WO2012114370A1 - 燃焼装置 - Google Patents

燃焼装置 Download PDF

Info

Publication number
WO2012114370A1
WO2012114370A1 PCT/JP2011/000976 JP2011000976W WO2012114370A1 WO 2012114370 A1 WO2012114370 A1 WO 2012114370A1 JP 2011000976 W JP2011000976 W JP 2011000976W WO 2012114370 A1 WO2012114370 A1 WO 2012114370A1
Authority
WO
WIPO (PCT)
Prior art keywords
burner
furnace
combustion
air
nozzle
Prior art date
Application number
PCT/JP2011/000976
Other languages
English (en)
French (fr)
Inventor
越智佑介
倉増公治
木山研滋
岡▲崎▼洋文
Original Assignee
バブコック日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコック日立株式会社 filed Critical バブコック日立株式会社
Priority to CA2827903A priority Critical patent/CA2827903C/en
Priority to AU2011360560A priority patent/AU2011360560B2/en
Priority to PL11859242T priority patent/PL2679899T3/pl
Priority to JP2013500663A priority patent/JP5743115B2/ja
Priority to PCT/JP2011/000976 priority patent/WO2012114370A1/ja
Priority to EP11859242.7A priority patent/EP2679899B1/en
Priority to US13/981,485 priority patent/US20130340659A1/en
Priority to KR1020137024829A priority patent/KR101582729B1/ko
Publication of WO2012114370A1 publication Critical patent/WO2012114370A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • F23D1/005Burners for combustion of pulverulent fuel burning a mixture of pulverulent fuel delivered as a slurry, i.e. comprising a carrying liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L1/00Passages or apertures for delivering primary air for combustion 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L3/00Arrangements of valves or dampers before the fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M9/00Baffles or deflectors for air or combustion products; Flame shields
    • F23M9/02Baffles or deflectors for air or combustion products; Flame shields in air inlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/10Furnace staging
    • F23C2201/101Furnace staging in vertical direction, e.g. alternating lean and rich zones

