WO2012111780A1 - Catalyst for olefin polymerization and method for producing olefin polymer - Google Patents

Catalyst for olefin polymerization and method for producing olefin polymer Download PDF

Info

Publication number
WO2012111780A1
WO2012111780A1 PCT/JP2012/053731 JP2012053731W WO2012111780A1 WO 2012111780 A1 WO2012111780 A1 WO 2012111780A1 JP 2012053731 W JP2012053731 W JP 2012053731W WO 2012111780 A1 WO2012111780 A1 WO 2012111780A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
ring
tert
aralkyl
Prior art date
Application number
PCT/JP2012/053731
Other languages
French (fr)
Japanese (ja)
Inventor
正人 ▲高▼野
伊藤 和幸
昭彦 石井
憲男 中田
智之 戸田
啓太 伊久間
史彦 河内
Original Assignee
住友化学株式会社
国立大学法人埼玉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 国立大学法人埼玉大学 filed Critical 住友化学株式会社
Publication of WO2012111780A1 publication Critical patent/WO2012111780A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/10Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C323/11Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/16Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/32Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D207/323Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to the ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/28Radicals substituted by singly-bound oxygen or sulphur atoms
    • C07D213/30Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/12Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D215/14Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/26Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/42Singly bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/16Radicals substituted by singly bound hetero atoms other than halogen by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/28Titanium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/18Systems containing only non-condensed rings with a ring being at least seven-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/70Ring systems containing bridged rings containing three rings containing only six-membered rings
    • C07C2603/74Adamantanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene

Definitions

  • the present invention relates to an olefin polymerization catalyst using a titanium complex, a method for producing an olefin polymer, a titanium complex for the polymerization catalyst, and a ligand thereof.
  • metallocene catalysts has been one of the topics in the chemistry of olefin polymerization that has been greatly developed by Ziegler-Natta type magnesium-supported highly active titanium catalysts. Further, recently, development of so-called post metallocene catalysts has attracted attention as a catalyst for constructing a more precise polymerization process.
  • Patent Document 1 reports propylene polymerization using a diphenoxytitanium complex, a zirconium complex or a hafnium complex derived from ethane-1,2-dithiol, but the resulting polymer has a low molecular weight, such as rigidity. There is room for improvement in terms of mechanical strength.
  • Non-Patent Document 1 diphenoxytitanium complexes, zirconium complexes and hafnium complexes derived from trans-cyclooctane-1,2-dithiol have been reported (Non-Patent Document 1), but there are no reports of titanium complexes as polymerization catalysts. .
  • the problem to be solved by the present invention is to provide an olefin polymerization catalyst capable of producing a high molecular weight olefin polymer, and a method for producing an olefin polymer using the olefin polymerization catalyst.
  • the present inventor has found that the above-mentioned problems can be solved by intensive studies.
  • the present invention relates to an olefin polymerization catalyst obtained by bringing a complex represented by the following general formula (1) into contact with an activation promoter component.
  • R 1 to R 12 are each independently Hydrogen atom, A halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An alkenyl group having 2 to 20 carbon atoms, An alkynyl group having 2 to 20 carbon atoms, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, An aralkyloxy group having 7 to 30 carbon atoms, An aryloxy group having 6 to 30 carbon atoms, Substituted silyl groups, Alternatively, it represents a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring.
  • the alkyl group, the cycloalkyl group, the alkenyl group, the alkynyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the heterocyclic compound in R 1 to R 12 The residue may have a substituent.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 9 And R 10 , and R 11 and R 12 may be independently connected to each other to form a ring, and these rings may have a substituent.
  • X is independently a hydrogen atom, a halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An alkenyl group having 2 to 20 carbon atoms, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, An aralkyloxy group having 7 to 30 carbon atoms, An aryloxy group having 6 to 30 carbon atoms, Substituted silyl groups, A substituted amino group, It represents a substituted thiolate group or a carboxylate group having 1 to 20 carbon atoms.
  • the alkyl group, the cycloalkyl group, the alkenyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the carboxylate group in X may have a substituent. Good. Adjacent Xs may be connected to each other to form a ring. L represents a neutral Lewis base. When there are a plurality of L, the plurality of L may be the same or different. l is 0, 1, or 2. )
  • the present invention also relates to a method for producing an olefin homopolymer or copolymer using the polymerization catalyst.
  • the present invention relates to a complex represented by the following general formula (1 ').
  • R 1 ′ to R 12 ′ are each independently Hydrogen atom, A halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An alkenyl group having 2 to 20 carbon atoms, An alkynyl group having 2 to 20 carbon atoms, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, An aralkyloxy group having 7 to 30 carbon atoms, An aryloxy group having 6 to 30 carbon atoms, Substituted silyl groups, Alternatively, it represents a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring.
  • R 1 ′ and R 5 ′ are not simultaneously a tert-butyl group.
  • R 1 ′ to R 12 ′ The alkyl group, the cycloalkyl group, the alkenyl group, the alkynyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the heterocyclic ring
  • the formula compound residue may have a substituent.
  • R 1 ′ to R 12 ′ may be independently connected to each other to form a ring. May have a substituent.
  • X ′ each independently represents a hydrogen atom, a halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An alkenyl group having 2 to 20 carbon atoms, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, An aralkyloxy group having 7 to 30 carbon atoms, An aryloxy group having 6 to 30 carbon atoms, Substituted silyl groups, A substituted amino group, It represents a substituted thiolate group or a carboxylate group having 1 to 20 carbon atoms.
  • the alkyl group, the cycloalkyl group, the alkenyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the carboxylate group in X ′ have a substituent. Also good. Adjacent X ′ may be connected to each other to form a ring. L ′ represents a neutral Lewis base. When there are a plurality of L, the plurality of L ′ may be the same or different. l ′ is 0, 1, or 2. ) Furthermore, the present invention relates to a compound represented by the following general formula (2 ′).
  • R 1 ′ to R 12 ′ are each independently Hydrogen atom, A halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An alkenyl group having 2 to 20 carbon atoms, An alkynyl group having 2 to 20 carbon atoms, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, An aralkyloxy group having 7 to 30 carbon atoms, An aryloxy group having 6 to 30 carbon atoms, Substituted silyl groups, Alternatively, it represents a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring.
  • R 1 ′ and R 5 ′ are not simultaneously a tert-butyl group.
  • R 1 ′ to R 12 ′ The alkyl group, the cycloalkyl group, the alkenyl group, the alkynyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the heterocyclic ring
  • the formula compound residue may have a substituent.
  • R 1 ' ⁇ R 12', R 1 ' and R 2', R 2 'and R 3', R 3 'and R 4', 'a R 6' R 5, and R 6 ' R 7 ′, R 7 ′ and R 8 ′, R 9 ′ and R 10 ′, and R 11 ′ and R 12 ′ may be independently connected to each other to form a ring. May have a substituent.
  • a high molecular weight olefin polymer can be produced.
  • N is 1 or 2, preferably 2.
  • R 1 and R 5 are preferably each independently a halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, Substituted silyl groups, Or a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring, More preferably, each independently an alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, Or a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring, More preferably, each independently an alkyl group having 5 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An
  • R 1 and R 5 are the same, An alkyl group having 5 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, Alternatively, it is a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring.
  • R 2 to R 4 and R 6 to R 8 are preferably each independently a hydrogen atom, A halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, An aryloxy group having 6 to 30 carbon atoms, A substituted silyl group, More preferably, each independently a hydrogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, Or it is a substituted silyl group.
  • R 2 , R 4 , R 6 and R 8 are more preferably a hydrogen atom, and more preferably R 3 and R 7 .
  • R 3 and R 7 are the same, A cycloalkyl group having 3 to 10 carbon atoms constituting an alkyl group ring having 1 to 20 carbon atoms, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, Or a substituted silyl group, Most preferably, An alkyl group having 1 to 20 carbon atoms.
  • R 9 to R 12 are preferably each independently a hydrogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, An aryloxy group having 6 to 30 carbon atoms, A substituted silyl group, More preferably, each independently a hydrogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, Or a substituted silyl group, More preferably, each independently a hydrogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring
  • alkyl group, cycloalkyl group, aralkyl group, aryl group, alkoxy group, aryloxy group and heterocyclic compound residue described above may have a substituent.
  • Examples of the substituted or unsubstituted alkyl group having 1 to 20 carbon atoms in R 1 to R 12 include a perfluoromethyl group, a perfluoroethyl group, a perfluoro-n-propyl group, a perfluoroisopropyl group, and a perfluoro group.
  • a tertiary amine having 4 to 8 carbon atoms such as a tert-butyl group, a tert-pentyl group, or a texyl group.
  • a kill group Most preferably, it is a tertiary alkyl group having 5 to 8 carbon atoms such as a tert-pentyl group or a texyl group.
  • the substituted or unsubstituted alkyl group having 1 to 20 carbon atoms in R 2 to R 4 and R 6 to R 12 is preferably a perfluoromethyl group, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, n -Butyl group, sec-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, tert-pentyl group, neopentyl group, n-hexyl group, texyl group, neohexyl group, n-heptyl group, n
  • An alkyl group having 4 to 10 carbon atoms such as an octyl group and an n-decyl group, more preferably a perfluoromethyl group, a methyl group, an isopropyl group, an isobutyl group, a ter
  • Examples of the substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms constituting the ring in R 1 to R 12 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • Examples of the substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms in R 1 to R 12 include vinyl group, allyl group, propenyl group, 2-methyl-2-propenyl group, homoallyl group, pentenyl group, hexenyl group, A heptenyl group, an octenyl group, a nonenyl group, a decenyl group and the like can be mentioned.
  • An alkenyl group having 3 to 6 carbon atoms is preferable, and an allyl group and a homoallyl group are more preferable.
  • Examples of the substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms in R 1 to R 12 include, for example, ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, and 3-methyl-1-butynyl group 3,3-dimethyl-1-butynyl group, 2-butynyl group, 3-butynyl group, 1-pentynyl group, 4-methyl-1-pentynyl group, 2-pentynyl group, 3-pentynyl group, 4-pentynyl group 4-methyl-1-pentenyl group, 1-hexynyl group, 1-octynyl group and phenylethynyl group, preferably an alkynyl group having 3 to 8 carbon atoms, more preferably 3-methyl-1- A butynyl group, a 3,3-dimethyl-1-butynyl group, a 4-methyl-1
  • Examples of the substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms in R 1 to R 12 include benzyl group, (2-methylphenyl) methyl group, (3-methylphenyl) methyl group, (4-methyl Phenyl) methyl group, (2,3-dimethylphenyl) methyl group, (2,4-dimethylphenyl) methyl group, (2,5-dimethylphenyl) methyl group, (2,6-dimethylphenyl) methyl group, ( 3,4-dimethylphenyl) methyl group, (3,5-dimethylphenyl) methyl group, (2,3,4-trimethylphenyl) methyl group, (2,3,5-trimethylphenyl) methyl group, (2, 3,6-trimethylphenyl) methyl group, (3,4,5-trimethylphenyl) methyl group, (2,4,6-trimethylphenyl) methyl group, (2,3,4,5-te Lamethylphenyl) methyl group,
  • Examples of the substituted or unsubstituted aryl group having 6 to 30 carbon atoms in R 1 to R 12 include a phenyl group, a 2-tolyl group, a 3-tolyl group, a 4-tolyl group, a 2,3-xylyl group, 2,4-xylyl group, 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 2,3,4-trimethylphenyl group, 2,3,5 -Trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,4,6-trimethylphenyl group, 3,4,5-trimethylphenyl group, 2,3,4,5-tetramethylphenyl group, 2, 3,4,6-tetramethylphenyl group, 2,3,5,6-tetramethylphenyl group, pentamethylphenyl group, ethylphenyl group, n-propylphenyl group, isopropylphenyl group,
  • Examples of the substituted silyl group in R 1 to R 12 include trimethylsilyl group, triethylsilyl group, tri-n-propylsilyl group, triisopropylsilyl group, tri-n-butylsilyl group, triisobutylsilyl group, tert-butyldimethyl group.
  • Examples include silyl group, methyldiphenylsilyl group, dimethyl (phenyl) silyl group, tert-butyldiphenylsilyl group, triphenylsilyl group, methylbis (trimethylsilyl) silyl group, dimethyl (trimethylsilyl) silyl group, and tris (trimethylsilyl) silyl group.
  • a trialkylsilyl group having 3 to 20 carbon atoms such as trimethylsilyl group, triethylsilyl group, tri-n-propylsilyl group, triisopropylsilyl group, tert-butyldimethylsilyl group; Methylsilyl) silyl group, dimethyl (trimethylsilyl) silyl group, and a silyl group having as a substituent a hydrocarbyl silyl group having 3 to 20 carbon atoms, such as tris (trimethylsilyl) silyl group.
  • Examples of the substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms in R 1 to R 12 include a perfluoromethoxy group, a perfluoroethoxy group, a perfluoro-n-propoxy group, a perfluoroisopropoxy group, a perfluoro group, Fluoro-n-butoxy group, perfluoro-sec-butoxy group, perfluoroisobutoxy group, perfluoro-n-pentyloxy group, perfluoronepentyloxy group, perfluoro-n-hexyloxy group, perfluoro-n -Heptyloxy group, perfluoro-n-octyloxy group, perfluoro-n-decyloxy group, perfluoro-n-dodecyloxy group, perfluoro-n-pentadecyloxy group, perfluoro-n-eicosyloxy group Methoxy group, ethoxy group,
  • Examples of the substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms in R 1 to R 12 include, for example, phenoxy group, 2,3,4-trimethylphenoxy group, 2,3,5-trimethylphenoxy group, 2, 3,6-trimethylphenoxy group, 2,4,6-trimethylphenoxy group, 3,4,5-trimethylphenoxy group, 2,3,4,5-tetramethylphenoxy group, 2,3,4,6-tetra Methylphenoxy group, 2,3,5,6-tetramethylphenoxy group, pentamethylphenoxy group, 2,6-diisopropylphenoxy group, 2-fluorophenoxy group, 3-fluorophenoxy group, 4-fluorophenoxy group, pentafluoro Phenoxy group, 2-trifluoromethylphenoxy group, 3-trifluoromethylphenoxy group, 4-trifluoro Methylphenoxy group, 2,3-difluorophenoxy group, 2,4-fluorophenoxy group, 2,5-difluorophenoxy group
  • Examples of the substituted or unsubstituted aralkyloxy group having 7 to 30 carbon atoms in R 1 to R 12 include, for example, benzyloxy group, (2-methylphenyl) methoxy group, (3-methylphenyl) methoxy group, (4 -Methylphenyl) methoxy group, (2,3-dimethylphenyl) methoxy group, (2,4-dimethylphenyl) methoxy group, (2,5-dimethylphenyl) methoxy group, (2,6-dimethylphenyl) methoxy group (3,4-dimethylphenyl) methoxy group, (3,5-dimethylphenyl) methoxy group, (2,3,4-trimethylphenyl) methoxy group, (2,3,5-trimethylphenyl) methoxy group, 2,3,6-trimethylphenyl) methoxy group, (2,4,5-trimethylphenyl) methoxy group, (2,4,6-trimethylphenyl) Ny
  • Examples of the substituted or unsubstituted heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring in R 1 to R 12 include thienyl group, furyl group, 1-pyrrolyl group, 1-imidazolyl group, 1-pyrazolyl group, pyridyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, 2-isoindolyl group, 1-indolyl group, quinolyl group, dibenzo-1H-pyrrol-1-yl group, and N-carbazolyl group are preferable.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , and R 7 and R 8 are Each independently may be linked to each other to form a ring, and the ring may have a substituent, and is preferably a 4- to 10-membered hydrocyclic hydrocarbon containing two carbon atoms on the benzene ring. It is a carbyl ring or a heterocyclic ring, and this ring may have a substituent.
  • the ring include cyclobutene ring, cyclopentene ring, cyclopentadiene ring, cyclohexene ring, cycloheptene ring, cyclooctene ring, benzene ring or naphthalene ring, furan ring, 2,5-dimethylfuran ring, thiophene ring, 2, 5-dimethylthiophene ring, pyridine ring and the like can be mentioned, and preferred are cyclobutene ring, cyclopentene ring, cyclopentadiene ring, cyclohexene ring, benzene ring or naphthalene ring, and more preferred are R 1 and R 2 and R 5 A cyclopentene ring, a cyclopentadiene ring, a cyclohexene ring, a benzene ring, and a naphthalene ring in which at least one pair
  • R 9 and R 10 , and R 11 and R 12 may be independently connected to each other to form a ring, and the ring has a substituent. You may do it.
  • An aryl group having 6 to 30 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aralkyloxy group having 7 to 30 carbon atoms, an aryloxy group having 6 to 30 carbon atoms, and a substituted silyl group are represented by R 1 to R 8. It is the same as the group described above.
  • Examples of the substituted amino group in X include 2 to 14 carbon atoms such as dimethylamino group, diethylamino group, di-n-butylamino group, di-n-propylamino group, diisopropylamino group, dibenzylamino group, or diphenylamino group. And a dimethylamino group, a diethylamino group, a di-n-propylamino group, a diisopropylamino group, or a dibenzylamino group.
  • Examples of the substituted thiolate group in X include a thiophenoxy group, 2,3,4-trimethylthiophenoxy group, 2,3,5-trimethylthiophenoxy group, 2,3,6-trimethylthiophenoxy group, 2,4 , 6-trimethylthiophenoxy group, 3,4,5-trimethylthiophenoxy group, 2,3,4,5-tetramethylthiophenoxy group, 2,3,4,6-tetramethylthiophenoxy group, 2,3,5 , 6-tetramethylphenoxy group, pentamethylphenoxy group, 2-fluorothiophenoxy group, 3-fluorothiophenoxy group, 4-fluorophenoxy group, pentafluorothiophenoxy group, 2-trifluoromethylthiophenoxy group, 3-tri Fluoromethylthiophenoxy group, 4-trifluoromethylthiophenoxy group, 2, -Difluorothiophenoxy group, 2,4-fluorothiophenoxy group, 2,5-difluorothiophenoxy group, 2-chloro
  • Examples of the substituted or unsubstituted carboxylate group having 1 to 20 carbon atoms in X include an acetate group, propionate group, butyrate group, pentanate group, hexanoate group, 2-ethylhexanoate group or trifluoroacetate group.
  • Preferred are hydrocarbyl carboxylate groups having 2 to 10 carbon atoms, and more preferred are acetate groups, propionate groups, 2-ethylhexanoate groups or trifluoroacetate groups.
  • X is preferably a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or 6 to 30 carbon atoms. More preferably, a chlorine atom, a bromine atom, an alkyl group having 1 to 6 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or an alkoxy having 1 to 6 carbon atoms.
  • R 1 to R 12 and X may each independently have a substituent containing a halogen atom, an oxygen atom, a silicon atom, a nitrogen atom, a phosphorus atom, or a sulfur atom.
  • L represents a neutral Lewis base. When there are a plurality of L, the plurality of L may be the same or different. l is 0, 1, or 2.
  • L examples include ethers, amines or thioethers, and specific examples include tetrahydrofuran, diethyl ether, 1,4-dioxane, and pyridine. L is preferably tetrahydrofuran.
  • L is preferably 1 or 0, more preferably 0.
  • the compound which changed the group corresponding to R ⁇ 3 > and R ⁇ 7 > in each said compound into the hydrogen atom, the fluorine atom, the chlorine atom, the bromine atom, the iodine atom, or the methyl group can also be mentioned.
  • Examples thereof also include compounds in which the groups corresponding to R 9 to R 12 in each of the above compounds are substituted with a methyl group or an ethyl group.
  • Preferred examples of the complex (1) include the following compounds.
  • More preferable examples of the complex (1) include the following compounds.
  • the following compounds are particularly preferable.
  • N ′ is 1 or 2, preferably 2.
  • R 1 ′ and R 5 ′ are preferably each independently a hydrogen atom, A halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, Substituted silyl groups, Or a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring, wherein R 1 ′ and R 5 ′ are not simultaneously a tert-butyl group, More preferably, each independently an alkyl group having 5 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, Alternatively, it is a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring.
  • R 1 'and R 5' are, R 1 'and R 5' are the same, An alkyl group having 5 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, Alternatively, it is a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring.
  • R 2 ′ to R 4 ′ and R 6 ′ to R 8 ′ are preferably each independently a hydrogen atom, A halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, An aryloxy group having 6 to 30 carbon atoms, A substituted silyl group, More preferably, each independently a hydrogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, Or a substituted silyl group, R 2 ′, R 4 ′, R 6 ′ and R 8 ′ are more preferably a hydrogen
  • R 3 ′ and R 7 ′ are each independently a cycloalkyl group having 3 to 10 carbon atoms constituting an alkyl group ring having 1 to 20 carbon atoms, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, Or it is a substituted silyl group.
  • R 3 'and R 7' are the same, A cycloalkyl group having 3 to 10 carbon atoms constituting an alkyl group ring having 1 to 20 carbon atoms, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, Or a substituted silyl group, Most preferably, An alkyl group having 1 to 20 carbon atoms.
  • R 9 ′ to R 12 ′ are preferably each independently a hydrogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, An aryloxy group having 6 to 30 carbon atoms, A substituted silyl group, More preferably, each independently a hydrogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, Or a substituted silyl group, More preferably, each independently a hydrogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constitu
  • alkyl groups, cycloalkyl groups, aralkyl groups, aryl groups, alkoxy groups, aryloxy groups and heterocyclic compound residues may have a substituent.
  • the aryloxy group of 30, the substituted silyl group, or the heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring is the same as the group described above for R 1 to R 12 in the general formula (1). is there.
  • R 1 ′ to R 8 ′ may be independently connected to each other to form a ring, which ring may have a substituent, preferably on the benzene ring
  • the ring include cyclobutene ring, cyclopentene ring, cyclopentadiene ring, cyclohexene ring, cycloheptene ring, cyclooctene ring, benzene ring or naphthalene ring, furan ring, 2,5-dimethylfuran ring, thiophene ring, 2, 5-dimethylthiophene ring, pyridine ring and the like are mentioned, and preferred are cyclobutene ring, cyclopentene ring, cyclopentadiene ring, cyclohexene ring, benzene ring or naphthalene ring, and more preferred are R 1 ′, R 2 ′ and R A cyclopentene ring, a cyclopentadiene ring, a cyclohexene ring, a benzene ring, and a naphthalene ring in which at least
  • R 9 ′ to R 12 ′, R 9 ′ and R 10 ′, and R 11 ′ and R 12 ′ may be independently connected to each other to form a ring,
  • the ring may have a substituent.
  • the thiolate group and the carboxylate group having 1 to 20 carbon atoms are the same as those described above for X in the general formula (1).
  • X ′ is preferably a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or 6 to 6 carbon atoms.
  • An arylamino group particularly preferably a chlorine atom, a methyl group, a benzyl group, an isopropoxy group, a phenoxy group, a dimethylamino group, and most preferably, a chlorine atom, a benzyl group.
  • R 1 ′ to R 12 ′ and X ′ may each independently have a substituent containing a halogen atom, an oxygen atom, a silicon atom, a nitrogen atom, a phosphorus atom or a sulfur atom.
  • L ′ and l ′ are the same as L and l in the general formula (1).
  • Examples thereof also include compounds in which the groups corresponding to R 3 ′ and R 7 ′ in each of the above compounds are changed to hydrogen atoms, fluorine atoms, chlorine atoms, bromine atoms, iodine atoms, or methyl groups.
  • Examples also include compounds in which the groups corresponding to R 9 ′ to R 12 ′ in each of the above compounds are substituted with a methyl group or an ethyl group.
  • Preferred examples of the complex (1 ′) include the following compounds.
  • More preferable examples of the complex (1 ′) include the following compounds.
  • a compound obtained by changing the group corresponding to R 3 ′ and R 7 ′ of each of the above compounds to a methyl group can also be mentioned.
  • the complex represented by the general formula (1) and the complex represented by the general formula (1 ′) are synthesized according to the method described in, for example, Journal of American Chemical Society, 2009, Volume131,13566-13567 Can do.
  • the complex (1) it can be produced by the following scheme 1 using the compound represented by the general formula (2) and the compound represented by the general formula (3) as starting materials, but should be limited to this method. It is not a thing.
  • TiX 4 examples include Ti (CH 2 Ph) 4 , TiCl 2 (CH 2 Ph) 2 , Ti (CH 2 SiMe 3 ) 4 , TiF 4 , TiCl 4 , TiBr 4 , TiI 4 , and Ti (OMe) 4. , Ti (OEt) 4 , Ti (Oi-Pr) 4 , TiCl 2 (Oi-Pr) 2 , Ti (On-Bu) 4 , Ti (Oi-Bu) 4 , Ti ( Ot-Bu) 4 , Ti (OPh) 4 , Ti (NMe 2 ) 4 , TiCl 2 (NMe 2 ) 2 , and Ti (NEt 2 ) 4 .
  • the compound (2) and the compound (3) may be reacted as they are, or the compound (3) may be reacted after reacting the compound (2) with a base as necessary.
  • the base to be used include an organic lithium reagent, a Grignard reagent, and a metal hydride.
  • methyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, lithium diisopropylamide, lithium hexamethyl examples thereof include disilazane, potassium hexamethyldisilazane, sodium hydride and potassium hydride, and preferably n-butyllithium, lithium diisopropylamide, potassium hexamethyldisilazane, sodium hydride or potassium hydride.
  • the reaction can be carried out under dehydration and deoxygenation. preferable. Specifically, it is under dry nitrogen and dry argon.
  • the amount of the compound (2) used may be 1 molar equivalent or more with respect to the compound (3), and preferably 1.0 to 1.5 molar equivalents. Moreover, when the compound (2) remains in the course of the reaction, the compound (3) may be added during the reaction.
  • the temperature at which compound (2) and compound (3) are reacted is in the temperature range of ⁇ 100 ° C. to 150 ° C., preferably in the temperature range of ⁇ 80 ° C. to 50 ° C. However, it is not intended to be limited to this range.
  • the reaction of the compound (2) and the compound (3) may be carried out until the time when the yield of the product becomes the highest, preferably 5 minutes to 48 hours, more preferably 10 minutes to 24 hours.
  • the temperature at which the compound (2) reacts with the base is in the temperature range of ⁇ 100 ° C. to 150 ° C., preferably in the temperature range of ⁇ 80 ° C. to 50 ° C. However, it is not intended to be limited to this range.
  • the reaction time of the compound (2) and the base may be carried out until the product yield becomes the highest, and is 5 minutes to 24 hours, preferably 10 minutes to 12 hours, more preferably 30 minutes to 3 hours.
  • the reaction time of the compound produced by reacting the compound (2) with the base and the compound (3) may be the time until the yield of the product becomes the highest, and is 5 minutes to 48 hours. Preferably, it is 10 minutes to 24 hours.
  • the solvent to be used is not particularly limited as long as it is a solvent generally used in similar reactions, and examples thereof include a hydrocarbon solvent or an ether solvent.
  • Preferred is toluene, benzene, o-xylene, m-xylene, p-xylene, hexane, pentane, heptane, cyclohexane, diethyl ether or tetrahydrofuran, and more preferred is diethyl ether, toluene, tetrahydrofuran, hexane, pentane, heptane. Or cyclohexane.
  • Compound (2) can be synthesized, for example, according to the method described in Journal of American Chemical Society, 2009, Volume 131, 13566-13567. Specifically, although it can manufacture by the following scheme 2, it should not be limited to this method. Hereinafter, each process will be described in detail.
  • R 1 to R 12 and n in the compounds (4) to (7) are the same as in the complex (1).
  • Z represents an anionic leaving group, for example, a halogen atom, acetate group, trifluoroacetate group, benzoate group, CF 3 SO 3 group, CH 3 SO 3 group, 4-MeC 6 H 4 SO 3 group or PhSO 3 group Preferred are chlorine atom, bromine atom, iodine atom, CF 3 SO 3 group, CH 3 SO 3 group, 4-MeC 6 H 4 SO 3 group or PhSO 3 group.
  • Trans-cyclooctane-1,2-dithiol (4) is reacted with 1.0 to 4.0 equivalents, preferably 1.0 to 1.5 equivalents of compound (5) in the presence of a base to give compound (6) Can be synthesized.
  • the base is not particularly limited, and examples thereof include inorganic bases such as potassium carbonate, calcium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and calcium carbonate, and amine bases such as triethylamine and triisobutylamine. Preferably, it is an amine base.
  • This reaction can be performed in an atmosphere of air, helium, argon, or nitrogen.
  • it is under a helium, argon or nitrogen atmosphere, more preferably under a nitrogen or argon atmosphere.
  • the compound (6) may be purified as necessary.
  • a purification method for example, an ammonium chloride aqueous solution, a hydrochloric acid aqueous solution or a sodium chloride aqueous solution is added to the reaction solution, followed by addition of ethyl acetate or diethyl ether, and an extraction operation is performed to remove excess base or salt.
  • the purity can be increased by a purification operation such as distillation, recrystallization or silica gel chromatography.
  • Compound (2) can be synthesized by reacting compound (6) with 1.0 to 4.0 equivalents, preferably 1.0 to 1.5 equivalents of compound (7) in the presence of a base.
  • the base examples include inorganic bases such as potassium carbonate, calcium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and calcium carbonate, and amine bases such as triethylamine and triisobutylamine, with amine bases being preferred.
  • inorganic bases such as potassium carbonate, calcium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and calcium carbonate
  • amine bases such as triethylamine and triisobutylamine, with amine bases being preferred.
  • This reaction can be performed in an atmosphere of air, helium, argon, or nitrogen.
  • it is under a helium, argon or nitrogen atmosphere, more preferably under a nitrogen or argon atmosphere.
  • the compound (2) may be purified as necessary.
  • a purification method for example, an ammonium chloride aqueous solution, a hydrochloric acid aqueous solution or a sodium chloride aqueous solution is added to the reaction solution, followed by addition of ethyl acetate or diethyl ether, and an extraction operation is performed to remove excess base or salt.
  • the purity can be increased by a purification operation such as distillation, recrystallization or silica gel chromatography.
  • the compound (2) can also be obtained by reacting the compound (6) and the compound (7) produced in the reactor by controlling the reaction conditions of [step 1].
  • R 1 is the same as R 5
  • R 2 is the same as R 6
  • R 3 is the same as R 7
  • R 4 is the same as R 8
  • the combination of R 9 and R 10 is R
  • the compound (2) can also be synthesized by reacting preferably 2.0 to 4.0 equivalents in the presence of a base.
  • Specific examples of the compound (2) include the following compounds.
  • Examples thereof also include compounds in which groups corresponding to R 3 and R 7 of these compounds are substituted with a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a methyl group.
  • Examples thereof also include compounds in which the groups corresponding to R 9 to R 12 in each of the above compounds are substituted with a methyl group or an ethyl group.
  • Examples thereof also include compounds in which a group corresponding to R 3 or R 7 of these compounds is substituted with a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a methyl group.
  • Examples thereof also include compounds in which the groups corresponding to R 9 to R 12 in each of the above compounds are substituted with a methyl group or an ethyl group.
  • Examples also include compounds in which the groups corresponding to R 9 ′ to R 12 ′ in each of the above compounds are substituted with a methyl group or an ethyl group.
  • Preferred examples of the compound (2 ′) include the following compounds.
  • the compound which changed the group corresponding to R ⁇ 3 '> and R ⁇ 7 >' of these compounds into the hydrogen atom, the fluorine atom, the chlorine atom, the bromine atom, the iodine atom, or the methyl group can also be mentioned.
  • More preferable examples of the compound (2 ′) include the following compounds.
  • the complex represented by the general formula (1) described above is used as a polymerization catalyst component in producing a polymer by homopolymerization of olefins or copolymerization of two or more polymerizable olefins, preferably It is a catalyst component for homopolymerization.
  • a polymerization catalyst obtained by contacting the complex (1) and the promoter component (A) is used.
  • promoter components include activation promoter components containing Group 13 elements of the Periodic Table, such as (A-1) Organoaluminum compound (A-2) There may be mentioned at least one compound selected from the group consisting of boron compounds.
  • (A-1) Organoaluminum compound (A-2) There may be mentioned at least one compound selected from the group consisting of boron compounds.
  • organoaluminum compound (A-1) used in the present invention a known organoaluminum compound can be used.
  • (A-1-1) an organoaluminum compound represented by the general formula E 1 a AlY 1 3-a , (A-1-2) a general formula ⁇ —Al (E 2 ) —O— ⁇ b
  • Y 1 represents a hydrogen atom or a halogen atom, and all Y 1 may be the same or different, a is an integer of 0 ⁇ a ⁇ 3, b is an integer of 2 or more, and c is 1 or more. Any one of them, or a mixture of 2 to 3 thereof.
  • organoaluminum compound (A-1-1) represented by the general formula E 1 a AlY 1 3-a include trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, trihexylaluminum and the like.
  • Dialkylaluminum chlorides such as alkylaluminum; dimethylaluminum chloride, diethylaluminum chloride, dipropylaluminum chloride, diisobutylaluminum chloride, dihexylaluminum chloride; methylaluminum dichloride, ethylaluminum dichloride, propylaluminum dichloride, isobutylaluminum dichloride, hexylaluminum dichloride, etc.
  • Alkyl aluminum dichloride dimethyl aluminum Um hydride, diethylaluminum hydride, dipropyl aluminum hydride, diisobutylaluminum hydride, there can be mentioned dialkyl aluminum hydride such as dihexyl aluminum hydride.
  • Trialkylaluminum is preferable, and triethylaluminum and triisobutylaluminum are more preferable.
  • E 2 and E 3 in the linear aluminoxane (A-1-3) having the structure represented by 2 are methyl group, ethyl group, n-propyl group, isopropyl group, normal butyl group, Examples thereof include alkyl groups such as isobutyl group, n-pentyl group and neopentyl group.
  • b is an integer of 2 or more
  • c is an integer of 1 or more.
  • E 2 and E 3 are a methyl group and an isobutyl group, b is 2 to 40, and c is 1 to 40.
  • aluminoxane can be made by various methods. There is no restriction
  • an aluminoxane is prepared by bringing a solution obtained by dissolving a trialkylaluminum (for example, trimethylaluminum) in an appropriate organic solvent (benzene, toluene, aliphatic hydrocarbon, etc.) into contact with water.
  • a trialkylaluminum for example, trimethylaluminum
  • an appropriate organic solvent benzene, toluene, aliphatic hydrocarbon, etc.
  • the method of making aluminoxane by making trialkylaluminum (for example, trimethylaluminum etc.) contact the metal salt (for example, copper sulfate hydrate etc.) containing crystal water can be illustrated.
  • (A-1-2) the general formula ⁇ -Al (E 2 ) -O— ⁇ b obtained by the above method and a cyclic aluminoxane having a structure represented by the formula (A-1-3)
  • the linear aluminoxane having a structure represented by E 3 ⁇ —Al (E 3 ) —O— ⁇ c AlE 3 2 may be used after distilling off the volatile components if necessary.
  • the compound obtained by distilling off the volatile components and drying may be washed with an appropriate organic solvent (benzene, toluene, aliphatic hydrocarbon, etc.), and dried again for use.
  • the boron compound (A-2) includes (A-2-1) a boron compound represented by the general formula BR 13 R 14 R 15 , (A-2-2) a general formula W + (BR 13 R 14 R 15 R 16 ) — or a boron compound represented by (A-2-3) general formula (VH) + (BR 13 R 14 R 15 R 16 ) — Use.
  • B is a trivalent boron atom
  • R 13 to R 15 are halogen atoms, 1 to 20 Hydrocarbyl group containing 1 to 20 carbon atoms, halogenated hydrocarbyl group containing 1 to 20 carbon atoms, substituted silyl group containing 1 to 20 carbon atoms, alkoxy group containing 1 to 20 carbon atoms Or a disubstituted amino group containing 2 to 20 carbon atoms, which may be the same or different.
  • Preferred R 13 to R 15 are a halogen atom, a hydrocarbyl group containing 1 to 20 carbon atoms, and a halogenated hydrocarbyl group containing 1 to 20 carbon atoms.
  • boron compound (A-2-1) examples include triphenylborane, tris (pentafluorophenyl) borane, tris (2,3,5,6-tetrafluorophenyl) borane, tris (2,3,4). , 5-tetrafluorophenyl) borane, tris (3,4,5-trifluorophenyl) borane, tris (2,3,4-trifluorophenyl) borane, phenylbis (pentafluorophenyl) borane, and the like. Most preferred are triphenylborane and tris (pentafluorophenyl) borane.
  • W + is an inorganic or organic cation
  • B is a trivalent valence state.
  • R 13 to R 16 are the same as R 13 to R 15 in the boron compound (A-2-1). That is, R 13 to R 16 include a halogen atom, a hydrocarbyl group containing 1 to 20 carbon atoms, a halogenated hydrocarbyl group containing 1 to 20 carbon atoms, and 1 to 20 carbon atoms.
  • a substituted silyl group, an alkoxy group containing 1 to 20 carbon atoms or a disubstituted amino group containing 2 to 20 carbon atoms which may be the same or different.
  • Preferred R 13 to R 16 are a halogen atom, a hydrocarbyl group containing 1 to 20 carbon atoms, and a halogenated hydrocarbyl group containing 1 to 20 carbon atoms.
  • W + that is an inorganic cation examples include a ferrocenium cation, an alkyl-substituted ferrocenium cation, and a silver cation.
  • W + that is an organic cation examples include a triphenylcarbenium cation. (BR 13 R 14 R 15 R 16 ) — includes tetrakis (pentafluorophenyl) borate, tetrakis (2,3,5,6-tetrafluorophenyl) borate, tetrakis (2,3,4,5-tetrafluoro).
  • Phenyl) borate tetrakis (3,4,5-trifluorophenyl) borate, tetrakis (2,2,4-trifluorophenyl) borate, phenylbis (pentafluorophenyl) borate, tetrakis (3,5-bistri) Fluoromethylphenyl) borate and the like.
  • Specific examples of the compound represented by the general formula W + (BR 13 R 14 R 15 R 16 ) — include ferrocenium tetrakis (pentafluorophenyl) borate and 1,1′-dimethylferrocenium tetrakis (pentafluoro).
