WO2012111848A1 - Mixer circuit - Google Patents

Mixer circuit Download PDF

Info

Publication number
WO2012111848A1
WO2012111848A1 PCT/JP2012/054336 JP2012054336W WO2012111848A1 WO 2012111848 A1 WO2012111848 A1 WO 2012111848A1 JP 2012054336 W JP2012054336 W JP 2012054336W WO 2012111848 A1 WO2012111848 A1 WO 2012111848A1
Authority
WO
WIPO (PCT)
Prior art keywords
differential
multiplier
signal
differential amplifier
input
Prior art date
Application number
PCT/JP2012/054336
Other languages
French (fr)
Japanese (ja)
Inventor
岸本 修也
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2012558051A priority Critical patent/JP5803944B2/en
Publication of WO2012111848A1 publication Critical patent/WO2012111848A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1441Balanced arrangements with transistors using field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1458Double balanced arrangements, i.e. where both input signals are differential
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/0084Lowering the supply voltage and saving power

Definitions

  • the present invention relates to a mixer circuit that performs frequency conversion, and more particularly to a mixer circuit that operates at a low power supply voltage.
  • the mixer circuit is a circuit used for up conversion for frequency conversion from low frequency to high frequency and down conversion for frequency conversion from high frequency to low frequency in a communication system.
  • the mixer circuit preferably has high conversion gain and high saturation power, and Gilbert cell mixer circuits are widely used.
  • the conversion gain is the ratio of the signal amplitude at the frequency of the output signal to the signal amplitude at the frequency of the signal input to the mixer circuit. Therefore, the larger the conversion gain, the larger the amplitude of the signal output for the same input signal amplitude.
  • the Gilbert cell mixer circuit is configured by stacking a constant current circuit, a transistor to which a first signal is input, a transistor to which a second signal is input, and an impedance circuit, between a ground terminal and a power supply voltage terminal. It is done.
  • FIG. 1 is a block diagram showing the configuration of a typical Gilbert cell mixer circuit.
  • This mixer circuit is a mixer circuit on the premise of being used in a device on the receiving side that performs down conversion.
  • the Gilbert cell mixer circuit shown in FIG. 1 comprises one differential amplification transistor pair (M2, M3) and a circuit in which two differential switching transistor pairs (M4, M5), (M6, M7) are cross-connected. Connected in series.
  • M1 is a current source transistor.
  • the differential radio frequency signal RF (Radio Frequency) input to + RF and ⁇ RF is amplified by the differential amplification transistor pair (M2, M3).
  • RF Radio Frequency
  • the output signal is multiplied by a differential switch transistor pair by a frequency signal LO (Local Oscillator) that is input to + LO and -LO from a local oscillator mounted on a device on the receiving side.
  • LO Local Oscillator
  • IF Intermediate Frequency
  • the Gilbert cell mixer circuit shown in FIG. 1 is configured by stacking three stages of transistors. Further, in the Gilbert cell mixer circuit shown in FIG. 1, the current source transistor M1 is omitted, and each source terminal of the transistor pair (M2, M3) is grounded to operate as a mixer circuit of the circuit configuration shown in FIG. You can also.
  • Patent Document 1 discloses a mixer circuit that operates stably without reducing the gain even under a low power supply voltage (see FIG. 3).
  • the mixer circuit disclosed in Patent Document 1 has a first input signal as one input, and a transistor receiving the first input signal and between two emitter differential pairs for differentially amplifying the second input signal. Is connected to the balun (mutual inductance).
  • the balun causes a current corresponding to the input signal to be generated at the emitter common node of the first emitter differential pair, and a current in reverse phase to be generated at the emitter common node of the second emitter differential pair. Then, mutually complementary differential currents generated by this balun are used as operating currents of the two emitter differential pairs.
  • Patent Document 2 discloses a mixer circuit operable at low voltage (see FIG. 4).
  • the mixer circuit disclosed in Patent Document 2 operates even when the power supply voltage is set low by setting the active element formed of transistors to only one stage.
  • Patent Document 3 discloses an active mixer circuit which operates at low voltage and has low noise and low power consumption (see FIG. 5).
  • the active mixer circuit disclosed in Patent Document 3 includes a voltage-current conversion amplifier, a transformer, and a multiplier, and a transformer is connected between the voltage-current conversion amplifier and the multiplier. This isolates between the voltage-to-current conversion type amplifier and the multiplier for direct current inside the transformer.
  • the voltage-current conversion type amplifier and the multiplier are respectively configured by vertically stacked single-stage transistors.
  • CMOS complementary metal oxide semiconductor
  • the mixer circuit disclosed in Patent Document 1 a balun is used instead of the current source transistor M1, and the number of transistor stages is reduced. However, the configuration is still such that two stages of transistors are stacked, and the linear operation range is limited by the two stages of transistors.
  • the mixer circuit disclosed in Patent Document 2 has one transistor stage, and can increase the linear operation range. However, no current flows in the transistor of this circuit, and the conversion gain can not be increased.
  • the mixer circuit disclosed in Patent Document 3 is a circuit similar to the Gilbert cell mixer circuit shown in FIG. 1 except that a differential amplification transistor pair (M2, M3) and two switching transistor pairs (M4, M5), A transformer is connected between M6 and M7).
  • the middle point of the transformer coil connected to the switching transistor pair side is grounded, and the middle point of the transformer coil connected to the differential amplification transistor pair side is connected to VDD.
  • the LO signal input from the LO terminal is amplified by a differential amplifier configured by a differential amplification transistor pair, input to a multiplier configured by a switching transistor pair through a transformer, and mixed with an RF signal in the multiplier And an IF signal is generated.
  • the power supply voltage is separated by the transformer into the differential amplification transistor pair side and the switching transistor pair side. Therefore, the mixer circuit disclosed in Patent Document 3 can reduce the number of transistor stages, and can improve the saturation characteristics while increasing the conversion gain.
  • An object of the present invention is to solve the problems as described above, and to provide a mixer circuit which can operate at a low voltage and has high saturation power and conversion gain.
  • a mixer circuit is formed of a single differential amplification transistor pair, and receives a first differential signal and outputs the first differential signal.
  • a differential amplifier for amplifying and outputting through a first matching circuit, and a differential switching transistor pair in one stage, the second differential signal, and the differential amplifier through a second matching circuit Inputs the first differential signal amplified and output, multiplies the second differential signal and the first differential signal amplified and output by the differential amplifier, and outputs as a third differential signal , And a capacitive coupling unit for connecting the first matching circuit of the differential amplifier and the second matching circuit of the multiplier and DC-wise separating the differential amplifier and the multiplier.
  • the differential amplification transistor pair of the differential amplifier and the differential of the multiplier Switch ing transistor pair power independently is characterized in that it is supplied.
  • a mixer circuit operating at low voltage and having high saturation power and high conversion gain is realized.
  • FIG. 2 is a block diagram showing a configuration of a representative Gilbert cell mixer circuit.
  • FIG. 6 is a block diagram showing the configuration of another representative Gilbert cell mixer circuit. It is a block diagram which shows the structure of the mixer circuit disclosed by patent document 1.
  • FIG. FIG. 6 is a block diagram showing a configuration of a mixer circuit disclosed in Patent Document 2.
  • FIG. 6 is a block diagram showing a configuration of a mixer circuit disclosed in Patent Document 3.
  • It is a block diagram showing composition of a mixer circuit concerning a 2nd embodiment of the present invention.
  • It is a block diagram showing composition of a mixer circuit concerning a 3rd embodiment of the present invention.
  • It is a block diagram which shows the structure of the mixer circuit which concerns on the 4th Embodiment of this invention.
  • FIG. 6 is a block diagram showing the configuration of the mixer circuit according to the first embodiment of the present invention. Note that the embodiment is an example, and the disclosed apparatus and system are not limited to the configurations of the following embodiments.
  • the mixer circuit of the first embodiment is configured to include a differential amplifier 10, a multiplier 20, and a capacitive coupling unit 30.
  • the differential amplifier 10 includes a single differential amplification transistor pair (transistors 111 and 112), receives a first differential signal, amplifies the first differential signal, and generates a first matching circuit. Output via 121 and 122.
  • the differential signal refers to two signals in opposite phase to each other.
  • the multiplier 20 is configured of a single-stage differential switching transistor pair (transistors 211, 212, 213, and 214), and the second differential signal and the first differential signal amplified and output by the differential amplifier 10 are generated. input. At this time, the first differential signal amplified and output by the differential amplifier 10 is input through the second matching circuits 221 and 222. Then, the multiplier 20 multiplies the second differential signal and the first differential signal amplified and output by the differential amplifier 10 and outputs the result as a third differential signal.
  • the capacitive coupling unit 30 connects the first matching circuits 121 and 122 of the differential amplifier 10 and the second matching circuits 221 and 222 of the multiplier 20 to separate the differential amplifier 10 and the multiplier 20 in a DC manner. Do.
  • the first matching circuits 121 and 122 of the differential amplifier 10 are connected to the second matching circuits 221 and 222 of the multiplier 20 via the capacitors 301 and 302 of the capacitive coupling unit 30, but in terms of direct current It is separated.
  • the differential amplification transistor pair (transistors 111 and 112) of the differential amplifier 10 and the differential switching transistor pair (transistors 211, 212, 213, and 214) of the multiplier 20 are independently supplied with power.
  • the first matching circuits 121 and 122 have an impedance viewed from the transistor side from the output terminal (the drain terminal in FIG. 6) of each of the transistors 111 and 112 of the differential amplifier 10 and a multiplier from the capacitive coupling unit 30 on the output side.
  • the second matching circuits 221 and 222 are impedances viewed from the transistor side of the first differential signal input terminal of each transistor of the multiplier 20 and the differential amplifier 10 from the capacitive coupling unit 30 which is the input side. Match the impedance with the impedance when looking at the side. That is, the source terminals of the transistors 211 and 212 and the transistors 213 and 214 of the multiplier 20 are input terminals of the first differential signal amplified and output by the differential amplifier 10.
  • the differential amplifier 10 and the multiplier 20 are connected via the first matching circuits 121 and 122 and the second matching circuits 221 and 222. ing.
  • the capacitive coupling unit 30 separates the differential amplifier 10 and the multiplier 20 in a direct current manner.
  • the transistors for the operation of the differential amplifier 10 and the multiplier 20 are independently supplied with power. Therefore, the power supply voltage supplied to each of differential amplifier 10 and multiplier 20 can widen the voltage range capable of linear operation even at low voltage, operates at low voltage, and has a high saturation power and high conversion gain. Can be provided.
  • the first matching circuits 121 and 122 and the second matching circuits 221 and 222 may be connected to one another as an example of a configuration in which power is independently supplied to the transistors for operation of the differential amplifier 10 and the multiplier 20, respectively. It is configured as follows.
  • the power supply voltages (VDD) of the transistors 111 and 112 constituting the differential amplification transistor pair of the differential amplifier 10 are supplied from the first matching circuits 121 and 122.
  • the second matching circuits 221 and 222 are configured to have a connection for grounding the current supplied to the transistors 211, 212, 213 and 214 constituting the differential switching transistor pair of the multiplier 20.
  • the mixer circuit of the second embodiment is configured to include a differential amplifier 11, a multiplier 21, and a capacitive coupling unit 30.
  • the differential amplifier 11 includes transistors 111 and 112 forming a differential amplification transistor pair.
  • an input matching circuit 131 and 132 composed of a transmission line and a capacitor and an output matching circuit 141 and 142 are connected to the base terminal and the drain terminal, respectively.
  • the output matching circuits 141 and 142 correspond to the first matching circuits 121 and 122 in the first embodiment.
  • the input matching circuits 131 and 132 perform impedance matching between the impedance viewed from the gate terminal of each of the transistors 111 and 112 and the impedance of the circuit connected to the input side of the differential amplifier 11.
  • the input matching circuits 131 and 132 are also circuits for applying the first differential signals (+ SIG1, ⁇ SIG1) and the gate bias voltage V1 to the transistors 111 and 112.
  • the output matching circuits 141 and 142 perform impedance matching between the impedance viewed from the drain terminal of each of the transistors 111 and 112 and the impedance viewed from the capacitive coupling unit 30 to the multiplier 21 side.
  • the output matching circuits 141 and 142 are also circuits that supply the power supply voltage (VDD) of the transistors 111 and 112. As transmission lines and capacitors that constitute each matching circuit, elements of appropriate values are used according to the required impedance.
  • the multiplier 21 includes transistors 211, 212, 213, and 214 that constitute a differential switching transistor pair. Input matching circuits 231 and 232 on the gate terminal side and input matching circuits 241 and 242 on the source terminal side are connected to the transistors 211, 212, 213, and 214, respectively. The input matching circuits 241 and 242 on the source terminal side correspond to the second matching circuits 221 and 222 in the first embodiment.
  • the input matching circuits 231 and 232 on the gate terminal side are impedance matching between the impedance seen from the gate terminal of each of the transistors 211, 212, 213 and 214 and the impedance of the circuit connected to the input side of the multiplier 21. Plan.
  • the input matching circuits 231 and 232 on the gate terminal side are also circuits for applying the second differential signals (+ SIG2 and -SIG2) and the gate bias voltage V2 to the transistors 211, 212, 213 and 214.
  • the input matching circuits 241 and 242 on the source terminal side have an impedance when the transistors 211 and 212 and the transistors 213 and 214 look at the transistor side from the source terminal, and an impedance when the capacitive coupling portion 30 looks at the differential amplifier 11 side Impedance matching.
