これらの誘導体などの置換基(メソゲン基)と,シンナモイル基,カルコン基,シンナミリデン基,β-(2-フェニル)アクリロイル基,桂皮酸基,これらの誘導体などの光反応性基を併せ有する構造の側鎖を有し,アクリレート,メタクリレート,マレイミド,N-フェニルマレイミド,シロキサンなどの構造を主鎖に有するポリマーを挙げることができる。かかるポリマーは,単一の繰り返し単位からなるホモポリマーであってもよく,側鎖の構造の異なる2以上の繰り返し単位からなるコポリマーであってもよい。かかるコポリマーとしては,交互型,ランダム型,クラフト型などのいずれをも含むものである。また,かかるコポリマーにおいては,少なくとも一の繰り返し単位に係る側鎖は,上記の如きメソゲン基と光反応性基を併せ有する構造の側鎖であるが,他の繰り返し単位に係る側鎖は,かかるメソゲン基や光反応性基を有さないものであってよい。 Examples of the liquid crystalline polymer having a photoreactive group according to the present invention (hereinafter sometimes simply referred to as “liquid crystalline polymer”) include, for example, a biphenyl group and a terphenyl which are frequently used as a mesogenic component of a liquid crystalline polymer. Groups, naphthalene groups, phenylbenzoate groups, azobenzene groups, substituents (mesogen groups) such as these derivatives, cinnamoyl groups, chalcone groups, cinnamylidene groups, β- (2-phenyl) acryloyl groups, cinnamic acid groups, these Examples thereof include a polymer having a side chain having a structure having a photoreactive group such as a derivative and having a structure such as acrylate, methacrylate, maleimide, N-phenylmaleimide, and siloxane in the main chain. Such a polymer may be a homopolymer composed of a single repeating unit or a copolymer composed of two or more repeating units having different side chain structures. Such copolymers include any of alternating, random and craft types. In such a copolymer, the side chain related to at least one repeating unit is a side chain having a structure having both a mesogenic group and a photoreactive group as described above, but the side chain related to another repeating unit is It may have no mesogenic group or photoreactive group.
 本発明に係る液晶性ポリマーの好ましい具体例を以下に示す。これらは新規化合物である。 Preferred specific examples of the liquid crystalline polymer according to the present invention are shown below. These are novel compounds.
一般式(I)
Figure JPOXMLDOC01-appb-C000013
〔式中,記号は前記と同一意味を有する。〕
で示される繰り返し単位を有する共重合性(メタ)アクリル酸ポリマー。
Formula (I)
Figure JPOXMLDOC01-appb-C000013
[Wherein the symbols have the same meaning as described above. ]
A copolymerizable (meth) acrylic acid polymer having a repeating unit represented by:
一般式(I-a)
Figure JPOXMLDOC01-appb-C000014
〔式中,記号は前記と同一意味を有する。〕
で示される繰り返し単位を有する共重合性(メタ)アクリル酸ポリマー。
Formula (Ia)
Figure JPOXMLDOC01-appb-C000014
[Wherein the symbols have the same meaning as described above. ]
A copolymerizable (meth) acrylic acid polymer having a repeating unit represented by:
一般式(I-b)
Figure JPOXMLDOC01-appb-C000015
〔式中,記号は前記と同一意味を有する。〕
で示される繰り返し単位を有する共重合性(メタ)アクリル酸ポリマー。
Formula (Ib)
Figure JPOXMLDOC01-appb-C000015
[Wherein the symbols have the same meaning as described above. ]
A copolymerizable (meth) acrylic acid polymer having a repeating unit represented by:
一般式(I-c)
Figure JPOXMLDOC01-appb-C000016
〔式中,記号は前記と同一意味を有する。〕
で示される繰り返し単位を有する共重合性(メタ)アクリル酸ポリマー。
Formula (Ic)
Figure JPOXMLDOC01-appb-C000016
[Wherein the symbols have the same meaning as described above. ]
A copolymerizable (meth) acrylic acid polymer having a repeating unit represented by:
 本発明の一般式(I)(一般式(I-a),一般式(I-b)及び一般式(I-c)を含む。以下同様。)において,R1としては,メチル基が好ましい。R2としては,アルキル基,又はアルキル基,アルコキシ基,シアノ基及びハロゲン原子から選ばれる1の基で置換されたフェニル基が好ましく,このうちアルキル基,又はアルコキシ基若しくはシアノ基で置換されたフェニル基が好ましく,更に,アルキル基,又はアルコキシ基で置換されたフェニル基が最も好ましい。X1~X38としては,いずれも,水素原子又はハロゲン原子が好ましく,すべて水素原子である場合が最も好ましい。p及びqとしては,いずれも,3~9のいずれかの整数が好ましく,このうち5~7のいずれかの整数が好ましく,6が最も好ましい。mについては,好ましくは約0.75≦m≦約0.85の範囲であり,最も好ましいのは約0.8である。対応するnの好ましい範囲は,m+n=1から自ずと定まる範囲である。すなわち,好ましくは約0.15≦n≦約0.25の範囲であり,最も好ましいのは約0.2である。 In the general formula (I) of the present invention (including general formula (Ia), general formula (Ib) and general formula (Ic), the same shall apply hereinafter)), R 1 is preferably a methyl group . R 2 is preferably an alkyl group, or a phenyl group substituted with one group selected from an alkyl group, an alkoxy group, a cyano group, and a halogen atom. Of these, an alkyl group, an alkoxy group, or a cyano group is substituted. A phenyl group is preferable, and a phenyl group substituted with an alkyl group or an alkoxy group is most preferable. X 1 to X 38 are each preferably a hydrogen atom or a halogen atom, and most preferably a hydrogen atom. As p and q, any integer of 3 to 9 is preferable, and any integer of 5 to 7 is preferable, and 6 is most preferable. m is preferably in the range of about 0.75 ≦ m ≦ about 0.85, and most preferably about 0.8. The corresponding preferred range of n is a range that is naturally determined from m + n = 1. That is, preferably in the range of about 0.15 ≦ n ≦ about 0.25, most preferably about 0.2.
 本発明の一般式(I-a),(I-b)又は(I-c)において,X1A~X4Aとしては,水素原子又はハロゲン原子が好ましく,特に,X1A~X4Aのいずれか一つがハロゲン原子であって,その他が水素原子である場合,又はすべてが水素原子である場合が好ましい。また,本発明の一般式(I-b)において,X31B~X38Bとしては,水素原子又はハロゲン原子が好ましく,すべてが水素原子である場合が最も好ましい。また,本発明の一般式(I-c)において,X1B~X4Bとしては,水素原子又はハロゲン原子が好ましく,すべてが水素原子である場合が最も好ましい。 In the general formula (Ia), (Ib) or (Ic) of the present invention, X 1A to X 4A are preferably a hydrogen atom or a halogen atom, and in particular, any one of X 1A to X 4A It is preferable that one is a halogen atom and the other is a hydrogen atom, or that all are hydrogen atoms. In the general formula (Ib) of the present invention, X 31B to X 38B are preferably hydrogen atoms or halogen atoms, and most preferably all are hydrogen atoms. In the general formula (Ic) of the present invention, X 1B to X 4B are preferably hydrogen atoms or halogen atoms, and most preferably all are hydrogen atoms.
 R2のアルキル基又はR2のフェニル基の置換基のアルキル基としては,炭素数1~12のアルキル基が挙げられ,そのうち,好ましくは炭素数1~6のものが,更に好ましくは炭素数1~4のものが,最も好ましくはメチル基が挙げられる。R2のフェニル基の置換基のアルコシキ基としては,炭素数1~12のアルコキシ基が挙げられ,そのうち,好ましくは炭素数1~6のものが,更に好ましくは炭素数1~4のものが,最も好ましくはメトキシ基が挙げられる。R2のフェニル基の置換基のハロゲン原子としては,フッ素原子,塩素原子,臭素原子,ヨウ素原子が挙げられ,このうち,フッ素原子が好ましい。X1~X38において,アルキル基としては,炭素数1~4のものが挙げられ,そのうちメチル基が最も好ましく,アルコキシ基としては,炭素数1~4のものが挙げられ,そのうちメトキシ基が最も好ましく,ハロゲン原子としては,フッ素原子,塩素原子,臭素原子,ヨウ素原子が挙げられ,このうち,フッ素原子が好ましい。 The alkyl group of the substituents of the phenyl group of the alkyl group or R 2 in R 2, include an alkyl group having 1 to 12 carbon atoms, of which preferably has 1 to 6 carbon atoms, more preferably a carbon number Those having 1 to 4 are most preferably a methyl group. Examples of the alkoxy group as the substituent of the phenyl group of R 2 include alkoxy groups having 1 to 12 carbon atoms, preferably 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms. , And most preferably a methoxy group. Examples of the halogen atom for the substituent of the phenyl group of R 2 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and among these, a fluorine atom is preferable. In X 1 to X 38 , examples of the alkyl group include those having 1 to 4 carbon atoms, of which a methyl group is most preferable, and examples of the alkoxy group include those having 1 to 4 carbon atoms, including a methoxy group. Most preferably, examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and among these, a fluorine atom is preferable.
 なお,本明細書において,X1A~X38Aは,環A又は環B上の置換基であるX1~X38について,それらが環A上の置換基である場合を表し,X1B~X38Bは,それらが環B上の置換基である場合を表すものである。したがって,X1~X38についての説明は,そのままX1A~X38A及びX1B~X38Bに対しても適用し得るものである。 In the present specification, X 1A to X 38A represent the case where X 1 to X 38 which are substituents on ring A or ring B are substituents on ring A, and X 1B to X 38 38B represents the case where they are substituents on ring B. Therefore, the description of X 1 to X 38 can be applied to X 1A to X 38A and X 1B to X 38B as they are.
 本発明のポリマー(I)は,一般式(II) The polymer (I) of the present invention has the general formula (II)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
〔式中,記号は前記と同一意味を有する。〕
で示される(メタ)アクリル酸モノマー(M1)の所定量と,一般式(III)
[Wherein the symbols have the same meaning as described above. ]
A predetermined amount of (meth) acrylic acid monomer (M1) represented by formula (III)
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
〔式中,記号は前期と同一意味を有する。〕
で示される(メタ)アクリル酸モノマー(M2)の所定量を,無溶媒又は溶媒中混合して,重合させることにより,製造することができる。重合は光又は熱を用いて実施することができる。重合工程において,材料や溶媒等を仕込む方法は特に限定されず,重合前に反応容器へ予め全材料を投入した後に重合を開始してもよいし,M1とM2を混合したのち,かかる混合物や溶媒等の一部について重合開始した後に,残りを滴下又は分割投入などの方法により段階的に追加してもよい。
[In the formula, the symbols have the same meaning as in the previous term. ]
It can be produced by mixing a predetermined amount of the (meth) acrylic acid monomer (M2) represented by (2) without solvent or in a solvent and polymerizing the monomer. The polymerization can be carried out using light or heat. In the polymerization step, the method of charging the material, the solvent, etc. is not particularly limited. The polymerization may be started after all the materials are charged into the reaction vessel in advance before the polymerization, or after mixing M1 and M2, After the polymerization of a part of the solvent or the like is started, the remainder may be added stepwise by a method such as dropping or divided addition.
