WO2012114821A1 - Combustion apparatus - Google Patents

Combustion apparatus Download PDF

Info

Publication number
WO2012114821A1
WO2012114821A1 PCT/JP2012/051674 JP2012051674W WO2012114821A1 WO 2012114821 A1 WO2012114821 A1 WO 2012114821A1 JP 2012051674 W JP2012051674 W JP 2012051674W WO 2012114821 A1 WO2012114821 A1 WO 2012114821A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
pressure
temperature
lpg
gas
Prior art date
Application number
PCT/JP2012/051674
Other languages
French (fr)
Japanese (ja)
Inventor
横濱 克彦
哲也 木津
斎臣 吉田
弘実 石井
潤 葛西
慎也 ▲濱▼▲崎▼
健太 羽有
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to AU2012221495A priority Critical patent/AU2012221495B2/en
Priority to CN201280003046.8A priority patent/CN103119367B/en
Publication of WO2012114821A1 publication Critical patent/WO2012114821A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/02Liquid fuel
    • F23K5/14Details thereof
    • F23K5/142Fuel pumps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/026Dust removal by centrifugal forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/02Liquid fuel
    • F23K5/04Feeding or distributing systems using pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/02Liquid fuel
    • F23K5/14Details thereof
    • F23K5/20Preheating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/02Liquid fuel
    • F23K5/14Details thereof
    • F23K5/22Vaporising devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/156Sluices, e.g. mechanical sluices for preventing escape of gas through the feed inlet
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0906Physical processes, e.g. shredding, comminuting, chopping, sorting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0909Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0989Hydrocarbons as additives to gasifying agents to improve caloric properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1606Combustion processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/165Conversion of synthesis gas to energy integrated with a gas turbine or gas motor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/1653Conversion of synthesis gas to energy integrated in a gasification combined cycle [IGCC]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1671Integration of gasification processes with another plant or parts within the plant with the production of electricity
    • C10J2300/1675Integration of gasification processes with another plant or parts within the plant with the production of electricity making use of a steam turbine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1678Integration of gasification processes with another plant or parts within the plant with air separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Definitions