Definitions

  • the present invention relates to a combustion apparatus such as a pulverized coal burning boiler having a pulverized coal burner.
  • the fuel is burned in a state of air shortage and then completely burned.
  • a two-stage combustion method that supplies air for use from an after-air port is applied.
  • the following means can be used.
  • NOx reduction measures that increase the residence time of the combustion gas from the burner to the NOx reduction zone in the furnace of the after-airport or reduce the excess air ratio (input air amount / theoretical air amount) than before.
  • the flame direction of the burner can be varied in the vertical direction of the furnace according to the combustion conditions such as the load. That is, if the burner flame is directed downward and the residence time of the combustion gas in the NOx reduction region between the burner and the after-airport is increased, the furnace installation position of the after-airport may be the same as the conventional one. Even if the combustion temperature becomes high, the position is on the lower side (upstream) side in the furnace than before, so the exhaust gas temperature at the furnace outlet can be made equal to the conventional one.
  • Japanese Unexamined Patent Application Publication No. 2008-121924 discloses a burner having a movable nozzle.
  • the nozzle is made movable in such a portion of the radiant heat that faces the furnace, it is necessary to consider the damage caused by the fall of the clinker adhering to the furnace and securing the mobility.
  • Japanese Patent Application Laid-Open No. 2002-147713 discloses a burner that changes the direction of the flame (combustion region) by giving a deviation to the air flow rate in the circumferential direction of the burner.
  • the combustion air flow paths of the plurality of burners are connected by ducts on the outer wall of the furnace, and a common wind box is provided. This complicates the handling of the duct.
  • the burner having the combustion air nozzle having at least two air inflow directions described in JP-A-2002-147713 also has a common combustion air flow path for each of the plurality of burners on the furnace outer wall as described above. In order to connect with a duct, the handling of the duct becomes complicated.
  • An object of the present invention is to provide a combustion apparatus in which the design temperature of the rear heat transfer surface can be made equal to the conventional one by changing the direction of the flame of the burner in the vertical direction in the furnace according to the combustion conditions such as the load. .
  • a cylindrical fuel nozzle 1 for injecting a mixture of fuel and its carrier gas into the furnace 18 and a combustion gas provided on the outer periphery of the fuel nozzle 1 are injected into the furnace 18.
  • a plurality of burners 19 having one or more cylindrical combustion gas nozzles 8 and 11 and a wind box 12 for supplying combustion gas to the combustion gas nozzles 8 and 11 are arranged side by side on the furnace wall 10 of the furnace 18.
  • the wind box 12 has combustion gas inflow openings 12a and 12b through which combustion gas flows from one direction perpendicular to the axial direction of the burner 19,
  • the combustion gas inflow openings 12a and 12b are partitioned so as to form a plurality of parallel flow paths through which the combustion gas flows in parallel, and some of the plurality of flow paths are the combustion channels.
  • Gas nozzle 8 11, the remaining flow path is connected to the lower side of the combustion gas nozzles 8, 11, and a first flow rate adjusting means 15 for independently adjusting the flow rate of the combustion gas is provided in each of the plurality of flow paths. It is a combustion apparatus characterized by being provided.
  • one duct 16 for supplying combustion gas to the plurality of window boxes 12 from the outside of the furnace 18 is installed outside the furnace wall 10 where the window box 12 is installed.
  • a third aspect of the present invention is the combustion apparatus according to the first or second aspect, wherein a plurality of the wind boxes 12 are installed side by side inside or outside the one duct 16.
  • the second flow rate adjusting means 17 for adjusting the flow rate of the combustion gas flowing into each burner 19 upstream of the first flow rate adjusting means 15 is provided in each window box 12.
  • the combustion apparatus according to any one of claims 1 to 3, wherein the combustion apparatus is provided.
  • each of the plurality of combustion gas nozzles 8 and 11 is provided with the first flow rate adjusting means 15 for adjusting the flow rate of the combustion gas, so that the first flow rate adjusting means 15 is opened.
  • the momentum of the combustion gas ejected from the burner 19 into the furnace can be adjusted independently.
  • the first flow rate adjusting means 15 the amount of air flow from the combustion gas nozzle 8 or 11 into the furnace 18 is increased compared to the upper side of the burner 19, and the momentum (air jet flow rate) from the lower side is increased. By doing so, the flame can be deflected downward.
  • the furnace outlet exhaust gas temperature can be reduced.
  • deflecting the flame below the burner 19 to shift the combustion area of the burner 19 downward the inside of the furnace 18 between the burner 19 and the after air port 24 provided on the furnace wall 10 on the downstream side of the burner 19.
  • the residence time in the NOx reduction zone at is longer than that when the flame ejection direction is horizontal, and the NOx concentration in the exhaust gas is reduced as compared with the prior art.
  • the second flow rate adjusting means 17 on the upstream side of the first flow rate adjusting means 15 the amount of air supplied to the individual burner 19 can be adjusted.
  • the combustion gas jetted from the burner 19 into the furnace 18 is deflected in the vertical direction so as to deflect the flame and control the heat absorption of the furnace.
  • the temperature control device for the rear heat transfer surface of the furnace 18 can be reduced.
  • a NOx reduction technique can be applied by changing the after-air port installation position and the excess air ratio without changing the steam temperature and metal temperature of the rear heat transfer surface.
  • the combustion area of the burner 19 is shifted downward by deflecting the flame downward in the furnace 18, and the residence time in the NOx reduction area between the burner 19 and the after-air port 24 is set to the horizontal direction of the flame ejection.
  • the NOx concentration in the exhaust gas can be reduced as compared with the conventional case by making it longer than that in the case of the above.
  • the combustion gases supplied to the wind box 12 provided outside the furnace wall surface 10 are collectively supplied from one duct 16.
  • the combustion gas supply system to the plurality of burners 19 can have a simple structure.
  • a plurality of the windboxes 12 are arranged side by side outside the furnace wall 10 inside or outside one duct 16. This simplifies the construction of a plurality of wind boxes 12 and ducts 16.
  • the upper and lower combustion of the burner 19 is achieved by the first flow rate adjusting means 15 provided in one wind box 12.
  • the amount of combustion gas supplied to the individual burners 19 can be adjusted by providing the second flow rate adjusting means 17 upstream of the first flow rate adjusting means 15. Can be easily done.
  • FIG. 3 is a perspective view (FIG. 3A) of a wind box according to an embodiment of the present invention and a diagram showing a wind tunnel test result relating to the wind box (FIG. 3B).
  • FIG. 3 is an example of a window box taken along the line AA in FIG. 2 (FIG. 4A) and the cross section taken along the line BB in FIG. 2 (FIG. 4B).
  • FIG. 3 is an example of a window box taken along a line AA in FIG. 2 (FIG. 5A) and a cross section taken along a line BB in FIG. 2 (FIG. 5B).
  • FIG. 3 is an example of a window box taken along the line AA in FIG. 2 (FIG. 16A) and the cross section along the line BB in FIG. 2 (FIG. 16B).
  • 2 is an example of a window box taken along the line AA in FIG. 2 (FIG.
  • FIG. 17A shows the supply method of the combustion air by installing the wind box concerning one Example of this invention in the duct for combustion gas conveyance. It is a figure which connects the wind box concerning one Example of this invention with the duct for combustion gas conveyance, and shows the supply method of combustion air.
  • FIG. 1 shows a pulverized coal boiler system according to the present invention
  • FIG. 2 is a sectional view of a pulverized coal burner 19 related to the pulverized coal boiler system of FIG. 1
  • FIG. 3 shows a wind box 12 of the pulverized coal burner 19.
  • FIG. 3A is a perspective view (FIG. 3A) and a diagram showing a wind tunnel test result relating to the wind box 12 (FIG. 3B).
  • the fuel of the present invention is not limited to pulverized coal, and any type or composition may be used as long as it is a pulverized solid fuel that can be transported by airflow.
  • air is mainly used as fuel conveyance gas and combustion gas
  • it is not necessarily limited to only air, combustion exhaust gas, mixed gas of oxygen and combustion exhaust gas, etc. Any kind and composition may be used as long as they are used as a fuel conveying gas and a combustion gas in a combustion apparatus such as a boiler.
  • the pulverized coal boiler system shown in FIG. 1 constitutes the furnace wall 10 by supplying pulverized coal and combustion air to a burner 19 provided in a plurality of stages on the furnace wall 10 of the boiler furnace 18 to burn the pulverized coal.
  • a heat exchanger such as a superheater (not shown) provided in the water tube wall and the furnace is heated to generate water vapor.
  • the pulverized coal supplied to the burner 19 is pulverized by pulverizing the coal in the bunker 20 with a mill 21, and the pulverized coal is air-flowed by the blower 23 and supplied to the burner 19.
  • Combustion air supplied to the burner 19 and the after-air port 24 is supplied via a duct 16 by a blower 25, and combustion air is supplied to the pulverized coal burner 19 from a wind box 12 disposed outside the boiler furnace wall 10. Supplied.
  • An oil spray nozzle 7 is disposed on the central axis of the pulverized coal burner 19, and a fuel nozzle 3 through which a solid-gas two-phase flow 1 of pulverized coal and conveying air flows is disposed on the outer periphery thereof, and combustion air 2 is disposed on the outer periphery of the fuel nozzle 3.
  • the secondary air nozzle 8 and the tertiary air nozzle 11 which eject are provided.
  • the outer peripheral wall of the tertiary air nozzle 11 is composed of a wind box 12.
  • the oil spray nozzle 7 is used for auxiliary combustion when the burner 19 is started or when low-load combustion is performed.
  • a venturi 6 for narrowing the inner diameter of the fuel nozzle 3 is disposed on the inner peripheral wall of the fuel nozzle 3, and a pulverized coal concentrator 5 is provided on the outer periphery of the oil spray nozzle 7 near the outlet of the fuel nozzle 3.
  • the flame holder 4 is provided at the tip of the partition wall (the outlet of the nozzles 3 and 8) separating the fuel nozzle 3 and the secondary air nozzle 8, and the tip of the partition wall (nozzle) separating the secondary air nozzle 8 and the tertiary air nozzle 11 is used. 8 and 11 outlets) are provided with guide sleeves 13 oriented in the direction of diffusing fluid from the central axis of the burner 19.
  • each burner 19 is composed of the oil spray nozzle 7, the fuel nozzle 3, the secondary air nozzle 8, the tertiary air nozzle 11, and the wind box 12 constituting the outer peripheral wall of the tertiary air nozzle 11.
  • the burner 19 is installed on the furnace wall 10 of the furnace 18.
  • FIG. 3 (a) A perspective view of the wind box 12 of the pulverized coal burner 19 of this embodiment is shown in FIG. 3 (a), a cross-sectional view taken along the line AA in FIG. 2 (FIG. 4 (a)), and a cross-sectional view taken along the line BB in FIG. FIG. 4 shows (FIG. 4B).
  • the black arrow shown in drawing after FIG. 4 shows the inflow direction of combustion air.
  • FIG. 4 does not show the heavy oil nozzle 7 and the pulverized coal nozzle 3, and the heavy oil nozzle 7 and the pulverized coal nozzle 3 are installed in the cylindrical through hole of the wind box 12.
  • the furnace wall of the through hole constitutes the outer wall of the secondary air nozzle 8.
  • a wind box 12 provided with combustion air inlets 12 a and 12 b is arranged in a direction perpendicular to the central axis direction of the pulverized coal burner 19, and it seems as if the through hole provided in the window box 12 is provided.
  • the secondary air nozzle 8 is arranged as inserted.
  • the wind box 12 is provided with two combustion air inlets 12a and 12b, and a partition plate 14 for partitioning the two combustion air inlets (combustion gas openings) 12a and 12b is provided.
  • the outer wall of the secondary air nozzle 8 that constitutes the through hole of the wind box 12 is connected to the outside of a portion that bisects the window.
  • the dampers 15a and 15b are disposed inside the box 12 by a length L1 from the inlet opening of the wind box 12 in a state where the planes of the dampers 15a and 15b are disposed in the direction along the flow of the combustion air. .
  • FIG. 3 shows the result of the velocity distribution of the tertiary air flow path outlet when the downward deflection of the flame was conducted in a test to give a deviation in the vertical momentum of the burner 19 of the tertiary air ejected from the tertiary air nozzle 11 into the furnace by the wind tunnel test. Shown in b). It was confirmed by this wind tunnel test that the momentum of the combustion air below the burner 19 was increased by adjusting the rotation angle of the upper and lower rotary dampers 15a and 15b. When the flame is deflected in the furnace 18 on the upper side of the burner 19, the upper rotary damper 15a is opened, and the lower rotary damper 15b is closed.
  • the pulverized coal burner 19 is provided with the secondary air nozzle 8 having the guide sleeve 13 at the tip, the combustion air can be ejected stepwise.
  • Two openings 8a are provided on the outer periphery of the secondary air nozzle 8 in the vertical direction, and a slide for adjusting the amount of air supplied from the opening 8a into the secondary air nozzle 8 as shown in FIG. It is desirable to provide an air amount adjusting mechanism such as a type damper 9a, 9b.