 また,M1及びM2の重合に際して,必須ではないが,他のモノマーを,含有させてもよく,そのようなモノマーは,重合性のエチレン性不飽和結合を有する化合物である限り,それ以外の点では特に限定されず,液晶性を有するものでなくてもよい。 In addition, other monomers may be included in the polymerization of M1 and M2, but other monomers may be included as long as such monomers are compounds having a polymerizable ethylenically unsaturated bond. However, it is not particularly limited, and it may not have liquid crystallinity.
 そのようなモノマーとしては,例えば,メチル(メタ)アクリレート,t-ブチル(メタ)アクリレート,ステアリル(メタ)アクリレート,シクロヘキシル(メタ)アクリレート,エトキシエチル(メタ)アクリレート,ヒドロキシエチル(メタ)アクリレート,フェニル(メタ)アクリレート,N,N-ジメチルアクリルアミドなどの(メタ)アクリルモノマー,スチレン,α-メチルスチレン,p-スチレンスルホン酸,エチルビニルエーテル,N-ビニルイミダゾール,ビニルアセテート,ビニルピリジン,2-ビニルナフタレン,塩化ビニル,フッ化ビニル,N-ビニルカルバゾール,ビニルアミン,ビニルフェノール,N-ビニル-2-ピロリドンなどのビニル系モノマー,4-アリル-1,2-ジメトキシベンゼン,4-アリルフェノール,4-メトキシアリルベンゼンなどのアリル系モノマー,フェニルマレイミド,シクロヘキシルマレイミド等のマレイミド類が挙げられる。 Examples of such monomers include methyl (meth) acrylate, t-butyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, ethoxyethyl (meth) acrylate, hydroxyethyl (meth) acrylate, phenyl (Meth) acrylate, (meth) acrylic monomers such as N, N-dimethylacrylamide, styrene, α-methylstyrene, p-styrenesulfonic acid, ethyl vinyl ether, N-vinyl imidazole, vinyl acetate, vinyl pyridine, 2-vinyl naphthalene , Vinyl chloride, vinyl fluoride, N-vinylcarbazole, vinylamine, vinylphenol, vinyl monomers such as N-vinyl-2-pyrrolidone, 4-allyl-1,2-dimethoxybenzene, 4-allylpheno Le, 4-allyl-based monomer such as methoxy allyl benzene, phenyl maleimide, maleimide such as cyclohexyl maleimide.
 溶液中で重合する場合には,汎用の有機溶媒を特に限定なく用いることができる。溶媒の具体例としては,エタノール,プロパノール,ブタノール等のアルコール系溶媒,アセトン,メチルエチルケトン,メチルイソブチルケトン,シクロヘキサノン,シクロペンタノン等のケトン系溶媒,酢酸エチル,ブチルアセテート,プロピレングリコールモノメチルエーテルアセテート等のエステル系溶媒,ジエチルエーテル,ジグリム等のエーテル系溶媒,ヘキサン,シクロヘキサン,メチルシクロヘキサン,トルエン,キシレン等の炭化水素系溶媒,アセトニトリル等のニトリル系溶媒,N-メチルピロリドン,ジメチルアセトアミド等のアミド系溶媒等が挙げられる。これら溶媒は,いずれかを単独で用いてもよく,2種以上を併せて用いてもよい。 When polymerizing in a solution, a general-purpose organic solvent can be used without any particular limitation. Specific examples of the solvent include alcohol solvents such as ethanol, propanol and butanol, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and cyclopentanone, ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate and the like. Ester solvents, ether solvents such as diethyl ether and diglyme, hydrocarbon solvents such as hexane, cyclohexane, methylcyclohexane, toluene, xylene, nitrile solvents such as acetonitrile, amide solvents such as N-methylpyrrolidone and dimethylacetamide Etc. Any of these solvents may be used alone or in combination of two or more.
 上記の重合に際しては,重合開始剤を用いることができる。重合開始剤は,一般的に使用されているものでよく,具体例としては,アゾビスイソブチロニトリル(AIBN),ジエチル-2,2´-アゾビスイソブチレート(V-601),2,2´-アゾビス(2,4-ジメチルバレロニトリル),ジメチルアゾビスメチルプロビオネート等のアゾ系重合開始剤,過酸化ベンゾイル,過酸化水素,過酸化ラウロイル等の過酸化物系重合開始剤,過硫酸カリウム,過硫酸アンモニウムなどの過硫酸塩系重合開始剤などが挙げられる。これらの重合開始剤は,何れかを単独で用いてもよく,また2種以上を併用することもできる。 In the above polymerization, a polymerization initiator can be used. The polymerization initiator may be one generally used. Specific examples thereof include azobisisobutyronitrile (AIBN), diethyl-2,2′-azobisisobutyrate (V-601), 2 Azo polymerization initiators such as 2,2'-azobis (2,4-dimethylvaleronitrile) and dimethylazobismethylpropionate, peroxide polymerization initiators such as benzoyl peroxide, hydrogen peroxide, lauroyl peroxide, Examples thereof include persulfate-based polymerization initiators such as potassium persulfate and ammonium persulfate. Any of these polymerization initiators may be used alone, or two or more thereof may be used in combination.
 上記重合の際の温度は,モノマーであるM1及びM2の種類,重合溶媒種,開始剤種などにより異なるが,好ましくは40~150℃,より好ましくは50~120℃の範囲である。 The temperature during the polymerization varies depending on the types of monomers M1 and M2, the type of polymerization solvent, the type of initiator, etc., but is preferably in the range of 40 to 150 ° C., more preferably 50 to 120 ° C.
 なお,上記一般式(I)は,原料モノマーであるM1とM2がm:nのモル比で含まれていることを模式的に表したものであり,M1とM2が必ずしも交互に結合してコポリマーを構成しているわけではない。したがって,一般式(1)は,M1とM2をm:nのモル比で重合させたコポリマー,例えば,交互型,ランダム型,グラフト型などのいずれをも含むものである。また,一般式(I)において,モノマー同士を繋ぐ破線は,通常は単結合手であるが,M1とM2の重合に際して,他のモノマーも含有させる場合には,そのようなモノマーが該波線部分に取り込まれて,存在し得る。 The above general formula (I) schematically shows that the raw material monomers M1 and M2 are included in a molar ratio of m: n, and M1 and M2 are not necessarily bonded alternately. It does not constitute a copolymer. Therefore, the general formula (1) includes a copolymer obtained by polymerizing M1 and M2 at a molar ratio of m: n, such as an alternating type, a random type, and a graft type. In the general formula (I), the broken line connecting the monomers is usually a single bond, but when other monomers are included in the polymerization of M1 and M2, such a monomer is represented by the wavy line portion. Can be included in and exist.
 本発明に係る液晶性ポリマーは,溶媒に溶解して,位相差フィルム用組成物とすることができる。さらに,当該組成物には,光重合開始剤,界面活性剤等の他,光及び熱により重合を起こさせる重合性組成物に通常含まれる成分を適宜添加してもよい。溶媒の含有量は,液晶性ポリマーが溶解する限り特に制限はないが,通常,液晶性ポリマーの総重量に対し,約70~約99重量%である。また,その他の任意成分の含有量も特に制限はないが,通常,液晶性ポリマーの総重量に対し,例えば,光重合開始剤は約1~約10重量%,界面活性剤は約0.1~約5重量%含まれていることが好ましい。 The liquid crystalline polymer according to the present invention can be dissolved in a solvent to form a retardation film composition. Furthermore, in addition to a photopolymerization initiator, a surfactant and the like, components that are usually contained in a polymerizable composition that causes polymerization by light and heat may be appropriately added to the composition. The content of the solvent is not particularly limited as long as the liquid crystalline polymer is dissolved, but is usually about 70 to about 99% by weight based on the total weight of the liquid crystalline polymer. Further, the content of other optional components is not particularly limited, but usually, for example, the photopolymerization initiator is about 1 to about 10% by weight and the surfactant is about 0.1% with respect to the total weight of the liquid crystalline polymer. It is preferably contained at about 5% by weight.
 溶媒としては,トルエン,エチルベンゼン,エチレングリコールモノメチルエーテル,エチレングリコールジメチルエーテル,プロピレングリコールメチルエーテル,ジブチルエーテル,アセトン,メチルエチルケトン,エタノール,プロパノール,シクロヘキサン,シクロペンタノン,メチルシクロヘキサン,テトラヒドロフラン,ジオキサン,シクロヘキサノン,n-ヘキサン,酢酸エチル,酢酸ブチル,プロピレングリコールメチルエーテルアセテート,メトキシブチルアセテート,N-メチルピロリドン,ジメチルアセトアミドなどが挙げられる。このうち,毒性や環境負荷の観点及び/又は樹脂基材(例えば,ポリエチレンテレフタレート(PET),シクロオレフィンポリマー(COP)など)に対する耐溶解性の観点から,メチルエチルケトン,シクロヘキサノンが好ましい。これらは何れかを単独で用いることもでき,2種以上を併用することもできる。特に,本発明のポリマー(I)は,メチルエチルケトン,シクロヘキサノンにも溶解するという優れた特長を有する。 Solvents include toluene, ethylbenzene, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, propylene glycol methyl ether, dibutyl ether, acetone, methyl ethyl ketone, ethanol, propanol, cyclohexane, cyclopentanone, methylcyclohexane, tetrahydrofuran, dioxane, cyclohexanone, n- Examples include hexane, ethyl acetate, butyl acetate, propylene glycol methyl ether acetate, methoxybutyl acetate, N-methylpyrrolidone, and dimethylacetamide. Of these, methyl ethyl ketone and cyclohexanone are preferred from the viewpoints of toxicity and environmental load and / or resistance to dissolution with respect to resin base materials (for example, polyethylene terephthalate (PET), cycloolefin polymer (COP), etc.). Any of these may be used alone or in combination of two or more. In particular, the polymer (I) of the present invention has an excellent feature of being soluble in methyl ethyl ketone and cyclohexanone.
光重合開始剤としては,少量の光照射により均一な膜を形成させるために一般に知られている汎用の光重合剤をいずれも用いることができる。具体例としては,例えば,2,2’-アゾビスイソブチロニトリル,2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾニトリル系光重合開始剤,イルガキュア907(チバ・スペシャルティ・ケミカルズ社製),イルガキュア369(チバ・スペシャルティ・ケミカルズ社製)等のα-アミノケトン系光重合開始剤,4-フェノキシジクロロアセトフェノン,4-t-ブチル-ジクロロアセトフェノン,ジエトキシアセトフェノン,1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン,1-ヒドロキシシクロヘキシルフェニルケトン,2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン等のアセトフェノン系光重合開始剤,ベンゾイン,ベンゾインメチルエーテル,ベンゾインエチルエーテル,ベンゾインイソプロピルエーテル,ベンジルジメチルケタール等のベンゾイン系光重合開始剤,ベンゾフェノン,ベンゾイル安息香酸,ベンゾイル安息香酸メチル,4-フェニルベンゾフェノン,ヒドロキシベンゾフェノン,アクリル化ベンゾフェノン,4-ベンゾイル-4’-メチルジフェニルサルファイド等のベンゾフェノン系光重合開始剤,2-クロルチオキサンソン,2-メチルチオキサンソン,イソプロピルチオキサンソン,2,4-ジイソプロピルチオキサンソン等のチオキサンソン系光重合開始剤,2,4,6-トリクロロ-s-トリアジン,2-フェニル-4,6-ビス(トリクロロメチル)-s-トリアジン,2-(p-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン,2-(p-トリル)-4,6-ビス(トリクロロメチル)-s-トリアジン,2-ピペロニル-4,6-ビス(トリクロロメチル)-s-トリアジン,2,4--ビス(トリクロロメチル)-6-スチリル-s-トリアジン,2-(ナフト-1-イル)-4,6-ビス(トリクロロメチル)-s-トリアジン,2-(4-メトキシ-ナフト-1-イル)-4,6-ビス(トリクロロメチル)-s-トリアジン,2,4-トリクロロメチル-(ピペロニル)-6-トリアジン,2,4-トリクロロメチル(4’-メトキシスチリル)-6-トリアジン等のトリアジン系光重合開始剤,カルバゾール系光重合開始剤,イミダゾール系光重合開始剤等;更には,α-アシロキシエステル,アシルフォスフィンオキサイド,メチルフェニルグリオキシレート,ベンジル,9,10-フェナンスレンキノン,カンファーキノン,エチルアンスラキノン,4,4’-ジエチルイソフタロフェノン,3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン,4,4’-ジエチルアミノベンゾフェノン,チオキサンソン等の光重合開始剤が挙げられる。光重合開始剤は,何れかを単独で用いてもよいし,2種以上を併せて用いてもよい。 