  • the present invention relates to a combustion apparatus used in a high-pressure reactor such as a gasification furnace or a gas turbine.
  • the coal gasification combined cycle power generation facility is a power generation facility aiming at higher efficiency and higher environmental performance than conventional coal-fired power by gasifying coal and combining it with combined cycle power generation.
  • This coal gasification combined cycle power generation facility has a great merit that it can use coal with abundant resources, and it is known that the merit can be further increased by expanding the applicable coal types.
  • coal gasification combined power generation facilities generally have a coal supply device, a coal gasification furnace, a char recovery device, a gas turbine facility, a steam turbine facility, an exhaust heat recovery boiler, and a gas purification device. Therefore, coal (pulverized coal) is supplied to the coal gasifier by the coal feeder, and air is taken in. The coal gas is combusted and gasified in the coal gasifier, and the produced gas (combustible gas). Is generated. And this product gas is gas refined after the unburned part (char) of coal is removed by the char recovery device, and it is burned by being supplied to the gas turbine equipment to produce high temperature and high pressure combustion gas. And drive the turbine.
  • the exhaust gas after driving the turbine recovers thermal energy by the exhaust heat recovery boiler, generates steam and supplies it to the steam turbine equipment, and drives the turbine. As a result, power generation is performed.
  • the exhaust gas from which the thermal energy has been recovered is released into the atmosphere through a chimney after harmful substances are removed by the gas purification device.
  • the coal gasification furnace in the coal gasification combined power generation facility described above combusts and gasifies pulverized coal, char, compressed air (oxygen) or water vapor as a gasifying agent, and converts carbon dioxide into A combustible gas having a main component is generated, and a gasification reaction takes place using the combustible gas as a gasifying agent.
  • the coal gasification furnace has a starter burner and a combustion burner as combustion devices. At the time of start-up, auxiliary fuel (for example, kerosene, light oil) is burned using the starter burner. After that, the pulverized coal is burned using a combustion burner for combustion and gasification.
  • Patent Document 1 As such a coal gasification furnace, for example, there is one described in Patent Document 1 below, and as an auxiliary fuel supply device, for example, there is one described in Patent Document 2 below.
  • JP 2009-179790 A Japanese Patent Laid-Open No. 06-011099
  • This invention solves the subject mentioned above, and aims at providing the combustion apparatus which enables stable fuel flow control.
  • a combustion apparatus of the present invention includes a fuel tank that stores fuel, a fuel supply line that supplies the fuel in the fuel tank to a high-pressure reactor, and fuel that is provided in the fuel supply line.
  • a booster that boosts pressure
  • a heating device that is provided in the fuel supply line and heats the fuel after boosting
  • a fuel flow rate regulator that is provided in the fuel supply line and adjusts the flow rate of the boosted and heated fuel
  • a control device for setting the flow rate for setting the flow rate.
  • the fuel when there is a request for operation of the high-pressure reactor, the fuel is boosted beyond the critical pressure and heated above the critical temperature, and its flow rate is adjusted before being supplied to the high-pressure reactor. Because there is no need to control the fuel pressure near the critical pressure and temperature, the fuel has almost no deviation between the actual fuel density and the ideal fuel density with respect to pressure change and temperature change. A stable fuel flow rate can be controlled by the adjusting device.
  • the control device when the control device has requested the high pressure reactor to pressurize the fuel to exceed the critical pressure, the control device exceeds the critical temperature after boosting the fuel to exceed the critical pressure.
  • the fuel is heated, and thereafter, the temperature of the fuel is increased or decreased in a region away from the critical temperature by a predetermined temperature.
  • the fuel is heated above the critical temperature after being boosted above the critical pressure, and then the fuel temperature is increased or decreased in a region away from the critical temperature by a predetermined temperature according to the operation requirements of the high-pressure reactor. Therefore, stable fuel flow rate control can be performed.
  • a pressure sensor for detecting the pressure of the fuel boosted by the booster and a temperature sensor for detecting the temperature of the fuel heated by the heating unit are provided, and the control unit includes the pressure sensor
  • a target temperature of fuel supplied to the pressure reactor is set based on a detection result of the sensor, and the heating device is controlled based on the detection result of the temperature sensor so that the temperature of the fuel becomes a target temperature. It is said.
  • control device controls the heating device so that the temperature of the fuel becomes a target temperature set based on the pressure of the fuel after the pressure increase, the temperature of the fuel can be controlled with high accuracy.
  • the fuel is a fuel that becomes a liquid in a storage device such as a tank, and the control device boosts the fuel in a liquid state to exceed the critical pressure and then uses the heating device to It is characterized by being fed to the high-pressure reactor in a state where the density is stabilized by heating beyond the temperature.
  • the fuel is pressurized in excess of the critical pressure in a liquid state, and then heated to exceed the critical temperature to stabilize the density. In this state, the fuel is supplied to the high-pressure reactor, and the flow control is performed. Stabilization can be enabled.
  • the fuel is boosted above the critical pressure by the booster according to the operation demand of the high-pressure reactor and heated above the critical temperature by the heating device, and then the high-pressure reaction is performed by the fuel flow rate regulator. Since the flow rate of the fuel supplied to the furnace is set, stable fuel flow rate control can be achieved.
  • FIG. 1 is a schematic configuration diagram showing a combustion apparatus according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the state of LPG in the relationship between fuel temperature and fuel pressure.
  • FIG. 3 is a graph showing the relationship between fuel pressure and fuel density.
  • FIG. 4 is a graph showing the relationship between fuel temperature and fuel density.
  • FIG. 5 is a schematic configuration diagram of a coal gasification combined power generation facility to which the combustion apparatus of the present embodiment is applied.
  • FIG. 1 is a schematic configuration diagram showing a combustion apparatus according to an embodiment of the present invention
  • FIG. 2 is a graph showing a state of LPG in the relationship between fuel temperature and fuel pressure
  • FIG. 3 is a graph showing fuel pressure and fuel density.
  • FIG. 4 is a graph showing the relationship between the fuel temperature and the fuel density
  • FIG. 5 is a schematic configuration diagram of the coal gasification combined power generation facility to which the combustion apparatus of this embodiment is applied.
  • the coal gasification combined power generation facility (IGCC: Integrated Coal Gasification Combined Cycle) of the present embodiment adopts an air combustion method in which coal gas is generated in a gasification furnace using air as an oxidizer, and is purified by a gas purification device. Coal gas is supplied as fuel gas to gas turbine equipment to generate electricity. That is, the combined coal gasification combined power generation facility of this embodiment is a power generation facility of an air combustion system (air blowing).
  • the coal gasification combined power generation facility of the present embodiment includes a coal supply device 11, a coal gasification furnace 12, a char recovery device 13, a gas purification device 14, a gas turbine facility 15, a steam turbine facility 16, A generator 17, a waste heat recovery boiler (HRSG) 18, and a gas purification device 19 are included.
  • the coal feeder 11 includes a fluidized bed drying device 21 and a coal pulverizer (mill) 22.
  • the fluidized bed drying apparatus 21 heats the coal by supplying a drying gas to the input coal and removes moisture contained therein.
  • the coal pulverizer 22 pulverizes the coal dried by the fluidized bed dryer 21 into fine particles to produce pulverized coal.
  • the drying gas used in the fluidized bed drying device 21 the gas turbine equipment 15, the exhaust heat recovery boiler 18, or a part of the exhaust gas released into the atmosphere may be used.
  • a cyclone is provided on the downstream side of the coal pulverizer 22 to separate a gas component such as a drying gas and pulverized coal (particle component), and the pulverized coal of the particle component is dropped by gravity and collected in a hopper. On the other hand, the gas component may be exhausted.
  • a gas component such as a drying gas and pulverized coal (particle component)
  • the pulverized coal of the particle component is dropped by gravity and collected in a hopper.
  • the gas component may be exhausted.
  • the coal gasification furnace 12 is connected to a coal supply line 31 from a coal supply device 11 and can supply pulverized coal treated by the coal supply device 11. Further, the char gas recovery furnace 12 is connected to a char return line 32 from the char recovery device 13, and char (unburned coal) recovered by the char recovery device 13 is returned and can be recycled. Yes.
  • the coal gasification furnace 12 is connected to the compressed air supply line 33 from the gas turbine equipment 15 (compressor 61), and can supply compressed air compressed by the gas turbine equipment 15.
  • the air separation device 34 separates and generates nitrogen and oxygen from air in the atmosphere.
  • the first nitrogen supply line 35 is connected to the coal supply line 31 and the second nitrogen supply line 36 is a char return line 32.
  • the oxygen supply line 37 is connected to the compressed air supply line 33. In this case, nitrogen is used as a carrier gas for coal and char, and oxygen is used as an oxidant.
  • the coal gasifier 12 is connected to a fuel line 39 from a fuel tank 38, and can supply LPG (liquefied petroleum gas, LPG) as auxiliary fuel stored in the fuel tank 38. It has become.
  • LPG liquefied petroleum gas
  • the coal gasification furnace 12 is, for example, a spouted bed type gasification furnace, which combusts and gasifies coal, char, air (oxygen) supplied therein, or water vapor as a gasifying agent, and produces carbon dioxide.
  • a combustible gas (product gas, coal gas) containing carbon as a main component is generated, and a gasification reaction takes place using this combustible gas as a gasifying agent.
  • the coal gasification furnace 12 is not limited to a spouted bed gasification furnace, and may be a fluidized bed gasification furnace or a fixed bed gasification furnace.
  • the coal gasification furnace 12 is provided with a combustible gas generation line 40 toward the char recovery device 13 so that the combustible gas containing char can be discharged.
  • the combustible gas may be cooled to a predetermined temperature and then supplied to the char recovery device 13.
  • the char collection device 13 includes a first cyclone 41, a second cyclone 42, a hopper 43, a bin 44 and hoppers 45a and 45b configured as an unburned portion storage unit.
  • the second cyclone 42 separates the fine char contained in the combustible gas from which the coarse char is separated by the first cyclone 41, and the second cyclone discharges the combustible gas from which the fine char is separated at the upper part.
  • a gas discharge line 48 is connected, and a second char discharge line 49 for discharging fine char separated from the combustible gas is connected to the lower part.
  • the hopper 43 is provided in the second char discharge line 49, and temporarily deposits (stores) the fine char separated from the combustible gas by the second cyclone 42.
  • a first pressure equalizing line 50 is provided between the first gas discharge line 46 and the bin 44 to equalize the pressures of both.
  • the bin 44 is connected to the downstream ends of the first char discharge line 47 and the second char discharge line 49, and the coarse char and fine char separated from the combustible gas by the first cyclone 41 and the second cyclone 42. Is to be stored.
  • the hoppers 45a and 45b are connected to the bin 44 via the switching lines 51a and 51b.
  • the switching lines 51a and 51b are provided with the first switching valves 52a and 52b on the upstream side of the hoppers 45a and 45b, and on the downstream side.
  • the second switching valves 53a and 53b are mounted on.
  • the hoppers 45a and 45b are alternately used to enable continuous operation.
  • the switching lines 51 a and 51 b merge at the downstream side of the hoppers 45 a and 45 b and are connected to the char return line 32.
  • the bin 44 is disposed upstream of the two switching lines 51a and 51b (two hoppers 45a and 45b), and the bin 44 for temporarily storing the char is not provided.
  • a configuration in which the bin 44 is not disposed may be employed.
  • the gas purification device 14 performs gas purification by removing impurities such as sulfur compounds and nitrogen compounds from the combustible gas from which the char has been separated by the char recovery device 13.
  • the gas purifier 14 purifies the combustible gas to produce fuel gas, and supplies it to the gas turbine equipment 15.
  • the gas turbine equipment 15 includes a compressor 61, a combustor 62, and a turbine 63, and the compressor 61 and the turbine 63 are connected by a rotating shaft 64.
  • the combustor 62 has a compressed air supply line 65 connected to the compressor 61, a fuel gas supply line 66 connected to the gas purification device 14, and a combustion gas supply line 67 connected to the turbine 63.
  • the gas turbine equipment 15 is provided with a compressed air supply line 33 extending from the compressor 61 to the coal gasification furnace 12, and a booster 68 is provided in the middle.
  • the generator 17 can be driven.
  • the steam turbine facility 16 has a turbine 69 connected to the rotating shaft 64 in the gas turbine facility 15, and the generator 17 is connected to the base end portion of the rotating shaft 64.
  • the exhaust heat recovery boiler 18 is provided in the exhaust gas line 70 from the gas turbine facility 15 (the turbine 63), and generates steam by performing heat exchange between air and high-temperature exhaust gas. Therefore, the exhaust heat recovery boiler 18 is provided with a steam supply line 71 between the steam turbine equipment 16 and the turbine 69 of the steam turbine equipment 16, a steam recovery line 72 is provided, and a condenser 73 is provided in the steam recovery line 72. Yes. Therefore, in the steam turbine equipment 15, the turbine 69 is driven by the steam supplied from the exhaust heat recovery boiler 18, and the generator 17 can be driven by rotating the rotating shaft 64.
  • the gas purification device 19 removes harmful substances from the exhaust gas whose heat has been recovered by the exhaust heat recovery boiler 18, and the purified exhaust gas is discharged from the chimney 74 to the atmosphere.
  • the coal is dried by the fluidized bed drying device 21 in the coal feeding device 11 and pulverized by the coal pulverizer 22 to produce pulverized coal.
  • the pulverized coal is supplied to the coal gasifier 12 through the coal supply line 31 by nitrogen supplied from the air separation device 34.
  • the char recovered by the char recovery device 13 to be described later is supplied to the coal gasification furnace 12 through the char return line 32 by nitrogen supplied from the air separation device 34.
  • the compressed air extracted from the gas turbine equipment 15 to be described later is boosted by the booster 68 and then supplied to the coal gasification furnace 12 through the compressed air supply line 33 together with the oxygen supplied from the air separation device 34.
  • the coal gasification furnace 12 is supplied with the LPG in the fuel tank 38 through the fuel line 39 and is ignited by an ignition torch (not shown) so that the LPG burns and the temperature is raised. Then, when the inside of the coal gasifier 12 is heated to a predetermined temperature, as described above, the pulverized coal is supplied to the coal gasifier 12 through the coal supply line 31 so that the pulverized coal burns. To do.
  • the supplied pulverized coal and char are combusted by compressed air (oxygen), and the pulverized coal and char are gasified, thereby combustible gas (coal gas) containing carbon dioxide as a main component. ) Can be generated.
  • This combustible gas is discharged from the coal gasifier 12 through the gas generation line 40 and sent to the char recovery device 13.
  • the combustible gas is first supplied to the first cyclone 41 so that the coarse char contained in the gas is separated from the combustible gas.
  • the combustible gas from which the coarse char is separated is discharged to the first gas discharge line 46, while the coarse char separated from the combustible gas is discharged to the bin 44 through the first char discharge line 47.
  • the combustible gas from which the coarse char is separated by the first cyclone 41 and discharged to the first gas discharge line 46 is then supplied to the second cyclone 42, where the combustible gas is changed to this gas.
  • the contained fine char is separated.
  • the combustible gas from which the fine char is separated is discharged to the second gas discharge line 48, while the fine char separated from the combustible gas is deposited on the hopper 43 and passes through the second char discharge line 49 to the bin 44.
  • the bin 44 stabilizes the flow. be able to.
  • the char stored in the bin 44 alternately uses the switching line 51a and the hopper 45a, and the switching line 51b and the hopper 45b by alternately opening and closing the switching valves 52a and 53a and the switching valves 52b and 53b. I have to.
  • the char of the bin 44 is stored in the hopper 45a by the switching line 51a.
  • the switching valves 52a and 53a are closed and the switching valves 52b and 53b are opened, whereby the char of the bin 44 is stored in the hopper 45b through the switching line 51b.
  • the char storage operation can be performed continuously, and the char recovery device 13 can be continuously operated.
  • the char stored in the hoppers 45a and 45b is returned to the coal gasification furnace 12 through the char return line 32 and recycled.
  • the combustible gas from which the char has been separated by the char recovery device 13 is gas purified by removing impurities such as sulfur compounds and nitrogen compounds by the gas purification device 14 to produce fuel gas.
  • the gas turbine equipment 15 when the compressor 61 generates compressed air and supplies the compressed air to the combustor 62, the combustor 62 is supplied from the compressed air supplied from the compressor 61 and the gas purification device 14. The fuel gas is mixed and burned to generate combustion gas, and the turbine 63 is driven by this combustion gas, so that the generator 17 can be driven via the rotating shaft 64 to generate power.
  • the exhaust gas discharged from the turbine 63 in the gas turbine equipment 15 generates steam by exchanging heat with air in the exhaust heat recovery boiler 18, and supplies the generated steam to the steam turbine equipment 16. .
  • the turbine 69 is driven by the steam supplied from the exhaust heat recovery boiler 18, so that the generator 17 can be driven via the rotating shaft 64 to generate power.
  • the exhaust gas discharged from the exhaust heat recovery boiler 18 is removed of harmful substances by the gas purification device 19, and the purified exhaust gas is discharged from the chimney 74 to the atmosphere.
  • the combustion apparatus of the present embodiment is configured such that the auxiliary fuel is set to high pressure and high temperature, and is conveyed to a coal gasification furnace 12 used as a high pressure reactor for combustion.
  • the auxiliary fuel used here is a fuel that becomes liquid in the storage facility, that is, LPG mainly composed of propane used as liquefied petroleum gas.
  • the fuel tank 38 can store the LPG as a liquid at room temperature.
  • a fuel line 39 as a fuel supply line has a base end portion connected to the fuel tank 38 and a tip end portion connected to the start burner 101 of the coal gasification furnace 12. (Oxygen) can be supplied.
  • the pump 102 as a booster device is disposed in the vicinity of the fuel tank 38 in the fuel line 39, and can suck LPG from the fuel tank 38 to increase the pressure exceeding a predetermined pressure.
  • An evaporator (heat exchanger) 103 serving as a heating device is disposed downstream of the pump 102 in the fuel line 39, and includes a high-pressure LPG after pressure increase flowing through the fuel line 39 and a heating medium (for example, superheated steam). This LPG can be heated by performing heat exchange between them.
  • the flow rate adjusting valve 104 as a fuel flow rate adjusting device is disposed downstream of the evaporator 103 in the fuel line 39, and can adjust the flow rate of the LPG stabilized in density at high temperature and pressure flowing through the fuel line 39.
  • the control device 105 can control the pump 102, the evaporator 103, and the flow rate adjustment valve 104. That is, the control device 105 can adjust the amount of pressure increase of the LPG by adjusting the rotation speed of the pump 102. Further, the control device 105 can adjust the heating temperature by adjusting the temperature and flow rate of the superheated steam in the evaporator 103. In addition, the control device 105 can adjust the supply amount of LPG supplied to the activation burner 101 through the fuel line 39 by adjusting the opening degree of the flow rate adjustment valve 104.
  • the fuel line 39 is provided with a pressure sensor 106 that detects the pressure of the LPG boosted by the pump 102 on the downstream side of the pump 102.
  • the fuel line 39 is provided with a temperature sensor 107 that detects the temperature of the LPG heated by the evaporator 103 on the downstream side of the flow rate adjustment valve 104 and on the upstream side of the activation burner.
  • the fuel line 39 is provided with a flow rate sensor 108 that detects the supply amount of LPG supplied to the activation burner on the downstream side of the flow rate adjustment valve 104.
  • Each sensor 106, 107, 108 outputs a detection result to the control device 105.
  • the control device 105 adjusts the pump 102, the evaporator 103, and the flow rate adjustment valve 104 based on the detection results of the sensors 106, 107, and 108.
  • the control device 105 controls the pump 102 to increase the LPG exceeding the critical pressure and control the evaporator 103 in accordance with the operation request of the coal gasification furnace 12. Then, the fuel is heated beyond the critical temperature, and then the flow rate of the fuel supplied to the coal gasification furnace 12 is set by controlling the flow rate adjustment valve 104.
  • the control device 105 increases the LPG above the critical pressure and then heats the LPG beyond the critical temperature. Thereafter, the temperature of the LPG is increased or decreased in a region away from the critical temperature by a predetermined temperature.
  • control device 105 sets the target temperature of the LPG supplied to the coal gasification furnace 12 based on the detection result of the pressure sensor 106, and the LPG temperature becomes the target temperature based on the detection result of the temperature sensor 107.
  • the evaporator 103 is controlled.
  • FIG. 2 is a graph showing the LPG state in the relationship between the fuel temperature and the fuel pressure.
  • the left side of the solid line is maintained in the liquid state and the right side is maintained in the gas state.
  • the LPG is first heated beyond the critical pressure without being heated in a liquid state, and then the liquid LPG is heated above the critical temperature at a high pressure to stabilize the density.
  • LPG is supplied to the coal gasifier 12 by the start burner 101, and the temperature of the LPG is adjusted according to the operating state of the coal gasifier 12. Further, the supply amount of LPG is adjusted according to the operating state of the coal gasification furnace 12.
  • FIG. 3 is a graph showing the fuel density that changes as the fuel pressure increases.
  • the fuel density increases, and when it exceeds the critical pressure, it fluctuates greatly and is greatly displaced relative to the pressure of the ideal gas. Will occur.
  • the pressure is increased while the LPG is heated to a predetermined temperature (about 150 ° C.), the fuel density rises almost uniformly and does not fluctuate greatly even if the critical pressure is exceeded. It will be almost the same.
  • FIG. 4 is a graph showing the fuel density that changes as the fuel temperature rises.
  • a predetermined pressure for example, 4 MPa
  • the fuel density tends to increase more than the ideal gas as the temperature decreases in the low temperature region.
  • the fuel density decreases with increasing temperature and tends to approximate an ideal gas.
  • LPG cannot be said to be stable yet when the fuel temperature is close to the critical temperature, and is almost stabilized in the region where the fuel temperature exceeds 50 ° C. from the critical temperature.
  • it is desirable to apply a stable region where the fuel temperature is 200 ° C. or lower than the critical temperature.
  • the flow rate is desirably controlled in this state. As a result, there is little error in the LPG flow rate measurement, and adjustment control of the LPG flow rate supplied to the coal gasification furnace 12 can be performed with high accuracy.
  • the fuel tank 38 that stores LPG the fuel line 39 that supplies the LPG in the fuel tank 38 to the coal gasification furnace 12, and the LPG provided in the fuel line 39.
  • a pump 102 for boosting the pressure an evaporator 103 for heating the boosted LPG, a flow rate adjusting valve 104 for adjusting the flow rate of the boosted and heated fuel provided in the fuel line 39, coal
  • the LPG is pressurized to exceed the critical pressure by the pump 102 and heated to exceed the critical temperature by the evaporator 103, and then supplied to the coal gasification furnace 12 by the flow rate adjustment valve 104.
  • a control device 105 for setting the flow rate of.
  • the LPG when there is a request for operation of the coal gasifier 12, the LPG is boosted to exceed the critical pressure and heated to exceed the critical temperature, and its flow rate is adjusted before being supplied to the coal gasifier 12. Therefore, since it is not necessary to control the flow rate of LPG in the vicinity of the critical pressure and critical temperature of the fuel, LPG is a deviation between the actual LPG density and the ideal density with respect to pressure change and temperature change. Therefore, the LPG flow rate can be stably controlled by the flow rate adjustment valve 104.
  • the controller 105 when the control apparatus 105 has requested the coal gasification furnace 12 to increase the LPG exceeding the critical pressure, the controller 105 increases the LPG after exceeding the critical pressure. After the temperature is exceeded, the LPG temperature is increased or decreased in a region away from the critical temperature by a predetermined temperature. Accordingly, the LPG is heated to exceed the critical temperature after being increased to exceed the critical pressure, and then the LPG temperature is increased or decreased in a region away from the critical temperature by a predetermined temperature according to the operation request of the coal gasification furnace 12. Therefore, stable LPG flow rate control can be performed.
  • a pressure sensor 106 that detects the pressure of the LPG boosted by the pump 102 and a temperature sensor 107 that detects the temperature of the LPG heated by the evaporator 103 are provided.
  • the control device 105 controls the evaporator 103 so that the temperature of the LPG becomes a target temperature set based on the pressure of the LPG after the pressure increase, so that the temperature control of the LPG can be performed with high accuracy. .
  • the control apparatus 105 increases the pressure of the propane to exceed the critical pressure in a liquid state, and then heats the propane to exceed the critical temperature and supplies it to the coal gasifier 12. Yes. Therefore, propane is supplied to the coal gasification furnace 12 in a state in which the density is stabilized by being heated above the critical temperature after being pressurized above the critical pressure in a liquid state. Flow rate control can be performed.
  • the booster is the pump 102.
  • the heating device is the evaporator 103.
  • an electric heater may be used.
  • propane is used as the fuel, for example, LPG or LNG may be used. That is, the fuel may be any fuel that exceeds the critical pressure in the pressurization stage.