  • the input matching circuits 241 and 242 on the source terminal side are configured to flow the current supplied from the power supply voltage (VDD) to the transistors 211, 212, 213 and 214 by grounding.
  • VDD power supply voltage
  • the differential amplifier 11 and the multiplier 21 are connected by the capacitive coupling unit 30, but the capacitors 301 and 302 separate the differential amplifier 11 and the multiplier 21 in a direct current manner.
  • drain terminals of the respective transistors 211, 212, 213, and 214 of the multiplier 21 are connected to the power supply voltage (VDD) via the load unit 261 at the connection unit 251 formed of a transmission line, and the third difference Dynamic signals (+ SIG3, -SIG3) are taken out.
  • the differential amplifier 11 is supplied with the power supply voltage (VDD) from the output matching circuits 141 and 142, and is applied with the first differential signal (+ SIG1, -SIG1) and the gate bias voltage V1 from the input matching circuits 131 and 132. .
  • the input first differential signal is amplified by the transistors 111 and 112, and transmitted to the multiplier 21 through the capacitors 301 and 302 of the capacitive coupling unit 30.
  • the amplification factor of the differential amplifier 11 is determined by the gate bias voltage V1.
  • the input matching circuits 241 and 242 on the source side of the transistors 211, 212, 213, and 214 that make up the differential switching transistor pair are grounded. Therefore, the current supplied from the power supply voltage (VDD) to each of the transistors 211, 212, 213, 214 flows from the input matching circuit 241, 242 on the source side to the ground.
  • the second differential signals (+ SIG2, -SIG2) and the gate bias voltage V2 are applied to the gate terminals of the respective transistors 211, 212, 213, 214 from the input matching circuits 231, 232 on the gate side.
  • the first differential signal input from the differential amplifier 11 via the capacitive coupling unit 30 is multiplied with the second differential signal by the transistors 211, 212, 213, and 214 that form a differential switching transistor pair, It is mixed.
  • a signal generated by this mixing is extracted as a third differential signal (+ SIG3, ⁇ SIG3) by the load of the load unit 261.
  • the conversion gain of the multiplier 21 is determined by the gate bias voltage V2.
  • the differential amplifier 11 and the multiplier 21 are separated in a direct current by the capacitive coupling unit 30.
  • the differential amplifier 11 is configured to receive supply of operating power of each of the transistors 111 and 112 from the output matching circuits 141 and 142.
  • the multiplier 21 is configured to ground the input matching circuits 241 and 242 on the source side and to flow the current supplied from the power source to the transistors 211, 212, 213 and 214 to the ground. That is, the power supply voltage is applied independently of each other by the differential amplifier 11 and the multiplier 21. As a result, the current flowing to each transistor increases, and as a result, the saturation power increases. Further, by the output matching circuits 141 and 142 of the differential amplifier 11 and the input matching circuits 241 and 242 of the multiplier 21, impedance matching between the differential amplifier 11 and the multiplier 21 is achieved, and multiplication from the differential amplifier 11 is performed. The signal power output to unit 21 can be sufficiently transmitted.
  • the second embodiment can provide a mixer circuit which operates at low voltage and has high saturation power and high conversion gain.
  • FIG. 8 is a diagram showing the effect of the mixer circuit according to the second embodiment.
  • a calculation result 41 in the down conversion operation of the mixer circuit according to the second embodiment and a calculation result 42 in the down conversion operation of the generally used Gilbert cell mixer circuit shown in FIGS. This is performed by fixing the power of the low frequency LO signal which is the second differential signal and changing the power of the high frequency RF signal which is the first differential signal, and then down converting the third down converted signal.
  • the input-output characteristics which calculated the electric power of IF signal of the intermediate frequency which is a differential signal are represented. As apparent from FIG.
  • the load unit 261 of the multiplier 21 generally has a configuration using a resistance element.
  • the configuration may have a filter function, including a capacitor and an inductor. That is, in the case of the configuration using the resistance element, the conversion loss is constant and output without depending on the frequency.
  • FIG. 9 is a block diagram showing a configuration of a mixer circuit according to a third embodiment of the present invention.
  • the mixer circuit of the third embodiment is configured to include a differential amplifier 12, a multiplier 22 and a capacitive coupling unit 30.
  • the differential amplifier 12 includes transistors 111 and 112 forming a differential amplification transistor pair. In each of the transistors 111 and 112, input matching circuits 131 and 132 including a transmission line and a capacitor are connected to gate terminals, and output matching circuits 151 and 152 are connected to drain terminals.
  • the output matching circuits 151 and 152 correspond to the first matching circuits 121 and 122 in the first embodiment.
  • the differential amplifier 12 differs in the configuration of the differential amplifier 11 and the output matching circuit in the second embodiment.
  • the output matching circuits 151 and 152 are configured to include a transmission line, a capacitor and an inductor.
  • the input matching circuits 131 and 132 have the same configuration as the input matching circuit of the differential amplifier 11 in the second embodiment. That is, the input matching circuits 131 and 132 perform impedance matching between the impedance viewed from the gate terminal of each of the transistors 111 and 112 and the impedance of the circuit connected to the input side of the differential amplifier 12.
  • the input matching circuits 131 and 132 are also circuits for applying the first differential signals (+ SIG1, ⁇ SIG1) and the gate bias voltage V1 to the transistors 111 and 112.
  • the output matching circuits 151 and 152 have a configuration in which the transmission line to which a voltage is applied in the output matching circuit of the differential amplifier 11 in the second embodiment is changed to an inductor.
  • the output matching circuits 151 and 152 perform impedance matching between the impedance viewed from the drain terminal of the transistors 111 and 112 and the impedance viewed from the capacitive coupling unit 30 to the multiplier 22.
  • the output matching circuits 151 and 152 are also circuits that supply the power supply voltage (VDD) of the transistors 111 and 112.
  • the multiplier 22 includes transistors 211, 212, 213, and 214 that form a differential switching transistor pair.
  • the input matching circuits 231 and 232 on the gate terminal side and the input matching circuits 271 and 272 on the source terminal side are connected to the transistors 211, 212, 213, and 214, respectively.
  • the input matching circuits 271 and 272 on the source terminal side correspond to the second matching circuits 221 and 222 in the first embodiment.
  • the multiplier 22 is different from the multiplier 21 in the second embodiment in the configuration of the input matching circuit on the source terminal side.
  • the input matching circuits 271 and 272 on the source terminal side are configured to include a transmission line and an inductor.
  • the input matching circuits 231 and 232 on the gate terminal side have the same configuration as the input matching circuit on the gate terminal side of the multiplier 21 in the second embodiment. That is, in the input matching circuits 231 and 232 on the gate terminal side, the impedance seen from the gate terminal of each of the transistors 211, 212, 213, and 214 and the impedance of the circuit connected to the input side of the multiplier 22. Make impedance matching.
  • the input matching circuits 231 and 232 on the gate terminal side are also circuits for applying the second differential signals (+ SIG2 and -SIG2) and the gate bias voltage V2 to the transistors 211, 212, 213 and 214.
  • the input matching circuits 271 and 272 on the source terminal side are configured such that the transmission line grounded in the input matching circuit on the source terminal side of the multiplier 21 in the second embodiment is changed to an inductor.
  • the input matching circuits 271 and 272 on the source terminal side have an impedance as viewed from the source terminals of the transistors 211, 212, 213, and 214, and an impedance as viewed from the capacitive coupling unit 30 to the differential amplifier 12 side. Make impedance matching.
  • the input matching circuits 271 and 272 on the source terminal side ground the power supply voltage (VDD) supplied to the transistors 211, 212, 213 and 214.
  • the differential amplifier 12 and the multiplier 22 are connected by the capacitive coupling unit 30, but the capacitors 301 and 302 separate the differential amplifier 12 and the multiplier 22 in a direct current manner.
  • the output matching circuits 151 and 152 of the differential amplifier 12 and the input matching circuits 271 and 272 on the source terminal side of the multiplier 22 are configured to use inductors, respectively. There is.
  • the differential amplifier 12 and the multiplier 22 are inductively coupled by the mutual inductances of these inductors.
  • drain terminals of the respective transistors 211, 212, 213, and 214 of the multiplier 22 are connected to the power supply voltage (VDD) via the load unit 261 at the connection unit 251 formed of a transmission line, and the third difference Dynamic signals (+ SIG3, -SIG3) are taken out.
  • the differential amplifier 12 is supplied with the power supply voltage (VDD) from the output matching circuits 151 and 152, and is applied with the first differential signal (+ SIG1, -SIG1) and the gate bias voltage V1 from the input matching circuits 131 and 132. .
  • the input first differential signal is amplified by the transistors 111 and 112 and multiplied by the capacitors 301 and 302 of the capacitive coupling unit 30 and the inductors of the output matching circuits 151 and 152 and the inductors of the input matching circuits 271 and 272.
  • the amplification factor of the differential amplifier 12 is determined by the gate bias voltage V1.
  • the input matching circuits 271 and 272 on the source side of the transistors 211, 212, 213, and 214 forming the differential switching transistor pair are grounded. Therefore, the current supplied from the power supply voltage (VDD) to each transistor flows from the input matching circuits 271 and 272 at the source terminal side to the ground.
  • VDD power supply voltage
  • a second differential signal (+ SIG2, -SIG2) and a gate bias voltage V2 are applied to the gate terminals of the transistors 211, 212, 213, and 214 from the input matching circuit 231, 232 on the gate terminal side.
  • the first differential signal input from the differential amplifier 12 via the capacitive coupling portion 30 and the mutual inductance is multiplied with the second differential signal by the transistors 211, 212, 213, and 214 that constitute the differential switching transistor pair. And be mixed.
  • a signal generated by this mixing is extracted as a third differential signal (+ SIG3, ⁇ SIG3) by the load of the load unit 261.
  • the conversion gain of the multiplier 20 is determined by the gate bias voltage V2.
  • the differential amplifier 12 and the multiplier 22 are DC-separated by the capacitive coupling unit 30, and the differential amplifier 12 and the multiplier 22 have mutual inductance Is configured to be inductively coupled. Then, the differential amplifier 12 receives the supply of operating power of each transistor from the output matching circuits 151 and 152, and the multiplier 22 grounds the input matching circuits 271 and 272 on the source terminal side to connect the power transistors to the respective transistors. The supplied current is supplied to the ground. That is, the configuration enables control to increase or decrease the amount of signal transmitted from differential amplifier 12 to multiplier 22 according to the frequency, and differential amplifier 12 and multiplier 22 respectively. The power supply voltage is applied independently.
  • FIG. 10 is a block diagram showing a configuration of a mixer circuit according to a fourth embodiment of the present invention.
  • the mixer circuit of the fourth embodiment is configured to include a differential amplifier 11, a multiplier 23, and a capacitive coupling unit 30. That is, in the mixer circuit of the fourth embodiment, the multipliers are different in the mixer circuit of the second embodiment.
  • the multiplier 23 is different in the configuration of the load unit 271 to which the drain terminals of the respective transistors 211, 212, 213, and 214 constituting the differential switching transistor pair are connected.
  • An output matching circuit for the drain terminals of the transistors 211, 212, 213, and 214 is formed by the transmission line and the capacitor that constitute the load portion 271 and the connection portion 251.
  • the differential amplifier 11 is supplied with the power supply voltage (VDD) from the output matching circuits 141 and 142, and is applied with the first differential signal (+ SIG1, -SIG1) and the gate bias voltage V1 from the input matching circuits 131 and 132. .
  • the input first differential signal is amplified by the transistors 111 and 112 and transmitted to the multiplier 23 through the capacitors 301 and 302 of the capacitive coupling unit 30.
  • the input matching circuits 241 and 242 on the source side of the transistors 211, 212, 213, and 214 that make up the differential switching transistor pair are grounded. Therefore, the current supplied from the power supply voltage (VDD) to each transistor flows from the input matching circuits 241 and 242 on the source side to the ground.
  • a second differential signal (+ SIG2, -SIG2) and a gate bias voltage V2 are applied to the gate terminals of the transistors 211, 212, 213, 214 from the input matching circuits 231, 232 on the gate side.
  • the first differential signal input from the differential amplifier 11 via the capacitive coupling unit 30 is multiplied with the second differential signal by the transistors 211, 212, 213, and 214, and mixed.
  • a signal generated by this mixing is taken out as a third differential signal (+ SIG3, -SIG3) by the output matching circuit formed by the load unit 271 and the connection unit 251.
  • the differential amplifier 11 and the multiplier 23 are separated in a direct current by the capacitive coupling unit 30.
  • the differential amplifier 11 receives supply of operating power of each transistor from the output matching circuits 141 and 142, and the multiplier 23 grounds the input matching circuits 241 and 242 on the source side and supplies power to each transistor from the power supply.
  • the configuration is such that the current is supplied to the ground. That is, the power supply voltage is applied independently of each other by the differential amplifier 11 and the multiplier 23. As a result, the current flowing to each transistor increases, and as a result, the saturation power increases. Further, by the output matching circuits 141 and 142 of the differential amplifier 11 and the input matching circuits 241 and 242 of the multiplier 23, impedance matching between the differential amplifier 11 and the multiplier 23 is achieved, and multiplication from the differential amplifier 11 is performed.
  • the signal power output to the converter 23 can be sufficiently transmitted. That is, the fourth embodiment can provide a mixer circuit which operates at low voltage and has high saturation power and high conversion gain. Furthermore, in the mixer circuit of the fourth embodiment, the signal generated by mixing is extracted from the output matching circuit on the drain terminal side of the transistors 211, 212, 213, and 214 that constitute the differential switching transistor pair of the multiplier 23. It has become. Therefore, the frequency necessary for the output signal generated by mixing can be finely tuned and output.
  • the mixer circuit of the fourth embodiment is a configuration suitable for a mixer circuit of a device on the transmission side that needs to be up-converted to obtain an output signal with a high frequency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