  • Phenyl) borate silver tetrakis (pentafluorophenyl) borate, triphenylcarbenium tetrakis (pentafluorophenyl) borate, triphenylcarbenium tetrakis (3,5-bistrifluoromethylphenyl) borate, etc.
  • Triphenylcarbenium tetrakis (pentafluorophenyl) borate is preferable.
  • R 13 to R 16 are the same as R 13 to R 15 in the boron compound (A-2-3). is there. That is, R 13 to R 16 include a halogen atom, a hydrocarbyl group containing 1 to 20 carbon atoms, a halogenated hydrocarbyl group containing 1 to 20 carbon atoms, and 1 to 20 carbon atoms.
  • a substituted silyl group, an alkoxy group containing 1 to 20 carbon atoms or a disubstituted amino group containing 2 to 20 carbon atoms which may be the same or different.
  • Preferred R 13 to R 16 are a halogen atom, a hydrocarbyl group containing 1 to 20 carbon atoms, and a halogenated hydrocarbyl group containing 1 to 20 carbon atoms.
  • Examples of (VH) + that is a Bronsted acid include trialkyl-substituted ammonium, N, N-dialkylanilinium, dialkylammonium, triarylphosphonium, and the like (BR 13 R 14 R 15 R 16 ) ⁇ Is the same as described above.
  • the complex (1) and the promoter component (A) are in contact with each other.
  • the cocatalyst component (A) can be separately supplied to the polymerization tank and brought into contact with each other in the polymerization tank.
  • the co-catalyst component (A) may be used in combination of a plurality of types, but some of them may be mixed in advance or used separately by supplying them to the polymerization tank. May be.
  • the complex (1) an isolated one may be used, or a compound obtained by contacting the compound (2) and the compound (3) may be used as it is.
  • the amount of each component used is usually such that the molar ratio of the organoaluminum compound (A-1) to the complex (1) is in the range of 0.01 to 10000, preferably in the range of 1 to 5000. It is desirable to use each component so that the molar ratio of the boron compound (A-2) to the complex represented by 1) is in the range of 0.01 to 100, preferably 1.0 to 50.
  • the concentration when each component is supplied in a solution state or suspended or slurried in a solvent is determined depending on the performance of the apparatus for supplying each component to the polymerization reactor, etc.
  • the complex represented by the general formula (1) is usually 0.0001 to 10000 mmol / L, more preferably 0.001 to 1000 mmol / L, and still more preferably, 0.01 to 100 mmol / L
  • the organoaluminum compound (A-1) is usually 0.01 to 10000 mmol / L, more preferably 0.05 to 5000 mmol / L, still more preferably 0, in terms of Al atom.
  • the boron compound (A-2) is usually from 0.001 to 500 mmol / L, more preferably from 0.01 to 2000 mmol / L. 50 mmol / L, more preferably, it is desirable to use each component to be in the range of 0.05 ⁇ 100mmol / L.
  • the olefin polymerization catalyst is an olefin polymerization catalyst obtained by contacting the complex (1) with at least one of the organoaluminum compound (A-1) and the boron compound (A-2).
  • the organoaluminum compound (A-1) Cyclic aluminoxane (A-1-2) and / or linear aluminoxane (A-1-3) are preferred.
  • the olefin polymerization catalyst is an olefin polymerization catalyst obtained by contacting the complex (1), the organoaluminum compound (A-1) and the boron compound (A-2).
  • the organoaluminum compound (A-1) the organoaluminum compound (A-1-1) can be easily used.
  • the boron compound (A-2) a boron compound (A-2-1) or boron Compound (A-2-2) is preferred.
  • the method for producing an olefin polymer in the present invention is a method including polymerizing an olefin alone in the presence of the catalyst or copolymerizing two or more olefins.
  • the olefin can be a monoolefin or a diolefin.
  • monoolefins examples include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 4-methyl-1-pentene, vinylcyclohexane, etc.
  • 1-alkene having 3 to 10 carbon atoms which may be branched), or cyclopentene, cyclohexene, 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, 5-phenylnorbornene, 5-benzylnorbornene , Tetracyclododecene, tricyclodecene, tricycloundecene, pentacyclopentadecene, pentacyclohexadecene, 8-methyltetracyclododecene, 8-ethyltetracyclododecene, 5-acetylnorbornene, 5-acetyloxynorbornene , 5-metoki Carbonyl norbornene, 5-ethoxycarbonyl norbornene, 5-methyl-5-methoxycarbonyl norbornene, 5-cyanonorbornene, 8-methoxycarbonyltetracyclo
  • diolefin examples include 1,5-hexadiene, 1,4-hexadiene, 1,6-heptadiene, 1,4-pentadiene, 1,7-octadiene, 1,8-nonadiene, 1,9-decadiene, 4 -Methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 7-methyl-1,6-octadiene, 5-ethylidene-2-norbornene, dicyclopentadiene, 5-vinyl-2-norbornene, 5 -Methyl-2-norbornene, norbornadiene, 5-methylene-2-norbornene, 1,5-cyclooctadiene, 5,8-endomethylenehexahydronaphthalene, 1,3-hexadiene, 1,3-octadiene, 1,3 -Cyclooctadiene, 1,3-cyclohexadiene, butad
  • Preferred monoolefins are ethylene, propylene, 1-butene, 1-pentene, 1-heptene, 1-octene, 1-nonene, 1-decene, 4-methyl-1-pentene and vinylcyclohexane, more preferably , Propylene, 1-butene, 1-pentene, 1-octene, 1-decene, 4-methyl-1-pentene, vinylcyclohexane, and more preferably propylene, 1-butene, 1-pentene, 4-methyl- 1-pentene and vinylcyclohexane are most preferable, and ethylene and propylene are most preferable.
  • the monomer constituting the copolymer examples include ethylene and propylene, ethylene and 1-butene, ethylene and 1-pentene, ethylene and 1-hexene, ethylene and 1-octene, ethylene and 1-decene, and ethylene and 4 -Methyl-1-pentene, ethylene and vinylcyclohexane, ethylene and 4-methyl-1-pentene, ethylene and butadiene, ethylene and 1,5-hexadiene.
  • ethylene and propylene ethylene and 1-butene, ethylene and 1-pentene, ethylene and 1-hexene, ethylene and 1-octene, ethylene and vinylcyclohexane, ethylene and 4-methyl-1-pentene, and more Preferred are ethylene and propylene, ethylene and 1-butene, ethylene and 1-hexene, ethylene and 1-octene, ethylene and vinylcyclohexane, and more preferred are ethylene and propylene, ethylene and 1-butene, and ethylene and 1 -Hexene, ethylene and vinylcyclohexane.
  • the polymerization method is not particularly limited.
  • aliphatic hydrocarbons such as butane, pentane, hexane, heptane, and octane
  • aromatic hydrocarbons such as benzene and toluene
  • halogenated hydrocarbons such as methylene dichloride.
  • Solvent polymerization using carbon as a solvent, slurry polymerization, or the like is possible, and either continuous polymerization or batch polymerization is possible.
  • the temperature and time of the polymerization reaction can be determined in consideration of the desired polymerization average molecular weight, and the activity and usage of the catalyst.
  • the polymerization temperature can usually be in the range of ⁇ 50 ° C. to 200 ° C., but the range of ⁇ 20 ° C. to 100 ° C. is particularly preferable.
  • the polymerization pressure is usually preferably from normal pressure to 50 MPa.
  • the polymerization time is appropriately determined depending on the kind of the target polymer and the reaction apparatus, but it can usually be in the range of 1 minute to 20 hours, preferably in the range of 5 minutes to 18 hours. However, it is not intended to be limited to these ranges.
  • a chain transfer agent such as hydrogen may be added to adjust the molecular weight of the copolymer.
  • the concentration of each compound in the solvent is not particularly limited.
  • the concentration of the titanium complex in the solvent can be selected, for example, in the range of 1 ⁇ 10 ⁇ 8 mmol / L to 10 mol / L, and the concentration of the promoter component is, for example, 1 ⁇ 10 ⁇ 8 mmol / L to 10 mol / L.
  • a range can be selected.
  • the volume ratio of olefin: solvent can be selected from 100: 0 to 1: 1000.
  • these ranges are examples and are not intended to be limited to them. Even when no solvent is used, the concentration can be appropriately set with reference to the above range.
  • the formed precipitate was removed by filtration, and the filtrate was concentrated under reduced pressure.
  • Ether and saturated aqueous ammonium chloride solution were added to the resulting residue, and the ether layer was washed with water and dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure.
  • the obtained residue was purified by silica gel column chromatography (developing solvent hexane-dichloromethane 1: 1) to obtain 6.74 g (yield 89%) of the title compound as colorless crystals.
  • Triethylamine 1.1 mL (7.9 mmol) was added here, and it stirred at 0 degreeC for 1 hour, and also at room temperature for 2 hours. After distilling off volatile components from the reaction solution under reduced pressure, ethyl acetate and an aqueous ammonium chloride solution were added. The organic layer was washed with water and then saturated brine, and then dried over anhydrous magnesium sulfate.
  • Triethylamine 24 mL (172 mmol) was added here, and it heated and refluxed for 2.5 hours.
  • the reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate was added to the residue, followed by washing with 1M HCl and saturated brine in this order. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 19.2 g of a mixture containing 2- (1-adamantyl) -5-methylsalicylaldehyde.
  • reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure.
  • Ethyl acetate and an aqueous ammonium chloride solution were added to the obtained residue, and the organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in this order.
  • the organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure.
  • Triethylamine 5.0 mL (49 mmol) was added here, and it heated and refluxed for 3 hours.
  • the reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate and water were added to the residue.
  • the organic layer was washed with 1 M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate.
  • the solvent was distilled off under reduced pressure to obtain 5.53 g of a mixture containing 3- (N-carbazolyl) -5-methylsalicylaldehyde (CG purity 91%, yield 91%).
  • Triethylamine 0.7 mL (5.0 mmol) was added here, and it stirred at 0 degreeC for 1 hour, and also at room temperature for 12 hours.
  • 0.15 g (0.4 mmol) of 3- (N-carbazolyl) -2-hydroxy-5-methylbenzyl bromide was added at room temperature. After stirring for 12 hours, volatile components were distilled off under reduced pressure. Ethyl acetate and aqueous ammonium chloride solution were added to the obtained reaction mixture, and the organic layer was further washed with saturated brine. The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure.
  • Triethylamine 0.70 mL (5.1 mmol) was added here, and it stirred at 0 degreeC for 1 hour, and room temperature for 1 hour. Further, 90 mg (0.50 mmol) of trans-cyclooctane-1,2-dithiol was added and stirred at room temperature for 1 hour. Volatile components were distilled off under reduced pressure, and ethyl acetate and an aqueous ammonium chloride solution were added to the resulting residue. The organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in that order, and then dried over anhydrous magnesium sulfate.
  • Triethylamine 0.90 mL (6.5 mmol) was added here, and it stirred at room temperature for 22.5 hours.
  • the reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure.
  • Ethyl acetate and aqueous ammonium chloride solution were added to the resulting residue.
  • the organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in that order, and then dried over anhydrous magnesium sulfate.
  • the reaction solution was poured into an aqueous sodium bicarbonate solution. After the organic layer was dried over anhydrous magnesium sulfate, the volatile component was distilled off under reduced pressure.
  • reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. Ethyl acetate and aqueous ammonium chloride solution were added to the resulting residue. The organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in that order, and then dried over anhydrous magnesium sulfate.
  • Example 1 The autoclave with a stirrer with an internal volume of 400 mL was vacuum-dried and replaced with argon, and then 200 mL of toluene was charged as a solvent, and the temperature of the reactor was raised to 40 ° C.
  • Example 2 The autoclave with a stirrer with an internal volume of 400 mL was vacuum-dried and replaced with argon, and then 200 mL of toluene was charged as a solvent, and the temperature of the reactor was raised to 40 ° C.
  • Example 3 The amount of d-MAO input was 141 mg, and trans-1,2-synthesized in Reference Example 5 was used instead of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclooctane.
  • the same procedure as in Example 2 was performed except that bis (5-tert-butyl-3-cumyl-2-hydroxybenzylsulfanyl) cyclooctane was used. The results are shown in Table 1.
  • Example 4 The amount of d-MAO input was 149 mg, and trans-1,2-synthesized in Reference Example 7 was used instead of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclooctane.
  • the same procedure as in Example 2 was performed except that bis [3- (1-adamantyl) -5-methyl-2-hydroxybenzylsulfanyl] cyclooctane was used. The results are shown in Table 1.
  • Example 5 The trans-1,2-synthesized in Reference Example 9 was used instead of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclooctane, with a d-MAO input of 123 mg.
  • the input amount of the reaction mixture (titanium concentration 2.0 mmol / L, toluene solution) was 0.5 mL (titanium amount 1 0.0 ⁇ mol), and the same procedure as in Example 2 was performed. The results are shown in Table 1.
  • Example 6 The amount of d-MAO charged was 124 mg, and [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium (0.5 mmol / L, toluene solution) ) Synthesized in Reference Example 11 instead of 0.10 mL (0.050 ⁇ mol) ⁇ cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3,5-dimethyl-1-adamantyl)] -2-hydroxybenzylsulfanyl] ⁇ dichlorotitanium (1.0 mmol / L, toluene solution) 1.0 mL (1.0 ⁇ mol) was used, and the same procedure as in Example 1 was performed. The results are shown in Table 1.
  • Example 7 The amount of d-MAO charged was 127 mg, and [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium (0.5 mmol / L, toluene solution) ) ⁇ Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (2-phenyl-2-butyl) -2] synthesized in Reference Example 14 instead of 0.10 mL (0.050 ⁇ mol) -Hydroxybenzylsulfanyl] ⁇ dichlorotitanium (1.0 mmol / L, toluene solution), except that 1.0 mL (1.0 ⁇ mol) was used.
  • Table 1 The results are shown in Table 1.
  • Example 8 The amount of d-MAO charged was 136 mg, and [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium (0.5 mmol / L, toluene solution) ) ⁇ Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methyl-1-) synthesized in Reference Example 17 instead of 0.10 mL (0.050 ⁇ mol) Naphthylethyl) benzylsulfanyl] ⁇ dichlorotitanium (1.0 mmol / L, toluene solution) was used in the same manner as in Example 1 except that 1.0 mL (1.0 ⁇ mol) was used. The results are shown in Table 1.
  • Example 9 d-MAO input was 148 mg, [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium (0.5 mmol / L, toluene solution) ) ⁇ Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methylcyclohexyl) benzyl] synthesized in Reference Example 20 instead of 0.10 mL (0.050 ⁇ mol) Sulfanyl] ⁇ dichlorotitanium (1.0 mmol / L, toluene solution) was used in the same manner as in Example 1 except that 1.0 mL (1.0 ⁇ mol) was used. The results are shown in Table 1.
  • Example 10 d-MAO input was 111 mg, and [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium (0.5 mmol / L, toluene solution) ) Synthesized in Reference Example 25 instead of 0.10 mL (0.050 ⁇ mol) [cyclooctanediyl-trans-1,2-bis (3-tert-amyl-5-tert-butyl-2-hydroxybenzylsulfanyl)] The same procedure as in Example 1 was performed except that 1.0 mL (1.0 ⁇ mol) of dichlorotitanium (1.0 mmol / L, toluene solution) was used. The results are shown in Table 1.
  • Example 11 The autoclave with a stirrer having an internal volume of 400 mL was vacuum-dried and replaced with argon, and then 40 mL of toluene as a solvent and 80 g of propylene as a monomer were charged, and the reactor was heated to 40 ° C.
  • Example 12 The autoclave with a stirrer having an internal volume of 400 mL was vacuum-dried and replaced with argon, and then 40 mL of toluene as a solvent and 80 g of propylene as a monomer were charged, and the reactor was heated to 40 ° C.
  • Example 13 The amount of d-MAO input was 144 mg, and trans-1,2 synthesized in Reference Example 5 was used instead of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclooctane.
  • -Bis (5-tert-butyl-3-cumyl-2-hydroxybenzylsulfanyl) cyclooctane was used, and the input amount of the reaction mixture (titanium concentration 1.0 mmol / L, toluene solution) was 1.0 mL (titanium amount 1. This was carried out in the same manner as in Example 12 except that the amount was 0 ⁇ mol). The results are shown in Table 2.
  • Example 14 The trans-1 synthesized in Reference Example 7 was used instead of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclooctane, with an input amount of d-MAO of 131.6 mg. , 2-bis [3- (1-adamantyl) -5-methyl-2-hydroxybenzylsulfanyl] cyclooctane was used in the same manner as Example 12, except that 2-bis [3- (1-adamantyl) -5-methyl-2-hydroxybenzylsulfanyl] cyclooctane was used. The results are shown in Table 2.
  • Example 15 The amount of d-MAO input was 144 mg, and trans-1,2 synthesized in Reference Example 9 was used instead of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclooctane.
  • -Bis [3- (N-carbazolyl) -2-hydroxy-5-methylbenzylsulfanyl] cyclooctane was used, and the reaction mixture (titanium concentration 2.0 mmol / L, toluene solution) was added in 2.5 mL (titanium amount)
  • the same procedure as in Example 12 was carried out except that the amount was 5.0 ⁇ mol). The results are shown in Table 2.
  • Example 16 The amount of d-MAO used was 134 mg and synthesized in Reference Example 14 instead of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium. ⁇ Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (2-phenyl-2-butyl) -2-hydroxybenzylsulfanyl] ⁇ dichlorotitanium (1.0 mmol / L, toluene solution) ) The same procedure as in Example 11 was performed except that 5.0 mL (5.0 ⁇ mol) was used. The results are shown in Table 2.
  • Example 17 The amount of d-MAO input was 119 mg, and synthesized in Reference Example 20 instead of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium.
  • Example 18 The trans-1,2 synthesized in Reference Example 22 was used instead of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclooctane, with a d-MAO input of 124 mg. Except that -bis (2-hydroxy-3-trimethylsilyl-5-methylbenzylsulfanyl) cyclooctane was used and the input amount of the reaction mixture (titanium concentration 10 mmol / L, toluene solution) was 1.0 mL (titanium amount 10 ⁇ mol) was carried out in the same manner as in Example 12. The results are shown in Table 2.
  • Example 19 The amount of d-MAO input was 119 mg, and synthesized in Reference Example 25 instead of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium. [Cyclooctanediyl-trans-1,2-bis (3-tert-amyl-5-tert-butyl-2-hydroxybenzylsulfanyl)] dichlorotitanium (1.0 mmol / L, toluene solution) 5.0 mL ( The same procedure as in Example 11 was carried out except that 5.0 ⁇ mol) was used. The results are shown in Table 2.
  • the present invention is useful in the field relating to the production of polyolefins.

Abstract

Provided is a catalyst for olefin polymerization with which it is possible to produce a high-molecular-weight olefin polymer. Also provided is a method for producing an olefin polymer using the catalyst for olefin polymerization. The invention is a catalyst for olefin polymerization comprising a complex represented by general formula (1) and a method for producing an olefin homopolymer or an olefin copolymer whereby olefin is subjected to homopolymerization or copolymerization using the catalyst.

Description

オレフィン重合用触媒及びオレフィン重合体の製造方法Olefin polymerization catalyst and process for producing olefin polymer
 本発明は、チタン錯体を用いたオレフィン重合用触媒およびオレフィン重合体の製造方法、ならびに、前記重合用触媒用のチタン錯体およびその配位子に関する。 The present invention relates to an olefin polymerization catalyst using a titanium complex, a method for producing an olefin polymer, a titanium complex for the polymerization catalyst, and a ligand thereof.
 チーグラ・ナッタ型マグネシウム担持高活性チタン触媒により大いに発展したオレフィン重合の化学において、近年、メタロセン触媒の開発がトピックスの一つである。さらに、最近ではさらなる精密な重合プロセスを構築するための触媒として、所謂ポストメタロセン系触媒の開発が注目されている。 In recent years, the development of metallocene catalysts has been one of the topics in the chemistry of olefin polymerization that has been greatly developed by Ziegler-Natta type magnesium-supported highly active titanium catalysts. Further, recently, development of so-called post metallocene catalysts has attracted attention as a catalyst for constructing a more precise polymerization process.
 特許文献1では、エタン-1,2-ジチオールから誘導されるジフェノキシチタン錯体、ジルコニム錯体またはハフニウム錯体を用いたプロピレン重合が報告されているが、得られる重合体の分子量は低く、剛性などの機械強度の観点から改善の余地がある。 Patent Document 1 reports propylene polymerization using a diphenoxytitanium complex, a zirconium complex or a hafnium complex derived from ethane-1,2-dithiol, but the resulting polymer has a low molecular weight, such as rigidity. There is room for improvement in terms of mechanical strength.
 一方、trans-シクロオクタン-1,2-ジチオールから誘導されるジフェノキシチタン錯体、ジルコニウム錯体及びハフニウム錯体が報告されている(非特許文献1)が、重合触媒としてのチタン錯体の報告例はない。 On the other hand, diphenoxytitanium complexes, zirconium complexes and hafnium complexes derived from trans-cyclooctane-1,2-dithiol have been reported (Non-Patent Document 1), but there are no reports of titanium complexes as polymerization catalysts. .
WO2007/075299WO2007 / 075299
 本発明が解決しようとする課題は、高分子量のオレフィン重合体を製造し得るオレフィン重合用触媒、および前記オレフィン重合用触媒を用いるオレフィン重合体の製造方法を提供することにある。 The problem to be solved by the present invention is to provide an olefin polymerization catalyst capable of producing a high molecular weight olefin polymer, and a method for producing an olefin polymer using the olefin polymerization catalyst.
 本発明者は、鋭意検討することにより上記課題を解決できることを見出した。 The present inventor has found that the above-mentioned problems can be solved by intensive studies.
 すなわち、本発明は、下記一般式(1)で表される錯体と活性化用助触媒成分とを接触させてなる、オレフィン重合用触媒に関するものである。 That is, the present invention relates to an olefin polymerization catalyst obtained by bringing a complex represented by the following general formula (1) into contact with an activation promoter component.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、nは1または2であり、
~R12は、それぞれ独立に、
水素原子、
ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数2~20のアルケニル基、
炭素原子数2~20のアルキニル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
炭素原子数1~20のアルコキシ基、
炭素原子数7~30のアラルキルオキシ基、
炭素原子数6~30のアリールオキシ基、
置換シリル基、
または環を構成する炭素原子数が3~20のヘテロ環式化合物残基を表す。
~R12における上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アルキニル基、上記アラルキル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基および上記ヘテロ環式化合物残基は置換基を有していてもよい。
上記R~R12の定義に関わらず、RとR、RとR、RとR、RとR、RとR、RとR、RとR10、およびR11とR12とは、それぞれ独立に、互いに連結して環を形成してもよく、これらの環は置換基を有していてもよい。
Xは、それぞれ独立に、水素原子、ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数2~20のアルケニル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
炭素原子数1~20のアルコキシ基、
炭素原子数7~30のアラルキルオキシ基、
炭素原子数6~30のアリールオキシ基、
置換シリル基、
置換アミノ基、
置換チオラート基、または
炭素原子数1~20のカルボキシラート基を表す。
Xにおける上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アラルキル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基および上記カルボキシラート基は置換基を有していてもよい。
隣接するX同士は、相互に連結して環を形成してもよい。
Lは中性のルイス塩基を表す。Lが複数ある場合は、複数のLは同一でも異なっていてもよい。lは、0、1、または2である。)
 また、本発明は上記重合用触媒を用いたオレフィン単独重合体または共重合体の製造方法に関する。
(Wherein n is 1 or 2,
R 1 to R 12 are each independently
Hydrogen atom,
A halogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An alkenyl group having 2 to 20 carbon atoms,
An alkynyl group having 2 to 20 carbon atoms,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
An alkoxy group having 1 to 20 carbon atoms,
An aralkyloxy group having 7 to 30 carbon atoms,
An aryloxy group having 6 to 30 carbon atoms,
Substituted silyl groups,
Alternatively, it represents a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring.
The alkyl group, the cycloalkyl group, the alkenyl group, the alkynyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the heterocyclic compound in R 1 to R 12 The residue may have a substituent.
Regardless of the definition of R 1 to R 12 above, R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 9 And R 10 , and R 11 and R 12 may be independently connected to each other to form a ring, and these rings may have a substituent.
X is independently a hydrogen atom, a halogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An alkenyl group having 2 to 20 carbon atoms,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
An alkoxy group having 1 to 20 carbon atoms,
An aralkyloxy group having 7 to 30 carbon atoms,
An aryloxy group having 6 to 30 carbon atoms,
Substituted silyl groups,
A substituted amino group,
It represents a substituted thiolate group or a carboxylate group having 1 to 20 carbon atoms.
The alkyl group, the cycloalkyl group, the alkenyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the carboxylate group in X may have a substituent. Good.
Adjacent Xs may be connected to each other to form a ring.
L represents a neutral Lewis base. When there are a plurality of L, the plurality of L may be the same or different. l is 0, 1, or 2. )
The present invention also relates to a method for producing an olefin homopolymer or copolymer using the polymerization catalyst.
 さらに、本発明は、下記一般式(1’)で表される錯体に関する。 Furthermore, the present invention relates to a complex represented by the following general formula (1 ').
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、n’は1または2であり、
’~R12’は、それぞれ独立に、
水素原子、
ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数2~20のアルケニル基、
炭素原子数2~20のアルキニル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
炭素原子数1~20のアルコキシ基、
炭素原子数7~30のアラルキルオキシ基、
炭素原子数6~30のアリールオキシ基、
置換シリル基、
または環を構成する炭素原子数が3~20のヘテロ環式化合物残基を表す。ただし、R’とR’とは同時にtert-ブチル基ではない。
’~R12’における上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アルキニル基、上記アラルキル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基および上記ヘテロ環式化合物残基は置換基を有していてもよい。
上記R’~R12’の定義に関わらず、R’とR’、R’とR’、R’とR’、R’とR’、R’とR’、R’とR’、R’とR10’、およびR11’とR12’とは、それぞれ独立に、互いに連結して環を形成してもよく、これらの環は置換基を有していてもよい。
X’は、それぞれ独立に、水素原子、ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数2~20のアルケニル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
炭素原子数1~20のアルコキシ基、
炭素原子数7~30のアラルキルオキシ基、
炭素原子数6~30のアリールオキシ基、
置換シリル基、
置換アミノ基、
置換チオラート基、または
炭素原子数1~20のカルボキシラート基を表す。
X’における上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アラルキル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基および上記カルボキシラート基は置換基を有していてもよい。
隣接するX’同士は、相互に連結して環を形成してもよい。
L’は中性のルイス塩基を表す。Lが複数ある場合は、複数のL’は同一でも異なっていてもよい。l’は、0、1、または2である。)
 さらに、本発明は、下記一般式(2’)で表される化合物に関する。
(Wherein n ′ is 1 or 2,
R 1 ′ to R 12 ′ are each independently
Hydrogen atom,
A halogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An alkenyl group having 2 to 20 carbon atoms,
An alkynyl group having 2 to 20 carbon atoms,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
An alkoxy group having 1 to 20 carbon atoms,
An aralkyloxy group having 7 to 30 carbon atoms,
An aryloxy group having 6 to 30 carbon atoms,
Substituted silyl groups,
Alternatively, it represents a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring. However, R 1 ′ and R 5 ′ are not simultaneously a tert-butyl group.
R 1 ′ to R 12 ′ The alkyl group, the cycloalkyl group, the alkenyl group, the alkynyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the heterocyclic ring The formula compound residue may have a substituent.
Regardless of the definition of R 1 ′ to R 12 ′, R 1 ′ and R 2 ′, R 2 ′ and R 3 ′, R 3 ′ and R 4 ′, R 5 ′ and R 6 ′, R 6 ′ and R 7 ′, R 7 ′ and R 8 ′, R 9 ′ and R 10 ′, and R 11 ′ and R 12 ′ may be independently connected to each other to form a ring. May have a substituent.
X ′ each independently represents a hydrogen atom, a halogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An alkenyl group having 2 to 20 carbon atoms,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
An alkoxy group having 1 to 20 carbon atoms,
An aralkyloxy group having 7 to 30 carbon atoms,
An aryloxy group having 6 to 30 carbon atoms,
Substituted silyl groups,
A substituted amino group,
It represents a substituted thiolate group or a carboxylate group having 1 to 20 carbon atoms.
The alkyl group, the cycloalkyl group, the alkenyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the carboxylate group in X ′ have a substituent. Also good.
Adjacent X ′ may be connected to each other to form a ring.
L ′ represents a neutral Lewis base. When there are a plurality of L, the plurality of L ′ may be the same or different. l ′ is 0, 1, or 2. )
Furthermore, the present invention relates to a compound represented by the following general formula (2 ′).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、n’は1または2であり、
’~R12’は、それぞれ独立に、
水素原子、
ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数2~20のアルケニル基、
炭素原子数2~20のアルキニル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
炭素原子数1~20のアルコキシ基、
炭素原子数7~30のアラルキルオキシ基、
炭素原子数6~30のアリールオキシ基、
置換シリル基、
または環を構成する炭素原子数が3~20のヘテロ環式化合物残基を表す。ただし、R’とR’とは同時にtert-ブチル基ではない。
’~R12’における上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アルキニル基、上記アラルキル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基および上記ヘテロ環式化合物残基は置換基を有していてもよい。
上記R’~R12’の定義に関わらず、R’とR’、R’とR’、R’とR’、R’とR’、R’とR’、R’とR’、R’とR10’、およびR11’とR12’とは、それぞれ独立に、互いに連結して環を形成してもよく、これらの環は置換基を有していてもよい。)
(Wherein n ′ is 1 or 2,
R 1 ′ to R 12 ′ are each independently
Hydrogen atom,
A halogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An alkenyl group having 2 to 20 carbon atoms,
An alkynyl group having 2 to 20 carbon atoms,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
An alkoxy group having 1 to 20 carbon atoms,
An aralkyloxy group having 7 to 30 carbon atoms,
An aryloxy group having 6 to 30 carbon atoms,
Substituted silyl groups,
Alternatively, it represents a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring. However, R 1 ′ and R 5 ′ are not simultaneously a tert-butyl group.
R 1 ′ to R 12 ′ The alkyl group, the cycloalkyl group, the alkenyl group, the alkynyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the heterocyclic ring The formula compound residue may have a substituent.
Despite the definition of the R 1 '~ R 12', R 1 ' and R 2', R 2 'and R 3', R 3 'and R 4', 'a R 6' R 5, and R 6 ' R 7 ′, R 7 ′ and R 8 ′, R 9 ′ and R 10 ′, and R 11 ′ and R 12 ′ may be independently connected to each other to form a ring. May have a substituent. )
 本発明によれば、高分子量のオレフィン重合体を製造することができる。 According to the present invention, a high molecular weight olefin polymer can be produced.
 式(1)で表される錯体について説明する。 The complex represented by formula (1) will be described.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 nは1または2であり、好ましくは2である。 N is 1 or 2, preferably 2.
 RおよびRとして好ましくは、それぞれ独立して
ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
置換シリル基、
または環を構成する炭素原子数が3~20のヘテロ環式化合物残基であり、
より好ましくは、それぞれ独立して
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
または環を構成する炭素原子数が3~20のヘテロ環式化合物残基であり、
さらに好ましくは、それぞれ独立して
炭素原子数5~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
または環を構成する炭素原子数が3~20のヘテロ環式化合物残基である。
とRの特に好ましい形態は、RとRが同一であって、
炭素原子数5~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
または環を構成する炭素原子数が3~20のヘテロ環式化合物残基である。
~RおよびR~Rとして好ましくは、それぞれ独立して
水素原子、
ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
炭素原子数1~20のアルコキシ基、
炭素原子数6~30のアリールオキシ基、
置換シリル基であり、
より好ましくは、それぞれ独立して
水素原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
または置換シリル基である。
、R、RおよびRとして、さらに好ましくは、水素原子であり、RおよびRとしてさらに好ましくは、
炭素原子数1~20のアルキル基
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
または置換シリル基である。
およびRとして特に好ましい形態は、RとRが同一であって、
炭素原子数1~20のアルキル基
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
または置換シリル基であり、
最も好ましくは、
炭素原子数1~20のアルキル基である。
~R12として好ましくは、それぞれ独立して
水素原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
炭素原子数1~20のアルコキシ基、
炭素原子数6~30のアリールオキシ基、
置換シリル基であり、
より好ましくは、それぞれ独立して
水素原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
または置換シリル基であり、
さらに好ましくは、それぞれ独立して
水素原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基であり、
最も好ましくは、
水素原子である。
R 1 and R 5 are preferably each independently a halogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
Substituted silyl groups,
Or a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring,
More preferably, each independently an alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
Or a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring,
More preferably, each independently an alkyl group having 5 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
Alternatively, it is a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring.
Particularly preferred forms of R 1 and R 5, R 1 and R 5 are the same,
An alkyl group having 5 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
Alternatively, it is a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring.
R 2 to R 4 and R 6 to R 8 are preferably each independently a hydrogen atom,
A halogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
An alkoxy group having 1 to 20 carbon atoms,
An aryloxy group having 6 to 30 carbon atoms,
A substituted silyl group,
More preferably, each independently a hydrogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
Or it is a substituted silyl group.
R 2 , R 4 , R 6 and R 8 are more preferably a hydrogen atom, and more preferably R 3 and R 7 .
A cycloalkyl group having 3 to 10 carbon atoms constituting an alkyl group ring having 1 to 20 carbon atoms,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
Or it is a substituted silyl group.
Particularly preferred form as R 3 and R 7, R 3 and R 7 are the same,
A cycloalkyl group having 3 to 10 carbon atoms constituting an alkyl group ring having 1 to 20 carbon atoms,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
Or a substituted silyl group,
Most preferably,
An alkyl group having 1 to 20 carbon atoms.
R 9 to R 12 are preferably each independently a hydrogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
An alkoxy group having 1 to 20 carbon atoms,
An aryloxy group having 6 to 30 carbon atoms,
A substituted silyl group,
More preferably, each independently a hydrogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
Or a substituted silyl group,
More preferably, each independently a hydrogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
Most preferably,
It is a hydrogen atom.
 上記した、アルキル基、シクロアルキル基、アラルキル基、アリール基、アルコキシ基、アリールオキシ基およびヘテロ環式化合物残基は置換基を有していてもよい。 The alkyl group, cycloalkyl group, aralkyl group, aryl group, alkoxy group, aryloxy group and heterocyclic compound residue described above may have a substituent.
 R~R12における炭素原子数1~20の置換または無置換のアルキル基としては、例えば、パーフルオロメチル基、パーフルオロエチル基、パーフルオロ-n-プロピル基、パーフルオロイソプロピル基、パーフルオロ-n-ブチル基、パーフルオロ-sec-ブチル基、パーフルオロイソブチル基、パーフルオロ-tert-ブチル基、パーフルオロ-n-ペンチル基、パーフルオロイソペンチル基、パーフルオロ-tert-ペンチル基、パーフルオロネオペンチル基、パーフルオロ-n-ヘキシル基、パーフルオロ-n-ヘプチル基、パーフルオロ-n-オクチル基、パーフルオロ-n-デシル基、パーフルオロ-n-ドデシル基、パーフルオロ-n-ペンタデシル基、パーフルオロ-n-エイコシル基、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、n-ヘキシル基、テキシル基、ネオヘキシル基、n-ヘプチル基、n-オクチル基、n-デシル基、n-ドデシル基、n-ペンタデシル基、n-エイコシル基が挙げられる。 Examples of the substituted or unsubstituted alkyl group having 1 to 20 carbon atoms in R 1 to R 12 include a perfluoromethyl group, a perfluoroethyl group, a perfluoro-n-propyl group, a perfluoroisopropyl group, and a perfluoro group. -N-butyl, perfluoro-sec-butyl, perfluoroisobutyl, perfluoro-tert-butyl, perfluoro-n-pentyl, perfluoroisopentyl, perfluoro-tert-pentyl, perfluoro Fluoroneopentyl group, perfluoro-n-hexyl group, perfluoro-n-heptyl group, perfluoro-n-octyl group, perfluoro-n-decyl group, perfluoro-n-dodecyl group, perfluoro-n- Pentadecyl group, perfluoro-n-eicosyl group, methyl group, ethyl group, -Propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, tert-pentyl group, neopentyl group, n-hexyl group, texyl group, neohexyl Group, n-heptyl group, n-octyl group, n-decyl group, n-dodecyl group, n-pentadecyl group and n-eicosyl group.
 RまたはRにおける炭素原子数1~20の置換または無置換のアルキル基として好ましくは、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、n-ヘキシル基、テキシル基、ネオヘキシル基、n-ヘプチル基、n-オクチル基、n-デシル基などの炭素原子数4~10のアルキル基であり、より好ましくは、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、テキシル基、などの炭素原子数4~8のアルキル基であり、さらに好ましくは、tert-ブチル基、tert-ペンチル基、テキシル基などの炭素原子数4~8の第3級アルキル基である。最も好ましくは、tert-ペンチル基、テキシル基などの炭素原子数5~8の第3級アルキル基である。 As the substituted or unsubstituted alkyl group having 1 to 20 carbon atoms in R 1 or R 5 , an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, Alkyl groups having 4 to 10 carbon atoms such as tert-pentyl group, neopentyl group, n-hexyl group, texyl group, neohexyl group, n-heptyl group, n-octyl group, n-decyl group, etc., more preferably An alkyl group having 4 to 8 carbon atoms such as n-butyl group, sec-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, tert-pentyl group, neopentyl group, texyl group, etc. More preferably, a tertiary amine having 4 to 8 carbon atoms such as a tert-butyl group, a tert-pentyl group, or a texyl group. A kill group. Most preferably, it is a tertiary alkyl group having 5 to 8 carbon atoms such as a tert-pentyl group or a texyl group.
