WO2012112180A1 - Glucosyl stevia composition - Google Patents

Glucosyl stevia composition Download PDF

Info

Publication number
WO2012112180A1
WO2012112180A1 PCT/US2011/035173 US2011035173W WO2012112180A1 WO 2012112180 A1 WO2012112180 A1 WO 2012112180A1 US 2011035173 W US2011035173 W US 2011035173W WO 2012112180 A1 WO2012112180 A1 WO 2012112180A1
Authority
WO
WIPO (PCT)
Prior art keywords
rebaudioside
cgtase
glucosyl
process according
steviol glycosides
Prior art date
Application number
PCT/US2011/035173
Other languages
French (fr)
Inventor
Avetik Markosyan
Original Assignee
Purecircle Usa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/029,263 external-priority patent/US8257948B1/en
Priority to PL11858867T priority Critical patent/PL2675294T3/en
Priority to EP19158972.0A priority patent/EP3530127B1/en
Priority to MX2013009327A priority patent/MX357389B/en
Priority to ES11858867T priority patent/ES2728234T3/en
Priority to US13/984,884 priority patent/US8911971B2/en
Application filed by Purecircle Usa filed Critical Purecircle Usa
Priority to BR112013020891-0A priority patent/BR112013020891B1/en
Priority to EP11858867.2A priority patent/EP2675294B1/en
Publication of WO2012112180A1 publication Critical patent/WO2012112180A1/en
Priority to US14/519,403 priority patent/US9055761B2/en
Priority to US14/623,725 priority patent/US9603373B2/en
Priority to US15/470,388 priority patent/US20170196247A1/en
Priority to US18/544,879 priority patent/US20240148036A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/60Sweeteners
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D13/00Finished or partly finished bakery products
    • A21D13/80Pastry not otherwise provided for elsewhere, e.g. cakes, biscuits or cookies
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/13Fermented milk preparations; Treatment using microorganisms or enzymes using additives
    • A23C9/1307Milk products or derivatives; Fruit or vegetable juices; Sugars, sugar alcohols, sweeteners; Oligosaccharides; Organic acids or salts thereof or acidifying agents; Flavours, dyes or pigments; Inert or aerosol gases; Carbonation methods
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/56Flavouring or bittering agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/30Artificial sweetening agents
    • A23L27/33Artificial sweetening agents containing sugars or derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/30Artificial sweetening agents
    • A23L27/33Artificial sweetening agents containing sugars or derivatives
    • A23L27/35Starch hydrolysates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/30Artificial sweetening agents
    • A23L27/33Artificial sweetening agents containing sugars or derivatives
    • A23L27/36Terpene glycosides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/88Taste or flavour enhancing agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/28Asteraceae or Compositae (Aster or Sunflower family), e.g. chamomile, feverfew, yarrow or echinacea
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings
    • C07H15/24Condensed ring systems having three or more rings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/18Preparation of compounds containing saccharide radicals produced by the action of a glycosyl transferase, e.g. alpha-, beta- or gamma-cyclodextrins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/02Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation containing fruit or vegetable juices
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • C12P19/56Preparation of O-glycosides, e.g. glucosides having an oxygen atom of the saccharide radical directly bound to a condensed ring system having three or more carbocyclic rings, e.g. daunomycin, adriamycin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters

Definitions

  • the invention relates to a process for producing a highly purified food ingredient from the extract of the Stevia rebaudiana Bertoni plant and its use in various food products and beverages.
  • sweeteners such as dulcin, sodium cyclamate and saccharin were banned or restricted in some countries due to concerns on their safety. Therefore non- caloric sweeteners of natural origin are becoming increasingly popular.
  • the sweet herb Stevia rebaudiana Bertoni produces a number of diterpene glycosides which feature high intensity sweetness and sensory properties superior to those of many other high potency sweeteners.
  • the above-mentioned sweet glycosides have a common aglycon, steviol, and differ by the number and type of carbohydrate residues at the CI 3 and C19 positions.
  • the leaves of Stevia are able to accumulate up to 10-20% (on dry weight basis) steviol glycosides.
  • the major glycosides found in Stevia leaves are Rebaudioside A (2-10%), Stevioside (2-10%), and Rebaudioside C (1-2%).
  • Other glycosides such as Rebaudioside B, D, E, and F, Steviolbioside and Rubusoside are found at much lower levels (approx. 0- 0.2%).
  • Steviol glycosides differ from each other not only by molecular structure, but also by their taste properties. Usually stevioside is found to be 1 10-270 times sweeter than sucrose, Rebaudioside A between 150 and 320 times, and Rebaudioside C between 40-60 times sweeter than sucrose. Dulcoside A is 30 times sweeter than sucrose. Rebaudioside A has the least astringent, the least bitter, and the least persistent aftertaste thus possessing the most favorable sensory attributes in major steviol glycosides (Tanaka O. (1987) Improvement of taste of natural sweetners. Pure Appl. Chem. 69:675-683; Phillips K.C. (1989) Stevia: steps in developing a new sweetener. In: Grenby T.H. ed. Developments in sweeteners, vol. 3. Elsevier Applied Science, London. 1-43.)
  • the transglucosylation of steviol glycosides was also performed by action of cyclodextrin glucanotransferases (CGTase) produced by Bacillus stearothermophilus (U.S. Patent Numbers 4,219,571, and 7,807,206) as a result a-l,4-glucosyl derivatives were formed with degree of polymerization up to 10.
  • CCTase cyclodextrin glucanotransferases
  • the present invention is aimed to overcome the disadvantages of existing Stevia sweeteners.
  • the invention describes a process for producing a high purity food ingredient from the extract of the Stevia rebaudiana Bertoni plant and use thereof in various food products and beverages as a sweetness and flavor modifier.
  • the invention in part, pertains to an ingredient comprising glucosylated derivatives of steviol glycosides of Stevia rebaudiana Bertoni plant.
  • the steviol glycodsides are selected from the group consisting of stevioside, Rebaudioside A, Rebaudioside B, Rebaudioside C, Rebaudioside D, Rebaudioside E, Rebaudioside F, dulcoside A, steviolbioside, rubusoside, as well as other steviol glycosides found in Stevia rebaudiana Bertoni plant and mixtures thereof.
  • the invention in part, pertains to a process for producing an ingredient containing glucosylated forms of stevioside, Rebaudioside A, Rebaudioside B, Rebaudioside C, Rebaudioside D, Rebaudioside E, Rebaudioside F, dulcoside A, steviolbioside, rubusoside, as well as other steviol glycosides found in Stevia rebaudiana Bertoni plant.
  • the process can be an enzymatic transglucosylating process using CGTases produced by cultures of Bacillus stearothermophilus.
  • the process may include the steps of decolorizing, desalting and removing maltooligosaccharides.
  • the decolorizing can be performed using activated carbon.
  • the desalting can be performed by passing through ion exchange resins and/or membrane filters. Removing the maltooligosaccharides can be performed by passing through macroporuos polymeric resin.
  • Stevia extract commercialized by PureCircle (JiangXi) Co., Ltd. (China), containing stevioside (28-30%), Rebaudioside A (50-55%), Rebaudioside C (9- 12%), Rebaudioside F (1-3%) and other glycosides amounting to total steviol glycosides' content of at least 95%, was used as a starting material.
  • stevia extracts with different ratio of steviol glycosides as well as highly purified steviol glycosides such as Rebaudioside A, stevioside, Rebaudioside D, rubusoside etc, may be used as starting materials.
  • the starting material was subjected to enzymatic transglucosylation by action of cyclodextrin glycosyltransferase (CGTase) in the presence of starch as a glucose donor.
  • CGTase cyclodextrin glycosyltransferase
  • the resulting mixture of -l,4-glucosyl derivatives was subjected to the second enzymatic transglucosylation by CGTase in the presence of starch as a glucose donor.
  • the obtained products were applied in various foods and beverages as sweeteners, sweetener enhancers and flavor modifiers, including ice cream, cookies, bread, fruit juices, milk products, baked goods and confectionary products.
  • FIG. 1 shows a high-performance liquid chromatogram of transglucosylated Stevia extract containing cc-l,4-glucosyl-derivatives with up to nine a-l,4-glucosyl residues;
  • FIG. 2 shows a high-performance liquid chromatogram of transglucosylated Stevia extract containing a-l,4-glucosyl-derivatives with up to twenty oc-l,4-glucosyl residues.
  • stevia extracts with different ratio of steviol glycosides as well as highly purified steviol glycosides such as Rebaudioside A, stevioside, Rebaudioside D, rubusoside etc, may be used as starting materials.
  • the HPLC analysis of the raw materials and products was performed on Agilent Technologies 1200 Series (USA) liquid chromarograph, equipped with Zorbax-NH 2 (4.6X250mm) column.
  • the mobile phase was acetonitrile-water gradient from 80:20, v/v (0-2 min) to 50:50, v/v (2-70 min).
  • a diode array detector set at 210 nm was used as the detector.
  • the transglucosylation was accomplished by cyclomaltodextrin glucanotransferases (CGTases; EC 2.4.1.19) produced by Bacillus stearothermophilus St- 100 (PureCircle Sdn Bhd Collection of Industrial Microorganisms - Malaysia).
  • CGTases cyclomaltodextrin glucanotransferases
  • Bacillus stearothermophilus St- 100 PureCircle Sdn Bhd Collection of Industrial Microorganisms - Malaysia.
  • any other CGTase or enzyme possessing intermolecular transglucosylation activity may be applied as well.
  • the enzyme can be in a form of cell-free culture broth, concentrated liquid cell-free culture broth, spray dried or freeze dried cell-free culture broth, or high purity protein. Free and immobilized enzyme preparations can be used.
  • CGTase preparations The activity of CGTase preparations was determined according to the procedure described in Hale W.S., Rawlins L.C. (1951) Amylase of Bacillus macerans. Cereal Chem. 28, 49-58.
  • Starches of different origin may be used as donors of glucosyl units such as, derived from wheat, corn, potato, tapioca, and sago.
  • Starch was subjected to partial hydrolysis (liquefaction) prior to the transglycosylation reaction.
  • the dextrose equivalent of the partially hydro lyzed starch can be in the range of about 10-25, preferably about 12-16.
  • Any enzyme capable of starch hydrolysis may be used for liquefaction, such as a-amylases, / ⁇ -amylases etc.
  • CGTase and a-amylase mixtures as liquefying enzymes are preferred.
  • KNU Kilo Novo a-amylase Units
  • One KNU is the amount of a-amylase which, under standard conditions (pH 7.1; 37°C), dextrinizes 5.26 g starch dry substance per hour.
  • the liquefaction mixture contains about 0.001-0.2 KNU, preferably about 0.05-0.1 KNU of -amylase per one unit of CGTase.
  • a-amylase in liquefaction allows achieving higher throughputs in further activated carbon filtration.
  • the filtration rate is approximately 10-15 L/hr per lm 2 of filter surface.
  • the filtration rate is twice as fast - approximately 20-30 L/hr per lm 2 of filter surface.
  • the ratio of starch and CGTase in the liquefaction mixture is about 0.1-0.5 units per one gram of starch, preferably about 0.2-0.4 units per gram.
  • the concentration of starch in liquefaction mixture is about 15-40% (wt/wt), preferably about 20-30%.
  • the liquefaction is conducted at about 70-90°C during about 0.5-5 hours, preferably about 1-2 hours.
  • the reaction mixture is subjected to thermal inactivation of ⁇ -amylase at low pH conditions.
  • the preferred pH range for inactivation is about pH 2.5 to pH 3.0 and preferred temperature is about 95-105°C.
  • the duration of thermal inactivation is about 5-10 minutes.
  • the pH of the reaction mixture is adjusted to about pH 5.5- 6.5 and the steviol glycosides are added to the mixture and dissolved.
  • the preferred ratio of steviol glycosides to starch (kg of steviol glycosides per 1 kg of starch) is about 0.5-1.5, preferably about 0.8-1.2.
  • a second portion of CGTase preparation is added and the first transglucosylation reaction is conducted at about 65°C for about 24-48 hours.
  • the amount of the second portion of CGTase is about 0.2-4 units of CGTase per gram of solids, preferably about 0.5-1.2 units per gram of solids.
  • the reaction was stopped by heating at about 95°C for about 15 minutes to inactivate the enzyme.
  • a mixture of a-1,4- glucosyl derivatives with a degree of polymerization up to 9 was obtained.
  • the reaction mixture was passed through a column packed with Amberlite XAD7 HP macroporous adsorbent resin. The steviol glycosides and their glucosylated derivatives were adsorbed on the resin and subsequently eluted by aqueous ethanol.
  • a second portion of starch was subjected to partial hydrolysis (liquefaction) as described above.
  • transglucosylated Stevia extract obtained during the first glucosylation (with up to nine cc-l,4-glucosyl residues) was added.
  • the preferred ratio of transglucosylated Stevia extract to starch (kg of transglucosylated Stevia extract per 1 kg of starch) is about 0.5-1.5, preferably about 0.8-1.2.
  • Another portion of the CGTase preparation was added and the second transglucosylation reaction was conducted at about 65°C for about 24-48 hours.
  • the amount of this portion of CGTase is about 0.2-4 units of CGTase per gram of solids, preferably about 0.5-1.2 units per gram of solids.
  • the maltooligosaccharides were removed from reaction mixture using Amberlite XAD7 HP resin as described above.
  • the steviol glycosides and their glucosylated derivatives were adsorbed on the resin and subsequently eluted by aqueous ethanol.
  • the resulted aqueous ethanol eluate, containing glucosyl steviol glycosides, was treated with activated carbon, to obtain decolorized reaction mixture.
  • the amount of activated carbon was about 0.02-0.4 grams per gram of solids, preferably about 0.05-0.2 grams per gram of solids.
  • the decolorized solution was further desalted by passing through ion exchange resins, such as Amberlite FPC23 (H* type) and Amberlite FPA51 (OH " type).
  • ion exchange resins such as Amberlite FPC23 (H* type) and Amberlite FPA51 (OH " type).
  • Other appropriate decolorizing and desalting methods such as membrane filtration, or other methods known in the art can be used.
  • the desalted reaction mixture was further concentrated by vacuum evaporator and dried by means of a spray dryer.
  • Other appropriate concentrating and drying methods such as membrane filtration, freeze drying, or other methods known to art can be used.
  • the resulting product was transglucosylated Stevia extract containing a- 1,4- glucosyl-derivatives with up to twenty cc-l,4-glucosyl residues (Sample 2).
  • the transglucosylated Stevia extract can optionally be further purified by removing unreacted steviol glycosides.
  • the dried transglucosylated Stevia extract powder is suspended in aqueous alcohol.
  • the powder to aqueous alcohol ratio (wt/vol) can range from 1 : 1 to 1 : 20, preferably 1 :3 to 1 : 10.
  • the aqueous alcohol contains 0-50% (vol), preferably 1-10% water.
  • the suspension is agitated at 30-100°C, preferably 50-85°C during 1-24 hours, preferably 2-15 hours.
  • the suspended solids are separated by means of filtration. Any other technique known in the art suitable for separating suspended solids from liquid such as centrifugation, decanting, etc. can be used.
  • the obtained solids are dried in rotary drum vacuum drier. Any other dryer known t in the art may be used as well.
  • the separated solids may be dissolved in water, evaporated from traces of alcohol and spray dried.
  • the alcohols employed in this optional step may be selected from the group consisting of alkanols, and are preferably selected from the group including methanol, ethanol, n-propanol, 2-propanol, 1 butanol, and 2-butanol.
  • the resulting product contains a low level of non-modified glycosides, even without the optional steviol glycoside removal step.
  • the expressions "low level non-modified glycosides" or “low level unreacted glycosides” shall refer to glycoside levels of less than about 20%, and preferably less than about 15%, on an anhydrous basis. In some embodiments, an unreacted glycoside level of less than about 12%, less than about 10% or even lower can be attained using this method. Performing the optional step of steviol glycoside removal results in even lower levels of unreacted steviol glycosides in the final product.
  • the glucosyl stevia composition represented by Sample 2 shows comparable sweetness power (80 times sweeter compared to a 5% sucrose solution) with control Samples 1 and 3 (120 times); however its flavor profile was clearly superior to the control samples.
  • the composition can be used as sweetness enhancer, flavor enhancer and sweetener in various food and beverage products.
  • food and beverage products include carbonated soft drinks, ready to drink beverages, energy drinks, isotonic drinks, low-calorie drinks, zero-calorie drinks, sports drinks, teas, fruit and vegetable juices, juice drinks, dairy drinks, yoghurt drinks, alcohol beverages, powdered beverages, bakery products, cookies, biscuits, baking mixes, cereals, confectioneries, candies, toffees, chewing gum, dairy products, flavored milk, yoghurts, flavored yoghurts, cultured milk, soy sauce and other soy base products, salad dressings, mayonnaise, vinegar, frozen-desserts, meat products, fish-meat products, bottled and canned foods, tabletop sweeteners, fruits and vegetables.
  • composition can be used in drug or pharmaceutical preparations and cosmetics, including but not limited to toothpaste, mouthwash, cough syrup, chewable tablets, lozenges, vitamin preparations, and the like.
  • composition can be used "as-is” or in combination with other sweeteners, flavors and food ingredients.
  • Non-limiting examples of sweeteners include steviol glycosides, stevioside, Rebaudioside A, Rebaudioside B, Rebaudioside C, Rebaudioside D, Rebaudioside E, Rebaudioside F, dulcoside A, steviolbioside, rubusoside, as well as other steviol glycosides found in Stevia rebaudiana Bertoni plant and mixtures thereof, stevia extract, Luo Han Guo extract, mogrosides, high-fructose corn syrup, corn syrup, invert sugar, fructooligosaccharides, inulin, inulooligosaccharides, coupling sugar, maltooligosaccharides, maltodextins, corn syrup solids, glucose, maltose, sucrose, lactose, aspartame, saccharin, sucralose, sugar alcohols.
  • Non-limiting examples of flavors include lemon, orange, fruity, banana, grape, pear, pineapple, bitter almond, cola, cinnamon, sugar, cotton candy, vanilla flavors.
  • Non-limiting examples of other food ingredients include flavors, acidulants, organic and amino acids, coloring agents, bulking agents, modified starches, gums, texturizers, preservatives, antioxidants, emulsifiers, stabilizers, thickeners, gelling agents.
  • a strain of Bacillus stearothermophilus St-100 was inoculated in 2,000 liters of sterilized culture medium containing 1.0% starch, 0.25% corn extract, 0.5% (NH 4 ) 2 S04, and 0.2% CaC0 3 (pH 7.0-7.5) at 56°C for 24 hrs with continuous aeration (2,000 L/min) and agitation (150rpm).
  • the obtained culture broth was filtered using Kerasep 0.1 ⁇ ceramic membrane (Novasep, France) to separate the cells.
  • the cell-free permeate was further concentrated 2-fold on Persep lOkDa ultrafilters (Orelis, France).
  • the activity of the enzyme was determined according to Hale, Rawlins (1951). A crude enzyme preparation with activity of about 2 unit/mL was obtained.
  • the mixture was filtered and the filtrate was diluted with water to 5% solids content and passed through columns each packed with 4000 mL Amberlite XAD 7HP macroporous adsorbent resin.
  • the columns were washed with 5 volumes of water and 2 volumes of 20% (v/v) ethanol.
  • the adsorbed glycosides were eluted with 50% ethanol.
  • the obtained eluate was passed through columns packed with Amberlite FPC23 (FT 1" ) and Amberlite FPA51 (OH " ) ion exchange resins.
  • the ethanol was evaporated and the desalted and decolorized water solution was concentrated at 60°C under vacuum, then dried into a powder form using laboratory spray dryer. 151 grams of product was obtained (Sample 1).
  • transglucosylated stevia extract obtained according to EXAMPLE 2 100 g was added to the liquefied starch and stirred until a homogeneous solution was obtained. 200 units of CGTase were added to the solution and the mixture was held at a temperature of 65°C for 24 hours under continuous agitation. The obtained reaction mixture was heated at 95°C for 15 minutes to inactivate the enzyme. 20 grams of activated carbon was added and the mixture was heated to 75 °C and held during 30 min. The mixture was filtered and the filtrate was diluted with water to 5% solids content and passed through columns each packed with 4000 mL Amberlite XAD 7HP macroporous adsorbent resin.
  • transglucosylated stevia extract obtained according to EXAMPLE 4 100 g was added to liquefied starch and stirred until a homogeneous solution was obtained. 200 units of CGTase was added to the solution and the mixture was held at a temperature of 65°C for 24 hours under continuous agitation. The obtained reaction mixture was heated at 95°C for 15 minutes to inactivate the enzyme. 20 grams of activated carbon was added and the mixture was heated to 75°C and held during 30 min. The mixture was filtered and the filtrate was diluted with water to 5% solids content and passed through columns each packed with 4000 mL Amberlite XAD 7HP macroporous adsorbent resin.
  • Example 2 The sensory evaluations of the samples are summarized in Table 3. The data show that the best results can be obtained by using the high purity glucosyl stevia composition (containing up to 20 -l,4-glucosyl residues) (Sample 2). Particularly the drinks prepared with Sample 2 exhibited a rounded and complete flavor profile and mouthfeel.
  • a carbonated beverage according to formula presented below was prepared.
  • Glucosyl stevia compositions (0.03% for Samples 1 and 3, and 0.04% for Sample 2) and sucrose (4%) were dissolved in low fat milk.
  • Glucosyl stevia compositions were represented by Samples 1, 2 and 3, obtained according to EXAMPLES 2, 3 and 5, respectively. After pasteurizing at 82°C for 20 minutes, the milk was cooled to 37°C. A starter culture (3%) was added and the mixture was incubated at 37°C for 6 hours then at 5°C for 12 hours.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Botany (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Seasonings (AREA)
  • Medicinal Preparation (AREA)
  • Saccharide Compounds (AREA)
  • Cosmetics (AREA)

