WO2012114861A1 - 太陽電池封止膜及びこれを用いた太陽電池 - Google Patents

太陽電池封止膜及びこれを用いた太陽電池 Download PDF

Info

Publication number
WO2012114861A1
WO2012114861A1 PCT/JP2012/052673 JP2012052673W WO2012114861A1 WO 2012114861 A1 WO2012114861 A1 WO 2012114861A1 JP 2012052673 W JP2012052673 W JP 2012052673W WO 2012114861 A1 WO2012114861 A1 WO 2012114861A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
sealing film
ethylene
silane coupling
coupling agent
Prior art date
Application number
PCT/JP2012/052673
Other languages
English (en)
French (fr)
Inventor
央尚 片岡
池田 哲朗
佳彦 井上
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to EP12749723.8A priority Critical patent/EP2680318B1/en
Priority to US14/000,104 priority patent/US9054236B2/en
Priority to ES12749723.8T priority patent/ES2613820T3/es
Priority to CN201280010071.9A priority patent/CN103392238B/zh
Publication of WO2012114861A1 publication Critical patent/WO2012114861A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • C08L2203/162Applications used for films sealable films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/204Applications use in electrical or conductive gadgets use in solar cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • C08L23/0861Saponified vinylacetate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell encapsulating film comprising an ethylene-polar monomer copolymer as a main component, and particularly to a solar cell encapsulating film having high durability and excellent productivity. Furthermore, it is related with the solar cell using this sealing film.
  • a solar cell generally has a surface side transparent protective member 11 made of a glass substrate or the like, a surface side sealing film 13A, a solar cell 14 such as a silicon crystal power generation element, a back side sealing film. 13B and the back surface side protection member (back cover) 12 are laminated in this order, and after deaeration under reduced pressure, the surface side sealing film 13A and the back surface side sealing film 13B are cross-linked and cured by heating and pressurizing, and integrated by bonding. Is manufactured.
  • a plurality of solar cell cells 14 are connected and used in order to obtain a high electric output. Therefore, in order to ensure insulation between the solar battery cells 14, the solar battery cells are sealed using the sealing films 13A and 13B having insulation properties.
  • thin-film solar cells such as thin-film silicon-based, thin-film amorphous silicon-based solar cells, and copper indium selenide (CIS) -based solar cells is also underway.
  • a resin substrate such as glass or a polyimide substrate
  • a power generation element layer such as a semiconductor layer is formed by chemical vapor deposition or the like, and a sealing film or the like is laminated thereon and bonded and integrated.
  • an ethylene-polar monomer copolymer such as an ethylene vinyl acetate copolymer (hereinafter abbreviated as EVA) or an ethylene ethyl acrylate copolymer (EEA) is used.
  • EVA films are preferably used because they are inexpensive and have high transparency.
  • the ethylene-polar monomer copolymer film for the sealing film is used to ensure the mechanical durability of the solar battery cells and prevent rusting of the internal conductors and electrodes due to moisture or water permeation. A function of bonding and integrating each member with high adhesion and adhesive strength with glass, a power generating element and a back cover is required.
  • Patent Document 1 proposes a crosslinking agent to the ethylene-polar monomer copolymer resin. Therefore, conventionally, by adding an organic peroxide as a crosslinking agent to the ethylene-polar monomer copolymer resin, it is possible to improve the weather resistance due to the crosslinked structure and to add an adhesive force by adding a silane coupling agent.
  • an object of the present invention is a sealing film for a solar cell which has an ethylene-polar monomer copolymer as a main component and has a crosslinked structure with an organic peroxide, and has a long-term adhesiveness in a high temperature and high humidity environment.
  • An object of the present invention is to provide a solar cell sealing film that is excellent in durability to be maintained, has a high crosslinking rate at the time of manufacturing a solar cell, and suppresses generation of blisters.
  • Another object of the present invention is to provide a solar cell using this sealing film.
  • the above object is a solar cell sealing film containing an ethylene-polar monomer copolymer, an organic peroxide, and a silane coupling agent, wherein the silane coupling agent has the following formula (I):
  • R 1 is an alkyl group having 1 to 3 carbon atoms, and three R 1 may be the same or different, and n is an integer of 1 to 8).
  • a solar cell wherein the content of the silane coupling agent is 0.02 to 1.0 part by mass with respect to 100 parts by mass of the ethylene-polar monomer copolymer. This is achieved by the sealing film.
  • the following reasons can be considered as the reason why the adhesion performance is excellent in durability that is maintained for a long time. That is, when a silane coupling agent having a methacryloxy group or an acryloxy group as a reactive functional group, such as a conventionally used ⁇ -methacryloxypropyltrimethoxysilane, is blended in the ethylene-polar monomer copolymer resin, Since it is bonded to the resin via a group, hydrolysis may occur in a high-temperature and high-humidity environment, resulting in a decrease in adhesive strength. In the silane coupling agent of the above formula (I), since there is no portion to be hydrolyzed, it is considered that the adhesion performance is maintained for a long time.
  • a silane coupling agent having a methacryloxy group or an acryloxy group as a reactive functional group such as a conventionally used ⁇ -methacryloxypropyltrimethoxysilane
  • the reason for the high crosslinking rate is that, in the case of a silane coupling agent having a functional group having a methyl group such as a methacryloxy group, the crosslinking reaction is inhibited by steric hindrance, but the silane cup of the above formula (I) It is considered that the functional group of the ring agent has a small steric hindrance and is difficult to reduce the crosslinking rate. For this reason, it is not necessary to increase the addition amount of an organic peroxide, and generation
  • n 0
  • the molecular weight is small, and the ethylene-polar monomer copolymer When blended with a polymer resin, it tends to scatter and bleed out (exudation of additives) may occur even after mixing.
  • the silane coupling agent has a low effect when the blending amount is too small, and when it is too much, impregnation into the polymer becomes difficult and may cause bleeding out. It is blended with.
  • Preferred embodiments of the solar cell sealing film according to the present invention are as follows.
  • n in the formula (I) is 1 to 4. When n is 5 or more, the molecular weight increases and the compatibility with the ethylene-polar monomer copolymer may deteriorate.
  • n in the formula (I) is 4. This is preferable from the viewpoint of adhesion performance and compatibility with the ethylene-polar monomer copolymer.
  • R 1 in the formula (I) is a methyl group. It is preferable in terms of excellent reactivity.
  • the content of the silane coupling agent is 0.15 to 1.0 part by mass with respect to 100 parts by mass of the ethylene-polar monomer copolymer. The durability that the adhesive performance is maintained for a long time can be further improved.
  • the ethylene-polar monomer copolymer is an ethylene vinyl acetate copolymer.
  • the above object is achieved by a solar cell using the solar cell sealing film of the present invention.
  • the solar cell encapsulating film of the present invention comprises a specific silane coupling agent that has an ethylene-polar monomer copolymer as a main component, has a crosslinked structure with an organic peroxide, and is difficult to hydrolyze to improve adhesion. Since it contains, the durability which the adhesive performance is maintained for a long time in a high temperature and high humidity environment is improved. Moreover, since the said specific silane coupling agent has a small steric hindrance and does not have a bad influence on a crosslinking rate, the solar cell sealing film of this invention has a high crosslinking rate at the time of solar cell manufacture. Therefore, there is no need to increase the amount of organic peroxide added, the generation of blisters can be suppressed, and appearance defects due to blisters can be prevented.
  • a solar cell that is bonded and integrated with high adhesive strength has high durability, has high production efficiency, and has reduced appearance defects caused by occurrence of blisters.
  • the sealing film for solar cells of the present invention has an ethylene-vinyl acetate copolymer, an organic peroxide as a crosslinking agent, and a silane coupling agent of the following formula (I) as an adhesion improver.
  • R 1 is an alkyl group having 1 to 3 carbon atoms, and three R 1 may be the same or different, and n is an integer of 1 to 8)
  • the content of the silane coupling agent is 0.02 to 1.0 part by mass with respect to 100 parts by mass of the ethylene-polar monomer copolymer.
  • the silane coupling agent of the above formula (I) durability for maintaining the adhesion performance in a high temperature and high humidity environment for a long period of time is improved. Sometimes a high crosslinking rate is exhibited and the generation of blisters is suppressed. However, when the amount of the silane coupling agent is too small, the effect is low. When the amount is too large, impregnation into the polymer becomes difficult, which may cause bleeding out. Therefore, the content of the silane coupling agent is in the above range.
  • silane coupling agent is bonded to an organic resin or the like via a reactive functional group (“CH 2 ⁇ CH— (CH 2 ) n ” in the formula (I)), and a hydrolyzable group (in the formula (I) “OR 1 ”) functions to strongly bond substances having different chemical properties by bonding with an inorganic surface or the like by hydrolysis and reaction.
  • the sealing film using the silane coupling agent of the above formula (I) is improved in durability for maintaining the adhesion performance in a high temperature and high humidity environment for a long period of time. That is, when a silane coupling agent having a methacryloxy group or an acryloxy group as a reactive functional group, such as a conventionally used ⁇ -methacryloxypropyltrimethoxysilane, is blended in the ethylene-polar monomer copolymer resin, Since it is bonded to the resin via a group, hydrolysis may occur in a high-temperature and high-humidity environment, resulting in molecular cleavage of the silane coupling agent, resulting in a decrease in adhesive strength.