Provided is a mixer circuit, comprising: a differential motion amplifier (10) which is configured of a one-stage differential motion amplifier transistor pair (111, 112), wherein a first differential motion signal is inputted, and the first differential motion signal is amplified and outputted via first matching circuits (121, 122); a multiplier (20), which is configured of one-stage differential motion switching transistor pairs (211, 212, 213, 214), wherein a second differential motion signal, and the first differential motion signal which the differential motion amplifier has amplified and outputted, are inputted, the first differential motion signal being inputted via second matching circuits (221, 222), the second differential motion signal and the first differential motion signal which the differential motion amplifier has amplified and outputted are multiplied and outputted as a third differential motion signal; and a capacitance coupling unit (30) which connects the first matching circuits of the differential motion amplifier and the second matching circuits of the multiplier, and galvanically isolates the differential motion amplifier and the multiplier. Power is supplied to the differential motion amplifier transistor pair of the differential motion amplifier and the differential motion switching transistor pairs of the multiplier in isolation from one another, thus providing a mixer circuit which operates at low voltage and has strong power saturation and conversion gain.

Description

ミキサ回路Mixer circuit
 本発明は、周波数変換を行うミキサ回路に関し、特に低い電源電圧で動作するミキサ回路に関する。 The present invention relates to a mixer circuit that performs frequency conversion, and more particularly to a mixer circuit that operates at a low power supply voltage.
 ミキサ回路は、通信システムにおいて、低い周波数から高い周波数に周波数変換するアップコンバージョンや、また、高い周波数から低い周波数へ周波数変換するダウンコンバージョンに利用される回路である。ミキサ回路は、変換利得が高く、飽和電力が高いことが望ましく、ギルバートセル型ミキサ回路が広く使われている。なお、変換利得とは、ミキサ回路に入力される信号の周波数における信号振幅に対する、出力される信号の周波数における信号振幅の比である。したがって、変換利得が大きいほど同じ入力信号振幅に対して出力される信号の振幅が大きい。
 ギルバートセル型ミキサ回路は、接地端子と電源電圧端子との間に、定電流回路、第1の信号が入力されるトランジスタ、第2の信号が入力されるトランジスタ、およびインピーダンス回路が積み上げられて構成されている。
 いくつかのギルバートセル型ミキサ回路について図を参照して説明する。
 図1は、代表的なギルバートセル型ミキサ回路の構成を示すブロック図である。このミキサ回路はダウンコンバージョンを行う受信側の装置で使用されることを前提としたミキサ回路である。以下、受信側の装置で使用されるミキサ回路に関して説明する。
 図1に示すギルバートセル型ミキサ回路は、1つの差動増幅トランジスタペア(M2、M3)と、2つの差動スイッチングトランジスタペア(M4、M5)、(M6、M7)を交差接続した回路とが直列に接続されている。また、M1は電流源トランジスタである。+RF、−RFに入力された差動の無線周波数信号RF(Radio Frequency)が差動増幅トランジスタペア(M2、M3)により増幅される。その出力信号と受信側の装置に搭載された局部発振器から+LO、−LOに入力される周波数信号LO(Local Oscillator)とが差動スイッチトランジスタペアによって乗算される。その結果として、それぞれの信号の周波数差の中間周波数信号IF(Intermediate Frequency)が+IF、−IFに出力される。
 図1に示したギルバートセル型ミキサ回路は、トランジスタが3段積み上げられて構成されている。また、図1に示すギルバートセル型ミキサ回路において、電流源トランジスタM1を省略し、トランジスタペア(M2、M3)のそれぞれのソース端子を接地した、図2に示す回路構成のミキサ回路として動作させることもできる。
 特許文献1には、低電源電圧下でも利得を低減させることなく安定に動作するミキサ回路が開示されている(図3参照)。この特許文献1が開示するミキサ回路は、第1の入力信号を片側入力とし、この第1の入力信号を受けるトランジスタと、第2の入力信号を差動増幅する2つのエミッタ差動対の間にバラン(相互インダクタンス)を接続している。
 このバランにより、入力信号に応じた電流を第1のエミッタ差動対のエミッタ共通ノードに生じさせ、それと逆相の電流を第2のエミッタ差動対のエミッタ共通ノードに生じさせている。そして、このバランによって生じた互いに相補な差動電流を2つのエミッタ差動対の動作電流としている。
 特許文献2には、低電圧で動作可能なミキサ回路が開示されている(図4参照)。この特許文献2が開示するミキサ回路は、トランジスタで構成される能動素子を1段のみとすることにより電源電圧を低く設定しても動作するようにしている。
 特許文献3には、低電圧で動作し、低雑音かつ低消費電力となるアクティブミキサ回路が開示されている(図5参照)。この特許文献3が開示するアクティブミキサ回路は、電圧−電流変換型増幅器とトランスと乗算器とを備え、電圧−電流変換型増幅器と乗算器との間にトランスを接続した構成となっている。これによりトランスの内部で直流に対して電圧−電流変換型増幅器と乗算器との間を分離する。また、電圧−電流変換型増幅器と乗算器をそれぞれ縦積み一段のトランジスタで構成している。
The mixer circuit is a circuit used for up conversion for frequency conversion from low frequency to high frequency and down conversion for frequency conversion from high frequency to low frequency in a communication system. The mixer circuit preferably has high conversion gain and high saturation power, and Gilbert cell mixer circuits are widely used. The conversion gain is the ratio of the signal amplitude at the frequency of the output signal to the signal amplitude at the frequency of the signal input to the mixer circuit. Therefore, the larger the conversion gain, the larger the amplitude of the signal output for the same input signal amplitude.
The Gilbert cell mixer circuit is configured by stacking a constant current circuit, a transistor to which a first signal is input, a transistor to which a second signal is input, and an impedance circuit, between a ground terminal and a power supply voltage terminal. It is done.
Several Gilbert cell mixer circuits are described with reference to the figures.
FIG. 1 is a block diagram showing the configuration of a typical Gilbert cell mixer circuit. This mixer circuit is a mixer circuit on the premise of being used in a device on the receiving side that performs down conversion. Hereinafter, the mixer circuit used in the device on the receiving side will be described.
The Gilbert cell mixer circuit shown in FIG. 1 comprises one differential amplification transistor pair (M2, M3) and a circuit in which two differential switching transistor pairs (M4, M5), (M6, M7) are cross-connected. Connected in series. M1 is a current source transistor. The differential radio frequency signal RF (Radio Frequency) input to + RF and −RF is amplified by the differential amplification transistor pair (M2, M3). The output signal is multiplied by a differential switch transistor pair by a frequency signal LO (Local Oscillator) that is input to + LO and -LO from a local oscillator mounted on a device on the receiving side. As a result, an intermediate frequency signal IF (Intermediate Frequency) of the frequency difference between the respective signals is output to + IF and −IF.
The Gilbert cell mixer circuit shown in FIG. 1 is configured by stacking three stages of transistors. Further, in the Gilbert cell mixer circuit shown in FIG. 1, the current source transistor M1 is omitted, and each source terminal of the transistor pair (M2, M3) is grounded to operate as a mixer circuit of the circuit configuration shown in FIG. You can also.
Patent Document 1 discloses a mixer circuit that operates stably without reducing the gain even under a low power supply voltage (see FIG. 3). The mixer circuit disclosed in Patent Document 1 has a first input signal as one input, and a transistor receiving the first input signal and between two emitter differential pairs for differentially amplifying the second input signal. Is connected to the balun (mutual inductance).
The balun causes a current corresponding to the input signal to be generated at the emitter common node of the first emitter differential pair, and a current in reverse phase to be generated at the emitter common node of the second emitter differential pair. Then, mutually complementary differential currents generated by this balun are used as operating currents of the two emitter differential pairs.
Patent Document 2 discloses a mixer circuit operable at low voltage (see FIG. 4). The mixer circuit disclosed in Patent Document 2 operates even when the power supply voltage is set low by setting the active element formed of transistors to only one stage.
Patent Document 3 discloses an active mixer circuit which operates at low voltage and has low noise and low power consumption (see FIG. 5). The active mixer circuit disclosed in Patent Document 3 includes a voltage-current conversion amplifier, a transformer, and a multiplier, and a transformer is connected between the voltage-current conversion amplifier and the multiplier. This isolates between the voltage-to-current conversion type amplifier and the multiplier for direct current inside the transformer. In addition, the voltage-current conversion type amplifier and the multiplier are respectively configured by vertically stacked single-stage transistors.
特開2000−315919号公報JP 2000-315919 A 特開2008−172601号公報JP, 2008-172601, A 特開2009−206890号公報JP, 2009-206890, A
 一般的に、トランジスタを多段に積み上げた回路構成は、線形動作可能な電圧範囲が狭く、出力信号が飽和しやすいという問題がある。
 そこで、出力信号の飽和電力を大きくするためには、この線形動作可能な電圧範囲を広くする必要がある。しかし、線形動作可能な電圧範囲を広くしようとすると電源電圧を高くしなければならない。これに対し、マイクロ波やミリ波帯などの高周波帯で動作できる微細CMOS(Complementary Metal Oxide Semiconductor)では、電源電圧が1V程度に抑えられているため、十分に大きな電源電圧が印加できず、高い飽和電力を得ることが難しい。
 特許文献1に開示されたミキサ回路では、電流源トランジスタM1の代わりにバランを使用し、トランジスタの段数が減らされている。しかしながら、依然としてトランジスタを2段積み上げた構成であり、2段のトランジスタによって線形動作範囲が制限される。
 特許文献2に開示されたミキサ回路はトランジスタの段数が1段であり、線形動作範囲を増加させることが出来る。しかし、この回路のトランジスタには電流が流れておらず、変換利得を高くすることができない。
 特許文献3に開示されたミキサ回路は、図1に示すギルバートセル型ミキサ回路と同様の回路において、差動増幅トランジスタペア(M2、M3)と、2つのスイッチングトランジスタペア(M4、M5)、(M6、M7)間にトランスを接続した構成である。スイッチングトランジスタペア側に接続されたトランスコイルの中点は接地され、差動増幅トランジスタペア側に接続されたトランスコイルの中点はVDDに接続されている。LO端子から入力されたLO信号は、差動増幅トランジスタペアで構成される差動増幅器で増幅され、トランスを介してスイッチングトランジスタペアで構成される乗算器へ入力され、乗算器においてRF信号とミキシングされIF信号が生成される。一方電源電圧は、トランスによって差動増幅トランジスタペア側とスイッチングトランジスタペア側に分離される。従って、特許文献3が開示するミキサ回路はトランジスタの段数を減らすことができ、変換利得を高くしながら飽和特性を改善することができる。
 しかし、マイクロ波やミリ波などの高周波帯を扱う回路において使用するトランスの設計は難しく、また、トランスのみで差動増幅トランジスタペアとスイッチングトランジスタペアを整合させることが難しい。このため、特許文献3が開示するミキサ回路においても、トランスだけでは差動増幅器から乗算器へ電力を十分に伝達することが難しく、その結果、ミキサ回路の変換利得を大きくすることが出来ないという問題が内在している。
 本発明の目的は、以上のような課題を解決し、低電圧で動作することができ、しかも飽和電力と変換利得が高いミキサ回路を提供することにある。
In general, a circuit configuration in which transistors are stacked in multiple stages has a problem that the voltage range in which linear operation can be performed is narrow, and the output signal tends to be saturated.
Therefore, in order to increase the saturation power of the output signal, it is necessary to widen the voltage range in which this linear operation is possible. However, in order to widen the voltage range capable of linear operation, the power supply voltage must be increased. On the other hand, in a complementary metal oxide semiconductor (CMOS) that can operate in a high frequency band such as a microwave or a millimeter wave band, the power supply voltage is suppressed to about 1 V, so a sufficiently large power supply voltage can not be applied. It is difficult to obtain saturated power.
In the mixer circuit disclosed in Patent Document 1, a balun is used instead of the current source transistor M1, and the number of transistor stages is reduced. However, the configuration is still such that two stages of transistors are stacked, and the linear operation range is limited by the two stages of transistors.
The mixer circuit disclosed in Patent Document 2 has one transistor stage, and can increase the linear operation range. However, no current flows in the transistor of this circuit, and the conversion gain can not be increased.
The mixer circuit disclosed in Patent Document 3 is a circuit similar to the Gilbert cell mixer circuit shown in FIG. 1 except that a differential amplification transistor pair (M2, M3) and two switching transistor pairs (M4, M5), A transformer is connected between M6 and M7). The middle point of the transformer coil connected to the switching transistor pair side is grounded, and the middle point of the transformer coil connected to the differential amplification transistor pair side is connected to VDD. The LO signal input from the LO terminal is amplified by a differential amplifier configured by a differential amplification transistor pair, input to a multiplier configured by a switching transistor pair through a transformer, and mixed with an RF signal in the multiplier And an IF signal is generated. On the other hand, the power supply voltage is separated by the transformer into the differential amplification transistor pair side and the switching transistor pair side. Therefore, the mixer circuit disclosed in Patent Document 3 can reduce the number of transistor stages, and can improve the saturation characteristics while increasing the conversion gain.
However, it is difficult to design a transformer used in a circuit that handles high frequency bands such as microwaves and millimeter waves, and it is also difficult to match the differential amplification transistor pair and the switching transistor pair only with the transformer. Therefore, even in the mixer circuit disclosed in Patent Document 3, it is difficult to sufficiently transmit the power from the differential amplifier to the multiplier with the transformer alone, and as a result, the conversion gain of the mixer circuit can not be increased. The problem is inherent.
An object of the present invention is to solve the problems as described above, and to provide a mixer circuit which can operate at a low voltage and has high saturation power and conversion gain.
 上記の目的を実現するために、本発明の一形態であるミキサ回路は、1段の差動増幅トランジスタペアで構成され、第1の差動信号を入力して当該第1の差動信号を増幅し、第1の整合回路を介して出力する差動増幅器と、1段の差動スイッチングトランジスタペアで構成され、第2の差動信号と、第2の整合回路を介して前記差動増幅器が増幅出力した前記第1の差動信号を入力し、前記第2の差動信号と前記差動増幅器が増幅出力した前記第1の差動信号を乗算して第3の差動信号として出力する乗算器と、前記差動増幅器の前記第1の整合回路と前記乗算器の前記第2の整合回路を接続し、前記差動増幅器と前記乗算器とを直流的に分離する容量結合部とを備え、前記差動増幅器の前記差動増幅トランジスタペアと前記乗算器の差動スイッチングトランジスタペアは、それぞれ独立して電源が供給されることを特徴とする。 In order to achieve the above object, a mixer circuit according to an aspect of the present invention is formed of a single differential amplification transistor pair, and receives a first differential signal and outputs the first differential signal. A differential amplifier for amplifying and outputting through a first matching circuit, and a differential switching transistor pair in one stage, the second differential signal, and the differential amplifier through a second matching circuit Inputs the first differential signal amplified and output, multiplies the second differential signal and the first differential signal amplified and output by the differential amplifier, and outputs as a third differential signal , And a capacitive coupling unit for connecting the first matching circuit of the differential amplifier and the second matching circuit of the multiplier and DC-wise separating the differential amplifier and the multiplier. And the differential amplification transistor pair of the differential amplifier and the differential of the multiplier Switch ing transistor pair, power independently is characterized in that it is supplied.