Abstract

Glucosyl stevia compositions are prepared from steviol glycosides of Stevia rebaudiana Bertoni. The glucosylation was performed by cyclodextrin glucanotransferase using starch as the source of glucose residues. The short-chain glucosyl stevia compositions were purified to >95% content of total steviol glycosides. The compositions can be used as sweetness enhancers, flavor enhancers and sweeteners in foods, beverages, cosmetics and pharmaceuticals.

Description

GLUCOSYL STEVIA COMPOSITION
CROSS REFERENCE TO RELATED APPLICATIONS
This application is a continuation-in-part application of and claims the benefit of priority from U.S. Patent Application Serial No. 13/029,263, filed on February 17, 2011 and U.S. Patent Application Serial No. 13/074,179, filed on March 29, 2011.
BACKGROUND OF THE INVENTION
Field Of The Invention
The invention relates to a process for producing a highly purified food ingredient from the extract of the Stevia rebaudiana Bertoni plant and its use in various food products and beverages.
Description Of The Related Art
Nowadays sugar alternatives are receiving increasing attention due to awareness of many diseases in conjunction with consumption of high-sugar foods and beverages. However many artificial sweeteners such as dulcin, sodium cyclamate and saccharin were banned or restricted in some countries due to concerns on their safety. Therefore non- caloric sweeteners of natural origin are becoming increasingly popular. The sweet herb Stevia rebaudiana Bertoni, produces a number of diterpene glycosides which feature high intensity sweetness and sensory properties superior to those of many other high potency sweeteners.
The above-mentioned sweet glycosides, have a common aglycon, steviol, and differ by the number and type of carbohydrate residues at the CI 3 and C19 positions. The leaves of Stevia are able to accumulate up to 10-20% (on dry weight basis) steviol glycosides. The major glycosides found in Stevia leaves are Rebaudioside A (2-10%), Stevioside (2-10%), and Rebaudioside C (1-2%). Other glycosides such as Rebaudioside B, D, E, and F, Steviolbioside and Rubusoside are found at much lower levels (approx. 0- 0.2%).
Two major glycosides - Stevioside and Rebaudioside A, were extensively studied and characterized in terms of their suitability as commercial high intensity sweeteners. Stability studies in carbonated beverages confirmed their heat and pH stability (Chang S.S., Cook, J.M. (1983) Stability studies of stevioside and Rebaudioside A in carbonated beverages. J. Agric. Food Chem. 31 : 409-412.)
Steviol glycosides differ from each other not only by molecular structure, but also by their taste properties. Usually stevioside is found to be 1 10-270 times sweeter than sucrose, Rebaudioside A between 150 and 320 times, and Rebaudioside C between 40-60 times sweeter than sucrose. Dulcoside A is 30 times sweeter than sucrose. Rebaudioside A has the least astringent, the least bitter, and the least persistent aftertaste thus possessing the most favorable sensory attributes in major steviol glycosides (Tanaka O. (1987) Improvement of taste of natural sweetners. Pure Appl. Chem. 69:675-683; Phillips K.C. (1989) Stevia: steps in developing a new sweetener. In: Grenby T.H. ed. Developments in sweeteners, vol. 3. Elsevier Applied Science, London. 1-43.)
Methods for the extraction and purification of sweet glycosides from the Stevia rebaudiana plant using water or organic solvents are described in, for example, U.S. Patent Numbers 4,361,697; 4,082,858; 4,892,938; 5,972,120; 5,962,678; 7,838,044 and 7,862,845.
However, even in a highly purified state, steviol glycosides still possess undesirable taste attributes such as bitterness, sweet aftertaste, licorice flavor, etc. One of the main obstacles for the successful commercialization of stevia sweeteners are these undesirable taste attributes. It was shown that these flavor notes become more prominent as the concentration of steviol glycosides increases (Prakash I., DuBois G.E., Clos J.F., Wilkens K.L., Fosdick L.E. (2008) Development of rebiana, a natural, non-caloric sweetener. Food Chem. Toxicol., 46, S75-S82.)
Some of these undesirable properties can be reduced or eliminated by subjecting steviol glycosides to the reaction of intermolecular transglycosylation, when new carbohydrate residues are attached to initial molecule at CI 3 and C19 positions. Depending on the number of carbohydrate residues in these positions the quality and potency of the compounds taste will vary.
Pullulanase, isomaltase (Lobov S.V., Jasai R., Ohtani K., Tanaka O. Yamasaki K. (1991) Enzymatic production of sweet stevioside derivatives: transglycosylation by glucosidases. Agric. Biol. Chem. 55: 2959-2965), ?-galactosidase (Kitahata S., Ishikawa S., Miyata T., Tanaka O. (1989) Production of rubusoside derivatives by transglycosylation of various ?-galactosidase. Agric. Biol. Chem. 53: 2923-2928), and dextran saccharase (Yamamoto K., Yoshikawa K., Okada S. (1994) Effective production of glucosyl-stevioside by -l,6-transglucosylation of dextran dextranase. Biosci. Biotech. Biochem. 58: 1657-1661) have been used as transglycosylating enzymes, together with pullulan, maltose, lactose, and partially hydrolyzed starch, respectively, as donors of glycosidic residues.
The transglucosylation of steviol glycosides was also performed by action of cyclodextrin glucanotransferases (CGTase) produced by Bacillus stearothermophilus (U.S. Patent Numbers 4,219,571, and 7,807,206) as a result a-l,4-glucosyl derivatives were formed with degree of polymerization up to 10.
It was shown (Tanaka O. (1987) Improvement of taste of natural sweetners. Pure Appl. Chem. 69:675-683) that the taste profile and sweetness power of glucosyl derivatives are largely dependent on number of additional a- 1,4-glucosyl derivatives, i.e. the degree of polymerization of the -l,4-glucosyl chain. However, in most of transgucosylated stevia products the degree of polymerization is usually below nine. As with any reaction, the transglucosylation reaction is inhibited by its products, and further increase of a- 1,4-glucosyl residues is inhibited by reaction products, particularly short- chain maltooligosaccharides.
Therefore it is necessary to develop simple process of preparation of high purity glucosyl stevia products with greater a- 1,4-glucosyl chain length and better taste profile.
SUMMARY OF THE INVENTION
The present invention is aimed to overcome the disadvantages of existing Stevia sweeteners. The invention describes a process for producing a high purity food ingredient from the extract of the Stevia rebaudiana Bertoni plant and use thereof in various food products and beverages as a sweetness and flavor modifier.
The invention, in part, pertains to an ingredient comprising glucosylated derivatives of steviol glycosides of Stevia rebaudiana Bertoni plant. The steviol glycodsides are selected from the group consisting of stevioside, Rebaudioside A, Rebaudioside B, Rebaudioside C, Rebaudioside D, Rebaudioside E, Rebaudioside F, dulcoside A, steviolbioside, rubusoside, as well as other steviol glycosides found in Stevia rebaudiana Bertoni plant and mixtures thereof.
The invention, in part, pertains to a process for producing an ingredient containing glucosylated forms of stevioside, Rebaudioside A, Rebaudioside B, Rebaudioside C, Rebaudioside D, Rebaudioside E, Rebaudioside F, dulcoside A, steviolbioside, rubusoside, as well as other steviol glycosides found in Stevia rebaudiana Bertoni plant. The process can be an enzymatic transglucosylating process using CGTases produced by cultures of Bacillus stearothermophilus. The process may include the steps of decolorizing, desalting and removing maltooligosaccharides. The decolorizing can be performed using activated carbon. The desalting can be performed by passing through ion exchange resins and/or membrane filters. Removing the maltooligosaccharides can be performed by passing through macroporuos polymeric resin.
In the invention, Stevia extract commercialized by PureCircle (JiangXi) Co., Ltd. (China), containing stevioside (28-30%), Rebaudioside A (50-55%), Rebaudioside C (9- 12%), Rebaudioside F (1-3%) and other glycosides amounting to total steviol glycosides' content of at least 95%, was used as a starting material. Alternatively stevia extracts with different ratio of steviol glycosides as well as highly purified steviol glycosides such as Rebaudioside A, stevioside, Rebaudioside D, rubusoside etc, may be used as starting materials.
The starting material was subjected to enzymatic transglucosylation by action of cyclodextrin glycosyltransferase (CGTase) in the presence of starch as a glucose donor. As a result -l,4-glucosyl derivatives were formed with a degree of polymerization up to 9. Then the maltooligosaccharides from obtained reaction mixture were removed by Amberlite XAD7 HP resin. The resulting mixture of -l,4-glucosyl derivatives (with a degree of polymerization up to 9) was subjected to the second enzymatic transglucosylation by CGTase in the presence of starch as a glucose donor. As a result of the second glucosylation, oc-l,4-glucosyl derivatives with a degree of polymerization up to 20 were formed. The maltooligosaccharides obtained during second glucosylation were removed by Amberlite XAD7 HP resin. Then the obtained mixture of cc-l,4-glucosyl derivatives (with degree of polymerization up to 20) was decolorized, deionized, concentrated and spray dried.
The obtained products were applied in various foods and beverages as sweeteners, sweetener enhancers and flavor modifiers, including ice cream, cookies, bread, fruit juices, milk products, baked goods and confectionary products.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed. BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings are included to provide a further understanding of the invention. The drawings illustrate embodiments of the invention and together with the description serve to explain the principles of the embodiments of the invention.
FIG. 1 shows a high-performance liquid chromatogram of transglucosylated Stevia extract containing cc-l,4-glucosyl-derivatives with up to nine a-l,4-glucosyl residues;
FIG. 2 shows a high-performance liquid chromatogram of transglucosylated Stevia extract containing a-l,4-glucosyl-derivatives with up to twenty oc-l,4-glucosyl residues.
DETAILED DESCRIPTION OF THE INVENTION
Advantages of the present invention will become more apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description. Stevia extract commercialized by PureCircle (JiangXi) Co., Ltd. (China), containing stevioside (28-30%), Rebaudioside A (50-55%), Rebaudioside C (9-12%), Rebaudioside F (1-3%) and other glycosides (hereinafter collectively, "steviol glycosides") amounting to total steviol glycosides content of at least 95%, was used as a starting material. Alternatively stevia extracts with different ratio of steviol glycosides as well as highly purified steviol glycosides such as Rebaudioside A, stevioside, Rebaudioside D, rubusoside etc, may be used as starting materials.
The HPLC analysis of the raw materials and products was performed on Agilent Technologies 1200 Series (USA) liquid chromarograph, equipped with Zorbax-NH2 (4.6X250mm) column. The mobile phase was acetonitrile-water gradient from 80:20, v/v (0-2 min) to 50:50, v/v (2-70 min). A diode array detector set at 210 nm was used as the detector.
The transglucosylation was accomplished by cyclomaltodextrin glucanotransferases (CGTases; EC 2.4.1.19) produced by Bacillus stearothermophilus St- 100 (PureCircle Sdn Bhd Collection of Industrial Microorganisms - Malaysia). However, any other CGTase or enzyme possessing intermolecular transglucosylation activity may be applied as well. The enzyme can be in a form of cell-free culture broth, concentrated liquid cell-free culture broth, spray dried or freeze dried cell-free culture broth, or high purity protein. Free and immobilized enzyme preparations can be used.
The activity of CGTase preparations was determined according to the procedure described in Hale W.S., Rawlins L.C. (1951) Amylase of Bacillus macerans. Cereal Chem. 28, 49-58.
Starches of different origin may be used as donors of glucosyl units such as, derived from wheat, corn, potato, tapioca, and sago.
Starch was subjected to partial hydrolysis (liquefaction) prior to the transglycosylation reaction. The dextrose equivalent of the partially hydro lyzed starch can be in the range of about 10-25, preferably about 12-16. Any enzyme capable of starch hydrolysis may be used for liquefaction, such as a-amylases, /^-amylases etc. In one embodiment, CGTase and a-amylase mixtures as liquefying enzymes are preferred.
-Amylase activity is expressed in Kilo Novo a-amylase Units (KNU). One KNU is the amount of a-amylase which, under standard conditions (pH 7.1; 37°C), dextrinizes 5.26 g starch dry substance per hour. The liquefaction mixture contains about 0.001-0.2 KNU, preferably about 0.05-0.1 KNU of -amylase per one unit of CGTase.
The use of a-amylase in liquefaction allows achieving higher throughputs in further activated carbon filtration. When the CGTase is used as the only liquefying enzyme the filtration rate is approximately 10-15 L/hr per lm2 of filter surface. In case of liquefaction enzyme mixture (comprising α-amylase and CGTase) the filtration rate is twice as fast - approximately 20-30 L/hr per lm2 of filter surface.
The ratio of starch and CGTase in the liquefaction mixture is about 0.1-0.5 units per one gram of starch, preferably about 0.2-0.4 units per gram.
The concentration of starch in liquefaction mixture is about 15-40% (wt/wt), preferably about 20-30%.
The liquefaction is conducted at about 70-90°C during about 0.5-5 hours, preferably about 1-2 hours.
After liquefaction, the reaction mixture is subjected to thermal inactivation of α-amylase at low pH conditions. The preferred pH range for inactivation is about pH 2.5 to pH 3.0 and preferred temperature is about 95-105°C. The duration of thermal inactivation is about 5-10 minutes.
After the inactivation, the pH of the reaction mixture is adjusted to about pH 5.5- 6.5 and the steviol glycosides are added to the mixture and dissolved. The preferred ratio of steviol glycosides to starch (kg of steviol glycosides per 1 kg of starch) is about 0.5-1.5, preferably about 0.8-1.2.
A second portion of CGTase preparation is added and the first transglucosylation reaction is conducted at about 65°C for about 24-48 hours. The amount of the second portion of CGTase is about 0.2-4 units of CGTase per gram of solids, preferably about 0.5-1.2 units per gram of solids.
Upon completion of transglucosylation the reaction was stopped by heating at about 95°C for about 15 minutes to inactivate the enzyme. As a result a mixture of a-1,4- glucosyl derivatives with a degree of polymerization up to 9 was obtained. In order to remove the short chain maltoologisaccharides, which inhibit the further elongation of a- 1,4-glucosydic chain, the reaction mixture was passed through a column packed with Amberlite XAD7 HP macroporous adsorbent resin. The steviol glycosides and their glucosylated derivatives were adsorbed on the resin and subsequently eluted by aqueous ethanol. The resulting aqueous ethanol eluate, containing glucosyl steviol glycosides, was evaporated, concentrated and spray dried to obtain transglucosylated Stevia extract containing glucosyl derivatives with up to nine -l,4-glucosyl residues.
A second portion of starch was subjected to partial hydrolysis (liquefaction) as described above.
After the liquefaction the transglucosylated Stevia extract obtained during the first glucosylation (with up to nine cc-l,4-glucosyl residues) was added. The preferred ratio of transglucosylated Stevia extract to starch (kg of transglucosylated Stevia extract per 1 kg of starch) is about 0.5-1.5, preferably about 0.8-1.2.
Another portion of the CGTase preparation was added and the second transglucosylation reaction was conducted at about 65°C for about 24-48 hours. The amount of this portion of CGTase is about 0.2-4 units of CGTase per gram of solids, preferably about 0.5-1.2 units per gram of solids.
Upon completion of transglucosylation the reaction was stopped by heating at about 95°C for about 15 minutes to inactivate the enzyme. As a result a mixture of a- 1,4- glucosyl derivatives with a degree of polymerization up to 20 was obtained.
The maltooligosaccharides were removed from reaction mixture using Amberlite XAD7 HP resin as described above. The steviol glycosides and their glucosylated derivatives were adsorbed on the resin and subsequently eluted by aqueous ethanol. The resulted aqueous ethanol eluate, containing glucosyl steviol glycosides, was treated with activated carbon, to obtain decolorized reaction mixture. The amount of activated carbon was about 0.02-0.4 grams per gram of solids, preferably about 0.05-0.2 grams per gram of solids. The decolorized solution was further desalted by passing through ion exchange resins, such as Amberlite FPC23 (H* type) and Amberlite FPA51 (OH" type). Other appropriate decolorizing and desalting methods, such as membrane filtration, or other methods known in the art can be used.