  • a silane coupling agent having a methacryloxy group or an acryloxy group as a reactive functional group such as a conventionally used ⁇ -methacryloxypropyltrimethoxysilane
  • the reason for the high crosslinking rate is that, in the case of a silane coupling agent having a functional group having a methyl group such as a methacryloxy group, the crosslinking reaction is inhibited by steric hindrance, but the silane cup of the above formula (I) It is considered that the functional group of the ring agent has a small steric hindrance and is difficult to reduce the crosslinking rate. For this reason, it is not necessary to increase the addition amount of an organic peroxide, and generation
  • n 0
  • the molecular weight is small, and the ethylene-polar monomer copolymer When blended with a polymer resin, it tends to scatter and bleed out (exudation of additives) may occur even after mixing.
  • n is preferably 1 to 4. This is because when n is 5 or more, the molecular weight increases and the compatibility with the ethylene-polar monomer copolymer may deteriorate.
  • n is preferably 4 from the viewpoint of both adhesion performance and compatibility with the ethylene-polar monomer copolymer.
  • R 1 may be an alkyl group having 1 to 3 carbon atoms, and examples thereof include a methyl group, an ethyl group, and an isopropyl group.
  • a methyl group is preferable in terms of reactivity.
  • silane coupling agent of the above formula (I) examples include allyltrimethoxysilane, allyltriethoxysilane, allyltriisopropoxysilane, vinylethyltrimethoxysilane, vinylethyltriethoxysilane, vinylpropyltrimethoxysilane.
  • silane coupling agents may be used alone or in combination of two or more.
  • silane coupling agents include allyltrimethoxysilane, allyltriethoxysilane, allyltriisopropoxysilane, vinylethyltrimethoxysilane, vinylethyltriethoxysilane, vinylpropyltrimethoxysilane, vinylbutyltrimethoxysilane, vinylbutyltrimethylsilane. More preferred are ethoxysilane and vinylbutyltriisopropoxysilane, and particularly preferred is vinylbutyltrimethoxysilane.
  • the content of the silane coupling agent may be 0.02 to 1.0 part by mass with respect to 100 parts by mass of the ethylene-polar monomer copolymer as described above. Mass parts are preferable, and 0.3 to 1.0 parts by mass are particularly preferable. If it is this range, it can be set as the sealing film for solar cells which durability of the adhesive performance improved more.
  • examples of the polar monomer of the ethylene-polar monomer copolymer include unsaturated carboxylic acids, salts thereof, esters thereof, amides, vinyl esters, and carbon monoxide.
  • unsaturated carboxylic acids such as acrylic acid, methacrylic acid, fumaric acid, itaconic acid, monomethyl maleate, monoethyl maleate, maleic anhydride, itaconic anhydride, lithium of these unsaturated carboxylic acids, sodium, Salts of monovalent metals such as potassium, salts of polyvalent metals such as magnesium, calcium and zinc, methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, n-butyl acrylate, isooctyl acrylate, methacrylic acid
  • unsaturated carboxylic acid esters such as methyl, ethyl methacrylate, isobutyl methacrylate, and dimethyl maleate
  • vinyl esters such as vinyl acetate and vinyl propionate, carbon monoxide, sulfur dioxide, etc. be able to.
  • ethylene-polar monomer copolymer examples include ethylene-acrylic acid copolymers, ethylene-unsaturated carboxylic acid copolymers such as ethylene-methacrylic acid copolymers, and ethylene-unsaturated carboxylic acids.
  • Ionomers in which some or all of the carboxyl groups of the copolymer are neutralized with the above metals ethylene-methyl acrylate copolymers, ethylene-ethyl acrylate copolymers, ethylene-methyl methacrylate copolymers, ethylene- Isobutyl acrylate copolymer, ethylene-unsaturated carboxylic acid ester copolymer such as ethylene-n-butyl acrylate copolymer, ethylene-isobutyl acrylate-methacrylic acid copolymer, ethylene-n-butyl acrylate -Ethylene-unsaturated carboxylic acid ester-unsaturated carbo such as methacrylic acid copolymer
  • Typical examples include acid copolymers and ionomers in which some or all of the carboxyl groups have been neutralized with the above metals, ethylene-vinyl ester copolymers such as ethylene-vinyl acetate copolymers
  • the ethylene-polar monomer copolymer it is preferable to use a copolymer having a melt flow rate defined by JIS K7210 of 35 g / 10 min or less, particularly 3 to 6 g / 10 min. According to the solar cell encapsulating film using such an ethylene-polar monomer copolymer having a melt flow rate, the encapsulating film is melted or positioned during heating and pressurization in the encapsulating process at the time of manufacturing the solar cell. It is possible to suppress the occurrence of deviation and the protrusion from the end of the substrate.
  • melt flow rate MFR
  • an ethylene-vinyl acetate copolymer (also referred to as EVA) is particularly preferable. Thereby, it is cheap and can form the sealing film for solar cells which is excellent in transparency and a softness
  • the content of vinyl acetate in the ethylene-vinyl acetate copolymer is preferably 20 to 35% by mass, more preferably 22 to 30% by mass, and particularly preferably 24 to 28% by mass with respect to EVA.
  • the sealing film obtained may become hard, so that content of the vinyl acetate unit of EVA is low. If the content of vinyl acetate is less than 20% by mass, the resulting sealing film may not have sufficient transparency when crosslinked and cured at high temperatures. On the other hand, if it exceeds 35% by mass, the sealing film may have insufficient hardness, and carboxylic acid, alcohol, amine, etc. may be generated, and foaming is likely to occur at the interface between the sealing film and the protective member. There is a fear.
  • the solar cell encapsulating film of the present invention further comprises a polyvinyl acetal resin (for example, polyvinyl formal, polyvinyl butyral (PVB resin), modified PVB), and a vinyl chloride resin. May be used for In that case, PVB is particularly preferable.
  • PVB is particularly preferable.
  • Organic peroxide can form a cross-linked structure of an ethylene-polar monomer copolymer as a cross-linking agent, and a solar cell sealing film with improved adhesion, transparency, moisture resistance, and penetration resistance is obtained. be able to.
  • any organic peroxide can be used as long as it decomposes at a temperature of 100 ° C. or higher to generate radicals.
  • the organic peroxide is generally selected in consideration of the film formation temperature, the adjustment conditions of the composition, the curing temperature, the heat resistance of the adherend, and the storage stability. In particular, those having a decomposition temperature of 70 hours or more with a half-life of 10 hours are preferred.
  • organic peroxide examples include 2,5-dimethylhexane, 2,5-dihydroperoxide, 2,5-dimethyl-2,5-di (tert) from the viewpoint of processing temperature and storage stability of the resin.
  • organic peroxide 2,5-dimethyl-2,5-di (2-ethylhexanoylperoxy) hexane, tert-butylperoxy-2-ethylhexyl monocarbonate, 1,1-di ( tert-hexylperoxy) -3,3,5-trimethylcyclohexane.
  • the content of the organic peroxide is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 1.8 parts by mass, and still more preferably 100 parts by mass of the ethylene-polar monomer copolymer. Is 0.5 to 1.5 parts by mass.
  • the solar cell sealing film of the present invention may further contain a crosslinking aid, if necessary.
  • the cross-linking aid can improve the gel fraction of the ethylene-polar monomer copolymer and improve the adhesion and durability of the sealing film.
  • the content of the crosslinking aid is generally 10 parts by mass or less, preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the ethylene-polar monomer copolymer. Thereby, the sealing film excellent in adhesiveness is obtained.
  • crosslinking aid compound having a radical polymerizable group as a functional group
  • examples of the crosslinking aid include trifunctional crosslinking aids such as triallyl cyanurate and triallyl isocyanurate, and (meth) acrylic esters (eg, NK ester) ) Monofunctional or bifunctional crosslinking aids.
  • trifunctional crosslinking aids such as triallyl cyanurate and triallyl isocyanurate, and (meth) acrylic esters (eg, NK ester) ) Monofunctional or bifunctional crosslinking aids.
  • triallyl cyanurate and triallyl isocyanurate are preferable, and triallyl isocyanurate is particularly preferable.
  • the sealing film of the present invention improves or adjusts various physical properties of the film (optical properties such as mechanical strength, adhesiveness and transparency, heat resistance, light resistance, crosslinking speed, etc.), especially improvement of mechanical strength. Therefore, if necessary, various additives such as a plasticizer, an acryloxy group-containing compound, a methacryloxy group-containing compound and / or an epoxy group-containing compound may further be included.
  • the plasticizer is not particularly limited, but polybasic acid esters and polyhydric alcohol esters are generally used. Examples thereof include dioctyl phthalate, dihexyl adipate, triethylene glycol-di-2-ethylbutyrate, butyl sebacate, tetraethylene glycol diheptanoate, and triethylene glycol dipelargonate.
  • One type of plasticizer may be used, or two or more types may be used in combination.
  • the plasticizer content is preferably in the range of 5 parts by mass or less with respect to 100 parts by mass of the ethylene-polar monomer copolymer.
  • the acryloxy group-containing compound and the methacryloxy group-containing compound are generally acrylic acid or methacrylic acid derivatives, and examples thereof include acrylic acid or methacrylic acid esters and amides.
  • ester residues include linear alkyl groups such as methyl, ethyl, dodecyl, stearyl, lauryl, cyclohexyl group, tetrahydrofurfuryl group, aminoethyl group, 2-hydroxyethyl group, 3-hydroxypropyl group And 3-chloro-2-hydroxypropyl group.
  • Examples of amides include diacetone acrylamide.
  • polyhydric alcohols such as ethylene glycol, triethylene glycol, polypropylene glycol, polyethylene glycol, trimethylolpropane, and pentaerythritol, and esters of acrylic acid or methacrylic acid can also be used.