 本発明によれば、低電圧で動作し、しかも飽和電力と変換利得が高いミキサ回路が実現される。 According to the present invention, a mixer circuit operating at low voltage and having high saturation power and high conversion gain is realized.
代表的なギルバートセル型ミキサ回路の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of a representative Gilbert cell mixer circuit. 他の代表的なギルバートセル型ミキサ回路の構成を示すブロック図である。FIG. 6 is a block diagram showing the configuration of another representative Gilbert cell mixer circuit. 特許文献1に開示されたミキサ回路の構成を示すブロック図である。It is a block diagram which shows the structure of the mixer circuit disclosed by patent document 1. FIG. 特許文献2に開示されたミキサ回路の構成を示すブロック図である。FIG. 6 is a block diagram showing a configuration of a mixer circuit disclosed in Patent Document 2. 特許文献3に開示されたミキサ回路の構成を示すブロック図である。FIG. 6 is a block diagram showing a configuration of a mixer circuit disclosed in Patent Document 3. 本発明の第1の実施形態に係るミキサ回路の構成を示すブロック図である。It is a block diagram showing composition of a mixer circuit concerning a 1st embodiment of the present invention. 本発明の第2の実施形態に係るミキサ回路の構成を示すブロック図である。It is a block diagram showing composition of a mixer circuit concerning a 2nd embodiment of the present invention. 本発明の第2の実施形態に係るミキサ回路の効果を示す図である。It is a figure which shows the effect of the mixer circuit which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係るミキサ回路の構成を示すブロック図である。It is a block diagram showing composition of a mixer circuit concerning a 3rd embodiment of the present invention. 本発明の第4の実施形態に係るミキサ回路の構成を示すブロック図である。It is a block diagram which shows the structure of the mixer circuit which concerns on the 4th Embodiment of this invention.
 本発明を実施するための形態について図面を参照して説明する。
 図6は、本発明の第1の実施形態に係るミキサ回路の構成を示すブロック図である。
 尚、実施の形態は例示であり、開示の装置及びシステムは、以下の実施の形態の構成には限定されない。
 第1の実施形態のミキサ回路は、差動増幅器10、乗算器20および容量結合部30を含む構成である。
 差動増幅器10は、1段の差動増幅トランジスタペア(トランジスタ111、112)で構成され、第1の差動信号を入力して当該第1の差動信号を増幅し、第1の整合回路121、122を介して出力する。
 なお、差動信号とは、互いに逆位相となっている2つの信号を云う。
 乗算器20は、1段の差動スイッチングトランジスタペア(トランジスタ211、212、213、214)で構成され、第2の差動信号と、差動増幅器10が増幅出力した第1の差動信号を入力する。このとき、差動増幅器10が増幅出力した第1の差動信号は、第2の整合回路221、222を介して入力される。そして、乗算器20は、第2の差動信号と差動増幅器10が増幅出力した第1の差動信号を乗算して第3の差動信号として出力する。
 容量結合部30は、差動増幅器10の第1の整合回路121、122と乗算器20の第2の整合回路221、222を接続し、差動増幅器10と乗算器20とを直流的に分離する。つまり、差動増幅器10の第1の整合回路121、122は容量結合部30のキャパシタ301、302を介して乗算器20の第2の整合回路221、222と接続されるが、直流的には分離されている。
 そして、差動増幅器10の差動増幅トランジスタペア(トランジスタ111、112)と乗算器20の差動スイッチングトランジスタペア(トランジスタ211、212、213、214)は、それぞれ独立して電源が供給される。
 第1の整合回路121、122は、差動増幅器10の各トランジスタ111、112の出力端子(図6ではドレイン端子)からトランジスタ側を見たインピーダンスと、出力側である容量結合部30から乗算器20側を見たときのインピーダンスとのインピーダンス整合を図る。
 また、第2の整合回路221、222は、乗算器20の各トランジスタの第1の差動信号の入力端子からトランジスタ側を見たインピーダンスと、入力側である容量結合部30から差動増幅器10側を見たときのインピーダンスとのインピーダンス整合を図る。つまり、乗算器20のトランジスタ211、212とトランジスタ213、214のそれぞれのソース端子が、差動増幅器10が増幅出力した第1の差動信号の入力端子となっている。
 このように、第1の実施形態のミキサ回路は、差動増幅器10と乗算器20とが第1の整合回路121、122と第2の整合回路221、222を介して接続されるようになっている。そのため、差動増幅器10と乗算器20との間でインピーダンス整合が図られ、差動増幅器10から乗算器20に出力される第1の差動信号電力を十分に伝達することができる。また、第1の実施形態のミキサ回路は、容量結合部30により差動増幅器10と乗算器20とを直流的に分離する構成となっている。そして、差動増幅器10と乗算器20のそれぞれの動作用のトランジスタには独立して電源が供給される。そのため、差動増幅器10と乗算器20のそれぞれに供給する電源電圧は低電圧でも線形動作可能な電圧範囲を広くすることができ、低電圧で動作し、しかも飽和電力と変換利得が高いミキサ回路を提供することができる。
 なお、差動増幅器10と乗算器20のそれぞれの動作用のトランジスタに独立して電源を供給する構成の一例として、第1の整合回路121、122および第2の整合回路221、222を次のように構成している。差動増幅器10の差動増幅トランジスタペアを構成するトランジスタ111、112の電源電圧(VDD)を第1の整合回路121、122から供給する構成にしている。また、第2の整合回路221、222は乗算器20の差動スイッチングトランジスタペアを構成するトランジスタ211、212、213、214に供給される電流を接地する接続を有する構成にしている。
 次に、第2の実施形態のミキサ回路を説明する。
 図7は、第2の実施形態に係るミキサ回路の構成を示すブロック図である。
 第2の実施形態のミキサ回路は、差動増幅器11、乗算器21および容量結合部30を含む構成となっている。
 差動増幅器11は差動増幅トランジスタペアを構成するトランジスタ111、112を含む。各トランジスタ111、112には、伝送線路とキャパシタで構成される入力整合回路131、132と出力整合回路141、142がそれぞれベース端子とドレイン端子に接続されている。出力整合回路141、142は、第1の実施形態における第1の整合回路121、122に相当する。
 入力整合回路131、132は、各トランジスタ111、112のゲート端子からトランジスタ側を見たインピーダンスと、差動増幅器11の入力側に接続される回路のインピーダンスとのインピーダンス整合を図る。また、入力整合回路131、132は、各トランジスタ111、112に第1の差動信号(+SIG1、−SIG1)とゲートバイアス電圧V1を印加する回路でもある。
 出力整合回路141、142は、各トランジスタ111、112のドレイン端子からトランジスタ側を見たインピーダンスと、容量結合部30から乗算器21側を見たときのインピーダンスとのインピーダンス整合を図る。また、出力整合回路141、142は、各トランジスタ111、112の電源電圧(VDD)を供給する回路でもある。
 各整合回路を構成する伝送線路とキャパシタは、必要とされるインピーダンスに応じて適宜必要な値の素子が用いられる。
 乗算器21は差動スイッチングトランジスタペアを構成するトランジスタ211、212、213、214を含む。各トランジスタ211、212、213、214には、伝送線路とキャパシタで構成されるゲート端子側の入力整合回路231、232とソース端子側の入力整合回路241、242がそれぞれ接続されている。ソース端子側の入力整合回路241、242は、第1の実施形態における第2の整合回路221、222に相当する。
 ゲート端子側の入力整合回路231、232は、トランジスタ211、212、213、214の各ゲート端子からトランジスタ側を見たインピーダンスと、乗算器21の入力側に接続される回路のインピーダンスとのインピーダンス整合を図る。また、ゲート端子側の入力整合回路231、232は、各トランジスタ211、212、213、214に第2の差動信号(+SIG2、−SIG2)とゲートバイアス電圧V2を印加する回路でもある。
 ソース端子側の入力整合回路241、242は、トランジスタ211、212とトランジスタ213、214においてソース端子からトランジスタ側を見たインピーダンスと、容量結合部30から差動増幅器11側を見たときのインピーダンスとのインピーダンス整合を図る。また、ソース端子側の入力整合回路241、242は、電源電圧(VDD)からトランジスタ211、212、213、214に供給された電流を接地して流す構成となっている。
 そして、差動増幅器11と乗算器21は容量結合部30で接続されるが、キャパシタ301、302により差動増幅器11と乗算器21とが直流的に分離される。
 また、乗算器21の各トランジスタ211、212、213、214のドレイン端子は、伝送線路で構成される接続部251で、負荷部261を介して電源電圧(VDD)と接続され、第3の差動信号(+SIG3、−SIG3)を取り出す構成となっている。
 差動増幅器11は、出力整合回路141、142から電源電圧(VDD)が供給され、入力整合回路131、132から第1の差動信号(+SIG1、−SIG1)とゲートバイアス電圧V1が印加される。入力された第1の差動信号は、トランジスタ111、112により増幅され、容量結合部30のキャパシタ301と302を介して乗算器21へ伝達される。ここで、ゲートバイアス電圧V1により差動増幅器11の増幅率が決定される。
 乗算器21では、差動スイッチングトランジスタペアを構成する各トランジスタ211、212、213、214のソース側の入力整合回路241、242が接地されている。
そのため、電源電圧(VDD)から各トランジスタ211、212、213、214に供給された電流は、ソース側の入力整合回路241、242からグランドへ流れる。また、各トランジスタ211、212、213、214のゲート端子に、ゲート側の入力整合回路231、232から第2の差動信号(+SIG2、−SIG2)とゲートバイアス電圧V2が印加される。
 差動増幅器11から容量結合部30を介して入力した第1の差動信号は、差動スイッチングトランジスタペアを構成するトランジスタ211、212、213、214で第2の差動信号と乗算されて、ミキシングされる。このミキシングにより生成された信号が、負荷部261の負荷により第3の差動信号(+SIG3、−SIG3)として取り出される。ここで、ゲートバイアス電圧V2により乗算器21の変換利得が決定される。
 以上に説明したように、第2の実施形態のミキサ回路は、差動増幅器11と乗算器21とが容量結合部30により直流的に分離される構成となっている。そして、差動増幅器11は、出力整合回路141、142から各トランジスタ111、112の動作電源の供給を受ける構成となっている。また、乗算器21は、ソース側の入力整合回路241、242を接地して、電源から各トランジスタ211、212、213、214に供給された電流をグランドに流す構成となっている。つまり、差動増幅器11と乗算器21とで、それぞれ独立して電源電圧を印加する構成としている。
 これにより、それぞれのトランジスタに流れる電流が増加し、その結果として飽和電力が増加する。また、差動増幅器11の出力整合回路141、142および乗算器21の入力整合回路241、242により、差動増幅器11と乗算器21との間のインピーダンス整合が図られ、差動増幅器11から乗算器21に出力される信号電力を十分に伝達することができる。
 つまり、第2の実施形態は、低電圧で動作し、しかも飽和電力と変換利得が高いミキサ回路を提供することができる。
 図8は、第2の実施形態に係るミキサ回路の効果を示す図である。第2の実施形態に係るミキサ回路のダウンコンバート動作における計算結果41と、図1、2等で示した一般的に使われているギルバートセル型ミキサ回路のダウンコンバート動作における計算結果42を示す。
 これは、第2の差動信号である低周波のLO信号の電力を固定しておき、第1の差動信号である高周波のRF信号の電力を変化させて、ダウンコンバートされた第3の差動信号である中間周波数のIF信号の電力を計算した入出力特性を表す。
 図8から明らかなように、計算結果41のほうが計算結果42よりもすべての動作領域において入力電力に対する出力電力が大きく、変換損失が小さいことがわかる。また、計算結果41の飽和電力は−5dBmに対して計算結果42の飽和電力は−12dBmとなっている。
 このように、第2の実施形態に係るミキサ回路は、飽和出力が増加すると共に変換損失が改善されている。
 なお、乗算器21の負荷部261は一般的には抵抗素子を用いた構成とする。しかし、キャパシタやインダクタも含んで、フィルタ機能を備えた構成であっても良い。つまり、抵抗素子を用いた構成の場合は、周波数に依存することなく変換損失を一定にして出力する構成となる。また、フィルタ機能を備えた構成の場合は、必要な周波数帯の変換損失を小さくし、不要な周波数帯の信号の変換損失を大きくして出力する構成が可能となる。
 次に、第3の実施形態を説明する。
 図9は、本発明の第3の実施形態に係るミキサ回路の構成を示すブロック図である。
 第3の実施形態のミキサ回路は、差動増幅器12、乗算器22および容量結合部30を含む構成となっている。
 差動増幅器12は差動増幅トランジスタペアを構成するトランジスタ111、112を含む。各トランジスタ111、112には、伝送線路とキャパシタを含む入力整合回路131、132がゲート端子に、出力整合回路151、152がドレイン端子にそれぞれ接続されている。出力整合回路151、152は、第1の実施形態における第1の整合回路121、122に相当する。この差動増幅器12は、第2の実施形態における差動増幅器11と出力整合回路の構成が異なっている。出力整合回路151、152は、伝送線路、キャパシタおよびインダクタを含む構成となっている。
 入力整合回路131、132は、第2の実施形態における差動増幅器11の入力整合回路と同じ構成である。つまり、入力整合回路131、132は、トランジスタ111、112の各ゲート端子からトランジスタ側を見たインピーダンスと、差動増幅器12の入力側に接続される回路のインピーダンスとのインピーダンス整合を図る。また、入力整合回路131、132は、各トランジスタ111、112に第1の差動信号(+SIG1、−SIG1)とゲートバイアス電圧V1を印加する回路でもある。
 また、出力整合回路151、152は、第2の実施形態における差動増幅器11の出力整合回路において電圧を印加していた伝送線路を、インダクタに変更した構成となっている。出力整合回路151、152は、トランジスタ111、112のドレイン端子からトランジスタ側を見たインピーダンスと、容量結合部30から乗算器22側を見たときのインピーダンスとのインピーダンス整合を図る。出力整合回路151、152は、トランジスタ111、112の電源電圧(VDD)を供給する回路でもある。
 各整合回路を構成する伝送線路とキャパシタは、必要とされるインピーダンスに応じて適宜必要な値の素子が用いられる。
 乗算器22は、差動スイッチングトランジスタペアを構成するトランジスタ211、212、213、214を含む。各トランジスタ211、212、213、214には、伝送線路とキャパシタで構成されるゲート端子側の入力整合回路231、232とソース端子側の入力整合回路271、272がそれぞれ接続されている。ソース端子側の入力整合回路271、272は、第1の実施形態における第2の整合回路221、222に相当する。この乗算器22は、第2の実施形態における乗算器21とソース端子側の入力整合回路の構成が異なっている。ソース端子側の入力整合回路271、272は、伝送線路およびインダクタを含む構成となっている。
 ゲート端子側の入力整合回路231、232は、第2の実施形態における乗算器21のゲート端子側の入力整合回路と同じ構成である。つまり、ゲート端子側の入力整合回路231、232は、トランジスタ211、212、213、214の各ゲート端子からトランジスタ側を見たインピーダンスと、乗算器22の入力側に接続される回路のインピーダンスとのインピーダンス整合を図る。また、ゲート端子側の入力整合回路231、232は、各トランジスタ211、212、213、214に第2の差動信号(+SIG2、−SIG2)とゲートバイアス電圧V2を印加する回路でもある。
 また、ソース端子側の入力整合回路271、272は、第2の実施形態における乗算器21のソース端子側の入力整合回路において接地していた伝送線路を、インダクタに変更した構成となっている。
 ソース端子側の入力整合回路271、272は、トランジスタ211、212、213、214のソース端子からトランジスタ側を見たインピーダンスと、容量結合部30から差動増幅器12側を見たときのインピーダンスとのインピーダンス整合を図る。ソース端子側の入力整合回路271、272は、トランジスタ211、212、213、214に供給された電源電圧(VDD)を接地する。
 そして、差動増幅器12と乗算器22は容量結合部30で接続されるが、キャパシタ301、302により差動増幅器12と乗算器22とが直流的に分離される。
 このように、第3の実施形態のミキサ回路は、差動増幅器12の出力整合回路151、152と乗算器22のソース端子側の入力整合回路271、272にそれぞれインダクタを用いた構成となっている。そして、差動増幅器12と乗算器22とはこれらのインダクタの相互インダクタンスにより誘導的に結合されている。
 また、乗算器22の各トランジスタ211、212、213、214のドレイン端子は、伝送線路で構成される接続部251で、負荷部261を介して電源電圧(VDD)と接続され、第3の差動信号(+SIG3、−SIG3)を取り出す構成となっている。
 差動増幅器12は、出力整合回路151、152から電源電圧(VDD)が供給され、入力整合回路131、132から第1の差動信号(+SIG1、−SIG1)とゲートバイアス電圧V1が印加される。入力された第1の差動信号は、トランジスタ111、112により増幅され、容量結合部30のキャパシタ301、302および出力整合回路151、152のインダクタと入力整合回路271、272のインダクタを介して乗算器22へ伝達される。ここで、ゲートバイアス電圧V1により差動増幅器12の増幅率が決定される。
 乗算器22では、差動スイッチングトランジスタペアを構成する各トランジスタ211、212、213、214のソース側の入力整合回路271、272が接地されている。
そのため、電源電圧(VDD)から各トランジスタに供給された電流は、ソース端子側の入力整合回路271、272からグランドへ流れる。各トランジスタ211、212、213、214のゲート端子に、ゲート端子側の入力整合回路231、232から第2の差動信号(+SIG2、−SIG2)とゲートバイアス電圧V2が印加される。
 差動増幅器12から容量結合部30および相互インダクタンスを介して入力した第1の差動信号は、差動スイッチングトランジスタペアを構成するトランジスタ211、212、213、214により第2の差動信号と乗算され、ミキシングされる。このミキシングにより生成された信号が、負荷部261の負荷により第3の差動信号(+SIG3、−SIG3)として取り出される。ここで、ゲートバイアス電圧V2により乗算器20の変換利得が決定される。
 以上に説明したように、第3の実施形態のミキサ回路は、差動増幅器12と乗算器22とが容量結合部30により直流的に分離され、差動増幅器12と乗算器22とが相互インダクタンスにより誘導的に結合する構成となっている。そして、差動増幅器12は、出力整合回路151、152から各トランジスタの動作電源の供給を受け、乗算器22は、ソース端子側の入力整合回路271、272を接地して、電源から各トランジスタに供給された電流をグランドに流す構成となっている。つまり、差動増幅器12から乗算器22に伝達される信号量を、周波数に応じて増加させたり減少させたりする制御を可能にする構成で、かつ、差動増幅器12と乗算器22とでそれぞれ独立して電源電圧を印加する構成としている。
 これにより、それぞれのトランジスタに流れる電流が増加し、その結果として飽和電力が増加する。また、差動増幅器12の出力整合回路151、152および乗算器22の入力整合回路271、272により、差動増幅器12と乗算器22との間のインピーダンス整合が図られ、差動増幅器12から乗算器22に出力される信号電力を十分に伝達することができる。つまり、第3の実施形態は、低電圧で動作し、しかも飽和電力と変換利得が高いミキサ回路を提供することができる。
 続いて、第4の実施形態を説明する。
 図10は、本発明の第4の実施形態に係るミキサ回路の構成を示すブロック図である。
 第4の実施形態のミキサ回路は、差動増幅器11、乗算器23および容量結合部30を含む構成となっている。つまり、第4の実施形態のミキサ回路は、第2の実施形態のミキサ回路において乗算器が異なる構成となっている。
 乗算器23は、差動スイッチングトランジスタペアを構成する各トランジスタ211、212、213、214のドレイン端子が接続される負荷部271の構成が異なっている。この負荷部271と接続部251を構成する伝送線路とキャパシタで、トランジスタ211、212、213、214のドレイン端子に対する出力整合回路を形成している。
 差動増幅器11は、出力整合回路141、142から電源電圧(VDD)が供給され、入力整合回路131、132から第1の差動信号(+SIG1、−SIG1)とゲートバイアス電圧V1が印加される。入力された第1の差動信号は、トランジスタ111、112により増幅され、容量結合部30のキャパシタ301と302を介して乗算器23へ伝達される。
 乗算器23では、差動スイッチングトランジスタペアを構成する各トランジスタ211、212、213、214のソース側の入力整合回路241、242が接地されている。
そのため、電源電圧(VDD)から各トランジスタに供給された電流は、ソース側の入力整合回路241、242からグランドへ流れる。各トランジスタ211、212、213、214のゲート端子に、ゲート側の入力整合回路231、232から第2の差動信号(+SIG2、−SIG2)とゲートバイアス電圧V2が印加される。
 差動増幅器11から容量結合部30を介して入力した第1の差動信号は、トランジスタ211、212、213、214で第2の差動信号と乗算され、ミキシングされる。このミキシングにより生成された信号が、負荷部271と接続部251で形成される出力整合回路により第3の差動信号(+SIG3、−SIG3)として取り出される。
 以上に説明したように、第4の実施形態のミキサ回路は、差動増幅器11と乗算器23とが容量結合部30により直流的に分離される構成となっている。そして、差動増幅器11は、出力整合回路141、142から各トランジスタの動作電源の供給を受け、乗算器23は、ソース側の入力整合回路241、242を接地して、電源から各トランジスタに供給された電流をグランドに流す構成となっている。つまり、差動増幅器11と乗算器23とでそれぞれ独立して電源電圧を印加する構成としている。
 これにより、それぞれのトランジスタに流れる電流が増加し、その結果として飽和電力が増加する。また、差動増幅器11の出力整合回路141、142および乗算器23の入力整合回路241、242により、差動増幅器11と乗算器23との間のインピーダンス整合が図られ、差動増幅器11から乗算器23に出力される信号電力を十分に伝達することができる。つまり、第4の実施形態は、低電圧で動作し、しかも飽和電力と変換利得が高いミキサ回路を提供することができる。
 更に、第4の実施形態のミキサ回路は、乗算器23の差動スイッチングトランジスタペアを構成するトランジスタ211、212、213、214のドレイン端子側の出力整合回路からミキシングにより生成された信号を取り出す構成となっている。そのため、ミキシングにより生成された出力信号に必要な周波数を、きめ細かく同調して出力することができる。特に、第4の実施形態のミキサ回路は、アップコンバートして周波数の高い出力信号を得る必要がある送信側の装置のミキサ回路に好適な構成である。
 なお、上記の説明は電界効果トランジスタを例にして説明したが、バイポーラトランジスタを用いた構成であっても良い。その場合は、ソースをエミッタに、ドレインをコレクタに読み替えるものとする。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
この出願は、2011年2月16日に出願された日本出願特願2011−031046を基礎とする優先権を主張し、その開示の全てをここに取り込む。
An embodiment for carrying out the present invention will be described with reference to the drawings.
FIG. 6 is a block diagram showing the configuration of the mixer circuit according to the first embodiment of the present invention.
Note that the embodiment is an example, and the disclosed apparatus and system are not limited to the configurations of the following embodiments.
The mixer circuit of the first embodiment is configured to include a differential amplifier 10, a multiplier 20, and a capacitive coupling unit 30.
The differential amplifier 10 includes a single differential amplification transistor pair (transistors 111 and 112), receives a first differential signal, amplifies the first differential signal, and generates a first matching circuit. Output via 121 and 122.
The differential signal refers to two signals in opposite phase to each other.