The desalted reaction mixture was further concentrated by vacuum evaporator and dried by means of a spray dryer. Other appropriate concentrating and drying methods, such as membrane filtration, freeze drying, or other methods known to art can be used.
The resulting product was transglucosylated Stevia extract containing a- 1,4- glucosyl-derivatives with up to twenty cc-l,4-glucosyl residues (Sample 2). The transglucosylated Stevia extract can optionally be further purified by removing unreacted steviol glycosides. The dried transglucosylated Stevia extract powder is suspended in aqueous alcohol. The powder to aqueous alcohol ratio (wt/vol) can range from 1 : 1 to 1 : 20, preferably 1 :3 to 1 : 10. The aqueous alcohol contains 0-50% (vol), preferably 1-10% water. The suspension is agitated at 30-100°C, preferably 50-85°C during 1-24 hours, preferably 2-15 hours. Then the suspended solids are separated by means of filtration. Any other technique known in the art suitable for separating suspended solids from liquid such as centrifugation, decanting, etc. can be used. The obtained solids are dried in rotary drum vacuum drier. Any other dryer known t in the art may be used as well. Alternatively the separated solids may be dissolved in water, evaporated from traces of alcohol and spray dried.
The alcohols employed in this optional step may be selected from the group consisting of alkanols, and are preferably selected from the group including methanol, ethanol, n-propanol, 2-propanol, 1 butanol, and 2-butanol.
The resulting product contains a low level of non-modified glycosides, even without the optional steviol glycoside removal step. As used herein, the expressions "low level non-modified glycosides" or "low level unreacted glycosides" shall refer to glycoside levels of less than about 20%, and preferably less than about 15%, on an anhydrous basis. In some embodiments, an unreacted glycoside level of less than about 12%, less than about 10% or even lower can be attained using this method. Performing the optional step of steviol glycoside removal results in even lower levels of unreacted steviol glycosides in the final product.
A small part of purified transglucosylated Stevia extract containing a-l,4-glucosyl- derivatives with up to nine a-l,4-glucosyl residues (obtained as described above) was separated and further subjected to decolorizing and desalting treatment (similar to Sample 2) to produce Sample 1.
The process used for preparing Sample 2 was repeated without removal of maltooligosaccharides from first transglucosylation mixture (containing a-l,4-glucosyl- derivatives with up to nine -l,4-glucosyl residues). This process yielded Sample 3.
The analysis of each Sample's composition (Table 1) shows a similar composition for Samples 1 and 3, whereas Sample 2 had larger concentration of high glucosyl derivatives (containing up to 20 -l,4-glucosyl residues). Table 1
Composition of glucosyl steviol glycosides samples
Figure imgf000011_0001
The sensory assessment of samples was carried using aqueous solutions, with 20 panelists. Based on overall acceptance the most desirable and most undesirable samples were chosen. The results are shown in Table 2.
Table 2
Sensory assessment of samples in water system
Figure imgf000011_0002
As apparent from the results in Table 2, the sweetness quality of the Sample 2 was rated as most superior.
The glucosyl stevia composition represented by Sample 2 shows comparable sweetness power (80 times sweeter compared to a 5% sucrose solution) with control Samples 1 and 3 (120 times); however its flavor profile was clearly superior to the control samples.
The composition can be used as sweetness enhancer, flavor enhancer and sweetener in various food and beverage products. Non-limiting examples of food and beverage products include carbonated soft drinks, ready to drink beverages, energy drinks, isotonic drinks, low-calorie drinks, zero-calorie drinks, sports drinks, teas, fruit and vegetable juices, juice drinks, dairy drinks, yoghurt drinks, alcohol beverages, powdered beverages, bakery products, cookies, biscuits, baking mixes, cereals, confectioneries, candies, toffees, chewing gum, dairy products, flavored milk, yoghurts, flavored yoghurts, cultured milk, soy sauce and other soy base products, salad dressings, mayonnaise, vinegar, frozen-desserts, meat products, fish-meat products, bottled and canned foods, tabletop sweeteners, fruits and vegetables.
Additionally the composition can be used in drug or pharmaceutical preparations and cosmetics, including but not limited to toothpaste, mouthwash, cough syrup, chewable tablets, lozenges, vitamin preparations, and the like.
The composition can be used "as-is" or in combination with other sweeteners, flavors and food ingredients.
Non-limiting examples of sweeteners include steviol glycosides, stevioside, Rebaudioside A, Rebaudioside B, Rebaudioside C, Rebaudioside D, Rebaudioside E, Rebaudioside F, dulcoside A, steviolbioside, rubusoside, as well as other steviol glycosides found in Stevia rebaudiana Bertoni plant and mixtures thereof, stevia extract, Luo Han Guo extract, mogrosides, high-fructose corn syrup, corn syrup, invert sugar, fructooligosaccharides, inulin, inulooligosaccharides, coupling sugar, maltooligosaccharides, maltodextins, corn syrup solids, glucose, maltose, sucrose, lactose, aspartame, saccharin, sucralose, sugar alcohols.
Non-limiting examples of flavors include lemon, orange, fruity, banana, grape, pear, pineapple, bitter almond, cola, cinnamon, sugar, cotton candy, vanilla flavors.
Non-limiting examples of other food ingredients include flavors, acidulants, organic and amino acids, coloring agents, bulking agents, modified starches, gums, texturizers, preservatives, antioxidants, emulsifiers, stabilizers, thickeners, gelling agents.
The following examples illustrate various embodiments of the invention. It will be understood that the invention is not limited to the materials, proportions, conditions and procedures set forth in the examples, which are only illustrative. EXAMPLE 1
Preparation of CGTase
A strain of Bacillus stearothermophilus St-100 was inoculated in 2,000 liters of sterilized culture medium containing 1.0% starch, 0.25% corn extract, 0.5% (NH4)2S04, and 0.2% CaC03 (pH 7.0-7.5) at 56°C for 24 hrs with continuous aeration (2,000 L/min) and agitation (150rpm). The obtained culture broth was filtered using Kerasep 0.1 μηι ceramic membrane (Novasep, France) to separate the cells. The cell-free permeate was further concentrated 2-fold on Persep lOkDa ultrafilters (Orelis, France). The activity of the enzyme was determined according to Hale, Rawlins (1951). A crude enzyme preparation with activity of about 2 unit/mL was obtained.
EXAMPLE 2
Preparation of glucosyl stevia composition
100 g of tapioca starch was suspended in 300 mL of water (pH 6.5). 2 K U of a- amylase (Termamyl Classic, Novozymes, Denmark) and 30 units of CGTase obtained according to EXAMPLE 1 were added, and the liquefaction of starch was carried out at 80°C for about one hour to dextrose equivalent about 15. The pH of the reaction mixture was adjusted to pH 2.8 by hydrochloric acid and the mixture was boiled at 100°C during 5 minutes to inactivate the enzymes. After cooling to 65°C, the pH was adjusted to pH 6.0 with sodium hydroxide solution. 100 g stevia extract produced by PureCircle (JiangXi) Co., Ltd. (China), containing stevioside 29.2%, Rebaudioside A 54.3%, Rebaudioside C 9.0%, Rebaudioside F (1.7%) and other glycosides amounting to total steviol glycosides content of about 96.4% was added to the liquefied starch and stirred until a homogeneous solution was obtained. 200 units of CGTase was added to the solution and the mixture was held at a temperature of 65°C for 24 hours under continuous agitation. The obtained reaction mixture was heated at 95°C for 15 minutes to inactivate the enzymes. 20 grams of activated carbon was added and the mixture was heated to 75°C and held for 30 minutes. The mixture was filtered and the filtrate was diluted with water to 5% solids content and passed through columns each packed with 4000 mL Amberlite XAD 7HP macroporous adsorbent resin. The columns were washed with 5 volumes of water and 2 volumes of 20% (v/v) ethanol. The adsorbed glycosides were eluted with 50% ethanol. The obtained eluate was passed through columns packed with Amberlite FPC23 (FT1") and Amberlite FPA51 (OH") ion exchange resins. The ethanol was evaporated and the desalted and decolorized water solution was concentrated at 60°C under vacuum, then dried into a powder form using laboratory spray dryer. 151 grams of product was obtained (Sample 1).
EXAMPLE 3
Preparation of glucosyl stevia composition
100 g of tapioca starch was suspended in 300 mL of water (pH 6.5). 2 K U of a- amylase (Termamyl Classic, Novozymes, Denmark) and 30 units of CGTase obtained according to EXAMPLE 1 were added, and the liquefaction of starch was carried out at 80°C for about one hour to dextrose equivalent about 15. The pH of reaction mixture was adjusted to pH 2.8 by hydrochloric acid and the mixture was boiled at 100°C during 5 minutes to inactivate the enzymes. After cooling to 65°C, the pH was adjusted to pH 6.0 with sodium hydroxide solution. 100 g of transglucosylated stevia extract obtained according to EXAMPLE 2 was added to the liquefied starch and stirred until a homogeneous solution was obtained. 200 units of CGTase were added to the solution and the mixture was held at a temperature of 65°C for 24 hours under continuous agitation. The obtained reaction mixture was heated at 95°C for 15 minutes to inactivate the enzyme. 20 grams of activated carbon was added and the mixture was heated to 75 °C and held during 30 min. The mixture was filtered and the filtrate was diluted with water to 5% solids content and passed through columns each packed with 4000 mL Amberlite XAD 7HP macroporous adsorbent resin. The columns were washed with 5 volumes of water and 2 volumes of 20% (v/v) ethanol. The adsorbed glycosides were eluted with 50% ethanol. The obtained eluate was passed through columns packed with Amberlite FPC23 (Vt) and Amberlite FPA51 (OH") ion exchange resins. The ethanol was evaporated and the desalted and decolorized water solution was concentrated at 60°C under vacuum, then dried into a powder form using laboratory spray dryer. 140 grams of product was obtained (Sample 2). EXAMPLE 4
Preparation of glucosyl stevia composition
100 g of tapioca starch was suspended in 300 mL of water (pH 6.5). 2 KNU of a- amylase (Termamyl Classic, Novozymes, Denmark) and 30 units of CGTase obtained according to EXAMPLE 1 were added, and the liquefaction of starch was carried out at 80°C for about one hour to dextrose equivalent about 15. The pH of reaction mixture was adjusted to pH 2.8 by hydrochloric acid and the mixture was boiled at 100°C during 5 minutes to inactivate the enzymes. After cooling to 65°C, the pH was adjusted to pH 6.0 with sodium hydroxide solution. 100 g stevia extract produced by PureCircle (JiangXi) Co., Ltd. (China), containing stevioside 29.2%, Rebaudioside A 54.3%, Rebaudioside C 9.0%, Rebaudioside F (1.7%) and other glycosides amounting to total steviol glycosides content of about 96.4% was added to liquefied starch and stirred until a homogeneous solution was obtained. 200 units of CGTase was added to the solution and the mixture was held at a temperature of 65°C for 24 hours under continuous agitation. The obtained reaction mixture was heated at 95°C for 15 minutes to inactivate the enzymes. 20 grams of activated carbon was added and the mixture was heated to 75°C and held for 30 minutes. The mixture was filtered and the filtrate was passed through columns packed with Amberlite FPC23 (H+) and Amberlite FPA51 (OH") ion exchange resins. 195 grams of product was obtained.
EXAMPLE 5
Preparation of glucosyl stevia composition
100 g of tapioca starch was suspended in 300 mL of water (pH 6.5). 2 KNU of a-amylase (Termamyl Classic, Novozymes, Denmark) and 30 units of CGTase obtained according to EXAMPLE 1 were added, and the liquefaction of starch was carried out at 80°C for about one hour to dextrose equivalent about 15. The pH of reaction mixture was adjusted to pH 2.8 by hydrochloric acid and the mixture was boiled at 100°C during 5 minutes to inactivate the enzymes. After cooling to 65°C, the pH was adjusted to pH 6.0 with sodium hydroxide solution. 100 g of transglucosylated stevia extract obtained according to EXAMPLE 4 was added to liquefied starch and stirred until a homogeneous solution was obtained. 200 units of CGTase was added to the solution and the mixture was held at a temperature of 65°C for 24 hours under continuous agitation. The obtained reaction mixture was heated at 95°C for 15 minutes to inactivate the enzyme. 20 grams of activated carbon was added and the mixture was heated to 75°C and held during 30 min. The mixture was filtered and the filtrate was diluted with water to 5% solids content and passed through columns each packed with 4000 mL Amberlite XAD 7HP macroporous adsorbent resin. The columns were washed with 5 volumes of water and 2 volumes of 20% (v/v) ethanol. The adsorbed glycosides were eluted with 50% ethanol. The obtained eluate was passed through columns packed with Amberlite FPC23 (FT1") and Amberlite FPA51 (OFF) ion exchange resins. The ethanol was evaporated and the desalted and decolorized water solution was concentrated at 60°C under vacuum, then dried into a powder form using laboratory spray dryer. 105 grams of product was obtained (Sample 3).
EXAMPLE 6
Low-calorie orange juice drink
Orange concentrate (35%), citric acid (0.35%), ascorbic acid (0.05%), orange red color (0.01%), orange flavor (0.20%), Rebaudioside A (0.003%) and different glucosyl stevia compositions (0.03% for Samples 1 and 3 and 0.04% for Sample 2) were blended and dissolved completely in water (up to 100%) and pasteurized. Glucosyl stevia compositions were represented by Samples 1, 2, and 3, obtained according to EXAMPLES 2, 3 and 5, respectively.
The sensory evaluations of the samples are summarized in Table 3. The data show that the best results can be obtained by using the high purity glucosyl stevia composition (containing up to 20 -l,4-glucosyl residues) (Sample 2). Particularly the drinks prepared with Sample 2 exhibited a rounded and complete flavor profile and mouthfeel.
Table 3
Evaluation of orange juice drink samples
Figure imgf000016_0001
The same method can be used to prepare juices and juice drinks from other fruits, such as apples, lemons, apricots, cherries, pineapples, mangoes, etc. EXAMPLE 7
Low-calorie carbonated beverage
A carbonated beverage according to formula presented below was prepared.
Figure imgf000017_0001
The sensory properties were evaluated by 20 panelists. The results are summarized in Table 4.
Table 4
Evaluation of low-calorie carbonated beverage samples
Figure imgf000017_0002
The above results show that the beverages prepared using Sample 2 possessed the best organoleptic characteristics.
EXAMPLE 8
Diet cookies
Flour (50.0%), margarine (30.0%) fructose (10.0%), maltitol (8.0%), whole milk (1.0%), salt (0.2%), baking powder (0.15%), vanillin (0.1%) and different glucosyl stevia compositions (0.03% for Samples 1 and 3, and 0.04% for Sample 2) were kneaded well in dough-mixing machine. The obtained dough was molded and baked in oven at 200°C for 15 minutes. Glucosyl stevia compositions were represented by Samples 1, 2 and 3, obtained according to EXAMPLES 2, 3 and 5, respectively. The sensory properties were evaluated by 20 panelists. The best results were obtained in samples prepared by high glucosyl stevia composition containing derivatives with up to 20 -l,4-glucosyl residues (Sample 2). The panelists noted rounded and complete flavor profile and mouthfeel in cookies prepared with Sample 2. EXAMPLE 9
Yoghurt
Different glucosyl stevia compositions (0.03% for Samples 1 and 3, and 0.04% for Sample 2) and sucrose (4%) were dissolved in low fat milk. Glucosyl stevia compositions were represented by Samples 1, 2 and 3, obtained according to EXAMPLES 2, 3 and 5, respectively. After pasteurizing at 82°C for 20 minutes, the milk was cooled to 37°C. A starter culture (3%) was added and the mixture was incubated at 37°C for 6 hours then at 5°C for 12 hours.
The sensory properties were evaluated by 20 panelists. The best results were obtained in samples prepared by high glucosyl stevia composition containing derivatives with up to 20 -l,4-glucosyl residues (Sample 2). The panelists noted rounded and complete flavor profile and mouthfeel in samples prepared with Sample 2.
It is to be understood that the foregoing descriptions and specific embodiments shown herein are merely illustrative of the best mode of the invention and the principles thereof, and that modifications and additions may be easily made by those skilled in the art without departing for the spirit and scope of the invention, which is therefore understood to be limited only by the scope of the appended claims.