  • epoxy-containing compound examples include triglycidyl tris (2-hydroxyethyl) isocyanurate, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, Mention may be made of phenol (ethyleneoxy) 5 glycidyl ether, pt-butylphenyl glycidyl ether, adipic acid diglycidyl ester, phthalic acid diglycidyl ester, glycidyl methacrylate and butyl glycidyl ether.
  • the acryloxy group-containing compound, the methacryloxy group-containing compound, or the epoxy group-containing compound is generally 0.5 to 5.0 parts by mass, particularly 1.0 to 100 parts by mass of the ethylene-polar monomer copolymer, respectively. It is preferably contained in an amount of ⁇ 4.0 parts by mass.
  • the solar cell sealing film of the present invention may contain an ultraviolet absorber, a light stabilizer, and / or an anti-aging agent.
  • the ultraviolet absorber is not particularly limited, but 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-dodecyloxybenzophenone, 2,4-dihydroxybenzophenone, 2,2′-dihydroxy-4- Preferred examples include benzophenone ultraviolet absorbers such as methoxybenzophenone and 2-hydroxy-4-n-octoxybenzophenone.
  • the blending amount of the benzophenone ultraviolet absorber is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the ethylene-polar monomer copolymer.
  • a light stabilizer it is possible to suppress the deterioration of the ethylene-polar monomer copolymer due to the influence of irradiated light and the like, and the yellowing of the solar cell sealing film.
  • a light stabilizer called a hindered amine type is preferably used as the light stabilizer.
  • LA-52, LA-57, LA-62, LA-63LA-63p, LA-67, LA-68 (all of which are ADEKA) Tinuvin 744, Tinuvin 770, Tinuvin 765, Tinuvin 144, Tinuvin 622LD, CHIMASSORB 944LD (all manufactured by Ciba Specialty Chemicals), UV-3034 (manufactured by BF Goodrich), and the like.
  • the light stabilizer may be used alone or in combination of two or more kinds, and the blending amount is 0.01 to 5 parts by mass with respect to 100 parts by mass of the ethylene-polar monomer copolymer. It is preferable that
  • anti-aging agent examples include hindered phenol antioxidants such as N, N'-hexane-1,6-diylbis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionamide]. , Phosphorus heat stabilizers, lactone heat stabilizers, vitamin E heat stabilizers, sulfur heat stabilizers, and the like.
  • the solar cell sealing film of the present invention described above may be formed according to a known method.
  • a composition in which each of the above materials is mixed by a known method using a super mixer (high-speed fluid mixer), a roll mill or the like is molded by ordinary extrusion molding, calendar molding (calendering), or the like, and then a sheet-like material It can manufacture by the method of obtaining.
  • a sheet-like material can be obtained by dissolving the composition in a solvent and coating the solution on a suitable support with a suitable coating machine (coater) and drying to form a coating film.
  • the heating temperature during film formation is preferably a temperature at which the crosslinking agent does not react or hardly reacts.
  • the temperature is preferably 50 to 90 ° C, particularly 40 to 80 ° C.
  • the thickness of the solar cell sealing film is not particularly limited, but may be in the range of 50 ⁇ m to 2 mm.
  • the structure of the solar cell of the present invention is not particularly limited as long as the solar cell sealing film of the present invention is used.
  • the structure etc. which sealed the cell for solar cells by interposing the sealing film for solar cells of this invention between the surface side transparent protection member and the back surface side protection member, and making it bridge-integrate are mentioned.
  • the side (light-receiving surface side) by which the light of a photovoltaic cell is irradiated is called “front surface side”
  • the surface opposite to the light-receiving surface of a photovoltaic cell is called "back surface side.”
  • the front surface side transparent protective member 11 the front surface side sealing film 13A, the solar cell cell 14, the back surface side sealing.
  • the film 13B and the back surface side protection member 12 may be laminated, and the sealing film may be cross-linked and cured according to a conventional method such as heat and pressure.
  • the laminate is heated with a vacuum laminator at a temperature of 135 to 180 ° C., further 140 to 180 ° C., particularly 155 to 180 ° C., a degassing time of 0.1 to 5 minutes, and a press pressure of 0.1.
  • Heat pressing may be performed at a pressure of ⁇ 1.5 kg / cm 2 and a press time of 5 to 15 minutes.
  • the front side sealing film 13A and the back side sealing film 13B are interposed.
  • the surface side transparent protection member 11, the back surface side transparent member 12, and the cell 14 for solar cells can be integrated, and the cell 14 for solar cells can be sealed.
  • the solar cell sealing film of the present invention is not limited to a solar cell using a single crystal or polycrystalline silicon crystal solar cell as shown in FIG. It can also be used for sealing films of thin film solar cells such as solar cells and copper indium selenide (CIS) solar cells.
  • the solar cell of the present invention is formed on the thin film solar cell element layer formed by a chemical vapor deposition method or the like on the surface of the surface side transparent protective member such as a glass substrate, a polyimide substrate, or a fluororesin transparent substrate.
  • the structure for laminating the battery sealing film and the back surface side protective member and adhering and integrating them On the solar cell element formed on the surface of the back surface side protective member, the structure for laminating the battery sealing film and the back surface side protective member and adhering and integrating them, the front surface side Laminated transparent protective member, bonded and integrated structure, or front side transparent protective member, front side sealing film, thin film solar cell element, back side sealing film, and back side protective member are laminated in this order, For example, a structure that is bonded and integrated.
  • the sealing film for solar cells of the present invention has improved durability that maintains the adhesion performance in a high temperature and high humidity environment for a long period of time, exhibits a high crosslinking rate during solar cell production, and suppresses the generation of blisters. Therefore, it is possible to obtain a solar cell that has high durability under a high temperature and high humidity environment, high production efficiency, and reduced appearance defects caused by occurrence of blisters.
  • the surface-side transparent protective member 11 used in the solar cell of the present invention is usually a glass substrate such as silicate glass.
  • the thickness of the glass substrate is generally from 0.1 to 10 mm, and preferably from 0.3 to 5 mm.
  • the glass substrate may generally be chemically or thermally strengthened.
  • the back surface side protective member 12 used in the present invention is a plastic film such as polyethylene terephthalate (PET), but in consideration of heat resistance and heat and moisture resistance, it is a fluorinated polyethylene film, particularly a fluorinated polyethylene film / Al / fluorinated. A film in which polyethylene films are laminated in this order is preferable.
  • PET polyethylene terephthalate
  • the solar cell sealing film of the present invention is used for a solar cell having a plastic film such as PET as a back side protective member. Is preferred.
  • the solar cell (including a thin film solar cell) of the present invention is characterized by a sealing film used on the front surface side and / or the back surface side as described above. Therefore, the members other than the sealing film such as the front-side transparent protective member, the back-side protective member, and the solar cell need only have the same configuration as the conventionally known solar cell, and are not particularly limited. .
  • Example 1 The materials shown in Table 1 were supplied to a roll mill and kneaded at 70 ° C. to prepare a solar cell sealing film composition.
  • the solar cell sealing film composition was calendered at 70 ° C., allowed to cool, and then a solar cell sealing film (thickness 0.6 mm) was produced.
  • Examples 2 to 14, Comparative Examples 1 to 21 A solar cell encapsulating film composition was prepared in the same manner as in Example 1 except that the materials and blending were as shown in Tables 1 to 3, respectively, and a solar cell encapsulating film was prepared using the composition. .
  • Examples 1 to 14 a solar cell in which the silane coupling agent of formula (I) (silane coupling agent (1) or (2)) is blended in an amount of 0.03 to 1.0 part by mass with respect to 100 parts by mass of EVA.
  • the sealing film for use showed a high crosslinking rate. Moreover, since it is not necessary to add a large amount of the organic peroxide as the crosslinking agent, the generation of blisters was suppressed. Furthermore, the adhesive strength after wet heat treatment was high, and the adhesive performance was sufficiently maintained.
  • Comparative Examples 5 to 15 when a silane coupling agent having a methacryloxy group as a reactive functional group among silane coupling agents other than the formula (I) is used, the crosslinking rate is low, and adhesion after wet heat treatment is performed. The force was reduced, and the adhesive performance was not sufficiently maintained. In Comparative Examples 10 and 11 in which a large amount of organic peroxide was blended in order to increase the crosslinking rate, the blister property was also deteriorated. In Comparative Examples 16 to 21, when a silane coupling agent having n of 0 in formula (I) is used among the silane coupling agents other than formula (I), the adhesive strength after wet heat treatment decreases. Adhesive performance was not sufficiently maintained. In Comparative Examples 16 and 17 using the silane coupling agent (6) having the smallest molecular weight, bleeding out also occurred.
  • the present invention can provide a solar cell encapsulating film that has durability that maintains the adhesion performance for a long period of time in a high temperature and high humidity environment and that has a high crosslinking rate.
  • this invention is not limited to the structure and Example of said embodiment, A various deformation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Sealing Material Composition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