The multiplier 20 is configured of a single-stage differential switching transistor pair ( transistors 211, 212, 213, and 214), and the second differential signal and the first differential signal amplified and output by the differential amplifier 10 are generated. input. At this time, the first differential signal amplified and output by the differential amplifier 10 is input through the second matching circuits 221 and 222. Then, the multiplier 20 multiplies the second differential signal and the first differential signal amplified and output by the differential amplifier 10 and outputs the result as a third differential signal.
The capacitive coupling unit 30 connects the first matching circuits 121 and 122 of the differential amplifier 10 and the second matching circuits 221 and 222 of the multiplier 20 to separate the differential amplifier 10 and the multiplier 20 in a DC manner. Do. That is, the first matching circuits 121 and 122 of the differential amplifier 10 are connected to the second matching circuits 221 and 222 of the multiplier 20 via the capacitors 301 and 302 of the capacitive coupling unit 30, but in terms of direct current It is separated.
The differential amplification transistor pair (transistors 111 and 112) of the differential amplifier 10 and the differential switching transistor pair ( transistors 211, 212, 213, and 214) of the multiplier 20 are independently supplied with power.
The first matching circuits 121 and 122 have an impedance viewed from the transistor side from the output terminal (the drain terminal in FIG. 6) of each of the transistors 111 and 112 of the differential amplifier 10 and a multiplier from the capacitive coupling unit 30 on the output side. Match the impedance with the impedance when looking at the 20 side.
In addition, the second matching circuits 221 and 222 are impedances viewed from the transistor side of the first differential signal input terminal of each transistor of the multiplier 20 and the differential amplifier 10 from the capacitive coupling unit 30 which is the input side. Match the impedance with the impedance when looking at the side. That is, the source terminals of the transistors 211 and 212 and the transistors 213 and 214 of the multiplier 20 are input terminals of the first differential signal amplified and output by the differential amplifier 10.
Thus, in the mixer circuit of the first embodiment, the differential amplifier 10 and the multiplier 20 are connected via the first matching circuits 121 and 122 and the second matching circuits 221 and 222. ing. Therefore, impedance matching is achieved between differential amplifier 10 and multiplier 20, and the first differential signal power output from differential amplifier 10 to multiplier 20 can be sufficiently transmitted. In the mixer circuit of the first embodiment, the capacitive coupling unit 30 separates the differential amplifier 10 and the multiplier 20 in a direct current manner. The transistors for the operation of the differential amplifier 10 and the multiplier 20 are independently supplied with power. Therefore, the power supply voltage supplied to each of differential amplifier 10 and multiplier 20 can widen the voltage range capable of linear operation even at low voltage, operates at low voltage, and has a high saturation power and high conversion gain. Can be provided.
The first matching circuits 121 and 122 and the second matching circuits 221 and 222 may be connected to one another as an example of a configuration in which power is independently supplied to the transistors for operation of the differential amplifier 10 and the multiplier 20, respectively. It is configured as follows. The power supply voltages (VDD) of the transistors 111 and 112 constituting the differential amplification transistor pair of the differential amplifier 10 are supplied from the first matching circuits 121 and 122. Further, the second matching circuits 221 and 222 are configured to have a connection for grounding the current supplied to the transistors 211, 212, 213 and 214 constituting the differential switching transistor pair of the multiplier 20.
Next, a mixer circuit of a second embodiment will be described.
FIG. 7 is a block diagram showing the configuration of the mixer circuit according to the second embodiment.
The mixer circuit of the second embodiment is configured to include a differential amplifier 11, a multiplier 21, and a capacitive coupling unit 30.
The differential amplifier 11 includes transistors 111 and 112 forming a differential amplification transistor pair. In each of the transistors 111 and 112, an input matching circuit 131 and 132 composed of a transmission line and a capacitor and an output matching circuit 141 and 142 are connected to the base terminal and the drain terminal, respectively. The output matching circuits 141 and 142 correspond to the first matching circuits 121 and 122 in the first embodiment.
The input matching circuits 131 and 132 perform impedance matching between the impedance viewed from the gate terminal of each of the transistors 111 and 112 and the impedance of the circuit connected to the input side of the differential amplifier 11. The input matching circuits 131 and 132 are also circuits for applying the first differential signals (+ SIG1, −SIG1) and the gate bias voltage V1 to the transistors 111 and 112.
The output matching circuits 141 and 142 perform impedance matching between the impedance viewed from the drain terminal of each of the transistors 111 and 112 and the impedance viewed from the capacitive coupling unit 30 to the multiplier 21 side. The output matching circuits 141 and 142 are also circuits that supply the power supply voltage (VDD) of the transistors 111 and 112.
As transmission lines and capacitors that constitute each matching circuit, elements of appropriate values are used according to the required impedance.
The multiplier 21 includes transistors 211, 212, 213, and 214 that constitute a differential switching transistor pair. Input matching circuits 231 and 232 on the gate terminal side and input matching circuits 241 and 242 on the source terminal side are connected to the transistors 211, 212, 213, and 214, respectively. The input matching circuits 241 and 242 on the source terminal side correspond to the second matching circuits 221 and 222 in the first embodiment.
The input matching circuits 231 and 232 on the gate terminal side are impedance matching between the impedance seen from the gate terminal of each of the transistors 211, 212, 213 and 214 and the impedance of the circuit connected to the input side of the multiplier 21. Plan. The input matching circuits 231 and 232 on the gate terminal side are also circuits for applying the second differential signals (+ SIG2 and -SIG2) and the gate bias voltage V2 to the transistors 211, 212, 213 and 214.
The input matching circuits 241 and 242 on the source terminal side have an impedance when the transistors 211 and 212 and the transistors 213 and 214 look at the transistor side from the source terminal, and an impedance when the capacitive coupling portion 30 looks at the differential amplifier 11 side Impedance matching. In addition, the input matching circuits 241 and 242 on the source terminal side are configured to flow the current supplied from the power supply voltage (VDD) to the transistors 211, 212, 213 and 214 by grounding.
The differential amplifier 11 and the multiplier 21 are connected by the capacitive coupling unit 30, but the capacitors 301 and 302 separate the differential amplifier 11 and the multiplier 21 in a direct current manner.
In addition, drain terminals of the respective transistors 211, 212, 213, and 214 of the multiplier 21 are connected to the power supply voltage (VDD) via the load unit 261 at the connection unit 251 formed of a transmission line, and the third difference Dynamic signals (+ SIG3, -SIG3) are taken out.
The differential amplifier 11 is supplied with the power supply voltage (VDD) from the output matching circuits 141 and 142, and is applied with the first differential signal (+ SIG1, -SIG1) and the gate bias voltage V1 from the input matching circuits 131 and 132. . The input first differential signal is amplified by the transistors 111 and 112, and transmitted to the multiplier 21 through the capacitors 301 and 302 of the capacitive coupling unit 30. Here, the amplification factor of the differential amplifier 11 is determined by the gate bias voltage V1.
In the multiplier 21, the input matching circuits 241 and 242 on the source side of the transistors 211, 212, 213, and 214 that make up the differential switching transistor pair are grounded.
Therefore, the current supplied from the power supply voltage (VDD) to each of the transistors 211, 212, 213, 214 flows from the input matching circuit 241, 242 on the source side to the ground. Further, the second differential signals (+ SIG2, -SIG2) and the gate bias voltage V2 are applied to the gate terminals of the respective transistors 211, 212, 213, 214 from the input matching circuits 231, 232 on the gate side.
The first differential signal input from the differential amplifier 11 via the capacitive coupling unit 30 is multiplied with the second differential signal by the transistors 211, 212, 213, and 214 that form a differential switching transistor pair, It is mixed. A signal generated by this mixing is extracted as a third differential signal (+ SIG3, −SIG3) by the load of the load unit 261. Here, the conversion gain of the multiplier 21 is determined by the gate bias voltage V2.
As described above, in the mixer circuit of the second embodiment, the differential amplifier 11 and the multiplier 21 are separated in a direct current by the capacitive coupling unit 30. The differential amplifier 11 is configured to receive supply of operating power of each of the transistors 111 and 112 from the output matching circuits 141 and 142. Further, the multiplier 21 is configured to ground the input matching circuits 241 and 242 on the source side and to flow the current supplied from the power source to the transistors 211, 212, 213 and 214 to the ground. That is, the power supply voltage is applied independently of each other by the differential amplifier 11 and the multiplier 21.
As a result, the current flowing to each transistor increases, and as a result, the saturation power increases. Further, by the output matching circuits 141 and 142 of the differential amplifier 11 and the input matching circuits 241 and 242 of the multiplier 21, impedance matching between the differential amplifier 11 and the multiplier 21 is achieved, and multiplication from the differential amplifier 11 is performed. The signal power output to unit 21 can be sufficiently transmitted.
That is, the second embodiment can provide a mixer circuit which operates at low voltage and has high saturation power and high conversion gain.
FIG. 8 is a diagram showing the effect of the mixer circuit according to the second embodiment. A calculation result 41 in the down conversion operation of the mixer circuit according to the second embodiment and a calculation result 42 in the down conversion operation of the generally used Gilbert cell mixer circuit shown in FIGS.
This is performed by fixing the power of the low frequency LO signal which is the second differential signal and changing the power of the high frequency RF signal which is the first differential signal, and then down converting the third down converted signal. The input-output characteristics which calculated the electric power of IF signal of the intermediate frequency which is a differential signal are represented.
As apparent from FIG. 8, it can be seen that the calculation result 41 has larger output power relative to input power and smaller conversion loss in all operation regions than the calculation result 42. Further, while the saturation power of the calculation result 41 is -5 dBm, the saturation power of the calculation result 42 is -12 dBm.
Thus, the mixer circuit according to the second embodiment has improved conversion loss as saturation output increases.
The load unit 261 of the multiplier 21 generally has a configuration using a resistance element. However, the configuration may have a filter function, including a capacitor and an inductor. That is, in the case of the configuration using the resistance element, the conversion loss is constant and output without depending on the frequency. In the case of the configuration provided with the filter function, it is possible to reduce the conversion loss of the necessary frequency band and increase the conversion loss of the signal of the unnecessary frequency band for output.
Next, a third embodiment will be described.
FIG. 9 is a block diagram showing a configuration of a mixer circuit according to a third embodiment of the present invention.
The mixer circuit of the third embodiment is configured to include a differential amplifier 12, a multiplier 22 and a capacitive coupling unit 30.