Claims

CLAIMS We claim:
1. A process for producing a highly purified glucosyl stevia composition, comprising the steps of:
adding starch into water to form a starch suspension;
adding a mixture of α-amylase and CGTase into the starch suspension and incubating for about 0.5 to 2 hours at about 75-80°C, resulting in a first liquefied starch suspension;
inactivating the a-amylase by low pH heat treatment;
cooling the first liquefied starch suspension and adjusting the pH to about 5.5 to 7.0;
adding steviol glycosides into the first liquefied starch suspension, resulting in a first reaction mixture;
adding CGTase into the first reaction mixture and incubating for about 12 to 48 hours at about 55-75°C;
removing non-reactant maltoologosaccharides by contacting the first reaction mixture with macroporous adsorbent resin and subsequently eluting adsorbed diterpene glycosides with aqueous ethanol to result in a glycoside- containing first aqueous ethanol eluate;
removing ethanol from the first aqueous ethanol eluate, resulting in a first aqueous eluate;
concentrating and drying the first aqueous eluate to obtain the first dried glucosyl stevia composition;
preparing a second liquefied starch suspension in the same manner as the first liquefied starch suspension;
adding the first dried glucosyl stevia composition into the second liquefied starch suspension, resulting in the second reaction mixture;
adding CGTase into the second reaction mixture and incubating for about 12 to 48 hours at about 55-75°C;
inactivating the enzyme in the second reaction mixture by heat treatment; decolorizing the second reaction mixture; removing non-diterpene compounds by contacting the decolorized second reaction mixture with macroporous adsorbent resin and subsequently eluting adsorbed diterpene glycosides with aqueous ethanol to result in a glycoside- containing second aqueous ethanol eluate;
desalting the glycoside-containing second aqueous ethanol eluate with ion- exchange resins;
removing ethanol from the second aqueous ethanol eluate, resulting in a second aqueous eluate; and
concentrating and drying the second aqueous eluate to obtain the highly purified glucosyl stevia composition;
wherein the highly purified glucosyl stevia composition comprises steviol glycosides and their derivatives having up to twenty a-l,4-glucosyl residues.
2. The process according to claim 1, wherein the mixture of α-amylase and CGTase contains about 0.001-0.2 K U of a-amylase per one unit of CGTase.
3. The process of claim 2, wherein the mixture of α-amylase and CGTase contains about 0.05-0.1 KNU of α-amylase per one unit of CGTase.
4. The process according to claim 1, wherein the weight of added steviol glycosides is about equal to that of the starch used to make the first liquefied starch suspension.
5. The process according to claim 1, wherein the added steviol glycosides are selected from the group consisting of stevioside, Rebaudioside A, Rebaudioside B, Rebaudioside C, Rebaudioside D, Rebaudioside E, Rebaudioside F, dulcoside A, steviolbioside, rubusoside, as well as other steviol glycosides found in Stevia rebaudiana Bertoni plant and mixtures thereof.
6. The process according to claim 1, wherein the weight of added first dried glucosyl stevia composition is about equal to that of the starch used to make the second liquefied starch suspension.
7. The process according to claim 1, wherein the first dried glucosyl stevia composition comprises stevioside, Rebaudioside A, Rebaudioside B, Rebaudioside C, Rebaudioside D, Rebaudioside E, Rebaudioside F, dulcoside A, steviolbioside, rubusoside, and a-l,4-glucosyl derivatives thereof with up to nine -l,4-glucosyl residues.
8. The process according to claim 1, wherein the CGTase is produced by cultures of Bacillus stearothemophilus.
9. The process according to claim 1, wherein the CGTase is added at amount of about 0.2-4 units per gram of solids.
10. The process according to claim 1, wherein the CGTase is added at amount of about 0.5-1.2 units per gram of solids.
1 1. The process according to claim 1, wherein the decolorizing is performed using activated carbon.
12. The process according to claim 1, wherein the decolorizing is performed using ion exchange resins or membranes, said membranes being selected from the group consisting of ultrafiltration, nanofiltration, and reverse osmosis membranes.
13. The process of claim 1, wherein removing maltooligosaccharides and non- diterpene compounds is conducted with a plurality of sequentially connected columns packed with a macroporous adsorbent resin, followed by washing the columns with water, then washing with about 10-50% (v/v) ethanol, disconnecting the columns, and then eluting each column individually with 30-100% ethanol.
14. The process according to claim 1, wherein the desalting is performed by passing the eluate through columns packed with ion exchange resins or membranes, said membranes being selected from the group consisting of ultrafiltration, nanofiltration, and reverse osmosis membranes.
15. The process according to claim 1, wherein the highly purified glucosyl stevia composition has at least about 95% total steviol glycosides on an anhydrous basis.
16. The process according to claim 1, wherein the highly purified glucosyl stevia composition has less than 10% unreacted steviol glycosides on an anhydrous basis.
17. A sweetener composition comprising a highly purified glucosyl stevia composition made by the process of claim 1, and an additional sweetening agent selected from the group consisting of: stevia extract, steviol glycosides, stevioside, Rebaudioside A, Rebaudioside B, Rebaudioside C, Rebaudioside D, Rebaudioside E, Rebaudioside F, dulcoside A, steviolbioside, rubusoside, other steviol glycosides found in Stevia rebaudiana Bertoni plant and mixtures thereof, Luo Han Guo extract, mogrosides, high- fructose corn syrup, corn syrup, invert sugar, fructooligosaccharides, inulin, inulooligosaccharides, coupling sugar, maltooligosaccharides, maltodextins, corn syrup solids, glucose, maltose, sucrose, lactose, aspartame, saccharin, sucralose, sugar alcohols, and a combination thereof.
18. A flavor composition comprising a highly purified glucosyl stevia composition made by the process of claim 1, and an additional flavoring agent selected from the group consisting of: lemon, orange, fruit, banana, grape, pear, pineapple, mango, bitter almond, cola, cinnamon, sugar, cotton candy, vanilla, and a combination thereof.
19. A food ingredient comprising a highly purified glucosyl stevia composition made by the process of claim 1, and an additional food ingredient selected from the group consisting of: acidulants, organic and amino acids, coloring agents, bulking agents, modified starches, gums, texturizers, preservatives, antioxidants, emulsifiers, stabilizers, thickeners, gelling agents, and a combination thereof.
20. A food, beverage, cosmetic or pharmaceutical product comprising a highly purified glucosyl stevia composition made by the process of claim 1.
PCT/US2011/035173 2011-02-17 2011-05-04 Glucosyl stevia composition WO2012112180A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP11858867.2A EP2675294B1 (en) 2011-02-17 2011-05-04 Glucosyl stevia composition
EP19158972.0A EP3530127B1 (en) 2011-02-17 2011-05-04 Glucosyl stevia composition
MX2013009327A MX357389B (en) 2011-02-17 2011-05-04 Glucosyl stevia composition.
ES11858867T ES2728234T3 (en) 2011-02-17 2011-05-04 Stevia-based glycosylated composition
US13/984,884 US8911971B2 (en) 2011-02-17 2011-05-04 Glucosyl stevia composition
PL11858867T PL2675294T3 (en) 2011-02-17 2011-05-04 Glucosyl stevia composition
BR112013020891-0A BR112013020891B1 (en) 2011-02-17 2011-05-04 process for the production of a highly purified stevia glycosyl composition
US14/519,403 US9055761B2 (en) 2011-02-17 2014-10-21 Glucosyl Stevia composition
US14/623,725 US9603373B2 (en) 2011-02-17 2015-02-17 Glucosyl stevia composition
US15/470,388 US20170196247A1 (en) 2011-02-17 2017-03-27 Glucosyl stevia composition
US18/544,879 US20240148036A1 (en) 2011-02-17 2023-12-19 Glucosyl stevia composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US13/029,263 2011-02-17
US13/029,263 US8257948B1 (en) 2011-02-17 2011-02-17 Method of preparing alpha-glucosyl Stevia composition
US13/074,179 2011-03-29
US13/074,179 US8318459B2 (en) 2011-02-17 2011-03-29 Glucosyl stevia composition

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US13/029,263 Continuation-In-Part US8257948B1 (en) 2005-10-11 2011-02-17 Method of preparing alpha-glucosyl Stevia composition
US13/074,179 Continuation-In-Part US8318459B2 (en) 2005-10-11 2011-03-29 Glucosyl stevia composition

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/984,884 A-371-Of-International US8911971B2 (en) 2011-02-17 2011-05-04 Glucosyl stevia composition
US14/519,403 Continuation US9055761B2 (en) 2011-02-17 2014-10-21 Glucosyl Stevia composition

Publications (1)

Publication Number Publication Date
WO2012112180A1 true WO2012112180A1 (en) 2012-08-23

Family

ID=46653253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/035173 WO2012112180A1 (en) 2011-02-17 2011-05-04 Glucosyl stevia composition

Country Status (7)

Country Link
US (5) US8318459B2 (en)
EP (2) EP3530127B1 (en)
BR (1) BR112013020891B1 (en)
ES (1) ES2728234T3 (en)
MX (1) MX357389B (en)
PL (1) PL2675294T3 (en)
WO (1) WO2012112180A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2868209A1 (en) 2013-10-31 2015-05-06 Symrise AG Compound mixtures
US9131718B2 (en) 2009-06-16 2015-09-15 Epc (Beijing) Natural Products Co., Ltd. Process for rebaudioside D
EP2954785A1 (en) 2014-06-13 2015-12-16 Symrise AG New composition for improvement of sweet taste comprising rubusoside or alpha-glycolsylrubusoside
US9578895B2 (en) 2010-08-23 2017-02-28 Epc (Beijing) Natural Products Co., Ltd. Rebaudioside A and stevioside compositions
US9603373B2 (en) 2011-02-17 2017-03-28 Purecircle Sdn Bhd Glucosyl stevia composition
US9771434B2 (en) 2011-06-23 2017-09-26 Purecircle Sdn Bhd Products from stevia rebaudiana
US9795156B2 (en) 2011-03-17 2017-10-24 E.P.C (Beijing) Plant Pharmaceutical Technology Co., Ltd Rebaudioside B and derivatives
WO2017214026A1 (en) * 2016-06-06 2017-12-14 Tate & Lyle Ingredients Americas Llc Glycosylated steviol glycoside compositions and methods of preparing glycosylated steviol glycoside compositions
EP3000334B1 (en) * 2014-09-23 2018-08-15 ADM WILD Europe GmbH & Co. KG Enzyme modification of sweet blackberry leaves
US10264811B2 (en) 2014-05-19 2019-04-23 Epc Natural Products Co., Ltd. Stevia sweetener with improved solubility
US10357052B2 (en) 2014-06-16 2019-07-23 Sweet Green Fields USA LLC Rebaudioside A and stevioside with improved solubilities
US10485256B2 (en) 2014-06-20 2019-11-26 Sweet Green Fields International Co., Limited Stevia sweetener with improved solubility with a cyclodextrin
US10570164B2 (en) * 2013-03-15 2020-02-25 The Coca-Cola Company Steviol glycosides, their compositions and their purification
US10602762B2 (en) 2011-02-17 2020-03-31 Purecircle Sdn Bhd Glucosylated steviol glycoside as a flavor modifier
US10696706B2 (en) 2010-03-12 2020-06-30 Purecircle Usa Inc. Methods of preparing steviol glycosides and uses of the same
US10780170B2 (en) 2013-06-07 2020-09-22 Purecircle Sdn Bhd Stevia extract containing selected steviol glycosides as flavor, salty and sweetness profile modifier
US10952458B2 (en) 2013-06-07 2021-03-23 Purecircle Usa Inc Stevia extract containing selected steviol glycosides as flavor, salty and sweetness profile modifier
US11202461B2 (en) 2014-09-02 2021-12-21 Purecircle Sdn Bhd Stevia extracts
US11647771B2 (en) 2015-10-26 2023-05-16 Purecircle Usa Inc. Steviol glycoside compositions
US11653686B2 (en) 2015-12-15 2023-05-23 Purecircle Usa Inc. Steviol glycoside compositions
US11690391B2 (en) 2011-02-17 2023-07-04 Purecircle Sdn Bhd Glucosylated steviol glycoside as a flavor modifier