As the photopolymerization initiator, any general-purpose photopolymerization agent generally known for forming a uniform film by irradiation with a small amount of light can be used. Specific examples include, for example, azonitrile photopolymerization initiators such as 2,2′-azobisisobutyronitrile and 2,2′-azobis (2,4-dimethylvaleronitrile), Irgacure 907 (Ciba Specialty) Α-aminoketone photopolymerization initiator, 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, diethoxyacetophenone, 1- (4, manufactured by Chemicals), Irgacure 369 (manufactured by Ciba Specialty Chemicals) -Isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, etc. Acetophenone photopolymerization initiators, benzoin, benzoy Benzoin photopolymerization initiators such as methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzyldimethyl ketal, benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, acrylated benzophenone, 4-benzoyl- Benzophenone photopolymerization initiators such as 4′-methyldiphenyl sulfide, thioxanthone photopolymerization initiators such as 2-chlorothioxanthone, 2-methylthioxanthone, isopropylthioxanthone, 2,4-diisopropylthioxanthone, 2,4,6-trichloro-s-triazine, 2-phenyl-4,6-bis (trichloromethyl) -s-triazine, 2- (p-methoxyphenyl) -4,6-bis (trichloromethyl) ) -S-triazine, 2- (p-tolyl) -4,6-bis (trichloromethyl) -s-triazine, 2-piperonyl-4,6-bis (trichloromethyl) -s-triazine, 2,4 --Bis (trichloromethyl) -6-styryl-s-triazine, 2- (naphth-1-yl) -4,6-bis (trichloromethyl) -s-triazine, 2- (4-methoxy-naphth-1 -Yl) -4,6-bis (trichloromethyl) -s-triazine, 2,4-trichloromethyl- (piperonyl) -6-triazine, 2,4-trichloromethyl (4'-methoxystyryl) -6-triazine Such as triazine photopolymerization initiators, carbazole photopolymerization initiators, imidazole photopolymerization initiators, etc .; and α-acyloxyesters, acylphosphine oxides, Ruphenylglyoxylate, benzyl, 9,10-phenanthrenequinone, camphorquinone, ethylanthraquinone, 4,4'-diethylisophthalophenone, 3,3 ', 4,4'-tetra (t-butylper And photopolymerization initiators such as oxycarbonyl) benzophenone, 4,4′-diethylaminobenzophenone, and thioxanthone. Any of the photopolymerization initiators may be used alone, or two or more of them may be used in combination.
 界面活性剤としては,均一な膜を形成させるために一般に用いられている界面活性剤をいずれも用いることができる。具体例としては,例えば,ラウリル硫酸ソーダ,ラウリル硫酸アンモニウム,ラウリル硫酸トリエタノールアミン,ポリオキシエチレンアルキルエーテル硫酸塩,アルキルエーテルホスフェート,ナトリウムオレイルスクシネート,ミリスチン酸カリウム,ヤシ油脂肪酸カリウム,ナトリウムラウロイルサルコシネート等のアニオン性界面活性剤;ポリエチレングリコールモノラウレート,ステアリン酸ソルビタン,ミリスチン酸グリセリル,ジオレイン酸グリセリル,ソルビタンステアレート,ソルビタンオレエート等のノニオン性界面活性剤;ステアリルトリメチルアンモニウムクロリド,塩化ベヘニルトリメチルアンモニウム,塩化ステアリルジメチルベンジルアンモニウム,セチルトリメチルアンモニウムクロリド等のカオチン性界面活性剤;ラウリルベタイン,アルキルスルホベタイン,コカミドプロピルベタイン,アルキルジメチルアミノ酢酸ベタイン等のアルキルベタイン,アルキルイミダゾリン,ラウロイルサルコシンナトリウム,ココアンホ酢酸ナトリウム等の両性界面活性剤;更には,BYK-361,BYK-306,BYK-307(ビックケミージャパン社製),フロラードFC430(住友スリーエム社製),メガファックF171,R08(大日本インキ化学工業社製)等の界面活性剤が挙げられる。これらの界面活性剤は,何れかを単独で用いてもよいし,2種以上を併用することもできる。 As the surfactant, any surfactant generally used for forming a uniform film can be used. Specific examples include, for example, sodium lauryl sulfate, ammonium lauryl sulfate, triethanolamine lauryl sulfate, polyoxyethylene alkyl ether sulfate, alkyl ether phosphate, sodium oleyl succinate, potassium myristic acid, potassium coconut oil fatty acid, sodium lauroyl monkey Anionic surfactants such as cosinates; Nonionic surfactants such as polyethylene glycol monolaurate, sorbitan stearate, glyceryl myristate, glyceryl dioleate, sorbitan stearate, sorbitan oleate; stearyltrimethylammonium chloride, behenyl chloride Chaotic properties such as trimethylammonium, stearyldimethylbenzylammonium chloride, cetyltrimethylammonium chloride, etc. Activators; amphoteric surfactants such as alkylbetaines such as laurylbetaine, alkylsulfobetaine, cocamidopropylbetaine, alkyldimethylaminoacetic acid betaine, alkylimidazolines, sodium lauroyl sarcosine, sodium cocoamphoacetate; and BYK-361, BYK -306, BYK-307 (manufactured by Big Chemie Japan), FLORARD FC430 (manufactured by Sumitomo 3M), Megafac F171, R08 (manufactured by Dainippon Ink & Chemicals, Inc.) and the like. Any of these surfactants may be used alone, or two or more thereof may be used in combination.
 本発明に係る位相差フィルム用組成物のうち,液晶性ポリマーとして,新規化合物である共重合性(メタ)アクリル酸ポリマー(I)を含む位相差フィルム用組成物は,新規組成物である。 Among the retardation film compositions according to the present invention, a retardation film composition containing a copolymerizable (meth) acrylic acid polymer (I), which is a novel compound, as a liquid crystalline polymer is a novel composition.
 このようにして得られる本発明の位相差フィルム用組成物を,基板に塗布する。位相差フィルム用組成物の塗布方法としては,当該分野において一般的に知られている何れの方法でもよく,例えば,スピンコート法,バーコート法,ダイコーター法,スクリーン印刷法,スプレーコーター法などがある。位相差フィルム用組成物は,基板の片面のみに塗布してもよく,基板の両面に塗布してもよい。塗布量は,目的とする位相差フィルムの膜厚に応じて,適宜決定することができる。 The composition for a retardation film of the present invention thus obtained is applied to a substrate. As a coating method of the composition for retardation film, any method generally known in the art may be used, for example, spin coating method, bar coating method, die coater method, screen printing method, spray coater method, etc. There is. The composition for retardation film may be applied only to one side of the substrate, or may be applied to both sides of the substrate. The coating amount can be appropriately determined according to the film thickness of the target retardation film.
 こうして基板上に塗布された位相差フィルム用組成物を減圧乾燥するか,又は自然乾燥した後加熱乾燥して,該組成物中に含まれている溶媒を留去する。ここで,「溶媒を留去する」とは,溶媒を残溶媒が検出できない程度にまで除去することを意味し,例えば,ガスクロマトグラフィーでの測定で検出限界以下となるものである。ここで,「減圧乾燥」とは,減圧下に溶媒を蒸発させる乾燥方法をいう。また,「自然乾燥」とは,大気圧下に放置することにより溶媒を蒸発させる乾燥方法をいう。時間効率性の観点からは,減圧乾燥により溶媒を一気に留去するのが好ましい。減圧乾燥を行う場合,その前に自然乾燥の工程が入っても差し支えない。例えば,基板上に位相差フィルム用組成物を塗布後,減圧乾燥を実施するまでは,通常,自然乾燥の工程にある。また,本明細書において,「自然乾燥」とは,通常,そのまま放置して乾燥することを意味するが,乾燥時間をより短縮すべく,放置の間に,送風を伴わせるものであってもよい。送風を伴わせることにより,自然乾燥をより効率的に行うことができる。 Thus, the composition for retardation film applied on the substrate is dried under reduced pressure, or is naturally dried and then heat-dried to distill off the solvent contained in the composition. Here, “evaporating the solvent” means removing the solvent to such an extent that the residual solvent cannot be detected. For example, the solvent is below the detection limit in measurement by gas chromatography. Here, “vacuum drying” refers to a drying method in which the solvent is evaporated under reduced pressure. “Natural drying” refers to a drying method in which the solvent is evaporated by being left under atmospheric pressure. From the viewpoint of time efficiency, it is preferable to distill off the solvent all at once by vacuum drying. When drying under reduced pressure, there may be a natural drying process before that. For example, after applying the composition for a retardation film on a substrate, it is usually in a natural drying process until it is dried under reduced pressure. In this specification, “natural drying” usually means that it is left to dry as it is, but in order to shorten the drying time, even if it is accompanied by air blow during the time of leaving. Good. Natural air drying can be performed more efficiently by adding air.
 減圧乾燥を行う場合の条件は,組成物中に含まれる液晶性ポリマー及び溶媒の種類や量などにより変動するが,例えば,0.1~1Torrの圧力の下,1分間乾燥すればよい。 The conditions for drying under reduced pressure vary depending on the type and amount of the liquid crystalline polymer and the solvent contained in the composition, but may be dried for 1 minute under a pressure of 0.1 to 1 Torr, for example.
 また,自然乾燥は,室温下,放置することにより実施できる。その場合の時間は,塗布した組成物の厚さ,組成物中に含まれる液晶性ポリマー及び溶媒の種類や量などにより変動するが,通常,特に送風を伴わない場合は,1分以上であることが好ましく,より好ましくは3分以上,更に好ましくは5分以上,更により好ましくは10分以上である。 In addition, natural drying can be performed by leaving it at room temperature. The time in this case varies depending on the thickness of the applied composition, the type and amount of the liquid crystalline polymer and the solvent contained in the composition, and is usually 1 minute or more unless particularly accompanied by air blowing. It is preferably 3 minutes or more, more preferably 5 minutes or more, and even more preferably 10 minutes or more.
 本発明は,基板に塗布された位相差フィルム用組成物から,減圧乾燥により溶媒を留去する点,又は,加熱乾燥によって溶媒を留去する場合には予め自然乾燥により溶媒を減じておく点に特徴がある。メカニズムに拘束されることは意図しないが,液晶性ポリマーと溶媒とを含んでなる本発明の位相差フィルム用組成物において,液晶性ポリマーは,溶媒中で,不規則な分子配列をとっている。かかる位相差フィルム用組成物をそのまま加熱すると,ポリマー分子同士が会合を起こしてしまう。そこで,本発明の方法においては,減圧乾燥により溶媒を留去することにより,液晶性ポリマーの不規則な分子配列をそのままの状態で固定する。これにより,その後直線偏光を照射すれば,該直線偏光の偏光軸選択的に,液晶性ポリマーの側鎖中の一部の光反応性基のみが反応(二量化,異性化など)し,液晶配向能が付与された熱配向性層が得られるものと考える。 The present invention is a point where the solvent is distilled off from the composition for retardation film applied to the substrate by drying under reduced pressure, or when the solvent is distilled off by heating drying, the solvent is reduced beforehand by natural drying. There is a feature. Although not intended to be bound by the mechanism, in the composition for a retardation film of the present invention comprising a liquid crystalline polymer and a solvent, the liquid crystalline polymer has an irregular molecular arrangement in the solvent. . When such a retardation film composition is heated as it is, polymer molecules will associate with each other. Therefore, in the method of the present invention, the irregular molecular arrangement of the liquid crystalline polymer is fixed as it is by distilling off the solvent by drying under reduced pressure. As a result, when linearly polarized light is irradiated after that, only a part of the photoreactive groups in the side chain of the liquid crystalline polymer react (dimerization, isomerization, etc.) selectively with respect to the polarization axis of the linearly polarized light. It is considered that a thermal orientation layer to which orientation ability is imparted is obtained.