The differential amplifier 12 includes transistors 111 and 112 forming a differential amplification transistor pair. In each of the transistors 111 and 112, input matching circuits 131 and 132 including a transmission line and a capacitor are connected to gate terminals, and output matching circuits 151 and 152 are connected to drain terminals. The output matching circuits 151 and 152 correspond to the first matching circuits 121 and 122 in the first embodiment. The differential amplifier 12 differs in the configuration of the differential amplifier 11 and the output matching circuit in the second embodiment. The output matching circuits 151 and 152 are configured to include a transmission line, a capacitor and an inductor.
The input matching circuits 131 and 132 have the same configuration as the input matching circuit of the differential amplifier 11 in the second embodiment. That is, the input matching circuits 131 and 132 perform impedance matching between the impedance viewed from the gate terminal of each of the transistors 111 and 112 and the impedance of the circuit connected to the input side of the differential amplifier 12. The input matching circuits 131 and 132 are also circuits for applying the first differential signals (+ SIG1, −SIG1) and the gate bias voltage V1 to the transistors 111 and 112.
The output matching circuits 151 and 152 have a configuration in which the transmission line to which a voltage is applied in the output matching circuit of the differential amplifier 11 in the second embodiment is changed to an inductor. The output matching circuits 151 and 152 perform impedance matching between the impedance viewed from the drain terminal of the transistors 111 and 112 and the impedance viewed from the capacitive coupling unit 30 to the multiplier 22. The output matching circuits 151 and 152 are also circuits that supply the power supply voltage (VDD) of the transistors 111 and 112.
As transmission lines and capacitors that constitute each matching circuit, elements of appropriate values are used according to the required impedance.
The multiplier 22 includes transistors 211, 212, 213, and 214 that form a differential switching transistor pair. The input matching circuits 231 and 232 on the gate terminal side and the input matching circuits 271 and 272 on the source terminal side are connected to the transistors 211, 212, 213, and 214, respectively. The input matching circuits 271 and 272 on the source terminal side correspond to the second matching circuits 221 and 222 in the first embodiment. The multiplier 22 is different from the multiplier 21 in the second embodiment in the configuration of the input matching circuit on the source terminal side. The input matching circuits 271 and 272 on the source terminal side are configured to include a transmission line and an inductor.
The input matching circuits 231 and 232 on the gate terminal side have the same configuration as the input matching circuit on the gate terminal side of the multiplier 21 in the second embodiment. That is, in the input matching circuits 231 and 232 on the gate terminal side, the impedance seen from the gate terminal of each of the transistors 211, 212, 213, and 214 and the impedance of the circuit connected to the input side of the multiplier 22. Make impedance matching. The input matching circuits 231 and 232 on the gate terminal side are also circuits for applying the second differential signals (+ SIG2 and -SIG2) and the gate bias voltage V2 to the transistors 211, 212, 213 and 214.
The input matching circuits 271 and 272 on the source terminal side are configured such that the transmission line grounded in the input matching circuit on the source terminal side of the multiplier 21 in the second embodiment is changed to an inductor.
The input matching circuits 271 and 272 on the source terminal side have an impedance as viewed from the source terminals of the transistors 211, 212, 213, and 214, and an impedance as viewed from the capacitive coupling unit 30 to the differential amplifier 12 side. Make impedance matching. The input matching circuits 271 and 272 on the source terminal side ground the power supply voltage (VDD) supplied to the transistors 211, 212, 213 and 214.
The differential amplifier 12 and the multiplier 22 are connected by the capacitive coupling unit 30, but the capacitors 301 and 302 separate the differential amplifier 12 and the multiplier 22 in a direct current manner.
As described above, in the mixer circuit of the third embodiment, the output matching circuits 151 and 152 of the differential amplifier 12 and the input matching circuits 271 and 272 on the source terminal side of the multiplier 22 are configured to use inductors, respectively. There is. The differential amplifier 12 and the multiplier 22 are inductively coupled by the mutual inductances of these inductors.
In addition, drain terminals of the respective transistors 211, 212, 213, and 214 of the multiplier 22 are connected to the power supply voltage (VDD) via the load unit 261 at the connection unit 251 formed of a transmission line, and the third difference Dynamic signals (+ SIG3, -SIG3) are taken out.
The differential amplifier 12 is supplied with the power supply voltage (VDD) from the output matching circuits 151 and 152, and is applied with the first differential signal (+ SIG1, -SIG1) and the gate bias voltage V1 from the input matching circuits 131 and 132. . The input first differential signal is amplified by the transistors 111 and 112 and multiplied by the capacitors 301 and 302 of the capacitive coupling unit 30 and the inductors of the output matching circuits 151 and 152 and the inductors of the input matching circuits 271 and 272. To the vessel 22. Here, the amplification factor of the differential amplifier 12 is determined by the gate bias voltage V1.
In the multiplier 22, the input matching circuits 271 and 272 on the source side of the transistors 211, 212, 213, and 214 forming the differential switching transistor pair are grounded.
Therefore, the current supplied from the power supply voltage (VDD) to each transistor flows from the input matching circuits 271 and 272 at the source terminal side to the ground. A second differential signal (+ SIG2, -SIG2) and a gate bias voltage V2 are applied to the gate terminals of the transistors 211, 212, 213, and 214 from the input matching circuit 231, 232 on the gate terminal side.
The first differential signal input from the differential amplifier 12 via the capacitive coupling portion 30 and the mutual inductance is multiplied with the second differential signal by the transistors 211, 212, 213, and 214 that constitute the differential switching transistor pair. And be mixed. A signal generated by this mixing is extracted as a third differential signal (+ SIG3, −SIG3) by the load of the load unit 261. Here, the conversion gain of the multiplier 20 is determined by the gate bias voltage V2.
As described above, in the mixer circuit of the third embodiment, the differential amplifier 12 and the multiplier 22 are DC-separated by the capacitive coupling unit 30, and the differential amplifier 12 and the multiplier 22 have mutual inductance Is configured to be inductively coupled. Then, the differential amplifier 12 receives the supply of operating power of each transistor from the output matching circuits 151 and 152, and the multiplier 22 grounds the input matching circuits 271 and 272 on the source terminal side to connect the power transistors to the respective transistors. The supplied current is supplied to the ground. That is, the configuration enables control to increase or decrease the amount of signal transmitted from differential amplifier 12 to multiplier 22 according to the frequency, and differential amplifier 12 and multiplier 22 respectively. The power supply voltage is applied independently.
As a result, the current flowing to each transistor increases, and as a result, the saturation power increases. Further, the output matching circuits 151 and 152 of the differential amplifier 12 and the input matching circuits 271 and 272 of the multiplier 22 achieve impedance matching between the differential amplifier 12 and the multiplier 22, and multiplication from the differential amplifier 12 is performed. The signal power output to unit 22 can be sufficiently transmitted. That is, the third embodiment can provide a mixer circuit which operates at a low voltage and has high saturation power and high conversion gain.
Subsequently, a fourth embodiment will be described.
FIG. 10 is a block diagram showing a configuration of a mixer circuit according to a fourth embodiment of the present invention.
The mixer circuit of the fourth embodiment is configured to include a differential amplifier 11, a multiplier 23, and a capacitive coupling unit 30. That is, in the mixer circuit of the fourth embodiment, the multipliers are different in the mixer circuit of the second embodiment.
The multiplier 23 is different in the configuration of the load unit 271 to which the drain terminals of the respective transistors 211, 212, 213, and 214 constituting the differential switching transistor pair are connected. An output matching circuit for the drain terminals of the transistors 211, 212, 213, and 214 is formed by the transmission line and the capacitor that constitute the load portion 271 and the connection portion 251.
The differential amplifier 11 is supplied with the power supply voltage (VDD) from the output matching circuits 141 and 142, and is applied with the first differential signal (+ SIG1, -SIG1) and the gate bias voltage V1 from the input matching circuits 131 and 132. . The input first differential signal is amplified by the transistors 111 and 112 and transmitted to the multiplier 23 through the capacitors 301 and 302 of the capacitive coupling unit 30.
In the multiplier 23, the input matching circuits 241 and 242 on the source side of the transistors 211, 212, 213, and 214 that make up the differential switching transistor pair are grounded.
Therefore, the current supplied from the power supply voltage (VDD) to each transistor flows from the input matching circuits 241 and 242 on the source side to the ground. A second differential signal (+ SIG2, -SIG2) and a gate bias voltage V2 are applied to the gate terminals of the transistors 211, 212, 213, 214 from the input matching circuits 231, 232 on the gate side.
The first differential signal input from the differential amplifier 11 via the capacitive coupling unit 30 is multiplied with the second differential signal by the transistors 211, 212, 213, and 214, and mixed. A signal generated by this mixing is taken out as a third differential signal (+ SIG3, -SIG3) by the output matching circuit formed by the load unit 271 and the connection unit 251.
As described above, in the mixer circuit of the fourth embodiment, the differential amplifier 11 and the multiplier 23 are separated in a direct current by the capacitive coupling unit 30. Then, the differential amplifier 11 receives supply of operating power of each transistor from the output matching circuits 141 and 142, and the multiplier 23 grounds the input matching circuits 241 and 242 on the source side and supplies power to each transistor from the power supply. The configuration is such that the current is supplied to the ground. That is, the power supply voltage is applied independently of each other by the differential amplifier 11 and the multiplier 23.
As a result, the current flowing to each transistor increases, and as a result, the saturation power increases. Further, by the output matching circuits 141 and 142 of the differential amplifier 11 and the input matching circuits 241 and 242 of the multiplier 23, impedance matching between the differential amplifier 11 and the multiplier 23 is achieved, and multiplication from the differential amplifier 11 is performed. The signal power output to the converter 23 can be sufficiently transmitted. That is, the fourth embodiment can provide a mixer circuit which operates at low voltage and has high saturation power and high conversion gain.
Furthermore, in the mixer circuit of the fourth embodiment, the signal generated by mixing is extracted from the output matching circuit on the drain terminal side of the transistors 211, 212, 213, and 214 that constitute the differential switching transistor pair of the multiplier 23. It has become. Therefore, the frequency necessary for the output signal generated by mixing can be finely tuned and output. In particular, the mixer circuit of the fourth embodiment is a configuration suitable for a mixer circuit of a device on the transmission side that needs to be up-converted to obtain an output signal with a high frequency.
Although the above description has been made by taking the field effect transistor as an example, it may be a configuration using a bipolar transistor. In that case, the source is replaced with the emitter and the drain is replaced with the collector.
Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the above embodiments. The configurations and details of the present invention can be modified in various ways that can be understood by those skilled in the art within the scope of the present invention.
This application claims priority based on Japanese Patent Application No. 2011-031046 filed Feb. 16, 2011, the entire disclosure of which is incorporated herein.