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018106983A1 (en) * 2016-12-09 2018-06-14 Purecircle Usa Inc. Glucosyl stevia compositons
US9392799B2 (en) 2011-02-17 2016-07-19 Purecircle Sdn Bhd Glucosyl stevia composition
US8318459B2 (en) * 2011-02-17 2012-11-27 Purecircle Usa Glucosyl stevia composition
US9386797B2 (en) 2011-02-17 2016-07-12 Purecircle Sdn Bhd Glucosyl stevia composition
US8790730B2 (en) 2005-10-11 2014-07-29 Purecircle Usa Process for manufacturing a sweetener and use thereof
US8257948B1 (en) 2011-02-17 2012-09-04 Purecircle Usa Method of preparing alpha-glucosyl Stevia composition
US20110111115A1 (en) * 2009-11-06 2011-05-12 Jingang Shi Rebaudioside a polymorphs and methods to prepare them
PL2498625T3 (en) 2009-11-12 2019-07-31 Purecircle Usa Inc. Granulation of a stevia sweetener
US9510611B2 (en) 2010-12-13 2016-12-06 Purecircle Sdn Bhd Stevia composition to improve sweetness and flavor profile
BR112013020511B1 (en) 2011-02-10 2018-05-22 Purecircle Usa Inc. REBAUDIOSIDA B COMPOSITION AND ITS PRODUCTION PROCESS AS WELL AS SWEET AND FLAVOR COMPOSITIONS, FOOD INGREDIENT, DRINK AND COSMETIC PRODUCT UNDERSTANDING THE DIET REBAUDIOSIDA B COMPOSITION
US20140030381A1 (en) * 2011-02-17 2014-01-30 Purecircle Usa Inc. Glucosyl stevia composition
US9474296B2 (en) 2011-02-17 2016-10-25 Purecircle Sdn Bhd Glucosyl stevia composition
US9894922B2 (en) 2011-05-18 2018-02-20 Purecircle Sdn Bhd Glucosyl rebaudioside C
EP2713763B1 (en) 2011-05-31 2019-01-23 PureCircle USA Inc. Stevia composition
EP2713762B1 (en) 2011-06-03 2016-03-30 Purecircle USA Stevia composition
US10480019B2 (en) 2011-08-10 2019-11-19 Purecircle Sdn Bhd Process for producing high-purity rubusoside
MX2014002462A (en) 2011-09-07 2014-05-07 Purecircle Usa Inc Highly soluble stevia sweetener.
ES2727268T3 (en) * 2011-10-19 2019-10-15 Purecircle Usa Inc Composition of glucosyl stevia
US9752174B2 (en) 2013-05-28 2017-09-05 Purecircle Sdn Bhd High-purity steviol glycosides
EP2852296B1 (en) * 2012-05-22 2021-12-15 PureCircle SDN BHD Process for producing a high-purity steviol glycoside
EP2941134A4 (en) * 2013-01-04 2017-01-04 Cargill, Incorporated Liquid stevia compositions
US20160029677A1 (en) * 2013-03-15 2016-02-04 The Coca-Cola Company Novel glucosyl steviol glycosides, their compositions and their purification
MX2016003540A (en) * 2013-09-19 2016-12-08 Purecircle Usa Inc Glucosylated steviol glycoside as a flavor modifier.
MX2016004036A (en) * 2013-09-30 2016-12-08 Purecircle Usa Inc Glucosyl stevia composition.
JP2017507141A (en) 2014-02-18 2017-03-16 マクニール ニュートリショナルズ,エル エル シー Methods for separation, isolation and evaluation of steviol glycosides
US20150272196A1 (en) * 2014-03-25 2015-10-01 Campbell Soup Company Athletic performance enhancing beverage
EP2957182A1 (en) 2014-06-18 2015-12-23 Technische Hochschule Mittelhessen Improved natural sweetener compositions
US10058112B2 (en) 2014-11-21 2018-08-28 Eco Sweeteners Llc Sweetener composition including enzymatically processed stevia and method of manufacturing
CN107614677A (en) 2015-05-29 2018-01-19 嘉吉公司 For the fermentation process using multistage section feeding production steviol glycoside
BR112017025614A2 (en) 2015-05-29 2018-09-11 Cargill, Incorporated method for producing steviol glycoside and composition
AU2016271125A1 (en) 2015-05-29 2017-12-21 Cargill, Incorporated Heat treatment to produce glycosides
US10517321B2 (en) 2015-07-10 2019-12-31 Sweet Green Fields USA LLC Compositions of steviol multiglycosylated derivatives and stevia components
US10844414B2 (en) 2015-08-06 2020-11-24 Cargill, Incorporated Methods for producing steviol glycosides in engineered yeast
WO2017031301A1 (en) 2015-08-18 2017-02-23 Purecircle Usa Inc. Steviol glycoside solutions
CN108289488A (en) * 2015-11-24 2018-07-17 弗门尼舍有限公司 Glucosylation terpenes glucosides
CN105622683A (en) * 2015-12-09 2016-06-01 天津北洋百川生物技术有限公司 Method for preparing stevioside
CN106290636B (en) * 2016-08-08 2019-07-26 内蒙古蒙牛乳业(集团)股份有限公司 The method for measuring steviol glycoside content in milk-contained drink
CN107130008A (en) * 2017-05-18 2017-09-05 滁州润海甜叶菊高科有限公司 It is a kind of that the production method that the enzyme of general glycoside 80% modifies stevioside is obtained by organized enzyme deep reaction
CN110730616A (en) * 2017-06-08 2020-01-24 三得利控股株式会社 Food and drink with enhanced sweetness
CN107325137B (en) * 2017-08-21 2020-08-04 内蒙古昶辉生物科技股份有限公司 Extraction method of stevioside
GB201805576D0 (en) * 2018-04-04 2018-05-16 Optibiotix Ltd Sweeteners and methods of production thereof
EP3780970B1 (en) * 2018-04-16 2023-06-07 Almendra Pte. Ltd. Taste modulator composition, beverage and flavoring composition thereof
CN108715876B (en) * 2018-05-31 2021-08-24 东台市浩瑞生物科技有限公司 Method for preparing low-grafting-number glucosyl stevioside
US11180788B2 (en) * 2018-05-31 2021-11-23 Jiangnan University Method for the preparation of lower graft degree glucosylated steviol glycosides
CN112955016A (en) * 2018-12-19 2021-06-11 弗门尼舍有限公司 Dairy compositions comprising lactose hydrolysate and glucosylated natural steviol glycoside sweetening
CN115250612A (en) * 2020-06-03 2022-10-28 弗门尼舍有限公司 Compositions for reducing off-flavors and uses thereof
CN112501226A (en) * 2020-11-27 2021-03-16 广州双桥(重庆)有限公司 Preparation method of syrup for medical lovastatin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4219571A (en) * 1978-06-15 1980-08-26 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Process for producing a sweetener
US20060134292A1 (en) * 2004-12-21 2006-06-22 Stevian Biotechnology Corporation Sdn. Bhd. Malaysia Extraction, separation and modification of sweet glycosides from the stevia rebaudiana plant
US20100189861A1 (en) * 2005-10-11 2010-07-29 Purecircle Sdn Bhd Sweetner and use