 あるいは,予め自然乾燥により溶媒を減じて,液晶性ポリマー分子の組成物中における自由度を減じておけば,その後加熱乾燥により溶媒を留去するとしても,液晶性ポリマー分子同士の会合が妨げられるため,同様に,液晶性ポリマーの不規則な分子配列を固定することができる。溶媒を減じる場合において,どの程度まで減じるかは,液晶性ポリマー及び溶媒の種類により変動するが,特定の液晶性ポリマー及び溶媒についての当該程度は,実施例に示した如きに,減じた結果残る溶媒(残溶媒)の量を変化させて製造した其々の位相差フィルムについて,その複屈折を測定することにより,複屈折の低下の顕著な抑制を指標として,容易に求めることができる。例えば,実施例1の位相差フィルム用組成物について,好ましい残溶媒の量は,組成物に対する重量%で表示する場合,約12wt%であり,より好ましくは約10wt%,更に好ましくは約5wt%,更により好ましくは約2wt%である。また,実施例8の位相差フィルム用組成物については,好ましくは約20wt%であり,より好ましくは約5wt%,更に好ましくは約2wt%である。 Alternatively, if the solvent is reduced in advance by natural drying to reduce the degree of freedom in the composition of the liquid crystalline polymer molecules, the association between the liquid crystalline polymer molecules will be hindered even if the solvent is subsequently distilled off by heat drying. Therefore, similarly, the irregular molecular arrangement of the liquid crystalline polymer can be fixed. In the case of reducing the solvent, the extent to which the solvent is reduced varies depending on the type of the liquid crystalline polymer and the solvent, but the degree for the specific liquid crystalline polymer and the solvent remains as a result of the reduction as shown in the Examples. By measuring the birefringence of each retardation film produced by changing the amount of the solvent (residual solvent), it can be easily obtained using as an index the remarkable suppression of birefringence reduction. For example, for the retardation film composition of Example 1, the preferred amount of residual solvent is about 12 wt%, more preferably about 10 wt%, and even more preferably about 5 wt% when expressed in terms of wt% with respect to the composition. , Still more preferably about 2 wt%. In addition, the retardation film composition of Example 8 is preferably about 20 wt%, more preferably about 5 wt%, and still more preferably about 2 wt%.
 自然乾燥後に行う加熱乾燥の条件については,残溶媒を留去できる条件であれば,一般には十分である。但し,できる限り複屈折の低下を防ぐためには,乾燥温度は,液晶性ポリマーが液晶状態を示す温度(液晶相温度)未満であることが好ましく,液晶性ポリマーのガラス転移温度未満であることがより好ましい。そのような温度範囲としては,溶媒や液晶性ポリマーの種類にもよるが,例えば,15℃~30℃が挙げられる。また,この場合,乾燥は,例えば,8分~20分間行えばよい。 As for the conditions for heat drying after natural drying, it is generally sufficient if the remaining solvent can be distilled off. However, in order to prevent a decrease in birefringence as much as possible, the drying temperature is preferably lower than the temperature at which the liquid crystalline polymer exhibits a liquid crystal state (liquid crystal phase temperature), and lower than the glass transition temperature of the liquid crystalline polymer. More preferred. Such a temperature range may be 15 ° C. to 30 ° C., for example, although it depends on the type of solvent or liquid crystalline polymer. In this case, drying may be performed, for example, for 8 minutes to 20 minutes.
 こうして基板上に形成される,本発明に係る液晶性ポリマーを含む層を,光反応性層という。 The layer containing the liquid crystalline polymer according to the present invention thus formed on the substrate is referred to as a photoreactive layer.
 該光反応性層に直線偏光を照射し,該直線偏光の偏光軸選択的に,液晶性ポリマーの側鎖中の光反応性基を反応(二量化,異性化など)させ,該層に液晶配向能を付与する。直線偏光は,該層に対して垂直方向から又は斜めの方向からのいずれからも照射することができるが,通常,垂直な方向から照射するのが好ましい。 The photoreactive layer is irradiated with linearly polarized light, and the photoreactive group in the side chain of the liquid crystalline polymer is reacted (dimerization, isomerization, etc.) selectively with respect to the polarization axis of the linearly polarized light. Provides orientation ability. Linearly polarized light can be irradiated from either a vertical direction or an oblique direction with respect to the layer, but it is usually preferable to irradiate from a vertical direction.
 本発明において,直線偏光とは,電場(又は磁場)の振動方向を含む面が一つに特定される光である。直線偏光は,光源からの光に,偏光フィルタや偏光プリズムを用いることで得るこができる。照射する光は,赤外線,可視光線,紫外線(近紫外線,遠紫外線など),X線,荷電粒子線(例えば,電子電など)など,照射により光反応性基に作用して,二量化,異性化などを生じさせることができる照射線であれば,特に限定されないが,通常,照射線は,200nm~500nmの波長を有する場合が多く,中でも,350nmから450nmの近紫外線が好ましい。光源としては例えば,キセノンランプ,高圧水銀ランプ,超高圧水銀ランプ,メタルハライドランプなどが挙げられる。このような光源から得た紫外光や可視光は干渉フィルタや色フィルタなどを用いて,照射する波長範囲を制限してもよい。照射エネルギーは,液晶性ポリマーの種類や塗布量などに応じて異なるが,通常は,約5mJ/cm2~50mJ/cm2である。 In the present invention, linearly polarized light is light in which a plane including the vibration direction of an electric field (or magnetic field) is specified as one. Linearly polarized light can be obtained by using a polarizing filter or polarizing prism for the light from the light source. Irradiation light acts on photoreactive groups by irradiation, such as infrared rays, visible rays, ultraviolet rays (near ultraviolet rays, far ultraviolet rays, etc.), X-rays, charged particle rays (for example, electronic electricity), dimerization, isomerism, etc. Although there is no particular limitation as long as it is an irradiation beam that can cause the generation of light, etc., the irradiation beam usually has a wavelength of 200 nm to 500 nm, and in particular, near ultraviolet rays of 350 nm to 450 nm are preferable. Examples of the light source include a xenon lamp, a high pressure mercury lamp, an ultra high pressure mercury lamp, and a metal halide lamp. Ultraviolet light or visible light obtained from such a light source may be irradiated with an interference filter, a color filter, or the like to limit the wavelength range to be irradiated. Irradiation energy may vary depending on the type and coating amount of the liquid crystalline polymer, usually, it is about 5mJ / cm 2 ~ 50mJ / cm 2.
 また,偏光を照射する際に,フォトマスクを使用すれば,2以上の異なった方向にパターン状に,液晶配向能を生じさせることができる。具体的には,本発明の位相差フィルム用組成物を塗布,乾燥した後に,その上にフォトマスクを被せて直線偏光を照射し,露光部分にのみ液晶配向能を与え,必要に応じて,方向を変えてこれを複数回繰り返すことにより,複数方向にパターン状に液晶配向能を生じさせることができる。
 こうして形成される層を熱配向性層という。
In addition, if a photomask is used when irradiating polarized light, liquid crystal alignment ability can be generated in a pattern in two or more different directions. Specifically, after coating and drying the composition for retardation film of the present invention, a photomask is placed on the composition and irradiated with linearly polarized light, and liquid crystal alignment ability is given only to the exposed portion. By changing the direction and repeating this several times, the liquid crystal alignment ability can be generated in a pattern in a plurality of directions.
The layer thus formed is referred to as a thermal orientation layer.
 該熱配向性層を,加熱処理することにより,光反応を起こさなかった液晶性ポリマーの側鎖部分を一定の方向に配向させ,位相差フィルムとすることができる。加熱処理の条件は,当該配向が進行するのに十分であれば特に制限はなく,当該液晶性ポリマーの液晶相温度以上に加熱すればよい。但し,当該加熱温度は,液晶性ポリマーの等方相転移温度未満であることが好ましい。具体的な加熱温度としては,一般的には,80~250℃程度が好ましく,100~200℃程度がより好ましく,120~170℃程度がさらに好ましい。加熱時間としては,5~60分程度が好ましく,10~40分程度がより好ましく,10~20分程度が更に好ましい。 By subjecting the thermally oriented layer to a heat treatment, the side chain portion of the liquid crystalline polymer that has not caused a photoreaction can be oriented in a certain direction to obtain a retardation film. The conditions for the heat treatment are not particularly limited as long as the alignment is sufficient to proceed, and the heating may be performed at a temperature higher than the liquid crystal phase temperature of the liquid crystalline polymer. However, the heating temperature is preferably less than the isotropic phase transition temperature of the liquid crystalline polymer. The specific heating temperature is generally preferably about 80 to 250 ° C, more preferably about 100 to 200 ° C, and further preferably about 120 to 170 ° C. The heating time is preferably about 5 to 60 minutes, more preferably about 10 to 40 minutes, and further preferably about 10 to 20 minutes.
 このようにして得られる本発明の位相差フィルムについて,その膜厚は用途などに応じて異なるが,一般には,0.8~3.0μmの範囲が好ましく,0.9~2.0μmの範囲が更に好ましい。 The thickness of the retardation film of the present invention thus obtained varies depending on the application, but generally it is preferably in the range of 0.8 to 3.0 μm and in the range of 0.9 to 2.0 μm. Is more preferable.
 以下,実施例を挙げて本発明を具体的に説明するが,本発明はもとより下記実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the following examples.
1.共重合性(メタ)アクリル酸ポリマーの合成
ポリ[1-[6-[4-[4-[(E)-2-メトキシカルボニルビニル]フェノキシカルボニル]フェノキシ]ヘキシルオキシカルボニル]-1-メチルエチレン-CO-1-[6-[4-カルボキシフェノキシ]ヘキシルオキシカルボニル]-1-メチルエチレン](M1:M2=80:20)