Claims (6)

  1.  1段の差動増幅トランジスタペアで構成され、第1の差動信号を入力して当該第1の差動信号を増幅し、第1の整合回路を介して出力する差動増幅器と、
     1段の差動スイッチングトランジスタペアで構成され、第2の差動信号と、第2の整合回路を介して前記差動増幅器が増幅出力した前記第1の差動信号を入力し、前記第2の差動信号と前記差動増幅器が増幅出力した前記第1の差動信号を乗算して第3の差動信号として出力する乗算器と、
     前記差動増幅器の前記第1の整合回路と前記乗算器の前記第2の整合回路を接続し、前記差動増幅器と前記乗算器とを直流的に分離する容量結合部と
     を備え、
     前記差動増幅器の前記差動増幅トランジスタペアと前記乗算器の差動スイッチングトランジスタペアは、それぞれ独立して電源が供給されることを特徴とするミキサ回路。
    A differential amplifier configured of a single-stage differential amplification transistor pair, which receives a first differential signal, amplifies the first differential signal, and outputs the amplified signal via a first matching circuit;
    A second differential signal and the first differential signal amplified and output by the differential amplifier through a second matching circuit, which is constituted by a single-stage differential switching transistor pair, are input; A multiplier that multiplies the first differential signal amplified by the differential amplifier and outputs the result as a third differential signal;
    A capacitive coupling unit that connects the first matching circuit of the differential amplifier and the second matching circuit of the multiplier and separates the differential amplifier and the multiplier in a DC manner;
    A mixer circuit characterized in that power is supplied to the differential amplification transistor pair of the differential amplifier and the differential switching transistor pair of the multiplier independently.
  2.  前記差動増幅器の前記差動増幅トランジスタペアの電源電圧は前記第1の整合回路から供給され、前記第2の整合回路は前記乗算器の前記差動スイッチングトランジスタペアに供給される電流を接地する接続を有することを特徴とする請求項1に記載のミキサ回路。 The power supply voltage of the differential amplification transistor pair of the differential amplifier is supplied from the first matching circuit, and the second matching circuit grounds the current supplied to the differential switching transistor pair of the multiplier. The mixer circuit of claim 1 having a connection.
  3.  前記第1の整合回路および前記第2の整合回路のそれぞれは、コンダクタを回路素子として含み、前記第1の整合回路と前記第2の整合回路は、前記コンダクタの相互インダクタンスにより誘導的に結合されていることを特徴とする請求項2に記載のミキサ回路。 Each of the first matching circuit and the second matching circuit includes a conductor as a circuit element, and the first matching circuit and the second matching circuit are inductively coupled by the mutual inductance of the conductor. The mixer circuit according to claim 2, characterized in that:
  4.  前記第1の差動信号が入力する前記差動増幅器の前記差動増幅トランジスタペアのそれぞれの入力端子に接続され、前記第1の差動信号とバイアス電圧を印加する第1の入力整合回路と、
     前記第2の差動信号が入力する前記乗算器の前記差動スイッチングトランジスタペアのそれぞれの入力端子に接続され、前記第2の差動信号とバイアス電圧を印加する第2の入力整合回路と
     を更に備えることを特徴とする請求項1乃至3のいずれかの請求項に記載のミキサ回路。
    A first input matching circuit connected to respective input terminals of the differential amplification transistor pair of the differential amplifier to which the first differential signal is input, and applying the first differential signal and a bias voltage; ,
    A second input matching circuit connected to each input terminal of the differential switching transistor pair of the multiplier to which the second differential signal is input, for applying the second differential signal and a bias voltage; The mixer circuit according to any one of claims 1 to 3, further comprising:
  5.  前記第3の差動信号は、キャパシタおよびインダクタを含むフィルタ機能を備えた負荷部を介して出力することを特徴とする請求項4に記載のミキサ回路。 The mixer circuit according to claim 4, wherein the third differential signal is output through a load unit having a filter function including a capacitor and an inductor.
  6.  前記第3の差動信号は、前記乗算器の前記差動スイッチングトランジスタペアの出力端子に接続された、伝送線路およびキャパシタで構成される出力整合回路を介して出力することを特徴とする請求項4に記載のミキサ回路。 The third differential signal is output through an output matching circuit composed of a transmission line and a capacitor connected to the output terminal of the differential switching transistor pair of the multiplier. The mixer circuit according to 4.
PCT/JP2012/054336 2011-02-16 2012-02-16 Mixer circuit WO2012111848A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012558051A JP5803944B2 (en) 2011-02-16 2012-02-16 Mixer circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011031046 2011-02-16
JP2011-031046 2011-02-16