 高温高湿環境下における接着性が長期間保持される耐久性に優れ、太陽電池製造時において高い架橋速度を有し、且つブリスターの発生が抑制された太陽電池用封止膜及びこの封止膜を用いた太陽電池を提供する。 エチレン-極性モノマー共重合体、有機過酸化物、シランカップリング剤を含む太陽電池用封止膜であって、前記シランカップリング剤が、下記式(I):(式中、Rは炭素原子数1~3個のアルキル基であり、3個のRは同一でも異なっていても良く、nは1~8の整数である)で表されるシランカップリング剤であり、且つ 前記シランカップリング剤の含有量が、前記エチレン-極性モノマー共重合体100質量部に対して、0.02~1.0質量部であることを特徴とする太陽電池用封止膜。更に、本発明の太陽電池用封止膜を用いた太陽電池。

Description

太陽電池封止膜及びこれを用いた太陽電池
 本発明は、エチレン-極性モノマー共重合体を主成分とする太陽電池用封止膜に関し、特に耐久性が高く、且つ生産性に優れた太陽電池用封止膜に関する。更にこの封止膜を用いた太陽電池に関する。
 近年、資源の有効利用や環境汚染の防止等の面から、太陽光を電気エネルギーに直接、変換する太陽電池が広く使用され、更に生産性や耐久性の点から開発が進められている。
 太陽電池は、一般に、図1に示すように、ガラス基板などからなる表面側透明保護部材11、表面側封止膜13A、シリコン結晶系発電素子などの太陽電池用セル14、裏面側封止膜13B、及び裏面側保護部材(バックカバー)12をこの順で積層し、減圧で脱気した後、加熱加圧して表面側封止膜13A及び裏面側封止膜13Bを架橋硬化させて接着一体化することにより製造される。
 このような太陽電池では、高い電気出力を得るために、複数の太陽電池用セル14を接続して用いられている。したがって、太陽電池用セル14間の絶縁性を確保するために、絶縁性のある封止膜13A、13Bを用いて太陽電池用セルを封止している。
 また、薄膜シリコン系、薄膜アモルファスシリコン系太陽電池、セレン化銅インジウム(CIS)系太陽電池等の薄膜太陽電池の開発も進められており、この場合は、ガラスやポリイミド基板等の樹脂基板の表面に化学気相蒸着法等により半導体層等の発電素子層が形成され、その上に封止膜等を積層し、接着一体化することで製造される。
 従来から、これらの太陽電池に用いられる封止膜としては、エチレン酢酸ビニル共重合体(以下、EVAと略す)、エチレンエチルアクリレート共重合体(EEA)等のエチレン-極性モノマー共重合体からなるフィルムが用いられている。特に、安価であり高い透明性を有することからEVAフィルムが好ましく用いられている。そして、封止膜用のエチレン-極性モノマー共重合体フィルムには、太陽電池セルの機械的な耐久性の確保や、湿気又は水の透過による内部の導線や電極の発錆の防止のため、ガラス、発電素子及びバックカバーとの高度な密着性及び接着強度で各部材を接着一体化させる機能が必要である。
 そのため、従来から、エチレン-極性モノマー共重合体樹脂に対して架橋剤として有機過酸化物を添加することで、架橋構造による耐候性の向上や、シランカップリング剤を添加することで、接着力の向上が図られている(特許文献1)。
 近年、太陽電池は長寿命化が求められ、また、砂漠地帯や熱帯地域等の過酷な環境での使用も増加しているため、封止膜についても、接着性能が更に長期間保持できる耐久性・耐候性、特に高温高湿環境において、長期間保持できる耐久性が求められている。
特開2000-183382号公報
 しかしながら、一般に、接着性の向上のためにシランカップリング剤を添加すると、架橋速度が低下し、封止膜の生産性が低下する問題が生じる。最近、太陽電池の製造は爆発的に増加しており、その生産性が重視されている。特に、ファストキュアと呼ばれる高速生産が可能な太陽電池用封止膜もあり、短時間でより多くの太陽電池を製造することが求められている。但し、架橋速度を上げるために、有機過酸化物の添加量を増加するとガス発生によるフィルムの膨れ(以下、「ブリスター」と称する)が発生する。ブリスターが発生すると外観不良となる上、絶縁性や防湿性能が低下することになるため、品質上大きな問題となる。
 従って、本発明の目的は、エチレン-極性モノマー共重合体を主成分とし、有機過酸化物による架橋構造を有する太陽電池用封止膜であって、高温高湿環境下における接着性が長期間保持される耐久性に優れ、太陽電池製造時において高い架橋速度を有し、且つブリスターの発生が抑制された太陽電池用封止膜を提供することにある。
 また、本発明の目的は、この封止膜を用いた太陽電池を提供することにもある。
 上記目的は、エチレン-極性モノマー共重合体、有機過酸化物、シランカップリング剤を含む太陽電池用封止膜であって、前記シランカップリング剤が、下記式(I):
Figure JPOXMLDOC01-appb-C000002
(式中、Rは炭素原子数1~3個のアルキル基であり、3個のRは同一でも異なっていても良く、nは1~8の整数である)で表されるシランカップリング剤であり、且つ
 前記シランカップリング剤の含有量が、前記エチレン-極性モノマー共重合体100質量部に対して、0.02~1.0質量部であることを特徴とする太陽電池用封止膜によって達成される。
 接着性能が長期間保持される耐久性に優れる理由としては、以下の理由が考えられる。即ち、従来から汎用されるγ-メタクリロキシプロピルトリメトキシシラン等の、メタクリロキシ基又はアクリロキシ基を反応性官能基として有するシランカップリング剤をエチレン-極性モノマー共重合体樹脂に配合した場合は、COO-基を介して樹脂に結合するため、高温高湿環境下においては加水分解が生じ、接着力が低下する場合がある。上記式(I)のシランカップリング剤では、加水分解する部分がないため、接着性能が長期間保持されるものと考えられる。また、架橋速度が高い理由としては、メタクリロキシ基等のメチル基を有する官能基を有するシランカップリング剤の場合は、立体障害により、架橋反応が阻害されるが、上記式(I)のシランカップリング剤の官能基は立体障害が小さく、架橋速度が低下し難いためと考えられる。このため、有機過酸化物の添加量を増加する必要がなく、ブリスターの発生も抑制することができる。
 また、シランカップリング剤のビニル基(CH=CH-)とSiの間に炭素原子がない場合(式(I)において、nが0の場合)は、分子量が小さく、エチレン-極性モノマー共重合体樹脂に配合する場合に飛散し易く、混合後もブリードアウト(添加剤の染み出し)が生じる場合がある。
 更に、式(I)において、nが0であるシランカップリング剤の場合は樹脂結合位置と接着界面との距離が小さくなるため、分子同士の絡まりあい等が生じ難くなり、接着性能に不利になる可能性がある。一方、本発明に係わる上記式(I)のシランカップリング剤(nが1~8)の場合は、ビニル基(CH=CH-)とSiの間に所定の長さの炭素鎖を有するので、樹脂結合位置と接着界面との距離が長くなるため、分子のねじれや分子同士の絡まりあいが強くなり、接着性能に有利になるものと考えられる。
 なお、シランカップリング剤は、その配合量が少な過ぎる場合は上記効果が低く、多過ぎる場合はポリマーへの含浸が難しくなり、ブリードアウトの原因になる場合があるため、上記の含有量の範囲で配合される。
 本発明に係る太陽電池用封止膜の好ましい態様は以下の通りである。
(1)前記式(I)におけるnが1~4である。nが5以上になると分子量が増加し、エチレン-極性モノマー共重合体との相溶性が悪化する場合がある。
(2)前記式(I)におけるnが4である。接着性能とエチレン-極性モノマー共重合体との相溶性の点から好ましい。
(3)前記式(I)におけるRがメチル基である。反応性に優れる点で好ましい。
(4)前記シランカップリング剤の含有量が、エチレン-極性モノマー共重合体100質量部に対して、0.15~1.0質量部である。接着性能が長期間保持される耐久性を、より向上することができる。
(5)前記エチレン-極性モノマー共重合体が、エチレン酢酸ビニル共重合体である。
 また、上記目的は、本発明の太陽電池封止膜を用いたことを特徴とする太陽電池によって達成される。
 本発明の太陽電池封止膜は、エチレン-極性モノマー共重合体を主成分とし、有機過酸化物による架橋構造を有し、接着力向上のために加水分解し難い特定のシランカップリング剤を含んでいるので、高温、高湿環境下において接着性能が長期間保持される耐久性が向上されている。また、上記特定のシランカップリング剤は、立体障害が小さく、架橋速度に悪影響を与え難いので、本発明の太陽電池封止膜は太陽電池製造時に高い架橋速度を有する。そのため、有機過酸化物の添加量を増加させる必要がなく、ブリスターの発生も抑制することができ、フクレによる外観不良を防止できる。
 従って、本発明の太陽電池用封止膜を用いることで、高い接着強度で接着一体化され、耐久性が高く、且つ生産効率が高く、ブリスターの発生により生じる外観不良が低減された太陽電池を提供することができる