  • the secondary air nozzle 8 is fully closed by a sliding damper 9a, thereby preventing air from flowing into the upper secondary air nozzle 8 and the tertiary air nozzle 11 and ejecting from the secondary air nozzle 8 into the furnace f18.
  • the momentum of air can be kept substantially uniform in the circumferential direction, and flame holding properties can be maintained.
  • the secondary air nozzle 8 does not have to enter the secondary air nozzle 8 as long as combustion air flows from somewhere.
  • the momentum of the air ejected from the air nozzle 8 into the furnace 18 can be kept substantially uniform in the circumferential direction of the secondary air nozzle 8, but if the downward deflection of the flame in the furnace 18 is not desired. It is necessary to fully close the upper opening 8a of the secondary air nozzle 8 with the sliding damper 9a.
  • the combustion air inlets 12a and 12b obtained by dividing the inside of the wind box 12 shown in FIG. 5 by the partition plate 14 are further divided into two, and the dampers 15aa and 15ab and the dampers 15ba and 15bb are respectively connected to the combustion air inlets 12a and 12b.
  • the direction of the flame in the furnace 18 can be deflected by giving a deviation to the momentum of the combustion air in the upper half and the lower half of the burner 19.
  • a burner 19 having the wind box 12 is installed on the furnace wall 10 of the boiler furnace 18, and combustion air is supplied to the burner 19 from a duct 16 provided outside the furnace wall 10.
  • the arrangement of the duct 16 depends on the boiler structure and the installation angle of the burner 19 on the furnace wall 10.
  • FIG. 7 even if the burners 19 having the wind box 12 are arranged inside the duct 16, the momentum of the combustion air in the upper half and the lower half of the burner 19 is given a deviation so that the inside of the furnace 18. The direction of the flame can be deflected.
  • a wind box 12 into which combustion air flows only from above, which is perpendicular to the central axis direction of the burner 19, is provided.
  • the partition plate 14 and the rotary damper 15 are provided, and by adjusting the damper 15, the momentum of the combustion air jetted into the furnace can be given a vertical deviation.
  • three windboxes 12 into which combustion air flows only from one direction of the upper combustion air inlets 12a, 12b perpendicular to the central axis direction of the burner 19 are provided.
  • a partition plate 14 is provided so as to be divided.
  • dampers 15a, 15b, 15b of air amount regulators are provided on the upstream side of the three divided air inflow paths of the wind box 12, respectively. Therefore, air flows into the upper side of the burner 19 from the center of the wind box 12, and air flows into the lower side of the burner 19 from the left and right sides of the wind box 12.
  • the wind box 12 into which combustion air flows only from one direction of the upper combustion air inlets 12a and 12b perpendicular to the central axis direction of the burner 19 is divided into four.
  • Two partition plates 14 are provided.
  • the combustion air inlet 12a at the center of the wind box 12 is divided into two, and dampers 15b, 15aa, 15ab, 15b of air amount regulators are provided on the upstream side of the respective air inflow passages.
  • dampers 15b, 15aa, 15ab, 15b of air amount regulators are provided on the upstream side of the respective air inflow passages.
  • FIG. 3 shows the result of a test for giving a deviation to the momentum of the upper and lower of the burner 19 of the tertiary air in the wind tunnel test.
  • the momentum of the lower side of the burner 19 in the furnace 18 can be increased by adjusting the amount of fuel air flowing into the wind box 12 by the three or four dampers 15 in this way.
  • the case where the flame is deflected to the upper side of the burner 19 in the furnace can be dealt with by performing the reverse operation of the above operation.
  • the secondary air nozzle 8 having a guide sleeve 13 at the tip is provided in the wind box 12 so that combustion air can be ejected stepwise.
  • An opening 8a is provided in the outer wall of the secondary air nozzle 8, and an air amount adjusting mechanism such as slide type dampers 9a and 9b shown in FIG. 2 that can adjust the air amount to the secondary air nozzle 8 is used. It is desirable to adjust the opening degree of the opening 8a.
  • the opening 8a of the secondary air nozzle 8 above the wind box 12 is fully closed by the sliding dampers 9a and 9b, so that 3 above the burner 19
  • the inflow to the secondary air nozzle 11 can be prevented, and the momentum of the air ejected from the secondary air nozzle 8 into the furnace 18 can be kept substantially uniform in the circumferential direction, so that the flame holding property can be maintained.
  • a burner 19 having the wind box 12 is installed outside the furnace wall 10 of the boiler furnace 18, and combustion air is introduced into the duct 16 connected to the wind box 12 from the inflow direction shown in the figure. It is a structure to insert.
  • the arrangement of the duct 16 depends on the boiler structure and the installation angle of the burner 19 on the furnace wall 10. Also, as shown in FIG. 11, the same operation method can be executed even if the burners 19 having the window boxes 12 are respectively arranged inside the duct 16.
  • FIGS. 12 and 13 The present embodiment shown in FIGS. 12 and 13 is provided with a wind box 12 into which combustion air flows only from the combustion air inlets 12a and 12b below in the direction perpendicular to the central axis of the burner 19.
  • 12 is partitioned by a plurality of partition plates 14, and dampers 15b, 15a, 15b; 15b, 15aa, 15ab, 15b are provided in the combustion air nozzles of the wind box 12 partitioned by the partition plates 14, respectively.
  • 15 a, 15 b; 15 b, 15 aa, 15 ab, 15 b is adjusted to open and close the burner 19 with a deviation in the momentum of the combustion air ejected from the burner 19 toward the furnace 18.
  • partition plates 14 and 14 are provided so as to divide the wind box 12 into which combustion air flows only from one direction perpendicular to the central axis direction of the burner 19 into three. It has a structure. Further, dampers 15b, 15a, 15b of air amount regulators are provided upstream of the three divided air inlet passages 12b, 12a, 12b of the wind box 12, respectively. Therefore, the air from the combustion air inlet 12a in the center of the wind box 12 flows into the lower side of the burner 19, and the air flows into the upper side of the burner 19 from the left and right combustion air inlets 12b and 12b of the wind box 12. To do.
  • FIG. 3 shows the results of testing by giving deviations in the momentum up and down of the tertiary air in the wind tunnel test.
  • the momentum on the lower side of the burner 19 can be increased by adjusting the degree of opening and closing of the three dampers 15b, 15a, 15b, and when the flame is deflected to the upper side of the burner 19 in the furnace 18, the above operation is reversed. This can be done by performing an action.
  • a secondary air nozzle 8 having a guide sleeve 13 is provided in the wind box 12 so that combustion air is ejected in a direction of expanding from the outlet of the burner 19. Also, the secondary air nozzle 8 is provided with an opening 8a (FIG. 2), and it is desirable to provide a sliding damper 9 shown in FIG. 2 to adjust the amount of air flowing in from the opening 8a.
  • the damper 15a near the combustion air inlet 12a at the center of the windbox 12 is closed, and the dampers 15b and 15b near the left and right combustion air inlets 12b and 12b are opened, so that the
  • the opening 8a of the secondary air nozzle 8 on the lower side of the wind box 12 is fully closed by the sliding damper 9, so that the tertiary on the lower side of the burner 19 is closed.
  • the inflow of air into the air nozzle 11 can be prevented, and the momentum of the air ejected from the secondary air nozzle 8 into the furnace 18 can be kept substantially uniform in the circumferential direction, so that the flame holding ability can be maintained.
  • the flame can be deflected only by adjusting the amount of tertiary air ejection and giving a deviation to the momentum of the air above and below the burner 19 while maintaining the flame holding property by the above operation.
  • these structures and operating methods are provided with combustion air inlets 12b and 12b on both lower sides of the wind box 12, and the central combustion air inlet 12a is divided into two parts.
  • the present invention can also be applied to the case where dampers 15b, 15aa, 15ab, 15b are provided on the upstream side, and the same effect can be obtained by adjusting the dampers 15b, 15aa, 15ab, 15b.
  • a burner 19 having the window box 12 is installed on the boiler furnace wall 10, and combustion air is supplied to the burner 19 from a duct 16 provided outside the furnace wall 10.
  • the arrangement of the duct 16 depends on the boiler structure and the installation angle of the burner 19. Also, as shown in FIG. 15, the same operation method can be performed even if the burners 19 having the wind box 12 are respectively arranged inside the duct 16.
  • the maximum heat load area of the furnace 18 is shifted downward by deflecting the flame in the furnace 18 downward, the heat absorption of the furnace is increased and the exhaust gas temperature at the outlet of the furnace 18 is reduced. Further, the combustion zone of the burner 19 is shifted downward, and the residence time of the NOx reduction zone in the furnace 18 between the burner 19 and the after-air port 24 is formed evenly in the vertical direction of the burner 19.
  • the pulverized coal burner 19 which can extend the case and reduce the NOx concentration can be provided.
  • the supply air amount regulator for the individual burner 19 is used to adjust the flow rate of the combustion air flowing into each burner 19 upstream of the damper 15.
  • a second damper 17 is provided. Since the fuel supplied to the burners 19 arranged on the boiler furnace wall 10 may be distributed, the combustion air for each burner 19 so that the combustion air flow rate matches the fuel supply amount. It is desirable that the flow rate can be adjusted.
  • the combustion air flow rate can be adjusted, but originally, there is a deviation in the momentum of the combustion air above and below the burner 19.
  • FIGS. 16 and 17 show, in addition to the first dampers 15a and 15b that give deviation to the upper and lower air momentum of the burner 19 described in the first embodiment (FIGS. 4 and 5), on the upstream side of the first dampers 15a and 15b.
  • the structure which provided the 2nd dampers 17a and 17b for adjusting the flow volume of the combustion air which flows in into the burner 19 is shown.
  • the upper first damper 15a in the first dampers 15a and 15b that gives a deviation to the upper and lower combustion air momentum of the burner 19 is closed and the lower first damper 15b is opened.
  • the flame in the furnace 18 is deflected downward (see FIG. 3B). ).
  • the second dampers 17a and 17b upstream of the first dampers 15a and 15b the flow rate of the combustion air flowing into each burner 19 can be reduced without suppressing the deviation in the momentum of the combustion air above and below the burner 19. Can be adjusted individually.
  • first dampers 15a and 15b as regulators for giving deviations to the combustion air momentum above and below each burner 19 in the individual windbox 12 are provided on the downstream side of the second dampers 17a and 17b. It does not matter where the second dampers 17a, 17b are arranged.
  • the first dampers 15a and 15b and the second dampers 17a and 17b may be configured to adjust a hole area by sliding a plurality of stacked perforated plates. Any structure can be used as long as it has a function of adjusting the gas flow rate.
  • a secondary air nozzle 8 having a guide sleeve 13 as shown in FIG. 2 is provided in the wind box 12, and the combustion air is ejected while expanding from the outlet of the burner 19 toward the furnace 18. It has a structure to do.
  • the secondary air nozzle 8 is provided with an opening 8a, and it is desirable to provide a slide type damper 9 capable of adjusting the amount of air to the secondary air nozzle 8. For example, when the upper first damper 15a in the window box 12 shown in FIG. 16 is closed and the lower first damper 15b is opened, the amount of combustion air jetted below the burner 19 increases.
  • the opening 8a of the secondary air nozzle 8 in the upper part of the wind box 12 is fully closed by the sliding damper 9a, so that the combustion air flows into the tertiary air nozzle 11 in the upper part of the window box 12.
  • the momentum of the combustion air ejected from the secondary air nozzle 8 into the furnace 18 can be kept substantially uniform in the circumferential direction of the burner 19, and flame holding performance can be maintained.
  • the flame in the furnace 18 can be reduced only by giving a deviation in the momentum of the tertiary air above and below the burner 19 while maintaining the flame holding performance of the burner 19. Can be deflected.
  • these structures and operation methods are such that the combustion air inlets 12a and 12b in the wind box 12 are divided into two parts, and the first dampers 15aa and 15ab; With the damper adjustment method provided with 15bb and the second dampers 17aa, 17ab; 17ba, 17bb, the flow rate of the combustion air flowing into each burner 19 is individually controlled without suppressing the deviation of the momentum of the combustion air above and below the burner 19 Can be adjusted.
  • the burners 19 having the wind box 12 are respectively arranged inside the duct 16.
  • a plurality of burners 19 arranged in a row in the horizontal direction of the furnace wall 10 are divided into the second dampers 17 (17a, 17b and 17aa, 17ab; 17ba, 17bb) shown in FIGS. It can adjust by providing in.
  • a burner 19 having the window box 12 shown in FIGS. 16 and 17 is installed outside the furnace wall 10 of the boiler, and combustion air from the outside of the furnace 18 passes through the duct 16.
  • a configuration may be adopted in which the gas is supplied to the burner 19 having each window box 12.
  • the present invention further increases the industrial applicability by adding a flame deflection and heat absorption control function and a combustion gas flow rate adjustment function of the individual burner 19.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Supply (AREA)