 R~RおよびR~R12における炭素原子数1~20の置換または無置換のアルキル基として好ましくは、パーフルオロメチル基、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、n-ヘキシル基、テキシル基、ネオヘキシル基、n-ヘプチル基、n-オクチル基、n-デシル基などの炭素原子数4~10のアルキル基であり、より好ましくは、パーフルオロメチル基、メチル基、イソプロピル基、イソブチル基、tert-ブチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、テキシル基などの炭素原子数1~8のアルキル基であり、さらに好ましくは、パーフルオロメチル基、メチル基、イソプロピル基、イソブチル基、tert-ブチル基といった炭素原子数1~4のアルキル基である。 The substituted or unsubstituted alkyl group having 1 to 20 carbon atoms in R 2 to R 4 and R 6 to R 12 is preferably a perfluoromethyl group, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, n -Butyl group, sec-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, tert-pentyl group, neopentyl group, n-hexyl group, texyl group, neohexyl group, n-heptyl group, n An alkyl group having 4 to 10 carbon atoms such as an octyl group and an n-decyl group, more preferably a perfluoromethyl group, a methyl group, an isopropyl group, an isobutyl group, a tert-butyl group, an isopentyl group, a tert- An alkyl group having 1 to 8 carbon atoms, such as a pentyl group, neopentyl group, and texyl group; , Perfluoromethyl group, a methyl group, an isopropyl group, an isobutyl group, tert- butyl group such as an alkyl group having 1 to 4 carbon atoms.
 R~R12における環を構成する炭素原子数が3~10の置換または無置換のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、1-メチルシクロペンチル基、1-メチルシクロヘキシル基、1-フェニルシクロヘキシル基、1-インダニル基、2-インダニル基、ノルボルニル基、ボルニル基、メンチル基、1-アダマンチル基、2-アダマンチル基、3,5-ジメチルアダマンチル基、3,5,7-トリメチルアダマンチル基、3,5-ジエチルアダマンチル基、3,5,7-トリエチルアダマンチル基、3,5-ジイソプロピルアダマンチル基、3,5,7-トリイソプロピルアダマンチル基、3,5-ジイソブチルアダマンチル基、3,5,7-トリイソブチルアダマンチル基、3,5-ジフェニルアダマンチル基、3,5,7-トリフェニルアダマンチル基、3,5-ジ(p-トルイル)アダマンチル基、3,5,7-トリ(p-トルイル)アダマンチル基、3,5-ジ(3,5-キシリル)アダマンチル基、3,5,7-トリ(3,5-キシリル)アダマンチル基が挙げられ、好ましくはシクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、1-メチルシクロペンチル基、1-メチルシクロヘキシル基、1-インダニル基、2-インダニル基、ノルボルニル基、ボルニル基、メンチル基、1-アダマンチル基、2-アダマンチル基、3,5-ジメチルアダマンチル基、3,5-ジエチルアダマンチル基、3,5-ジフェニルアダマンチル基、3,5-ジ(p-トルイル)アダマンチル基、3,5-ジ(3,5-キシリル)アダマンチル基などの炭素原子数(環を構成する炭素原子以外の炭素原子も含めた数)5~26のシクロアルキル基であり、より好ましくは、シクロヘキシル基、1-メチルシクロヘキシル基、ノルボルニル基、ボルニル基、1-アダマンチル基、2-アダマンチル基、3,5-ジメチルアダマンチル基、3,5-ジエチルアダマンチル基などの炭素原子数(環を構成する炭素原子以外の炭素原子も含めた数)6~14のシクロアルキル基である。 Examples of the substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms constituting the ring in R 1 to R 12 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group. Group, 1-methylcyclopentyl group, 1-methylcyclohexyl group, 1-phenylcyclohexyl group, 1-indanyl group, 2-indanyl group, norbornyl group, bornyl group, menthyl group, 1-adamantyl group, 2-adamantyl group, 3 , 5-dimethyladamantyl group, 3,5,7-trimethyladamantyl group, 3,5-diethyladamantyl group, 3,5,7-triethyladamantyl group, 3,5-diisopropyladamantyl group, 3,5,7-tri Isopropyl adamantyl group, 3,5-diisobutyl adamant Group, 3,5,7-triisobutyladamantyl group, 3,5-diphenyladamantyl group, 3,5,7-triphenyladamantyl group, 3,5-di (p-toluyl) adamantyl group, Examples thereof include 7-tri (p-toluyl) adamantyl group, 3,5-di (3,5-xylyl) adamantyl group, and 3,5,7-tri (3,5-xylyl) adamantyl group, preferably cyclopentyl group Cyclohexyl group, cycloheptyl group, cyclooctyl group, 1-methylcyclopentyl group, 1-methylcyclohexyl group, 1-indanyl group, 2-indanyl group, norbornyl group, bornyl group, menthyl group, 1-adamantyl group, 2- Adamantyl group, 3,5-dimethyladamantyl group, 3,5-diethyladamantyl group, 3,5-diphenyladaman Number of carbon atoms such as ruthel group, 3,5-di (p-toluyl) adamantyl group, 3,5-di (3,5-xylyl) adamantyl group (including carbon atoms other than carbon atoms constituting the ring) ) 5-26 cycloalkyl group, more preferably cyclohexyl group, 1-methylcyclohexyl group, norbornyl group, bornyl group, 1-adamantyl group, 2-adamantyl group, 3,5-dimethyladamantyl group, 3, A cycloalkyl group having 6 to 14 carbon atoms (number including carbon atoms other than carbon atoms constituting the ring) such as 5-diethyladamantyl group;
 R~R12における炭素原子数2~20の置換または無置換のアルケニル基としては、ビニル基、アリル基、プロペニル基、2-メチル-2-プロペニル基、ホモアリル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基などが挙げられ、好ましくは炭素原子数3~6のアルケニル基であり、より好ましくはアリル基、ホモアリル基である。 Examples of the substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms in R 1 to R 12 include vinyl group, allyl group, propenyl group, 2-methyl-2-propenyl group, homoallyl group, pentenyl group, hexenyl group, A heptenyl group, an octenyl group, a nonenyl group, a decenyl group and the like can be mentioned. An alkenyl group having 3 to 6 carbon atoms is preferable, and an allyl group and a homoallyl group are more preferable.
 R~R12における炭素原子数2~20の置換または無置換のアルキニル基としては、例えばエチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、3-メチル-1-ブチニル基、3,3-ジメチル-1-ブチニル基、2-ブチニル基、3-ブチニル基、1-ペンチニル基、4-メチル-1-ペンチニル基、2-ペンチニル基、3-ペンチニル基、4-ペンチニル基、4-メチル-1-ペンテニル基、1-ヘキシニル基、1-オクチニル基、フェニルエチニル基が挙げられ、好ましくは炭素原子数3~8のアルキニル基であり、より好ましくは3-メチル-1-ブチニル基、3,3-ジメチル-1-ブチニル基、4-メチル-1-ペンテニル基またはフェニルエチニル基である。 Examples of the substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms in R 1 to R 12 include, for example, ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, and 3-methyl-1-butynyl group 3,3-dimethyl-1-butynyl group, 2-butynyl group, 3-butynyl group, 1-pentynyl group, 4-methyl-1-pentynyl group, 2-pentynyl group, 3-pentynyl group, 4-pentynyl group 4-methyl-1-pentenyl group, 1-hexynyl group, 1-octynyl group and phenylethynyl group, preferably an alkynyl group having 3 to 8 carbon atoms, more preferably 3-methyl-1- A butynyl group, a 3,3-dimethyl-1-butynyl group, a 4-methyl-1-pentenyl group or a phenylethynyl group;
 R~R12における炭素原子数7~30の置換または無置換のアラルキル基としては、例えば、ベンジル基、(2-メチルフェニル)メチル基、(3-メチルフェニル)メチル基、(4-メチルフェニル)メチル基、(2,3-ジメチルフェニル)メチル基、(2,4-ジメチルフェニル)メチル基、(2,5-ジメチルフェニル)メチル基、(2,6-ジメチルフェニル)メチル基、(3,4-ジメチルフェニル)メチル基、(3,5-ジメチルフェニル)メチル基、(2,3,4-トリメチルフェニル)メチル基、(2,3,5-トリメチルフェニル)メチル基、(2,3,6-トリメチルフェニル)メチル基、(3,4,5-トリメチルフェニル)メチル基、(2,4,6-トリメチルフェニル)メチル基、(2,3,4,5-テトラメチルフェニル)メチル基、(2,3,4,6-テトラメチルフェニル)メチル基、(2,3,5,6-テトラメチルフェニル)メチル基、(ペンタメチルフェニル)メチル基、(エチルフェニル)メチル基、(n-プロピルフェニル)メチル基、(イソプロピルフェニル)メチル基、(n-ブチルフェニル)メチル基、(sec-ブチルフェニル)メチル基、(tert-ブチルフェニル)メチル基、(イソブチルフェニル)メチル基、(n-ペンチルフェニル)メチル基、(ネオペンチルフェニル)メチル基、(n-ヘキシルフェニル)メチル基、(n-オクチルフェニル)メチル基、(n-デシルフェニル)メチル基、ナフチルメチル基、アントラセニルメチル基、ジメチル(フェニル)メチル基、ジメチル(4-メチルフェニル)メチル基、ジメチル(1-ナフチル)メチル基、ジメチル(2-ナフチル)メチル基、メチル(エチル)(フェニル)メチル基、メチル(ジフェニル)メチル基、メチルビス(4-メチルフェニル)メチル基、トリフェニルメチル基が挙げられ、好ましくはベンジル基、ナフチルメチル基、アントラセニルメチル基、ジメチル(フェニル)メチル基、ジメチル(4-メチルフェニル)メチル基、ジメチル(1-ナフチル)メチル基、ジメチル(2-ナフチル)メチル基、メチル(エチル)(フェニル)メチル基、メチル(ジフェニル)メチル基、メチルビス(4-メチルフェニル)メチル基、トリフェニルメチル基であり、より好ましくは、ジメチル(フェニル)メチル基、ジメチル(4-メチルフェニル)メチル基、ジメチル(1-ナフチル)メチル基、ジメチル(2-ナフチル)メチル基、メチル(エチル)(フェニル)メチル基、メチル(ジフェニル)メチル基、メチルビス(4-メチルフェニル)メチル基、トリフェニルメチル基などの炭素原子数9~20の第3級アラルキル基である。 Examples of the substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms in R 1 to R 12 include benzyl group, (2-methylphenyl) methyl group, (3-methylphenyl) methyl group, (4-methyl Phenyl) methyl group, (2,3-dimethylphenyl) methyl group, (2,4-dimethylphenyl) methyl group, (2,5-dimethylphenyl) methyl group, (2,6-dimethylphenyl) methyl group, ( 3,4-dimethylphenyl) methyl group, (3,5-dimethylphenyl) methyl group, (2,3,4-trimethylphenyl) methyl group, (2,3,5-trimethylphenyl) methyl group, (2, 3,6-trimethylphenyl) methyl group, (3,4,5-trimethylphenyl) methyl group, (2,4,6-trimethylphenyl) methyl group, (2,3,4,5-te Lamethylphenyl) methyl group, (2,3,4,6-tetramethylphenyl) methyl group, (2,3,5,6-tetramethylphenyl) methyl group, (pentamethylphenyl) methyl group, (ethylphenyl) ) Methyl group, (n-propylphenyl) methyl group, (isopropylphenyl) methyl group, (n-butylphenyl) methyl group, (sec-butylphenyl) methyl group, (tert-butylphenyl) methyl group, (isobutylphenyl) ) Methyl group, (n-pentylphenyl) methyl group, (neopentylphenyl) methyl group, (n-hexylphenyl) methyl group, (n-octylphenyl) methyl group, (n-decylphenyl) methyl group, naphthylmethyl Group, anthracenylmethyl group, dimethyl (phenyl) methyl group, dimethyl (4-methylphenyl) Methyl group, dimethyl (1-naphthyl) methyl group, dimethyl (2-naphthyl) methyl group, methyl (ethyl) (phenyl) methyl group, methyl (diphenyl) methyl group, methylbis (4-methylphenyl) methyl group, triphenyl Methyl group, preferably benzyl group, naphthylmethyl group, anthracenylmethyl group, dimethyl (phenyl) methyl group, dimethyl (4-methylphenyl) methyl group, dimethyl (1-naphthyl) methyl group, dimethyl (2 -Naphthyl) methyl group, methyl (ethyl) (phenyl) methyl group, methyl (diphenyl) methyl group, methylbis (4-methylphenyl) methyl group, triphenylmethyl group, more preferably dimethyl (phenyl) methyl group , Dimethyl (4-methylphenyl) methyl group, dimethyl (1-naphthyl) C) Number of carbon atoms such as methyl, dimethyl (2-naphthyl) methyl, methyl (ethyl) (phenyl) methyl, methyl (diphenyl) methyl, methylbis (4-methylphenyl) methyl, triphenylmethyl 9 to 20 tertiary aralkyl groups.
 R~R12における炭素原子数6~30の置換または無置換のアリール基としては、例えば、フェニル基、2-トリル基、3-トリル基、4-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,4-キシリル基、3,5-キシリル基、2,3,4-トリメチルフェニル基、2,3,5-トリメチルフェニル基、2,3,6-トリメチルフェニル基、2,4,6-トリメチルフェニル基、3,4,5-トリメチルフェニル基、2,3,4,5-テトラメチルフェニル基、2,3,4,6-テトラメチルフェニル基、2,3,5,6-テトラメチルフェニル基、ペンタメチルフェニル基、エチルフェニル基、n-プロピルフェニル基、イソプロピルフェニル基、n-ブチルフェニル基、sec-ブチルフェニル基、tert-ブチルフェニル基、イソブチルフェニル基、n-ペンチルフェニル基、ネオペンチルフェニル基、n-ヘキシルフェニル基、n-オクチルフェニル基、n-デシルフェニル基、n-ドデシルフェニル基、n-テトラデシルフェニル基、ナフチル基、アントラセニル基、3,5-ジイソプロピルフェニル基、2,6-ジイソプロピルフェニル基、3,5-ジtert-ブチルフェニル基、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、ペンタフルオロフェニル基、2-トリフルオロメチルフェニル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基、2,3-ジフルオロフェニル基、2,4-ジフルオロフェニル基、2,5-ジフルオロフェニル基、2,6-ジフルオロフェニル基、2-クロロフェニル基、2,3-ジクロロフェニル基、2,4-ジクロロフェニル基、2,5-ジクロロフェニル基、2-ブロモフェニル基、3-ブロモフェニル基、4-ブロモフェニル基、2,3-ジブロモフェニル基、2,4-ジブロモフェニル基、あるいは2,5-ジブロモフェニル基が挙げられ、好ましくは、フェニル基、2-トリル基、3-トリル基、4-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,4-キシリル基、3,5-キシリル基、2,3,4-トリメチルフェニル基、2,3,5-トリメチルフェニル基、2,3,6-トリメチルフェニル基、2,4,6-トリメチルフェニル基、3,4,5-トリメチルフェニル基、エチルフェニル基、n-プロピルフェニル基、イソプロピルフェニル基、3,5-ジイソプロピルフェニル基、2,6-ジイソプロピルフェニル基、3,5-ジtert-ブチルフェニル基などの炭素原子数6~20のフェニル基;2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、ペンタフルオロフェニル基、2,3-ジフルオロフェニル基、2,4-ジフルオロフェニル基、2,5-ジフルオロフェニル基、2,6-ジフルオロフェニル基などのフッ素化フェニル基;2-トリフルオロメチルフェニル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基などのフッ素化アルキルフェニル基であり、より好ましくは、フェニル基、2-トリル基、3-トリル基、4-トリル基、2,6-キシリル基、3,5-キシリル基、2,4,6-トリメチルフェニル基、3,5-ジイソプロピルフェニル基、2,6-ジイソプロピルフェニル基、3,5-ジtert-ブチルフェニル基、2-フルオロフェニル基、ペンタフルオロフェニル基、2,3-ジフルオロフェニル基、2,4-ジフルオロフェニル基、2,5-ジフルオロフェニル基、2,6-ジフルオロフェニル基、2,4,6-トリフルオロフェニル基である。 Examples of the substituted or unsubstituted aryl group having 6 to 30 carbon atoms in R 1 to R 12 include a phenyl group, a 2-tolyl group, a 3-tolyl group, a 4-tolyl group, a 2,3-xylyl group, 2,4-xylyl group, 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 2,3,4-trimethylphenyl group, 2,3,5 -Trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,4,6-trimethylphenyl group, 3,4,5-trimethylphenyl group, 2,3,4,5-tetramethylphenyl group, 2, 3,4,6-tetramethylphenyl group, 2,3,5,6-tetramethylphenyl group, pentamethylphenyl group, ethylphenyl group, n-propylphenyl group, isopropylphenyl group, n-butylphenyl group, s c-butylphenyl group, tert-butylphenyl group, isobutylphenyl group, n-pentylphenyl group, neopentylphenyl group, n-hexylphenyl group, n-octylphenyl group, n-decylphenyl group, n-dodecylphenyl group N-tetradecylphenyl group, naphthyl group, anthracenyl group, 3,5-diisopropylphenyl group, 2,6-diisopropylphenyl group, 3,5-ditert-butylphenyl group, 2-fluorophenyl group, 3-fluoro Phenyl group, 4-fluorophenyl group, pentafluorophenyl group, 2-trifluoromethylphenyl group, 3-trifluoromethylphenyl group, 4-trifluoromethylphenyl group, 2,3-difluorophenyl group, 2,4- Difluorophenyl group, 2,5-difluorophenyl 2,6-difluorophenyl group, 2-chlorophenyl group, 2,3-dichlorophenyl group, 2,4-dichlorophenyl group, 2,5-dichlorophenyl group, 2-bromophenyl group, 3-bromophenyl group, 4-bromo A phenyl group, a 2,3-dibromophenyl group, a 2,4-dibromophenyl group, or a 2,5-dibromophenyl group, preferably a phenyl group, a 2-tolyl group, a 3-tolyl group, and a 4-tolyl group. Group, 2,3-xylyl group, 2,4-xylyl group, 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 2,3,4- Trimethylphenyl group, 2,3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,4,6-trimethylphenyl group, 3,4,5-trimethylphenyl group, ethyl Phenyl groups having 6 to 20 carbon atoms such as ruphenyl group, n-propylphenyl group, isopropylphenyl group, 3,5-diisopropylphenyl group, 2,6-diisopropylphenyl group, 3,5-ditert-butylphenyl group 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, pentafluorophenyl group, 2,3-difluorophenyl group, 2,4-difluorophenyl group, 2,5-difluorophenyl group, 2, Fluorinated phenyl groups such as 6-difluorophenyl group; fluorinated alkylphenyl groups such as 2-trifluoromethylphenyl group, 3-trifluoromethylphenyl group, 4-trifluoromethylphenyl group, more preferably phenyl Group, 2-tolyl group, 3-tolyl group, 4-tolyl group, 2,6-alkyl Ryl group, 3,5-xylyl group, 2,4,6-trimethylphenyl group, 3,5-diisopropylphenyl group, 2,6-diisopropylphenyl group, 3,5-ditert-butylphenyl group, 2-fluoro Phenyl group, pentafluorophenyl group, 2,3-difluorophenyl group, 2,4-difluorophenyl group, 2,5-difluorophenyl group, 2,6-difluorophenyl group, 2,4,6-trifluorophenyl group It is.
 R~R12における置換シリル基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリ-n-プロピルシリル基、トリイソプロピルシリル基、トリ-n-ブチルシリル基、トリイソブチルシリル基、tert-ブチルジメチルシリル基、メチルジフェニルシリル基、ジメチル(フェニル)シリル基、tert-ブチルジフェニルシリル基、トリフェニルシリル基、メチルビス(トリメチルシリル)シリル基、ジメチル(トリメチルシリル)シリル基、トリス(トリメチルシリル)シリル基が挙げられ、好ましくはトリメチルシリル基、トリエチルシリル基、トリ-n-プロピルシリル基、トリイソプロピルシリル基、tert-ブチルジメチルシリル基などの炭素原子数3~20のトリアルキルシリル基;メチルビス(トリメチルシリル)シリル基、ジメチル(トリメチルシリル)シリル基、トリス(トリメチルシリル)シリル基などの炭素原子数3~20のハイドロカルビルシリル基を置換基として有するシリル基が挙げられる。 Examples of the substituted silyl group in R 1 to R 12 include trimethylsilyl group, triethylsilyl group, tri-n-propylsilyl group, triisopropylsilyl group, tri-n-butylsilyl group, triisobutylsilyl group, tert-butyldimethyl group. Examples include silyl group, methyldiphenylsilyl group, dimethyl (phenyl) silyl group, tert-butyldiphenylsilyl group, triphenylsilyl group, methylbis (trimethylsilyl) silyl group, dimethyl (trimethylsilyl) silyl group, and tris (trimethylsilyl) silyl group. Preferably a trialkylsilyl group having 3 to 20 carbon atoms such as trimethylsilyl group, triethylsilyl group, tri-n-propylsilyl group, triisopropylsilyl group, tert-butyldimethylsilyl group; Methylsilyl) silyl group, dimethyl (trimethylsilyl) silyl group, and a silyl group having as a substituent a hydrocarbyl silyl group having 3 to 20 carbon atoms, such as tris (trimethylsilyl) silyl group.
 R~R12における炭素原子数1~20の置換または無置換のアルコキシ基としては、例えば、パーフルオロメトキシ基、パーフルオロエトキシ基、パーフルオロ-n-プロポキシ基、パーフルオロイソプロポキシ基、パーフルオロ-n-ブトキシ基、パーフルオロ-sec-ブトキシ基、パーフルオロイソブトキシ基、パーフルオロ-n-ペンチルオキシ基、パーフルオロネオペンチルオキシ基、パーフルオロ-n-ヘキシルオキシ基、パーフルオロ-n-ヘプチルオキシ基、パーフルオロ-n-オクチルオキシ基、パーフルオロ-n-デシルオキシ基、パーフルオロ-n-ドデシルオキシ基、パーフルオロ-n-ペンタデシルオキシ基、パーフルオロ-n-エイコシルオキシ基、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、イソブトキシ基、n-ペンチルオキシ基、ネオペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-デシルオキシ基、n-ドデシルオキシ基、n-ペンタデシルオキシ基、n-エイコシルオキシ基が挙げられ、好ましくは炭素原子数1~4のアルコキシ基であり、より好ましくはメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基である。 Examples of the substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms in R 1 to R 12 include a perfluoromethoxy group, a perfluoroethoxy group, a perfluoro-n-propoxy group, a perfluoroisopropoxy group, a perfluoro group, Fluoro-n-butoxy group, perfluoro-sec-butoxy group, perfluoroisobutoxy group, perfluoro-n-pentyloxy group, perfluoronepentyloxy group, perfluoro-n-hexyloxy group, perfluoro-n -Heptyloxy group, perfluoro-n-octyloxy group, perfluoro-n-decyloxy group, perfluoro-n-dodecyloxy group, perfluoro-n-pentadecyloxy group, perfluoro-n-eicosyloxy group Methoxy group, ethoxy group, n-propoxy group, isop Poxy group, n-butoxy group, sec-butoxy group, isobutoxy group, n-pentyloxy group, neopentyloxy group, n-hexyloxy group, n-heptyloxy group, n-octyloxy group, n-decyloxy group, An n-dodecyloxy group, an n-pentadecyloxy group, and an n-eicosyloxy group are exemplified, preferably an alkoxy group having 1 to 4 carbon atoms, more preferably a methoxy group, an ethoxy group, and an n-propoxy group. , Isopropoxy group, n-butoxy group.
 R~R12における炭素原子数6~30の置換または無置換のアリールオキシ基としては、例えばフェノキシ基、2,3,4-トリメチルフェノキシ基、2,3,5-トリメチルフェノキシ基、2,3,6-トリメチルフェノキシ基、2,4,6-トリメチルフェノキシ基、3,4,5-トリメチルフェノキシ基、2,3,4,5-テトラメチルフェノキシ基、2,3,4,6-テトラメチルフェノキシ基、2,3,5,6-テトラメチルフェノキシ基、ペンタメチルフェノキシ基、2,6-ジイソプロピルフェノキシ基、2-フルオロフェノキシ基、3-フルオロフェノキシ基、4-フルオロフェノキシ基、ペンタフルオロフェノキシ基、2-トリフルオロメチルフェノキシ基、3-トリフルオロメチルフェノキシ基、4-トリフルオロメチルフェノキシ基、2,3-ジフルオロフェノキシ基、2,4-フルオロフェノキシ基、2,5-ジフルオロフェノキシ基、2-クロロフェノキシ基、2,3-ジクロロフェノキシ基、2,4-ジクロロフェノキシ基、2,5-ジクロロフェノキシ基、2-ブロモフェノキシ基、3-ブロモフェノキシ基、4-ブロモフェノキシ基、2,3-ジブロモフェノキシ基、2,4-ジブロモフェノキシ基、あるいは2,5-ジブロモフェノキシ基が挙げられ、好ましくは炭素原子数6~14のアリールオキシ基であり、より好ましくは2,4,6-トリメチルフェノキシ基、3,4,5-トリメチルフェノキシ基、2,6-ジイソプロピルフェノキシ基、ペンタフルオロフェノキシ基である。 Examples of the substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms in R 1 to R 12 include, for example, phenoxy group, 2,3,4-trimethylphenoxy group, 2,3,5-trimethylphenoxy group, 2, 3,6-trimethylphenoxy group, 2,4,6-trimethylphenoxy group, 3,4,5-trimethylphenoxy group, 2,3,4,5-tetramethylphenoxy group, 2,3,4,6-tetra Methylphenoxy group, 2,3,5,6-tetramethylphenoxy group, pentamethylphenoxy group, 2,6-diisopropylphenoxy group, 2-fluorophenoxy group, 3-fluorophenoxy group, 4-fluorophenoxy group, pentafluoro Phenoxy group, 2-trifluoromethylphenoxy group, 3-trifluoromethylphenoxy group, 4-trifluoro Methylphenoxy group, 2,3-difluorophenoxy group, 2,4-fluorophenoxy group, 2,5-difluorophenoxy group, 2-chlorophenoxy group, 2,3-dichlorophenoxy group, 2,4-dichlorophenoxy group, 2,5-dichlorophenoxy group, 2-bromophenoxy group, 3-bromophenoxy group, 4-bromophenoxy group, 2,3-dibromophenoxy group, 2,4-dibromophenoxy group, or 2,5-dibromophenoxy group Preferably an aryloxy group having 6 to 14 carbon atoms, more preferably a 2,4,6-trimethylphenoxy group, a 3,4,5-trimethylphenoxy group, a 2,6-diisopropylphenoxy group, It is a pentafluorophenoxy group.
 R~R12における炭素原子数7~30の置換または無置換のアラルキルオキシ基としては、例えば、ベンジルオキシ基、(2-メチルフェニル)メトキシ基、(3-メチルフェニル)メトキシ基、(4-メチルフェニル)メトキシ基、(2,3-ジメチルフェニル)メトキシ基、(2,4-ジメチルフェニル)メトキシ基、(2,5-ジメチルフェニル)メトキシ基、(2,6-ジメチルフェニル)メトキシ基、(3,4-ジメチルフェニル)メトキシ基、(3,5-ジメチルフェニル)メトキシ基、(2,3,4-トリメチルフェニル)メトキシ基、(2,3,5-トリメチルフェニル)メトキシ基、(2,3,6-トリメチルフェニル)メトキシ基、(2,4,5-トリメチルフェニル)メトキシ基、(2,4,6-トリメチルフェニル)メトキシ基、(3,4,5-トリメチルフェニル)メトキシ基、(2,3,4,5-テトラメチルフェニル)メトキシ基、(2,3,4,6-テトラメチルフェニル)メトキシ基、(2,3,5,6-テトラメチルフェニル)メトキシ基、(ペンタメチルフェニル)メトキシ基、(エチルフェニル)メトキシ基、(n-プロピルフェニル)メトキシ基、(イソプロピルフェニル)メトキシ基、(n-ブチルフェニル)メトキシ基、(sec-ブチルフェニル)メトキシ基、(tert-ブチルフェニル)メトキシ基、(n-ヘキシルフェニル)メトキシ基、(n-オクチルフェニル)メトキシ基、(n-デシルフェニル)メトキシ基、(n-テトラデシルフェニル)メトキシ基、ナフチルメトキシ基、アントラセニルメトキシ基が挙げられ、好ましくは炭素原子数7~12のアラルキルオキシ基であり、より好ましくはベンジルオキシ基である。 Examples of the substituted or unsubstituted aralkyloxy group having 7 to 30 carbon atoms in R 1 to R 12 include, for example, benzyloxy group, (2-methylphenyl) methoxy group, (3-methylphenyl) methoxy group, (4 -Methylphenyl) methoxy group, (2,3-dimethylphenyl) methoxy group, (2,4-dimethylphenyl) methoxy group, (2,5-dimethylphenyl) methoxy group, (2,6-dimethylphenyl) methoxy group (3,4-dimethylphenyl) methoxy group, (3,5-dimethylphenyl) methoxy group, (2,3,4-trimethylphenyl) methoxy group, (2,3,5-trimethylphenyl) methoxy group, 2,3,6-trimethylphenyl) methoxy group, (2,4,5-trimethylphenyl) methoxy group, (2,4,6-trimethylphenyl) Nyl) methoxy group, (3,4,5-trimethylphenyl) methoxy group, (2,3,4,5-tetramethylphenyl) methoxy group, (2,3,4,6-tetramethylphenyl) methoxy group, (2,3,5,6-tetramethylphenyl) methoxy group, (pentamethylphenyl) methoxy group, (ethylphenyl) methoxy group, (n-propylphenyl) methoxy group, (isopropylphenyl) methoxy group, (n- (Butylphenyl) methoxy group, (sec-butylphenyl) methoxy group, (tert-butylphenyl) methoxy group, (n-hexylphenyl) methoxy group, (n-octylphenyl) methoxy group, (n-decylphenyl) methoxy group , (N-tetradecylphenyl) methoxy group, naphthylmethoxy group, anthracenylmethoxy group Is preferably an aralkyloxy group having 7 to 12 carbon atoms, more preferably a benzyloxy group.
 R~R12における環を構成する炭素原子数が3~20の置換または無置換のヘテロ環式化合物残基としては、例えば、チエニル基、フリル基、1-ピロリル基、1-イミダゾリル基、1-ピラゾリル基、ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基、2-イソインドリル基、1-インドリル基、キノリル基、ジベンゾ-1H-ピロール-1-イル基、N-カルバゾリル基が挙げられ、好ましくはチエニル基、フリル基、1-ピロリル基、ピリジル基、ピリミジニル基、2-イソインドリル基、1-インドリル基、キノリル基、ジベンゾ-1H-ピロール-1-イル基、N-カルバゾリル基である。 Examples of the substituted or unsubstituted heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring in R 1 to R 12 include thienyl group, furyl group, 1-pyrrolyl group, 1-imidazolyl group, 1-pyrazolyl group, pyridyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, 2-isoindolyl group, 1-indolyl group, quinolyl group, dibenzo-1H-pyrrol-1-yl group, and N-carbazolyl group are preferable. Are thienyl, furyl, 1-pyrrolyl, pyridyl, pyrimidinyl, 2-isoindolyl, 1-indolyl, quinolyl, dibenzo-1H-pyrrol-1-yl, N-carbazolyl.
 上記R~Rの定義に関わらず、RとR、RとR、RとR、RとR、RとR、およびRとRとは、それぞれ独立に、互いに連結して環を形成してもよく、該環は置換基を有していてもよく、好ましくは、ベンゼン環上の2つの炭素原子を含む4~10員環のハイドロカルビル環または複素環であり、該環は置換基を有していてもよい。 Regardless of the definitions of R 1 to R 8 above, R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , and R 7 and R 8 are Each independently may be linked to each other to form a ring, and the ring may have a substituent, and is preferably a 4- to 10-membered hydrocyclic hydrocarbon containing two carbon atoms on the benzene ring. It is a carbyl ring or a heterocyclic ring, and this ring may have a substituent.
 該環として具体的には、シクロブテン環、シクロペンテン環、シクロペンタジエン環、シクロヘキセン環、シクロヘプテン環、シクロオクテン環、ベンゼン環またはナフタレン環、フラン環、2,5-ジメチルフラン環、チオフェン環、2,5-ジメチルチオフェン環、ピリジン環などが挙げられ、好ましくは、シクロブテン環、シクロペンテン環、シクロペンタジエン環、シクロヘキセン環、ベンゼン環またはナフタレン環であり、より好ましくは、RとRおよびRとRとの少なくとも一方の組が連結したシクロペンテン環、シクロペンタジエン環、シクロヘキセン環、ベンゼン環、ナフタレン環である。 Specific examples of the ring include cyclobutene ring, cyclopentene ring, cyclopentadiene ring, cyclohexene ring, cycloheptene ring, cyclooctene ring, benzene ring or naphthalene ring, furan ring, 2,5-dimethylfuran ring, thiophene ring, 2, 5-dimethylthiophene ring, pyridine ring and the like can be mentioned, and preferred are cyclobutene ring, cyclopentene ring, cyclopentadiene ring, cyclohexene ring, benzene ring or naphthalene ring, and more preferred are R 1 and R 2 and R 5 A cyclopentene ring, a cyclopentadiene ring, a cyclohexene ring, a benzene ring, and a naphthalene ring in which at least one pair with R 6 is linked.
 上記R~R12の定義に関わらず、RとR10、およびR11とR12とは、それぞれ独立に、互いに連結して環を形成してもよく、該環は置換基を有していてもよい。 Regardless of the definitions of R 9 to R 12 above, R 9 and R 10 , and R 11 and R 12 may be independently connected to each other to form a ring, and the ring has a substituent. You may do it.
 Xにおける炭素原子数1~20のアルキル基、環を構成する炭素原子数が3~10のシクロアルキル基、炭素原子数2~20のアルケニル基、炭素原子数7~30のアラルキル基、炭素原子数6~30のアリール基、炭素原子数1~20のアルコキシ基、炭素原子数7~30のアラルキルオキシ基、炭素原子数6~30のアリールオキシ基、置換シリル基は、R~Rにおける前記の基と同様である。 An alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, a carbon atom in X An aryl group having 6 to 30 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aralkyloxy group having 7 to 30 carbon atoms, an aryloxy group having 6 to 30 carbon atoms, and a substituted silyl group are represented by R 1 to R 8. It is the same as the group described above.
 Xにおける置換アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジn-ブチルアミノ基、ジn-プロピルアミノ基、ジイソプロピルアミノ基、ジベンジルアミノ基またはジフェニルアミノ基といった炭素原子数2~14のハイドロカルビルアミノ基が挙げられ、好ましくは、ジメチルアミノ基、ジエチルアミノ基、ジn-プロピルアミノ基、ジイソプロピルアミノ基またはジベンジルアミノ基である。 Examples of the substituted amino group in X include 2 to 14 carbon atoms such as dimethylamino group, diethylamino group, di-n-butylamino group, di-n-propylamino group, diisopropylamino group, dibenzylamino group, or diphenylamino group. And a dimethylamino group, a diethylamino group, a di-n-propylamino group, a diisopropylamino group, or a dibenzylamino group.
 Xにおける置換チオラート基としては、例えば、チオフェノキシ基、2,3,4-トリメチルチオフェノキシ基、2,3,5-トリメチルチオフェノキシ基、2,3,6-トリメチルチオフェノキシ基、2,4,6-トリメチルチオフェノキシ基、3,4,5-トリメチルチオフェノキシ基、2,3,4,5-テトラメチルチオフェノキシ基、2,3,4,6-テトラメチルチオフェノキシ基、2,3,5,6-テトラメチルフェノキシ基、ペンタメチルフェノキシ基、2-フルオロチオフェノキシ基、3-フルオロチオフェノキシ基、4-フルオロフェノキシ基、ペンタフルオロチオフェノキシ基、2-トリフルオロメチルチオフェノキシ基、3-トリフルオロメチルチオフェノキシ基、4-トリフルオロメチルチオフェノキシ基、2,3-ジフルオロチオフェノキシ基、2,4-フルオロチオフェノキシ基、2,5-ジフルオロチオフェノキシ基、2-クロロチオフェノキシ基、2,3-ジクロロチオフェノキシ基、2,4-ジクロロチオフェノキシ基、2,5-ジクロロチオフェノキシ基、2-ブロモチオフェノキシ基、3-ブロモチオフェノキシ基、4-ブロモチオフェノキシ基、2,3-ジブロモチオフェノキシ基、2,4-ジブロモチオフェノキシ基、あるいは2,5-ジブロモチオフェノキシ基といった炭素原子数6~12のハイドロカルビルチオラート基が挙げられ、好ましくはチオフェノキシ基、2,4,6-トリメチルチオフェノキシ基、3,4,5-トリメチルチオフェノキシ基、2,3,4,5-テトラメチルチオフェノキシ基、2,3,4,6-テトラメチルチオフェノキシ基、2,3,5,6-テトラメチルチオフェノキシ基、ペンタメチルチオフェノキシ基、ペンタフルオロチオフェノキシ基である。 Examples of the substituted thiolate group in X include a thiophenoxy group, 2,3,4-trimethylthiophenoxy group, 2,3,5-trimethylthiophenoxy group, 2,3,6-trimethylthiophenoxy group, 2,4 , 6-trimethylthiophenoxy group, 3,4,5-trimethylthiophenoxy group, 2,3,4,5-tetramethylthiophenoxy group, 2,3,4,6-tetramethylthiophenoxy group, 2,3,5 , 6-tetramethylphenoxy group, pentamethylphenoxy group, 2-fluorothiophenoxy group, 3-fluorothiophenoxy group, 4-fluorophenoxy group, pentafluorothiophenoxy group, 2-trifluoromethylthiophenoxy group, 3-tri Fluoromethylthiophenoxy group, 4-trifluoromethylthiophenoxy group, 2, -Difluorothiophenoxy group, 2,4-fluorothiophenoxy group, 2,5-difluorothiophenoxy group, 2-chlorothiophenoxy group, 2,3-dichlorothiophenoxy group, 2,4-dichlorothiophenoxy group, 2 , 5-dichlorothiophenoxy group, 2-bromothiophenoxy group, 3-bromothiophenoxy group, 4-bromothiophenoxy group, 2,3-dibromothiophenoxy group, 2,4-dibromothiophenoxy group, or 2, Examples thereof include hydrocarbylthiolate groups having 6 to 12 carbon atoms such as 5-dibromothiophenoxy group, preferably thiophenoxy group, 2,4,6-trimethylthiophenoxy group, 3,4,5-trimethylthiophenoxy group. 2,3,4,5-tetramethylthiophenoxy group, 2,3,4,6-teto Methylthiophenoxy group, 2,3,5,6 methylthiophenoxy group, penta methylthiophenoxy group, a pentafluoro thio phenoxy group.