一般的な太陽電池の概略断面図である。 接着力の評価である、180°ピール試験法を説明するための概略図である。
 本発明の太陽電池用封止膜はエチレン-酢酸ビニル共重合体、架橋剤として有機過酸化物を有し、接着向上剤として下記式(I)のシランカップリング剤を含んでいる。
Figure JPOXMLDOC01-appb-C000003
(式中、Rは炭素原子数1~3個のアルキル基であり、3個のRは同一でも異なっていても良く、nは1~8の整数である)
 また、前記シランカップリング剤の含有量は、前記エチレン-極性モノマー共重合体100質量部に対して、0.02~1.0質量部である。
 本発明の太陽電池用封止膜においては、上記式(I)のシランカップリング剤を含むことで、高温高湿環境下における接着性能が長期間保持される耐久性が向上され、太陽電池製造時に高い架橋速度を示し、且つブリスターの発生が抑制されている。但し、シランカップリング剤の配合量が少な過ぎる場合は、その効果が低く、多過ぎる場合はポリマーへの含浸が難しくなり、ブリードアウトの原因になる場合がある。従って、シランカップリング剤の含有量は、上記の範囲である。
[シランカップリング剤]
 シランカップリング剤は、反応性官能基(式(I)においては「CH=CH-(CH」)を介して有機樹脂等と結合し、加水分解性基(式(I)においては「OR」)を加水分解して反応させることにより無機物表面等と結合することにより、化学的性質の異なる物質同士を強固に結びつける働きをする。
 上記式(I)のシランカップリング剤を用いた封止膜について、高温高湿環境下における接着性能が長期間保持される耐久性が向上する理由としては、以下の理由が考えられる。即ち、従来から汎用されるγ-メタクリロキシプロピルトリメトキシシラン等の、メタクリロキシ基又はアクリロキシ基を反応性官能基として有するシランカップリング剤をエチレン-極性モノマー共重合体樹脂に配合した場合は、COO-基を介して樹脂に結合するため、高温高湿環境下においては加水分解が生じ、シランカップリング剤の分子切断が起こり、接着力が低下する場合がある。これに対し、上記式(I)のシランカップリング剤では、反応性官能基に加水分解する部分がないため、高温高湿環境下における接着性能が長期間保持されるものと考えられる。
 また、架橋速度が高い理由としては、メタクリロキシ基等のメチル基を有する官能基を有するシランカップリング剤の場合は、立体障害により、架橋反応が阻害されるが、上記式(I)のシランカップリング剤の官能基は立体障害が小さく、架橋速度が低下し難いためと考えられる。このため、有機過酸化物の添加量を増加する必要がなく、ブリスターの発生も抑制することができる。
 また、シランカップリング剤のビニル基(CH=CH-)とSiの間に炭素原子がない場合(式(I)において、nが0の場合)は、分子量が小さく、エチレン-極性モノマー共重合体樹脂に配合する場合に飛散し易く、混合後もブリードアウト(添加剤の染み出し)が生じる場合がある。
 更に、式(I)において、nが0であるシランカップリング剤の場合は樹脂結合位置と接着界面との距離が小さくなるため、分子同士の絡まりあい等が生じ難くなり、接着性能に不利になる可能性がある。一方、本発明に係わる上記式(I)のシランカップリング剤(nが1~8)の場合は、ビニル基(CH=CH-)とSiの間に所定の長さの炭素鎖を有するので、樹脂結合位置と接着界面との距離が長くなるため、分子のねじれや分子同士の絡まりあいが強くなり、接着性能に有利になるものと考えられる。
 また、式(I)において、nは1~4の場合が好ましい。nが5以上になると分子量が増加し、エチレン-極性モノマー共重合体との相溶性が悪化する場合があるからである。接着性能とエチレン-極性モノマー共重合体との相溶性の両方に有利な点から、特に、nは4が好ましい。
 Rは炭素原子数1~3個のアルキル基であれば良く、メチル基、エチル基、イソプロピル基等が挙げられる。反応性の点でメチル基が好ましい。
 上記式(I)のシランカップリング剤として、具体的には、アリルトリメトキシシラン、アリルトリエトキシシラン、アリルトリイソプロポキシシラン、ビニルエチルトリメトキシシラン、ビニルエチルトリエトキシシラン、ビニルプロピルトリメトキシシラン、ビニルブチルトリメトキシシラン、ビニルブチルトリエトキシシラン、ビニルブチルトリイソプロポキシシラン、ビニルペンチルトリメトキシシラン、ビニルヘキシルトリメトキシシラン、ビニルヘプチルトリメトキシシラン、ビニルオクチルトリメトキシシラン等が挙げられる。これらシランカップリング剤は、単独で使用しても、又は2種以上組み合わせて使用しても良い。シランカップリング剤としては、アリルトリメトキシシラン、アリルトリエトキシシラン、アリルトリイソプロポキシシラン、ビニルエチルトリメトキシシラン、ビニルエチルトリエトキシシラン、ビニルプロピルトリメトキシシラン、ビニルブチルトリメトキシシラン、ビニルブチルトリエトキシシラン、ビニルブチルトリイソプロポキシシランがより好ましく、ビニルブチルトリメトキシシランが特に好ましい。
 シランカップリング剤の含有量は、上述のようにエチレン-極性モノマー共重合体100質量部に対して0.02~1.0質量部であれば良いが、更に、0.15~1.0質量部が好ましく、特に、0.3~1.0質量部が好ましい。この範囲であれば、より接着性能の耐久性が向上した太陽電池用封止膜とすることができる。
[エチレン-極性モノマー共重合体]
 本発明においてエチレン-極性モノマー共重合体の極性モノマーは、不飽和カルボン酸、その塩、そのエステル、そのアミド、ビニルエステル、一酸化炭素等を例示することができる。より具体的には、アクリル酸、メタクリル酸、フマル酸、イタコン酸、マレイン酸モノメチル、マレイン酸モノエチル、無水マレイン酸、無水イタコン酸等の不飽和カルボン酸、これら不飽和カルボン酸のリチウム、ナトリウム、カリウムなどの1価金属の塩やマグネシウム、カルシウム、亜鉛などの多価金属の塩、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸イソブチル、アクリル酸n-ブチル、アクリル酸イソオクチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソブチル、マレイン酸ジメチル等の不飽和カルボン酸エステル、酢酸ビニル、プロピオン酸ビニルのようなビニルエステル、一酸化炭素、二酸化硫黄などの一種又は二種以上などを例示することができる。
 エチレン-極性モノマー共重合体として、より具体的には、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体のようなエチレン-不飽和カルボン酸共重合体、前記エチレン-不飽和カルボン酸共重合体のカルボキシル基の一部又は全部が上記金属で中和されたアイオノマー、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-アクリル酸イソブチル共重合体、エチレン-アクリル酸n-ブチル共重合体のようなエチレン-不飽和カルボン酸エステル共重合体、エチレン-アクリル酸イソブチル-メタクリル酸共重合体、エチレン-アクリル酸n-ブチル-メタクリル酸共重合体のようなエチレン-不飽和カルボン酸エステル-不飽和カルボン酸共重合体及びそのカルボキシル基の一部又は全部が上記金属で中和されたアイオノマー、エチレン-酢酸ビニル共重合体のようなエチレン-ビニルエステル共重合体等を代表例として例示することができる。
 エチレン-極性モノマー共重合体としては、JIS K7210で規定されるメルトフローレートが、35g/10分以下、特に3~6g/10分のものを使用するのが好ましい。このようなメルトフローレート有するエチレン-極性モノマー共重合体を用いた太陽電池用封止膜によれば、太陽電池作製時の封止工程における加熱加圧の際に、封止膜が溶融や位置ズレを起こして基板の端部からはみ出でるのを抑制することができる。
 なお、本発明において、メルトフローレート(MFR)の値は、JIS K7210に従い、190℃、荷重21.18Nの条件に基づいて測定されたものである。
 エチレン-極性モノマー共重合体としては、エチレン-酢酸ビニル共重合体(EVAとも言う)が特に好ましい。これにより、安価であり、透明性、柔軟性に優れる太陽電池用封止膜を形成することができる。
 エチレン-酢酸ビニル共重合体における酢酸ビニルの含有量は、EVAに対して20~35質量%、さらに22~30質量%、特に24~28質量%とするのが好ましい。EVAの酢酸ビニル単位の含有量が低い程、得られる封止膜が硬くなる傾向がある。酢酸ビニルの含有量が20質量%未満では、高温で架橋硬化させる場合に、得られる封止膜の透明性が充分でない恐れがある。また、35質量%を超えると封止膜の硬さが不十分となる場合があり、更にカルボン酸、アルコール、アミン等が発生し封止膜と保護部材等との界面で発泡が生じ易くなる恐れがある。