Abstract

 燃料とその搬送気体との混合物を火炉18内に噴出させる筒状の燃料ノズル3と該ノズル3の外周に設けられた燃焼用空気を火炉内に噴出させる筒状の1以上の空気ノズル8,11と該ノズル8,11に共通して燃焼用空気を供給するウィンドボックス12を有するバーナ19を複数個、火炉18の炉壁10に並べて設置したボイラであって、ウィンドボックス12はバーナ19の軸方向に対して垂直方向に向いた一つの方向から燃焼用空気が流入する開口部12a,12bを有し、該開口部から並進して流入する平行な複数の空気流路を形成するように仕切板14で区画し、複数の流路のうち一部の流路は燃焼用空気ノズル8の上側、残りの流路は該ノズル8の下側に接続され、複数の燃焼用空気流路には、それぞれ独立に空気の運動量偏差用ダンパ15,さらに空気流量調整用ダンパ17を設け、バーナ19の火炎の向きを負荷などの燃焼条件に応じて火炉18内の上下方向で変更可能にする。

Description

燃焼装置
 本発明は微粉炭バーナを有する微粉炭焚きボイラ等の燃焼装置に関する。
 微粉炭焚きボイラの微粉炭バーナを用いる燃焼方法には、燃焼排ガス中の窒素酸化物(以下NOxと記す)排出量を低減するために、燃料を空気不足の状態で燃焼させた後、完全燃焼用の空気をアフタエアポートから供給する二段燃焼法が適用されている。
 より一層、ボイラ火炉出口の排ガス中のNOx濃度を低減させるためには、以下のような手段を用いることができる。
(1)アフタエアポートの火炉設置位置を高くし、バーナとアフタエアポートの間のNOx還元域に至る間の燃焼ガスの滞留時間を増加させる。
(2)空気過剰率(投入空気量/理論空気量)をできるだけ低減してサーマルNOxを従来より減少させる。
 しかし、上記(1)の技術は、完全燃焼域が火炉の下流域(火炉の上方部)に移行することから、また、(2)については、理論空気量に近接するほど燃焼温度が増加することから、火炉出口の排ガス温度が上昇する。このため、ボイラの後部熱伝面の蒸気温度及びメタル温度が上昇し、伝熱面材料、伝熱面配置等を従来のままとした設計では、チューブリークが発生する可能性が高くなる。従って、後部伝熱面の設計温度を従来よりも高くしなければならず、強度及び耐熱性の観点から材料の高品質化を図る必要に迫られるという問題がある。
 上述のバーナからアフタエアポートの火炉内のNOx還元域に至る間の燃焼ガスの滞留時間を増加させたり、空気過剰率(投入空気量/理論空気量)を従来より低減するようなNOx低減策を採りつつ、後部伝熱面の設計温度を従来と同等にするため、バーナの火炎の向きを負荷などの燃焼条件に応じて火炉上下方向に可変とすることが考えられる。即ち、バーナ火炎の向きを下向きとして、バーナとアフタエアポートの間のNOx還元域における燃焼ガスの滞留時間を増加させるようにすれば、アフタエアポートの火炉設置位置は従来と同等でも良く、バーナ火炎の燃焼温度が高温となっても、その位置は従来よりも火炉内の下方(上流)側となるので、火炉出口の排ガス温度は従来と同等にすることができる。
 特開2008-121924号公報には、可動式のノズルを有するバーナが開示されている。このような火炉に直面した輻射熱の大きな部位において、ノズルを可動式とした場合、炉内に付着したクリンカの落下による損傷や、可動性の確保に対する配慮が必要である。
 また、特開2002-147713号公報には、バーナの周方向で空気流量に偏差を与えることで、火炎の向き(燃焼領域)を変化させるバーナが示されている。 
 ここで示されている空気流入方向が少なくとも2方向以上ある燃焼用空気ノズルを有するバーナでは、火炉外壁において複数のバーナのそれぞれの燃焼用空気流路をダクトで接続し、共通のウィンドボックスを設けるためには、前記ダクトの取り回しが複雑になる。
特開2008-121924号公報 特開2002-147713号公報
 前述のように、特開2008-121924号公報記載の可動式のノズルを有するバーナを用いる場合は、火炉に直面した輻射熱の大きな部位において、ノズルを可動式とした場合に炉内に付着したクリンカの落下による損傷や、可動性の確保に対する配慮が必要である。
 また、特開2002-147713号公報記載の空気流入方向が少なくとも2方向以上ある燃焼用空気ノズルを有するバーナも、前述のように火炉外壁において複数のバーナのそれぞれの燃焼用空気流路を共通のダクトで接続しているためには、前記ダクトの取り回しが複雑になる。
 本発明の課題は、バーナの火炎の向きを負荷などの燃焼条件に応じて火炉内の上下方向に可変として、後部伝熱面の設計温度を従来と同等にできる燃焼装置を提供することにある。
 上記課題は、次の解決手段で解決される。 
 請求項1記載の発明は、燃料とその搬送気体との混合物を火炉18内に噴出させる筒状の燃料ノズル1と前記燃料ノズル1の外周に設けられた燃焼用気体を火炉18内に噴出させる筒状の1以上の燃焼用気体ノズル8,11と該燃焼用気体ノズル8,11に燃焼用気体を供給するウィンドボックス12を有するバーナ19を複数個、火炉18の炉壁10に並べて設置した燃焼装置であって、前記ウィンドボックス12は前記バーナ19の軸方向に対して垂直方向に向いた一つの方向から燃焼用気体が流入する燃焼用気体流入用開口部12a,12bを有し、該燃焼用気体流入用開口部12a,12bから燃焼用気体が並進して流入する平行な複数の流路を形成するように区画され、該複数の流路のうち、一部の流路は前記燃焼用気体ノズル8,11の上側、残りの流路は燃焼用気体ノズル8,11の下側に接続され、前記複数の流路には、それぞれ独立に燃焼用気体の流量を調整する第1の流量調整手段15が設けられることを特徴とする燃焼装置である。
 請求項2記載の発明は、複数の前記ウィンドボックス12に燃焼用気体を火炉18の外部から供給する一つのダクト16が、該ウィンドボックス12が設置される炉壁10の外側に設置されることを特徴とする請求項1記載の燃焼装置である。
 請求項3記載の発明は、前記一つのダクト16の内部又は外部に複数の前記ウィンドボックス12が並べて設置されることを特徴とする請求項1又は2記載の燃焼装置である。
  請求項4記載の発明は、前記第1の流量調整手段15の上流側に個々のバーナ19に流入する前記燃焼用気体の流量を調節する第2の流量調節手段17がそれぞれのウィンドボックス12内に設けられることを特徴とする請求項1ないし3のいずれかに記載の燃焼装置である。
 本発明の燃焼装置においては、複数の燃焼用気体ノズル8,11にはそれぞれ燃焼用気体流量の調整用の第1の流量調節手段15を設けているので、第1の流量調節手段15の開度を調整することで、バーナ19から火炉内に噴出する燃焼用気体の運動量を上下独立に調節できる。例えば、上記第1の流量調節手段15を調整して燃焼用気体ノズル8又は11から火炉18内に噴出する空気流量をバーナ19の上側に比べて下側からの運動量(空気噴出流量)を増加させることで、火炎を下向きに偏向させることができる。火炎を下向きに偏向させることで火炉18内の最大熱負荷域が下方に移行し、火炉18の熱吸収が増加し、火炉出口排ガス温度を低減できる。また、バーナ19の下方に火炎を偏向させることでバーナ19の燃焼域を下方に移行させることで、バーナ19とバーナ19の下流側の炉壁10に設けたアフタエアポート24の間の火炉18内におけるNOx還元域の滞留時間が、火炎の噴出方向を水平にした場合より長くなり、排ガス中のNOx濃度が従来技術より低減する。 
 また、第1の流量調節手段15の上流側に第2の流量調節手段17を設けることで、個別のバーナ19に供給する空気量を調整することができる。
 請求項1記載の発明によれば、バーナ19から火炉18内に噴出する燃焼用気体に上下方向で運動量の偏差を与えることで火炎を偏向させ、火炉の熱吸収を制御することができる。これにより、火炉18の後部伝熱面の温度制御機器の削減が可能となる。また既設の燃焼装置を改造する場合に後部伝熱面の蒸気温度及びメタル温度を従来と変えずに、アフタエアポート設置位置及び空気過剰率の変更によるNOx低減技術を適用することができる。また、火炉18内の下方に向けて火炎を偏向させることでバーナ19の燃焼域を下方に移行させ、バーナ19とアフタエアポート24の間のNOx還元域の滞留時間を、火炎の噴出方向を水平にした場合より長くして排ガス中のNOx濃度を従来より低減させることができる。 
 請求項2記載の発明によれば、請求項1記載の発明の効果に加えて、一つの火炉壁面10の外側に設けられるウィンドボックス12に供給する燃焼用気体をまとめて一つのダクト16から供給することができ、複数のバーナ19への燃焼用気体供給系統を単純な構造とすることができる。 
 請求項3記載の発明によれば、請求項1又は2記載の発明の効果に加えて、一つのダクト16の内部又は外部に複数の前記ウィンドボックス12を炉壁10の外側に並べて設置したことにより、複数のウィンドボックス12とダクト16の建設が簡単になる。 
 請求項4記載の発明によれば、請求項1ないし3のいずれかに記載の発明の効果に加えて、一つのウィンドボックス12に設けられる第1の流量調節手段15によりバーナ19の上下の燃焼用気体の運動量に偏差を与えることができ、第1の流量調節手段15の上流側に第2の流量調節手段17を設けることで、個別のバーナ19に供給する燃焼用気体量を調整することが容易にできるようになる。
本発明による微粉炭ボイラシステムを示す概略図である。 本発明の一実施例に係わる微粉炭バーナ断面図である。 本発明の一実施例のウィンドボックスの斜視図(図3(a))と該ウィンドボックスに係わる風洞試験結果を示す図(図3(b))である。 図2のA-A線断面図(図4(a))と図2のB-B線断面図(図4(b))のウィンドボックスの一例である。 図2のA-A線断面図(図5(a))と図2のB-B線断面図(図5(b))のウィンドボックスの一例である。 本発明の一実施例に係わるウィンドボックスを燃焼気体搬送用ダクトと接続し、燃焼用空気の供給方法を示す図である。 本発明の一実施例に係わるウィンドボックスを燃焼気体搬送用ダクト内に設置し、燃焼用空気の供給方法を示す図である。 図2のA-A線断面図のウィンドボックスの一例である。 図2のA-A線断面図のウィンドボックスの一例である。 本発明の一実施例に係わるウィンドボックスを燃焼気体搬送用ダクトと接続し、燃焼用空気の供給方法を示す図である。 本発明の一実施例に係わるウィンドボックスを燃焼気体搬送用ダクト内に設置し、燃焼用空気の供給方法を示す図である。 図2のA-A線断面図のウィンドボックスの一例である。 図2のA-A線断面図のウィンドボックスの一例である。 本発明の一実施例に係わるウィンドボックスを燃焼気体搬送用ダクトと接続し、燃焼用空気の供給方法を示す図である。 本発明の一実施例に係わるウィンドボックスを燃焼気体搬送用ダクト内に設置し、燃焼用空気の供給方法を示す図である。 図2のA-A線断面図(図16(a))と図2のB-B線断面図(図16(b))のウィンドボックスの一例である。 図2のA-A線断面図(図17(a))と図2のB-B線断面図(図17(b))のウィンドボックスの一例である。 本発明の一実施例に係わるウィンドボックスを燃焼気体搬送用ダクト内に設置し、燃焼用空気の供給方法を示す図である。 本発明の一実施例に係わるウィンドボックスを燃焼気体搬送用ダクトと接続し、燃焼用空気の供給方法を示す図である。