 Xにおける炭素原子数1~20の置換または無置換のカルボキシラート基としては、例えば、アセテート基、プロピオネート基、ブチレート基、ペンタネート基、ヘキサノエート基、2-エチルヘキサノエート基またはトリフルオロアセテート基が挙げられ、好ましくは炭素原子数2~10ハイドロカルビルカルボキシラート基であり、より好ましくは、アセテート基、プロピオネート基、2-エチルヘキサノエート基またはトリフルオロアセテート基である。 Examples of the substituted or unsubstituted carboxylate group having 1 to 20 carbon atoms in X include an acetate group, propionate group, butyrate group, pentanate group, hexanoate group, 2-ethylhexanoate group or trifluoroacetate group. Preferred are hydrocarbyl carboxylate groups having 2 to 10 carbon atoms, and more preferred are acetate groups, propionate groups, 2-ethylhexanoate groups or trifluoroacetate groups.
 Xとして好ましくは、フッ素原子、塩素原子、臭素原子、炭素原子数1~20のアルキル基、炭素原子数7~30のアラルキル基、炭素原子数1~20のアルコキシ基、炭素原子数6~30のアリールオキシ基、または置換アミノ基であり、より好ましくは、塩素原子、臭素原子、炭素原子数1~6のアルキル基、炭素原子数7~10のアラルキル基、炭素原子数1~6のアルコキシ基、炭素原子数6~10のアリールオキシ基、炭素原子数2~10の置換アミノ基であり、さらに好ましくは、塩素原子、メチル基、エチル基、n-ブチル基、tert-ブチル基、ベンジル基、メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、フェノキシ基、ジメチルアミノ基、ジエチルアミノ基であり、特に好ましくは、塩素原子、メチル基、ベンジル基、イソプロポキシ基、フェノキシ基、ジメチルアミノ基であり、最も好ましくは、塩素原子、ベンジル基である。 X is preferably a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or 6 to 30 carbon atoms. More preferably, a chlorine atom, a bromine atom, an alkyl group having 1 to 6 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or an alkoxy having 1 to 6 carbon atoms. Group, an aryloxy group having 6 to 10 carbon atoms, and a substituted amino group having 2 to 10 carbon atoms, and more preferably a chlorine atom, a methyl group, an ethyl group, an n-butyl group, a tert-butyl group, a benzyl group Group, methoxy group, ethoxy group, isopropoxy group, tert-butoxy group, phenoxy group, dimethylamino group, diethylamino group, particularly preferably a chlorine atom Methyl group, a benzyl group, an isopropoxy group, a phenoxy group, a dimethylamino group, and most preferably, a chlorine atom, a benzyl group.
 R~R12およびXは、それぞれ独立して、ハロゲン原子、酸素原子、ケイ素原子、窒素原子、リン原子、硫黄原子を含む置換基を有していてもよい。 R 1 to R 12 and X may each independently have a substituent containing a halogen atom, an oxygen atom, a silicon atom, a nitrogen atom, a phosphorus atom, or a sulfur atom.
 Lは中性のルイス塩基を表す。Lが複数ある場合は、複数のLは同一でも異なっていてもよい。lは、0、1、または2である。 L represents a neutral Lewis base. When there are a plurality of L, the plurality of L may be the same or different. l is 0, 1, or 2.
 Lとしては、エーテル類、アミン類またはチオエーテル類などが挙げられ具体的には、テトラヒドロフラン、ジエチルエーテル、1,4-ジオキサンまたはピリジンが挙げられる。Lとして好ましくは、テトラヒドロフランである。 Examples of L include ethers, amines or thioethers, and specific examples include tetrahydrofuran, diethyl ether, 1,4-dioxane, and pyridine. L is preferably tetrahydrofuran.
 lは好ましくは1または0であり、さらに好ましくは、0である。 L is preferably 1 or 0, more preferably 0.
 式(1)で表される錯体の具体例としては、例えば下記の化合物が挙げられる。 Specific examples of the complex represented by the formula (1) include the following compounds.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 また、これらの化合物のチタン原子に直接結合しているベンジル基を、塩素原子、メチル基、ジメチルアミノ基、イソプロポキシ基、tert-ブトキシ基、またはフェノキシ基に変更した化合物も挙げられる。 In addition, compounds in which the benzyl group directly bonded to the titanium atom of these compounds is changed to a chlorine atom, a methyl group, a dimethylamino group, an isopropoxy group, a tert-butoxy group, or a phenoxy group are also included.
 上記それぞれの化合物におけるRおよびRに相当する基を水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、またはメチル基に変更した化合物も挙げることができる。 The compound which changed the group corresponding to R < 3 > and R < 7 > in each said compound into the hydrogen atom, the fluorine atom, the chlorine atom, the bromine atom, the iodine atom, or the methyl group can also be mentioned.
 上記それぞれの化合物の硫黄原子を架橋するシクロオクタン環をシクロへプタン環で置換した化合物も挙げることができる。 Included are compounds in which the cyclooctane ring that bridges the sulfur atom of each of the above compounds is substituted with a cycloheptane ring.
 上記それぞれの化合物におけるR~R12に相当する基をメチル基、またはエチル基で置換した化合物も挙げることができる。 Examples thereof also include compounds in which the groups corresponding to R 9 to R 12 in each of the above compounds are substituted with a methyl group or an ethyl group.
 錯体(1)として好ましくは下記の化合物が挙げられる。 Preferred examples of the complex (1) include the following compounds.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 また、これらの化合物のチタン原子に直接結合しているベンジル基を、塩素原子、またはメチル基に変更した化合物も挙げられる。 Also, compounds in which the benzyl group directly bonded to the titanium atom of these compounds is changed to a chlorine atom or a methyl group can be mentioned.
 上記それぞれの化合物のRおよびRに相当する基を水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、またはメチル基に変更した化合物も挙げることができる。 There can also be mentioned compounds in which the groups corresponding to R 3 and R 7 in each of the above compounds are changed to hydrogen atoms, fluorine atoms, chlorine atoms, bromine atoms, iodine atoms, or methyl groups.
 上記それぞれの化合物の硫黄原子を架橋するシクロオクタン環をシクロへプタン環で置換した化合物も挙げることができる。 Included are compounds in which the cyclooctane ring that bridges the sulfur atom of each of the above compounds is substituted with a cycloheptane ring.
 錯体(1)としてさらに好ましくは下記の化合物が挙げられる。 More preferable examples of the complex (1) include the following compounds.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 また、これらの化合物のチタン原子に直接結合しているベンジル基を、塩素原子に変更した化合物も挙げられる。 Also, compounds in which the benzyl group directly bonded to the titanium atom of these compounds is changed to a chlorine atom can be mentioned.
 上記それぞれの化合物のRおよびRに相当する基をメチル基に変更した化合物も挙げることができる。 There can also be mentioned compounds in which the groups corresponding to R 3 and R 7 in each of the above compounds are changed to methyl groups.
 錯体(1)として特に好ましくは下記の化合物が挙げられる。 As the complex (1), the following compounds are particularly preferable.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 また、これらの化合物のチタン原子に直接結合しているベンジル基を、塩素原子に変更した化合物も挙げられる。 Also, compounds in which the benzyl group directly bonded to the titanium atom of these compounds is changed to a chlorine atom can be mentioned.
 上記それぞれの化合物のRおよびRに相当する基をメチル基に変更した化合物も挙げることができる。 There can also be mentioned compounds in which the groups corresponding to R 3 and R 7 in each of the above compounds are changed to methyl groups.
 次に、一般式(1’)で表される錯体について説明する。 Next, the complex represented by the general formula (1 ') will be described.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 n’は1または2であり、好ましくは2である。 N ′ is 1 or 2, preferably 2.
 R’およびR’として好ましくは、それぞれ独立して
水素原子、
ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
置換シリル基、
または環を構成する炭素原子数が3~20のヘテロ環式化合物残基であって、R’とR’は同時にtert-ブチル基ではなく、
より好ましくは、それぞれ独立して
炭素原子数5~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
または環を構成する炭素原子数が3~20のヘテロ環式化合物残基である。
’とR’のさらに好ましい形態は、R’とR’が同一であって、
炭素原子数5~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
または環を構成する炭素原子数が3~20のヘテロ環式化合物残基である。
’~R’およびR’~R’として好ましくは、それぞれ独立して
水素原子、
ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
炭素原子数1~20のアルコキシ基、
炭素原子数6~30のアリールオキシ基、
置換シリル基であり、
より好ましくは、それぞれ独立して
水素原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
または置換シリル基であり、
’、R’、R’およびR’として、さらに好ましくは、水素原子である。
’およびR’としてさらに好ましくは、それぞれ独立して
炭素原子数1~20のアルキル基
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
または置換シリル基である。
’およびR’として特に好ましい形態は、R’とR’が同一であって、
炭素原子数1~20のアルキル基
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
または置換シリル基であり、
最も好ましくは、
炭素原子数1~20のアルキル基である。
’~R12’として好ましくは、それぞれ独立して
水素原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
炭素原子数1~20のアルコキシ基、
炭素原子数6~30のアリールオキシ基、
置換シリル基であり、
より好ましくは、それぞれ独立して
水素原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
または置換シリル基であり、
さらに好ましくは、それぞれ独立して
水素原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基であり、
最も好ましくは、
水素原子である。
R 1 ′ and R 5 ′ are preferably each independently a hydrogen atom,
A halogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
Substituted silyl groups,
Or a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring, wherein R 1 ′ and R 5 ′ are not simultaneously a tert-butyl group,
More preferably, each independently an alkyl group having 5 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
Alternatively, it is a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring.
A further preferred embodiment of R 1 'and R 5' are, R 1 'and R 5' are the same,
An alkyl group having 5 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
Alternatively, it is a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring.
R 2 ′ to R 4 ′ and R 6 ′ to R 8 ′ are preferably each independently a hydrogen atom,
A halogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
An alkoxy group having 1 to 20 carbon atoms,
An aryloxy group having 6 to 30 carbon atoms,
A substituted silyl group,
More preferably, each independently a hydrogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
Or a substituted silyl group,
R 2 ′, R 4 ′, R 6 ′ and R 8 ′ are more preferably a hydrogen atom.
More preferably, R 3 ′ and R 7 ′ are each independently a cycloalkyl group having 3 to 10 carbon atoms constituting an alkyl group ring having 1 to 20 carbon atoms,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
Or it is a substituted silyl group.
Particularly preferred form as R 3 'and R 7' is, R 3 'and R 7' are the same,
A cycloalkyl group having 3 to 10 carbon atoms constituting an alkyl group ring having 1 to 20 carbon atoms,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
Or a substituted silyl group,
Most preferably,
An alkyl group having 1 to 20 carbon atoms.
R 9 ′ to R 12 ′ are preferably each independently a hydrogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
An alkoxy group having 1 to 20 carbon atoms,
An aryloxy group having 6 to 30 carbon atoms,
A substituted silyl group,
More preferably, each independently a hydrogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
Or a substituted silyl group,
More preferably, each independently a hydrogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
Most preferably,
It is a hydrogen atom.
 これらのアルキル基、シクロアルキル基、アラルキル基、アリール基、アルコキシ基、アリールオキシ基およびヘテロ環式化合物残基は置換基を有していてもよい。 These alkyl groups, cycloalkyl groups, aralkyl groups, aryl groups, alkoxy groups, aryloxy groups and heterocyclic compound residues may have a substituent.
 R’~R12’における炭素原子数1~20のアルキル基、環を構成する炭素原子数が3~10のシクロアルキル基、炭素原子数2~20のアルケニル基、炭素原子数2~20のアルキニル基、炭素原子数7~30のアラルキル基、炭素原子数6~30のアリール基、炭素原子数1~20のアルコキシ基、炭素原子数7~30のアラルキルオキシ基、炭素原子数6~30のアリールオキシ基、置換シリル基は、または環を構成する炭素原子数が3~20のヘテロ環式化合物残基は一般式(1)中のR~R12における前記の基と同様である。 An alkyl group having 1 to 20 carbon atoms in R 1 ′ to R 12 ′, a cycloalkyl group having 3 to 10 carbon atoms constituting the ring, an alkenyl group having 2 to 20 carbon atoms, and 2 to 20 carbon atoms An alkynyl group having 7 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aralkyloxy group having 7 to 30 carbon atoms, and 6 to 6 carbon atoms. The aryloxy group of 30, the substituted silyl group, or the heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring is the same as the group described above for R 1 to R 12 in the general formula (1). is there.
 上記R’~R’の定義に関わらず、R’とR’、R’とR’、R’とR’、R’とR’、R’とR’、およびR’とR’とは、それぞれ独立に、互いに連結して環を形成してもよく、該環は置換基を有していてもよく、好ましくは、ベンゼン環上の2つの炭素原子を含む4~10員環のハイドロカルビル環または複素環であり、該環は置換基を有していてもよい。 Regardless of the definition of R 1 ′ to R 8 ′, R 1 ′ and R 2 ′, R 2 ′ and R 3 ′, R 3 ′ and R 4 ′, R 5 ′ and R 6 ′, R 6 ′ and R 7 ′ and R 7 ′ and R 8 ′ may be independently connected to each other to form a ring, which ring may have a substituent, preferably on the benzene ring A 4- to 10-membered hydrocarbyl ring or heterocyclic ring containing two carbon atoms, and the ring may have a substituent.
 該環として具体的には、シクロブテン環、シクロペンテン環、シクロペンタジエン環、シクロヘキセン環、シクロヘプテン環、シクロオクテン環、ベンゼン環またはナフタレン環、フラン環、2,5-ジメチルフラン環、チオフェン環、2,5-ジメチルチオフェン環、ピリジン環などが挙げられ、好ましくは、シクロブテン環、シクロペンテン環、シクロペンタジエン環、シクロヘキセン環、ベンゼン環またはナフタレン環であり、より好ましくは、R’とR’およびR’とR’との少なくとも一方の組が連結したシクロペンテン環、シクロペンタジエン環、シクロヘキセン環、ベンゼン環、ナフタレン環である。 Specific examples of the ring include cyclobutene ring, cyclopentene ring, cyclopentadiene ring, cyclohexene ring, cycloheptene ring, cyclooctene ring, benzene ring or naphthalene ring, furan ring, 2,5-dimethylfuran ring, thiophene ring, 2, 5-dimethylthiophene ring, pyridine ring and the like are mentioned, and preferred are cyclobutene ring, cyclopentene ring, cyclopentadiene ring, cyclohexene ring, benzene ring or naphthalene ring, and more preferred are R 1 ′, R 2 ′ and R A cyclopentene ring, a cyclopentadiene ring, a cyclohexene ring, a benzene ring, and a naphthalene ring in which at least one pair of 5 ′ and R 6 ′ is connected.
 上記R’~R12’の定義に関わらず、R’とR10’、およびR11’とR12’とは、それぞれ独立に、互いに連結して環を形成してもよく、該環は置換基を有していてもよい。 Regardless of the definitions of R 9 ′ to R 12 ′, R 9 ′ and R 10 ′, and R 11 ′ and R 12 ′ may be independently connected to each other to form a ring, The ring may have a substituent.
 X’における炭素原子数1~20のアルキル基、環を構成する炭素原子数が3~10のシクロアルキル基、炭素原子数2~20のアルケニル基、炭素原子数7~30のアラルキル基、炭素原子数6~30のアリール基、炭素原子数1~20のアルコキシ基、炭素原子数7~30のアラルキルオキシ基、炭素原子数6~30のアリールオキシ基、置換シリル基、置換アミノ基、置換チオラート基および炭素原子数1~20のカルボキシラート基は、一般式(1)中のXにおける前記の基と同様である。 An alkyl group having 1 to 20 carbon atoms in X ′, a cycloalkyl group having 3 to 10 carbon atoms constituting the ring, an alkenyl group having 2 to 20 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, carbon Aryl group having 6 to 30 atoms, alkoxy group having 1 to 20 carbon atoms, aralkyloxy group having 7 to 30 carbon atoms, aryloxy group having 6 to 30 carbon atoms, substituted silyl group, substituted amino group, substituted The thiolate group and the carboxylate group having 1 to 20 carbon atoms are the same as those described above for X in the general formula (1).
 X’として好ましくは、フッ素原子、塩素原子、臭素原子、炭素原子数1~20のアルキル基、炭素原子数7~30のアラルキル基、炭素原子数1~20のアルコキシ基、炭素原子数6~30のアリールオキシ基、または炭素原子数1~20のハイドロカルビルアミノ基であり、より好ましくは、塩素原子、臭素原子、炭素原子数1~6のアルキル基、炭素原子数7~10のアラルキル基、炭素原子数1~6のアルコキシ基、炭素原子数6~10のアリールオキシ基、炭素原子数2~10のハイドロカルビルアミノ基であり、さらに好ましくは、塩素原子、メチル基、エチル基、n-ブチル基、tert-ブチル基、ベンジル基、メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、フェノキシ基ジメチルアミノ基、ジエチルアミノ基であり、特に好ましくは、塩素原子、メチル基、ベンジル基、イソプロポキシ基、フェノキシ基、ジメチルアミノ基であり、最も好ましくは、塩素原子、ベンジル基である。 X ′ is preferably a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or 6 to 6 carbon atoms. 30 aryloxy groups or hydrocarbylamino groups having 1 to 20 carbon atoms, more preferably chlorine atoms, bromine atoms, alkyl groups having 1 to 6 carbon atoms, and aralkyls having 7 to 10 carbon atoms. Group, an alkoxy group having 1 to 6 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, and a hydrocarbylamino group having 2 to 10 carbon atoms, and more preferably a chlorine atom, a methyl group, or an ethyl group N-butyl group, tert-butyl group, benzyl group, methoxy group, ethoxy group, isopropoxy group, tert-butoxy group, phenoxy group dimethylamino group, die An arylamino group, particularly preferably a chlorine atom, a methyl group, a benzyl group, an isopropoxy group, a phenoxy group, a dimethylamino group, and most preferably, a chlorine atom, a benzyl group.
 R’~R12’およびX’は、それぞれ独立して、ハロゲン原子、酸素原子、ケイ素原子、窒素原子、リン原子、硫黄原子を含む置換基を有していてもよい。 R 1 ′ to R 12 ′ and X ′ may each independently have a substituent containing a halogen atom, an oxygen atom, a silicon atom, a nitrogen atom, a phosphorus atom or a sulfur atom.
 L’およびl’は一般式(1)中のLおよびlと同様である。 L ′ and l ′ are the same as L and l in the general formula (1).
 式(1’)で表される錯体の具体例としては、例えば下記の化合物が挙げられる。 Specific examples of the complex represented by the formula (1 ′) include the following compounds.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 また、これらの化合物のチタン原子に直接結合しているベンジル基を、塩素原子、メチル基、ジメチルアミノ基、イソプロポキシ基、tert-ブトキシ基、またはフェノキシ基に変更した化合物も挙げられる。 In addition, compounds in which the benzyl group directly bonded to the titanium atom of these compounds is changed to a chlorine atom, a methyl group, a dimethylamino group, an isopropoxy group, a tert-butoxy group, or a phenoxy group are also included.
 上記それぞれの化合物におけるR’およびR’に相当する基を水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、またはメチル基に変更した化合物も挙げることができる。 Examples thereof also include compounds in which the groups corresponding to R 3 ′ and R 7 ′ in each of the above compounds are changed to hydrogen atoms, fluorine atoms, chlorine atoms, bromine atoms, iodine atoms, or methyl groups.
 上記それぞれの化合物の硫黄原子を架橋するシクロオクタン環をシクロへプタン環で置換した化合物も挙げることができる。 Included are compounds in which the cyclooctane ring that bridges the sulfur atom of each of the above compounds is substituted with a cycloheptane ring.
 上記それぞれの化合物におけるR’~R12’に相当する基をメチル基、またはエチル基で置換した化合物も挙げることができる。 Examples also include compounds in which the groups corresponding to R 9 ′ to R 12 ′ in each of the above compounds are substituted with a methyl group or an ethyl group.
 錯体(1’)として好ましくは下記の化合物が挙げられる。 Preferred examples of the complex (1 ′) include the following compounds.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 また、これらの化合物のチタン原子に直接結合しているベンジル基を、塩素原子、またはメチル基に変更した化合物も挙げられる。 Also, compounds in which the benzyl group directly bonded to the titanium atom of these compounds is changed to a chlorine atom or a methyl group can be mentioned.
 上記それぞれの化合物のR’およびR’に相当する基を水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、またはメチル基に変更した化合物も挙げることができる。 There may also be mentioned compounds in which the groups corresponding to R 3 ′ and R 7 ′ in each of the above compounds are changed to hydrogen atoms, fluorine atoms, chlorine atoms, bromine atoms, iodine atoms, or methyl groups.
 上記それぞれの化合物の硫黄原子を架橋するシクロオクタン環をシクロへプタン環で置換した化合物も挙げることができる。 Included are compounds in which the cyclooctane ring that bridges the sulfur atom of each of the above compounds is substituted with a cycloheptane ring.
 錯体(1’)としてさらに好ましくは下記の化合物が挙げられる。 More preferable examples of the complex (1 ′) include the following compounds.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 また、これらの化合物のチタン原子に直接結合しているベンジル基を、塩素原子に変更した化合物も挙げられる。 Also, compounds in which the benzyl group directly bonded to the titanium atom of these compounds is changed to a chlorine atom can be mentioned.
 上記それぞれの化合物のR’およびR’に相当する基をメチル基に変更した化合物も挙げることができる。 A compound obtained by changing the group corresponding to R 3 ′ and R 7 ′ of each of the above compounds to a methyl group can also be mentioned.
 一般式(1)で表される錯体および一般式(1’)で表される錯体は、例えば、Journal of American Chemical Society, 2009, Volume 131,13566-13567に記載の方法に準じて合成することができる。例えば錯体(1)の場合、一般式(2)で表される化合物および一般式(3)で表される化合物を出発原料として下記scheme1により製造することができるが、本方法に限定されるべきものではない。 The complex represented by the general formula (1) and the complex represented by the general formula (1 ′) are synthesized according to the method described in, for example, Journal of American Chemical Society, 2009, Volume131,13566-13567 Can do. For example, in the case of the complex (1), it can be produced by the following scheme 1 using the compound represented by the general formula (2) and the compound represented by the general formula (3) as starting materials, but should be limited to this method. It is not a thing.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 化合物(3)中のXは、一般式(1)と同様である。TiXとしては、例えば、Ti(CHPh),TiCl(CHPh),Ti(CHSiMe),TiF,TiCl,TiBr,TiI,Ti(OMe),Ti(OEt),Ti(O-i-Pr),TiCl(O-i-Pr),Ti(O-n-Bu),Ti(O-i-Bu),Ti(O-t-Bu),Ti(OPh),Ti(NMe),TiCl(NMe),Ti(NEt)が挙げられる。好ましくは、Ti(CHPh),TiCl(CHPh),Ti(CHSiMe),TiCl,TiBr,Ti(OMe),Ti(OEt),Ti(O-i-Pr),Ti(O-i-Bu),Ti(O-t-Bu),Ti(OPh),Ti(NMe),TiCl(NMe),Ti(NEt)である。 X in the compound (3) is the same as in the general formula (1). Examples of TiX 4 include Ti (CH 2 Ph) 4 , TiCl 2 (CH 2 Ph) 2 , Ti (CH 2 SiMe 3 ) 4 , TiF 4 , TiCl 4 , TiBr 4 , TiI 4 , and Ti (OMe) 4. , Ti (OEt) 4 , Ti (Oi-Pr) 4 , TiCl 2 (Oi-Pr) 2 , Ti (On-Bu) 4 , Ti (Oi-Bu) 4 , Ti ( Ot-Bu) 4 , Ti (OPh) 4 , Ti (NMe 2 ) 4 , TiCl 2 (NMe 2 ) 2 , and Ti (NEt 2 ) 4 . Preferably, Ti (CH 2 Ph) 4 , TiCl 2 (CH 2 Ph) 2 , Ti (CH 2 SiMe 3 ) 4 , TiCl 4 , TiBr 4 , Ti (OMe) 4 , Ti (OEt) 4 , Ti (O -i-Pr) 4, Ti ( O-i-Bu) 4, Ti (O-t-Bu) 4, Ti (OPh) 4, Ti (NMe 2) 4, TiCl 2 (NMe 2) 2, Ti ( NEt 2 ) 4 .
 錯体(1)は、化合物(2)と化合物(3)とをそのまま反応させてもよく、必要に応じて化合物(2)を塩基と反応させた後に化合物(3)を反応させてもよい。用いる塩基としては、例えば有機リチウム試薬、Grignard試薬、金属水素化物が挙げられ、具体的には、メチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、リチウムジイソプロピルアミド、リチウムヘキサメチルジシラザン、カリウムヘキサメチルジシラザン、水素化ナトリウムまたは水素化カリウムを挙げることができ、好ましくは、n-ブチルリチウム、リチウムジイソプロピルアミド、カリウムヘキサメチルジシラザン、水素化ナトリウムまたは水素化カリウムである。 In the complex (1), the compound (2) and the compound (3) may be reacted as they are, or the compound (3) may be reacted after reacting the compound (2) with a base as necessary. Examples of the base to be used include an organic lithium reagent, a Grignard reagent, and a metal hydride. Specifically, methyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, lithium diisopropylamide, lithium hexamethyl Examples thereof include disilazane, potassium hexamethyldisilazane, sodium hydride and potassium hydride, and preferably n-butyllithium, lithium diisopropylamide, potassium hexamethyldisilazane, sodium hydride or potassium hydride.
 錯体(1)および化合物(3)、ならびに化合物(2)と塩基とを反応させて得られる化合物は、通常空気および湿気に対して不安定であるため、反応は脱水脱酸素下で行うことが好ましい。具体的には、乾燥窒素、乾燥アルゴン下である。 Since the complex (1), the compound (3), and the compound obtained by reacting the compound (2) with a base are usually unstable to air and moisture, the reaction can be carried out under dehydration and deoxygenation. preferable. Specifically, it is under dry nitrogen and dry argon.
 化合物(2)の使用量は、化合物(3)に対して1モル当量以上であればよく、好ましくは、1.0~1.5モル当量の範囲で用いればよい。また、反応の過程で化合物(2)が残存する場合は、反応の途中で化合物(3)を追加してもよい。 The amount of the compound (2) used may be 1 molar equivalent or more with respect to the compound (3), and preferably 1.0 to 1.5 molar equivalents. Moreover, when the compound (2) remains in the course of the reaction, the compound (3) may be added during the reaction.
 化合物(2)と化合物(3)とを反応させる温度は、-100℃~150℃の温度範囲であり、好ましくは-80℃~50℃の温度範囲である。ただし、この範囲に限定される意図ではない。 The temperature at which compound (2) and compound (3) are reacted is in the temperature range of −100 ° C. to 150 ° C., preferably in the temperature range of −80 ° C. to 50 ° C. However, it is not intended to be limited to this range.
 化合物(2)と化合物(3)との反応は、生成物の収率が最も高くなる時間まで行えばよく、好ましくは5分間~48時間であり、より好ましくは10分間~24時間である。 The reaction of the compound (2) and the compound (3) may be carried out until the time when the yield of the product becomes the highest, preferably 5 minutes to 48 hours, more preferably 10 minutes to 24 hours.
 化合物(2)と塩基とを反応させる温度は-100℃~150℃の温度範囲であり、好ましくは-80℃~50℃の温度範囲である。ただし、この範囲に限定される意図ではない。 The temperature at which the compound (2) reacts with the base is in the temperature range of −100 ° C. to 150 ° C., preferably in the temperature range of −80 ° C. to 50 ° C. However, it is not intended to be limited to this range.
 化合物(2)と塩基とを反応させる時間は、生成物の収率が最も高くなる時間まで行えばよく、5分間~24時間であり、好ましくは10分間~12時間、より好ましくは30分間~3時間である。 The reaction time of the compound (2) and the base may be carried out until the product yield becomes the highest, and is 5 minutes to 24 hours, preferably 10 minutes to 12 hours, more preferably 30 minutes to 3 hours.
 化合物(2)と塩基とを反応させて生じた化合物と、化合物(3)とを反応させる温度は、-100℃~150℃の温度範囲であり、好ましくは-80℃~50℃の温度範囲ある。ただし、この範囲に限定される意図ではない。 The temperature at which the compound (2) is reacted with the base and the compound (3) is reacted in the temperature range of −100 ° C. to 150 ° C., preferably in the temperature range of −80 ° C. to 50 ° C. is there. However, it is not intended to be limited to this range.
 化合物(2)と塩基とを反応させて生じた化合物と、化合物(3)とを反応させる時間は、生成物の収率が最も高くなる時間まで行えばよく、5分間~48時間であり、好ましくは10分間~24時間である。 The reaction time of the compound produced by reacting the compound (2) with the base and the compound (3) may be the time until the yield of the product becomes the highest, and is 5 minutes to 48 hours. Preferably, it is 10 minutes to 24 hours.
 用いる溶媒は、類似の反応で一般的に用いられる溶媒であれば特に制限されるものではなく、ハイドロカーボン溶媒またはエーテル系溶媒が挙げられる。好ましくは、トルエン、ベンゼン、o-キシレン、m-キシレン、p-キシレン、ヘキサン、ペンタン、ヘプタン、シクロヘキサン、ジエチルエーテルまたはテトラヒドロフランであり、より好ましくは、ジエチルエーテル、トルエン、テトラヒドロフラン、ヘキサン、ペンタン、ヘプタン、またはシクロヘキサンである。 The solvent to be used is not particularly limited as long as it is a solvent generally used in similar reactions, and examples thereof include a hydrocarbon solvent or an ether solvent. Preferred is toluene, benzene, o-xylene, m-xylene, p-xylene, hexane, pentane, heptane, cyclohexane, diethyl ether or tetrahydrofuran, and more preferred is diethyl ether, toluene, tetrahydrofuran, hexane, pentane, heptane. Or cyclohexane.
 化合物(2)は、例えば、Journal of American Chemical Society, 2009, Volume 131,13566-13567に記載の方法に準じて合成することができる。具体的には下記scheme2により製造することができるが、本方法に限定されるべきものではない。以下各工程について詳しく説明する。 Compound (2) can be synthesized, for example, according to the method described in Journal of American Chemical Society, 2009, Volume 131, 13566-13567. Specifically, although it can manufacture by the following scheme 2, it should not be limited to this method. Hereinafter, each process will be described in detail.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 化合物(4)~(7)中のR~R12およびnは、錯体(1)と同様である。 R 1 to R 12 and n in the compounds (4) to (7) are the same as in the complex (1).
 Zはアニオン性脱離基を表し、例えばハロゲン原子、アセテート基、トリフルオロアセテート基、ベンゾエート基、CFSO基、CHSO基、4-MeCSO基またはPhSO基などであり、好ましくは塩素原子、臭素原子、ヨウ素原子、CFSO基、CHSO基、4-MeCSO基またはPhSO基である。
[step1]
 trans-シクロオクタン-1,2-ジチオール(4)に1.0~4.0当量、好ましくは1.0~1.5当量の化合物(5)を塩基存在下で反応させ、化合物(6)を合成することができる。
Z represents an anionic leaving group, for example, a halogen atom, acetate group, trifluoroacetate group, benzoate group, CF 3 SO 3 group, CH 3 SO 3 group, 4-MeC 6 H 4 SO 3 group or PhSO 3 group Preferred are chlorine atom, bromine atom, iodine atom, CF 3 SO 3 group, CH 3 SO 3 group, 4-MeC 6 H 4 SO 3 group or PhSO 3 group.
[Step 1]
Trans-cyclooctane-1,2-dithiol (4) is reacted with 1.0 to 4.0 equivalents, preferably 1.0 to 1.5 equivalents of compound (5) in the presence of a base to give compound (6) Can be synthesized.
 塩基としては、特に限定されるべきものではないが、炭酸カリウム、炭酸カルシウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸カルシウム等の無機塩基やトリエチルアミン、トリイソブチルアミン等のアミン塩基が挙げられ、好ましくはアミン塩基である。 The base is not particularly limited, and examples thereof include inorganic bases such as potassium carbonate, calcium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and calcium carbonate, and amine bases such as triethylamine and triisobutylamine. Preferably, it is an amine base.
 本反応は、空気、ヘリウム、アルゴンまたは窒素雰囲気下で行うことができる。好ましくは、ヘリウム、アルゴンまたは窒素雰囲気下、より好ましくは、窒素またはアルゴン雰囲気下である。 This reaction can be performed in an atmosphere of air, helium, argon, or nitrogen. Preferably, it is under a helium, argon or nitrogen atmosphere, more preferably under a nitrogen or argon atmosphere.
 反応終了後、必要に応じて化合物(6)を精製してもよい。精製方法としては、例えば、反応溶液に対して塩化アンモニウム水溶液、塩酸水溶液または塩化ナトリウム水溶液を加え、次に酢酸エチルまたはジエチルエーテルを加え、抽出操作を行い、過剰の塩基または塩を除去する方法が挙げられる。さらに蒸留、再結晶またはシリカゲルクロマトグラフィー等の精製操作により、純度を高めることができる。
[step2]
 化合物(6)に1.0~4.0当量、好ましくは1.0~1.5当量の化合物(7)を塩基存在下で反応させ、化合物(2)を合成することができる。
After completion of the reaction, the compound (6) may be purified as necessary. As a purification method, for example, an ammonium chloride aqueous solution, a hydrochloric acid aqueous solution or a sodium chloride aqueous solution is added to the reaction solution, followed by addition of ethyl acetate or diethyl ether, and an extraction operation is performed to remove excess base or salt. Can be mentioned. Furthermore, the purity can be increased by a purification operation such as distillation, recrystallization or silica gel chromatography.
[Step 2]
Compound (2) can be synthesized by reacting compound (6) with 1.0 to 4.0 equivalents, preferably 1.0 to 1.5 equivalents of compound (7) in the presence of a base.
 塩基としては、炭酸カリウム、炭酸カルシウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸カルシウム等の無機塩基やトリエチルアミン、トリイソブチルアミン等のアミン塩基が挙げられ、好ましくはアミン塩基である。 Examples of the base include inorganic bases such as potassium carbonate, calcium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and calcium carbonate, and amine bases such as triethylamine and triisobutylamine, with amine bases being preferred.
 本反応は、空気、ヘリウム、アルゴンまたは窒素雰囲気下で行うことができる。好ましくは、ヘリウム、アルゴンまたは窒素雰囲気下、より好ましくは、窒素またはアルゴン雰囲気下である。 This reaction can be performed in an atmosphere of air, helium, argon, or nitrogen. Preferably, it is under a helium, argon or nitrogen atmosphere, more preferably under a nitrogen or argon atmosphere.
 反応終了後、必要に応じて化合物(2)を精製してもよい。精製方法としては、例えば、反応溶液に対して塩化アンモニウム水溶液、塩酸水溶液または塩化ナトリウム水溶液を加え、次に酢酸エチルまたはジエチルエーテルを加え、抽出操作を行い、過剰の塩基または塩を除去する方法が挙げられる。さらに蒸留、再結晶またはシリカゲルクロマトグラフィー等の精製操作により、純度を高めることができる。 After completion of the reaction, the compound (2) may be purified as necessary. As a purification method, for example, an ammonium chloride aqueous solution, a hydrochloric acid aqueous solution or a sodium chloride aqueous solution is added to the reaction solution, followed by addition of ethyl acetate or diethyl ether, and an extraction operation is performed to remove excess base or salt. Can be mentioned. Furthermore, the purity can be increased by a purification operation such as distillation, recrystallization or silica gel chromatography.
 [step1]の反応条件を制御することで、反応器内で生成した化合物(6)と化合物(7)とを反応させ、化合物(2)を得ることもできる。 The compound (2) can also be obtained by reacting the compound (6) and the compound (7) produced in the reactor by controlling the reaction conditions of [step 1].
 RがRと同じであり、RがRと同じであり、RがRと同じであり、RがRと同じであり、かつRとR10の組み合わせがR11とR12の組み合わせと同じである場合、化合物(5)と化合物(7)とを合わせて、trans-シクロオクタン-1,2-ジチオール(4)に対して2.0~8.0当量、好ましくは2.0~4.0当量を塩基存在下で反応させることで、化合物(2)を合成することもできる。 R 1 is the same as R 5 , R 2 is the same as R 6 , R 3 is the same as R 7 , R 4 is the same as R 8 , and the combination of R 9 and R 10 is R When it is the same as the combination of 11 and R 12 , the compound (5) and the compound (7) are combined and 2.0 to 8.0 equivalents with respect to trans-cyclooctane-1,2-dithiol (4) The compound (2) can also be synthesized by reacting preferably 2.0 to 4.0 equivalents in the presence of a base.
 化合物(2)の具体例としては、例えば下記の化合物が挙げられる。 Specific examples of the compound (2) include the following compounds.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 これらの化合物のRおよびRに相当する基を水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、またはメチル基で置換した化合物も挙げることができる。 Examples thereof also include compounds in which groups corresponding to R 3 and R 7 of these compounds are substituted with a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a methyl group.
 上記それぞれの化合物の硫黄原子を架橋するシクロオクタン環をシクロへプタン環で置換した化合物も挙げることができる。 Included are compounds in which the cyclooctane ring that bridges the sulfur atom of each of the above compounds is substituted with a cycloheptane ring.
 上記それぞれの化合物におけるR~R12に相当する基をメチル基、またはエチル基で置換した化合物も挙げることができる。 Examples thereof also include compounds in which the groups corresponding to R 9 to R 12 in each of the above compounds are substituted with a methyl group or an ethyl group.
 化合物(5)および化合物(7)の具体例としては下記の化合物が挙げられる。 Specific examples of the compound (5) and the compound (7) include the following compounds.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 これらの化合物のRまたはRに相当する基を水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、またはメチル基で置換した化合物も挙げることができる。 Examples thereof also include compounds in which a group corresponding to R 3 or R 7 of these compounds is substituted with a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a methyl group.