Abstract

Stable fuel flow can be controlled in a combustion apparatus by providing: a fuel tank (38) which stores LPG; a fuel line (39) which supplies the LPG in the fuel tank (38) to a coal gasifier (12); a pump (102) which is disposed on the fuel line (39) and which boosts the pressure of the LPG; an evaporator (103) which is disposed on the fuel line (39) and which heats the LPG after the pressure of the LPG has been boosted; a flow regulating valve (104) which is disposed on the fuel line (39) and which regulates the flow of the pressurized and heated fuel; and a control device (105) which boosts the pressure of the LPG beyond the critical pressure using the pump (102) in response to the operating demands of the coal gasifier (102), and which sets the flow of LPG to be supplied to the coal gasifier (102) using the flow regulating valve (104) after the LPG has been heated beyond the critical temperature by the evaporator (103).

Description

燃焼装置Combustion device
 本発明は、ガス化炉やガスタービンなどの高圧反応炉に使用される燃焼装置に関するものである。 The present invention relates to a combustion apparatus used in a high-pressure reactor such as a gasification furnace or a gas turbine.
 例えば、石炭ガス化複合発電設備(IGCC)は、石炭をガス化し、コンバインドサイクル発電と組み合わせることにより、従来型の石炭火力に比べてさらなる高効率化・高環境性を目指した発電設備である。この石炭ガス化複合発電設備は、資源量が豊富な石炭を利用可能であることも大きなメリットであり、適用炭種を拡大することにより、さらにメリットが大きくなることが知られている。 For example, the coal gasification combined cycle power generation facility (IGCC) is a power generation facility aiming at higher efficiency and higher environmental performance than conventional coal-fired power by gasifying coal and combining it with combined cycle power generation. This coal gasification combined cycle power generation facility has a great merit that it can use coal with abundant resources, and it is known that the merit can be further increased by expanding the applicable coal types.
 従来の石炭ガス化複合発電設備は、一般的に、給炭装置、石炭ガス化炉、チャー回収装置、ガスタービン設備、蒸気タービン設備、排熱回収ボイラ、ガス浄化装置を有している。従って、石炭ガス化炉に対して、給炭装置により石炭(微粉炭)が供給されると共に、空気が取り込まれ、この石炭ガス化炉で石炭が燃焼ガス化されて生成ガス(可燃性ガス)が生成される。そして、この生成ガスは、チャー回収装置にて、石炭の未燃分(チャー)が除去されてからガス精製され、ガスタービン設備に供給されることで燃焼して高温・高圧の燃焼ガスを生成し、タービンを駆動する。タービンを駆動した後の排気ガスは、排熱回収ボイラで熱エネルギが回収され、蒸気を生成して蒸気タービン設備に供給され、タービンを駆動する。これにより発電が行なわれる。一方、熱エネルギが回収された排気ガスは、ガス浄化装置で有害物質が除去された後、煙突を介して大気へ放出される。 Conventional coal gasification combined power generation facilities generally have a coal supply device, a coal gasification furnace, a char recovery device, a gas turbine facility, a steam turbine facility, an exhaust heat recovery boiler, and a gas purification device. Therefore, coal (pulverized coal) is supplied to the coal gasifier by the coal feeder, and air is taken in. The coal gas is combusted and gasified in the coal gasifier, and the produced gas (combustible gas). Is generated. And this product gas is gas refined after the unburned part (char) of coal is removed by the char recovery device, and it is burned by being supplied to the gas turbine equipment to produce high temperature and high pressure combustion gas. And drive the turbine. The exhaust gas after driving the turbine recovers thermal energy by the exhaust heat recovery boiler, generates steam and supplies it to the steam turbine equipment, and drives the turbine. As a result, power generation is performed. On the other hand, the exhaust gas from which the thermal energy has been recovered is released into the atmosphere through a chimney after harmful substances are removed by the gas purification device.
 上述した石炭ガス化複合発電設備における石炭ガス化炉は、内部に供給された微粉炭、チャー、圧縮空気(酸素)、または、ガス化剤としての水蒸気を燃焼・ガス化すると共に、二酸化炭素を主成分とする可燃性ガスを発生させ、この可燃性ガスをガス化剤としてガス化反応が起こるものである。この場合、石炭ガス化炉は、燃焼装置として、起動用バーナと燃焼用バーナとを有しており、起動時には、起動用バーナを用いて補助燃料(例えば、灯油、軽油)を燃焼して昇温させ、その後、燃焼用バーナを用いて微粉炭を燃焼して燃焼・ガス化を行うようにしている。 The coal gasification furnace in the coal gasification combined power generation facility described above combusts and gasifies pulverized coal, char, compressed air (oxygen) or water vapor as a gasifying agent, and converts carbon dioxide into A combustible gas having a main component is generated, and a gasification reaction takes place using the combustible gas as a gasifying agent. In this case, the coal gasification furnace has a starter burner and a combustion burner as combustion devices. At the time of start-up, auxiliary fuel (for example, kerosene, light oil) is burned using the starter burner. After that, the pulverized coal is burned using a combustion burner for combustion and gasification.
 このような石炭ガス化炉としては、例えば、下記特許文献1に記載されたものがあり、補助燃料の供給装置としては、例えば、下記特許文献2に記載されたものがある。 As such a coal gasification furnace, for example, there is one described in Patent Document 1 below, and as an auxiliary fuel supply device, for example, there is one described in Patent Document 2 below.
特開2009-179790号公報JP 2009-179790 A 特開平06-011099号公報Japanese Patent Laid-Open No. 06-011099
 近年、石炭ガス化炉やその下流側に装着されるガスタービンにて、高出力化が求められており、その結果、石炭ガス化炉やガスタービンでは、燃焼装置によって供給する燃料を高圧にする必要があり、燃料圧力が臨界圧力に達するおそれがある。燃焼装置により供給される燃料の圧力が臨界圧力になると、この臨界圧力の近傍では、燃料の圧力変化に対する燃料の密度が理想気体に対して大きくなる。すると、高圧燃料の計測に誤差が生じて炉内に供給する燃料流量の調整制御が困難となる。そのため、内部の圧力変動に対応した燃料流量制御ができず、燃焼・ガス化が不安定となってしまう。この場合、燃料を昇圧する前に計量することが考えられるが、安全性の観点から、燃料タンク及び昇圧機からバーナまでの距離が長く設定されており、燃料を昇圧する前に計量すると制御遅れが発生して高精度な燃料流量制御ができなくなる。 In recent years, there has been a demand for higher output in coal gasification furnaces and gas turbines installed downstream thereof. As a result, in coal gasification furnaces and gas turbines, the fuel supplied by the combustion device is increased in pressure. And fuel pressure can reach critical pressure. When the pressure of the fuel supplied by the combustion apparatus becomes a critical pressure, the density of the fuel with respect to a change in the fuel pressure increases with respect to the ideal gas in the vicinity of the critical pressure. Then, an error occurs in the measurement of the high-pressure fuel, and it becomes difficult to adjust and control the fuel flow rate supplied to the furnace. Therefore, fuel flow control corresponding to internal pressure fluctuation cannot be performed, and combustion and gasification become unstable. In this case, it is conceivable to measure the fuel before boosting the pressure. However, from the viewpoint of safety, the distance from the fuel tank and booster to the burner is set to be long. Will occur and high-precision fuel flow control will not be possible.
 本発明は、上述した課題を解決するものであり、安定した燃料流量制御を可能とする燃焼装置を提供することを目的とする。 This invention solves the subject mentioned above, and aims at providing the combustion apparatus which enables stable fuel flow control.
 上記の目的を達成するための本発明の燃焼装置は、燃料を貯留する燃料タンクと、該燃料タンクの燃料を高圧反応炉に供給する燃料供給ラインと、該燃料供給ラインに設けられて燃料を昇圧する昇圧装置と、前記燃料供給ラインに設けられて昇圧後の燃料を加熱する加熱装置と、前記燃料供給ラインに設けられて昇圧及び加熱した燃料の流量を調整する燃料流量調整装置と、前記高圧反応炉の運転要求に応じて前記昇圧装置により燃料を臨界圧力を超えて昇圧すると共に前記加熱装置により臨界温度を超えて加熱してから前記燃料流量調整装置により前記高圧反応炉へ供給する燃料の流量を設定する制御装置と、を備えることを特徴とするものである。 In order to achieve the above object, a combustion apparatus of the present invention includes a fuel tank that stores fuel, a fuel supply line that supplies the fuel in the fuel tank to a high-pressure reactor, and fuel that is provided in the fuel supply line. A booster that boosts pressure, a heating device that is provided in the fuel supply line and heats the fuel after boosting, a fuel flow rate regulator that is provided in the fuel supply line and adjusts the flow rate of the boosted and heated fuel, and Fuel supplied to the high-pressure reactor by the fuel flow control device after boosting the fuel to exceed the critical pressure by the boost device and heating the critical temperature by the heating device in response to the operation request of the high-pressure reactor And a control device for setting the flow rate.
 従って、高圧反応炉の運転要求があったとき、燃料が臨界圧力を超えて昇圧されると共に臨界温度を超えて加熱され、その流量が調整されてから高圧反応炉へ供給されることとなり、燃料を臨界圧力及び臨界温度の近傍で制御する必要がないことから、燃料は、圧力変化や温度変化に対して、実際の燃料の密度と理想的な燃料の密度との偏差がほとんどなくなり、燃料流量調整装置による安定した燃料流量制御を可能とすることができる。 Therefore, when there is a request for operation of the high-pressure reactor, the fuel is boosted beyond the critical pressure and heated above the critical temperature, and its flow rate is adjusted before being supplied to the high-pressure reactor. Because there is no need to control the fuel pressure near the critical pressure and temperature, the fuel has almost no deviation between the actual fuel density and the ideal fuel density with respect to pressure change and temperature change. A stable fuel flow rate can be controlled by the adjusting device.
 本発明の燃焼装置では、前記制御装置は、前記高圧反応炉に対して燃料を臨界圧力を超えて昇圧する要求があったときに、燃料を臨界圧力を超えて昇圧した後に臨界温度を超えて加熱し、その後、燃料の温度を臨界温度から所定温度離れた領域で増減することを特徴としている。 In the combustion apparatus according to the present invention, when the control device has requested the high pressure reactor to pressurize the fuel to exceed the critical pressure, the control device exceeds the critical temperature after boosting the fuel to exceed the critical pressure. The fuel is heated, and thereafter, the temperature of the fuel is increased or decreased in a region away from the critical temperature by a predetermined temperature.
 従って、燃料は、臨界圧力を超えて昇圧された後に臨界温度を超えて加熱され、その後、高圧反応炉の運転要求に応じて、燃料の温度を臨界温度から所定温度離れた領域で増減して調整することとなり、安定した燃料流量制御を行うことができる。 Therefore, the fuel is heated above the critical temperature after being boosted above the critical pressure, and then the fuel temperature is increased or decreased in a region away from the critical temperature by a predetermined temperature according to the operation requirements of the high-pressure reactor. Therefore, stable fuel flow rate control can be performed.
 本発明の燃焼装置では、前記昇圧装置により昇圧された燃料の圧力を検出する圧力センサと、前記加熱装置により加熱された燃料の温度を検出する温度センサとを設け、前記制御装置は、前記圧力センサの検出結果に基づいて前記圧力反応炉に供給する燃料の目標温度を設定し、前記温度センサの検出結果に基づいて燃料の温度が目標温度となるように前記加熱装置を制御することを特徴としている。 In the combustion apparatus of the present invention, a pressure sensor for detecting the pressure of the fuel boosted by the booster and a temperature sensor for detecting the temperature of the fuel heated by the heating unit are provided, and the control unit includes the pressure sensor A target temperature of fuel supplied to the pressure reactor is set based on a detection result of the sensor, and the heating device is controlled based on the detection result of the temperature sensor so that the temperature of the fuel becomes a target temperature. It is said.
 従って、制御装置は、燃料の温度が、昇圧後の燃料の圧力に基づいて設定された目標温度となるように、加熱装置を制御するため、高精度な燃料の温度制御を行うことができる。 Therefore, since the control device controls the heating device so that the temperature of the fuel becomes a target temperature set based on the pressure of the fuel after the pressure increase, the temperature of the fuel can be controlled with high accuracy.
 本発明の燃焼装置では、燃料は、タンク等の貯蔵装置で液体となる燃料であって、前記制御装置は、この燃料を液体の状態で臨界圧力を超えて昇圧した後、前記加熱装置により臨界温度を超えて加熱して密度が安定化した状態で前記高圧反応炉へ供給することを特徴としている。 In the combustion apparatus of the present invention, the fuel is a fuel that becomes a liquid in a storage device such as a tank, and the control device boosts the fuel in a liquid state to exceed the critical pressure and then uses the heating device to It is characterized by being fed to the high-pressure reactor in a state where the density is stabilized by heating beyond the temperature.
 従って、燃料は、液体の状態で臨界圧力を超えて昇圧された後、臨界温度を超えて加熱されることで密度が安定化し、この状態で高圧反応炉へ供給されることとなり、流量制御の安定化を可能とすることができる。 Therefore, the fuel is pressurized in excess of the critical pressure in a liquid state, and then heated to exceed the critical temperature to stabilize the density. In this state, the fuel is supplied to the high-pressure reactor, and the flow control is performed. Stabilization can be enabled.
 本発明の燃焼装置によれば、高圧反応炉の運転要求に応じて昇圧装置により燃料を臨界圧力を超えて昇圧すると共に加熱装置により臨界温度を超えて加熱してから燃料流量調整装置により高圧反応炉へ供給する燃料の流量を設定するので、安定した燃料流量制御を可能とすることができる。 According to the combustion apparatus of the present invention, the fuel is boosted above the critical pressure by the booster according to the operation demand of the high-pressure reactor and heated above the critical temperature by the heating device, and then the high-pressure reaction is performed by the fuel flow rate regulator. Since the flow rate of the fuel supplied to the furnace is set, stable fuel flow rate control can be achieved.