 図1には本発明に係る微粉炭ボイラシステムを示し、図2には図1の微粉炭ボイラシステムに係わる微粉炭バーナ19の断面図であり、図3には微粉炭バーナ19のウィンドボックス12の斜視図(図3(a))と該ウィンドボックス12に係わる風洞試験結果を示す図(図3(b))である。 
 なお、本発明の燃料としては、微粉炭に限らず、気流搬送可能な程度に微粉化された固体燃料であれば、その種類や組成は問わない。また燃料搬送用気体および燃焼用気体として、主に空気を用いる場合について記載しているが、必ずしも空気のみに限定されるものではなく、燃焼排ガスや空気または酸素と燃焼排ガスとの混合気体等、ボイラなどの燃焼装置の燃料搬送用気体および燃焼用気体として用いられるものであれば、その種類や組成を問わない。
 図1に示す微粉炭ボイラシステムは、ボイラ火炉18の炉壁10に複数段設けられたバーナ19に微粉炭と燃焼用空気を供給して微粉炭を燃焼させて炉壁10を構成する図示しない水管壁及び火炉内に設けられた図示しない過熱器などの熱交換器を加熱して水蒸気を発生させる。
 バーナ19に供給する微粉炭はバンカ20内の石炭をミル21で粉砕して微粉炭とし、ブロア23で微粉炭を気流搬送してバーナ19に供給する。またバーナ19とアフタエアポート24に供給する燃焼用空気はブロア25によりダクト16を経由して供給され、微粉炭バーナ19にはボイラ炉壁10の外側に配置されたウィンドボックス12から燃焼用空気が供給される。
 微粉炭バーナ19の中心軸に油噴霧ノズル7とその外周に微粉炭と搬送用空気との固気二相流1が流れる燃料ノズル3を配置、該燃料ノズル3の外周に燃焼用空気2を噴出する2次空気ノズル8と3次空気ノズル11が設けられる。図2に示すように3次空気ノズル11の外周壁はウィンドボックス12で構成されている。 
 また、油噴霧ノズル7はバーナ19の起動時または低負荷燃焼時に助燃のために使用する。燃料ノズル3のノズル内径を狭めるためのベンチュリ6を燃料ノズル3の内周壁に配置し、微粉炭濃縮器5を燃料ノズル3の出口部付近の油噴霧ノズル7の外周に設ける。燃料ノズル3と2次空気ノズル8を隔てる隔壁の先端(ノズル3,8の出口部)に保炎器4を設け、また2次空気ノズル8と3次空気ノズル11を隔てる隔壁の先端(ノズル8,11の出口部)に流体をバーナ19の中心軸から拡散する方向に向けたガイドスリーブ13を設ける。
 このように、本実施例では各バーナ19は、油噴霧ノズル7、燃料ノズル3、2次空気ノズル8、3次空気ノズル11及び3次空気ノズル11の外周壁を構成するウィンドボックス12から構成され、このバーナ19が火炉18の炉壁10に設置されている。 
 以下、図面を用いて説明するが、本発明はそれらの構造に限定されるものではない。
 本実施例の微粉炭バーナ19のウィンドボックス12の斜視図を図3(a)に示し、図2のA-A線断面図(図4(a))と図2のB-B線断面図(図4(b))を図4に示す。なお、図4以下の図面に記す黒塗りの矢印は燃焼用空気の流入方向を示す。
 また、図4には重油ノズル7、微粉炭ノズル3は示してなく、ウィンドボックス12の円筒状の貫通孔内に重油ノズル7と微粉炭ノズル3が設置される。該貫通孔の炉壁は2次空気用ノズル8の外壁を構成する。
 図4に示すように、微粉炭バーナ19の中心軸方向に対して垂直方向に燃焼用空気の入口12a,12bを設けたウィンドボックス12が配置され、該ウィンドボックス12に設けた貫通孔にあたかも挿入されたように2次空気用ノズル8が配置されている。
 またウィンドボックス12には、2つの燃焼用空気入口12a,12bが設けられ、2つの燃焼用空気入口(燃焼用気体開口部)12a,12bを仕切る仕切板14が設けられ、該仕切板14はウィンドボックス12の前記貫通孔を構成する2次空気ノズル8の外壁を2分する箇所の外側に接続している。
 仕切板14で上下に2分されたウィンドボックス12の内部の燃焼用空気入口12a,12bの近傍にはウィンドボックス12内に導入される燃焼用空気の流れを横断する方向に回転軸を有し、燃焼用空気の流れる面積を変更する上下のダンパ15a,15bをそれぞれ設け、2つのダンパ15a,15bの回転角度をそれぞれ別々に調整することで微粉炭バーナ19から噴出する燃焼用空気の運動量にウィンドボックス12の内部の上下で偏差を与えることができる。
 例えば、上方のダンパ15aを閉動作し、下方のダンパ15bを開動作することで、バーナ19の下方の燃焼用空気の噴出量が増加し、バーナ19の下方の燃焼用空気の運動量が増加することでボイラ火炉18内での火炎を下向きに偏向させることができる。 
 なお、ダンパ15a,15bの平面を燃焼用空気の流れに沿った方向に配置した状態でウィンドボックス12の入口開口部から長さL1だけ該ボックス12の内側にダンパ15a,15bを配置している。
 風洞試験により3次空気ノズル11から火炉内に噴出する3次空気のバーナ19の上下の運動量に偏差を与える試験をした火炎下方偏向時の3次空気流路出口速度分布の結果を図3(b)に示す。この風洞試験により上下の回動式ダンパ15a,15bの回動角度を調整することでバーナ19下方の燃焼用空気の運動量を増加することを確認できた。バーナ19の上側の火炉18内に火炎を偏向させる場合には、上方の回動式ダンパ15aを開動作し、下方の回動式ダンパ15bを閉動作する。
 微粉炭バーナ19にはガイドスリーブ13を先端に有する2次空気ノズル8を設けているので燃焼用空気を段階的に噴出できる構造となっている。上記2次空気ノズル8の外周部には開口部8aを上下に2つ設けており、図2に示すように前記開口部8aから2次空気ノズル8内へ供給される空気量を調整するスライド式ダンパ9a,9b等のような空気量調整機構を設けることが望ましい。
 例えば上側の回動式ダンパ15aを閉動作し、下側の回動式ダンパ15bを開動作することでバーナ19の下側からの燃焼用空気の噴出量を増加させる際に、2次空気ノズル8の上部開口部8aをスライド式ダンパ9aで全閉することで、上側の2次空気ノズル8と3次空気ノズル11への空気流入を防ぎ、2次空気ノズル8から火炉f18内に噴出する空気の運動量を周方向にほぼ均一に保つことができ、保炎性を保持することができる。
 なお、2次空気ノズル8の上部開口部8aをスライド式ダンパ9aで全閉にしても、しなくても2次空気ノズル8にどこかから燃焼用空気が流入してさえいれば、2次空気ノズル8から火炉18内に噴出する空気の運動量を2次空気ノズル8の周方向にほぼ均一に保つことができるが、火炉18内での火炎の下側への偏向を弱くしたくなければ、2次空気ノズル8の上部開口部8aをスライド式ダンパ9aで全閉することが必要である。
 上記燃焼用空気の流入量の調節により保炎性を保ちつつ、バーナ19の上半分と下半分の燃焼用空気の運動量に偏差を与えるだけで、火炉18内の火炎の向きを偏向させることができる。図5に示すウィンドボックス12内を仕切板14で2分した燃焼用空気入口12a,12bを、さらに2分して、各燃焼用空気入口12a,12bにそれぞれダンパ15aa,15abとダンパ15ba,15bbを設けた場合も同じようにバーナ19の上半分と下半分の燃焼用空気の運動量に偏差を与えて火炉18内の火炎の向きを偏向させることができる。
 本実施例は図6に示すように前記ウィンドボックス12を有するバーナ19をボイラ火炉18の炉壁10に設置し、炉壁10の外側に設けたダクト16から燃焼用空気をバーナ19に供給する。ただし、ダクト16の配置はボイラ構造及び前記バーナ19の炉壁10への設置角度に依存する。また、図7に示すように前記ウィンドボックス12を有するバーナ19をダクト16の内部にそれぞれ配置しても、バーナ19の上半分と下半分の燃焼用空気の運動量に偏差を与えて火炉18内の火炎の向きを偏向させることができる。
 本実施例では、図8と図9に示すようにバーナ19の中心軸方向に対して垂直方向にある上方からのみ燃焼用空気が流入するウィンドボックス12を設け、該ウィンドボックス12内に複数の仕切板14及び回動式ダンパ15を設けており、ダンパ15を調整することで火炉内に噴出する燃焼用空気の運動量を上下に偏差を与えることができる。
 図8に示すように本実施例では、前記バーナ19の中心軸方向に対して垂直方向にある上方の燃焼用空気入口12a,12bの1方向からのみ燃焼用空気が流入するウィンドボックス12を3分割するように仕切板14を設けている。さらに上記ウィンドボックス12の3分割された空気流入路の上流側に空気量調整器のダンパ15a,15b,15bをそれぞれ設けている。そのためバーナ19の上側にはウィンドボックス12の中央部から空気が流入し、バーナ19の下側にはウィンドボックス12の左右から空気が流入する。
 図9に示す実施例では、前記バーナ19の中心軸方向に対して垂直方向にある上方の燃焼用空気入口12a,12bの1方向からのみ燃焼用空気が流入するウィンドボックス12を4分割するように仕切板14を2個設けている。さらに上記ウィンドボックス12の中央部の燃焼用空気入口12aを2分割して、それぞれの空気流入路の上流側に空気量調整器のダンパ15b,15aa,15ab,15bを設けている。図9に示す場合もバーナ19の上側にはウィンドボックス12の上側中央部から空気が流入し、バーナ19の下側にはウィンドボックス12の左右から空気が流入する。
 図8と図9に示すウィンドボックス12において、例えば中央部の燃焼用空気入口12aの近くのダンパ15a又はダンパ15aa,15abを閉動作し、左右の燃焼用空気入口12b,12bの近くの他の2つのダンパ15b,15bを開動作することでバーナ19の下方の燃焼用空気の噴出量が増加し、バーナ19の下側への燃焼用空気流の運動量が増加して火炉18内での火炎を下向きに変更することができる。風洞試験にて3次空気のバーナ19の上下の運動量に偏差を与える試験をした結果は図3に示した通りである。
 このように3つ又は4つのダンパ15によるウィンドボックス12内への燃料用空気の流入量の調整により、火炉18内のバーナ19の下側の運動量を増加できることが確認できる。火炉内のバーナ19の上側に火炎を偏向する場合も上記運転の逆の動作を行うことで対応できる。
 ウィンドボックス12内にはガイドスリーブ13を先端に有する2次空気ノズル8を設けており、燃焼用空気を段階的に噴出できる構造となっている。上記2次空気ノズル8の外壁には開口部8aを設けており、2次空気ノズル8への空気量を調整できる図2に示すスライド式ダンパ9a,9bのような空気量調整機構を用いて前記開口部8aの開口度を調整することが望ましい。例えば図8に示す中央部の燃焼用空気入口12aの近くのダンパ15aを閉動作し、左右の燃焼用空気入口12b,12bの近くの2つのダンパ15b,15bを開動作することで火炉18内の下方の燃焼用空気の噴出量が増加する際に、ウィンドボックス12の上側にある2次空気ノズル8の開口部8aをスライド式ダンパ9a,9bにより全閉することで、バーナ19上方の3次空気ノズル11への流入を防ぎ、2次空気ノズル8からの火炉18内に噴出する空気の運動量は周方向にほぼ均一に保つことができ、保炎性を保持することができる。