Family Cites Families (195)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3723410A (en) 1970-12-01 1973-03-27 Amazon Natural Drug Co Method of producing stevioside
JPS525800Y2 (en) 1972-06-17 1977-02-07
JPS525800B2 (en) 1973-06-22 1977-02-16
US3911121A (en) 1973-11-05 1975-10-07 Shell Oil Co Terpene phenol resin compositions containing organophosphorus insecticides
JPS51142570A (en) 1975-06-04 1976-12-08 Morita Kagaku Kogyo Method of imparting sweetness to food or pharmaceutical agent
JPS5828246Y2 (en) 1975-06-04 1983-06-20 株式会社東芝 Ondochiyousetsouchi
JPS525800A (en) 1975-06-27 1977-01-17 Sanyo Kokusaku Pulp Co Ltd Method of purifying stevioside
JPS5430199Y2 (en) 1975-09-03 1979-09-22
JPS5719758Y2 (en) 1975-12-18 1982-04-26
JPS5283731A (en) 1976-01-01 1977-07-12 Ajinomoto Co Inc Rebaudiosides
JPS52100500U (en) 1976-01-27 1977-07-29
JPS52100500A (en) 1976-02-18 1977-08-23 Japan Organo Co Ltd Purification and concentration of aqueous stevioside extract
JPS52136200U (en) 1976-04-12 1977-10-15
JPS52136200A (en) 1976-05-12 1977-11-14 Daicel Chem Ind Ltd Extraction purification of stevioside
JPS572656Y2 (en) 1976-06-11 1982-01-18
JPS5338669A (en) 1976-09-16 1978-04-08 Toyo Soda Mfg Co Ltd Separation of natural sweetening agent
JPS5539731Y2 (en) 1976-11-27 1980-09-17
JPS5416275A (en) 1977-07-07 1979-02-06 Matsushita Electric Ind Co Ltd Composite cooker
JPS5430199A (en) 1977-08-08 1979-03-06 Sanyo Kokusaku Pulp Co Ltd Purification of stevia sweetening agnet
JPS54132599U (en) 1978-03-04 1979-09-13
JPS54132599A (en) 1978-04-04 1979-10-15 Sanyo Kokusaku Pulp Co Ltd Separation and purification of stevioside sweetening
JPS5828247Y2 (en) 1978-05-04 1983-06-20 株式会社クボタ Hydraulic control lever guide device
JPS575663Y2 (en) 1978-05-23 1982-02-02
FR2446472A1 (en) 1978-06-12 1980-08-08 Aerospatiale METHOD AND DEVICE FOR BALANCING PASSIVE AND ACTIVE AXIAL MAGNETIC SUSPENSION ROTATING BODIES AND ORIENTATION OF THEIR ROTATION AXIS
JPS5539731A (en) 1978-09-11 1980-03-19 Res Inst For Prod Dev Extraction of stevioside
JPS5581567U (en) 1978-12-01 1980-06-05
JPS5581567A (en) 1978-12-13 1980-06-19 Res Inst For Prod Dev Extraction and purification of stevioside
JPS5648320Y2 (en) 1978-12-19 1981-11-11
JPS5592400A (en) 1978-12-29 1980-07-12 Daikin Ind Ltd Purification of stevioside
JPS5746998Y2 (en) 1979-02-03 1982-10-15
JPS5820170Y2 (en) 1979-03-05 1983-04-26 アサヒ軽金属工業株式会社 Pressure cooker
JPS55120770A (en) 1979-03-14 1980-09-17 Chisso Corp Purification of stevioside solution
JPS6222925Y2 (en) 1979-03-22 1987-06-11
JPS6027496Y2 (en) 1979-04-09 1985-08-19 日本特殊陶業株式会社 Electrostrictive vibrator for liquid atomization device
JPS55138372A (en) 1979-04-13 1980-10-29 Chisso Corp Purification of stevioside solution
JPS55162953U (en) 1979-05-09 1980-11-22
JPS55162953A (en) 1979-06-04 1980-12-18 Yamada Masami Preparation of stevioside
JPS5699768U (en) 1979-12-28 1981-08-06
JPS5699768A (en) 1980-01-09 1981-08-11 Hayashibara Biochem Lab Inc Preparation of steviol glycoside
JPS56109568U (en) 1980-01-25 1981-08-25
JPS56109568A (en) 1980-02-01 1981-08-31 Maruzen Kasei Kk Purification of stevia sweetening substance
JPS56121453U (en) 1980-02-14 1981-09-16
JPS56121455U (en) 1980-02-18 1981-09-16
JPS5843956Y2 (en) 1980-02-18 1983-10-05 幸雄 佐藤 Self-cleaning defoaming nozzle
JPS56121455A (en) 1980-02-27 1981-09-24 Ajinomoto Co Inc Separation of stevioside and rebaudioside a by crystallization
JPS56121453A (en) 1980-02-27 1981-09-24 Ajinomoto Co Inc Separation of stevioside and rebaudioside a
JPS56121454A (en) 1980-02-27 1981-09-24 Ajinomoto Co Inc Separation of stevioside and rebaudioside a by crystallization
JPS56160962U (en) 1980-04-30 1981-11-30
JPS56160962A (en) 1980-05-14 1981-12-11 Dick Fine Chem Kk Purification of solution containing stevioside-type sweetening substance
JPS55159770A (en) 1980-05-26 1980-12-12 Res Inst For Prod Dev Extraction and purification of stevioside
JPS572656A (en) 1980-06-05 1982-01-08 Shinnakamura Kagaku Kogyo Kk Decoloration and purification of stevia extract
JPS575663A (en) 1980-06-13 1982-01-12 Res Inst For Prod Dev Purification of stevioside through extraction
JPS5746998A (en) 1980-09-04 1982-03-17 Fuji Food:Kk Preparation of stevioside
US4454290A (en) 1980-09-22 1984-06-12 Dynapol Stevioside analogs
JPS6018313Y2 (en) 1980-10-24 1985-06-03 雄次 横川 Corner rounding and corner cutting machine
JPS5775992A (en) 1980-10-30 1982-05-12 Tama Seikagaku Kk Purification of stevioside
JPS5846310B2 (en) 1980-11-19 1983-10-15 丸善化成株式会社 How to isolate the main sweetening components in Stevia
JPS57134498A (en) 1981-02-12 1982-08-19 Hayashibara Biochem Lab Inc Anhydrous crystalline maltitol and its preparation and use
US4361697A (en) 1981-05-21 1982-11-30 F. K. Suzuki International, Inc. Extraction, separation and recovery of diterpene glycosides from Stevia rebaudiana plants
JPS5786264U (en) 1981-05-25 1982-05-27
JPS5828247A (en) 1981-08-10 1983-02-19 Mitsubishi Acetate Co Ltd Purifying method of stevioside solution
JPS5828246A (en) 1981-08-10 1983-02-19 Mitsubishi Acetate Co Ltd Preparation of stevioside
JPS58149697A (en) 1982-02-27 1983-09-06 Dainippon Ink & Chem Inc Preparation of beta-1,3-glycosyl stevioside
JPS58212760A (en) 1982-06-04 1983-12-10 Sekisui Chem Co Ltd Purification of stevia sweetening substance
JPS58212759A (en) 1982-06-04 1983-12-10 Sekisui Chem Co Ltd Purification of stevia sweetening substance
JPS5945848A (en) 1982-09-09 1984-03-14 Morita Kagaku Kogyo Kk Novel natural sweetener
US4612942A (en) 1984-03-08 1986-09-23 Stevia Company, Inc. Flavor enhancing and modifying materials
US4657638A (en) 1985-07-29 1987-04-14 University Of Florida Distillation column
US4599403A (en) 1985-10-07 1986-07-08 Harold Levy Method for recovery of stevioside
JPS62166861A (en) 1986-01-20 1987-07-23 Sanpack:Kk Extraction and purification of sweetener component from dry leaf of stevia
JPS62166861U (en) 1986-04-10 1987-10-23
JPS63173531U (en) 1987-05-01 1988-11-10
ES2046979T3 (en) 1987-07-21 1994-02-16 Roger H Giovanetto PROCEDURE FOR OBTAINING ESTEVIOSIDES FROM GROSS VEGETABLE MATERIAL.
DE3810681A1 (en) 1988-03-29 1989-10-12 Udo Kienle METHOD FOR PRODUCING A NATURAL SWEETENER BASED ON STEVIA REBAUDIANA AND ITS USE
JP2798433B2 (en) * 1989-08-25 1998-09-17 日本製紙株式会社 Highly sweetened sugar-added stevia sweetener and process for producing the same
JP2898688B2 (en) 1990-03-14 1999-06-02 日本製紙株式会社 Highly sweetened sugar-added stevia sweetener and process for producing the same
CN1024348C (en) 1990-05-23 1994-04-27 孟凡彬 Process for extraction of sweet stevia by ordinary resin
US5576042A (en) 1991-10-25 1996-11-19 Fuisz Technologies Ltd. High intensity particulate polysaccharide based liquids
JPH067108A (en) 1992-06-23 1994-01-18 P C C Technol:Kk Method for extracting and separating sweet substance of stevia rebaudiana bertoni
US5240488A (en) 1992-08-14 1993-08-31 At&T Bell Laboratories Manufacture of vitreous silica product via a sol-gel process using a polymer additive
FR2698630B1 (en) 1992-11-27 1995-01-06 Atochem Elf Sa Process for the preparation of thermoplastic elastomer block copolymers derived from conjugated dienes and from methyl methacrylate, with improved heat resistance and products obtained.
JPH06192283A (en) 1992-12-17 1994-07-12 Ikeda Pan:Kk Method for production pure rebaudioside a
CN1032651C (en) 1993-09-21 1996-08-28 袁斯鸣 Method for purifying stevioside
JP3436317B2 (en) 1993-11-24 2003-08-11 大日本インキ化学工業株式会社 Method for producing stevia sweetener
US5549757A (en) 1994-06-10 1996-08-27 Ingredient Technology Corporation Process for recrystallizing sugar and product thereof
JP3262458B2 (en) 1994-07-29 2002-03-04 キヤノン株式会社 Recording device
CN1112565A (en) 1995-03-06 1995-11-29 北京市环境保护科学研究院 Technology for extracting stevioside by membrane method combined technique
RU2111969C1 (en) 1995-11-08 1998-05-27 Республиканская научно-исследовательская лаборатория по биологически активным веществам Method of stevioside preparing
US5962678A (en) 1996-09-13 1999-10-05 Alberta Research Council Method of extracting selected sweet glycosides from the Stevia rebaudiana plant
TW557327B (en) 1996-11-08 2003-10-11 Hayashibara Biochem Lab Kojibiose phosphorylase, its preparation and uses
JP2002262822A (en) 1997-01-30 2002-09-17 Morita Kagaku Kogyo Kk Sweetener obtained from plant body of variety of stevia rebaudiana cultivatable from seed
JPH10271928A (en) 1997-01-30 1998-10-13 Morita Kagaku Kogyo Kk New plant belonging to stevia rabaudiana berton.
RU2156083C2 (en) 1997-06-24 2000-09-20 Дмитриенко Николай Васильевич Method of obtaining extract from stevia grass
RU2123267C1 (en) 1997-06-24 1998-12-20 Дмитриенко Николай Васильевич Method of preparing concentrate of extract from powder of stevia herb
US5972120A (en) 1997-07-19 1999-10-26 National Research Council Of Canada Extraction of sweet compounds from Stevia rebaudiana Bertoni
JP3646497B2 (en) 1997-12-22 2005-05-11 味の素株式会社 Granular sweetener
CN1078217C (en) 1998-02-18 2002-01-23 南开大学 Adsorption resin method for conectrating and separating vegetable baudy glucoside from stevioside
JP3038179B2 (en) 1998-04-08 2000-05-08 日高精機株式会社 Fin for heat exchanger and method of manufacturing the same
US5972917A (en) 1998-05-29 1999-10-26 Bone Care Int Inc 1 α-hydroxy-25-ene-vitamin D, analogs and uses thereof
CN1098860C (en) 1998-06-08 2003-01-15 江苏省中国科学院植物研究所 Process for separating and concentrating high-quality stevioside
JP2000236842A (en) 1998-12-24 2000-09-05 Nippon Paper Industries Co Ltd Stevia sweetener
US6228996B1 (en) 1999-02-24 2001-05-08 James H. Zhou Process for extracting sweet diterpene glycosides
RU2167544C2 (en) 1999-03-09 2001-05-27 Краснодарский научно-исследовательский институт хранения и переработки сельскохозяйственной продукции Method of preparing extract from plant stevia rebaudiana bertoni for winemaking
US6280871B1 (en) 1999-10-12 2001-08-28 Cabot Corporation Gas diffusion electrodes containing modified carbon products
US20020132320A1 (en) 2001-01-10 2002-09-19 Wang Peng George Glycoconjugate synthesis using a pathway-engineered organism
US20020123330A1 (en) 2001-02-06 2002-09-05 Yen Robert C. Wireless internet access with enhanced bandwidth capabilities
RU2198548C1 (en) 2001-06-01 2003-02-20 Общество с ограниченной ответственностью Научно-производственное холдинговое объединение "СТЕВИЯ-АГРОМЕДФАРМ" Method of producing extract from plants stevia rebaudiana bertoni
CN1132840C (en) 2001-10-24 2003-12-31 青岛创升生物科技有限公司 Stevioside glycoside refining process
EP1476556A2 (en) 2002-02-14 2004-11-17 Novozymes A/S Process for producing starch hydrolysate
SE0200539D0 (en) 2002-02-25 2002-02-25 Metcon Medicin Ab Granulation process and starch granulate
CN1237182C (en) 2002-06-25 2006-01-18 山东华仙甜菊股份有限公司 Process for improving taste of ribaudiose
CA2518404C (en) 2003-03-10 2014-01-14 Genencor International, Inc. Grain compositions containing pre-biotic isomalto-oligosaccharides and methods of making and using same