図1は、本発明の一実施例に係る燃焼装置を表す概略構成図である。FIG. 1 is a schematic configuration diagram showing a combustion apparatus according to an embodiment of the present invention. 図2は、燃料温度と燃料圧力との関係におけるLPGの状態を表すグラフである。FIG. 2 is a graph showing the state of LPG in the relationship between fuel temperature and fuel pressure. 図3は、燃料圧力と燃料密度との関係を表すグラフである。FIG. 3 is a graph showing the relationship between fuel pressure and fuel density. 図4は、燃料温度と燃料密度との関係を表すグラフである。FIG. 4 is a graph showing the relationship between fuel temperature and fuel density. 図5は、本実施例の燃焼装置が適用された石炭ガス化複合発電設備の概略構成図である。FIG. 5 is a schematic configuration diagram of a coal gasification combined power generation facility to which the combustion apparatus of the present embodiment is applied.
 以下に添付図面を参照して、本発明に係る燃焼装置の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。 Hereinafter, a preferred embodiment of a combustion apparatus according to the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited by this Example, Moreover, when there exists multiple Example, what comprises combining each Example is also included.
 図1は、本発明の一実施例に係る燃焼装置を表す概略構成図、図2は、燃料温度と燃料圧力との関係におけるLPGの状態を表すグラフ、図3は、燃料圧力と燃料密度との関係を表すグラフ、図4は、燃料温度と燃料密度との関係を表すグラフ、図5は、本実施例の燃焼装置が適用された石炭ガス化複合発電設備の概略構成図である。 FIG. 1 is a schematic configuration diagram showing a combustion apparatus according to an embodiment of the present invention, FIG. 2 is a graph showing a state of LPG in the relationship between fuel temperature and fuel pressure, and FIG. 3 is a graph showing fuel pressure and fuel density. FIG. 4 is a graph showing the relationship between the fuel temperature and the fuel density, and FIG. 5 is a schematic configuration diagram of the coal gasification combined power generation facility to which the combustion apparatus of this embodiment is applied.
 本実施例の石炭ガス化複合発電設備(IGCC:Integrated Coal Gasification Combined Cycle)は、空気を酸化剤としてガス化炉で石炭ガスを生成する空気燃焼方式を採用し、ガス精製装置で精製した後の石炭ガスを燃料ガスとしてガスタービン設備に供給して発電を行っている。即ち、本実施例の石炭ガス化複合発電設備は、空気燃焼方式(空気吹き)の発電設備である。 The coal gasification combined power generation facility (IGCC: Integrated Coal Gasification Combined Cycle) of the present embodiment adopts an air combustion method in which coal gas is generated in a gasification furnace using air as an oxidizer, and is purified by a gas purification device. Coal gas is supplied as fuel gas to gas turbine equipment to generate electricity. That is, the combined coal gasification combined power generation facility of this embodiment is a power generation facility of an air combustion system (air blowing).
 本実施例の石炭ガス化複合発電設備は、図5に示すように、給炭装置11、石炭ガス化炉12、チャー回収装置13、ガス精製装置14、ガスタービン設備15、蒸気タービン設備16、発電機17、排熱回収ボイラ(HRSG:Heat Recovery Steam Generator)18、ガス浄化装置19を有している。 As shown in FIG. 5, the coal gasification combined power generation facility of the present embodiment includes a coal supply device 11, a coal gasification furnace 12, a char recovery device 13, a gas purification device 14, a gas turbine facility 15, a steam turbine facility 16, A generator 17, a waste heat recovery boiler (HRSG) 18, and a gas purification device 19 are included.
 給炭装置11は、流動層乾燥装置21と、石炭粉砕機(ミル)22とを有している。流動層乾燥装置21は、投入される石炭に対して乾燥用ガスを供給することで、石炭を加熱し、含有する水分を除去するものである。石炭粉砕機22は、流動層乾燥装置21により乾燥された石炭を細かい粒子状に粉砕して微粉炭を製造するものである。この場合、流動層乾燥装置21で用いる乾燥用ガスとして、ガスタービン設備15や排熱回収ボイラ18、または、大気中に放出する排ガスの一部を利用するとよい。また、石炭粉砕機22の下流側に、サイクロンを設けて乾燥用ガス等のガス成分と、微粉炭(粒子成分)とに分離し、粒子成分の微粉炭を重力により落下させてホッパに回収する一方、ガス成分を排気するとよい。 The coal feeder 11 includes a fluidized bed drying device 21 and a coal pulverizer (mill) 22. The fluidized bed drying apparatus 21 heats the coal by supplying a drying gas to the input coal and removes moisture contained therein. The coal pulverizer 22 pulverizes the coal dried by the fluidized bed dryer 21 into fine particles to produce pulverized coal. In this case, as the drying gas used in the fluidized bed drying device 21, the gas turbine equipment 15, the exhaust heat recovery boiler 18, or a part of the exhaust gas released into the atmosphere may be used. Further, a cyclone is provided on the downstream side of the coal pulverizer 22 to separate a gas component such as a drying gas and pulverized coal (particle component), and the pulverized coal of the particle component is dropped by gravity and collected in a hopper. On the other hand, the gas component may be exhausted.
 石炭ガス化炉12は、給炭装置11から給炭ライン31が接続されており、この給炭装置11で処理された微粉炭が供給可能となっている。また、石炭ガス化炉12は、チャー回収装置13からチャー戻しライン32が接続されており、このチャー回収装置13で回収されたチャー(石炭の未燃分)が戻されてリサイクル可能となっている。 The coal gasification furnace 12 is connected to a coal supply line 31 from a coal supply device 11 and can supply pulverized coal treated by the coal supply device 11. Further, the char gas recovery furnace 12 is connected to a char return line 32 from the char recovery device 13, and char (unburned coal) recovered by the char recovery device 13 is returned and can be recycled. Yes.
 更に、石炭ガス化炉12は、ガスタービン設備15(圧縮機61)から圧縮空気供給ライン33が接続されており、このガスタービン設備15で圧縮された圧縮空気が供給可能となっている。空気分離装置34は、大気中の空気から窒素と酸素を分離生成するものであり、第1窒素供給ライン35が給炭ライン31に接続されると共に、第2窒素供給ライン36がチャー戻しライン32に接続され、酸素供給ライン37が圧縮空気供給ライン33に接続されている。この場合、窒素は、石炭やチャーの搬送用ガスとして利用され、酸素は、酸化剤として利用される。 Furthermore, the coal gasification furnace 12 is connected to the compressed air supply line 33 from the gas turbine equipment 15 (compressor 61), and can supply compressed air compressed by the gas turbine equipment 15. The air separation device 34 separates and generates nitrogen and oxygen from air in the atmosphere. The first nitrogen supply line 35 is connected to the coal supply line 31 and the second nitrogen supply line 36 is a char return line 32. The oxygen supply line 37 is connected to the compressed air supply line 33. In this case, nitrogen is used as a carrier gas for coal and char, and oxygen is used as an oxidant.
 また、石炭ガス化炉12は、燃料タンク38から燃料ライン39が接続されており、この燃料タンク38に貯留された補助燃料としてのLPG(液化石油ガス、LPG:Liquefied petroleum gas)が供給可能となっている。 Further, the coal gasifier 12 is connected to a fuel line 39 from a fuel tank 38, and can supply LPG (liquefied petroleum gas, LPG) as auxiliary fuel stored in the fuel tank 38. It has become.
 石炭ガス化炉12は、例えば、噴流床形式のガス化炉であって、内部に供給された石炭、チャー、空気(酸素)、またはガス化剤としての水蒸気を燃焼・ガス化すると共に、二酸化炭素を主成分とする可燃性ガス(生成ガス、石炭ガス)が発生し、この可燃性ガスをガス化剤としてガス化反応が起こる。なお、石炭ガス化炉12は噴流床ガス化炉に限らず、流動床ガス化炉や固定床ガス化炉としてもよい。そして、この石炭ガス化炉12は、チャー回収装置13に向けて可燃性ガスのガス生成ライン40が設けられており、チャーを含む可燃性ガスが排出可能となっている。この場合、ガス生成ライン40にガス冷却器を設けることで、可燃性ガスを所定温度まで冷却してからチャー回収装置13に供給するとよい。 The coal gasification furnace 12 is, for example, a spouted bed type gasification furnace, which combusts and gasifies coal, char, air (oxygen) supplied therein, or water vapor as a gasifying agent, and produces carbon dioxide. A combustible gas (product gas, coal gas) containing carbon as a main component is generated, and a gasification reaction takes place using this combustible gas as a gasifying agent. The coal gasification furnace 12 is not limited to a spouted bed gasification furnace, and may be a fluidized bed gasification furnace or a fixed bed gasification furnace. The coal gasification furnace 12 is provided with a combustible gas generation line 40 toward the char recovery device 13 so that the combustible gas containing char can be discharged. In this case, by providing a gas cooler in the gas generation line 40, the combustible gas may be cooled to a predetermined temperature and then supplied to the char recovery device 13.
 チャー回収装置13は、第1サイクロン41と、第2サイクロン42と、ホッパ43と、未燃分貯留部として構成されるビン44及びホッパ45a,45bとを有している。第1サイクロン41は、石炭ガス化炉12で生成された可燃性ガスに含有する粗粒のチャーを分離するものであり、上部に粗粒チャーが分離された可燃性ガスを排出する第1ガス排出ライン46が接続されると共に、下部に可燃性ガスから分離した粗粒チャーを排出する第1チャー排出ライン47が接続されている。第2サイクロン42は、第1サイクロン41により粗粒チャーが分離された可燃性ガスに含有する微粒のチャーを分離するものであり、上部に微粒チャーが分離された可燃性ガスを排出する第2ガス排出ライン48が接続されると共に、下部に可燃性ガスから分離した微粒チャーを排出する第2チャー排出ライン49が接続されている。 The char collection device 13 includes a first cyclone 41, a second cyclone 42, a hopper 43, a bin 44 and hoppers 45a and 45b configured as an unburned portion storage unit. The 1st cyclone 41 isolate | separates the coarse-grained char contained in the combustible gas produced | generated by the coal gasification furnace 12, The 1st gas which discharges | emits the combustible gas from which the coarse-char char was isolate | separated in the upper part A discharge line 46 is connected, and a first char discharge line 47 for discharging the coarse char separated from the combustible gas is connected to the lower part. The second cyclone 42 separates the fine char contained in the combustible gas from which the coarse char is separated by the first cyclone 41, and the second cyclone discharges the combustible gas from which the fine char is separated at the upper part. A gas discharge line 48 is connected, and a second char discharge line 49 for discharging fine char separated from the combustible gas is connected to the lower part.
 ホッパ43は、第2チャー排出ライン49に設けられており、第2サイクロン42により可燃性ガスから分離した微粒チャーを一時的に堆積(貯留)させるものである。そして、第1ガス排出ライン46とビン44との間には、両者の圧力を均一化させる第1均圧ライン50が設けられている。 The hopper 43 is provided in the second char discharge line 49, and temporarily deposits (stores) the fine char separated from the combustible gas by the second cyclone 42. A first pressure equalizing line 50 is provided between the first gas discharge line 46 and the bin 44 to equalize the pressures of both.
 ビン44は、第1チャー排出ライン47及び第2チャー排出ライン49の下流端部が接続されており、第1サイクロン41及び第2サイクロン42により可燃性ガスから分離された粗粒チャーや微粒チャーを貯留するものである。各ホッパ45a,45bは、ビン44と切替ライン51a,51bを介して接続され、この切替ライン51a,51bは、ホッパ45a,45bの上流側に第1切替弁52a,52bが装着され、下流側に第2切替弁53a,53bが装着されている。即ち、各切替弁52a,52b,53a,53bにより使用する切替ライン51a,51bを切り替えることで、ホッパ45a,45bを交互に使用して連続運転を可能としている。そして、各切替ライン51a,51bは、ホッパ45a,45bの下流側で合流し、チャー戻しライン32に接続されている。この場合、本実施例では、2つの切替ライン51a,51b(2つのホッパ45a,45b)のために、その上流側にビン44を配置しており、チャーを一時的に貯留するビン44を未燃分貯留部として構成したが、ビン44を配置しない構成でもよい。 The bin 44 is connected to the downstream ends of the first char discharge line 47 and the second char discharge line 49, and the coarse char and fine char separated from the combustible gas by the first cyclone 41 and the second cyclone 42. Is to be stored. The hoppers 45a and 45b are connected to the bin 44 via the switching lines 51a and 51b. The switching lines 51a and 51b are provided with the first switching valves 52a and 52b on the upstream side of the hoppers 45a and 45b, and on the downstream side. The second switching valves 53a and 53b are mounted on. That is, by switching the switching lines 51a and 51b used by the switching valves 52a, 52b, 53a and 53b, the hoppers 45a and 45b are alternately used to enable continuous operation. The switching lines 51 a and 51 b merge at the downstream side of the hoppers 45 a and 45 b and are connected to the char return line 32. In this case, in the present embodiment, the bin 44 is disposed upstream of the two switching lines 51a and 51b (two hoppers 45a and 45b), and the bin 44 for temporarily storing the char is not provided. Although configured as the fuel reservoir, a configuration in which the bin 44 is not disposed may be employed.
 ガス精製装置14は、チャー回収装置13によりチャーが分離された可燃性ガスに対して、硫黄化合物や窒素化合物などの不純物を取り除くことで、ガス精製を行うものである。そして、ガス精製装置14は、可燃性ガスを精製して燃料ガスを製造し、これをガスタービン設備15に供給する。 The gas purification device 14 performs gas purification by removing impurities such as sulfur compounds and nitrogen compounds from the combustible gas from which the char has been separated by the char recovery device 13. The gas purifier 14 purifies the combustible gas to produce fuel gas, and supplies it to the gas turbine equipment 15.
 ガスタービン設備15は、圧縮機61、燃焼器62、タービン63を有しており、圧縮機61とタービン63は、回転軸64により連結されている。燃焼器62は、圧縮機61から圧縮空気供給ライン65が接続されると共に、ガス精製装置14から燃料ガス供給ライン66が接続され、タービン63に燃焼ガス供給ライン67が接続されている。また、ガスタービン設備15は、圧縮機61から石炭ガス化炉12に延びる圧縮空気供給ライン33が設けられており、中途部に昇圧機68が設けられている。従って、燃焼器62では、圧縮機61から供給された圧縮空気とガス精製装置14から供給された燃料ガスとを混合して燃焼し、タービン63にて、発生した燃焼ガスにより回転軸64を回転することで発電機17を駆動することができる。 The gas turbine equipment 15 includes a compressor 61, a combustor 62, and a turbine 63, and the compressor 61 and the turbine 63 are connected by a rotating shaft 64. The combustor 62 has a compressed air supply line 65 connected to the compressor 61, a fuel gas supply line 66 connected to the gas purification device 14, and a combustion gas supply line 67 connected to the turbine 63. Moreover, the gas turbine equipment 15 is provided with a compressed air supply line 33 extending from the compressor 61 to the coal gasification furnace 12, and a booster 68 is provided in the middle. Therefore, in the combustor 62, the compressed air supplied from the compressor 61 and the fuel gas supplied from the gas purifier 14 are mixed and burned, and the rotating shaft 64 is rotated by the generated combustion gas in the turbine 63. By doing so, the generator 17 can be driven.