 本発明の太陽電池封止膜は、エチレン-極性モノマー共重合体に加えて、さらにポリビニルアセタール系樹脂(例えば、ポリビニルホルマール、ポリビニルブチラール(PVB樹脂)、変性PVB)、塩化ビニル樹脂を副次的に使用しても良い。その場合、特にPVBが好ましい。
[有機過酸化物]
 有機過酸化物は、架橋剤としてエチレン-極性モノマー共重合体の架橋構造を形成することができ、接着力、透明性、耐湿性、耐貫通性が改善された太陽電池用封止膜を得ることができる。
 本発明において、有機過酸化物としては、100℃以上の温度で分解してラジカルを発生するものであれば、どのようなものでも使用することができる。有機過酸化物は、一般に、成膜温度、組成物の調整条件、硬化温度、被着体の耐熱性、貯蔵安定性を考慮して選択される。特に、半減期10時間の分解温度が70℃以上のものが好ましい。
 前記有機過酸化物としては、樹脂の加工温度・貯蔵安定性の観点から例えば、2,5-ジメチルヘキサン、2,5-ジハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、3-ジ-tert-ブチルパーオキサイド、tert-ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキシン、ジクミルパーオキサイド、tert-ブチルクミルパーオキサイド、α,α’-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン、tert-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、α,α'-ビス(tert-ブチルパーオキシ)ジイソプロピルベンゼン、n-ブチル-4,4-ビス(tert-ブチルパーオキシ)ブタン、2,2-ビス(tert-ブチルパーオキシ)ブタン、1,1-ビス(tert-ブチルパーオキシ)シクロヘキサン、1,1-ビス(tert-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、tert-ブチルパーオキシベンゾエート;ベンゾイルパーオキサイド、1,1-ジ(tert-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサンなどが挙げられる。
 有機過酸化物として、特に好ましくは、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン、tert-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、1,1-ジ(tert-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサンが挙げられる。
 有機過酸化物の含有量は、エチレン-極性モノマー共重合体100質量部に対して、好ましくは0.1~5質量部、より好ましくは0.2~1.8質量部であり、更に好ましくは0.5~1.5質量部である。
[架橋助剤]
 本発明の太陽電池用封止膜は、必要に応じて、さらに架橋助剤を含んでいてもよい。前記架橋助剤は、エチレン-極性モノマー共重合体のゲル分率を向上させ、封止膜の接着性及び耐久性を向上させることができる。
 前記架橋助剤の含有量は、エチレン-極性モノマー共重合体100質量部に対して、一般に10質量部以下、好ましくは0.1~5質量部で使用される。これにより、接着性に優れる封止膜が得られる。
 前記架橋助剤(官能基としてラジカル重合性基を有する化合物)としては、トリアリルシアヌレート、トリアリルイソシアヌレート等の3官能の架橋助剤の他、(メタ)アクリルエステル(例、NKエステル等)の単官能又は2官能の架橋助剤等を挙げることができる。なかでも、トリアリルシアヌレートおよびトリアリルイソシアヌレートが好ましく、特にトリアリルイソシアヌレートが好ましい。
[その他]
 本発明の封止膜は、膜の種々の物性(機械的強度、接着性、透明性等の光学的特性、耐熱性、耐光性、架橋速度等)の改良あるいは調整、特に機械的強度の改良のため、必要に応じて、可塑剤、アクリロキシ基含有化合物、メタクリロキシ基含有化合物及び/又はエポキシ基含有化合物などの各種添加剤をさらに含んでいてもよい。
 前記可塑剤としては、特に限定されるものではないが、一般に多塩基酸のエステル、多価アルコールのエステルが使用される。その例としては、ジオクチルフタレート、ジヘキシルアジペート、トリエチレングリコール-ジ-2-エチルブチレート、ブチルセバケート、テトラエチレングリコールジヘプタノエート、トリエチレングリコールジペラルゴネートを挙げることができる。可塑剤は一種用いてもよく、二種以上組み合わせて使用しても良い。可塑剤の含有量は、エチレン-極性モノマー共重合体100質量部に対して5質量部以下の範囲が好ましい。
 前記アクリロキシ基含有化合物及び前記メタクリロキシ基含有化合物としては、一般にアクリル酸あるいはメタクリル酸誘導体であり、例えばアクリル酸あるいはメタクリル酸のエステルやアミドを挙げることができる。エステル残基の例としては、メチル、エチル、ドデシル、ステアリル、ラウリル等の直鎖状のアルキル基、シクロヘキシル基、テトラヒドルフルフリル基、アミノエチル基、2-ヒドロキシエチル基、3-ヒドロキシプロピル基、3-クロロ-2-ヒドロキシプオピル基を挙げることができる。アミドの例としては、ジアセトンアクリルアミドを挙げることができる。また、エチレングリコール、トリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコール、トリメチロールプロパン、ペンタエリスリトール等の多価アルコールとアクリル酸あるいはメタクリル酸のエステルも挙げることができる。
 前記エポキシ含有化合物としては、トリグリシジルトリス(2-ヒドロキシエチル)イソシアヌレート、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、アリルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、フェノール(エチレンオキシ)グリシジルエーテル、p-t-ブチルフェニルグリシジルエーテル、アジピン酸ジグリシジルエステル、フタル酸ジグリシジルエステル、グリシジルメタクリレート、ブチルグリシジルエーテルを挙げることができる。 
 前記アクリロキシ基含有化合物、前記メタクリロキシ基含有化合物、または前記エポキシ基含有化合物は、それぞれエチレン-極性モノマー共重合体100質量部に対してそれぞれ一般に0.5~5.0質量部、特に1.0~4.0質量部含まれていることが好ましい。
 さらに、本発明の太陽電池用封止膜は、紫外線吸収剤、光安定剤、及び/又は老化防止剤を含んでいてもよい。
 紫外線吸収剤を含有させることにより、照射された光などの影響によってエチレン-極性モノマー共重合体が劣化し、太陽電池用封止膜が黄変するのを抑制することができる。 
 前記紫外線吸収剤としては、特に制限されないが、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-n-ドデシロキシベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノン等のベンゾフェノン系紫外線吸収剤が好ましく挙げられる。なお、上記ベンゾフェノン系紫外線吸収剤の配合量は、エチレン-極性モノマー共重合体100質量部に対して0.01~5質量部であることが好ましい。
 光安定剤を含有させることによっても、照射された光などの影響によってエチレン-極性モノマー共重合体が劣化し、太陽電池用封止膜が黄変するのを抑制することができる。前記光安定剤としてはヒンダードアミン系と呼ばれる光安定剤を用いることが好ましく、例えば、LA-52、LA-57、LA-62、LA-63LA-63p、LA-67、LA-68(いずれもADEKA社製)、Tinuvin744、Tinuvin770、Tinuvin765、Tinuvin144、Tinuvin622LD、CHIMASSORB944LD(いずれもチバ・スペシャリティ・ケミカルズ社製)、UV-3034(B.F.グッドリッチ社製)等を挙げることができる。なお、上記光安定剤は、単独で使用しても、2種以上組み合わせて用いてもよく、その配合量は、エチレン-極性モノマー共重合体100質量部に対して0.01~5質量部であることが好ましい。
 前記老化防止剤としては、例えばN,Ν’-ヘキサン-1,6-ジイルビス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナミド〕等のヒンダードフェノール系酸化防止剤、リン系熱安定剤、ラクトン系熱安定剤、ビタミンE系熱安定剤、イオウ系熱安定剤等が挙げられる。
 上述した本発明の太陽電池用封止膜を形成するには、公知の方法に準じて行えばよい。 