CA2559470A1 (en) 2004-03-17 2005-09-29 Cargill, Incorporated Low glycemic sweeteners and products made using the same
US7476248B2 (en) 2004-04-06 2009-01-13 Alcon, Inc. Method of calculating the required lens power for an opthalmic implant
US7923552B2 (en) 2004-10-18 2011-04-12 SGF Holdings, LLC High yield method of producing pure rebaudioside A
US20060142555A1 (en) 2004-12-23 2006-06-29 Council Of Scientific And Industrial Research Process for production of steviosides from stevia rebaudiana bertoni
WO2006072878A1 (en) 2005-01-07 2006-07-13 Ranbaxy Laboratories Limited Oral dosage forms of sertraline having controlled particle size and processes for their preparation
WO2006072879A1 (en) 2005-01-07 2006-07-13 Ranbaxy Laboratories Limited Preparation of sweetener tablets of stevia extract by dry granulation methods
US7838011B2 (en) 2005-02-14 2010-11-23 Pankaj Modi Stabilized protein compositions for topical administration and methods of making same
US8790730B2 (en) 2005-10-11 2014-07-29 Purecircle Usa Process for manufacturing a sweetener and use thereof
US8337927B2 (en) 2005-10-11 2012-12-25 Purecircle Sdn Bhd Process for manufacturing a sweetener and use thereof
US7862845B2 (en) 2005-10-11 2011-01-04 Purecircle Sdn Bhd Process for manufacturing a sweetener and use thereof
US8293306B2 (en) 2005-10-11 2012-10-23 Purecircle Sdn Bhd Process for manufacturing a sweetener and use thereof
US8318459B2 (en) 2011-02-17 2012-11-27 Purecircle Usa Glucosyl stevia composition
US8334006B2 (en) 2005-10-11 2012-12-18 Purecircle Sdn Bhd Process for manufacturing a sweetener and use thereof
US7807206B2 (en) * 2005-10-11 2010-10-05 Purecircle Sdn Bhd Sweetner and use
US8257948B1 (en) * 2011-02-17 2012-09-04 Purecircle Usa Method of preparing alpha-glucosyl Stevia composition
US8956677B2 (en) 2005-11-23 2015-02-17 The Coca-Cola Company High-potency sweetener composition with glucosamine and compositions sweetened therewith
US8962058B2 (en) 2005-11-23 2015-02-24 The Coca-Cola Company High-potency sweetener composition with antioxidant and compositions sweetened therewith
US8435587B2 (en) 2005-11-23 2013-05-07 The Coca-Cola Company High-potency sweetener composition with long-chain primary aliphatic saturated alcohol and compositions sweetened therewith
US20070116823A1 (en) 2005-11-23 2007-05-24 The Coca-Cola Company High-potency sweetener for hydration and sweetened hydration composition
US20070116822A1 (en) 2005-11-23 2007-05-24 The Coca-Cola Company High-potency sweetener composition with saponin and compositions sweetened therewith
US9101160B2 (en) 2005-11-23 2015-08-11 The Coca-Cola Company Condiments with high-potency sweetener
US20070116825A1 (en) 2005-11-23 2007-05-24 The Coca-Cola Company Confection with High-Potency Sweetener
US20070116820A1 (en) 2005-11-23 2007-05-24 The Coca-Cola Company Edible gel compositions comprising high-potency sweeteners
US20070116836A1 (en) 2005-11-23 2007-05-24 The Coca-Cola Company High-Potency Sweetener Composition for Treatment and/or Prevention of Osteoporosis and Compositions Sweetened Therewith
DK2526778T3 (en) 2005-11-23 2017-03-27 Coca Cola Co Natural High Strength Sweetener Compositions with Improved Time Profile and / or Taste Profile, Methods of Formulation thereof and Applications thereof
US20070116833A1 (en) 2005-11-23 2007-05-24 The Coca-Cola Company High-Potency Sweetener Composition with Calcium and Compositions Sweetened Therewith
US20070116800A1 (en) 2005-11-23 2007-05-24 The Coca-Cola Company Chewing Gum with High-Potency Sweetener
US20070134391A1 (en) 2005-11-23 2007-06-14 The Coca-Cola Company High-Potency Sweetener Composition for Treatment and/or Prevention of Autoimmune Disorders and Compositions Sweetened Therewith
US8940351B2 (en) 2005-11-23 2015-01-27 The Coca-Cola Company Baked goods comprising high-potency sweetener
US20070116839A1 (en) 2005-11-23 2007-05-24 The Coca-Cola Company High-Potency Sweetener Composition With C-Reactive Protein Reducing Substance and Compositions Sweetened Therewith
US20070116829A1 (en) 2005-11-23 2007-05-24 The Coca-Cola Company Pharmaceutical Composition with High-Potency Sweetener
US8956678B2 (en) 2005-11-23 2015-02-17 The Coca-Cola Company High-potency sweetener composition with preservative and compositions sweetened therewith
US8993027B2 (en) 2005-11-23 2015-03-31 The Coca-Cola Company Natural high-potency tabletop sweetener compositions with improved temporal and/or flavor profile, methods for their formulation, and uses
US8512789B2 (en) 2005-11-23 2013-08-20 The Coca-Cola Company High-potency sweetener composition with dietary fiber and compositions sweetened therewith
US8435588B2 (en) 2005-11-23 2013-05-07 The Coca-Cola Company High-potency sweetener composition with an anti-inflammatory agent and compositions sweetened therewith
US20070116831A1 (en) 2005-11-23 2007-05-24 The Coca-Cola Company Dental Composition with High-Potency Sweetener
US8524303B2 (en) 2005-11-23 2013-09-03 The Coca-Cola Company High-potency sweetener composition with phytosterol and compositions sweetened therewith
US8940350B2 (en) 2005-11-23 2015-01-27 The Coca-Cola Company Cereal compositions comprising high-potency sweeteners
US8367138B2 (en) 2005-11-23 2013-02-05 The Coca-Cola Company Dairy composition with high-potency sweetener
US9144251B2 (en) 2005-11-23 2015-09-29 The Coca-Cola Company High-potency sweetener composition with mineral and compositions sweetened therewith
US8524304B2 (en) 2005-11-23 2013-09-03 The Coca-Cola Company High-potency sweetener composition with probiotics/prebiotics and compositions sweetened therewith
US8377491B2 (en) 2005-11-23 2013-02-19 The Coca-Cola Company High-potency sweetener composition with vitamin and compositions sweetened therewith
US8945652B2 (en) 2005-11-23 2015-02-03 The Coca-Cola Company High-potency sweetener for weight management and compositions sweetened therewith
US8367137B2 (en) 2005-11-23 2013-02-05 The Coca-Cola Company High-potency sweetener composition with fatty acid and compositions sweetened therewith
US7927851B2 (en) 2006-03-21 2011-04-19 Vineland Research And Innovation Centre Compositions having ent-kaurenoic acid 13-hydroxylase activity and methods for producing same
US9012626B2 (en) 2006-06-19 2015-04-21 The Coca-Cola Company Rebaudioside a composition and method for purifying rebaudioside a
US8791253B2 (en) 2006-06-19 2014-07-29 The Coca-Cola Company Rebaudioside A composition and method for purifying rebaudioside A
CN101495642B (en) 2006-08-11 2013-06-19 丹尼斯科美国公司 Native grain amylases in enzyme combinations for granular starch hydrolysis
FR2906973B1 (en) 2006-10-17 2009-01-16 Roquette Freres GRANULATED EDULCORING COMPOSITION
US20080102497A1 (en) 2006-10-31 2008-05-01 Dominic Wong Enzymatic hydrolysis of starch
US8017168B2 (en) 2006-11-02 2011-09-13 The Coca-Cola Company High-potency sweetener composition with rubisco protein, rubiscolin, rubiscolin derivatives, ace inhibitory peptides, and combinations thereof, and compositions sweetened therewith
US9101161B2 (en) 2006-11-02 2015-08-11 The Coca-Cola Company High-potency sweetener composition with phytoestrogen and compositions sweetened therewith
US20080107787A1 (en) 2006-11-02 2008-05-08 The Coca-Cola Company Anti-Diabetic Composition with High-Potency Sweetener
FI20070521L (en) 2006-11-10 2008-05-11 Atacama Labs Oy Grains, tablets and granulation process
CN101200480B (en) 2006-12-15 2011-03-30 成都华高药业有限公司 Rebaudioside A extraction method
EP2124633B1 (en) 2007-01-22 2012-03-07 Cargill, Incorporated Method of producing purified rebaudioside a compositions using solvent/antisolvent crystallization
US9877500B2 (en) 2007-03-14 2018-01-30 Concentrate Manufacturing Company Of Ireland Natural beverage products
CN101932719B (en) 2007-04-26 2014-04-02 株式会社林原 Branched -glucan, -glucosyltransferase producing the same, method for producing the same and use thereof
US8030481B2 (en) 2007-05-21 2011-10-04 The Coca-Cola Company Stevioside polymorphic and amorphous forms, methods for their formulation, and uses
US8709521B2 (en) 2007-05-22 2014-04-29 The Coca-Cola Company Sweetener compositions having enhanced sweetness and improved temporal and/or flavor profiles
US20080292765A1 (en) 2007-05-22 2008-11-27 The Coca-Cola Company Sweetness Enhancers, Sweetness Enhanced Sweetener Compositions, Methods for Their Formulation, and Uses
US20080292775A1 (en) 2007-05-22 2008-11-27 The Coca-Cola Company Delivery Systems for Natural High-Potency Sweetener Compositions, Methods for Their Formulation, and Uses
CA2691678C (en) 2007-06-29 2015-07-21 Mcneil Nutritionals, Llc Stevia-containing tabletop sweeteners and methods of producing same
US7964232B2 (en) 2007-09-17 2011-06-21 Pepsico, Inc. Steviol glycoside isomers
KR20100106509A (en) 2008-01-22 2010-10-01 모리타 가가쿠 고교 가부시키가이샤 Novel stevia variety and method of producing sweetener
TWI475963B (en) 2008-02-25 2015-03-11 Coca Cola Co Rebaudioside a derivative products and methods for making
FR2929533B1 (en) 2008-04-03 2010-04-30 Novasep MULTICOLOUR GRADIENT SEPARATION PROCESS.
EP2276463A4 (en) 2008-04-11 2013-12-04 Univ Louisiana State Diterpene glycosides as natural solubilizers
KR100888694B1 (en) 2008-09-01 2009-03-16 김경재 Method for production sweet-improved enzymatically modified stevia
WO2010057024A1 (en) 2008-11-14 2010-05-20 Cargill, Incorporated Improving perceptional characteristics of beverages
EP2416670A4 (en) 2009-04-09 2014-05-21 Cargill Inc Sweetener composition comprising high solubility form of rebaudioside a and method of making
AU2010261471A1 (en) 2009-06-16 2011-12-15 Epc (Beijing) Natural Products Co., Ltd. Composition comprising rebaudioside D for reducing or eliminating aftertaste and preparation method thereof
US8299224B2 (en) 2009-10-15 2012-10-30 Purecircle Sdn Bhd High-purity Rebaudioside D
US8703224B2 (en) 2009-11-04 2014-04-22 Pepsico, Inc. Method to improve water solubility of Rebaudioside D
US20110111115A1 (en) 2009-11-06 2011-05-12 Jingang Shi Rebaudioside a polymorphs and methods to prepare them
PL2498625T3 (en) 2009-11-12 2019-07-31 Purecircle Usa Inc. Granulation of a stevia sweetener
US9012520B2 (en) 2009-12-28 2015-04-21 The Coca-Cola Company Sweetness enhancers, compositions thereof, and methods for use
US20110189360A1 (en) 2010-02-04 2011-08-04 Pepsico, Inc. Method to Increase Solubility Limit of Rebaudioside D in an Aqueous Solution
MY180803A (en) 2010-06-02 2020-12-09 Evolva Inc Recombinant production of steviol glycosides
WO2012075030A1 (en) 2010-11-30 2012-06-07 Massachusetts Institute Of Technology Microbial production of natural sweeteners, diterpenoid steviol glycosides
WO2012082493A1 (en) 2010-12-13 2012-06-21 Cargill, Incorporated Crystalline forms of rebaudioside b
JP6290624B2 (en) 2010-12-13 2018-03-07 カーギル・インコーポレイテッド Glycoside mixture
WO2013022989A2 (en) 2011-08-08 2013-02-14 Evolva Sa Recombinant production of steviol glycosides