 蒸気タービン設備16は、ガスタービン設備15における回転軸64に連結されるタービン69を有しており、発電機17は、この回転軸64の基端部に連結されている。排熱回収ボイラ18は、ガスタービン設備15(タービン63)からの排ガスライン70に設けられており、空気と高温の排ガスとの間で熱交換を行うことで、蒸気を生成するものである。そのため、排熱回収ボイラ18は、蒸気タービン設備16のタービン69との間に蒸気供給ライン71が設けられると共に、蒸気回収ライン72が設けられ、蒸気回収ライン72に復水器73が設けられている。従って、蒸気タービン設備15では、排熱回収ボイラ18から供給された蒸気によりタービン69が駆動し、回転軸64を回転することで発電機17を駆動することができる。 The steam turbine facility 16 has a turbine 69 connected to the rotating shaft 64 in the gas turbine facility 15, and the generator 17 is connected to the base end portion of the rotating shaft 64. The exhaust heat recovery boiler 18 is provided in the exhaust gas line 70 from the gas turbine facility 15 (the turbine 63), and generates steam by performing heat exchange between air and high-temperature exhaust gas. Therefore, the exhaust heat recovery boiler 18 is provided with a steam supply line 71 between the steam turbine equipment 16 and the turbine 69 of the steam turbine equipment 16, a steam recovery line 72 is provided, and a condenser 73 is provided in the steam recovery line 72. Yes. Therefore, in the steam turbine equipment 15, the turbine 69 is driven by the steam supplied from the exhaust heat recovery boiler 18, and the generator 17 can be driven by rotating the rotating shaft 64.
 ガス浄化装置19は、排熱回収ボイラ18で熱が回収された排ガスから、有害物質を除去するものであり、浄化された排ガスは、煙突74から大気へ放出される。 The gas purification device 19 removes harmful substances from the exhaust gas whose heat has been recovered by the exhaust heat recovery boiler 18, and the purified exhaust gas is discharged from the chimney 74 to the atmosphere.
 ここで、本実施例の石炭ガス化複合発電設備の作動について説明する。 Here, the operation of the coal gasification combined power generation facility of this embodiment will be described.
 本実施例の石炭ガス化複合発電設備において、給炭装置11にて、石炭は、流動層乾燥装置21により乾燥され、石炭粉砕機22により粉砕されて微粉炭が製造される。この微粉炭は、空気分離装置34から供給される窒素により給炭ライン31を通して石炭ガス化炉12に供給される。また、後述するチャー回収装置13で回収されたチャーが、空気分離装置34から供給される窒素によりチャー戻しライン32を通して石炭ガス化炉12に供給される。更に、後述するガスタービン設備15から抽気された圧縮空気が昇圧機68で昇圧された後、空気分離装置34から供給される酸素と共に圧縮空気供給ライン33を通して石炭ガス化炉12に供給される。 In the coal gasification combined power generation facility of the present embodiment, the coal is dried by the fluidized bed drying device 21 in the coal feeding device 11 and pulverized by the coal pulverizer 22 to produce pulverized coal. The pulverized coal is supplied to the coal gasifier 12 through the coal supply line 31 by nitrogen supplied from the air separation device 34. Further, the char recovered by the char recovery device 13 to be described later is supplied to the coal gasification furnace 12 through the char return line 32 by nitrogen supplied from the air separation device 34. Further, the compressed air extracted from the gas turbine equipment 15 to be described later is boosted by the booster 68 and then supplied to the coal gasification furnace 12 through the compressed air supply line 33 together with the oxygen supplied from the air separation device 34.
 なお、石炭ガス化炉12は、起動時に、燃料タンク38のLPGが燃料ライン39を通して供給され、図示しない点火トーチにより着火されることで、LPGが燃焼して昇温される。そして、石炭ガス化炉12は、内部が所定の温度まで加熱されると、上述したように、微粉炭が給炭ライン31を通して石炭ガス化炉12に供給されることで、この微粉炭が燃焼する。 The coal gasification furnace 12 is supplied with the LPG in the fuel tank 38 through the fuel line 39 and is ignited by an ignition torch (not shown) so that the LPG burns and the temperature is raised. Then, when the inside of the coal gasifier 12 is heated to a predetermined temperature, as described above, the pulverized coal is supplied to the coal gasifier 12 through the coal supply line 31 so that the pulverized coal burns. To do.
 そして、石炭ガス化炉12では、供給された微粉炭及びチャーが圧縮空気(酸素)により燃焼し、微粉炭及びチャーがガス化することで、二酸化炭素を主成分とする可燃性ガス(石炭ガス)を生成することができる。そして、この可燃性ガスは、石炭ガス化炉12からガス生成ライン40を通して排出され、チャー回収装置13に送られる。 In the coal gasification furnace 12, the supplied pulverized coal and char are combusted by compressed air (oxygen), and the pulverized coal and char are gasified, thereby combustible gas (coal gas) containing carbon dioxide as a main component. ) Can be generated. This combustible gas is discharged from the coal gasifier 12 through the gas generation line 40 and sent to the char recovery device 13.
 このチャー回収装置13にて、可燃性ガスは、まず、第1サイクロン41に供給されることで、ここで可燃性ガスからこのガスに含有する粗粒チャーが分離される。そして、粗粒チャーが分離された可燃性ガスは、第1ガス排出ライン46に排出される一方、可燃性ガスから分離した粗粒チャーは、第1チャー排出ライン47を通してビン44に払い出される。 In the char recovery device 13, the combustible gas is first supplied to the first cyclone 41 so that the coarse char contained in the gas is separated from the combustible gas. The combustible gas from which the coarse char is separated is discharged to the first gas discharge line 46, while the coarse char separated from the combustible gas is discharged to the bin 44 through the first char discharge line 47.
 第1サイクロン41で粗粒チャーが分離されて第1ガス排出ライン46に排出された可燃性ガスは、次に、第2サイクロン42に供給されることで、ここで可燃性ガスからこのガスに含有する微粒チャーが分離される。そして、微粒チャーが分離された可燃性ガスは、第2ガス排出ライン48に排出される一方、可燃性ガスから分離した微粒チャーは、ホッパ43に堆積され、第2チャー排出ライン49を通してビン44に払い出される。ここで、ビン44は、第1チャー排出ライン47を通してビン44に払い出される粗粒チャーと、第2チャー排出ライン49を通してビン44に払い出される微粒チャーとが合流するとき、その流れを安定化することができる。 The combustible gas from which the coarse char is separated by the first cyclone 41 and discharged to the first gas discharge line 46 is then supplied to the second cyclone 42, where the combustible gas is changed to this gas. The contained fine char is separated. The combustible gas from which the fine char is separated is discharged to the second gas discharge line 48, while the fine char separated from the combustible gas is deposited on the hopper 43 and passes through the second char discharge line 49 to the bin 44. To be paid out. Here, when the coarse char discharged to the bin 44 through the first char discharge line 47 and the fine char discharged to the bin 44 through the second char discharge line 49 merge, the bin 44 stabilizes the flow. be able to.
 そして、ビン44に貯留されたチャーは、切替弁52a,53aと切替弁52b,53bを交互に開閉することで、切替ライン51a及びホッパ45aと、切替ライン51b及びホッパ45bを交互に使用するようにしている。例えば、切替弁52a,53aを開放して切替弁52b,53bを閉止することで、ビン44のチャーを切替ライン51aによりホッパ45aに貯留する。そしてこのホッパ45aが一杯になったら、切替弁52a,53aを閉止して切替弁52b,53bを開放することで、ビン44のチャーを切替ライン51bによりホッパ45bに貯留する。これによりチャーの貯留作業を連続して行うことができ、チャー回収装置13の連続運転が可能となる。その後、ホッパ45a,45bに貯留されているチャーは、チャー戻しライン32を通して石炭ガス化炉12に戻されてリサイクルされる。 The char stored in the bin 44 alternately uses the switching line 51a and the hopper 45a, and the switching line 51b and the hopper 45b by alternately opening and closing the switching valves 52a and 53a and the switching valves 52b and 53b. I have to. For example, by opening the switching valves 52a and 53a and closing the switching valves 52b and 53b, the char of the bin 44 is stored in the hopper 45a by the switching line 51a. When the hopper 45a is full, the switching valves 52a and 53a are closed and the switching valves 52b and 53b are opened, whereby the char of the bin 44 is stored in the hopper 45b through the switching line 51b. Thereby, the char storage operation can be performed continuously, and the char recovery device 13 can be continuously operated. Thereafter, the char stored in the hoppers 45a and 45b is returned to the coal gasification furnace 12 through the char return line 32 and recycled.
 チャー回収装置13によりチャーが分離された可燃性ガスは、ガス精製装置14にて、硫黄化合物や窒素化合物などの不純物が取り除かれてガス精製され、燃料ガスが製造される。そして、ガスタービン設備15では、圧縮機61が圧縮空気を生成して燃焼器62に供給すると、この燃焼器62は、圧縮機61から供給される圧縮空気と、ガス精製装置14から供給される燃料ガスとを混合し、燃焼することで燃焼ガスを生成し、この燃焼ガスによりタービン63を駆動することで、回転軸64を介して発電機17を駆動し、発電を行うことができる。 The combustible gas from which the char has been separated by the char recovery device 13 is gas purified by removing impurities such as sulfur compounds and nitrogen compounds by the gas purification device 14 to produce fuel gas. In the gas turbine equipment 15, when the compressor 61 generates compressed air and supplies the compressed air to the combustor 62, the combustor 62 is supplied from the compressed air supplied from the compressor 61 and the gas purification device 14. The fuel gas is mixed and burned to generate combustion gas, and the turbine 63 is driven by this combustion gas, so that the generator 17 can be driven via the rotating shaft 64 to generate power.
 そして、ガスタービン設備15におけるタービン63から排出された排気ガスは、排熱回収ボイラ18にて、空気と熱交換を行うことで蒸気を生成し、この生成した蒸気を蒸気タービン設備16に供給する。蒸気タービン設備16では、排熱回収ボイラ18から供給された蒸気によりタービン69を駆動することで、回転軸64を介して発電機17を駆動し、発電を行うことができる。 The exhaust gas discharged from the turbine 63 in the gas turbine equipment 15 generates steam by exchanging heat with air in the exhaust heat recovery boiler 18, and supplies the generated steam to the steam turbine equipment 16. . In the steam turbine facility 16, the turbine 69 is driven by the steam supplied from the exhaust heat recovery boiler 18, so that the generator 17 can be driven via the rotating shaft 64 to generate power.
 そして、ガス浄化装置19では排熱回収ボイラ18から排出された排気ガスは、ガス浄化装置19により有害物質が除去され、浄化された排ガスが煙突74から大気へ放出される。 In the gas purification device 19, the exhaust gas discharged from the exhaust heat recovery boiler 18 is removed of harmful substances by the gas purification device 19, and the purified exhaust gas is discharged from the chimney 74 to the atmosphere.
 ここで、上述した石炭ガス化複合発電設備における起動用の燃焼装置、つまり、燃料タンク38から石炭ガス化炉12までの燃料ライン39について説明する。 Here, the start-up combustion apparatus in the above-described coal gasification combined power generation facility, that is, the fuel line 39 from the fuel tank 38 to the coal gasification furnace 12 will be described.
 本実施例の燃焼装置は、図1に示すように、補助燃料を高圧・高温とし、高圧反応炉として使用される石炭ガス化炉12に搬送して燃焼するものである。ここで使用する補助燃料は、貯蔵設備で液体となる燃料、つまり、液化石油ガスとして使用されるプロパンが主成分のLPGである。 As shown in FIG. 1, the combustion apparatus of the present embodiment is configured such that the auxiliary fuel is set to high pressure and high temperature, and is conveyed to a coal gasification furnace 12 used as a high pressure reactor for combustion. The auxiliary fuel used here is a fuel that becomes liquid in the storage facility, that is, LPG mainly composed of propane used as liquefied petroleum gas.
 燃料タンク38は、このLPGを常温で液体として貯留可能となっている。燃料供給ラインとしての燃料ライン39は、基端部が燃料タンク38に連結され、先端部が石炭ガス化炉12の起動用バーナ101に連結されており、この起動用バーナ101に対して酸化剤(酸素)が供給可能となっている。 The fuel tank 38 can store the LPG as a liquid at room temperature. A fuel line 39 as a fuel supply line has a base end portion connected to the fuel tank 38 and a tip end portion connected to the start burner 101 of the coal gasification furnace 12. (Oxygen) can be supplied.
 昇圧装置としてのポンプ102は、燃料ライン39における燃料タンク38の近傍に配置され、燃料タンク38からLPGを吸い込んで所定圧力を超えて昇圧することができる。加熱装置としての蒸発器(熱交換器)103は、燃料ライン39におけるポンプ102より下流側に配置され、この燃料ライン39を流れる昇圧後の高圧のLPGと加熱媒体(例えば、過熱蒸気)との間で熱交換を行うことで、このLPGを加熱することができる。 The pump 102 as a booster device is disposed in the vicinity of the fuel tank 38 in the fuel line 39, and can suck LPG from the fuel tank 38 to increase the pressure exceeding a predetermined pressure. An evaporator (heat exchanger) 103 serving as a heating device is disposed downstream of the pump 102 in the fuel line 39, and includes a high-pressure LPG after pressure increase flowing through the fuel line 39 and a heating medium (for example, superheated steam). This LPG can be heated by performing heat exchange between them.
 燃料流量調整装置としての流量調整弁104は、燃料ライン39における蒸発器103より下流側に配置され、この燃料ライン39を流れる高温高圧で密度が安定化したLPGの流量を調整することができる。 The flow rate adjusting valve 104 as a fuel flow rate adjusting device is disposed downstream of the evaporator 103 in the fuel line 39, and can adjust the flow rate of the LPG stabilized in density at high temperature and pressure flowing through the fuel line 39.
 制御装置105は、ポンプ102、蒸発器103、流量調整弁104を制御可能となっている。即ち、制御装置105は、ポンプ102の回転数を調整することで、LPGの昇圧量を調整することができる。また、制御装置105は、蒸発器103における過熱蒸気の温度や流量を調整することで、加熱温度を調整することができる。また、制御装置105は、流量調整弁104の開度を調整することで、燃料ライン39を通して起動用バーナ101に供給するLPGの供給量を調整することができる。 The control device 105 can control the pump 102, the evaporator 103, and the flow rate adjustment valve 104. That is, the control device 105 can adjust the amount of pressure increase of the LPG by adjusting the rotation speed of the pump 102. Further, the control device 105 can adjust the heating temperature by adjusting the temperature and flow rate of the superheated steam in the evaporator 103. In addition, the control device 105 can adjust the supply amount of LPG supplied to the activation burner 101 through the fuel line 39 by adjusting the opening degree of the flow rate adjustment valve 104.