 上記運転により保炎性を保ちつつ、3次空気のバーナ19上下の運動量に偏差を与えるだけで、火炎を偏向することを可能となる。これらの構造及び運転方法は図9に示すようにウィンドボックス12の中央部の燃焼用空気入口12aを2分割して、その近くにダンパ15aa,15abを設けた場合もダンパ調整方法により同じ効果を得ることができる。
 本実施例は、図10に示すように前記ウィンドボックス12を有するバーナ19をボイラ火炉18の炉壁10の外側に設置し、ウィンドボックス12に接続するダクト16に図示の流入方向から燃焼用空気を入れる構造である。ただし、ダクト16の配置はボイラ構造及び前記バーナ19の炉壁10への設置角度に依存する。また、図11に示すように前記ウィンドボックス12を有するバーナ19をダクト16の内部にそれぞれ配置しても同様の運用方法を実行できる。
 図12及び図13に示す本実施例は、前記バーナ19の中心軸に対して垂直方向の下方の燃焼用空気入口12a,12bからのみ燃焼用空気が流入するウィンドボックス12を設け、該ウィンドボックス12内を複数の仕切板14で仕切り、仕切板14で仕切られたウィンドボックス12の各燃焼用空気ノズル内にダンパ15b,15a,15b;15b,15aa,15ab,15bをそれぞれ設け、該ダンパ15b,15a,15b;15b,15aa,15ab,15bの開閉度を調整することでバーナ19から火炉18に向けて噴出する燃焼用空気の運動量をバーナ19の上下に偏差を与える構造を有する。
 図12に示す本実施例はバーナ19の中心軸方向に対して垂直方向の下側の1方向からのみ燃焼用空気が流入するウィンドボックス12を3分割するように仕切板14,14を設けた構造となっている。さらに上記ウィンドボックス12の3分割された空気流入路12b,12a,12bの上流部に空気量調整器のダンパ15b,15a,15bをそれぞれ設けている。そのためバーナ19の下側にはウィンドボックス12の中央部の燃焼用空気入口12aからの空気が流入し、バーナ19の上側にはウィンドボックス12の左右の燃焼用空気入口12b,12bから空気が流入する。
 こうして、例えばウィンドボックス12の中央部の燃焼用空気入口12aの近くのダンパ15aを開動作し、左右の燃焼用空気入口12b,12bの近くのダンパ15b,15bを閉動作することでバーナ19の下側の燃焼用空気の噴出量が増加し、バーナ19の下側への燃焼用空気の運動量が増加することで火炉18内の火炎を下向きに変更することができる。風洞試験にて3次空気の上下の運動量に偏差を与え試験した結果は図3に示す通りである。
 3つのダンパ15b,15a,15bの開閉度を調整することでバーナ19の下側の運動量を増加できることが確認でき、火炉18内でバーナ19の上側に火炎を偏向する場合も上記運転の逆の動作を行うことで対応できる。
 ウィンドボックス12内にはガイドスリーブ13を有する2次空気ノズル8を設けており、燃焼用空気をバーナ19出口から拡大する方向に噴出する構造となっている。また上記2次空気ノズル8には開口部8a(図2)を設けており、図2に示すスライド式ダンパ9を設けて開口部8aからの空気流入量を調整することが望ましい。例えばウィンドボックス12の中央部の燃焼用空気入口12aの近くのダンパ15aを閉動作し、左右の燃焼用空気入口12b,12bの近くのダンパ15b,15bを開動作することでバーナ19の上方の燃焼用空気の噴出量が増加する際に、ウィンドボックス12の下側にある2次空気ノズル8の開口部8aをスライド式ダンパ9により全閉とすることで、バーナ19の下側の3次空気ノズル11への空気流入を防ぎ、2次空気ノズル8から火炉18内に向けて噴出する空気の運動量を周方向にほぼ均一に保つことができ、保炎性を保持することができる。上記運転により保炎性を保ちつつ、3次空気噴出量を調整してバーナ19の上下で空気の運動量に偏差を与えるだけで、火炎を偏向することを可能とする。これらの構造及び運転方法は図13のようにウィンドボックス12の下側両側に燃焼用空気入口12b,12bを設け、中央部の燃焼用空気入口12aを2分割して、それぞれの空気流入路の上流側にダンパ15b,15aa,15ab,15bを設けた場合にも適用でき、前記ダンパ15b,15aa,15ab,15bの調整方法により同じ効果を得ることができる。
 本実施例は、図14に示すように前記ウィンドボックス12を有するバーナ19をボイラ炉壁10に設置し、炉壁10の外側に設けたダクト16から燃焼用空気をバーナ19に供給することを特徴とする。ただし、ダクト16の配置はボイラ構造及び前記バーナ19の設置角度に依存する。また、図15に示すように前記ウィンドボックス12を有するバーナ19をダクト16の内部にそれぞれ配置しても同様の運用方法が行える。
 上記本実施例3によれば、火炉18内の火炎を下向きに偏向することで火炉18の最大熱負荷域が下方に移行するので火炉の熱吸収が増加し、火炉18の出口排ガス温度を低減でき、さらにバーナ19の燃焼域を下方に移行させて、バーナ19とアフタエアポート24の間の火炉18内でのNOx還元域の滞留時間を、燃焼域をバーナ19の上下方向に均等に形成させる場合より延長してNOx濃度を低減できる微粉炭バーナ19を提供できる。
 本実施例は上記実施例1から3の構成に加えて、ダンパ15の上流側にそれぞれのバーナ19に流入する燃焼用空気の流量を調節するための個別のバーナ19の供給空気量調整器である第2ダンパ17を設けた構成である。 
 ボイラ炉壁10に複数配置されているバーナ19へ供給される燃料には分布が生じ得るので、燃料供給量に見合った燃焼用空気流量となるように1つ1つのバーナ19ごとに燃焼用空気流量を調節できることが望まれる。 
 ここで、第1ダンパ15のみでも、その開度を1つ1つのバーナ19ごとに調節すれば、燃焼用空気流量を調節できるが、本来、バーナ19の上下の燃焼用空気の運動量に偏差を与える目的で設けた第1ダンパ15に前記燃料供給量に見合った燃焼用空気流量を調節する機能を重ねて持たせると、その制御が難しくなる。 
 そこで、本実施例においては、前記それぞれ異なる2つの機能を分担する第1ダンパ15と第2ダンパ17を独立して設けている。 
 図16と図17は、実施例1(図4、5)で説明したバーナ19の上下の空気運動量に偏差を与える第1ダンパ15a,15bに加え、第1ダンパ15a,15bの上流側に各バーナ19に流入する燃焼用空気流量を調節するための第2ダンパ17a,17bを設けた構成を示す。 
 前述のとおり、例えばバーナ19の上下の燃焼用空気運動量に偏差を与える第1ダンパ15a,15bの中の上側の第1ダンパ15aを閉動作し、下側の第1ダンパ15bを開動作することでバーナ19の下側の燃焼用空気の噴出量が増加し、バーナ19の下方への燃焼用空気の運動量が増加すると、火炉18内での火炎が下向きに偏向する(図3(b)参照)。
 第1ダンパ15a,15bの上流に第2ダンパ17a,17bを設けることで、バーナ19の上下の燃焼用空気の運動量の偏差を抑制することなく、それぞれのバーナ19に流入する燃焼用空気流量を個別に調整することができる。 
 個別のウィンドボックス12内でそれぞれのバーナ19の上下の燃焼用空気運動量に偏差を与える調節器としての第1ダンパ15a,15bが第2ダンパ17a,17bの下流側に設けられていれば良く、第2ダンパ17a,17bが配置される場所を問わない。 
 また、第1ダンパ15a,15b及び第2ダンパ17a,17b共に図示したバタフライ型のダンパの代わりに重ね合わせた複数の多孔板をスライドさせて開孔面積を調節するようなものを用いても良く、気体流量の調節機能を有するものであれば、その構造は問わない。
 本実施例では、ウィンドボックス12内には図2に示すようなガイドスリーブ13を有する2次空気ノズル8を設けており、燃焼用空気をバーナ19の出口から火炉18内に向けて拡げながら噴出する構造となっている。2次空気ノズル8は開口部8aを設けており、2次空気ノズル8への空気量を調整できるスライド式ダンパ9を設けることが望ましい。 
 例えば、図16に示すウィンドボックス12内の上方の第1ダンパ15aを閉動作し、下方の第1ダンパ15bを開動作することでバーナ19の下方の燃焼用空気の噴出量が増加する際に、ウィンドボックス12内の上方にある2次空気ノズル8の開口部8aをスライド式ダンパ9aにより全閉することで、ウィンドボックス12内の上方の3次空気ノズル11への燃焼用空気の流入を防ぎ、2次空気ノズル8からの火炉18内へ噴出する燃焼用空気の運動量はバーナ19の周方向にほぼ均一に保つことができ、保炎性を保持することができる。 
 上記第1ダンパ15a,15bとスライド式ダンパ9aの操作により、バーナ19での保炎性を保ちつつ、バーナ19の上下の3次空気の運動量に偏差を与えるだけで、火炉18内の火炎を偏向させることができる。
 これらの構造及び運転方法は図17に示すようにウィンドボックス12内の燃焼用空気入口12a,12bをそれぞれ2分割して、各燃焼用空気入口12a,12bに第1ダンパ15aa,15ab;15ba,15bbと第2ダンパ17aa,17ab;17ba,17bbを設けるダンパ調整方法により、バーナ19の上下の燃焼用空気の運動量の偏差を抑制することなく、それぞれのバーナ19に流入する燃焼用空気流量を個別に調整することができる。
 本実施例でも図18に示すようにウィンドボックス12を有するバーナ19をダクト16の内部にそれぞれ配置する。火炉壁10の水平方向に複数個、列状に配置したバーナ19の個別空気量を図16及び図17の第2ダンパ17(17a,17b及び17aa,17ab;17ba,17bb)をウィンドボックス12内に設けることで調整することができる。 
 また、図19に示すように図16及び図17に示す前記ウィンドボックス12を有するバーナ19をボイラの炉壁10の外側に設置し、火炉18の外部からの燃焼用空気をダクト16を経由してそれぞれのウィンドボックス12を有するバーナ19に供給する構成にしても良い。
 本発明は火炎偏向と熱吸収制御機能、個別バーナ19の燃焼用気体流量調節機能を付加することで、さらに産業上の利用可能性が高まる。
1 固気二相流      2 燃焼用空気
3 燃料ノズル      4 保炎器
5 微粉炭濃縮器     6 ベンチュリ
7 重油ノズル      8 2次空気ノズル
9 スライド式ダンパ   10 ボイラ炉壁
11 3次空気ノズル   12 ウィンドボックス
13 ガイドスリーブ   14 仕切板
15(15a,15aa,15ab,15b,15ba,15bb) ダンパ(第1の流量調整手段)
16 ダクト       
17(17a,17aa,17ab,17b,17ba,17bb) ダンパ(第2の流量調整手段)
18 ボイラ火炉     19 バーナ
20 バンカ       21 ミル
23 ブロア       24 アフタエアポート
25 ブロア