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4219571A (en) * 1978-06-15 1980-08-26 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Process for producing a sweetener
US20060134292A1 (en) * 2004-12-21 2006-06-22 Stevian Biotechnology Corporation Sdn. Bhd. Malaysia Extraction, separation and modification of sweet glycosides from the stevia rebaudiana plant
US20100189861A1 (en) * 2005-10-11 2010-07-29 Purecircle Sdn Bhd Sweetner and use

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9635878B2 (en) 2009-06-16 2017-05-02 Epc (Beijing) Natural Products Co., Ltd. Process for rebaudioside D
US9131718B2 (en) 2009-06-16 2015-09-15 Epc (Beijing) Natural Products Co., Ltd. Process for rebaudioside D
US10696706B2 (en) 2010-03-12 2020-06-30 Purecircle Usa Inc. Methods of preparing steviol glycosides and uses of the same
US11155570B2 (en) 2010-03-12 2021-10-26 Purecircle Usa Inc. Methods of preparing steviol glycosides and uses of the same
US11773125B2 (en) 2010-03-12 2023-10-03 Purecircle Usa Inc. Methods of preparing steviol glycosides and uses of the same
US9578895B2 (en) 2010-08-23 2017-02-28 Epc (Beijing) Natural Products Co., Ltd. Rebaudioside A and stevioside compositions
US10285425B2 (en) 2010-08-23 2019-05-14 Epc Natural Products Co. Ltd Rebaudioside A and stevioside compositions
US11202462B2 (en) 2010-08-23 2021-12-21 Sweet Green Fields International Co., Limited Rebaudioside A and stevioside compositions
US9603373B2 (en) 2011-02-17 2017-03-28 Purecircle Sdn Bhd Glucosyl stevia composition
US11871771B2 (en) 2011-02-17 2024-01-16 Purecircle Sdn Bhd Glucosyl Stevia composition
US10602762B2 (en) 2011-02-17 2020-03-31 Purecircle Sdn Bhd Glucosylated steviol glycoside as a flavor modifier
US10743572B2 (en) 2011-02-17 2020-08-18 Purecircle Sdn Bhd Glucosylated steviol glycoside as a flavor modifier
US11957144B2 (en) 2011-02-17 2024-04-16 Purecircle Sdn Bhd Glucosylated steviol glycoside as a flavor modifier
US11690391B2 (en) 2011-02-17 2023-07-04 Purecircle Sdn Bhd Glucosylated steviol glycoside as a flavor modifier
US9795156B2 (en) 2011-03-17 2017-10-24 E.P.C (Beijing) Plant Pharmaceutical Technology Co., Ltd Rebaudioside B and derivatives
US11510428B2 (en) 2011-03-17 2022-11-29 Sweet Green Fields International Co., Limited Rebaudioside B and derivatives
US11279773B2 (en) 2011-06-23 2022-03-22 Purecircle Sdn Bhd Products from Stevia rabaudiana
US9771434B2 (en) 2011-06-23 2017-09-26 Purecircle Sdn Bhd Products from stevia rebaudiana
US10570164B2 (en) * 2013-03-15 2020-02-25 The Coca-Cola Company Steviol glycosides, their compositions and their purification
US11957756B2 (en) 2013-06-07 2024-04-16 Purecircle Sdn Bhd Stevia extract containing selected steviol glycosides as flavor, salty and sweetness profile modifier
US10952458B2 (en) 2013-06-07 2021-03-23 Purecircle Usa Inc Stevia extract containing selected steviol glycosides as flavor, salty and sweetness profile modifier
US10780170B2 (en) 2013-06-07 2020-09-22 Purecircle Sdn Bhd Stevia extract containing selected steviol glycosides as flavor, salty and sweetness profile modifier
EP2868209A1 (en) 2013-10-31 2015-05-06 Symrise AG Compound mixtures
WO2015062998A1 (en) 2013-10-31 2015-05-07 Symrise Ag Mixtures of matter
US11206857B2 (en) 2014-05-19 2021-12-28 Sweet Green Fields International Co., Limited Stevia sweetener with improved solubility
US10264811B2 (en) 2014-05-19 2019-04-23 Epc Natural Products Co., Ltd. Stevia sweetener with improved solubility
US10561165B2 (en) 2014-05-19 2020-02-18 Sweet Green Fields International Co., Limited Stevia sweetener with improved solubility
US10538548B2 (en) 2014-06-13 2020-01-21 Symrise Ag Material mixture containing rubusoside or alpha glycosylrubusoside, for enhancing sweet taste
CN106459123A (en) * 2014-06-13 2017-02-22 西姆莱斯股份公司 Novel material mixture containing rubusoside or alpha-glycosylrubusoside, for enhancing sweet taste
WO2015189346A1 (en) * 2014-06-13 2015-12-17 Symrise Ag Novel material mixture containing rubusoside or alpha-glycosylrubusoside, for enhancing sweet taste
EP2954785A1 (en) 2014-06-13 2015-12-16 Symrise AG New composition for improvement of sweet taste comprising rubusoside or alpha-glycolsylrubusoside
US10568351B2 (en) 2014-06-16 2020-02-25 Sweet Green Fields USA LLC Rebaudioside A and stevioside with improved solubilities
US10357052B2 (en) 2014-06-16 2019-07-23 Sweet Green Fields USA LLC Rebaudioside A and stevioside with improved solubilities
US11241031B2 (en) 2014-06-16 2022-02-08 Sweet Green Fields Usa, Llc Rebaudioside A and stevioside with improved solubilities
US10485256B2 (en) 2014-06-20 2019-11-26 Sweet Green Fields International Co., Limited Stevia sweetener with improved solubility with a cyclodextrin
US11230567B2 (en) 2014-09-02 2022-01-25 Purecircle Usa Inc. Stevia extracts enriched in rebaudioside D, E, N and/or O and process for the preparation thereof
US11202461B2 (en) 2014-09-02 2021-12-21 Purecircle Sdn Bhd Stevia extracts
US11856972B2 (en) 2014-09-02 2024-01-02 Purecircle Sdn Bhd Stevia extracts
EP3000334B1 (en) * 2014-09-23 2018-08-15 ADM WILD Europe GmbH & Co. KG Enzyme modification of sweet blackberry leaves
US11647771B2 (en) 2015-10-26 2023-05-16 Purecircle Usa Inc. Steviol glycoside compositions
US11653686B2 (en) 2015-12-15 2023-05-23 Purecircle Usa Inc. Steviol glycoside compositions
WO2017214026A1 (en) * 2016-06-06 2017-12-14 Tate & Lyle Ingredients Americas Llc Glycosylated steviol glycoside compositions and methods of preparing glycosylated steviol glycoside compositions
CN109689878A (en) * 2016-06-06 2019-04-26 泰特&莱尔组分美国公司 The method for glycosylating steviol glycoside composition and preparation glycosylation steviol glycoside composition

Also Published As

Publication number Publication date
BR112013020891B1 (en) 2019-11-12
EP3530127B1 (en) 2022-02-23
BR112013020891A2 (en) 2016-09-27
EP2675294B1 (en) 2019-02-27
EP2675294A1 (en) 2013-12-25
PL2675294T3 (en) 2020-01-31
US8318459B2 (en) 2012-11-27
US20150037462A1 (en) 2015-02-05
US20130337115A1 (en) 2013-12-19
US20130030060A1 (en) 2013-01-31
US9055761B2 (en) 2015-06-16
US20120214752A1 (en) 2012-08-23
MX357389B (en) 2018-07-06
US8669077B2 (en) 2014-03-11
EP2675294A4 (en) 2017-01-25
MX2013009327A (en) 2014-05-27
ES2728234T3 (en) 2019-10-23
EP3530127A1 (en) 2019-08-28
US20120315355A1 (en) 2012-12-13
US8735101B2 (en) 2014-05-27
US8911971B2 (en) 2014-12-16

Similar Documents

Publication Publication Date Title
US9055761B2 (en) Glucosyl Stevia composition
US11844365B2 (en) Glucosyl Stevia composition
US9706792B2 (en) Glucosyl stevia composition
US10117452B2 (en) Glucosyl stevia composition
WO2015048383A1 (en) Glucosyl stevia composition
EP2690972B1 (en) Process for producing a glucosyl stevia composition
US20200359668A1 (en) Glucosyl stevia composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858867

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/009327

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13984884

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011858867

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013020891

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013020891

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130815