 上記それぞれの化合物におけるR~R12に相当する基をメチル基、またはエチル基で置換した化合物も挙げることができる。 Examples thereof also include compounds in which the groups corresponding to R 9 to R 12 in each of the above compounds are substituted with a methyl group or an ethyl group.
 次に、一般式(2’)で表される化合物について説明する。 Next, the compound represented by the general formula (2 ') will be described.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 一般式(2’)におけるn’およびR’~R12’は、一般式(1’)中のn’およびR’~R12’と同様である。 Formula (2 ') and R 1' ~ R 12 'n' in is the same as in the general formula (1 ') n in' and R 1 '~ R 12'.
 一般式(2’)で表される化合物の具体例としては、例えば下記の化合物が挙げられる。 Specific examples of the compound represented by the general formula (2 ') include the following compounds.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 これらの化合物のR’およびR’に相当する基を水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、またはメチル基で置換した化合物も挙げることができる。 There can also be mentioned compounds in which groups corresponding to R 3 ′ and R 7 ′ of these compounds are substituted with a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a methyl group.
 上記それぞれの化合物の硫黄原子を架橋するシクロオクタン環をシクロへプタン環で置換した化合物も挙げることができる。 Included are compounds in which the cyclooctane ring that bridges the sulfur atom of each of the above compounds is substituted with a cycloheptane ring.
 上記それぞれの化合物におけるR’~R12’に相当する基をメチル基、またはエチル基で置換した化合物も挙げることができる。 Examples also include compounds in which the groups corresponding to R 9 ′ to R 12 ′ in each of the above compounds are substituted with a methyl group or an ethyl group.
 化合物(2’)として好ましくは下記の化合物が挙げられる。 Preferred examples of the compound (2 ′) include the following compounds.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 また、これらの化合物のR’およびR’に相当する基を水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、またはメチル基に変更した化合物も挙げることができる。 Moreover, the compound which changed the group corresponding to R < 3 '> and R < 7 >' of these compounds into the hydrogen atom, the fluorine atom, the chlorine atom, the bromine atom, the iodine atom, or the methyl group can also be mentioned.
 上記それぞれの化合物の硫黄原子を架橋するシクロオクタン環をシクロへプタン環で置換した化合物も挙げることができる。 Included are compounds in which the cyclooctane ring that bridges the sulfur atom of each of the above compounds is substituted with a cycloheptane ring.
 化合物(2’)としてさらに好ましくは下記の化合物が挙げられる。 More preferable examples of the compound (2 ′) include the following compounds.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 また、これらの化合物のR’およびR’に相当する基をメチル基に変更した化合物も挙げることができる。 Moreover, the compound which changed the group corresponding to R < 3 '> and R < 7 >' of these compounds into the methyl group can also be mentioned.
 上記で説明した一般式(1)で表される錯体は、オレフィンの単独重合または二種以上の重合可能なオレフィンの共重合により重合体を製造するに際して、重合用触媒成分として使用され、好ましくは、単独重合用触媒成分である。 The complex represented by the general formula (1) described above is used as a polymerization catalyst component in producing a polymer by homopolymerization of olefins or copolymerization of two or more polymerizable olefins, preferably It is a catalyst component for homopolymerization.
 重合用触媒としては、錯体(1)および助触媒成分(A)を接触させて得られる重合用触媒が用いられる。かかる助触媒成分としては、周期律表第13族元素を含む活性化助触媒成分が挙げられ、例えば、
(A-1)有機アルミニウム化合物
(A-2)ホウ素化合物
よりなる群から選ばれる少なくとも1種の化合物を挙げることができる。
〔有機アルミニウム化合物(A-1)〕
 本発明において用いる有機アルミニウム化合物(A-1)としては、公知の有機アルミニウム化合物が使用できる。好ましくは、(A-1-1)一般式E1a AlY1 3-a で表される有機アルミニウム化合物、(A-1-2)一般式 {-Al(E2 )-O-}b で表される構造を有する環状のアルミノキサン、及び(A-1-3)一般式 E3 {-Al(E3)-O-}c AlE3 2 で表される構造を有する線状のアルミノキサン(但し、E1 、E2 、E3 は、炭素数1~8のハイドロカルビル基であり、全てのE、全てのE2 及び全てのEは同じであっても異なっていてもよい。Y1は水素原子又はハロゲン原子を表し、全てのY1は同じであっても異なっていてもよい。aは0<a≦3の整数で、bは2以上の整数を、cは1以上の整数を表す。)のうちのいずれか、あるいはそれらの2~3種の混合物を例示することができる。
As the polymerization catalyst, a polymerization catalyst obtained by contacting the complex (1) and the promoter component (A) is used. Examples of such promoter components include activation promoter components containing Group 13 elements of the Periodic Table, such as
(A-1) Organoaluminum compound (A-2) There may be mentioned at least one compound selected from the group consisting of boron compounds.
[Organic aluminum compound (A-1)]
As the organoaluminum compound (A-1) used in the present invention, a known organoaluminum compound can be used. Preferably, (A-1-1) an organoaluminum compound represented by the general formula E 1 a AlY 1 3-a , (A-1-2) a general formula {—Al (E 2 ) —O—} b A cyclic aluminoxane having a structure represented by: (A-1-3) a linear aluminoxane having a structure represented by the general formula E 3 {-Al (E 3 ) —O—} c AlE 3 2 (provided that , E 1 , E 2 , and E 3 are each a hydrocarbyl group having 1 to 8 carbon atoms, and all E 1 , all E 2, and all E 3 may be the same or different. Y 1 represents a hydrogen atom or a halogen atom, and all Y 1 may be the same or different, a is an integer of 0 <a ≦ 3, b is an integer of 2 or more, and c is 1 or more. Any one of them, or a mixture of 2 to 3 thereof.
 一般式 E1 a AlY1 3-a で表される有機アルミニウム化合物(A-1-1)の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリイソブチルアルミニウム、トリヘキシルアルミニウム等のトリアルキルアルミニウム;ジメチルアルミニウムクロライド、ジエチルアルミニウムクロライド、ジプロピルアルミニウムクロライド、ジイソブチルアルミニウムハクロライド、ジヘキシルアルミニウムクロライド等のジアルキルアルミニウムクロライド;メチルアルミニウムジクロライド、エチルアルミニウムジクロライド、プロピルアルミニウムジクロライド、イソブチルアルミニウムジクロライド、ヘキシルアルミニウムジクロライド等のアルキルアルミニウムジクロライド;ジメチルアルミニウムハイドライド、ジエチルアルミニウムハイドライド、ジプロピルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、ジヘキシルアルミニウムハイドライド等のジアルキルアルミニウムハイドライド等を例示することができる。好ましくは、トリアルキルアルミニウムであり、より好ましくは、トリエチルアルミニウム、トリイソブチルアルミニウムである。 Specific examples of the organoaluminum compound (A-1-1) represented by the general formula E 1 a AlY 1 3-a include trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, trihexylaluminum and the like. Dialkylaluminum chlorides such as alkylaluminum; dimethylaluminum chloride, diethylaluminum chloride, dipropylaluminum chloride, diisobutylaluminum chloride, dihexylaluminum chloride; methylaluminum dichloride, ethylaluminum dichloride, propylaluminum dichloride, isobutylaluminum dichloride, hexylaluminum dichloride, etc. Alkyl aluminum dichloride; dimethyl aluminum Um hydride, diethylaluminum hydride, dipropyl aluminum hydride, diisobutylaluminum hydride, there can be mentioned dialkyl aluminum hydride such as dihexyl aluminum hydride. Trialkylaluminum is preferable, and triethylaluminum and triisobutylaluminum are more preferable.
 一般式 {-Al(E2 )-O-}b で表される構造を有する環状のアルミノキサン(A-1-2)、一般式 E3 {-Al(E3 )-O-}c AlE3  で表される構造を有する線状のアルミノキサン(A-1-3)における、E2 、E3 の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、n-ペンチル基、ネオペンチル基等のアルキル基を例示することができる。bは2以上の整数であり、cは1以上の整数である。好ましくは、E2 及びE3 はメチル基、イソブチル基であり、bは2~40、cは1~40である。 Cyclic aluminoxane (A-1-2) having a structure represented by the general formula {-Al (E 2 ) —O—} b , general formula E 3 {-Al (E 3 ) —O—} c AlE 3 Specific examples of E 2 and E 3 in the linear aluminoxane (A-1-3) having the structure represented by 2 are methyl group, ethyl group, n-propyl group, isopropyl group, normal butyl group, Examples thereof include alkyl groups such as isobutyl group, n-pentyl group and neopentyl group. b is an integer of 2 or more, and c is an integer of 1 or more. Preferably, E 2 and E 3 are a methyl group and an isobutyl group, b is 2 to 40, and c is 1 to 40.
 上記のアルミノキサンは各種の方法で作られる。その方法については特に制限はなく、公知の方法に準じて作ればよい。例えば、トリアルキルアルミニウム(例えば、トリメチルアルミニウムなど)を適当な有機溶剤(ベンゼン、トルエン、脂肪族ハイドロカーボンなど)に溶かした溶液を水と接触させてアルミノキサンを作る。また、トリアルキルアルミニウム(例えば、トリメチルアルミニウムなど)を結晶水を含んでいる金属塩(例えば、硫酸銅水和物など)に接触させてアルミノキサンを作る方法が例示できる。 The above aluminoxane can be made by various methods. There is no restriction | limiting in particular about the method, What is necessary is just to make according to a well-known method. For example, an aluminoxane is prepared by bringing a solution obtained by dissolving a trialkylaluminum (for example, trimethylaluminum) in an appropriate organic solvent (benzene, toluene, aliphatic hydrocarbon, etc.) into contact with water. Moreover, the method of making aluminoxane by making trialkylaluminum (for example, trimethylaluminum etc.) contact the metal salt (for example, copper sulfate hydrate etc.) containing crystal water can be illustrated.
 また、上記の方法で得られる(A-1-2)一般式 {-Al(E2 )-O-}b で表される構造を有する環状のアルミノキサン、及び(A-1-3)一般式 E3 {-Al(E3)-O-}c AlE3 2 で表される構造を有する線状のアルミノキサンは、必要に応じて、揮発成分を留去して乾燥して用いてもよい。さらに、揮発成分を留去して乾燥して得られた化合物を適当な有機溶剤(ベンゼン、トルエン、脂肪族ハイドロカーボンなど)で洗浄して、再度乾燥し用いてもよい。
〔ホウ素化合物(A-2)〕
 本発明においてホウ素化合物(A-2)としては、(A-2-1)一般式BR13 R14 15で表されるホウ素化合物、(A-2-2)一般式W+ (BR13 R14 15 R16 で表されるホウ素化合物、(A-2-3)一般式(V-H)+ (BR13 R14 15 R16で表されるホウ素化合物のいずれかを用いる。
In addition, (A-1-2) the general formula {-Al (E 2 ) -O—} b obtained by the above method and a cyclic aluminoxane having a structure represented by the formula (A-1-3) The linear aluminoxane having a structure represented by E 3 {—Al (E 3 ) —O—} c AlE 3 2 may be used after distilling off the volatile components if necessary. Furthermore, the compound obtained by distilling off the volatile components and drying may be washed with an appropriate organic solvent (benzene, toluene, aliphatic hydrocarbon, etc.), and dried again for use.
[Boron compound (A-2)]
In the present invention, the boron compound (A-2) includes (A-2-1) a boron compound represented by the general formula BR 13 R 14 R 15 , (A-2-2) a general formula W + (BR 13 R 14 R 15 R 16 ) or a boron compound represented by (A-2-3) general formula (VH) + (BR 13 R 14 R 15 R 16 ) Use.
 一般式 BR1314 15で表されるホウ素化合物(A-2-1)において、Bは3価の原子価状態のホウ素原子であり、R13~R15はハロゲン原子、1~20個の炭素原子を含むハイドロカルビル基、1~20個の炭素原子を含むハロゲン化ハイドロカルビル基、1~20個の炭素原子を含む置換シリル基、1~20個の炭素原子を含むアルコキシ基または2~20個の炭素原子を含む2置換アミノ基であり、それらは同じであっても異なっていてもよい。好ましいR13~R15はハロゲン原子、1~20個の炭素原子を含むハイドロカルビル基、1~20個の炭素原子を含むハロゲン化ハイドロカルビル基である。 In the boron compound (A-2-1) represented by the general formula BR 13 R 14 R 15 , B is a trivalent boron atom, R 13 to R 15 are halogen atoms, 1 to 20 Hydrocarbyl group containing 1 to 20 carbon atoms, halogenated hydrocarbyl group containing 1 to 20 carbon atoms, substituted silyl group containing 1 to 20 carbon atoms, alkoxy group containing 1 to 20 carbon atoms Or a disubstituted amino group containing 2 to 20 carbon atoms, which may be the same or different. Preferred R 13 to R 15 are a halogen atom, a hydrocarbyl group containing 1 to 20 carbon atoms, and a halogenated hydrocarbyl group containing 1 to 20 carbon atoms.
 ホウ素化合物(A-2-1)の具体例としては、トリフェニルボラン、トリス(ペンタフルオロフェニル)ボラン、トリス(2,3,5,6-テトラフルオロフェニル)ボラン、トリス(2,3,4,5-テトラフルオロフェニル)ボラン、トリス(3,4,5-トリフルオロフェニル)ボラン、トリス(2,3,4-トリフルオロフェニル)ボラン、フェニルビス(ペンタフルオロフェニル)ボラン等が挙げられるが、最も好ましくは、トリフェニルボラン、トリス(ペンタフルオロフェニル)ボランである。 Specific examples of the boron compound (A-2-1) include triphenylborane, tris (pentafluorophenyl) borane, tris (2,3,5,6-tetrafluorophenyl) borane, tris (2,3,4). , 5-tetrafluorophenyl) borane, tris (3,4,5-trifluorophenyl) borane, tris (2,3,4-trifluorophenyl) borane, phenylbis (pentafluorophenyl) borane, and the like. Most preferred are triphenylborane and tris (pentafluorophenyl) borane.
 一般式W+ (BR13 14 15 16で表されるホウ素化合物(A-2-2)において、W+ は無機または有機のカチオンであり、Bは3価の原子価状態のホウ素原子であり、R13~R16は上記のホウ素化合物(A-2-1)におけるR13~R15と同様である。即ち、R13~R16はハロゲン原子、1~20個の炭素原子を含むハイドロカルビル基、1~20個の炭素原子を含むハロゲン化ハイドロカルビル基、1~20個の炭素原子を含む置換シリル基、1~20個の炭素原子を含むアルコキシ基または2~20個の炭素原子を含む2置換アミノ基であり、それらは同じであっても異なっていてもよい。好ましいR13~R16はハロゲン原子、1~20個の炭素原子を含むハイドロカルビル基、1~20個の炭素原子を含むハロゲン化ハイドロカルビル基である。 In the boron compound (A-2-2) represented by the general formula W + (BR 13 R 14 R 15 R 16 ) , W + is an inorganic or organic cation, and B is a trivalent valence state. It is a boron atom, and R 13 to R 16 are the same as R 13 to R 15 in the boron compound (A-2-1). That is, R 13 to R 16 include a halogen atom, a hydrocarbyl group containing 1 to 20 carbon atoms, a halogenated hydrocarbyl group containing 1 to 20 carbon atoms, and 1 to 20 carbon atoms. A substituted silyl group, an alkoxy group containing 1 to 20 carbon atoms or a disubstituted amino group containing 2 to 20 carbon atoms, which may be the same or different. Preferred R 13 to R 16 are a halogen atom, a hydrocarbyl group containing 1 to 20 carbon atoms, and a halogenated hydrocarbyl group containing 1 to 20 carbon atoms.
 無機のカチオンであるW+ としては、フェロセニウムカチオン、アルキル置換フェロセニウムカチオン、銀陽イオンなどが挙げられる。有機のカチオンであるW+ としては、トリフェニルカルベニウムカチオンなどが挙げられる。(BR13 14 15 16には、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(2,3,5,6-テトラフルオロフェニル)ボレート、テトラキス(2,3,4,5-テトラフルオロフェニル)ボレート、テトラキス(3,4,5-トリフルオロフェニル)ボレート、テトラキス(2,2,4ートリフルオロフェニル)ボレート、フェニルビス(ペンタフルオロフェニル)ボレ-ト、テトラキス(3,5-ビストリフルオロメチルフェニル)ボレートなどが挙げられる。 Examples of W + that is an inorganic cation include a ferrocenium cation, an alkyl-substituted ferrocenium cation, and a silver cation. Examples of W + that is an organic cation include a triphenylcarbenium cation. (BR 13 R 14 R 15 R 16 ) includes tetrakis (pentafluorophenyl) borate, tetrakis (2,3,5,6-tetrafluorophenyl) borate, tetrakis (2,3,4,5-tetrafluoro). Phenyl) borate, tetrakis (3,4,5-trifluorophenyl) borate, tetrakis (2,2,4-trifluorophenyl) borate, phenylbis (pentafluorophenyl) borate, tetrakis (3,5-bistri) Fluoromethylphenyl) borate and the like.
 一般式W+ (BR13 14 15 16で表される化合物の具体例としては、フェロセニウムテトラキス(ペンタフルオロフェニル)ボレート、1,1’-ジメチルフェロセニウムテトラキス(ペンタフルオロフェニル)ボレート、銀テトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムテトラキス(3,5-ビストリフルオロメチルフェニル)ボレートなどを挙げることができるが、最も好ましくは、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートである。 Specific examples of the compound represented by the general formula W + (BR 13 R 14 R 15 R 16 ) include ferrocenium tetrakis (pentafluorophenyl) borate and 1,1′-dimethylferrocenium tetrakis (pentafluoro). Phenyl) borate, silver tetrakis (pentafluorophenyl) borate, triphenylcarbenium tetrakis (pentafluorophenyl) borate, triphenylcarbenium tetrakis (3,5-bistrifluoromethylphenyl) borate, etc. Triphenylcarbenium tetrakis (pentafluorophenyl) borate is preferable.
 また、一般式(V-H)+ (BR13 14 15 16で表されるホウ素化合物(A-2-3)おいては、Vは中性ルイス塩基であり、(V-H)+ はブレンステッド酸であり、Bは3価の原子価状態のホウ素原子であり、R13~R16は上記のホウ素化合物(A-2-3)におけるR13~R15と同様である。即ち、R13~R16はハロゲン原子、1~20個の炭素原子を含むハイドロカルビル基、1~20個の炭素原子を含むハロゲン化ハイドロカルビル基、1~20個の炭素原子を含む置換シリル基、1~20個の炭素原子を含むアルコキシ基または2~20個の炭素原子を含む2置換アミノ基であり、それらは同じであっても異なっていてもよい。好ましいR13~R16はハロゲン原子、1~20個の炭素原子を含むハイドロカルビル基、1~20個の炭素原子を含むハロゲン化ハイドロカルビル基である。 In the boron compound (A-2-3) represented by the general formula (VH) + (BR 13 R 14 R 15 R 16 ) , V is a neutral Lewis base, H) + is a Bronsted acid, B is a boron atom in a trivalent valence state, and R 13 to R 16 are the same as R 13 to R 15 in the boron compound (A-2-3). is there. That is, R 13 to R 16 include a halogen atom, a hydrocarbyl group containing 1 to 20 carbon atoms, a halogenated hydrocarbyl group containing 1 to 20 carbon atoms, and 1 to 20 carbon atoms. A substituted silyl group, an alkoxy group containing 1 to 20 carbon atoms or a disubstituted amino group containing 2 to 20 carbon atoms, which may be the same or different. Preferred R 13 to R 16 are a halogen atom, a hydrocarbyl group containing 1 to 20 carbon atoms, and a halogenated hydrocarbyl group containing 1 to 20 carbon atoms.
 ブレンステッド酸である(V-H)+としては、トリアルキル置換アンモニウム、N,N-ジアルキルアニリニウム、ジアルキルアンモニウム、トリアリールホスホニウムなどが挙げられ、(BR13 14 15 16としては、前述と同様のものが挙げられる。 Examples of (VH) + that is a Bronsted acid include trialkyl-substituted ammonium, N, N-dialkylanilinium, dialkylammonium, triarylphosphonium, and the like (BR 13 R 14 R 15 R 16 ) Is the same as described above.
 一般式(V-H)+ (BR13 14 15 16で表される化合物の具体例としては、トリエチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(3,5-ビストリフルオロメチルフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジエチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-2,4,6-ペンタメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(3,5-ビストリフルオロメチルフェニル)ボレート、ジイソプロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジシクロヘキシルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルホスホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(メチルフェニル)ホスホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(ジメチルフェニル)ホスホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートなどを挙げることができるが、最も好ましくは、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(ノルマルブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、もしくは、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートである。 Specific examples of the compound represented by the general formula (VH) + (BR 13 R 14 R 15 R 16 ) include triethylammonium tetrakis (pentafluorophenyl) borate and tripropylammonium tetrakis (pentafluorophenyl) borate. , Tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, tri (n-butyl) ammonium tetrakis (3,5-bistrifluoromethylphenyl) borate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate N, N-diethylanilinium tetrakis (pentafluorophenyl) borate, N, N-2,4,6-pentamethylanilinium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium teto Kis (3,5-bistrifluoromethylphenyl) borate, diisopropylammonium tetrakis (pentafluorophenyl) borate, dicyclohexylammonium tetrakis (pentafluorophenyl) borate, triphenylphosphonium tetrakis (pentafluorophenyl) borate, tri (methylphenyl) phosphonium Examples include tetrakis (pentafluorophenyl) borate, tri (dimethylphenyl) phosphonium tetrakis (pentafluorophenyl) borate, triphenylcarbenium tetrakis (pentafluorophenyl) borate, and most preferably triphenylcarbenium tetrakis. (Pentafluorophenyl) borate, tri (normal butyl) ammonium tetrakis (pe Motor-fluorophenyl) borate, or, N, is N- dimethylanilinium tetrakis (pentafluorophenyl) borate.
 本発明における錯体(1)と助触媒成分(A)とを接触させて得られるオレフィン重合用触媒を製造する際の接触は、錯体(1)と助触媒成分(A)とが接触し、触媒が形成されるならどのような手段によってもよく、あらかじめ溶媒で希釈して、もしくは希釈せずに錯体(1)と助触媒成分(A)とを混合して接触させる方法や、錯体(1)と助触媒成分(A)とを別々に重合槽に供給して重合槽の中でこれらを接触させる方法を採用することができる。ここで、助触媒成分(A)としては複数種類を組み合わせて使用する場合があるが、それらのうちの一部をあらかじめ混合して使用してもよいし、別々に重合槽に供給して使用してもよい。 In the production of an olefin polymerization catalyst obtained by bringing the complex (1) and the promoter component (A) into contact with each other in the present invention, the complex (1) and the promoter component (A) are in contact with each other. Can be formed by any means, for example, by diluting with a solvent in advance, or by mixing and contacting the complex (1) and the cocatalyst component (A) without diluting, or the complex (1) And the cocatalyst component (A) can be separately supplied to the polymerization tank and brought into contact with each other in the polymerization tank. Here, the co-catalyst component (A) may be used in combination of a plurality of types, but some of them may be mixed in advance or used separately by supplying them to the polymerization tank. May be.
 錯体(1)は単離したものを用いてもよく、また、化合物(2)と化合物(3)とを接触させたものをそのまま用いてもよい。 As the complex (1), an isolated one may be used, or a compound obtained by contacting the compound (2) and the compound (3) may be used as it is.
 各成分の使用量は通常、錯体(1)に対する有機アルミニウム化合物(A-1)のモル比が0.01~10000の範囲、好ましくは1~5000の範囲となるように、また、一般式(1)で表される錯体に対するホウ素化合物(A-2)のモル比が0.01~100の範囲、好ましくは1.0~50の範囲となるように、各成分を用いることが望ましい。 The amount of each component used is usually such that the molar ratio of the organoaluminum compound (A-1) to the complex (1) is in the range of 0.01 to 10000, preferably in the range of 1 to 5000. It is desirable to use each component so that the molar ratio of the boron compound (A-2) to the complex represented by 1) is in the range of 0.01 to 100, preferably 1.0 to 50.
 重合反応器において重合反応前に触媒を製造する場合、各成分を溶液状態または溶媒に懸濁もしくはスラリー化した状態で供給する場合の濃度は、重合反応器に各成分を供給する装置の性能などの条件により、適宜選択されるが、一般に、一般式(1)で表される錯体が、通常0.0001~10000mmol/Lで、より好ましくは、0.001~1000mmol/L、さらに好ましくは、0.01~100mmol/L、有機アルミニウム化合物(A-1)が、Al原子換算で、通常0.01~10000mmol/Lで、より好ましくは、0.05~5000mmol/L、さらに好ましくは、0.1~2000mmol/L、ホウ素化合物(A-2)は、通常0.001~500mmol/Lで、より好ましくは、0.01~250mmol/L、さらに好ましくは、0.05~100mmol/Lの範囲となるように各成分を用いることが望ましい。 When the catalyst is produced before the polymerization reaction in the polymerization reactor, the concentration when each component is supplied in a solution state or suspended or slurried in a solvent is determined depending on the performance of the apparatus for supplying each component to the polymerization reactor, etc. In general, the complex represented by the general formula (1) is usually 0.0001 to 10000 mmol / L, more preferably 0.001 to 1000 mmol / L, and still more preferably, 0.01 to 100 mmol / L, the organoaluminum compound (A-1) is usually 0.01 to 10000 mmol / L, more preferably 0.05 to 5000 mmol / L, still more preferably 0, in terms of Al atom. The boron compound (A-2) is usually from 0.001 to 500 mmol / L, more preferably from 0.01 to 2000 mmol / L. 50 mmol / L, more preferably, it is desirable to use each component to be in the range of 0.05 ~ 100mmol / L.
 前記オレフィン重合用触媒は、上記錯体(1)と、上記有機アルミニウム化合物(A-1)および上記ホウ素化合物(A-2)の少なくとも何れか一方とを接触させて得られるオレフィン重合用触媒であるが、一般式(1)で表される錯体と有機アルミニウム化合物(A-1)とを接触させて得られるオレフィン重合用触媒を用いる際は、有機アルミニウム化合物(A-1)としては、前記の環状のアルミノキサン(A-1-2)および/または線状のアルミノキサン(A-1-3)が好ましい。また他に好ましいオレフィン重合用触媒の態様としては、錯体(1)、有機アルミニウム化合物(A-1)およびホウ素化合物(A-2)を接触させて得られるオレフィン重合用触媒が挙げられ、その際の該有機アルミニウム化合物(A-1)としては前記の有機アルミニウム化合物(A-1-1)が使用しやすく、ホウ素化合物(A-2)としては、ホウ素化合物(A-2-1)またはホウ素化合物(A-2-2)が好ましい。
〔オレフィン重合体の製造方法〕
 本発明におけるオレフィン重合体の製造方法は、上記触媒の存在下にオレフィンを単独で重合させるか、また2種以上のオレフィンを共重合させることを含む方法である。
The olefin polymerization catalyst is an olefin polymerization catalyst obtained by contacting the complex (1) with at least one of the organoaluminum compound (A-1) and the boron compound (A-2). However, when an olefin polymerization catalyst obtained by contacting the complex represented by the general formula (1) with the organoaluminum compound (A-1) is used, the organoaluminum compound (A-1) Cyclic aluminoxane (A-1-2) and / or linear aluminoxane (A-1-3) are preferred. Another preferred embodiment of the olefin polymerization catalyst is an olefin polymerization catalyst obtained by contacting the complex (1), the organoaluminum compound (A-1) and the boron compound (A-2). As the organoaluminum compound (A-1), the organoaluminum compound (A-1-1) can be easily used. As the boron compound (A-2), a boron compound (A-2-1) or boron Compound (A-2-2) is preferred.
[Olefin polymer production method]
The method for producing an olefin polymer in the present invention is a method including polymerizing an olefin alone in the presence of the catalyst or copolymerizing two or more olefins.
 オレフィンは、モノオレフィンまたはジオレフィンであることができる。 The olefin can be a monoolefin or a diolefin.
 モノオレフィンの例としては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、4-メチル-1-ペンテン、ビニルシクロヘキサンなどの炭素原子数3~10の1-アルケン(枝分かれしていてもよい)、または、シクロペンテン、シクロヘキセン、5-メチルノルボルネン、5-エチルノルボルネン、5-ブチルノルボルネン、5-フェニルノルボルネン、5-ベンジルノルボルネン、テトラシクロドデセン、トリシクロデセン、トリシクロウンデセン、ペンタシクロペンタデセン、ペンタシクロヘキサデセン、8-メチルテトラシクロドデセン、8-エチルテトラシクロドデセン、5-アセチルノルボルネン、5-アセチルオキシノルボルネン、5-メトキシカルボニルノルボルネン、5-エトキシカルボニルノルボルネン、5-メチル-5-メトキシカルボニルノルボルネン、5-シアノノルボルネン、8-メトキシカルボニルテトラシクロドデセン、8-メチル-8-テトラシクロドデセン、8-シアノテトラシクロドデセン等などの環状アルケン等を挙げることができる。また、本明細書におけるモノオレフィンには、モノオレフィン(例えば、エチレン)の一部の水素原子が芳香族基で置換されているスチレン等も含まれる。 Examples of monoolefins include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 4-methyl-1-pentene, vinylcyclohexane, etc. 1-alkene having 3 to 10 carbon atoms (which may be branched), or cyclopentene, cyclohexene, 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, 5-phenylnorbornene, 5-benzylnorbornene , Tetracyclododecene, tricyclodecene, tricycloundecene, pentacyclopentadecene, pentacyclohexadecene, 8-methyltetracyclododecene, 8-ethyltetracyclododecene, 5-acetylnorbornene, 5-acetyloxynorbornene , 5-metoki Carbonyl norbornene, 5-ethoxycarbonyl norbornene, 5-methyl-5-methoxycarbonyl norbornene, 5-cyanonorbornene, 8-methoxycarbonyltetracyclododecene, 8-methyl-8-tetracyclododecene, 8-cyanotetracyclodone Examples thereof include cyclic alkenes such as decene. In addition, the monoolefin in the present specification includes styrene in which a part of hydrogen atoms of the monoolefin (for example, ethylene) is substituted with an aromatic group.
 ジオレフィンとしては、例えば、1,5-ヘキサジエン、1,4-ヘキサジエン、1,6-ヘプタジエン、1,4-ペンタジエン、1,7-オクタジエン、1,8-ノナジエン、1,9-デカジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、7-メチル-1,6-オクタジエン、5-エチリデン-2-ノルボルネン、ジシクロペンタジエン、5-ビニル-2-ノルボルネン、5-メチル-2-ノルボルネン、ノルボルナジエン、5-メチレン-2-ノルボルネン、1,5-シクロオクタジエン、5,8-エンドメチレンヘキサヒドロナフタレン、1,3-ヘキサジエン、1,3-オクタジエン、1,3-シクロオクタジエン、1,3-シクロヘキサジエン、ブタジエン、等を挙げることができる。 Examples of the diolefin include 1,5-hexadiene, 1,4-hexadiene, 1,6-heptadiene, 1,4-pentadiene, 1,7-octadiene, 1,8-nonadiene, 1,9-decadiene, 4 -Methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 7-methyl-1,6-octadiene, 5-ethylidene-2-norbornene, dicyclopentadiene, 5-vinyl-2-norbornene, 5 -Methyl-2-norbornene, norbornadiene, 5-methylene-2-norbornene, 1,5-cyclooctadiene, 5,8-endomethylenehexahydronaphthalene, 1,3-hexadiene, 1,3-octadiene, 1,3 -Cyclooctadiene, 1,3-cyclohexadiene, butadiene and the like.
 モノオレフィンとして好ましくは、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、4-メチル-1-ペンテン、ビニルシクロヘキサンであり、より好ましくは、プロピレン、1-ブテン、1-ペンテン、1-オクテン、1-デセン、4-メチル-1-ペンテン、ビニルシクロヘキサンであり、さらに好ましくは、プロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、ビニルシクロヘキサンであり、最も好ましくは、エチレン、プロピレンである。 Preferred monoolefins are ethylene, propylene, 1-butene, 1-pentene, 1-heptene, 1-octene, 1-nonene, 1-decene, 4-methyl-1-pentene and vinylcyclohexane, more preferably , Propylene, 1-butene, 1-pentene, 1-octene, 1-decene, 4-methyl-1-pentene, vinylcyclohexane, and more preferably propylene, 1-butene, 1-pentene, 4-methyl- 1-pentene and vinylcyclohexane are most preferable, and ethylene and propylene are most preferable.
 ジオレフィンとして好ましくは、1,5-ヘキサジエン、1,6-ヘプタジエン、5-エチリデン-2-ノルボルネン、ジシクロペンタジエン、5-ビニル-2-ノルボルネン、5-メチル-2-ノルボルネン、ノルボルナジエン、5-メチレン-2-ノルボルネン、1,5-シクロオクタジエン、1,3-シクロオクタジエン、1,3-シクロヘキサジエン、ブタジエンであり、より好ましくは、1,5-ヘキサジエン、1,6-ヘプタジエン、1,3-シクロヘキサジエン、ブタジエンである。 As the diolefin, 1,5-hexadiene, 1,6-heptadiene, 5-ethylidene-2-norbornene, dicyclopentadiene, 5-vinyl-2-norbornene, 5-methyl-2-norbornene, norbornadiene, 5- Methylene-2-norbornene, 1,5-cyclooctadiene, 1,3-cyclooctadiene, 1,3-cyclohexadiene, butadiene, more preferably 1,5-hexadiene, 1,6-heptadiene, 1 , 3-cyclohexadiene, butadiene.
 共重合体を構成するモノマーの具体例としては、エチレンとプロピレン、エチレンと1-ブテン、エチレンと1-ペンテン、エチレンと1-ヘキセン、エチレンと1-オクテン、エチレンと1-デセン、エチレンと4-メチル-1-ペンテン、エチレンとビニルシクロヘキサン、エチレンと4-メチル-1-ペンテン、エチレンとブタジエン、エチレンと1,5-ヘキサジエンとを挙げることができる。好ましくは、エチレンとプロピレン、エチレンと1-ブテン、エチレンと1-ペンテン、エチレンと1-ヘキセン、エチレンと1-オクテン、エチレンとビニルシクロヘキサン、エチレンと4-メチル-1-ペンテンとであり、より好ましくは、エチレンとプロピレン、エチレンと1-ブテン、エチレンと1-ヘキセン、エチレンと1-オクテン、エチレンとビニルシクロヘキサンとであり、さらに好ましくは、エチレンとプロピレン、エチレンと1-ブテン、エチレンと1-ヘキセン、エチレンとビニルシクロヘキサンとである。 Specific examples of the monomer constituting the copolymer include ethylene and propylene, ethylene and 1-butene, ethylene and 1-pentene, ethylene and 1-hexene, ethylene and 1-octene, ethylene and 1-decene, and ethylene and 4 -Methyl-1-pentene, ethylene and vinylcyclohexane, ethylene and 4-methyl-1-pentene, ethylene and butadiene, ethylene and 1,5-hexadiene. Preferably, ethylene and propylene, ethylene and 1-butene, ethylene and 1-pentene, ethylene and 1-hexene, ethylene and 1-octene, ethylene and vinylcyclohexane, ethylene and 4-methyl-1-pentene, and more Preferred are ethylene and propylene, ethylene and 1-butene, ethylene and 1-hexene, ethylene and 1-octene, ethylene and vinylcyclohexane, and more preferred are ethylene and propylene, ethylene and 1-butene, and ethylene and 1 -Hexene, ethylene and vinylcyclohexane.
 重合方法も、特に限定されるべきものではないが、例えば、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族ハイドロカーボン、ベンゼン、トルエン等の芳香族ハイドロカーボン、またはメチレンジクロライド等のハロゲン化ハイドロカーボンを溶媒として用いる溶媒重合、またはスラリー重合等が可能であり、また、連続重合、回分式重合のどちらでも可能である。 The polymerization method is not particularly limited. For example, aliphatic hydrocarbons such as butane, pentane, hexane, heptane, and octane, aromatic hydrocarbons such as benzene and toluene, or halogenated hydrocarbons such as methylene dichloride. Solvent polymerization using carbon as a solvent, slurry polymerization, or the like is possible, and either continuous polymerization or batch polymerization is possible.
 重合反応の温度および時間は、所望の重合平均分子量、ならびに触媒の活性度および使用量を考慮して決定することができる。重合温度は通常、-50℃~200℃の範囲をとり得るが、特に、-20℃~100℃の範囲が好ましい。重合圧力は通常、常圧~50MPaが好ましい。重合時間は、一般的に、目的とするポリマーの種類、反応装置により適宜決定されるが通常、1分間~20時間の範囲、好ましくは5分間~18時間の範囲をとることができる。但し、これらの範囲に制限される意図ではない。また、本発明は共重合体の分子量を調節するために水素等の連鎖移動剤を添加することもできる。 The temperature and time of the polymerization reaction can be determined in consideration of the desired polymerization average molecular weight, and the activity and usage of the catalyst. The polymerization temperature can usually be in the range of −50 ° C. to 200 ° C., but the range of −20 ° C. to 100 ° C. is particularly preferable. The polymerization pressure is usually preferably from normal pressure to 50 MPa. In general, the polymerization time is appropriately determined depending on the kind of the target polymer and the reaction apparatus, but it can usually be in the range of 1 minute to 20 hours, preferably in the range of 5 minutes to 18 hours. However, it is not intended to be limited to these ranges. In the present invention, a chain transfer agent such as hydrogen may be added to adjust the molecular weight of the copolymer.
 重合反応に溶媒を使用する場合、溶媒中の各化合物の濃度は、特に制限はない。溶媒中のチタン錯体の濃度は、例えば、1×10-8mmol/L~10mol/Lの範囲を選択でき、助触媒成分の濃度は、例えば、1×10-8mmol/L ~10mol/Lの範囲を選択することができる。また、オレフィン:溶媒は体積比で100:0~1:1000の範囲を選択することができる。但し、これらの範囲は例示であって、それらに限定される意図ではない。また、溶媒を使用しない場合も、上記の範囲を参考に適宜濃度の設定をすることができる。 When a solvent is used for the polymerization reaction, the concentration of each compound in the solvent is not particularly limited. The concentration of the titanium complex in the solvent can be selected, for example, in the range of 1 × 10 −8 mmol / L to 10 mol / L, and the concentration of the promoter component is, for example, 1 × 10 −8 mmol / L to 10 mol / L. A range can be selected. Further, the volume ratio of olefin: solvent can be selected from 100: 0 to 1: 1000. However, these ranges are examples and are not intended to be limited to them. Even when no solvent is used, the concentration can be appropriately set with reference to the above range.