1. Synthesis of copolymerizable (meth) acrylic acid polymer Poly [1- [6- [4- [4-[(E) -2-methoxycarbonylvinyl] phenoxycarbonyl] phenoxy] hexyloxycarbonyl] -1-methylethylene- CO-1- [6- [4-Carboxyphenoxy] hexyloxycarbonyl] -1-methylethylene] (M1: M2 = 80: 20)
4-[6-(2-メチルアクリロイルオキシ)ヘキシルオキシ]安息香酸4-[(E)-2-メトキシカルボニルビニル]フェニルエステル8g(17ミリモル),4-[6-(2-メチルアクリロイルオキシ)ヘキシルオキシ]安息香酸21g(69ミリモル)及び2,2’-アゾ-ビス-イソブチロニトリル0.28g(1.7ミリモル)をシクロヘキサノン116gに溶解した。この溶液に窒素を1時間通気した。次いで,80℃に加熱した。10時間後反応液を冷却し,激しく攪拌しつつ,ノルマルヘキサン346gに室温で滴下した。分離した重合体を濾取し,減圧下,50℃での乾燥により,ポリマー1を24g得た。 4- [6- (2-Methylacryloyloxy) hexyloxy] benzoic acid 4-[(E) -2-methoxycarbonylvinyl] phenyl ester 8 g (17 mmol), 4- [6- (2-methylacryloyloxy) Hexyloxy] benzoic acid 21 g (69 mmol) and 2,2′-azo-bis-isobutyronitrile 0.28 g (1.7 mmol) were dissolved in 116 g of cyclohexanone. Nitrogen was bubbled through the solution for 1 hour. It was then heated to 80 ° C. After 10 hours, the reaction solution was cooled and added dropwise to 346 g of normal hexane at room temperature with vigorous stirring. The separated polymer was collected by filtration and dried at 50 ° C. under reduced pressure to obtain 24 g of polymer 1.
<重量平均分子量(MW)の測定>
 上記で得られたポリマー1の重量平均分子量(MW)を,ゲル濾過クロマトグラフィー(GPC)を用いて測定した。得られた重量平均分子量(MW)は31700であった。
<酸価の測定>
 上記で得られたポリマー1の酸価を以下の通り測定した。すなわち,100mL三角フラスコにTHF約60mLを採り,フェノールフタレインを指示薬として,0.1mol/L水酸化ナトリウム水溶液で中和した。1.5gのポリマー1を精秤し,上記溶液に均一に溶解,攪拌し,0.1mol/L水酸化ナトリウム水溶液で滴定を行い,微赤色が約30秒間消えない点を滴定終点とした。
 次式に従い,酸価を算出した。
酸価=(0.1×f×A×56.1/B)/(C/100)
A:滴定量(mL)
f:水酸化ナトリウム水溶液の力価
B:ポリマー組成物量(g)(ポリマーを含む,滴定終了後の溶液の量)
C:ポリマー濃度(%)(ポリマー量/ポリマー組成物量×100)
上記で得られたポリマー1の酸価は,130mgKOH/gであった。
<相転移温度の測定>
 上記で得られたポリマー1の相転移温度を,示差走査熱量測定(DSC)を用いて測定したところ,ガラス転移温度70℃,液晶相温度70~152℃であった
<Measurement of weight average molecular weight (MW)>
The weight average molecular weight (MW) of the polymer 1 obtained above was measured using gel filtration chromatography (GPC). The obtained weight average molecular weight (MW) was 31,700.
<Measurement of acid value>
The acid value of the polymer 1 obtained above was measured as follows. That is, about 60 mL of THF was taken into a 100 mL Erlenmeyer flask and neutralized with 0.1 mol / L sodium hydroxide aqueous solution using phenolphthalein as an indicator. 1.5 g of Polymer 1 was precisely weighed, uniformly dissolved in the above solution, stirred, and titrated with a 0.1 mol / L sodium hydroxide aqueous solution, and the point at which the faint red color did not disappear for about 30 seconds was taken as the titration end point.
The acid value was calculated according to the following formula.
Acid value = (0.1 × f × A × 56.1 / B) / (C / 100)
A: Titration volume (mL)
f: titer of aqueous sodium hydroxide solution B: amount of polymer composition (g) (amount of solution containing polymer and after titration)
C: Polymer concentration (%) (polymer amount / polymer composition amount × 100)
The acid value of the polymer 1 obtained above was 130 mgKOH / g.
<Measurement of phase transition temperature>
When the phase transition temperature of the polymer 1 obtained above was measured using differential scanning calorimetry (DSC), the glass transition temperature was 70 ° C. and the liquid crystal phase temperature was 70 to 152 ° C.
2.位相差フィルム用組成物の製造
 5gのポリマー1を,シクロヘキサノン15gに溶解し,位相差フィルム用組成物1とした。
2. Production of Retardation Film Composition 5 g of Polymer 1 was dissolved in 15 g of cyclohexanone to obtain Retardation Film Composition 1.
3.位相差フィルムの製造
 位相差フィルム用組成物1を,ガラス基板上に,スピンコーターを用いて,約0.93μmの厚みになるように塗布し,0.3Torrの減圧下1分間乾燥した(減圧乾燥)。
 得られた光反応性層に,グランテーラープリズムを用いて直線偏光に変換した紫外線(10mW/cm2)を,該層に対し垂直方向から3秒間照射した(照射エネルギー:30mJ/cm2)。
 こうして得た熱配向性層を,140℃で20分間加熱したのち,室温まで冷却した。
 基板上に形成されたフィルムを,偏光顕微鏡で観察したところ,明暗が観察され,位相差フィルムが作製できていることが確認できた。
 作製した位相差フィルムの複屈折を,偏光解析装置OPTIPRO(シンテック株式会社製)を用いて測定した(以下において同様)。その結果,複屈折は,Δn=0.125,Re=116.3nmの値を示した。
3. Production of Retardation Film Composition 1 for retardation film was applied on a glass substrate to a thickness of about 0.93 μm using a spin coater, and dried for 1 minute under a reduced pressure of 0.3 Torr (reduced pressure). Dry).
The obtained photoreactive layer was irradiated with ultraviolet rays (10 mW / cm 2 ) converted into linearly polarized light using a Grand Taylor prism from the vertical direction for 3 seconds (irradiation energy: 30 mJ / cm 2 ).
The thermal orientation layer thus obtained was heated at 140 ° C. for 20 minutes and then cooled to room temperature.
When the film formed on the substrate was observed with a polarizing microscope, light and darkness was observed, and it was confirmed that a retardation film could be produced.
The birefringence of the produced retardation film was measured using an ellipsometer OPTIPRO (manufactured by Shintech Co., Ltd.) (the same applies hereinafter). As a result, the birefringence showed values of Δn = 0.125 and Re = 16.3 nm.
 上記実施例1の位相差フィルムの製造において,減圧乾燥に代えて,自然乾燥を1分間行い,次いでホットプレートを用いて90℃5分間加熱乾燥を行った以外は同様に処理して,位相差フィルムを作製した。
 作製した位相差フィルムの複屈折は,Δn=0.096,Re=89.3nmの値を示した。
In the production of the retardation film of Example 1 above, instead of drying under reduced pressure, natural drying was performed for 1 minute, and then the same treatment was carried out except that heating drying was performed at 90 ° C. for 5 minutes using a hot plate. A film was prepared.
The birefringence of the produced retardation film showed values of Δn = 0.096 and Re = 89.3 nm.
 上記実施例2において,自然乾燥の時間を3分間,とした以外は同様に処理して,位相差フィルムを作製した。
 作製した位相差フィルムの複屈折は,Δn=0.105,Re=97.7nmの値を示した。
A retardation film was produced in the same manner as in Example 2 except that the natural drying time was 3 minutes.
The birefringence of the produced retardation film showed values of Δn = 0.105 and Re = 97.7 nm.
 上記実施例2において,自然乾燥の時間を5分間とした以外は,同様に処理して,位相差フィルムを作製した。
 作製した位相差フィルムの複屈折は,Δn=0.111,Re=103.2nmの値を示した。
A retardation film was produced in the same manner as in Example 2 except that the natural drying time was 5 minutes.
The birefringence of the produced retardation film showed values of Δn = 0.111 and Re = 0103.2 nm.
 上記実施例2において,自然乾燥の時間を7分間とした以外は,同様に処理して,位相差フィルムを作製した。
 作製した位相差フィルムの複屈折は,Δn=0.112,Re=104.2nmの値を示した。
A retardation film was produced in the same manner as in Example 2 except that the drying time was 7 minutes.
The birefringence of the produced retardation film showed values of Δn = 0.112 and Re = 104.2 nm.
 上記実施例2において,自然乾燥の時間を10分間とした以外は,同様に処理して,位相差フィルムを作製した。
 作製した位相差フィルムの複屈折は,Δn=0.111,Re=103.2nmの値を示した。
A retardation film was produced in the same manner as in Example 2 except that the natural drying time was 10 minutes.
The birefringence of the produced retardation film showed values of Δn = 0.111 and Re = 0103.2 nm.
 上記実施例1の位相差フィルムの製造において,減圧乾燥後に,更にホットプレートを用いた90℃5分間の加熱乾燥を行った以外は同様に処理して,位相差フィルムを作製した。なお,当該加熱乾燥は,既に減圧乾燥により溶媒が留去されているため本来不要であるが,ここでは,他の実施例等(特に,実施例1)との比較のため行ったものである。
 作製した位相差フィルムの複屈折は,Δn=0.125,Re=116.3nmであり,実施例1と同じ値を示した。
In the production of the retardation film of Example 1, a retardation film was produced in the same manner except that drying under reduced pressure was followed by heating and drying at 90 ° C. for 5 minutes using a hot plate. In addition, although the said heat drying is unnecessary originally because the solvent has already distilled off by reduced pressure drying, it performed here for the comparison with other Examples (especially Example 1). .
The birefringence of the produced retardation film was Δn = 0.125, Re = 16.3 nm, which was the same value as in Example 1.
1.共重合性(メタ)アクリル酸ポリマーの合成
ポリ[1-[6-[4-[(E)-2-(4-メトキシフェノキシ)カルボニルビニル]フェノキシ]ヘキシルオキシカルボニル]-1-メチルエチレン-CO-1-[6-[4-カルボキシフェノキシ]ヘキシルオキシカルボニル]-1-メチルエチレン](M1:M2=80:20)
1. Synthesis of copolymerizable (meth) acrylic acid polymer Poly [1- [6- [4-[(E) -2- (4-methoxyphenoxy) carbonylvinyl] phenoxy] hexyloxycarbonyl] -1-methylethylene-CO -1- [6- [4-Carboxyphenoxy] hexyloxycarbonyl] -1-methylethylene] (M1: M2 = 80: 20)
4-[6-(2-メチルアクリロイルオキシ)ヘキシルオキシ]桂皮酸4-メトキシフェニルエステル5g(11ミリモル),4-[6-(2-メチルアクリロイルオキシ)ヘキシルオキシ]安息香酸14g(46ミリモル)及び2,2’-アゾ-ビス-イソブチロニトリル0.28g(1.7ミリモル)をシクロヘキサノン76gに溶解した。この溶液に窒素を1時間通気した。次いで,80℃に加熱した。10時間後反応液を冷却し,激しく攪拌しつつ,ノルマルヘキサン346gに室温で滴下した。分離した重合体を濾取し,減圧下,50℃での乾燥により,ポリマー2を15g得た。
 実施例1と同様に測定して,重量平均分子量(MW)(27000),酸価(134mgKOH/g)及び相転移温度(ガラス転移温度75℃,液晶相温度75~145℃)を得た。
4- [6- (2-Methylacryloyloxy) hexyloxy] cinnamic acid 4-methoxyphenyl ester 5 g (11 mmol), 4- [6- (2-methylacryloyloxy) hexyloxy] benzoic acid 14 g (46 mmol) In addition, 0.28 g (1.7 mmol) of 2,2′-azo-bis-isobutyronitrile was dissolved in 76 g of cyclohexanone. Nitrogen was bubbled through the solution for 1 hour. It was then heated to 80 ° C. After 10 hours, the reaction solution was cooled and added dropwise to 346 g of normal hexane at room temperature with vigorous stirring. The separated polymer was collected by filtration and dried at 50 ° C. under reduced pressure to obtain 15 g of polymer 2.
The weight average molecular weight (MW) (27000), acid value (134 mgKOH / g), and phase transition temperature (glass transition temperature 75 ° C., liquid crystal phase temperature 75 to 145 ° C.) were obtained by measurement in the same manner as in Example 1.