 燃料ライン39は、ポンプ102より下流側に、このポンプ102により昇圧されたLPGの圧力を検出する圧力センサ106が設けられている。また、燃料ライン39は、流量調整弁104より下流側で、且つ、起動用バーナより上流側に、蒸発器103により加熱されたLPGの温度を検出する温度センサ107が設けられている。更に、燃料ライン39は、流量調整弁104より下流側に、起動用バーナに供給されるLPGの供給量を検出する流量センサ108が設けられている。そして、各センサ106,107,108は、検出結果を制御装置105に出力している。制御装置105は、各センサ106,107,108の検出結果に基づいてポンプ102、蒸発器103、流量調整弁104を調整している。 The fuel line 39 is provided with a pressure sensor 106 that detects the pressure of the LPG boosted by the pump 102 on the downstream side of the pump 102. The fuel line 39 is provided with a temperature sensor 107 that detects the temperature of the LPG heated by the evaporator 103 on the downstream side of the flow rate adjustment valve 104 and on the upstream side of the activation burner. Further, the fuel line 39 is provided with a flow rate sensor 108 that detects the supply amount of LPG supplied to the activation burner on the downstream side of the flow rate adjustment valve 104. Each sensor 106, 107, 108 outputs a detection result to the control device 105. The control device 105 adjusts the pump 102, the evaporator 103, and the flow rate adjustment valve 104 based on the detection results of the sensors 106, 107, and 108.
 具体的に、本実施例にて、制御装置105は、石炭ガス化炉12の運転要求に応じて、ポンプ102を制御してLPGを臨界圧力を超えて昇圧すると共に、蒸発器103を制御して臨界温度を超えて加熱し、その後、流量調整弁104を制御して石炭ガス化炉12へ供給する燃料の流量を設定している。この場合、制御装置105は、石炭ガス化炉12に対してLPGを臨界圧力を超えて昇圧する要求があったときに、このLPGを臨界圧力を超えて昇圧した後に臨界温度を超えて加熱し、その後、LPGの温度を臨界温度から所定温度離れた領域で増減するようにしている。 Specifically, in this embodiment, the control device 105 controls the pump 102 to increase the LPG exceeding the critical pressure and control the evaporator 103 in accordance with the operation request of the coal gasification furnace 12. Then, the fuel is heated beyond the critical temperature, and then the flow rate of the fuel supplied to the coal gasification furnace 12 is set by controlling the flow rate adjustment valve 104. In this case, when there is a request for the coal gasifier 12 to increase the LPG above the critical pressure, the control device 105 increases the LPG above the critical pressure and then heats the LPG beyond the critical temperature. Thereafter, the temperature of the LPG is increased or decreased in a region away from the critical temperature by a predetermined temperature.
 即ち、制御装置105は、圧力センサ106の検出結果に基づいて石炭ガス化炉12に供給するLPGの目標温度を設定し、温度センサ107の検出結果に基づいてLPGの温度が目標温度となるように蒸発器103を制御する。 That is, the control device 105 sets the target temperature of the LPG supplied to the coal gasification furnace 12 based on the detection result of the pressure sensor 106, and the LPG temperature becomes the target temperature based on the detection result of the temperature sensor 107. The evaporator 103 is controlled.
 ここで、上述したLPGの昇圧及び加熱について、図2に基づいて詳細に説明する。この図2は、燃料温度と燃料圧力との関係におけるLPGの状態を表すグラフであり、実線の左側が液体の状態、右側が気体の状態に維持されている。本実施例では、まず、LPGを液体の状態で加熱せずに臨界圧力を超えて昇圧し、次に、高圧で液体のLPGを臨界温度を超えて加熱し、密度を安定化する。この状態で、LPGを起動用バーナ101により石炭ガス化炉12に供給し、石炭ガス化炉12の運転状態に応じてLPGの温度を調整する。また、石炭ガス化炉12の運転状態に応じてLPGの供給量を調整する。 Here, the above-described LPG boosting and heating will be described in detail with reference to FIG. FIG. 2 is a graph showing the LPG state in the relationship between the fuel temperature and the fuel pressure. The left side of the solid line is maintained in the liquid state and the right side is maintained in the gas state. In the present embodiment, the LPG is first heated beyond the critical pressure without being heated in a liquid state, and then the liquid LPG is heated above the critical temperature at a high pressure to stabilize the density. In this state, LPG is supplied to the coal gasifier 12 by the start burner 101, and the temperature of the LPG is adjusted according to the operating state of the coal gasifier 12. Further, the supply amount of LPG is adjusted according to the operating state of the coal gasification furnace 12.
 図3は、燃料圧力の上昇に伴って変化する燃料密度を表すグラフである。図3に示すように、LPGは、常温(昇温前)の状態で昇圧すると、燃料密度が上昇していき、臨界圧力を超えると、大幅に変動し、理想気体の圧力に対して大きな変位が発生する。一方、LPGを所定温度(約150℃)まで加熱した状態で昇圧すると、燃料密度がほぼ均一に上昇していき、臨界圧力を超えても大幅には変動せず、理想気体の圧力に対してほぼ同様となる。 FIG. 3 is a graph showing the fuel density that changes as the fuel pressure increases. As shown in FIG. 3, when LPG is pressurized at room temperature (before temperature rise), the fuel density increases, and when it exceeds the critical pressure, it fluctuates greatly and is greatly displaced relative to the pressure of the ideal gas. Will occur. On the other hand, when the pressure is increased while the LPG is heated to a predetermined temperature (about 150 ° C.), the fuel density rises almost uniformly and does not fluctuate greatly even if the critical pressure is exceeded. It will be almost the same.
 また、図4は、燃料温度の上昇に伴って変化する燃料密度を表すグラフである。図4に示すように、LPGを所定の圧力(例えば、4MPa)に昇圧すると、低温領域では、燃料密度が温度低下に伴って理想気体より大きく増加する傾向を示すが、燃料温度が臨界温度を超えて上昇すると、燃料密度は、温度上昇に伴って減少し、理想気体に近似する傾向を示す。但し、LPGは、燃料温度が臨界温度近傍では、まだ安定しているとは言えず、燃料温度が臨界温度より50℃を超えた領域でほぼ安定する。しかし、加熱コストを考慮すると、燃料温度が臨界温度より200℃以下の安定した領域を適用することが望ましい。 FIG. 4 is a graph showing the fuel density that changes as the fuel temperature rises. As shown in FIG. 4, when LPG is increased to a predetermined pressure (for example, 4 MPa), the fuel density tends to increase more than the ideal gas as the temperature decreases in the low temperature region. As it rises above, the fuel density decreases with increasing temperature and tends to approximate an ideal gas. However, LPG cannot be said to be stable yet when the fuel temperature is close to the critical temperature, and is almost stabilized in the region where the fuel temperature exceeds 50 ° C. from the critical temperature. However, considering the heating cost, it is desirable to apply a stable region where the fuel temperature is 200 ° C. or lower than the critical temperature.
 このようにLPGは、臨界圧力を超えて昇圧すると共に臨界温度を超えて加熱することで、その密度が安定することから、この状態で流量制御を行うことが望ましい。その結果、LPGの流量計測に誤差が生じることが少なく、石炭ガス化炉12に供給するLPG流量の調整制御を高精度に行うことが可能となる。 As described above, since the density of LPG is increased by exceeding the critical pressure and heated by exceeding the critical temperature, the flow rate is desirably controlled in this state. As a result, there is little error in the LPG flow rate measurement, and adjustment control of the LPG flow rate supplied to the coal gasification furnace 12 can be performed with high accuracy.
 このように本実施例の燃焼装置にあっては、LPGを貯留する燃料タンク38と、燃料タンク38のLPGを石炭ガス化炉12に供給する燃料ライン39と、燃料ライン39に設けられてLPGを昇圧するポンプ102と、燃料ライン39に設けられて昇圧後のLPGを加熱する蒸発器103と、燃料ライン39に設けられて昇圧及び加熱した燃料の流量を調整する流量調整弁104と、石炭ガス化炉12の運転要求に応じてポンプ102によりLPGを臨界圧力を超えて昇圧すると共に蒸発器103により臨界温度を超えて加熱してから流量調整弁104により石炭ガス化炉12へ供給するLPGの流量を設定する制御装置105とを設けている。 As described above, in the combustion apparatus of the present embodiment, the fuel tank 38 that stores LPG, the fuel line 39 that supplies the LPG in the fuel tank 38 to the coal gasification furnace 12, and the LPG provided in the fuel line 39. A pump 102 for boosting the pressure, an evaporator 103 for heating the boosted LPG, a flow rate adjusting valve 104 for adjusting the flow rate of the boosted and heated fuel provided in the fuel line 39, coal In response to the operation request of the gasification furnace 12, the LPG is pressurized to exceed the critical pressure by the pump 102 and heated to exceed the critical temperature by the evaporator 103, and then supplied to the coal gasification furnace 12 by the flow rate adjustment valve 104. And a control device 105 for setting the flow rate of.
 従って、石炭ガス化炉12の運転要求があったとき、LPGが臨界圧力を超えて昇圧されると共に臨界温度を超えて加熱され、その流量が調整されてから石炭ガス化炉12へ供給されることとなり、燃料を臨界圧力及び臨界温度の近傍でLPGの流量を制御する必要がないことから、LPGは、圧力変化や温度変化に対して、実際のLPGの密度と理想的な密度との偏差がほとんどなくなり、流量調整弁104による安定したLPGの流量制御を可能とすることができる。 Therefore, when there is a request for operation of the coal gasifier 12, the LPG is boosted to exceed the critical pressure and heated to exceed the critical temperature, and its flow rate is adjusted before being supplied to the coal gasifier 12. Therefore, since it is not necessary to control the flow rate of LPG in the vicinity of the critical pressure and critical temperature of the fuel, LPG is a deviation between the actual LPG density and the ideal density with respect to pressure change and temperature change. Therefore, the LPG flow rate can be stably controlled by the flow rate adjustment valve 104.
 また、本実施例の燃焼装置では、制御装置105は、石炭ガス化炉12に対してLPGを臨界圧力を超えて昇圧する要求があったときに、LPGを臨界圧力を超えて昇圧した後に臨界温度を超えて加熱し、その後、LPGの温度を臨界温度から所定温度離れた領域で増減するようにしている。従って、LPGは、臨界圧力を超えて昇圧された後に臨界温度を超えて加熱され、その後、石炭ガス化炉12の運転要求に応じて、LPGの温度を臨界温度から所定温度離れた領域で増減して調整することとなり、安定したLPGの流量制御を行うことができる。 Further, in the combustion apparatus of the present embodiment, when the control apparatus 105 has requested the coal gasification furnace 12 to increase the LPG exceeding the critical pressure, the controller 105 increases the LPG after exceeding the critical pressure. After the temperature is exceeded, the LPG temperature is increased or decreased in a region away from the critical temperature by a predetermined temperature. Accordingly, the LPG is heated to exceed the critical temperature after being increased to exceed the critical pressure, and then the LPG temperature is increased or decreased in a region away from the critical temperature by a predetermined temperature according to the operation request of the coal gasification furnace 12. Therefore, stable LPG flow rate control can be performed.
 また、本実施例の燃焼装置では、ポンプ102により昇圧されたLPGの圧力を検出する圧力センサ106と、蒸発器103により加熱されたLPGの温度を検出する温度センサ107とを設け、制御装置105は、圧力センサ106の検出結果に基づいて石炭ガス化炉12に供給するLPGの目標温度を設定し、温度センサ107の検出結果に基づいてLPGの温度が目標温度となるように蒸発器103を制御している。従って、制御装置105は、LPGの温度が、昇圧後のLPGの圧力に基づいて設定された目標温度となるように蒸発器103を制御するため、高精度なLPGの温度制御を行うことができる。 In the combustion apparatus of the present embodiment, a pressure sensor 106 that detects the pressure of the LPG boosted by the pump 102 and a temperature sensor 107 that detects the temperature of the LPG heated by the evaporator 103 are provided. Sets the target temperature of the LPG supplied to the coal gasification furnace 12 based on the detection result of the pressure sensor 106, and sets the evaporator 103 so that the temperature of the LPG becomes the target temperature based on the detection result of the temperature sensor 107. I have control. Therefore, the control device 105 controls the evaporator 103 so that the temperature of the LPG becomes a target temperature set based on the pressure of the LPG after the pressure increase, so that the temperature control of the LPG can be performed with high accuracy. .
 また、本実施例の燃焼装置では、制御装置105は、このプロパンを液体の状態で臨界圧力を超えて昇圧した後、臨界温度を超えて加熱して石炭ガス化炉12へ供給するようにしている。従って、プロパンは、液体の状態で臨界圧力を超えて昇圧された後、臨界温度を超えて加熱されることで密度が安定化した状態で石炭ガス化炉12へ供給されることとなり、安定した流量制御を行うことができる。 Further, in the combustion apparatus of the present embodiment, the control apparatus 105 increases the pressure of the propane to exceed the critical pressure in a liquid state, and then heats the propane to exceed the critical temperature and supplies it to the coal gasifier 12. Yes. Therefore, propane is supplied to the coal gasification furnace 12 in a state in which the density is stabilized by being heated above the critical temperature after being pressurized above the critical pressure in a liquid state. Flow rate control can be performed.
 なお、上述した実施例にて、昇圧装置をポンプ102としたが、この構成に限定されるものではなく、また、加熱装置を蒸発器103としたが、電気ヒータであってもよい。また、燃料をプロパンとしたが、例えば、LPGやLNGでもよく、つまり、燃料は、昇圧段階で臨界圧力を超える燃料であればよい。 In the above-described embodiment, the booster is the pump 102. However, the present invention is not limited to this configuration, and the heating device is the evaporator 103. However, an electric heater may be used. Further, although propane is used as the fuel, for example, LPG or LNG may be used. That is, the fuel may be any fuel that exceeds the critical pressure in the pressurization stage.
 11 給炭装置
 12 石炭ガス化炉
 13 チャー回収装置
 14 ガス精製装置
 15 ガスタービン設備
 16 蒸気タービン設備
 17 発電機
 18 排熱回収ボイラ
 19 ガス浄化装置
 38 燃料タンク
 39 燃料ライン(燃料供給ライン)
 101 起動用バーナ
 102 ポンプ(昇圧装置)
 103 蒸発器(加熱装置)
 104 流量調整弁(燃料流量調整装置)
 105 制御装置
 106 圧力センサ
 107 温度センサ
 108 流量センサ
DESCRIPTION OF SYMBOLS 11 Coal feeder 12 Coal gasifier 13 Char recovery device 14 Gas refiner 15 Gas turbine equipment 16 Steam turbine equipment 17 Generator 18 Waste heat recovery boiler 19 Gas purification device 38 Fuel tank 39 Fuel line (fuel supply line)
101 Starter burner 102 Pump (pressure booster)
103 Evaporator (heating device)
104 Flow control valve (fuel flow control device)
105 Control Device 106 Pressure Sensor 107 Temperature Sensor 108 Flow Rate Sensor