 以下、実施例および比較例によって本発明をさらに詳細に説明する。実施例中の各項目の測定値は、下記の方法で測定した。
(1)融点
 熱分析装置 示差走査熱量計(Diamond DSC Perkin Elmer社製)を用いて下記の方法で測定した。
<ポリエチレン測定条件>
1)サンプル約10mgを窒素雰囲気下、150℃ 5分間保持
2)冷却   150℃~20℃(5℃/分)2分間保持
3)測定   20℃~150℃(5℃/分)
<ポリプロピレン測定条件>
1)サンプル約10mgを窒素雰囲気下、220℃ 5分間保持
2)冷却   220℃~20℃(5℃/分)2分間保持
3)測定   20℃~220℃(5℃/分)
(2)分子量および分子量分布
 各重合体のポリスチレン換算重量平均分子鎖長(Aw)およびポリスチレン換算数平均分子鎖長(An)は、ゲルパーミエーションクロマトグラフィー(GPC)により下記条件で算出した。検量線は、標準ポリスチレンを用いて作成した。ポリスチレンのQファクターとして41.3を用いた。
<測定条件>
装置  :TSK HLC-8121GPC/HT (東ソー社製)
カラム :TSKgel GMHHR‐H(20) 2本
測定温度:152℃
溶媒  :o-ジクロロベンゼン(0.05% BHT添加)
溶媒流量:1ml/min
試料濃度:0.05%
カラム・装置校正用試料:TSK標準ポリスチレンF-2000~A-1000(東ソー製)
 各重合体の重量平均分子量(Mw)および数平均分子量(Mn)は、ポリスチレン換算重量平均分子鎖長(Aw)およびポリスチレン換算数平均分子鎖長(An)をもとに、ポリエチレンおよびポリプロピレンのQファクターをそれぞれ17.7および26.4として下式より算出した。
分子量(Mw, Mn)=分子鎖長(Aw, An)×Qファクター
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The measured value of each item in an Example was measured with the following method.
(1) Melting point Thermal analyzer A measurement was performed by the following method using a differential scanning calorimeter (manufactured by Diamond DSC Perkin Elmer).
<Polyethylene measurement conditions>
1) Hold about 10 mg of sample in a nitrogen atmosphere at 150 ° C for 5 minutes 2) Cooling 150 ° C to 20 ° C (5 ° C / min) Hold for 2 minutes 3) Measurement 20 ° C to 150 ° C (5 ° C / min)
<Polypropylene measurement conditions>
1) Hold about 10 mg of sample under nitrogen atmosphere at 220 ° C. for 5 minutes 2) Cooling 220 ° C. to 20 ° C. (5 ° C./minute) Hold for 2 minutes 3) Measurement 20 ° C. to 220 ° C. (5 ° C./minute)
(2) Molecular weight and molecular weight distribution The polystyrene equivalent weight average molecular chain length (Aw) and polystyrene equivalent number average molecular chain length (An) of each polymer were calculated by gel permeation chromatography (GPC) under the following conditions. A calibration curve was prepared using standard polystyrene. 41.3 was used as the Q factor of polystyrene.
<Measurement conditions>
Apparatus: TSK HLC-8121GPC / HT (manufactured by Tosoh Corporation)
Column: TSKgel GMHHR-H (20) 2 Measurement temperature: 152 ° C
Solvent: o-dichlorobenzene (0.05% BHT added)
Solvent flow rate: 1 ml / min
Sample concentration: 0.05%
Sample for column / equipment calibration: TSK standard polystyrene F-2000 to A-1000 (manufactured by Tosoh)
The weight average molecular weight (Mw) and number average molecular weight (Mn) of each polymer are determined based on the polystyrene-equivalent weight average molecular chain length (Aw) and the polystyrene-equivalent number average molecular chain length (An). Factors were calculated from the following formulas with 17.7 and 26.4, respectively.
Molecular weight (Mw, Mn) = Molecular chain length (Aw, An) × Q factor
(参考例1)
trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロオクタンの合成
 アルゴン雰囲気下、trans-シクロオクタン-1,2-ジチオール2.18g(12.4mmol)と臭化3,5-ジ-t-ブチル-2-ヒドロキシベンジル7.52g(25.1mmol)とをテトラヒドロフラン80mLに溶解し、0℃に冷却した。そこに、トリエチルアミン3.5mL(24.9mmol)を加え、0℃で1時間、さらに室温で終夜撹拌した。生成した沈殿物を濾過して除き、濾液を減圧下濃縮した。得られた残渣にエーテルおよび飽和塩化アンモニウム水溶液を加え、エーテル層を水洗し、無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン-ジクロロメタン 1:1)で精製し無色結晶として標記化合物6.74g(収率89%)を得た。
融点:122-123℃ (ヘキサンより再結晶)
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.12-1.94 (m, 48 H), 2.63-2.65 (m, 2 H), 3.81 (d, J = 13 Hz, 2 H), 3.90 (d, J = 13 Hz, 2 H), 6.92 (d, J = 2 Hz, 2 H), 6.95 (s, 2 H), 7.26 (d, J = 2 Hz, 2 H).
13C-NMR (100.7 MHz,δ, CDCl3)
25.7, 25.8, 29.8, 31.2, 31.6, 34.2, 35.0, 35.4, 49.6, 121.6, 123.7, 125.4, 137.4, 142.0, 152.2. 
元素分析:計算値(C38H60O2S2)C, 74.45%; H, 9.87%.
実測値: C, 74.39%; H, 10.09%.
(Reference Example 1)
Synthesis of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclooctane 2.18 g (12.4 mmol) of trans-cyclooctane-1,2-dithiol and odor under argon atmosphere 7.55 g (25.1 mmol) of 3,5-di-t-butyl-2-hydroxybenzyl was dissolved in 80 mL of tetrahydrofuran and cooled to 0 ° C. Thereto was added 3.5 mL (24.9 mmol) of triethylamine, and the mixture was stirred at 0 ° C. for 1 hour and further at room temperature overnight. The formed precipitate was removed by filtration, and the filtrate was concentrated under reduced pressure. Ether and saturated aqueous ammonium chloride solution were added to the resulting residue, and the ether layer was washed with water and dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent hexane-dichloromethane 1: 1) to obtain 6.74 g (yield 89%) of the title compound as colorless crystals.
Melting point: 122-123 ° C (recrystallized from hexane)
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.12-1.94 (m, 48 H), 2.63-2.65 (m, 2 H), 3.81 (d, J = 13 Hz, 2 H), 3.90 (d, J = 13 Hz, 2 H), 6.92 (d, J = 2 Hz, 2 H), 6.95 (s, 2 H), 7.26 (d, J = 2 Hz, 2 H).
13 C-NMR (100.7 MHz, δ, CDCl 3 )
25.7, 25.8, 29.8, 31.2, 31.6, 34.2, 35.0, 35.4, 49.6, 121.6, 123.7, 125.4, 137.4, 142.0, 152.2.
Elemental analysis: calculated (C 38 H 60 O 2 S 2 ) C, 74.45%; H, 9.87%.
Found: C, 74.39%; H, 10.09%.
(参考例2)
[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロチタンの合成
 以下の実験はアルゴン雰囲気下で行った。100 mlのシュレンク管中、trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロオクタン 525 mg(0.856 mmol)をトルエン20 mlに溶解し、この溶液に室温でテトラクロロチタンTHF錯体286 mg(0.856 mmol)のトルエン溶液30 mLを滴下し、さらに4時間攪拌した。トルエンを減圧下留去し、残渣をヘキサン2 mLで洗浄した後、乾燥し、赤色結晶として標記化合物をcis-α体とcis-β体との2 : 1混合物として578 mg(収率93%)を得た。
1H NMR (400 MHz,δ, ppm, C6D6
0.58-1.92 (m, major + minor), 2.62 (br s, major), 2.66-2.70 (m, minor), 3.07 (d, J = 14 Hz, minor), 3.16 (d, J = 15 Hz, major), 3.57 (d, J = 12 Hz, minor), 3.63-3.67 (m, minor), 4.35 (d, J = 14 Hz, minor), 4.57 (d, J = 15 Hz, major), 4.88 (
d, J = 12 Hz, minor), 6.59 (d, J = 2 Hz, major), 6.63 (d, J = 2 Hz, minor), 6.94 (d, J = 2 Hz, minor), 7.36 (d, J = 2 Hz, minor), 7.51 (d, J = 2 Hz, minor), 7.54 (d, J = 2 Hz, major). 元素分析:計算値(C38H58Cl2O2S2Ti): C, 62.54%; H, 8.01%. 実測値: C, 62.38%; H, 8.21%.
(Reference Example 2)
Synthesis of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium The following experiment was conducted under an argon atmosphere. In a 100 ml Schlenk tube, 525 mg (0.856 mmol) of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclooctane was dissolved in 20 ml of toluene. 30 mL of a toluene solution of 286 mg (0.856 mmol) of tetrachlorotitanium THF complex was added dropwise at room temperature, and the mixture was further stirred for 4 hours. Toluene was distilled off under reduced pressure, and the residue was washed with 2 mL of hexane and then dried. )
1 H NMR (400 MHz, δ, ppm, C 6 D 6 )
0.58-1.92 (m, major + minor), 2.62 (br s, major), 2.66-2.70 (m, minor), 3.07 (d, J = 14 Hz, minor), 3.16 (d, J = 15 Hz, major ), 3.57 (d, J = 12 Hz, minor), 3.63-3.67 (m, minor), 4.35 (d, J = 14 Hz, minor), 4.57 (d, J = 15 Hz, major), 4.88 (
d, J = 12 Hz, minor), 6.59 (d, J = 2 Hz, major), 6.63 (d, J = 2 Hz, minor), 6.94 (d, J = 2 Hz, minor), 7.36 (d, J = 2 Hz, minor), 7.51 (d, J = 2 Hz, minor), 7.54 (d, J = 2 Hz, major). Elemental analysis: calculated (C 38 H 58 Cl 2 O 2 S 2 Ti) : C, 62.54%; H, 8.01%. Found: C, 62.38%; H, 8.21%.
(参考例3)
[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウムの合成
 以下の実験はアルゴン雰囲気のグローブボックス中で行った。50mLのシュレンク管中、trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロオクタン 207 mg(0.336 mmol)をトルエン10 mLに溶解し、この溶液に室温でテトラベンジルジルコニウム153 mg(0.336 mmol)のトルエン溶液10 mLを滴下し、さらに1時間撹拌した。トルエンを減圧下で留去し、残渣をヘキサン2 mLで洗浄した後、乾燥し、無色結晶として標記化合物216 mg(収率76%)を得た。
融点:181-183℃ 分解
1H-NMR (400 MHz,δ, ppm, C6D6)
1.16-1.80 (m, 48H), 2.16 (d, J = 10 Hz, 2H), 2.42 (m, 2H), 2.78 (d, J = 10 Hz, 2H), 3.16 (d, J = 14 Hz, 2H), 3.50 (d, J = 14 Hz, 2H), 6.61 (d, J = 2 Hz, 2H), 6.90 (t, J = 8 Hz, 2H), 7.09 (t, J = 8 Hz, 4H), 7.25 (t, J = 8 Hz, 4H), 7.52 (d, J = 2 Hz, 2H). 
13C-NMR (100.4 MHz, δ, ppm, C6D6
25.2, 26.1, 28.6, 30.6, 31.7, 34.2, 34.8, 35.7, 48.7, 64.0, 122.0, 123.1, 124.3, 126.2, 128.5, 128.7, 129.6, 140.9, 145.8, 158.0. 
元素分析:計算値(C52H72O2S2Zr)C, 70.61%; H, 8.21%.
実測値:C, 70.54%; H, 8.31%.
(Reference Example 3)
Synthesis of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylzirconium The following experiment was conducted in a glove box under an argon atmosphere. In a 50 mL Schlenk tube, 207 mg (0.336 mmol) of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclooctane was dissolved in 10 mL of toluene. Then, 10 mL of a toluene solution of 153 mg (0.336 mmol) of tetrabenzylzirconium was added dropwise, and the mixture was further stirred for 1 hour. Toluene was distilled off under reduced pressure, and the residue was washed with 2 mL of hexane and dried to obtain 216 mg (yield 76%) of the title compound as colorless crystals.
Melting point: 181-183 ° C decomposition
1 H-NMR (400 MHz, δ, ppm, C 6 D 6 )
1.16-1.80 (m, 48H), 2.16 (d, J = 10 Hz, 2H), 2.42 (m, 2H), 2.78 (d, J = 10 Hz, 2H), 3.16 (d, J = 14 Hz, 2H ), 3.50 (d, J = 14 Hz, 2H), 6.61 (d, J = 2 Hz, 2H), 6.90 (t, J = 8 Hz, 2H), 7.09 (t, J = 8 Hz, 4H), 7.25 (t, J = 8 Hz, 4H), 7.52 (d, J = 2 Hz, 2H).
13 C-NMR (100.4 MHz, δ, ppm, C 6 D 6 )
25.2, 26.1, 28.6, 30.6, 31.7, 34.2, 34.8, 35.7, 48.7, 64.0, 122.0, 123.1, 124.3, 126.2, 128.5, 128.7, 129.6, 140.9, 145.8, 158.0.
Elemental analysis: calculated (C 52 H 72 O 2 S 2 Zr) C, 70.61%; H, 8.21%.
Found: C, 70.54%; H, 8.31%.
(参考例4)
trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロヘキサンの合成
 アルゴン雰囲気下、trans-シクロヘキサン-1,2-ジチオール1.08g(7.3mmol)と臭化3,5-ジ-t-ブチル-2-ヒドロキシベンジル4.58g(15.3mmol)とをテトラヒドロフラン90mLに溶解し、0℃に冷却した。そこに、トリエチルアミン2.13mL(15.3mmol)を加え、0℃で15時間撹拌した。生成した沈殿物を濾過で除き、濾液を減圧下で濃縮した。得られた残渣にエーテルおよび希塩酸を加え、エーテル層を水洗し、無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン-ジクロロメタン 1:1)で精製し無色結晶として標記化合物3.86g(収率90%)を得た。
融点:104-106℃分解(エタノールより再結晶)
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.19-1.43 (m, 44 H), 2.09-2.15 (m, 2 H), 2.58-2.61 (m, 2 H), 3.79 (s, 4 H), 6.75 (s, 2 H), 6.93 (d, J = 2 Hz, 2 H), 7.25 (d, J = 2 Hz, 2 H).
13C-NMR (100.7 MHz,δ, CDCl3)
24.7, 29.7, 31.6, 32.6, 33.9, 34.2, 35.0, 48.1, 121.6, 123.7, 125.2, 137.3, 142.2, 152.0. 
元素分析:計算値(C36H56O2S2)C, 73.92%; H, 9.34%.
実測値: C, 74.17%; H, 9.31%.
(Reference Example 4)
Synthesis of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclohexane Under an argon atmosphere, 1.08 g (7.3 mmol) of trans-cyclohexane-1,2-dithiol and bromide 3 , 5-di-t-butyl-2-hydroxybenzyl (4.58 g, 15.3 mmol) was dissolved in tetrahydrofuran (90 mL) and cooled to 0 ° C. Triethylamine 2.13mL (15.3mmol) was added there, and it stirred at 0 degreeC for 15 hours. The formed precipitate was removed by filtration, and the filtrate was concentrated under reduced pressure. Ether and dilute hydrochloric acid were added to the resulting residue, the ether layer was washed with water and dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent hexane-dichloromethane 1: 1) to obtain 3.86 g (yield 90%) of the title compound as colorless crystals.
Melting point: 104-106 ℃ decomposition (recrystallization from ethanol)
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.19-1.43 (m, 44 H), 2.09-2.15 (m, 2 H), 2.58-2.61 (m, 2 H), 3.79 (s, 4 H), 6.75 (s, 2 H), 6.93 (d, J = 2 Hz, 2 H), 7.25 (d, J = 2 Hz, 2 H).
13 C-NMR (100.7 MHz, δ, CDCl 3 )
24.7, 29.7, 31.6, 32.6, 33.9, 34.2, 35.0, 48.1, 121.6, 123.7, 125.2, 137.3, 142.2, 152.0.
Elemental analysis: calculated (C 36 H 56 O 2 S 2 ) C, 73.92%; H, 9.34%.
Found: C, 74.17%; H, 9.31%.
(参考例5)
trans-1,2-ビス(5-tert-ブチル-3-クミル-2-ヒドロキシベンジルスルファニル)シクロオクタンの合成
(1)4-tert-ブチル-2-クミルフェノールの合成
 窒素置換した200 mL二口フラスコに、4-tert-ブチルフェノール12.7 g(84.6 mmol)、α-メチルスチレン5.5 mL(42 mmol)およびシクロヘキサン100 mLを加え、50℃まで昇温した。ここに、p-トルエンスルホン酸 73 mg(0.42 mmol)を加え、4時間撹拌した。反応溶液を室温まで冷却した後、水およびジクロロメタンを加えた。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去した。得られた無色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 ジクロロメタン:ヘプタン=1:3)で精製することで4-tert-ブチル-2-クミルフェノール 8.06 g(収率 71%)を無色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.35 (s, 9H), 1.69 (s, 6H), 4.17(s, 1H), 6.68 (d, J = 8 Hz, 1H), 7.19 (dd, J = 2 Hz, 8 Hz, 1H), 7.2~7.3 (5H), 7.48 (d, J = 2 Hz, 1H).
13C{1H}-NMR (100.4 MHz,δ, ppm, CDCl3)
29.6, 31.6, 34.3, 41.8, 117.1, 123.1, 124.7, 126.0, 126.9, 129.1, 134.5, 143.1, 148.5, 151.4
(2)4-tert-ブチル-6-クミル-2-(ヒドロキシメチル)フェノールの合成
 窒素置換した200mL二口フラスコに、4-tert-ブチル-2-クミルフェノール7.25 g(23.3 mmol,純度86.3%)、塩化マグネシウム4.44 g(46.6 mmol)、パラホルムアルデヒド3.50 g(117 mmol)およびテトラヒドロフラン145 mLを加えた。ここにトリエチルアミン6.5 mL(47 mmol)を加え、3時間加熱還流した。反応溶液を室温まで放冷した後、不溶物を濾過した。濾液から減圧下で揮発成分を留去した後、残渣に酢酸エチルおよび水を加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下で溶媒を留去することで、5-tert-ブチル-3-クミルサリチルアルデヒド(純度79.9%, 収率93%)を含む混合物8.05 gを得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.42 (s, 9H), 1.74(s, 6H), 7.1~7.4(5H), 7.39 (d, J = 2 Hz, 1H), 7.74 (d, J = 2 Hz, 1H), 9.81 (s, 1H), 11.2 (s, 1H)
 次いで、窒素置換した100 mLフラスコに、上記混合物 8.05 gとテトラヒドロフラン40 mLおよびメタノール40 mLとを加え、氷冷した。ここに水素化ホウ素ナトリウム 340 mg(8.97 mmol)をゆっくり加え、室温まで昇温した後、7時間撹拌した。反応溶液から減圧下で揮発成分を留去した後、水および酢酸エチルを加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下、溶媒を留去した後、得られた無色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:15~1:5)で精製することで4-tert-ブチル-6-クミル-2-(ヒドロキシメチル)フェノール4.88 g(収率 75%)を無色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.34 (s, 9H), 1.70 (s, 6H), 2.16 (t, J = 6 Hz, 1H), 4.65 (d, J = 6 Hz, 2H), 5.56 (s,1H),7.09 (d, J = 2 Hz, 1H), 7.2~7.4(5H), 7.45 (d, J = 2 Hz, 1H).
(3)臭化 5-tert-ブチル-3-クミル-2-ヒドロキシベンジルの合成
 窒素置換した50 mLシュレンクに、4-tert-ブチル-6-クミル-2-(ヒドロキシメチル)フェノール4.88 g(16.4 mmol)とジクロロメタン24 mLとを加えた。ここに、三臭化リン8.2 mL(1.0 M ジクロロメタン溶液, 8.2 mmol)を加え、室温で1.5時間撹拌した。反応溶液に水を加え、有機層をさらに水で2回洗浄した後、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去することで、臭化 5-tert-ブチル-3-クミル-2-ヒドロキシベンジル5.76 g(収率 98%)を無色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.35 (s, 9H), 1.69 (s, 6H), 4.47 (s, 2H), 7.24 (d, J = 2 Hz, 1H), 7.2~7.4(5H), 7.48 (d, J = 2 Hz, 1H).
(4)trans-1,2-ビス(5-tert-ブチル-3-クミル-2-ヒドロキシベンジルスルファニル)シクロオクタンの合成
 窒素置換した100 mL二口フラスコに、臭化 5-tert-ブチル-3-クミル-2-ヒドロキシベンジル2.85 g(7.89 mmol)と、trans-シクロオクタン-1,2-ジチオール 7.6 mL(0.5 M テトラヒドロフラン溶液, 3.8 mmol)と、テトラヒドロフラン21 mLとを加え、氷冷した。
ここに、トリエチルアミン 1.1 mL(7.9 mmol)を加え、0℃で1時間、さらに室温で2時間撹拌した。反応溶液から減圧下で揮発成分を留去した後、酢酸エチルおよび塩化アンモニウム水溶液を加えた。有機層を水、飽和食塩水の順で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒 ジクロロメタン:へキサン=1:1)で精製することで、trans-1,2-ビス(5-tert-ブチル-3-クミル-2-ヒドロキシベンジルスルファニル)シクロオクタンと、trans-1-(5-tert-ブチル-3-クミル-2-ヒドロキシベンジルスルファニル)-2-スルファニルシクロオクタンとの2:1混合物2.26 gを得た。この混合物をテトラヒドロフラン4 mLに溶解し、臭化5-tert-ブチル-3-クミル-2-ヒドロキシベンジル0.42 g(1.2 mmol)およびトリエチルアミン0.2 mL(1.4 mmol)を室温で加えた。2時間撹拌した後、減圧下で揮発成分を留去した。得られた反応混合物に酢酸エチルおよび塩化アンモニウム水溶液を加え、有機層をさらに水、飽和食塩水の順で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去した。得られたオイルをシリカゲルカラムクロマトグラフィー(展開溶媒 ジクロロメタン:へキサン=1:1)で精製することで、trans-1,2-ビス(5-tert-ブチル-3-クミル-2-ヒドロキシベンジルスルファニル)シクロオクタン2.30 g(収率 89%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.35 (s, 18H), 1.68(s, 6H), 1.69 (s, 6H), 1.13~1.79 (m, 12H), 2.55 (m, 2H), 3.64 (d, J = 14 Hz, 2H), 3.68 (d, J = 14 Hz, 2H), 5.77 (s, 2H), 7.03 (d, J = 2 Hz, 2H), 7.13~7.26 (10H), 7.39 (d, J = 2 Hz, 2H).
13C{1H}-NMR (100.4 MHz,δ, ppm, CDCl3)
25.8, 25.9, 29.4, 30.0, 31.0, 31.6, 34.0, 34.3, 42.1, 49.9, 123.1, 123.4, 125.67, 125.74, 126.0, 128.2, 136.1, 142.1, 150.2, 150.8.
(Reference Example 5)
Synthesis of trans-1,2-bis (5-tert-butyl-3-cumyl-2-hydroxybenzylsulfanyl) cyclooctane (1) Synthesis of 4-tert-butyl-2-cumylphenol 200 mL 4-tert-butylphenol 12.7 g (84.6 mmol), α-methylstyrene 5.5 mL (42 mmol) and cyclohexane 100 mL were added to the neck flask, and the temperature was raised to 50 ° C. To this, 73 mg (0.42 mmol) of p-toluenesulfonic acid was added and stirred for 4 hours. After the reaction solution was cooled to room temperature, water and dichloromethane were added. After the organic layer was dried over anhydrous magnesium sulfate, the volatile component was distilled off under reduced pressure. The resulting colorless oil is purified by silica gel column chromatography (developing solvent: dichloromethane: heptane = 1: 3) to give 8.06 g (yield 71%) of 4-tert-butyl-2-cumylphenol as a colorless oil. It was.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.35 (s, 9H), 1.69 (s, 6H), 4.17 (s, 1H), 6.68 (d, J = 8 Hz, 1H), 7.19 (dd, J = 2 Hz, 8 Hz, 1H), 7.2 ~ 7.3 (5H), 7.48 (d, J = 2 Hz, 1H).
13 C { 1 H} -NMR (100.4 MHz, δ, ppm, CDCl 3 )
29.6, 31.6, 34.3, 41.8, 117.1, 123.1, 124.7, 126.0, 126.9, 129.1, 134.5, 143.1, 148.5, 151.4
(2) Synthesis of 4-tert-butyl-6-cumyl-2- (hydroxymethyl) phenol In a 200 mL two-necked flask purged with nitrogen, 7.25 g (23.3 mmol, purity 86.3) of 4-tert-butyl-2-cumylphenol was added. %), Magnesium chloride 4.44 g (46.6 mmol), paraformaldehyde 3.50 g (117 mmol) and tetrahydrofuran 145 mL were added. Triethylamine 6.5 mL (47 mmol) was added here, and it heated and refluxed for 3 hours. The reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate and water were added to the residue. The organic layer was washed with 1 M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 8.05 g of a mixture containing 5-tert-butyl-3-cumylsalicylaldehyde (purity 79.9%, yield 93%).
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.42 (s, 9H), 1.74 (s, 6H), 7.1 to 7.4 (5H), 7.39 (d, J = 2 Hz, 1H), 7.74 (d, J = 2 Hz, 1H), 9.81 (s, 1H ), 11.2 (s, 1H)
Next, 8.05 g of the above mixture, 40 mL of tetrahydrofuran and 40 mL of methanol were added to a 100 mL flask purged with nitrogen, and ice-cooled. To this, 340 mg (8.97 mmol) of sodium borohydride was slowly added and the temperature was raised to room temperature, followed by stirring for 7 hours. After distilling off volatile components from the reaction solution under reduced pressure, water and ethyl acetate were added. The organic layer was washed with 1 M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, the obtained colorless oil was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 15 to 1: 5) to give 4-tert-butyl-6- 4.88 g (75% yield) of cumyl-2- (hydroxymethyl) phenol was obtained as a colorless oil.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.34 (s, 9H), 1.70 (s, 6H), 2.16 (t, J = 6 Hz, 1H), 4.65 (d, J = 6 Hz, 2H), 5.56 (s, 1H), 7.09 (d, J = 2 Hz, 1H), 7.2 to 7.4 (5H), 7.45 (d, J = 2 Hz, 1H).
(3) Synthesis of 5-tert-butyl-3-cumyl-2-hydroxybenzyl bromide To 50 mL Schlenk substituted with nitrogen, 4-tert-butyl-6-cumyl-2- (hydroxymethyl) phenol (4.88 g) (16.4 mmol) and 24 mL of dichloromethane were added. To this, 8.2 mL of phosphorus tribromide (1.0 M dichloromethane solution, 8.2 mmol) was added, and the mixture was stirred at room temperature for 1.5 hours. Water was added to the reaction solution, and the organic layer was further washed twice with water and then with saturated brine. After drying the organic layer over anhydrous magnesium sulfate, the volatile component was distilled off under reduced pressure to obtain 5.76 g (98% yield) of 5-tert-butyl-3-cumyl-2-hydroxybenzyl bromide as a colorless oil. Got as.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.35 (s, 9H), 1.69 (s, 6H), 4.47 (s, 2H), 7.24 (d, J = 2 Hz, 1H), 7.2 to 7.4 (5H), 7.48 (d, J = 2 Hz, 1H ).
(4) Synthesis of trans-1,2-bis (5-tert-butyl-3-cumyl-2-hydroxybenzylsulfanyl) cyclooctane In a nitrogen-substituted 100 mL two-necked flask, 5-tert-butyl-3 -Cumyl-2-hydroxybenzyl 2.85 g (7.89 mmol), trans-cyclooctane-1,2-dithiol 7.6 mL (0.5 M tetrahydrofuran solution, 3.8 mmol) and tetrahydrofuran 21 mL were added, and the mixture was ice-cooled.
Triethylamine 1.1 mL (7.9 mmol) was added here, and it stirred at 0 degreeC for 1 hour, and also at room temperature for 2 hours. After distilling off volatile components from the reaction solution under reduced pressure, ethyl acetate and an aqueous ammonium chloride solution were added. The organic layer was washed with water and then saturated brine, and then dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, it was purified by silica gel column chromatography (developing solvent: dichloromethane: hexane = 1: 1) to obtain trans-1,2-bis (5-tert-butyl-3-cumyl- 2.26 g of a 2: 1 mixture of 2-hydroxybenzylsulfanyl) cyclooctane and trans-1- (5-tert-butyl-3-cumyl-2-hydroxybenzylsulfanyl) -2-sulfanylcyclooctane was obtained. This mixture was dissolved in 4 mL of tetrahydrofuran, and 0.42 g (1.2 mmol) of 5-tert-butyl-3-cumyl-2-hydroxybenzyl bromide and 0.2 mL (1.4 mmol) of triethylamine were added at room temperature. After stirring for 2 hours, volatile components were distilled off under reduced pressure. Ethyl acetate and an aqueous ammonium chloride solution were added to the obtained reaction mixture, and the organic layer was further washed with water and saturated brine in this order. The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The obtained oil was purified by silica gel column chromatography (developing solvent: dichloromethane: hexane = 1: 1) to obtain trans-1,2-bis (5-tert-butyl-3-cumyl-2-hydroxybenzylsulfanyl) ) 2.30 g (89% yield) of cyclooctane was obtained as a white solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.35 (s, 18H), 1.68 (s, 6H), 1.69 (s, 6H), 1.13 to 1.79 (m, 12H), 2.55 (m, 2H), 3.64 (d, J = 14 Hz, 2H), 3.68 (d, J = 14 Hz, 2H), 5.77 (s, 2H), 7.03 (d, J = 2 Hz, 2H), 7.13 to 7.26 (10H), 7.39 (d, J = 2 Hz, 2H).
13 C { 1 H} -NMR (100.4 MHz, δ, ppm, CDCl 3 )
25.8, 25.9, 29.4, 30.0, 31.0, 31.6, 34.0, 34.3, 42.1, 49.9, 123.1, 123.4, 125.67, 125.74, 126.0, 128.2, 136.1, 142.1, 150.2, 150.8.
(参考例6)
[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-3-クミル-2-オキソイルベンジルスルファニル)]ジベンジルジルコニウムの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス(5-tert-ブチル-3-クミル-2-ヒドロキシベンジルスルファニル)シクロオクタン 200 mg(0.27 mmol)のトルエン(5 mL)溶液に、テトラベンジルジルコニウム124 mg(0.27 mmol)のトルエン(5 mL)溶液を室温で滴下した。1時間後、反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下乾燥することで、[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-3-クミル-2-オキソイルベンジルスルファニル)]ジベンジルジルコニウム 121 mg (収率 44%)を黄色粉末として得た。
1H-NMR (400 MHz,δ, ppm, トルエン-d8)
0.79~1.8 (m, 12H), 1.23 (s, 18H), 1.84 (s, 6H), 1.99 (s, 6H), 2.03 (d, J = 10 HZ), 2.29 (m, 2H), 3.11 (d, J = 14 Hz, 2H), 3.41 (d, J = 14 Hz, 2H), 6.49 (d, J = 8 Hz, 4H), 6.63 (d, J = 2 Hz, 2H), 6.85 (t, J = 8 Hz, 2H), 7.0-7.1 (4H), 7.16 (t, J = 8 Hz, 2H), 7.25 (t, J = 8 Hz, 4H), 7.34 (d, J = 8 Hz, 4H), 7.44 (d, J = 2 Hz, 2H).
(Reference Example 6)
Synthesis of [cyclooctanediyl-trans-1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] dibenzylzirconium Trans in a 50 mL Schlenk tube in a glove box under nitrogen atmosphere To a solution of 1,2-bis (5-tert-butyl-3-cumyl-2-hydroxybenzylsulfanyl) cyclooctane 200 mg (0.27 mmol) in toluene (5 mL), tetrabenzylzirconium 124 mg (0.27 mmol) A toluene (5 mL) solution was added dropwise at room temperature. After 1 hour, the reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to obtain [cyclooctanediyl-trans-1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] dibenzyl Zirconium (121 mg, yield 44%) was obtained as a yellow powder.
1 H-NMR (400 MHz, δ, ppm, toluene-d 8 )
0.79-1.8 (m, 12H), 1.23 (s, 18H), 1.84 (s, 6H), 1.99 (s, 6H), 2.03 (d, J = 10 HZ), 2.29 (m, 2H), 3.11 (d , J = 14 Hz, 2H), 3.41 (d, J = 14 Hz, 2H), 6.49 (d, J = 8 Hz, 4H), 6.63 (d, J = 2 Hz, 2H), 6.85 (t, J = 8 Hz, 2H), 7.0-7.1 (4H), 7.16 (t, J = 8 Hz, 2H), 7.25 (t, J = 8 Hz, 4H), 7.34 (d, J = 8 Hz, 4H), 7.44 (d, J = 2 Hz, 2H).
(参考例7)
trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-ヒドロキシベンジルスルファニル]シクロオクタンの合成
(1)6-(1-アダマンチル)-2-(ヒドロキシメチル)-p-クレゾールの合成
 窒素置換した1 L四口フラスコに、2-(1-アダマンチル)-p-クレゾール20.9 g(86.1 mmol)、塩化マグネシウム16.4 g(172 mmol)、パラホルムアルデヒド 13.0 g(433 mmol)およびテトラヒドロフラン 400 mLを加えた。ここにトリエチルアミン 24 mL(172 mmol)を加え、2.5時間加熱還流した。反応溶液を室温まで放冷した後、不溶物を濾過した。濾液から減圧下で揮発成分を留去した後、残渣に酢酸エチルを加え、1M HCl、飽和食塩水の順で洗浄した。有機層を無水硫酸マグネシウムにより乾燥した後、減圧下で溶媒を留去することで、2-(1-アダマンチル)-5-メチルサリチルアルデヒドを含む混合物19.2 gを得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.78 ~ 2.25 (15H), 2.32(s, 3H), 6.98 (d, J = 2 Hz, 1H), 7.27 (d, J = 2 Hz, 1H), 9.82 (s, 1H), 11.64 (s, 1H).
 次いで、窒素置換した500 mL四口フラスコに、上記混合物 19.2 gとテトラヒドロフラン 135 mLおよびメタノール 80 mLとを加え、氷冷した。ここに水素化ホウ素ナトリウム 1.60 g(42.5 mmol)をゆっくり加え、室温まで昇温した後、14.5時間撹拌した。減圧下で揮発成分を留去した後、酢酸エチルを加え、1 M HCl、飽和食塩水の順で洗浄した。有機層を無水硫酸マグネシウムにより乾燥した後、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:へキサン=1:3~1:0)で精製することで、6-(1-アダマンチル)-2-(ヒドロキシメチル)-p-クレゾール 8.80 g(収率 38%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.78 (m, 6H), 2.01 (br, 1H), 2.07 (m, 3H), 2.15 (m, 6H), 2.25 (s, 3H), 4.81 (d, J = 4 Hz, 2H), 6.70 (d, J = 2 Hz, 1H), 6.99 (d, J = 2 Hz, 1H), 7.50 (s, 1H).
(2)臭化 3-(1-アダマンチル)-5-メチル-2-ヒドロキシベンジルの合成
 窒素置換した200 mL四口フラスコに、6-(1-アダマンチル)-2-(ヒドロキシメチル)-p-クレゾール 8.80 g(32.3 mmol)とジクロロメタン 132 mLとを加えた。ここに、三臭化リン 15 mL(1.23 M ジクロロメタン溶液, 18.5 mmol)を加え、室温で3.5時間撹拌した。反応溶液を氷水に加え、有機層を水および飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下揮発成分を留去することで、臭化 3-(1-アダマンチル)-5-メチル-2-ヒドロキシベンジル 11.1 g(粗収率 103%)を淡黄色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.78 (m, 6H), 2.09 (m, 3H), 2.12 (m, 6H), 2.26 (s, 3H), 4.54 (s, 2H), 6.92 (d, J = 2 Hz, 1H), 7.04 (d, J = 2 Hz, 1H).
(3)trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-ヒドロキシベンジルスルファニル]シクロオクタンの合成
 窒素置換した200 mL四口フラスコに、臭化 3-(1-アダマンチル)-5-メチル-2-ヒドロキシベンジル 7.04 g(21.0 mmol)と、trans-シクロオクタン-1,2-ジチオール 1.83 g(10.4 mmol)と、テトラヒドロフラン 100 mLとを加えた。ここに、トリエチルアミン 4.3 mL(31 mmol)を加え、室温で21.5時間撹拌した。反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加えた。有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=20:1)で精製することで、trans-1,2-ビス(3-(1-アダマンチル)-5-メチル-2-ヒドロキシベンジルスルファニル)シクロオクタンと、trans-1-(3-(1-アダマンチル)-5-メチル-2-ヒドロキシベンジルスルファニル)-2-スルファニルシクロオクタンとの6:1混合物6.61 gを得た。この混合物および臭化 3-(1-アダマンチル)-5-メチル-2-ヒドロキシベンジル1.36 g(3.98 mmol)をテトラヒドロフラン100 mLに溶解し、氷冷した。ここに、トリエチルアミン0.74 mL(5.31 mmol)を加え、15.5時間撹拌した。反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加え、有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=20:1)で精製し、得られた固体をさらにヘキサンにて室温でリパルプ洗浄することで、trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-ヒドロキシベンジルスルファニル]シクロオクタン 6.08 g(収率 85%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.2~2.0 (m, 12H), 1.77 (m, 12H), 2.05 (m, 6H), 2.13 (12H), 2.24 (s, 6H), 2.67 (m, 2H), 3.73 (d, J = 13 Hz, 2H), 3.82 (d, J = 13 Hz, 2H), 6.71 (d, J = 2Hz, 2H), 6.83 (s, 2H), 6.97 (d, J = 2 Hz, 2H).