2.位相差フィルム用組成物の製造
 5gのポリマー2を,シクロヘキサノン15gに溶解し,位相差フィルム用組成物2とした。
2. Production of Retardation Film Composition 5 g of Polymer 2 was dissolved in 15 g of cyclohexanone to obtain Retardation Film Composition 2.
3.位相差フィルムの製造
 位相差フィルム用組成物2を,ガラス基板上に,スピンコーターを用いて,約1.1μmの厚みになるように塗布し,0.3Torrの減圧下1分間乾燥した(減圧乾燥)。
 得られた光反応性層に,グランテーラープリズムを用いて直線偏光に変換した紫外線(10mW/cm2)を,該層に対し垂直方向から1.5秒間照射した(照射エネルギー:15mJ/cm2)。
 こうして得た熱配向性層を,140℃で20分間加熱したのち,室温まで冷却した。
 基板上に形成されたフィルムを,偏光顕微鏡で観察したところ,明暗が観察され,位相差フィルムが作製できていることが確認できた。
 作製した位相差フィルムの複屈折を測定した。その結果,複屈折は,Δn=0.151,Re=166.1nmの値を示した。
3. Production of Retardation Film Composition 2 for retardation film was applied on a glass substrate so as to have a thickness of about 1.1 μm using a spin coater, and dried for 1 minute under a reduced pressure of 0.3 Torr (reduced pressure). Dry).
The resulting photoreactive layer was irradiated with ultraviolet light (10 mW / cm 2 ) converted into linearly polarized light using a Grand Taylor prism from the vertical direction for 1.5 seconds (irradiation energy: 15 mJ / cm 2). ).
The thermal orientation layer thus obtained was heated at 140 ° C. for 20 minutes and then cooled to room temperature.
When the film formed on the substrate was observed with a polarizing microscope, light and darkness was observed, and it was confirmed that a retardation film could be produced.
The birefringence of the produced retardation film was measured. As a result, the birefringence showed values of Δn = 0.151 and Re = 166.1 nm.
 上記実施例8の位相差フィルムの製造において,減圧乾燥に代えて,自然乾燥を1分間行い,次いでホットプレートを用いて90℃5分間加熱乾燥を行った以外は同様に処理して,位相差フィルムを作製した。
 作製した位相差フィルムの複屈折は,Δn=0.144,Re=158.4nmの値を示した。
In the production of the retardation film of Example 8, the same treatment was carried out except that natural drying was performed for 1 minute instead of vacuum drying, and then heat drying was performed at 90 ° C. for 5 minutes using a hot plate. A film was prepared.
The birefringence of the produced retardation film showed values of Δn = 0.144 and Re = 158.4 nm.
 上記実施例9において,自然乾燥の時間を5分間,とした以外は同様に処理して,位相差フィルムを作製した。
 作製した位相差フィルムの複屈折は,Δn=0.149,Re=163.9nmの値を示した。
A retardation film was produced in the same manner as in Example 9 except that the natural drying time was 5 minutes.
The birefringence of the produced retardation film showed values of Δn = 0.149 and Re = 163.9 nm.
(比較例1)
 上記実施例1の位相差フィルムの製造において,減圧乾燥に代えて,ホットプレートを用いて90℃5分間の加熱乾燥を行った以外は同様に処理して,位相差フィルムを作製した。
 作製した位相差フィルムの複屈折は,Δn=0.066,Re=61.4nmの値を示した。
(Comparative Example 1)
In the production of the retardation film of Example 1 described above, a retardation film was produced in the same manner except that the drying under reduced pressure was carried out using a hot plate at 90 ° C. for 5 minutes.
The birefringence of the produced retardation film showed values of Δn = 0.066 and Re = 61.4 nm.
(比較例2)
 上記実施例8の位相差フィルムの製造において,減圧乾燥に代えて,ホットプレートを用いて90℃5分間の加熱乾燥を行った以外は同様に処理して,位相差フィルムを作製した。
 作製した位相差フィルムの複屈折は,Δn=0.080,Re=88.0nmの値を示した。
(Comparative Example 2)
In the production of the retardation film of Example 8, a retardation film was produced in the same manner except that the drying under reduced pressure was carried out using a hot plate at 90 ° C. for 5 minutes.
The birefringence of the produced retardation film showed values of Δn = 0.080 and Re = 88.0 nm.
<評価>
 実施例1の結果から,減圧乾燥により溶媒を留去する本発明の製造方法によれば,ポリマー1を原料として,良好な複屈折の位相差フィルムを製造できることがわかる。一方,比較例1の結果からは,90℃5分間の加熱乾燥により溶媒を留去すると,十分な複屈折が得られないことがわかる。これらから,基板に塗布された位相差フィルム用組成物を乾燥するに際し,溶媒が存在する状態で加熱することが,複屈折に悪影響を与えるのではないかと推察される。
 この点を明らかにすべく,さらに,ポリマー1を用いて,実施例2~7を実施した。これらのうち,実施例2~6においては,90℃5分間の加熱乾燥の前に,自然乾燥の工程を設け,自然乾燥の時間に応じて,基板に塗布された位相差フィルム用組成物中の溶媒量を段階的に減少させた。また,実施例7では,90℃5分間の加熱乾燥前に,減圧乾燥を行って溶媒を予め留去した。
 比較例1及び実施例2~7について,90℃5分間の加熱工程の前後における塗膜中の残溶媒の量を測定した。測定は,ガスクロマトグラフィー(SHIMADZU,GC-2014)を用いて行った。これらの結果を,複屈折(Δn)と併せて,表1に示す。
<Evaluation>
From the results of Example 1, it can be seen that according to the production method of the present invention in which the solvent is distilled off by drying under reduced pressure, a retardation film having good birefringence can be produced using polymer 1 as a raw material. On the other hand, from the results of Comparative Example 1, it can be seen that sufficient birefringence cannot be obtained when the solvent is distilled off by heating and drying at 90 ° C. for 5 minutes. From these, it is inferred that when the composition for retardation film applied to the substrate is dried, heating in the presence of the solvent may adversely affect birefringence.
In order to clarify this point, Examples 2 to 7 were further performed using Polymer 1. Among these, in Examples 2 to 6, a step of natural drying is provided before heating and drying at 90 ° C. for 5 minutes, and in the composition for retardation film applied to the substrate according to the time of natural drying. The amount of solvent was gradually reduced. In Example 7, before drying at 90 ° C. for 5 minutes, the solvent was distilled off in advance by drying under reduced pressure.
For Comparative Example 1 and Examples 2 to 7, the amount of residual solvent in the coating film before and after the heating process at 90 ° C. for 5 minutes was measured. The measurement was performed using gas chromatography (SHIMADZU, GC-2014). These results are shown in Table 1 together with birefringence (Δn).
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 これらの結果から,90℃5分の加熱工程を行う場合,該加熱工程前における残溶媒量が多いほど,得られるフィルムの複屈折が低下する傾向にあることがわかる。即ち,加熱工程前に溶媒を予め留去した実施例7では,その後加熱工程を行っても,実施例1と同様良好な複屈折が得られる一方,加熱工程前に残溶媒が存在する比較例1や実施例2~6においては,その量に応じて,残溶媒量が多いほど,複屈折が低下する傾向にある。 From these results, it can be seen that when performing the heating process at 90 ° C. for 5 minutes, the birefringence of the resulting film tends to decrease as the residual solvent amount before the heating process increases. That is, in Example 7 in which the solvent was distilled off before the heating step, the same birefringence as that of Example 1 was obtained even if the heating step was performed thereafter, but the residual solvent was present before the heating step. In Example 1 and Examples 2 to 6, the birefringence tends to decrease as the residual solvent amount increases according to the amount.
 このことから,溶媒がある程度以上存在する状態での加熱が複屈折に悪影響を与えること,他方,本発明のとおり,減圧乾燥して溶媒を留去するか,又は自然乾燥した後加熱乾燥して溶媒を留去することにより,良好な複屈折が得られ,位相差フィルムを製造できることがわかる。 Therefore, heating in the presence of a solvent to some extent has an adverse effect on birefringence. On the other hand, as in the present invention, the solvent is distilled off under reduced pressure, or the solvent is naturally dried and then heated to dry. It can be seen that by distilling off the solvent, good birefringence can be obtained and a retardation film can be produced.
 ポリマー2を原料として,上記と同様の趣旨,即ち,基板に塗布された位相差フィルム用組成物を乾燥するに際し,溶媒がある程度以上存在する状態で加熱することが,複屈折に悪影響を与えることを示すべく,実施例8~10及び比較例2を実施した。その結果を,表2に示す。なお,実施例8において,減圧乾燥後の残溶媒量は0wt%であった。また,同実施例において,90℃5分間の加熱工程は実施していない。 When polymer 2 is used as a raw material, the same effect as described above, that is, when a composition for a retardation film applied to a substrate is dried, heating in a state where a solvent is present to some extent has an adverse effect on birefringence. Examples 8 to 10 and Comparative Example 2 were carried out to show the following. The results are shown in Table 2. In Example 8, the amount of residual solvent after drying under reduced pressure was 0 wt%. Moreover, in the same Example, the heating process of 90 degreeC for 5 minutes is not implemented.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 これらの結果から,やはり,溶媒がある程度以上存在する状態での加熱が複屈折に悪影響を与えること(自然乾燥0分の場合,Δn=0.080),他方,本発明のとおり,減圧乾燥して溶媒を留去するか,又は自然乾燥(1分又は5分)した後加熱乾燥して溶媒を留去することにより,良好な複屈折が得られ,位相差フィルムを製造できることがわかる。 From these results, it can be seen that heating in the presence of a certain amount of solvent adversely affects birefringence (in the case of 0 minutes of natural drying, Δn = 0.080), and on the other hand, drying is performed under reduced pressure as in the present invention. It can be seen that good birefringence can be obtained and a retardation film can be produced by distilling off the solvent, or natural drying (1 or 5 minutes) and then drying by heating to distill off the solvent.
 本発明の製造方法によれば,位相差フィルムを簡単かつ簡便に,延いては低コストに製造することができる。こうして得られる位相差フィルムは,各種光学部材として,特に,コンピュータやファクシミリなどのOA機器,携帯電話,電子手帳,液晶テレビ,ビデオカメラなどの液晶表示装置の光学素子として有用である。 According to the production method of the present invention, the retardation film can be produced easily and simply and at low cost. The retardation film thus obtained is useful as various optical members, particularly as optical elements for liquid crystal display devices such as OA equipment such as computers and facsimile machines, mobile phones, electronic notebooks, liquid crystal televisions, and video cameras.