Claims (4)

  1.  燃料を貯留する燃料タンクと、
     該燃料タンクの燃料を高圧反応炉に供給する燃料供給ラインと、
     該燃料供給ラインに設けられて燃料を昇圧する昇圧装置と、
     前記燃料供給ラインに設けられて昇圧後の燃料を加熱する加熱装置と、
     前記燃料供給ラインに設けられて昇圧及び加熱した燃料の流量を調整する燃料流量調整装置と、
     前記高圧反応炉の運転要求に応じて前記昇圧装置により燃料を臨界圧力を超えて昇圧すると共に前記加熱装置により臨界温度を超えて加熱してから前記燃料流量調整装置により前記高圧反応炉へ供給する燃料の流量を設定する制御装置と、
     を備えることを特徴とする燃焼装置。
    A fuel tank for storing fuel;
    A fuel supply line for supplying fuel from the fuel tank to the high pressure reactor;
    A booster provided in the fuel supply line for boosting the fuel;
    A heating device that is provided in the fuel supply line and heats the pressurized fuel;
    A fuel flow rate adjusting device that is provided in the fuel supply line and adjusts the flow rate of the boosted and heated fuel;
    In response to the operation request of the high-pressure reactor, the booster boosts the fuel to exceed the critical pressure and heats the fuel beyond the critical temperature by the heating device, and then supplies the fuel to the high-pressure reactor by the fuel flow rate regulator. A control device for setting the flow rate of the fuel;
    A combustion apparatus comprising:
  2.  前記制御装置は、前記高圧反応炉に対して燃料を臨界圧力を超えて昇圧する要求があったときに、燃料を臨界圧力を超えて昇圧した後に臨界温度を超えて加熱し、その後、燃料の温度を臨界温度から所定温度離れた領域で増減することを特徴とする請求項1に記載の燃焼装置。 When there is a request for the high pressure reactor to boost the fuel beyond the critical pressure, the control device boosts the fuel beyond the critical pressure and then heats the fuel beyond the critical temperature. The combustion apparatus according to claim 1, wherein the temperature is increased or decreased in a region away from the critical temperature by a predetermined temperature.
  3.  前記昇圧装置により昇圧された燃料の圧力を検出する圧力センサと、前記加熱装置により加熱された燃料の温度を検出する温度センサとを設け、前記制御装置は、前記圧力センサの検出結果に基づいて前記圧力反応炉に供給する燃料の目標温度を設定し、前記温度センサの検出結果に基づいて燃料の温度が目標温度となるように前記加熱装置を制御することを特徴とする請求項1または2に記載の燃焼装置。 A pressure sensor for detecting the pressure of the fuel boosted by the booster and a temperature sensor for detecting the temperature of the fuel heated by the heater are provided, and the control device is based on the detection result of the pressure sensor. The target temperature of the fuel supplied to the pressure reactor is set, and the heating device is controlled based on the detection result of the temperature sensor so that the temperature of the fuel becomes the target temperature. The combustion apparatus as described in.
  4.  燃料は、タンク等の貯蔵装置で液体となる燃料であって、前記制御装置は、この燃料を液体の状態で臨界圧力を超えて昇圧した後、前記加熱装置により臨界温度を超えて加熱して密度が安定化した状態で前記高圧反応炉へ供給することを特徴とする請求項1から3のいずれか一つに記載の燃焼装置。 The fuel is a fuel that becomes liquid in a storage device such as a tank, and the control device boosts the fuel in a liquid state to exceed a critical pressure, and then heats the fuel to exceed the critical temperature by the heating device. The combustion apparatus according to any one of claims 1 to 3, wherein the combustion apparatus is supplied to the high-pressure reactor while the density is stabilized.
PCT/JP2012/051674 2011-02-21 2012-01-26 Combustion apparatus WO2012114821A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2012221495A AU2012221495B2 (en) 2011-02-21 2012-01-26 Combustion apparatus
CN201280003046.8A CN103119367B (en) 2011-02-21 2012-01-26 Combustion apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011035199A JP5615199B2 (en) 2011-02-21 2011-02-21 Combustion device
JP2011-035199 2011-02-21