Claims (4)

  1.  燃料とその搬送気体との混合物を火炉内に噴出させる筒状の燃料ノズルと前記燃料ノズルの外周に設けられた燃焼用気体を火炉内に噴出させる筒状の1以上の燃焼用気体ノズルと該燃焼用気体ノズルに燃焼用気体を供給するウィンドボックスを有するバーナを複数個、火炉の炉壁に並べて設置した燃焼装置であって、
     前記ウィンドボックスは前記バーナの軸方向に対して垂直方向に向いた一つの方向から燃焼用気体が流入する燃焼用気体流入用開口部を有し、該燃焼用気体流入用開口部から燃焼用気体が並進して流入する平行な複数の流路を形成するように区画され、該複数の流路のうち、一部の流路は前記燃焼用気体ノズルの上側、残りの流路は燃焼用気体ノズルの下側に接続され、前記複数の流路には、それぞれ独立に燃焼用気体の流量を調整する第1の流量調整手段が設けられることを特徴とする燃焼装置。
  2.  複数の前記ウィンドボックスに燃焼用気体を火炉の外部から供給する一つのダクトは、該ウィンドボックスが設置される炉壁の外側に設置されることを特徴とする請求項1記載の燃焼装置。
  3.  前記一つのダクトの内部又は外部に複数の前記ウィンドボックスが並べて設置されることを特徴とする請求項1又は2記載の燃焼装置。
  4.  前記第1の流量調整手段の上流側に個々のバーナに流入する前記燃焼用気体の流量を調節する第2の流量調節手段がそれぞれのウィンドボックス内に設けられることを特徴とする請求項1ないし3のいずれかに記載の燃焼装置。
PCT/JP2011/000976 2011-02-22 2011-02-22 燃焼装置 WO2012114370A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA2827903A CA2827903C (en) 2011-02-22 2011-02-22 Combustion device
AU2011360560A AU2011360560B2 (en) 2011-02-22 2011-02-22 Combustion device
PL11859242T PL2679899T3 (pl) 2011-02-22 2011-02-22 Urządzenie do spalania
JP2013500663A JP5743115B2 (ja) 2011-02-22 2011-02-22 燃焼装置
PCT/JP2011/000976 WO2012114370A1 (ja) 2011-02-22 2011-02-22 燃焼装置
EP11859242.7A EP2679899B1 (en) 2011-02-22 2011-02-22 Combustion device
US13/981,485 US20130340659A1 (en) 2011-02-22 2011-02-22 Combustion device
KR1020137024829A KR101582729B1 (ko) 2011-02-22 2011-02-22 연소 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/000976 WO2012114370A1 (ja) 2011-02-22 2011-02-22 燃焼装置