Claims (6)

  1.  基板に,光反応性基を有する液晶性ポリマーと溶媒とを含んでなる組成物を塗布する工程と,
     該組成物を減圧乾燥するか,又は自然乾燥した後加熱乾燥することにより,該組成物中の溶媒を留去して,光反応性層を形成する工程と,
     該光反応性層に直線偏光を照射して,熱配向性層を形成する工程と,
     該熱配向性層を加熱処理する工程とを含むことを特徴とする,位相差フィルムの製造方法。
    Applying a composition comprising a liquid crystalline polymer having a photoreactive group and a solvent to a substrate;
    A step of forming a photoreactive layer by distilling off the solvent in the composition by drying the composition under reduced pressure or by air drying and then drying by heating;
    Irradiating the photoreactive layer with linearly polarized light to form a thermally oriented layer;
    And a step of heat-treating the heat-orientable layer.
  2.  光反応性層を形成する工程が,該組成物を減圧乾燥することにより,該組成物中の溶媒を留去するものである,請求項1の製造方法。 The process according to claim 1, wherein the step of forming the photoreactive layer is such that the solvent in the composition is distilled off by drying the composition under reduced pressure.
  3. 一般式(I)
    Figure JPOXMLDOC01-appb-C000001
    〔式中,Rは水素原子又はメチル基であり,Rはアルキル基,又はアルキル基,アルコキシ基,シアノ基及びハロゲン原子から選ばれる基で置換されたフェニル基であり,環A及び環Bはそれぞれ独立して,
    Figure JPOXMLDOC01-appb-C000002
    〔但し,X1~X38の各々はそれぞれ独立して,水素原子,アルキル基,アルコキシ基,ハロゲン原子又はシアノ基である。〕
    で示される基であり,p及びqはそれぞれ独立して,1~12のいずれかの整数であり,m及びnは,0.65≦m≦0.95,0.05≦n≦0.35,m+n=1の関係を満たす共重合体に占める各モノマーのモル分率である。〕
    で示される繰り返し単位を有する共重合性(メタ)アクリル酸ポリマーを含んでなる,位相差フィルム用組成物。
    Formula (I)
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, R 1 is a hydrogen atom or a methyl group, R 2 is an alkyl group, or a phenyl group substituted with an alkyl group, an alkoxy group, a cyano group, or a group selected from a halogen atom; Each B is independently
    Figure JPOXMLDOC01-appb-C000002
    [However, X 1 to X 38 are each independently a hydrogen atom, an alkyl group, an alkoxy group, a halogen atom, or a cyano group. ]
    Wherein p and q are each independently an integer of 1 to 12, and m and n are 0.65 ≦ m ≦ 0.95, 0.05 ≦ n ≦ 0. 35, the molar fraction of each monomer in the copolymer satisfying the relationship of m + n = 1. ]
    A composition for a retardation film, comprising a copolymerizable (meth) acrylic acid polymer having a repeating unit represented by:
  4. 一般式(I-a)
    Figure JPOXMLDOC01-appb-C000003
    〔式中,Rは水素原子又はメチル基であり,Rはアルキル基,又はアルキル基,アルコキシ基,シアノ基及びハロゲン原子から選ばれる基で置換されたフェニル基であり,X1A~X4Aの各々はそれぞれ独立して,水素原子,アルキル基,アルコキシ基,ハロゲン原子又はシアノ基であり,環Bは,
    Figure JPOXMLDOC01-appb-C000004
    〔但し,X1B~X4B及びX31B~X38Bの各々はそれぞれ独立して,水素原子,アルキル基,アルコキシ基,ハロゲン原子又はシアノ基である。〕
    で示される基であり,p及びqはそれぞれ独立して,1~12のいずれかの整数であり,m及びnは,0.65≦m≦0.95,0.05≦n≦0.35,m+n=1の関係を満たす共重合体に占める各モノマーのモル分率である。〕
    で示される繰り返し単位を有する共重合性(メタ)アクリル酸ポリマーを含んでなる,位相差フィルム用組成物。
    Formula (Ia)
    Figure JPOXMLDOC01-appb-C000003
    [Wherein R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkyl group, or a phenyl group substituted with a group selected from an alkyl group, an alkoxy group, a cyano group, and a halogen atom, and X 1A to X Each of 4A is independently a hydrogen atom, alkyl group, alkoxy group, halogen atom or cyano group, and ring B is
    Figure JPOXMLDOC01-appb-C000004
    [However, X 1B to X 4B and X 31B to X 38B are each independently a hydrogen atom, an alkyl group, an alkoxy group, a halogen atom, or a cyano group. ]
    Wherein p and q are each independently an integer of 1 to 12, and m and n are 0.65 ≦ m ≦ 0.95, 0.05 ≦ n ≦ 0. 35, the molar fraction of each monomer in the copolymer satisfying the relationship of m + n = 1. ]
    A composition for a retardation film, comprising a copolymerizable (meth) acrylic acid polymer having a repeating unit represented by:
  5. 一般式(I-b)
    Figure JPOXMLDOC01-appb-C000005
    〔式中,Rは水素原子又はメチル基であり,Rはアルキル基,又はアルキル基,アルコキシ基,シアノ基及びハロゲン原子から選ばれる基で置換されたフェニル基であり,X1A~X4A及びX31B~X38Bの各々はそれぞれ独立して,水素原子,アルキル基,アルコキシ基,ハロゲン原子又はシアノ基であり,p及びqはそれぞれ独立して,1~12のいずれかの整数であり,m及びnは,0.65≦m≦0.95,0.05≦n≦0.35,m+n=1の関係を満たす共重合体に占める各モノマーのモル分率である。〕
    で示される繰り返し単位を有する共重合性(メタ)アクリル酸ポリマーを含んでなる,位相差フィルム用組成物。
    Formula (Ib)
    Figure JPOXMLDOC01-appb-C000005
    [Wherein R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkyl group, or a phenyl group substituted with a group selected from an alkyl group, an alkoxy group, a cyano group, and a halogen atom, and X 1A to X 4A and X 31B to X 38B are each independently a hydrogen atom, an alkyl group, an alkoxy group, a halogen atom or a cyano group, and p and q are each independently an integer of 1 to 12 Yes, m and n are mole fractions of each monomer in the copolymer satisfying the relationship of 0.65 ≦ m ≦ 0.95, 0.05 ≦ n ≦ 0.35, m + n = 1. ]
    A composition for a retardation film, comprising a copolymerizable (meth) acrylic acid polymer having a repeating unit represented by:
  6.  一般式(I-c)
    Figure JPOXMLDOC01-appb-C000006
    〔式中,Rは水素原子又はメチル基であり,Rはアルキル基,又はアルキル基,アルコキシ基,シアノ基及びハロゲン原子から選ばれる基で置換されたフェニル基であり,X1A~X4A及びX1B~X4Bの各々はそれぞれ独立して,水素原子,アルキル基,アルコキシ基,ハロゲン原子又はシアノ基であり,p及びqはそれぞれ独立して,1~12のいずれかの整数であり,m及びnは,0.65≦m≦0.95,0.05≦n≦0.35,m+n=1の関係を満たす共重合体に占める各モノマーのモル分率である。〕
    で示される繰り返し単位を有する共重合性(メタ)アクリル酸ポリマーを含んでなる,位相差フィルム用組成物。
    Formula (Ic)
    Figure JPOXMLDOC01-appb-C000006
    [Wherein R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkyl group, or a phenyl group substituted with a group selected from an alkyl group, an alkoxy group, a cyano group, and a halogen atom, and X 1A to X 4A and X 1B to X 4B are each independently a hydrogen atom, an alkyl group, an alkoxy group, a halogen atom or a cyano group, and p and q are each independently an integer of 1 to 12 Yes, m and n are mole fractions of each monomer in the copolymer satisfying the relationship of 0.65 ≦ m ≦ 0.95, 0.05 ≦ n ≦ 0.35, m + n = 1. ]
    A composition for a retardation film, comprising a copolymerizable (meth) acrylic acid polymer having a repeating unit represented by:
PCT/JP2012/053910 2011-02-23 2012-02-20 Method for producing phase difference film WO2012115017A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137024756A KR101888220B1 (en) 2011-02-23 2012-02-20 Method for producing phase difference film
CN201280004819.4A CN103443668B (en) 2011-02-23 2012-02-20 The manufacture method of phase retardation film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-036906 2011-02-23
JP2011036906A JP5784323B2 (en) 2011-02-23 2011-02-23 Composition for retardation film