 例えば、上記の各材料をスーパーミキサー(高速流動混合機)、ロールミル等を用いて公知の方法で混合した組成物を通常の押出成形、又はカレンダ成形(カレンダリング)等により成形してシート状物を得る方法により製造することができる。また、前記組成物を溶剤に溶解させ、この溶液を適当な塗布機(コーター)で適当な支持体上に塗布、乾燥して塗膜を形成することによりシート状物を得ることもできる。尚、製膜時の加熱温度は、架橋剤が反応しない或いはほとんど反応しない温度とすることが好ましい。例えば、50~90℃、特に40~80℃とするのが好ましい。太陽電池用封止膜の厚さは、特に制限されないが、50μm~2mmの範囲であればよい。
[太陽電池]
 本発明の太陽電池の構造は、本発明の太陽電池用封止膜を用いていれば、特に制限されない。例えば、表面側透明保護部材と裏面側保護部材との間に、本発明の太陽電池用封止膜を介在させて架橋一体化させることにより太陽電池用セルを封止させた構造などが挙げられる。なお、本発明において、太陽電池セルの光が照射される側(受光面側)を「表面側」と称し、太陽電池セルの受光面とは反対面側を「裏面側」と称する。
 前記太陽電池において、太陽電池用セルを十分に封止するには、例えば、図1に示すように表面側透明保護部材11、表面側封止膜13A、太陽電池用セル14、裏面側封止膜13B及び裏面側保護部材12を積層し、加熱加圧など常法に従って、封止膜を架橋硬化させればよい。
 前記加熱加圧するには、例えば、前記積層体を、真空ラミネーターで温度135~180℃、さらに140~180℃、特に155~180℃、脱気時間0.1~5分、プレス圧力0.1~1.5kg/cm2、プレス時間5~15分で加熱圧着すればよい。この加熱加圧時に、表面側封止膜13Aおよび裏面側封止膜13Bに含まれるエチレン-極性モノマー共重合体を架橋させることにより、表面側封止膜13Aおよび裏面側封止膜13Bを介して、表面側透明保護部材11、裏面側透明部材12、および太陽電池用セル14を一体化させて、太陽電池用セル14を封止することができる。
 なお、本発明の太陽電池用封止膜は、図1に示したような単結晶又は多結晶のシリコン結晶系の太陽電池セルを用いた太陽電池だけでなく、薄膜シリコン系、薄膜アモルファスシリコン系太陽電池、セレン化銅インジウム(CIS)系太陽電池等の薄膜太陽電池の封止膜にも使用することもできる。この場合は、例えば、ガラス基板、ポリイミド基板、フッ素樹脂系透明基板等の表面側透明保護部材の表面上に化学気相蒸着法等により形成された薄膜太陽電池素子層上に、本発明の太陽電池用封止膜、裏面側保護部材を積層し、接着一体化させた構造、裏面側保護部材の表面上に形成された太陽電池素子上に、本発明の太陽電池用封止膜、表面側透明保護部材を積層し、接着一体化させた構造、又は表面側透明保護部材、表面側封止膜、薄膜太陽電池素子、裏面側封止膜、及び裏面側保護部材をこの順で積層し、接着一体化させた構造等が挙げられる。
 本発明の太陽電池用封止膜は、高温高湿環境下における接着性能が長期間保持される耐久性が向上され、太陽電池製造時に高い架橋速度を示し、且つブリスターの発生が抑制されているので、高温高湿環境下における耐久性が高く、且つ生産効率が高く、ブリスターの発生により生じる外観不良が低減された太陽電池を得ることができる。
 本発明の太陽電池に使用される表面側透明保護部材11は、通常珪酸塩ガラスなどのガラス基板であるのがよい。ガラス基板の厚さは、0.1~10mmが一般的であり、0.3~5mmが好ましい。ガラス基板は、一般に、化学的に、或いは熱的に強化させたものであってもよい。
 本発明で使用される裏面側保護部材12は、ポリエチレンテレフタレート(PET)などのプラスチックフィルムであるが、耐熱性、耐湿熱性を考慮してフッ化ポリエチレンフィルム、特にフッ化ポリエチレンフィルム/Al/フッ化ポリエチレンフィルムをこの順で積層させたフィルムが好ましい。特にPETなどのプラスチックフィルムは太陽電池用封止膜との接着性が低いことから、本願発明の太陽電池用封止膜はPETなどのプラスチックフィルムを裏面側保護部材として有する太陽電池に用いられるのが好ましい。
 なお、本発明の太陽電池(薄膜太陽電池を含む)は、上述した通り、表面側及び/又は裏面側に用いられる封止膜に特徴を有する。したがって、表面側透明保護部材、裏面側保護部材、および太陽電池用セルなどの前記封止膜以外の部材については、従来公知の太陽電池と同様の構成を有していればよく、特に制限されない。
 以下、本発明を実施例により説明する。
(実施例1)
 表1に示す配合で各材料をロールミルに供給し、70℃で、混練して太陽電池用封止膜組成物を調製した。前記太陽電池用封止膜組成物を、70℃で、カレンダ成形し、放冷後、太陽電池用封止膜(厚さ0.6mm)を作製した。
(実施例2~14、比較例1~21)
 材料および配合を、それぞれ表1~3に示す通りにした以外は、実施例1と同様にして太陽電池用封止膜組成物を調製し、これを用いて太陽電池用封止膜を作製した。
(評価方法)
(1)架橋速度
 上記で作成した各太陽電池用封止膜をオーブンにて、155℃で架橋反応を行い、一定時間毎に約1g精秤し、ソックスレー抽出器を用いて熱キシレンで6時間抽出処理した後、生じたゲル成分を80℃で12時間以上乾燥して秤量した。封止膜に対するゲル成分の質量%を算出し、その数値が80%に達する架橋時間を架橋速度とした。架橋時間の判定基準は10分以下が合格とした。
(2)ガラス接着力
(i)初期のガラス接着力
 接着力は180°ピール試験(JIS K 6584、1994年)により評価した。180°ピール試験は、具体的には、下記手順に従って図2に示すように行った。
 ガラス基板21(フロートガラス:厚さ3mm)、上記各太陽電池用封止膜23を積層し、得られた積層体を真空ラミネーターで真空脱気し、100℃の温度で10分間予備圧着した後、さらにオーブンに入れ、温度155℃の条件で45分間架橋させた。これを、23℃、50%RH雰囲気下で、積層体を24時間放置した後、ガラス基板21と太陽電池用封止膜23との間の一部を剥離して、太陽電池用封止膜23を180°折り返して引張試験機(島津製作所社製、オートグラフ)を用いて引っ張り速度100mm/分時の引き剥がし力をガラス接着力[N/cm]として測定した。
(ii)湿熱処理後のガラス接着力
 上記で作製した積層体を温度85℃、湿度85%RHの湿熱オーブン内で、5000時間放置した後、(i)の場合と同様にガラス接着力[N/cm]を測定した。
(3)ブリスター性(ガス発生による膨れ)
 ガラス基板、上記各太陽電池用封止膜、太陽電池セル、同太陽電池封止膜、ガスバリア層(テドラー(フッ化ポリエチレンフィルム(デュポン社製))/アルミ箔/テドラー)をこの順で積層し、得られた積層体を真空ラミネーターで真空脱気し、155℃のオーブンに静置し、ガス発生による膨れが発生するまでの時間を測定した。ブリスター性の判定基準は45分以上が合格とした。
(4)ブリードアウト
 上記(2)における、温度85℃、湿度85%RHの環境下で5000時間放置したサンプルについて、ブリードアウトが認められない場合を○とし、認められた場合を×とした。
(評価結果)
上記各評価の結果を表1~3に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 実施例1~14において、式(I)のシランカップリング剤(シランカップリング剤(1)又は(2))を、EVA100質量部に対し、0.03~1.0質量部配合した太陽電池用封止膜は、高い架橋速度を示した。また、架橋剤の有機過酸化物を多量に入れなくても良いため、ブリスターの発生が抑制されていた。更に、湿熱処理後の接着力が高く、接着性能が十分に維持されていた。
 比較例1~4では式(I)のシランカップリング剤を、EVA100質量部に対し、0.01質量部配合した場合は、接着性能が十分に維持されておらず、1.0質量部配合した場合はブリードアウトが認められた。
 一方、比較例5~15において、式(I)以外のシランカップリング剤の内、メタクリロキシ基を反応性官能基として有するシランカップリング剤を用いた場合、架橋速度が低く、湿熱処理後の接着力が低下し、接着性能が十分に維持されていなかった。架橋速度を上げるため、有機過酸化物を多く配合した比較例10及び11では、ブリスター性も悪化した。また、比較例16~21において、式(I)以外のシランカップリング剤の内、式(I)において、nが0のシランカップリング剤を用いた場合、湿熱処理後の接着力が低下し、接着性能が十分に維持されていなかった。最も分子量が小さいシランカップリング剤(6)を用いた比較例16及び17では、ブリードアウトも生じた。
 以上により、本発明によって、高温、高湿環境下において接着性能が長期間保持される耐久性を有し、且つ高き架橋速度を有する太陽電池用封止膜が得られることが示された。
なお、本発明は上記の実施の形態の構成及び実施例に限定されるものではなく、発明の要旨の範囲内で種々変形が可能である。
 11     表面側透明保護部材
 12     裏面側保護部材
 13A    表面側封止膜
 13B    裏面側封止膜
 14     太陽電池セル
 21     ガラス基板
 23     太陽電池用封止膜