Publications (1)

Publication Number Publication Date
WO2012111848A1 true WO2012111848A1 (en) 2012-08-23

Family

ID=46672752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054336 WO2012111848A1 (en) 2011-02-16 2012-02-16 Mixer circuit

Country Status (2)

Country Link
JP (1) JP5803944B2 (en)
WO (1) WO2012111848A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290121A (en) * 1997-04-14 1998-10-27 Matsushita Electric Ind Co Ltd Fet mixer
JP2000059147A (en) * 1998-08-07 2000-02-25 Matsushita Electric Ind Co Ltd Mixer circuit
JP2008252284A (en) * 2007-03-29 2008-10-16 Mitsubishi Electric Corp High frequency receiver
WO2009104055A1 (en) * 2008-02-18 2009-08-27 Freescale Semiconductor, Inc. Mixer circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290121A (en) * 1997-04-14 1998-10-27 Matsushita Electric Ind Co Ltd Fet mixer
JP2000059147A (en) * 1998-08-07 2000-02-25 Matsushita Electric Ind Co Ltd Mixer circuit
JP2008252284A (en) * 2007-03-29 2008-10-16 Mitsubishi Electric Corp High frequency receiver
WO2009104055A1 (en) * 2008-02-18 2009-08-27 Freescale Semiconductor, Inc. Mixer circuit

Also Published As

Publication number Publication date
JPWO2012111848A1 (en) 2014-07-07
JP5803944B2 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
US10305533B2 (en) Semiconductor device
CN103532493B (en) A kind of Low-power-consumptiohigh-gain high-gain broadband frequency mixer
US11601092B2 (en) RF frequency multiplier without balun
US7557673B1 (en) Wide bandwidth microwave balun
US20030114129A1 (en) System and method for a radio frequency receiver front end utilizing a balun to couple a low-noise amplifier to a mixer
US20060194559A1 (en) Radio-frequency circuit
US8026775B2 (en) Decade bandwidth planar MMIC four port transformer
JP2010537453A (en) Tunable impedance matching circuit
US6687494B1 (en) Low power radio telephone image reject mixer
US8362835B2 (en) Decade bandwidth planar MMIC four port transformer
WO2016041575A1 (en) A power efficient frequency multiplier
WO2012111848A1 (en) Mixer circuit
TW202247598A (en) Low noise amplifier incorporating sutardja transformer
CN107548511B (en) RF transformer for converting input RF signal to output RF signal
US20120321020A1 (en) Complentary differential input based mixer circuit
US9912293B2 (en) Sub-harmonic mixer and a method therein for converting radio frequency signals to intermediate frequency signals
US20140312955A1 (en) Balun mixer circuits
CN117155291B (en) Broadband single-side-band up-converter capable of calibrating local oscillator leakage
US12034406B2 (en) RF frequency multiplier without balun
CN104113284B (en) Balun mixer circuits
JP2018088707A (en) Semiconductor device
Campbell et al. An integrated IQ mixer for software-defined radio applications
CN118316398A (en) Millimeter wave frequency multiplier
CN117118361A (en) Frequency multiplication circuit, frequency multiplier and radio frequency system
CN116488585A (en) Frequency-quadrupling circuit, signal generating circuit and signal processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746719

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012558051

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12746719

Country of ref document: EP

Kind code of ref document: A1