Publications (1)

Publication Number Publication Date
WO2012115017A1 true WO2012115017A1 (en) 2012-08-30

Family

ID=46720795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053910 WO2012115017A1 (en) 2011-02-23 2012-02-20 Method for producing phase difference film

Country Status (5)

Country Link
JP (1) JP5784323B2 (en)
KR (1) KR101888220B1 (en)
CN (1) CN103443668B (en)
TW (1) TWI519832B (en)
WO (1) WO2012115017A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9388259B2 (en) 2013-02-08 2016-07-12 Jnc Corporation Photosensitive polymer and photoalignable phase difference film

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160009044A (en) * 2013-05-13 2016-01-25 닛산 가가쿠 고교 가부시키 가이샤 Method for producing substrate having liquid crystal orientation membrane for use in in-plane-switching liquid crystal display element
KR102116422B1 (en) 2013-09-11 2020-06-01 삼성디스플레이 주식회사 Liguid crystal display appratus and methon of manufactruing the same
WO2017126459A1 (en) * 2016-01-21 2017-07-27 シャープ株式会社 Method for manufacturing liquid crystal panel, method for manufacturing retardation plate, and wire grid polarizing plate
US10394080B2 (en) 2017-12-28 2019-08-27 Industrial Technology Research Institute Wideband compensation stack film and optical element using the same
WO2021157480A1 (en) * 2020-02-06 2021-08-12 富士フイルム株式会社 Compound, liquid crystal composition, and liquid crystal film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090750A (en) * 2000-09-19 2002-03-27 Hayashi Telempu Co Ltd Alignment film and method for manufacturing the same
JP2002131534A (en) * 2000-10-19 2002-05-09 Fuji Photo Film Co Ltd Optical compensation sheet, polarizer and liquid crystal display device
JP2004530734A (en) * 2000-12-29 2004-10-07 ロリク アーゲー Photoactive copolymer
JP2007009021A (en) * 2005-06-29 2007-01-18 Nippon Oil Corp Liquid-crystalline polymer composition and liquid-crystalline optical film
WO2012014915A1 (en) * 2010-07-28 2012-02-02 大阪有機化学工業株式会社 Copolymerizable (meth) acrylic acid polymer, optical alignment film and phase difference film

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0689084B1 (en) 1994-06-24 2003-06-04 Rolic AG Optical component comprising layers of crosslinked liquid crystal monomers and method of its production
US6107427A (en) * 1995-09-15 2000-08-22 Rolic Ag Cross-linkable, photoactive polymer materials
JP2004272110A (en) * 2003-03-11 2004-09-30 Nippon Oil Corp Optical film and liquid crystal display element
JP4551792B2 (en) * 2005-03-08 2010-09-29 大日本印刷株式会社 Optical compensation element
CN1885071A (en) * 2005-06-23 2006-12-27 住友化学株式会社 Method for producing optical film
JP4686301B2 (en) * 2005-08-22 2011-05-25 富士フイルム株式会社 Optical compensation film manufacturing method, optical compensation film, polarizing plate, and liquid crystal display device
JP2007304215A (en) 2006-05-09 2007-11-22 Hayashi Telempu Co Ltd Photo-alignment material and method for manufacturing optical element and liquid crystal alignment film
JP5063127B2 (en) * 2007-02-06 2012-10-31 株式会社Adeka Polymerizable optically active compound and polymerizable composition containing the polymerizable optically active compound
JP5206066B2 (en) * 2007-03-28 2013-06-12 Jnc株式会社 Polymerizable liquid crystal composition
JP5075483B2 (en) 2007-04-27 2012-11-21 林テレンプ株式会社 Polymer film, method for producing molecular alignment element, and liquid crystal alignment film
JP2009109757A (en) * 2007-10-30 2009-05-21 Lintec Corp Method for manufacturing retardation film
JP5803064B2 (en) * 2010-07-27 2015-11-04 Jnc株式会社 Photoalignment agent comprising photosensitive polymer compound, liquid crystal alignment film using the photoalignment agent, and liquid crystal display element using the liquid crystal alignment film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090750A (en) * 2000-09-19 2002-03-27 Hayashi Telempu Co Ltd Alignment film and method for manufacturing the same
JP2002131534A (en) * 2000-10-19 2002-05-09 Fuji Photo Film Co Ltd Optical compensation sheet, polarizer and liquid crystal display device
JP2004530734A (en) * 2000-12-29 2004-10-07 ロリク アーゲー Photoactive copolymer
JP2007009021A (en) * 2005-06-29 2007-01-18 Nippon Oil Corp Liquid-crystalline polymer composition and liquid-crystalline optical film
WO2012014915A1 (en) * 2010-07-28 2012-02-02 大阪有機化学工業株式会社 Copolymerizable (meth) acrylic acid polymer, optical alignment film and phase difference film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOBUHIRO KAWATSUKI, ET AL.: "Photoinduced molecular reorientation in photoreactive liquid crystalline copolymers in a phase retarder application", POLYMER, vol. 52, no. 25, 18 October 2011 (2011-10-18), pages 5788 - 5794, XP028116006 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9388259B2 (en) 2013-02-08 2016-07-12 Jnc Corporation Photosensitive polymer and photoalignable phase difference film

Also Published As

Publication number Publication date
JP2012173609A (en) 2012-09-10
TW201303389A (en) 2013-01-16
CN103443668A (en) 2013-12-11
KR101888220B1 (en) 2018-08-13
CN103443668B (en) 2016-01-20
KR20140006960A (en) 2014-01-16
TWI519832B (en) 2016-02-01
JP5784323B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP5963903B2 (en) Method for producing photo-alignment film and method for producing retardation film
JP5898404B2 (en) Composition for photo-alignment film and optical anisotropic film
JP6384559B2 (en) A liquid crystal display device comprising a polymer composition having a photoalignable group, a liquid crystal alignment film formed from the polymer composition, and a retardation plate formed from the liquid crystal alignment film
JP6667983B2 (en) Laminate and manufacturing method thereof, polarizing plate, liquid crystal display, organic EL display
JP5784323B2 (en) Composition for retardation film
JP5712856B2 (en) Photosensitive compound and photosensitive polymer comprising the compound
WO2014069515A1 (en) Liquid crystal composition, retardation plate, image display device, and method for controlling wavelength dispersion in optically anisotropic layer
WO2012005120A1 (en) Fumarate diester resin for retardation film, and retardation film comprising same
JP2008164925A (en) Retardation film and method for producing the same
WO2014013982A1 (en) (diisopropyl fumarate)-(cinnamic acid derivative) copolymer, and phase difference film produced using same
JP2015172756A (en) Method for manufacturing retardation film
JP5566884B2 (en) Optically anisotropic thin film material and optically anisotropic thin film
JP6026139B2 (en) Composition for photo-alignment film and optical anisotropic film
JP2020118730A (en) Aligned liquid crystal film and production method of the same, and image display device
JP5831174B2 (en) Fumaric acid diester resin for retardation film and retardation film comprising the same
KR20120031139A (en) Photosensitive compound and its photosensitive polymer
WO2021256428A1 (en) Novel polymer, and photo-alignment film and retardation film each using same
JP5920085B2 (en) Diisopropyl fumarate-cinnamate copolymer and retardation film using the same
JP5983300B2 (en) Diisopropyl fumarate-cinnamic acid copolymer and retardation film using the same
JP2004258427A (en) Birefringence inducing material, retardation film, method for manufacturing retardation film, and photosensitive polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12750111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137024756

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12750111

Country of ref document: EP

Kind code of ref document: A1