(Reference Example 7)
Synthesis of trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-hydroxybenzylsulfanyl] cyclooctane (1) 6- (1-adamantyl) -2- (hydroxymethyl) -p- Synthesis of Cresol A nitrogen-substituted 1 L four-necked flask was charged with 20.9 g (86.1 mmol) of 2- (1-adamantyl) -p-cresol, 16.4 g (172 mmol) of magnesium chloride, 13.0 g (433 mmol) of paraformaldehyde and tetrahydrofuran. 400 mL was added. Triethylamine 24 mL (172 mmol) was added here, and it heated and refluxed for 2.5 hours. The reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate was added to the residue, followed by washing with 1M HCl and saturated brine in this order. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 19.2 g of a mixture containing 2- (1-adamantyl) -5-methylsalicylaldehyde.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.78 to 2.25 (15H), 2.32 (s, 3H), 6.98 (d, J = 2 Hz, 1H), 7.27 (d, J = 2 Hz, 1H), 9.82 (s, 1H), 11.64 (s, 1H ).
Next, 19.2 g of the above mixture, 135 mL of tetrahydrofuran and 80 mL of methanol were added to a 500 mL four-necked flask purged with nitrogen, and the mixture was ice-cooled. To this, 1.60 g (42.5 mmol) of sodium borohydride was slowly added, and the temperature was raised to room temperature, followed by stirring for 14.5 hours. After evaporating volatile components under reduced pressure, ethyl acetate was added, and the mixture was washed with 1 M HCl and saturated brine in this order. After drying the organic layer with anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent: chloroform: hexane = 1: 3 to 1: 0) to give 6- (1-adamantyl) -2- (hydroxymethyl) -p-cresol 8.80 g (38% yield) was obtained as a white solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.78 (m, 6H), 2.01 (br, 1H), 2.07 (m, 3H), 2.15 (m, 6H), 2.25 (s, 3H), 4.81 (d, J = 4 Hz, 2H), 6.70 (d , J = 2 Hz, 1H), 6.99 (d, J = 2 Hz, 1H), 7.50 (s, 1H).
(2) Synthesis of 3- (1-adamantyl) -5-methyl-2-hydroxybenzyl bromide In a nitrogen-substituted 200 mL four-necked flask, 6- (1-adamantyl) -2- (hydroxymethyl) -p- Cresol 8.80 g (32.3 mmol) and dichloromethane 132 mL were added. To this, 15 mL of phosphorus tribromide (1.23 M dichloromethane solution, 18.5 mmol) was added, and the mixture was stirred at room temperature for 3.5 hours. The reaction solution was added to ice water, and the organic layer was washed with water and saturated brine. After drying the organic layer over anhydrous magnesium sulfate, the volatile components were distilled off under reduced pressure to obtain 11.1 g (crude yield 103%) of 3- (1-adamantyl) -5-methyl-2-hydroxybenzyl bromide. Obtained as a pale yellow solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.78 (m, 6H), 2.09 (m, 3H), 2.12 (m, 6H), 2.26 (s, 3H), 4.54 (s, 2H), 6.92 (d, J = 2 Hz, 1H), 7.04 (d , J = 2 Hz, 1H).
(3) Synthesis of trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-hydroxybenzylsulfanyl] cyclooctane In a nitrogen-substituted 200 mL four-necked flask, 3- (1- Adamantyl) -5-methyl-2-hydroxybenzyl 7.04 g (21.0 mmol), trans-cyclooctane-1,2-dithiol 1.83 g (10.4 mmol), and tetrahydrofuran 100 mL were added. Triethylamine 4.3 mL (31 mmol) was added here, and it stirred at room temperature for 21.5 hours. The reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. Ethyl acetate and aqueous ammonium chloride solution were added to the resulting residue. The organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in that order, and then dried over anhydrous magnesium sulfate. After the solvent was distilled off under reduced pressure, trans-1,2-bis (3- (1-adamantyl) -5 was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 20: 1). -Methyl-2-hydroxybenzylsulfanyl) cyclooctane and trans-1- (3- (1-adamantyl) -5-methyl-2-hydroxybenzylsulfanyl) -2-sulfanylcyclooctane 6: 1 mixture 6.61 g Got. This mixture and 1.36 g (3.98 mmol) of 3- (1-adamantyl) -5-methyl-2-hydroxybenzyl bromide were dissolved in 100 mL of tetrahydrofuran and cooled on ice. Triethylamine 0.74 mL (5.31 mmol) was added here, and it stirred for 15.5 hours. The reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. Ethyl acetate and an aqueous ammonium chloride solution were added to the obtained residue, and the organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in this order. The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 20: 1), and the resulting solid was further repulp washed with hexane at room temperature to obtain trans-1,2-bis 6.08 g (yield 85%) of [3- (1-adamantyl) -5-methyl-2-hydroxybenzylsulfanyl] cyclooctane was obtained as a white solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.2 to 2.0 (m, 12H), 1.77 (m, 12H), 2.05 (m, 6H), 2.13 (12H), 2.24 (s, 6H), 2.67 (m, 2H), 3.73 (d, J = 13 Hz , 2H), 3.82 (d, J = 13 Hz, 2H), 6.71 (d, J = 2Hz, 2H), 6.83 (s, 2H), 6.97 (d, J = 2 Hz, 2H).
(参考例8)
{シクロオクタンジイル-trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-オキソイルベンジルスルファニル]}ジベンジルジルコニウムの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス(3-(1-アダマンチル)-5-メチル-2-ヒドロキシベンジルスルファニル)シクロオクタン 200 mg(0.29 mmol)のトルエン(6 mL)溶液に、テトラベンジルジルコニウム133 mg(0.29 mmol)のトルエン(6 mL)溶液を室温で滴下した。1.5時間後、反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、{シクロオクタンジイル-trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-オキソイルベンジルスルファニル]}ジベンジルジルコニウム 238 mg (収率 85%)を黄色粉末として得た。
1H-NMR (400 MHz,δ, ppm, トルエン-d8)
0.7~1.4 (m, 12H), 1.85 (m, 6 H), 2.1~2.2 (16H), 2.17 (s, 6H), 2.42 (m, 12H), 2.75 (d, J = 10 Hz, 2H), 3.12 (d, J = 14 Hz, 2H), 3.65 (d, J = 14 Hz, 2H), 6.27 (d, J = 2Hz, 2H), 6.87 (t, J = 6 Hz, 2H), 7.1~7.2 (10H).
(Reference Example 8)
Synthesis of {cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl]} dibenzylzirconium 50 mL Schlenk tube in a glove box under nitrogen atmosphere In a solution of trans-1,2-bis (3- (1-adamantyl) -5-methyl-2-hydroxybenzylsulfanyl) cyclooctane 200 mg (0.29 mmol) in toluene (6 mL), tetrabenzylzirconium 133 mg ( 0.29 mmol) in toluene (6 mL) was added dropwise at room temperature. After 1.5 hours, the reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to obtain {cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl] } 238 mg (yield 85%) of dibenzylzirconium was obtained as a yellow powder.
1 H-NMR (400 MHz, δ, ppm, toluene-d 8 )
0.7 to 1.4 (m, 12H), 1.85 (m, 6 H), 2.1 to 2.2 (16H), 2.17 (s, 6H), 2.42 (m, 12H), 2.75 (d, J = 10 Hz, 2H), 3.12 (d, J = 14 Hz, 2H), 3.65 (d, J = 14 Hz, 2H), 6.27 (d, J = 2Hz, 2H), 6.87 (t, J = 6 Hz, 2H), 7.1 to 7.2 (10H).
(参考例9)
trans-1,2-ビス[3-(N-カルバゾリル)-2-ヒドロキシ-5-メチルベンジルスルファニル]シクロオクタンの合成
(1)3-(N-カルバゾリル)-4-メトキシトルエンの合成
 窒素置換した200 mL二口フラスコに、カルバゾール25 g(149 mmol)、 3-ブロモ-4-メトキシトルエン25 g(125 mmol)、ヨウ化銅(I)1.13 g(6.0 mmol)、リン酸カリウム三塩基酸44 g(207 mmol)、trans-1,2-ジアミノシクロへキサン2.9 mL(42 mmol)およびジオキサン80 mLを加え、還流温度まで昇温し、44時間撹拌した。反応溶液を室温まで冷却した後、不溶物をろ過した。減圧下で揮発成分を留去した。得られた黒緑色固体をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:9)で精製することで3-(N-カルバゾリル)-4-メトキシトルエン 15.14 g(収率 42%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
2.37 (s, 3H), 3.66 (s, 3H), 7.0~7.5 (9H), 8.12 (d, J = 8 Hz, 2H).
(2)2-(N-カルバゾリル)-4-メチルフェノールの合成
 窒素置換した500 mLフラスコに、3-(N-カルバゾリル)-4-メトキシトルエン 15.14 g(53 mmol)および塩化メチレン75 mLを加え、0℃まで冷却した。ここに、三臭化ホウ素75 mL(1.0 M ジクロロメタン溶液, 75 mmol)を加え、室温まで昇温し、3時間撹拌した。反応溶液を300 mLの氷水に導入し、さらに酢酸エチル150mLを加えた。有機層を飽和炭酸水素ナトリウム水溶液で2回洗浄した後、飽和食塩水で洗浄した。無水硫酸ナトリウムにより乾燥し、減圧下で揮発成分を留去した。得られた白色固体をシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン:酢酸エチル=85:15)で精製することで2-(N-カルバゾリル)-4-メチルフェノール 14.45 g(収率>99%)を白色固体として得た。
1H-NMR (400 MHz, δ, ppm, CDCl3)
2.34 (s, 3H), 4.83 (s, 1H), 7.1~7.5 (9H), 8.16 (d, J = 0.8 Hz, 2H).
(3)6-(N-カルバゾリル)-2-(ヒドロキシメチル)-4-メチルフェノールの合成
 窒素置換した200mL二口フラスコに、2-(N-カルバゾリル)-4-メチルフェノール5.0 g(18.3 mmol)、塩化マグネシウム3.5 g(36.6 mmol)、パラホルムアルデヒド3.50 g(117 mmol)およびテトラヒドロフラン15 mLを加えた。ここにトリエチルアミン5.0 mL(49 mmol)を加え、3時間加熱還流した。反応溶液を室温まで放冷した後、不溶物を濾過した。濾液から減圧下で揮発成分を留去した後、残渣に酢酸エチルおよび水を加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下で溶媒を留去することで、3-(N-カルバゾリル)-5-メチルサリチルアルデヒド(CG純度91%、収率91%)を含む混合物5.53 gを得た。
1H-NMR (400 MHz, δ, ppm, CDCl3)
2.43 (s, 3H), 7.15(s, 6H), 7.1~7.4(8H), 8.14 (d, J = 0.8 Hz, 2H), 9.99 (s, 1H), 11.1 (s, 1H).
 次いで、窒素置換した100 mLフラスコに、上記混合物 2.0 gとテトラヒドロフラン10 mLおよびメタノール10 mLとを加え、氷冷した。ここに水素化ホウ素ナトリウム 260 mg(6.9 mmol)をゆっくり加え、室温まで昇温した後、1時間撹拌した。反応溶液に水を加えた後、減圧下で揮発成分を留去した後、水および酢酸エチルを加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。得られた無色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:2)で精製することで6-(N-カルバゾリル)-2-(ヒドロキシメチル)-4-メチルフェノール2.18 g(収率 >99%)を白色固体として得た。
1H-NMR (400 MHz, δ, ppm, CDCl3)
2.28 (s, 3H), 4.89 (d, J = 6 Hz, 2H), 5.96 (s,1H), 7.1~7.5(8H), 8.15 (d, J = 8 Hz, 2H).
(4)臭化 3-(N-カルバゾリル)-2-ヒドロキシ-5-メチルベンジルの合成
 窒素置換した100mLフラスコに、6-(N-カルバゾリル)-4-メチル-2-(ヒドロキシメチル)フェノール2.18 g(7.2 mmol)とジクロロメタン10 mLとを加えた。ここに、三臭化リン4.5 mL(1.0 M ジクロロメタン溶液, 4.5 mmol)を加え、室温で1時間撹拌した。反応溶液に水を加え、有機層をさらに水で2回洗浄した後、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去することで、臭化 3-(N-カルバゾリル)-2-ヒドロキシ-5-メチルベンジル2.45 g(収率93%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
3.34 (s, 3H), 4.67 (s, 2H), 7.1~7.5(8H), 8.16 (d, J = 8 Hz, 2H).
(5)trans-1,2-ビス(3-(N-カルバゾリル)-2-ヒドロキシ-5-メチルベンジルスルファニル)シクロオクタンの合成
 窒素置換した50 mLフラスコに、臭化 3-(N-カルバゾリル)-2-ヒドロキシ-5-メチルベンジル0.84 g(2.28 mmol)と、trans-シクロオクタン-1,2-ジチオール 2.0 mL(0.5 M テトラヒドロフラン溶液, 1.0 mmol)と、テトラヒドロフラン 6 mLとを加え、氷冷した。ここに、トリエチルアミン0.7 mL(5.0 mmol)を加え、0℃で1時間、さらに室温で12時間撹拌した。反応溶液に臭化3-(N-カルバゾリル)-2-ヒドロキシ-5-メチルベンジル0.15 g(0.4 mmol)を室温で加えた。12時間撹拌した後、減圧下で揮発成分を留去した。得られた反応混合物に酢酸エチルおよび塩化アンモニウム水溶液を加え、有機層をさらに飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去した。得られたオイルをシリカゲルカラムクロマトグラフィー(展開溶媒 ジクロロメタン)で精製することで、trans-1,2-ビス[3-(N-カルバゾリル)-2-ヒドロキシ-5-メチルベンジルスルファニル]シクロオクタン0.88 g(収率 >99%)を白色固体として得た。
1H-NMR (400 MHz, δ, ppm, CDCl3)
1.13~1.79 (m, 12H), 2.24 (s, 6H), 2.97 (m, 2H), 3.91 (s, 4H), 5.90 (s, 2H), 7.0~7.35 (16H), 8.10 (d, J = 3 Hz, 4H).
(Reference Example 9)
Synthesis of trans-1,2-bis [3- (N-carbazolyl) -2-hydroxy-5-methylbenzylsulfanyl] cyclooctane (1) Synthesis of 3- (N-carbazolyl) -4-methoxytoluene In a 200 mL two-neck flask, carbazole 25 g (149 mmol), 3-bromo-4-methoxytoluene 25 g (125 mmol), copper (I) iodide 1.13 g (6.0 mmol), potassium phosphate tribasic acid 44 g (207 mmol), trans-1,2-diaminocyclohexane 2.9 mL (42 mmol) and dioxane 80 mL were added, and the mixture was heated to reflux temperature and stirred for 44 hours. After cooling the reaction solution to room temperature, insolubles were filtered. Volatile components were distilled off under reduced pressure. The resulting black-green solid was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 9) to obtain 15.14 g (42% yield) of 3- (N-carbazolyl) -4-methoxytoluene. Obtained as a white solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
2.37 (s, 3H), 3.66 (s, 3H), 7.0 to 7.5 (9H), 8.12 (d, J = 8 Hz, 2H).
(2) Synthesis of 2- (N-carbazolyl) -4-methylphenol To a nitrogen-substituted 500 mL flask was added 15.14 g (53 mmol) of 3- (N-carbazolyl) -4-methoxytoluene and 75 mL of methylene chloride. And cooled to 0 ° C. To this, 75 mL of boron tribromide (1.0 M dichloromethane solution, 75 mmol) was added, and the mixture was warmed to room temperature and stirred for 3 hours. The reaction solution was introduced into 300 mL of ice water, and 150 mL of ethyl acetate was further added. The organic layer was washed twice with a saturated aqueous sodium hydrogen carbonate solution and then washed with saturated brine. The extract was dried over anhydrous sodium sulfate, and the volatile component was distilled off under reduced pressure. The obtained white solid was purified by silica gel column chromatography (developing solvent hexane: ethyl acetate = 85: 15) to obtain 14.45 g (yield> 99%) of 2- (N-carbazolyl) -4-methylphenol as white. Obtained as a solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
2.34 (s, 3H), 4.83 (s, 1H), 7.1-7.5 (9H), 8.16 (d, J = 0.8 Hz, 2H).
(3) Synthesis of 6- (N-carbazolyl) -2- (hydroxymethyl) -4-methylphenol In a 200 mL two-necked flask purged with nitrogen, 5.0 g (18.3 mmol) of 2- (N-carbazolyl) -4-methylphenol was added. ), Magnesium chloride 3.5 g (36.6 mmol), paraformaldehyde 3.50 g (117 mmol) and tetrahydrofuran 15 mL were added. Triethylamine 5.0 mL (49 mmol) was added here, and it heated and refluxed for 3 hours. The reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate and water were added to the residue. The organic layer was washed with 1 M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 5.53 g of a mixture containing 3- (N-carbazolyl) -5-methylsalicylaldehyde (CG purity 91%, yield 91%).
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
2.43 (s, 3H), 7.15 (s, 6H), 7.1 to 7.4 (8H), 8.14 (d, J = 0.8 Hz, 2H), 9.99 (s, 1H), 11.1 (s, 1H).
Next, 2.0 g of the above mixture, 10 mL of tetrahydrofuran and 10 mL of methanol were added to a 100 mL flask purged with nitrogen, and the mixture was ice-cooled. To this, 260 mg (6.9 mmol) of sodium borohydride was slowly added, and the mixture was warmed to room temperature and stirred for 1 hour. After adding water to the reaction solution, volatile components were distilled off under reduced pressure, and then water and ethyl acetate were added. The organic layer was washed with 1 M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The obtained colorless oil was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 2) to give 2.18 g of 6- (N-carbazolyl) -2- (hydroxymethyl) -4-methylphenol ( Yield> 99%) as a white solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
2.28 (s, 3H), 4.89 (d, J = 6 Hz, 2H), 5.96 (s, 1H), 7.1 to 7.5 (8H), 8.15 (d, J = 8 Hz, 2H).
(4) Synthesis of 3- (N-carbazolyl) -2-hydroxy-5-methylbenzyl bromide In a nitrogen-substituted 100 mL flask, 6- (N-carbazolyl) -4-methyl-2- (hydroxymethyl) phenol 2.18 g (7.2 mmol) and 10 mL of dichloromethane were added. To this, 4.5 mL of phosphorus tribromide (1.0 M dichloromethane solution, 4.5 mmol) was added, and the mixture was stirred at room temperature for 1 hour. Water was added to the reaction solution, and the organic layer was further washed twice with water and then with saturated brine. After drying the organic layer over anhydrous magnesium sulfate, the volatile components were distilled off under reduced pressure to obtain 2.45 g (93% yield) of 3- (N-carbazolyl) -2-hydroxy-5-methylbenzyl bromide. Obtained as a white solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
3.34 (s, 3H), 4.67 (s, 2H), 7.1 to 7.5 (8H), 8.16 (d, J = 8 Hz, 2H).
(5) Synthesis of trans-1,2-bis (3- (N-carbazolyl) -2-hydroxy-5-methylbenzylsulfanyl) cyclooctane In a nitrogen-substituted 50 mL flask, 3- (N-carbazolyl bromide) -2-hydroxy-5-methylbenzyl 0.84 g (2.28 mmol), trans-cyclooctane-1,2-dithiol 2.0 mL (0.5 M tetrahydrofuran solution, 1.0 mmol) and tetrahydrofuran 6 mL were added, and the mixture was ice-cooled. . Triethylamine 0.7 mL (5.0 mmol) was added here, and it stirred at 0 degreeC for 1 hour, and also at room temperature for 12 hours. To the reaction solution, 0.15 g (0.4 mmol) of 3- (N-carbazolyl) -2-hydroxy-5-methylbenzyl bromide was added at room temperature. After stirring for 12 hours, volatile components were distilled off under reduced pressure. Ethyl acetate and aqueous ammonium chloride solution were added to the obtained reaction mixture, and the organic layer was further washed with saturated brine. The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The obtained oil was purified by silica gel column chromatography (developing solvent: dichloromethane) to obtain trans-1,2-bis [3- (N-carbazolyl) -2-hydroxy-5-methylbenzylsulfanyl] cyclooctane 0.88 g (Yield> 99%) was obtained as a white solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.13 to 1.79 (m, 12H), 2.24 (s, 6H), 2.97 (m, 2H), 3.91 (s, 4H), 5.90 (s, 2H), 7.0 to 7.35 (16H), 8.10 (d, J = (3 Hz, 4H).
(参考例10)
trans-1,2-ビス[5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシベンジルスルファニル]シクロオクタンの合成
(1)4-tert-ブチル-2-(3, 5-ジメチル-1-アダマンチル)フェノールの合成
 窒素置換した50 mLシュレンクに、4-tert-ブチルフェノール3.3 g(22 mmol)、3,5-ジメチル-1-アダマンタノール 4.0 g(22 mmol)およびジクロロメタン20 mLを加え、氷浴で0℃まで冷却した。ここに硫酸1.2 mL(22 mmol)を加え、室温で1時間撹拌した。反応溶液を炭酸水素ナトリウム水溶液に注いだ。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去した。得られた白色固体をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:10)で精製することで4-tert-ブチル-2-(3, 5-ジメチル-1-アダマンチル)フェノール 4.0 g(収率 59%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.874 (s, 6H), 1.20 (s, 2H), 1.29 (s, 9H), 1.35~1.45 (m, 4H), 1.70~1.78 (m, 4H), 1.95 (m,2H), 2.17 (m, 1H), 4.56 (s, 1H), 6.56 (d, J = 8 Hz, 1H), 7.06 (dd, J = 2 Hz, 8 Hz, 1H), 7.24 (d, J = 2 Hz, 1H).
(2)4-tert-ブチル-6-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシメチルフェノールの合成
 窒素置換した100mL二口フラスコに、4-tert-ブチル-2-(3, 5-ジメチル-1-アダマンチル)フェノール4.0 g(13 mmol,)、塩化マグネシウム4.8 g(50 mmol)、パラホルムアルデヒド2.1 g(70 mmol)およびテトラヒドロフラン50 mLを加えた。ここにトリエチルアミン6.7 mL(48 mmol)を加え、3時間加熱還流した。反応溶液を室温まで放冷した後、不溶物を濾過した。濾液から減圧下で揮発成分を留去した後、残渣に酢酸エチルおよび水を加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下で溶媒を留去することで、5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)サリチルアルデヒド(収率96%)を含む混合物4.2 gを得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.874 (s, 6H), 1.2~2.2 (m, 22H), 7.32 (d, J = 2 Hz, 1H), 7.53 (d, J = 2 Hz, 1H), 9.85 (s, 1H), 11.7 (s, 1H).
 窒素置換した100 mLフラスコに、上記混合物 4.2 gとテトラヒドロフラン20 mLおよびメタノール20 mLとを加え、氷冷した。ここに水素化ホウ素ナトリウム 490 mg(13 mmol)をゆっくり加え、室温まで昇温後、1時間撹拌した。反応溶液から減圧下で揮発成分を留去した後、水および酢酸エチルを加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下、溶媒を留去した後、得られた無色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:10~1:5)で精製することで4-tert-ブチル-6-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシメチルフェノール3.4 g(収率 81%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.875 (s, 6H), 1.2~2.2 (m, 23H), 4.85 (d, J = 5 Hz, 2H), 6.88 (d, J = 2 Hz, 1H), 7.22 (d, J = 2 Hz, 1H), 7.55 (s, 1H).
(3)臭化 5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシベンジルの合成
 窒素置換した200 mLフラスコに、4-tert-ブチル-6-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシメチルフェノール3.4 g(9.9 mmol)およびジクロロメタン20 mLを加えた。ここに、三臭化リン6.6 mL(1.0 M ジクロロメタン溶液, 6.6 mmol)を加え、室温で1時間撹拌した。反応溶液に水を加え、有機層をさらに水で2回洗浄した後、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去することで、臭化 5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシベンジル3.95 g(収率 98%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.882 (s, 6H), 1.22 (s, 2H), 1.28 (s, 9H), 1.35~1.45 (m, 4H), 1.70~1.78 (m, 4H), 1.96 (m,2H), 2.19 (m, 1H), 4.57 (s, 1H), 7.08 (d, J = 2 Hz, 1H), 7.27 (d, J = 2 Hz, 1H).
(4)trans-1,2-ビス[5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシベンジルスルファニル]シクロオクタンの合成
 窒素置換した50 mLシュレンクに、臭化 5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシベンジル1.0 g(2.5 mmol)、trans-シクロオクタン-1,2-ジチオール 0.18 g(1.0 mmol)およびテトラヒドロフラン 7 mLを加え、氷冷した。ここに、トリエチルアミン 0.7 mL(5.0 mmol)を加え、0℃で1時間、室温で2時間撹拌した。さらに臭化 5-tert-ブチル-2-ヒドロキシ-3-(3, 5-ジメチル-1-アダマンチル)ベンジル0.05 g(0.013 mmol)を加え、室温で1時間攪拌した。反応溶液から減圧下で揮発成分を留去した後、酢酸エチルおよび塩化アンモニウム水溶液を加えた。有機層を水、飽和食塩水の順で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:10)で精製することで、trans-1,2-ビス[5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシベンジルスルファニル]シクロオクタン1.0 g(収率 >99%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.88 (s, 12H), 1.2~2.2 (m, 56H), 2.59 (m, 2H), 3.77 (d, J = 14 Hz, 2H), 3.87 (d, J = 14 Hz, 2H), 6.89 (d, J = 2 Hz, 2H), 7.19 (d, J = 2 Hz, 2H).
(Reference Example 10)
Synthesis of trans-1,2-bis [5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-hydroxybenzylsulfanyl] cyclooctane (1) 4-tert-butyl-2- ( Synthesis of 3, 5-dimethyl-1-adamantyl) phenol Nitrogen-substituted 50 mL Schlenk was charged with 3.3 g (22 mmol) of 4-tert-butylphenol, 4.0 g (22 mmol) of 3,5-dimethyl-1-adamantanol and Dichloromethane (20 mL) was added, and the mixture was cooled to 0 ° C. with an ice bath. Sulfuric acid 1.2 mL (22 mmol) was added here, and it stirred at room temperature for 1 hour. The reaction solution was poured into an aqueous sodium bicarbonate solution. After the organic layer was dried over anhydrous magnesium sulfate, the volatile component was distilled off under reduced pressure. The obtained white solid was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10) to give 4.0 g of 4-tert-butyl-2- (3,5-dimethyl-1-adamantyl) phenol ( Yield 59%) was obtained as a white solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.874 (s, 6H), 1.20 (s, 2H), 1.29 (s, 9H), 1.35 to 1.45 (m, 4H), 1.70 to 1.78 (m, 4H), 1.95 (m, 2H), 2.17 (m, 1H), 4.56 (s, 1H), 6.56 (d, J = 8 Hz, 1H), 7.06 (dd, J = 2 Hz, 8 Hz, 1H), 7.24 (d, J = 2 Hz, 1H).
(2) Synthesis of 4-tert-butyl-6- (3,5-dimethyl-1-adamantyl) -2-hydroxymethylphenol Into a nitrogen-substituted 100 mL two-necked flask, 4-tert-butyl-2- (3, 5-dimethyl-1-adamantyl) phenol 4.0 g (13 mmol), magnesium chloride 4.8 g (50 mmol), paraformaldehyde 2.1 g (70 mmol) and tetrahydrofuran 50 mL were added. Triethylamine 6.7 mL (48 mmol) was added here, and it heated and refluxed for 3 hours. The reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate and water were added to the residue. The organic layer was washed with 1 M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 4.2 g of a mixture containing 5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) salicylaldehyde (yield 96%).
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.874 (s, 6H), 1.2-2.2 (m, 22H), 7.32 (d, J = 2 Hz, 1H), 7.53 (d, J = 2 Hz, 1H), 9.85 (s, 1H), 11.7 (s , 1H).
To a 100 mL flask purged with nitrogen, 4.2 g of the above mixture, 20 mL of tetrahydrofuran and 20 mL of methanol were added and cooled on ice. 490 mg (13 mmol) of sodium borohydride was slowly added here, and it heated up to room temperature, and stirred for 1 hour. After distilling off volatile components from the reaction solution under reduced pressure, water and ethyl acetate were added. The organic layer was washed with 1 M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, the resulting colorless oil was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10 to 1: 5) to give 4-tert-butyl-6- 3.4 g (yield 81%) of (3,5-dimethyl-1-adamantyl) -2-hydroxymethylphenol was obtained as a white solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.875 (s, 6H), 1.2-2.2 (m, 23H), 4.85 (d, J = 5 Hz, 2H), 6.88 (d, J = 2 Hz, 1H), 7.22 (d, J = 2 Hz, 1H ), 7.55 (s, 1H).
(3) Synthesis of 5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-hydroxybenzyl bromide In a 200 mL flask purged with nitrogen, 4-tert-butyl-6- (3, 3.4 g (9.9 mmol) of 5-dimethyl-1-adamantyl) -2-hydroxymethylphenol and 20 mL of dichloromethane were added. To this, 6.6 mL of phosphorus tribromide (1.0 M dichloromethane solution, 6.6 mmol) was added and stirred at room temperature for 1 hour. Water was added to the reaction solution, and the organic layer was further washed twice with water and then with saturated brine. After drying the organic layer with anhydrous magnesium sulfate, the volatile component was distilled off under reduced pressure to give 5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-hydroxybenzyl bromide 3.95 g (yield 98%) was obtained as a white solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.882 (s, 6H), 1.22 (s, 2H), 1.28 (s, 9H), 1.35 to 1.45 (m, 4H), 1.70 to 1.78 (m, 4H), 1.96 (m, 2H), 2.19 (m, 1H), 4.57 (s, 1H), 7.08 (d, J = 2 Hz, 1H), 7.27 (d, J = 2 Hz, 1H).
(4) Synthesis of trans-1,2-bis [5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-hydroxybenzylsulfanyl] cyclooctane 5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-hydroxybenzyl 1.0 g (2.5 mmol), trans-cyclooctane-1,2-dithiol 0.18 g (1.0 mmol) and tetrahydrofuran 7 mL was added and ice-cooled. Triethylamine 0.7 mL (5.0 mmol) was added here, and it stirred at 0 degreeC for 1 hour, and 2 hours at room temperature. Further, 0.05 g (0.013 mmol) of 5-tert-butyl-2-hydroxy-3- (3,5-dimethyl-1-adamantyl) benzyl bromide was added and stirred at room temperature for 1 hour. After distilling off volatile components from the reaction solution under reduced pressure, ethyl acetate and an aqueous ammonium chloride solution were added. The organic layer was washed with water and then saturated brine, and then dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, it was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10) to obtain trans-1,2-bis [5-tert-butyl-3- ( 1.0 g (yield> 99%) of 3,5-dimethyl-1-adamantyl) -2-hydroxybenzylsulfanyl] cyclooctane was obtained as a white solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.88 (s, 12H), 1.2-2.2 (m, 56H), 2.59 (m, 2H), 3.77 (d, J = 14 Hz, 2H), 3.87 (d, J = 14 Hz, 2H), 6.89 (d , J = 2 Hz, 2H), 7.19 (d, J = 2 Hz, 2H).
(参考例11)
{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3- (3, 5-ジメチル-1-アダマンチル) -2-ヒドロキシベンジルスルファニル]}ジクロロチタンの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス(5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシベンジルスルファニル)シクロオクタン 83 mg(0.10 mmol)のジクロロメタン(1 mL)溶液に、ジクロロジイソプロポキシチタン24 mg(0.10 mmol)のジクロロメタン(1 mL)溶液を室温で滴下した。1.5時間後、減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3- (3, 5-ジメチル-1-アダマンチル) -2-ヒドロキシベンジルスルファニル]}ジクロロチタン 50 mg (収率 53%)を赤色粉末として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.8~2.4 (m, 56H), 2.67 (brs, 2H), 3.80 (d, J = 14 Hz, 2H), 4.67 (d, J = 14 Hz, 2H), 6.86 (s, 2H), 7.35 (s, 2H).
(Reference Example 11)
Synthesis of {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-hydroxybenzylsulfanyl]} dichlorotitanium Glove box under nitrogen atmosphere In a 50 mL Schlenk tube, trans-1,2-bis (5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-hydroxybenzylsulfanyl) cyclooctane 83 mg (0.10 mmol) To a dichloromethane (1 mL) solution, a solution of dichlorodiisopropoxytitanium 24 mg (0.10 mmol) in dichloromethane (1 mL) was added dropwise at room temperature. After 1.5 hours, volatile components were distilled off under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to obtain {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) 2-hydroxybenzylsulfanyl]} dichlorotitanium 50 mg (yield 53%) was obtained as a red powder.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.8 to 2.4 (m, 56H), 2.67 (brs, 2H), 3.80 (d, J = 14 Hz, 2H), 4.67 (d, J = 14 Hz, 2H), 6.86 (s, 2H), 7.35 (s , 2H).
(参考例12)
{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3- (3, 5-ジメチル-1-アダマンチル) -2-ヒドロキシベンジルスルファニル]}ジクロロジルコニウムの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス(5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシベンジルスルファニル)シクロオクタン 83 mg(0.10 mmol)のトルエン(1 mL)溶液に、テトラクロロジルコニウム23 mg(0.10 mmol)のトルエン(1 mL)溶液を室温で滴下した。1.5時間後、減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3- (3, 5-ジメチル-1-アダマンチル) -2-ヒドロキシベンジルスルファニル]}ジクロロジルコニウム 51 mg (収率 52%)を白色粉末として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.903 (s, 12H), 1.0~2.4 (m, 56H), 2.55 (brs, 2H), 3.84 (d, J = 14 Hz, 2H), 4.52 (d, J = 14 Hz, 2H), 6.85 (d, J = 2 Hz, 2H), 7.34 (d, J = 2 Hz, 2H).
(Reference Example 12)
Synthesis of {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-hydroxybenzylsulfanyl]} dichlorozirconium Glove box under nitrogen atmosphere In a 50 mL Schlenk tube, trans-1,2-bis (5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-hydroxybenzylsulfanyl) cyclooctane 83 mg (0.10 mmol) A toluene (1 mL) solution of 23 mg (0.10 mmol) of tetrachlorozirconium was added dropwise to a toluene (1 mL) solution at room temperature. After 1.5 hours, volatile components were distilled off under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to obtain {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) 2-hydroxybenzylsulfanyl]} dichlorozirconium 51 mg (yield 52%) was obtained as a white powder.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.903 (s, 12H), 1.0-2.4 (m, 56H), 2.55 (brs, 2H), 3.84 (d, J = 14 Hz, 2H), 4.52 (d, J = 14 Hz, 2H), 6.85 (d , J = 2 Hz, 2H), 7.34 (d, J = 2 Hz, 2H).
(参考例13)
trans-1,2-ビス[5-tert-ブチル-3-(2-フェニル-2-ブチル)-2-ヒドロキシベンジルスルファニル]シクロオクタンの合成
(1)4-tert-ブチル-2-(2-フェニル-2-ブチル)フェノールの合成
 窒素置換した50 mLシュレンクに、4-tert-ブチルフェノール6.6 g(44 mmol)、2-フェニル-2-ブタノール 3.4 mL(22 mmol)およびヘプタン20 mLを加え、80℃まで加熱した。 ここにp-トルエンスルホン酸一水和物73mg(0.38 mmol)を加え、100℃で11.5時間撹拌した。反応溶液に水および酢酸エチルを加えた。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去した。得られた白色固体をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:10)で精製することで4-tert-ブチル-2-(2-フェニル-2-ブチル)フェノール 4.4 g(収率 71%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.683 (t, J = 7Hz, 3H), 1.35 (s, 9H), 1.61 (s, 3H), 2.02-2.26 (m, 2H), 4.18 (s, 1H), 6.66 (d, J = 8 Hz, 1H), 7.15~7.38 (m, 6H), 7.44 (d, J = 2 Hz, 1H).
(2)4-tert-ブチル-6-(2-フェニル-2-ブチル)-2-ヒドロキシメチルフェノールの合成
 窒素置換した500mLフラスコに、4-tert-ブチル-2-(2-フェニル-2-ブチル)フェノール3.0 g(11 mmol,)、塩化マグネシウム4.0 g(41 mmol)、パラホルムアルデヒド1.8 g(60 mmol)およびテトラヒドロフラン45 mLを加えた。ここにトリエチルアミン5.6 mL(41 mmol)を加え、3時間加熱還流した。反応溶液を室温まで放冷した後、不溶物を濾過した。濾液から減圧下で揮発成分を留去した後、残渣に酢酸エチルと水を加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下で溶媒を留去することで、5-tert-ブチル-3-(2-フェニル-2-ブチル)サリチルアルデヒド(収率77%)を含む混合物2.7 gを得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.882 (t, J = 7 Hz, 3H), 1.34~1.55(m, 11H), 1.83 (s, 6H), 7.2~7.9 (m, 7H), 9.82 (s, 1H), 11.2 (s, 1H).
 窒素置換した200mLフラスコに、上記混合物 2.7 gとテトラヒドロフラン15 mLおよびメタノール15 mLとを加えた。ここに水素化ホウ素ナトリウム 340 mg(8.9 mmol)をゆっくり加え、室温まで昇温後、1時間撹拌した。反応溶液から減圧下で揮発成分を留去した後、水および酢酸エチルを加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下、溶媒を留去した後、得られた無色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:10~1:3)で精製することで4-tert-ブチル-6-(2-フェニル-2-ブチル)-2-ヒドロキシメチルフェノール2.1 g(収率 79%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.685 (t, J = 8 Hz, 3H), 1.34 (s, 9H), 1.62 (s, 6H), 2.0~2.4 (m, 3H), 4.62 (d, J = 6 Hz, 2H), 5.38 (s, 1H), 7.0~7.5 (m, 7H).