Claims (7)

  1.  エチレン-極性モノマー共重合体、有機過酸化物、シランカップリング剤を含む太陽電池用封止膜であって、前記シランカップリング剤が、下記式(I):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは炭素原子数1~3個のアルキル基であり、3個のRは同一でも異なっていても良く、nは1~8の整数である)
     で表されるシランカップリング剤であり、且つ
     前記シランカップリング剤の含有量が、前記エチレン-極性モノマー共重合体100質量部に対して、0.02~1.0質量部であることを特徴とする太陽電池用封止膜。
  2.  前記式(I)におけるnが1~4である請求項1に記載の太陽電池封止膜。
  3.  前記式(I)におけるnが4である請求項1に記載の太陽電池封止膜。
  4.  前記式(I)におけるRがメチル基である請求項1~3のいずれか1項に記載の太陽電池用封止膜。
  5.  前記シランカップリング剤の含有量が、前記エチレン-極性モノマー共重合体100質量部に対して、0.15~1.0質量部である請求項1~4のいずれか1項に記載の太陽電池用封止膜。
  6.  前記エチレン-極性モノマー共重合体が、エチレン酢酸ビニル共重合体である請求項1~5のいずれか1項に記載の太陽電池用封止膜。
  7.  請求項1~6のいずれか1項に記載の太陽電池封止膜を用いたことを特徴とする太陽電池。
PCT/JP2012/052673 2011-02-22 2012-02-07 太陽電池封止膜及びこれを用いた太陽電池 WO2012114861A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12749723.8A EP2680318B1 (en) 2011-02-22 2012-02-07 Solar cell sealing film and solar cell utilizing same
US14/000,104 US9054236B2 (en) 2011-02-22 2012-02-07 Solar cell sealing film and solar cell using the sealing film
ES12749723.8T ES2613820T3 (es) 2011-02-22 2012-02-07 Película selladora de células solares y célula solar que la utiliza
CN201280010071.9A CN103392238B (zh) 2011-02-22 2012-02-07 太阳能电池用密封膜和使用密封膜的太阳能电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011035392A JP5778441B2 (ja) 2011-02-22 2011-02-22 太陽電池封止膜及びこれを用いた太陽電池
JP2011-035392 2011-02-22

Publications (1)

Publication Number Publication Date
WO2012114861A1 true WO2012114861A1 (ja) 2012-08-30

Family

ID=46720647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052673 WO2012114861A1 (ja) 2011-02-22 2012-02-07 太陽電池封止膜及びこれを用いた太陽電池

Country Status (7)

Country Link
US (1) US9054236B2 (ja)
EP (1) EP2680318B1 (ja)
JP (1) JP5778441B2 (ja)
CN (1) CN103392238B (ja)
ES (1) ES2613820T3 (ja)
TW (1) TWI444421B (ja)
WO (1) WO2012114861A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015036341A1 (en) * 2013-09-11 2015-03-19 Akzo Nobel Chemicals International B.V. Process for crosslinking an ethylene-based polymer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI609908B (zh) 2014-09-18 2018-01-01 柏列利斯股份公司 用於層元件之層的聚合物組成物
TWI615431B (zh) * 2014-09-18 2018-02-21 柏列利斯股份公司 用於層元件之層的聚合物組成物
US20220380576A1 (en) * 2019-12-26 2022-12-01 Dow Global Technologies Llc Ethylene/alpha-olefin interpolymer compositions with high glass adhesion
TWI827875B (zh) * 2020-08-26 2024-01-01 亨泰光學股份有限公司 硬式透氧隱形眼鏡高分子材料結構
CN117551374B (zh) * 2023-11-14 2024-06-25 苏州拓际新材料科技有限公司 涂层浆料及其制备方法、其边框膜及制品

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860579A (ja) * 1981-10-06 1983-04-11 Du Pont Mitsui Polychem Co Ltd 太陽電池用充填接着材シ−トおよびそれを用いる接着方法
JP2008205448A (ja) * 2007-01-22 2008-09-04 Bridgestone Corp 太陽電池用封止膜及びこれを用いた太陽電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596400B1 (en) * 1994-03-29 2003-07-22 Saint-Gobain Performance Plastics Corporation Acrylate blends and laminates using acrylate blends
JP2996903B2 (ja) * 1995-09-29 2000-01-11 住友ベークライト株式会社 シラン架橋ポリオレフィンの製造方法
JP4258870B2 (ja) 1998-12-17 2009-04-30 株式会社ブリヂストン 太陽電池用封止膜及び太陽電池
EP1990840A1 (en) * 2006-02-17 2008-11-12 Du Pont-Mitsui Polychemicals Co., Ltd. Solar battery sealing material
JP2009007524A (ja) * 2007-06-29 2009-01-15 Asahi Glass Co Ltd 透光封止用の硬化性組成物
JP2009179037A (ja) * 2008-02-01 2009-08-13 Toray Ind Inc 積層フィルム
JP4524320B2 (ja) * 2008-08-11 2010-08-18 日東電工株式会社 粘着剤組成物、粘着剤層、および粘着剤シート
JP2010153806A (ja) * 2008-11-21 2010-07-08 Techno Polymer Co Ltd 太陽電池用裏面保護フィルム及びそれを備える太陽電池モジュール
JP5302089B2 (ja) * 2008-12-26 2013-10-02 日東電工株式会社 無機多孔質体の製造方法
JP5385666B2 (ja) * 2009-04-08 2014-01-08 株式会社ブリヂストン 太陽電池モジュールの製造方法
US20110146758A1 (en) * 2009-06-29 2011-06-23 E. I. Du Pont De Nemours And Company Reflecting multilayer encapsulant
JP5476839B2 (ja) * 2009-07-31 2014-04-23 住友ベークライト株式会社 樹脂組成物及び樹脂組成物を使用して作製した半導体装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860579A (ja) * 1981-10-06 1983-04-11 Du Pont Mitsui Polychem Co Ltd 太陽電池用充填接着材シ−トおよびそれを用いる接着方法
JP2008205448A (ja) * 2007-01-22 2008-09-04 Bridgestone Corp 太陽電池用封止膜及びこれを用いた太陽電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2680318A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015036341A1 (en) * 2013-09-11 2015-03-19 Akzo Nobel Chemicals International B.V. Process for crosslinking an ethylene-based polymer
US9957373B2 (en) 2013-09-11 2018-05-01 Akzo Nobel Chemicals International B.V. Process for crosslinking an ethylene-based polymer

Also Published As

Publication number Publication date
US20130324671A1 (en) 2013-12-05
TW201302884A (zh) 2013-01-16
US9054236B2 (en) 2015-06-09
CN103392238B (zh) 2015-11-25
CN103392238A (zh) 2013-11-13
EP2680318B1 (en) 2016-11-16
JP5778441B2 (ja) 2015-09-16
JP2012174881A (ja) 2012-09-10
EP2680318A1 (en) 2014-01-01
ES2613820T3 (es) 2017-05-26
EP2680318A4 (en) 2015-06-03
TWI444421B (zh) 2014-07-11

Similar Documents

Publication Publication Date Title
JP5572232B2 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP5587659B2 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
WO2010055840A1 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP5572233B2 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP2011216804A (ja) 太陽電池用封止膜、これを用いた太陽電池、及び太陽電池の製造方法
JP5820132B2 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP5785794B2 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
WO2010140608A1 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP5778441B2 (ja) 太陽電池封止膜及びこれを用いた太陽電池
JP5755950B2 (ja) 太陽電池封止膜及びこれを用いた太陽電池
JP5788712B2 (ja) エチレン−極性モノマー共重合体シート、並びにこれを用いた合わせガラス用中間膜、合わせガラス、太陽電池用封止膜及び太陽電池
JP5591564B2 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP2012182407A (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP5624898B2 (ja) 太陽電池用裏面側保護部材一体型封止膜の製造方法、並びにこれを用いた太陽電池及びその製造方法
JP5909101B2 (ja) 太陽電池用封止膜形成用組成物
JP5604335B2 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP5893908B2 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP5726568B2 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP2008153520A (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP5806373B2 (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP2011238862A (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP2011249701A (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP2013030584A (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP2013030583A (ja) 太陽電池用封止膜及びこれを用いた太陽電池
JP2012182406A (ja) 太陽電池用封止膜及びこれを用いた太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749723

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14000104

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012749723

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012749723

Country of ref document: EP