Publications (1)

Publication Number Publication Date
WO2012114370A1 true WO2012114370A1 (ja) 2012-08-30

Family

ID=46720199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000976 WO2012114370A1 (ja) 2011-02-22 2011-02-22 燃焼装置

Country Status (8)

Country Link
US (1) US20130340659A1 (ja)
EP (1) EP2679899B1 (ja)
JP (1) JP5743115B2 (ja)
KR (1) KR101582729B1 (ja)
AU (1) AU2011360560B2 (ja)
CA (1) CA2827903C (ja)
PL (1) PL2679899T3 (ja)
WO (1) WO2012114370A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7141574B1 (ja) * 2021-08-10 2022-09-26 コロナ株式会社 送風バーナ装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10375901B2 (en) 2014-12-09 2019-08-13 Mtd Products Inc Blower/vacuum
CN105202568B (zh) * 2015-10-14 2017-05-10 北京高能时代环境技术股份有限公司 生活垃圾炉排炉的二次风装置
CN108087867A (zh) * 2018-01-11 2018-05-29 西安热工研究院有限公司 一种用于平衡低负荷氮氧化物与汽水参数的低氮燃烧系统及方法
CN109185872B (zh) * 2018-10-17 2023-09-19 烟台龙源电力技术股份有限公司 一种锅炉二次风系统
CN109185871B (zh) * 2018-10-17 2023-09-15 烟台龙源电力技术股份有限公司 一种锅炉二次风系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543924A (en) * 1977-06-09 1979-01-12 Kobe Steel Ltd Combustion method and system for small nitrogen oxide production
JPH09101015A (ja) * 1995-10-03 1997-04-15 Babcock Hitachi Kk 燃焼装置とそのスラグ付着除去装置
JPH09196310A (ja) * 1997-03-07 1997-07-29 Hitachi Ltd 微粉炭バーナ、微粉炭ボイラ及び微粉炭燃焼方法
JP2002147713A (ja) 2000-11-07 2002-05-22 Babcock Hitachi Kk 燃焼用バーナ、該バーナを備えた燃焼装置及び前記バーナを用いる燃焼方法
JP2008121924A (ja) 2006-11-09 2008-05-29 Mitsubishi Heavy Ind Ltd バーナ構造
JP2010139180A (ja) * 2008-12-12 2010-06-24 Mitsubishi Heavy Ind Ltd 旋回燃焼ボイラ
JP2010249362A (ja) * 2009-04-13 2010-11-04 Ihi Corp バーナ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4551090A (en) * 1980-08-25 1985-11-05 L. & C. Steinmuller Gmbh Burner
JPS61101226U (ja) * 1984-12-04 1986-06-27
JPH0729335B2 (ja) * 1989-04-24 1995-04-05 キタノ製作株式会社 歯ブラシなどのハンドルの成形方法および成形型
JP3054420B2 (ja) * 1989-05-26 2000-06-19 株式会社東芝 ガスタービン燃焼器
JPH0543924A (ja) * 1991-08-15 1993-02-23 Kobe Steel Ltd 2次燃焼吹錬方法
JPH0735302A (ja) * 1993-07-22 1995-02-07 Ishikawajima Harima Heavy Ind Co Ltd 石炭焚ボイラのミル常時ウォーミング方法
JPH09133345A (ja) * 1995-11-06 1997-05-20 Mitsubishi Heavy Ind Ltd バーナ
US6699031B2 (en) * 2001-01-11 2004-03-02 Praxair Technology, Inc. NOx reduction in combustion with concentrated coal streams and oxygen injection
JP2003254510A (ja) * 2002-02-28 2003-09-10 Babcock Hitachi Kk 燃焼装置ならびにウインドボックス
JP4969464B2 (ja) * 2008-01-08 2012-07-04 三菱重工業株式会社 バーナ構造
BRPI0911632A2 (pt) * 2008-04-10 2015-10-13 Babcock Hitachi Kabushiku Kaisha queimador de combustível sólido, aparelho de combustão que usa queimador de combustível sólido e método para operar o aparelho de combustão
JP2011033287A (ja) * 2009-08-04 2011-02-17 Mitsubishi Heavy Ind Ltd 微粉炭バーナ
US20130291770A1 (en) * 2011-01-21 2013-11-07 Babcock-Hitachi Kabushiki Kaisha Solid fuel burner and combustion device using same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543924A (en) * 1977-06-09 1979-01-12 Kobe Steel Ltd Combustion method and system for small nitrogen oxide production
JPH09101015A (ja) * 1995-10-03 1997-04-15 Babcock Hitachi Kk 燃焼装置とそのスラグ付着除去装置
JPH09196310A (ja) * 1997-03-07 1997-07-29 Hitachi Ltd 微粉炭バーナ、微粉炭ボイラ及び微粉炭燃焼方法
JP2002147713A (ja) 2000-11-07 2002-05-22 Babcock Hitachi Kk 燃焼用バーナ、該バーナを備えた燃焼装置及び前記バーナを用いる燃焼方法
JP2008121924A (ja) 2006-11-09 2008-05-29 Mitsubishi Heavy Ind Ltd バーナ構造
JP2010139180A (ja) * 2008-12-12 2010-06-24 Mitsubishi Heavy Ind Ltd 旋回燃焼ボイラ
JP2010249362A (ja) * 2009-04-13 2010-11-04 Ihi Corp バーナ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7141574B1 (ja) * 2021-08-10 2022-09-26 コロナ株式会社 送風バーナ装置

Also Published As

Publication number Publication date
KR101582729B1 (ko) 2016-01-05
CA2827903C (en) 2016-07-12
EP2679899A4 (en) 2018-01-24
JP5743115B2 (ja) 2015-07-01
CA2827903A1 (en) 2012-08-30
AU2011360560B2 (en) 2015-11-05
EP2679899A1 (en) 2014-01-01
JPWO2012114370A1 (ja) 2014-07-07
KR20140008407A (ko) 2014-01-21
US20130340659A1 (en) 2013-12-26
EP2679899B1 (en) 2021-04-07
PL2679899T3 (pl) 2021-07-05

Similar Documents

Publication Publication Date Title
JP5743115B2 (ja) 燃焼装置
US9671108B2 (en) Combustion burner, solid-fuel-combustion burner, solid-fuel-combustion boiler, boiler, and method for operating boiler
US5806443A (en) Pulverized coal burner and method of using same
CA2719040C (en) Solid fuel burner, combustion apparatus using solid fuel burner and method of operating the combustion apparatus
EP0836048B1 (en) Burner
EP2294336B1 (en) Low nox burner
EP2837889B1 (en) Sequential combustion with dilution gas mixer
EP2780634B1 (en) Low nox burner apparatus and method
EP2993404B1 (en) Dilution gas or air mixer for a combustor of a gas turbine
RU2746490C1 (ru) Сжигающее устройство газотурбинной установки
JP5908091B2 (ja) 固体燃料バーナと該固体燃料バーナを備えた燃焼装置の運転方法
US8246345B2 (en) Burner
CA2959134C (en) Low nox turbine exhaust fuel burner assembly
JP2011052871A (ja) 燃焼装置
WO2014014065A1 (ja) 燃料燃焼装置
KR101733061B1 (ko) Tdr 댐퍼
JP2007232328A (ja) 二段燃焼用空気ポートとその運用方法及びボイラ
WO2023120395A1 (ja) アンモニア燃焼バーナ及びボイラ
CN111386428A (zh) 辐射壁燃烧器
WO2011010160A1 (en) Combustion apparatus
Whelan et al. Low NO x turbine exhaust fuel burner assembly
Lifshits et al. Low NOx Burner
PL225711B1 (pl) Palnik energetyczny zwłaszcza strumieniowy do niskoemisyjnego spalania pyłu węglowego w kotłach energetycznych zasilanych tangencjonalnie
PL220577B1 (pl) Układ z zespołem dysz WOFA do ujednorodnienia składu chemicznego i temperatury strumienia spalin w górnej części komory paleniskowej kotła energetycznego z palnikami niskoemisyjnymi NOx

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859242

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013500663

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13981485

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011859242

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011360560

Country of ref document: AU

Date of ref document: 20110222

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2827903

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137024829

Country of ref document: KR

Kind code of ref document: A