Publications (1)

Publication Number Publication Date
WO2012114821A1 true WO2012114821A1 (en) 2012-08-30

Family

ID=46720609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051674 WO2012114821A1 (en) 2011-02-21 2012-01-26 Combustion apparatus

Country Status (4)

Country Link
JP (1) JP5615199B2 (en)
CN (1) CN103119367B (en)
AU (1) AU2012221495B2 (en)
WO (1) WO2012114821A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135492A (en) * 1986-11-27 1988-06-07 Babcock Hitachi Kk Burner devices for coal gasifier oven
JP2002161283A (en) * 2000-11-27 2002-06-04 Babcock Hitachi Kk Startup method for coal gasifier
JP2009179790A (en) * 2008-01-29 2009-08-13 Mitsubishi Heavy Ind Ltd Start-up method for coal gasifier and start-up device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3097583B2 (en) * 1996-02-14 2000-10-10 トヨタ自動車株式会社 Fuel supply method and apparatus for internal combustion engine
JPH10141170A (en) * 1996-11-14 1998-05-26 Toyota Motor Corp Injector for high-temperature and high-pressure injection
JP2003262330A (en) * 2002-03-08 2003-09-19 Nippon Control Kogyo Co Ltd Fuel flow control device for oil combustor burner
JP4078956B2 (en) * 2002-11-12 2008-04-23 トヨタ自動車株式会社 Fuel supply device
JP2004197655A (en) * 2002-12-18 2004-07-15 Toyota Motor Corp Fuel supply device
JP2007085175A (en) * 2005-09-20 2007-04-05 Hitachi Ltd Fuel property determination device of vehicle
US7655215B2 (en) * 2006-03-06 2010-02-02 Bioconversion Technology Llc Method and apparatus for producing synthesis gas from waste materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135492A (en) * 1986-11-27 1988-06-07 Babcock Hitachi Kk Burner devices for coal gasifier oven
JP2002161283A (en) * 2000-11-27 2002-06-04 Babcock Hitachi Kk Startup method for coal gasifier
JP2009179790A (en) * 2008-01-29 2009-08-13 Mitsubishi Heavy Ind Ltd Start-up method for coal gasifier and start-up device

Also Published As

Publication number Publication date
AU2012221495A1 (en) 2013-04-18
CN103119367B (en) 2015-07-01
AU2012221495B2 (en) 2014-09-25
CN103119367A (en) 2013-05-22
JP5615199B2 (en) 2014-10-29
JP2012172904A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
Chen et al. Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling
JP4939511B2 (en) Coal gasification combined power generation facility
JP2010285564A (en) Coal gasification furnace, method and program for controlling the same, and coal gasification combined power generator equipped with the furnace
CN104011183B (en) Fuel gasification system, its control method and sequence of control and possess the fuel gasification compound electricity generation system of fuel gasification system
CN103764973B (en) The controlling method of the controlling method of gas turbine generating equipment, gas turbine generating equipment, carbonaceous fuel gasifying stove and carbonaceous fuel gasifying stove
US10233835B2 (en) Gasification power plant control device, gasification power plant, and gasification power plant control method
JP6189082B2 (en) Control device for gasification power plant, gasification power plant, and control method for gasification power plant
US9890331B2 (en) Gasification facility
JP5615199B2 (en) Combustion device
US10808191B2 (en) Gasification apparatus, control device, integrated gasification combined cycle, and control method
JP5151921B2 (en) Combined power generation method and apparatus using two-column gasifier
JP2000120403A (en) Integrated gas combined power generating system
JPS5949410B2 (en) Control method for gasification power plant
WO2023162712A1 (en) Gasification furnace facility, gasification combined cycle power generation facility, and method for operating gasification furnace
EP3415816B1 (en) A method and a system for extending the load range of a power plant comprising a boiler supplying steam to a steam turbine
JP6556639B2 (en) Gasification system and operation method of gasification system
JP6957198B2 (en) Gasification furnace equipment and gasification combined cycle equipment equipped with this
JP4485899B2 (en) Combined gasification power generation facility, control method, fuel gas production method
JP2016037593A (en) Gasification furnace equipment, gasification composite power generating equipment, and method for controlling the gasification furnace unit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280003046.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749881

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012221495

Country of ref document: AU

Date of ref document: 20120126

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12749881

Country of ref document: EP

Kind code of ref document: A1