(3)臭化 5-tert-ブチル-3-(2-フェニル-2-ブチル)-2-ヒドロキシベンジルの合成
 窒素置換した500mLフラスコに、4-tert-ブチル-6-(2-フェニル-2-ブチル)-2-ヒドロキシメチルフェノール2.1 g(6.7 mmol)およびジクロロメタン15 mLを加えた。ここに、三臭化リン4.5 mL(1.0 M ジクロロメタン溶液, 4.5 mmol)を加え、室温で1時間撹拌した。反応溶液に水を加え、有機層をさらに水で2回洗浄した後、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去することで、臭化 5-tert-ブチル-3-(2-フェニル-2-ブチル)-2-ヒドロキシベンジル2.5 g(収率 >99%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.669(t, J = 8 Hz, 3H), 1.35 (s, 9H), 1.61 (s, 6H), 2.0~2.3 (m, 2H), 4.46 (m, 2H), 7.2~7.5 (m, 7H).
(4)trans-1,2-ビス[5-tert-ブチル-3-(2-フェニル-2-ブチル)-2-ヒドロキシベンジルスルファニル]シクロオクタンの合成
 窒素置換した50 mLフラスコに、臭化 5-tert-ブチル-3-(2-フェニル-2-ブチル)-2-ヒドロキシベンジル0.94 g(2.5 mmol)、trans-シクロオクタン-1,2-ジチオール 90 mg(0.50 mmol)およびテトラヒドロフラン 7 mLを加え、氷冷した。ここに、トリエチルアミン 0.70 mL(5.1 mmol)を加え、0℃で1時間、室温で1時間撹拌した。さらにtrans-シクロオクタン-1,2-ジチオール 90 mg(0.50 mmol)を加え、室温で1時間攪拌した。減圧下で揮発成分を留去し、得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加えた。有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:10)で精製することで、trans-1,2-ビス[5-tert-ブチル-3-(2-フェニル-2-ブチル)-2-ヒドロキシベンジルスルファニル]シクロオクタン 0.8 g(収率 >99%)を淡黄色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.663 (t, J = 8 Hz, 3H), 1.1~2.6 (m, 48H), 3.65 (m, 4H), 5.60~5.71 (m, 2H), 7.0~7.4 (m, 14H).
(Reference Example 13)
Synthesis of trans-1,2-bis [5-tert-butyl-3- (2-phenyl-2-butyl) -2-hydroxybenzylsulfanyl] cyclooctane (1) 4-tert-butyl-2- (2- Synthesis of phenyl-2-butyl) phenol To a nitrogen-substituted 50 mL Schlenk, 6.6 g (44 mmol) of 4-tert-butylphenol, 3.4 mL (22 mmol) of 2-phenyl-2-butanol and 20 mL of heptane were added. Heated to ° C. 73 mg (0.38 mmol) of p-toluenesulfonic acid monohydrate was added here, and it stirred at 100 degreeC for 11.5 hours. Water and ethyl acetate were added to the reaction solution. After the organic layer was dried over anhydrous magnesium sulfate, the volatile component was distilled off under reduced pressure. The obtained white solid was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10) to give 4.4 g of 4-tert-butyl-2- (2-phenyl-2-butyl) phenol (yield) 71%) was obtained as a white solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.683 (t, J = 7Hz, 3H), 1.35 (s, 9H), 1.61 (s, 3H), 2.02-2.26 (m, 2H), 4.18 (s, 1H), 6.66 (d, J = 8 Hz, 1H), 7.15-7.38 (m, 6H), 7.44 (d, J = 2 Hz, 1H).
(2) Synthesis of 4-tert-butyl-6- (2-phenyl-2-butyl) -2-hydroxymethylphenol Into a 500 mL flask purged with nitrogen, 4-tert-butyl-2- (2-phenyl-2-) was added. (Butyl) phenol 3.0 g (11 mmol), magnesium chloride 4.0 g (41 mmol), paraformaldehyde 1.8 g (60 mmol) and tetrahydrofuran 45 mL were added. Triethylamine 5.6 mL (41 mmol) was added here, and it heated and refluxed for 3 hours. The reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate and water were added to the residue. The organic layer was washed with 1 M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 2.7 g of a mixture containing 5-tert-butyl-3- (2-phenyl-2-butyl) salicylaldehyde (yield 77%).
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.882 (t, J = 7 Hz, 3H), 1.34 to 1.55 (m, 11H), 1.83 (s, 6H), 7.2 to 7.9 (m, 7H), 9.82 (s, 1H), 11.2 (s, 1H) .
To a 200 mL flask purged with nitrogen, 2.7 g of the above mixture, 15 mL of tetrahydrofuran and 15 mL of methanol were added. Sodium borohydride 340 mg (8.9 mmol) was slowly added here, and it heated up to room temperature, and stirred for 1 hour. After distilling off volatile components from the reaction solution under reduced pressure, water and ethyl acetate were added. The organic layer was washed with 1 M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, the resulting colorless oil was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10 to 1: 3) to give 4-tert-butyl-6- 2.1 g (yield 79%) of (2-phenyl-2-butyl) -2-hydroxymethylphenol was obtained as a white solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.685 (t, J = 8 Hz, 3H), 1.34 (s, 9H), 1.62 (s, 6H), 2.0 to 2.4 (m, 3H), 4.62 (d, J = 6 Hz, 2H), 5.38 (s , 1H), 7.0-7.5 (m, 7H).
(3) Synthesis of 5-tert-butyl-3- (2-phenyl-2-butyl) -2-hydroxybenzyl bromide In a nitrogen-substituted 500 mL flask, 4-tert-butyl-6- (2-phenyl-2 -Butyl) -2-hydroxymethylphenol 2.1 g (6.7 mmol) and dichloromethane 15 mL were added. To this, 4.5 mL of phosphorus tribromide (1.0 M dichloromethane solution, 4.5 mmol) was added, and the mixture was stirred at room temperature for 1 hour. Water was added to the reaction solution, and the organic layer was further washed twice with water and then with saturated brine. After drying the organic layer with anhydrous magnesium sulfate, the volatile component was distilled off under reduced pressure to give 2.5 g of 5-tert-butyl-3- (2-phenyl-2-butyl) -2-hydroxybenzyl bromide ( Yield> 99%) as a white solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.669 (t, J = 8 Hz, 3H), 1.35 (s, 9H), 1.61 (s, 6H), 2.0 to 2.3 (m, 2H), 4.46 (m, 2H), 7.2 to 7.5 (m, 7H) .
(4) Synthesis of trans-1,2-bis [5-tert-butyl-3- (2-phenyl-2-butyl) -2-hydroxybenzylsulfanyl] cyclooctane Into a nitrogen-substituted 50 mL flask, bromide 5 -tert-butyl-3- (2-phenyl-2-butyl) -2-hydroxybenzyl 0.94 g (2.5 mmol), trans-cyclooctane-1,2-dithiol 90 mg (0.50 mmol) and tetrahydrofuran 7 mL were added. Chilled on ice. Triethylamine 0.70 mL (5.1 mmol) was added here, and it stirred at 0 degreeC for 1 hour, and room temperature for 1 hour. Further, 90 mg (0.50 mmol) of trans-cyclooctane-1,2-dithiol was added and stirred at room temperature for 1 hour. Volatile components were distilled off under reduced pressure, and ethyl acetate and an aqueous ammonium chloride solution were added to the resulting residue. The organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in that order, and then dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, it was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10) to obtain trans-1,2-bis [5-tert-butyl-3- ( 0.8 g (yield> 99%) of 2-phenyl-2-butyl) -2-hydroxybenzylsulfanyl] cyclooctane was obtained as a pale yellow solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.663 (t, J = 8 Hz, 3H), 1.1 to 2.6 (m, 48H), 3.65 (m, 4H), 5.60 to 5.71 (m, 2H), 7.0 to 7.4 (m, 14H).
(参考例14)
{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(2-フェニル-2-ブチル)-2-ヒドロキシベンジルスルファニル]}ジクロロチタンの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス[5-tert-ブチル-3-(2-フェニル-2-ブチル)-2-ヒドロキシベンジルスルファニル]シクロオクタン 130 mg(0.17 mmol)のジクロロメタン(1 mL)溶液に、ジクロロジイソプロポキシチタン40 mg(0.17 mmol)のジクロロメタン(1 mL)溶液を室温で滴下した。1.5時間後、減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(2-フェニル-2-ブチル)-2-ヒドロキシベンジルスルファニル]}ジクロロチタン 67 mg (収率 42%)を赤色粉末として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.5~2.8 (m, 47H), 3.1~4.8 (m, 5H), 6.3~7.5 (m, 14H).
(Reference Example 14)
Synthesis of {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (2-phenyl-2-butyl) -2-hydroxybenzylsulfanyl]} dichlorotitanium in a glove box under a nitrogen atmosphere, In a 50 mL Schlenk tube, trans-1,2-bis [5-tert-butyl-3- (2-phenyl-2-butyl) -2-hydroxybenzylsulfanyl] cyclooctane 130 mg (0.17 mmol) in dichloromethane (1 mL ) A solution of dichlorodiisopropoxytitanium 40 mg (0.17 mmol) in dichloromethane (1 mL) was added dropwise to the solution at room temperature. After 1.5 hours, volatile components were distilled off under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to obtain {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (2-phenyl-2-butyl) -2 -Hydroxybenzylsulfanyl]} dichlorotitanium 67 mg (yield 42%) was obtained as a red powder.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.5 to 2.8 (m, 47H), 3.1 to 4.8 (m, 5H), 6.3 to 7.5 (m, 14H).
(参考例15)
{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(2-フェニル-2-ブチル)-2-ヒドロキシベンジルスルファニル]}ジクロロジルコニウムの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3-(2-フェニル-2-ブチル)ベンジルスルファニル]シクロオクタン 150 mg(0.20 mmol)のトルエン(1 mL)溶液に、テトラクロロジルコニウム46 mg(0.20 mmol)のトルエン(1 mL)溶液を室温で滴下した。1.5時間後、減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(2-フェニル-2-ブチル)-2-ヒドロキシベンジルスルファニル]}ジクロロジルコニウム 110 mg (収率 58%)を白色粉末として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.8~2.2 (m, 46H), 2.52 (m, 1H), 3.16 (m, 1H), 3.52 (m, 2H), 4.06 (m, 2H), 6.83 (s, 2H), 7.0~7.5 (m, 10H).
(Reference Example 15)
Synthesis of {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (2-phenyl-2-butyl) -2-hydroxybenzylsulfanyl]} dichlorozirconium in a glove box under a nitrogen atmosphere, In a 50 mL Schlenk tube, trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (2-phenyl-2-butyl) benzylsulfanyl] cyclooctane 150 mg (0.20 mmol) in toluene (1 mL ) A solution of tetrachlorozirconium 46 mg (0.20 mmol) in toluene (1 mL) was added dropwise at room temperature. After 1.5 hours, volatile components were distilled off under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to obtain {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (2-phenyl-2-butyl) -2 -Hydroxybenzylsulfanyl]} dichlorozirconium 110 mg (yield 58%) was obtained as a white powder.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.8 to 2.2 (m, 46H), 2.52 (m, 1H), 3.16 (m, 1H), 3.52 (m, 2H), 4.06 (m, 2H), 6.83 (s, 2H), 7.0 to 7.5 (m, 10H).
(参考例16)
trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3-(1-メチル-1-ナフチルエチル)ベンジルスルファニル]シクロオクタンの合成
(1)4-tert-ブチル-2-(1-メチル-1-ナフチルエチル)フェノールの合成
 窒素置換した50 mLシュレンクに、4-tert-ブチルフェノール6.6 g(44 mmol)、p-トルエンスルホン酸一水和物73mg(0.38 mmol)およびヘプタン20 mLを加え、100℃まで加熱した。 ここにイソプロペニルナフタレン 3.7 g(22 mmol)をヘプタン5 mLに溶解した溶液を滴下し、室温で1時間撹拌した。反応溶液を炭酸水素ナトリウム水溶液に注いだ。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去した。得られた白色固体をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:10)で精製することで4-tert-ブチル-2-(1-メチル-1-ナフチルエチル)フェノール 3.0 g(収率 43%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.38 (s, 9H), 1.79 (s, 6H), 4.34 (s, 1H), 6.66 (d, J = 8 Hz, 1H), 7.19~7.30 (m, 2H), 7.44~7.54 (m, 3H), 7.75~7.92 (m, 4H).
(2)4-tert-ブチル-2-ヒドロキシメチル-6-(1-メチル-1-ナフチルエチル)フェノールの合成
 窒素置換した500mLフラスコに、4-tert-ブチル-2-(1-メチル-1-ナフチルエチル)フェノール1.7 g(5.4 mmol,)、塩化マグネシウム2.0 g(20 mmol)、パラホルムアルデヒド0.9 g(30 mmol)およびテトラヒドロフラン20 mLを加えた。ここにトリエチルアミン2.8 mL(20 mmol)を加え、3時間加熱還流した。反応溶液を室温まで放冷した後、不溶物を濾過した。濾液から減圧下で揮発成分を留去した後、残渣に酢酸エチルおよび水を加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下で溶媒を留去することで、5-tert-ブチル-3-(1-メチル-1-ナフチルエチル)サリチルアルデヒド(収率73%)を含む混合物4.0 gを得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.37 (s, 9H), 1.83 (s, 6H), 4.34 (s, 1H), 7.2~7.9 (m, 9H), 9.82 (s, 1H), 11.2 (s, 1H).
 窒素置換した200mLフラスコに、上記混合物 1.4 gとテトラヒドロフラン10 mLおよびメタノール10 mLとを加えた。ここに水素化ホウ素ナトリウム 160 mg(4.2 mmol)をゆっくり加え、室温まで昇温後、1時間撹拌した。反応溶液から減圧下で揮発成分を留去した後、水および酢酸エチルを加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下、溶媒を留去した後、得られた無色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:10~1:3)で精製することで4-tert-ブチル-2-ヒドロキシメチル-6-(1-メチル-1-ナフチルエチル)フェノール1.3 g(収率 91%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.37 (s, 9H), 1.80 (s, 6H), 2.08 (t, J = 6 Hz, 1H), 4.62 (d, J = 6 Hz, 2H), 5.60 (s, 1H), 7.1~7.9 (m, 9H).
(3)臭化 5-tert-ブチル-2-ヒドロキシ-3-(1-メチル-1-ナフチルエチル)ベンジルの合成
 窒素置換した500mLフラスコに、4-tert-ブチル-2-ヒドロキシメチル-6-(1-メチル-1-ナフチルエチル)フェノール1.3 g(3.6 mmol)およびジクロロメタン10 mLを加えた。ここに、三臭化リン2.7 mL(1.0 M ジクロロメタン溶液, 2.7 mmol)を加え、室温で2時間撹拌した。反応溶液に水を加え、有機層をさらに水で2回洗浄した後、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去することで、臭化 5-tert-ブチル-2-ヒドロキシ-3-(1-メチル-1-ナフチルエチル)ベンジル1.5 g(収率 >99%)を淡黄色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.30 (s, 9H), 1.79 (s, 6H), 4.43 (s, 2H), 7.2~8.0 (m, 9H).
(4)trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3-(1-メチル-1-ナフチルエチル)ベンジルスルファニル]シクロオクタンの合成
 窒素置換した50 mLフラスコに、臭化 5-tert-ブチル-2-ヒドロキシ-3-(1-メチル-1-ナフチルエチル)ベンジル 1.1 g(2.5 mmol)、trans-シクロオクタン-1,2-ジチオール 0.18 g(1.0 mmol)およびテトラヒドロフラン7 mLを加え、氷冷した。ここに、トリエチルアミン0.70 mL(5.1 mmol)を加え、0℃で1時間、室温で2時間撹拌した。減圧下で揮発成分を留去し、得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加えた。有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:10)で精製することで、trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3-(1-メチル-1-ナフチルエチル)ベンジルスルファニル]シクロオクタン 0.9 g(収率 >99%)を淡黄色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.8~1.8 (m, 42H), 2.46 (m, 2H), 2.51 (m, 4H), 3.51 (m, 4H), 5.72 (s, 2H), 6.99 (d, J = 2 Hz, 2H), 7.20~7.23 (m, 2H), 7.35~7.44 (m, 6H), 7.60~7.89 (m, 8H).
(Reference Example 16)
Synthesis of trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methyl-1-naphthylethyl) benzylsulfanyl] cyclooctane (1) 4-tert-butyl-2- (1 -Methyl-1-naphthylethyl) phenol synthesis Nitrogen-substituted 50 mL Schlenk was charged with 6.6 g (44 mmol) of 4-tert-butylphenol, 73 mg (0.38 mmol) of p-toluenesulfonic acid monohydrate and 20 mL of heptane. In addition, it was heated to 100 ° C. A solution prepared by dissolving 3.7 g (22 mmol) of isopropenylnaphthalene in 5 mL of heptane was added dropwise thereto and stirred at room temperature for 1 hour. The reaction solution was poured into an aqueous sodium bicarbonate solution. After the organic layer was dried over anhydrous magnesium sulfate, the volatile component was distilled off under reduced pressure. The obtained white solid was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10) to give 3.0 g of 4-tert-butyl-2- (1-methyl-1-naphthylethyl) phenol. 43%) was obtained as a white solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.38 (s, 9H), 1.79 (s, 6H), 4.34 (s, 1H), 6.66 (d, J = 8 Hz, 1H), 7.19-7.30 (m, 2H), 7.44-7.54 (m, 3H) , 7.75-7.92 (m, 4H).
(2) Synthesis of 4-tert-butyl-2-hydroxymethyl-6- (1-methyl-1-naphthylethyl) phenol Into a 500 mL flask purged with nitrogen, 4-tert-butyl-2- (1-methyl-1 -Naphthylethyl) phenol 1.7 g (5.4 mmol), magnesium chloride 2.0 g (20 mmol), paraformaldehyde 0.9 g (30 mmol) and tetrahydrofuran 20 mL were added. Triethylamine 2.8 mL (20 mmol) was added here, and it heated and refluxed for 3 hours. The reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate and water were added to the residue. The organic layer was washed with 1 M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 4.0 g of a mixture containing 5-tert-butyl-3- (1-methyl-1-naphthylethyl) salicylaldehyde (yield 73%).
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.37 (s, 9H), 1.83 (s, 6H), 4.34 (s, 1H), 7.2 to 7.9 (m, 9H), 9.82 (s, 1H), 11.2 (s, 1H).
1.4 g of the above mixture, 10 mL of tetrahydrofuran and 10 mL of methanol were added to a 200 mL flask purged with nitrogen. Sodium borohydride 160 mg (4.2 mmol) was slowly added here, and it heated up to room temperature, and stirred for 1 hour. After distilling off volatile components from the reaction solution under reduced pressure, water and ethyl acetate were added. The organic layer was washed with 1 M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, the obtained colorless oil was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10 to 1: 3) to give 4-tert-butyl-2- Hydroxymethyl-6- (1-methyl-1-naphthylethyl) phenol 1.3 g (91% yield) was obtained as a white solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.37 (s, 9H), 1.80 (s, 6H), 2.08 (t, J = 6 Hz, 1H), 4.62 (d, J = 6 Hz, 2H), 5.60 (s, 1H), 7.1 to 7.9 (m , 9H).
(3) Synthesis of 5-tert-butyl-2-hydroxy-3- (1-methyl-1-naphthylethyl) benzyl bromide In a nitrogen-substituted 500 mL flask, 4-tert-butyl-2-hydroxymethyl-6- 1.3 g (3.6 mmol) of (1-methyl-1-naphthylethyl) phenol and 10 mL of dichloromethane were added. To this was added 2.7 mL of phosphorus tribromide (1.0 M dichloromethane solution, 2.7 mmol), and the mixture was stirred at room temperature for 2 hours. Water was added to the reaction solution, and the organic layer was further washed twice with water and then with saturated brine. The organic layer was dried over anhydrous magnesium sulfate, and the volatile component was distilled off under reduced pressure to give 1.5 g of 5-tert-butyl-2-hydroxy-3- (1-methyl-1-naphthylethyl) benzyl bromide. (Yield> 99%) was obtained as a pale yellow oil.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.30 (s, 9H), 1.79 (s, 6H), 4.43 (s, 2H), 7.2 to 8.0 (m, 9H).
(4) Synthesis of trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methyl-1-naphthylethyl) benzylsulfanyl] cyclooctane In a 50 mL flask purged with nitrogen, brominated 5-tert-butyl-2-hydroxy-3- (1-methyl-1-naphthylethyl) benzyl 1.1 g (2.5 mmol), trans-cyclooctane-1,2-dithiol 0.18 g (1.0 mmol) and tetrahydrofuran 7 mL And cooled with ice. Triethylamine 0.70 mL (5.1 mmol) was added here, and it stirred at 0 degreeC for 1 hour, and 2 hours at room temperature. Volatile components were distilled off under reduced pressure, and ethyl acetate and an aqueous ammonium chloride solution were added to the resulting residue. The organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in that order, and then dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, trans-1,2-bis [5-tert-butyl-2-hydroxy was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10). 0.9 g (yield> 99%) of -3- (1-methyl-1-naphthylethyl) benzylsulfanyl] cyclooctane was obtained as a pale yellow solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.8 to 1.8 (m, 42H), 2.46 (m, 2H), 2.51 (m, 4H), 3.51 (m, 4H), 5.72 (s, 2H), 6.99 (d, J = 2 Hz, 2H), 7.20 ~ 7.23 (m, 2H), 7.35 ~ 7.44 (m, 6H), 7.60 ~ 7.89 (m, 8H).
(参考例17)
{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3- (1-メチル-1-ナフチルエチル)ベンジルスルファニル]}ジクロロチタンの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス(5-tert-ブチル-2-ヒドロキシ-3-(1-メチル-1-ナフチルエチル)ベンジルスルファニル)シクロオクタン 170 mg(0.20 mmol)のジクロロメタン(1 mL)溶液に、ジクロロジイソプロポキシチタン50 mg(0.17 mmol)のジクロロメタン(1 mL)溶液を室温で滴下した。1.5時間後、減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3- (1-メチル-1-ナフチルエチル)ベンジルスルファニル]}ジクロロチタン 95 mg (収率 50%)を赤色粉末として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.8~2.2 (m, 44H), 2.34 (d, J = 15 Hz, 2H), 3.41 (d, J = 15 Hz, 2H), 6.56 (s, 2H), 6.9~7.9 (m, 14H) , .18 (s, 2H).
(Reference Example 17)
Synthesis of {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methyl-1-naphthylethyl) benzylsulfanyl]} dichlorotitanium in a glove box under nitrogen atmosphere , Trans-1,2-bis (5-tert-butyl-2-hydroxy-3- (1-methyl-1-naphthylethyl) benzylsulfanyl) cyclooctane 170 mg (0.20 mmol) in dichloromethane (50 mL Schlenk tube) 1 mL), a solution of dichlorodiisopropoxytitanium 50 mg (0.17 mmol) in dichloromethane (1 mL) was added dropwise at room temperature. After 1.5 hours, volatile components were distilled off under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to obtain {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methyl-1- Naphthylethyl) benzylsulfanyl]} dichlorotitanium 95 mg (yield 50%) was obtained as a red powder.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.8 to 2.2 (m, 44H), 2.34 (d, J = 15 Hz, 2H), 3.41 (d, J = 15 Hz, 2H), 6.56 (s, 2H), 6.9 to 7.9 (m, 14H),. 18 (s, 2H).
(参考例18)
{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3- (1-メチル-1-ナフチルエチル)ベンジルスルファニル]}ジクロロジルコニウムの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス(5-tert-ブチル-2-ヒドロキシ-3-(1-メチル-1-ナフチルエチル)ベンジルスルファニル)シクロオクタン 170 mg(0.20 mmol)のトルエン(1 mL)溶液に、テトラクロロジルコニウム46 mg(0.20 mmol)のトルエン(1 mL)溶液を室温で滴下した。1.5時間後、減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3- (1-メチル-1-ナフチルエチル)ベンジルスルファニル]}ジクロロジルコニウム 81 mg (収率 41%)を白色粉末として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.8~2.2 (m, 44H), 2.49 (d, J = 15 Hz, 2H), 3.27 (d, J = 15 Hz, 2H), 6.59 (d, J = 2 Hz, 2H), 6.98 (dd, J = 2 Hz, 7 Hz, 2H), 7.3~8.2 (m, 14H).
(Reference Example 18)
Synthesis of {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methyl-1-naphthylethyl) benzylsulfanyl]} dichlorozirconium in a glove box under nitrogen atmosphere , Trans-1,2-bis (5-tert-butyl-2-hydroxy-3- (1-methyl-1-naphthylethyl) benzylsulfanyl) cyclooctane 170 mg (0.20 mmol) in toluene (50 mL Schlenk tube) To a 1 mL) solution, a solution of tetrachlorozirconium 46 mg (0.20 mmol) in toluene (1 mL) was added dropwise at room temperature. After 1.5 hours, volatile components were distilled off under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to obtain {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methyl-1- Naphthylethyl) benzylsulfanyl]} dichlorozirconium 81 mg (yield 41%) was obtained as a white powder.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.8 to 2.2 (m, 44H), 2.49 (d, J = 15 Hz, 2H), 3.27 (d, J = 15 Hz, 2H), 6.59 (d, J = 2 Hz, 2H), 6.98 (dd, J = 2 Hz, 7 Hz, 2H), 7.3 to 8.2 (m, 14H).
(参考例19)
trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3-(1-メチルシクロヘキシル)ベンジルスルファニル]シクロオクタンの合成
(1)4-tert-ブチル-2-(1-メチルシクロヘキシル)フェノールの合成
 窒素置換した50 mLシュレンクに、4-tert-ブチルフェノール3.3 g(22 mmol)、1-メチルシクロヘキサノール2.7 mL(22 mmol)およびジクロロメタン20 mLを加え、氷浴で0℃まで冷却した。ここに硫酸 1.2 mL(22 mmol)を加え、室温で20分間撹拌した。反応溶液を炭酸水素ナトリウム水溶液に注いだ。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去した。得られた白色固体をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:10)で精製することで4-tert-ブチル-2-(1-メチルシクロヘキシル)フェノール 3.8 g(収率 70%)を無色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.2~1.8 (m, 20H), 2.19 (m, 2H), 4.60 (s, 1H), 6.58 (d, J = 8 Hz, 1H), 7.06 (dd, J = 2 Hz, 8 Hz, 1H), 7.31 (d, J = 2 Hz, 1H).
(2)4-tert-ブチル-2-ヒドロキシメチル-6-(1-メチルシクロヘキシル)フェノールの合成
 窒素置換した200mL四口フラスコに、4-tert-ブチル-2-(1-メチルシクロヘキシル)フェノール3.8 g(16 mmol,)、塩化マグネシウム3.0 g(31 mmol)、パラホルムアルデヒド2.3 g(78 mmol)およびテトラヒドロフラン70 mLを加えた。ここにトリエチルアミン4.3 mL(31 mmol)を加え、3時間加熱還流した。反応溶液を室温まで放冷した後、不溶物を濾過した。濾液から減圧下で揮発成分を留去した後、残渣に酢酸エチルおよび水を加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下で溶媒を留去することで、5-tert-ブチル-3-(1-メチルシクロヘキシル)サリチルアルデヒド(収率91%)を含む混合物4.0 gを得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.2~1.8 (m, 20H), 2.20 (m, 2H), 7.33 (d, J = 2 Hz, 1H), 7.61 (d, J = 2 Hz, 1H), 9.86 (s, 1H), 11.7 (s, 1H).
 窒素置換した200mL四口フラスコに、上記混合物 4.0 gとテトラヒドロフラン40 mLおよびメタノール20 mLを加え、氷冷した。ここに水素化ホウ素ナトリウム 330 mg(8.7 mmol)をゆっくり加え、室温まで昇温後、15時間撹拌した。反応溶液から減圧下で揮発成分を留去した後、水および酢酸エチルを加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下、溶媒を留去した後、得られた無色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:9)で精製することで4-tert-ブチル-2-ヒドロキシメチル-6-(1-メチルシクロヘキシル)フェノール2.4 g(収率 61%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.2~1.8 (m, 20H), 2.16 (brs, 1H), 2.19 (m, 2H), 4.84 (s, 2H), 6.88 (d, J = 2 Hz, 1H), 7.30 (d, J = 2 Hz, 1H), 7.52 (s, 1H).
(3)臭化 5-tert-ブチル-2-ヒドロキシ-3-(1-メチルシクロヘキシル)ベンジルの合成
 窒素置換した200mL四口フラスコに、4-tert-ブチル-2-ヒドロキシメチル-6-(1-メチルシクロヘキシル)フェノール2.4 g(8.8 mmol)およびジクロロメタン40 mLを加えた。ここに、三臭化リン5.3 mL(1.0 M ジクロロメタン溶液, 5.3 mmol)を加え、室温で3.5時間撹拌した。反応溶液に水を加え、有機層をさらに水で2回洗浄した後、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去することで、臭化 5-tert-ブチル-2-ヒドロキシ-3-(1-メチルシクロヘキシル)ベンジル3.8 g(収率 >99%)を淡黄色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.2~1.8 (m, 20H), 2.18 (m, 2H), 4.58 (s, 2H), 7.08 (d, J = 2 Hz, 1H), 7.35 (d, J = 2 Hz, 1H).
(4)trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3-(1-メチルシクロヘキシル)ベンジルスルファニル]シクロオクタンの合成
 窒素置換した50 mL四口フラスコに、臭化 5-tert-ブチル-2-ヒドロキシ-3-(1-メチルシクロヘキシル)ベンジル 1.5 g(4.3 mmol)、trans-シクロオクタン-1,2-ジチオール 0.38 g(2.1 mmol)およびテトラヒドロフラン 22 mLを加え、氷冷した。ここに、トリエチルアミン 0.90 mL(6.5 mmol)を加え、室温で22.5時間撹拌した。反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加えた。有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:20)で精製することで、trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3-(1-メチルシクロヘキシル)ベンジルスルファニル]シクロオクタンとtrans-1-[5-tert-ブチル-2-ヒドロキシ-3-(1-メチルシクロヘキシル)ベンジルスルファニル]-2-スルファニルシクロオクタンとの7:1混合物1.6 gを得た。この混合物および臭化 5-tert-ブチル-2-ヒドロキシ-3-(1-メチルシクロヘキシル)ベンジル0.18 g(0.53 mmol)をテトラヒドロフラン20 mLに溶解し、氷冷した。ここに、トリエチルアミン0.10 mL(0.72 mmol)を加え、22時間撹拌した。反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加え、有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:20)で精製することで、trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3-(1-メチルシクロヘキシル)ベンジルスルファニル]シクロオクタン 1.6 g(収率 >99%)を黄色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.1~1.8 (m, 50H), 1.90 (m, 2H), 2.20 (m, 4H), 2.64 (m, 2H), 3.80 (d, J = 13 Hz, 2H), 3.89 (d, J = 13 Hz, 2H), 6.90 (d, J = 2 Hz, 2H), 7.27 (d, J = 2 Hz, 2H).
(Reference Example 19)
Synthesis of trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methylcyclohexyl) benzylsulfanyl] cyclooctane (1) 4-tert-butyl-2- (1-methylcyclohexyl) Synthesis of Phenol To 50 mL Schlenk purged with nitrogen was added 3.3 g (22 mmol) of 4-tert-butylphenol, 2.7 mL (22 mmol) of 1-methylcyclohexanol and 20 mL of dichloromethane, and the mixture was cooled to 0 ° C. in an ice bath. Sulfuric acid 1.2 mL (22 mmol) was added here, and it stirred at room temperature for 20 minutes. The reaction solution was poured into an aqueous sodium bicarbonate solution. After the organic layer was dried over anhydrous magnesium sulfate, the volatile component was distilled off under reduced pressure. The resulting white solid is purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10) to give 3.8 g of 4-tert-butyl-2- (1-methylcyclohexyl) phenol (yield 70%) Was obtained as a colorless oil.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.2 to 1.8 (m, 20H), 2.19 (m, 2H), 4.60 (s, 1H), 6.58 (d, J = 8 Hz, 1H), 7.06 (dd, J = 2 Hz, 8 Hz, 1H), 7.31 (d, J = 2 Hz, 1H).
(2) Synthesis of 4-tert-butyl-2-hydroxymethyl-6- (1-methylcyclohexyl) phenol In a 200 mL four-necked flask purged with nitrogen, 4-tert-butyl-2- (1-methylcyclohexyl) phenol 3.8 g (16 mmol), magnesium chloride 3.0 g (31 mmol), paraformaldehyde 2.3 g (78 mmol) and tetrahydrofuran 70 mL were added. Triethylamine 4.3 mL (31 mmol) was added here, and it heated and refluxed for 3 hours. The reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate and water were added to the residue. The organic layer was washed with 1 M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 4.0 g of a mixture containing 5-tert-butyl-3- (1-methylcyclohexyl) salicylaldehyde (yield 91%).
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.2 to 1.8 (m, 20H), 2.20 (m, 2H), 7.33 (d, J = 2 Hz, 1H), 7.61 (d, J = 2 Hz, 1H), 9.86 (s, 1H), 11.7 (s , 1H).
To a 200 mL four-necked flask purged with nitrogen, 4.0 g of the above mixture, 40 mL of tetrahydrofuran and 20 mL of methanol were added and cooled on ice. Sodium borohydride 330 mg (8.7 mmol) was slowly added here, and it heated up to room temperature, and stirred for 15 hours. After distilling off volatile components from the reaction solution under reduced pressure, water and ethyl acetate were added. The organic layer was washed with 1 M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, the obtained colorless oil was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 9) to give 4-tert-butyl-2-hydroxymethyl-6 There was obtained 2.4 g (61% yield) of-(1-methylcyclohexyl) phenol as a white solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.2 to 1.8 (m, 20H), 2.16 (brs, 1H), 2.19 (m, 2H), 4.84 (s, 2H), 6.88 (d, J = 2 Hz, 1H), 7.30 (d, J = 2 Hz , 1H), 7.52 (s, 1H).
(3) Synthesis of 5-tert-butyl-2-hydroxy-3- (1-methylcyclohexyl) benzyl bromide To a nitrogen-substituted 200 mL four-necked flask, 4-tert-butyl-2-hydroxymethyl-6- (1 -Methylcyclohexyl) phenol 2.4 g (8.8 mmol) and dichloromethane 40 mL were added. To this, 5.3 mL of phosphorus tribromide (1.0 M dichloromethane solution, 5.3 mmol) was added, and the mixture was stirred at room temperature for 3.5 hours. Water was added to the reaction solution, and the organic layer was further washed twice with water and then with saturated brine. After drying the organic layer over anhydrous magnesium sulfate, the volatile component was distilled off under reduced pressure to give 3.8 g of 5-tert-butyl-2-hydroxy-3- (1-methylcyclohexyl) benzyl bromide (yield> 99%) was obtained as a pale yellow oil.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.2 to 1.8 (m, 20H), 2.18 (m, 2H), 4.58 (s, 2H), 7.08 (d, J = 2 Hz, 1H), 7.35 (d, J = 2 Hz, 1H).
(4) Synthesis of trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methylcyclohexyl) benzylsulfanyl] cyclooctane Into a nitrogen-substituted 50 mL four-necked flask, Add 1.5 g (4.3 mmol) of tert-butyl-2-hydroxy-3- (1-methylcyclohexyl) benzyl, 0.38 g (2.1 mmol) of trans-cyclooctane-1,2-dithiol and 22 mL of tetrahydrofuran, and cool with ice. . Triethylamine 0.90 mL (6.5 mmol) was added here, and it stirred at room temperature for 22.5 hours. The reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. Ethyl acetate and aqueous ammonium chloride solution were added to the resulting residue. The organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in that order, and then dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, it was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 20) to obtain trans-1,2-bis [5-tert-butyl-2-hydroxy 7 of 3- (1-methylcyclohexyl) benzylsulfanyl] cyclooctane and trans-1- [5-tert-butyl-2-hydroxy-3- (1-methylcyclohexyl) benzylsulfanyl] -2-sulfanylcyclooctane : 1.6 g of a mixture was obtained. This mixture and 0.18 g (0.53 mmol) of 5-tert-butyl-2-hydroxy-3- (1-methylcyclohexyl) benzyl bromide were dissolved in 20 mL of tetrahydrofuran and ice-cooled. Triethylamine 0.10 mL (0.72 mmol) was added here, and it stirred for 22 hours. The reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. Ethyl acetate and an aqueous ammonium chloride solution were added to the obtained residue, and the organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in this order. The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 20), whereby trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1 1.6 g (yield> 99%) of -methylcyclohexyl) benzylsulfanyl] cyclooctane were obtained as a yellow oil.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.1 to 1.8 (m, 50H), 1.90 (m, 2H), 2.20 (m, 4H), 2.64 (m, 2H), 3.80 (d, J = 13 Hz, 2H), 3.89 (d, J = 13 Hz , 2H), 6.90 (d, J = 2 Hz, 2H), 7.27 (d, J = 2 Hz, 2H).
(参考例20)
{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3- (1-メチルシクロヘキシル)ベンジルスルファニル]}ジクロロチタンの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3-(1-メチルシクロヘキシル)ベンジルスルファニル]シクロオクタン 140 mg(0.20 mmol)のジクロロメタン(1 mL)溶液に、ジクロロジイソプロポキシチタン50 mg(0.17 mmol)のジクロロメタン(1 mL)溶液を室温で滴下した。1.5時間後、減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3- (1-メチルシクロヘキシル)ベンジルスルファニル]}ジクロロチタン 100 mg (収率 60%)を赤色粉末として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.5~2.4 (m, 56H), 2.6~3.9 (m, 4H), 4.6~4.8 (m, 2H), 6.8~7.0 (m, 2H), 7.2~7.4 (m, 2H).
(Reference Example 20)
Synthesis of {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methylcyclohexyl) benzylsulfanyl]} dichlorotitanium 50 mL Schlenk in a glove box under nitrogen atmosphere In a tube, add trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methylcyclohexyl) benzylsulfanyl] cyclooctane 140 mg (0.20 mmol) in dichloromethane (1 mL) to dichlorodi A solution of isopropoxytitanium 50 mg (0.17 mmol) in dichloromethane (1 mL) was added dropwise at room temperature. After 1.5 hours, volatile components were distilled off under reduced pressure. The residue obtained was washed with pentane and dried under reduced pressure to give {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methylcyclohexyl) benzyl Sulfanyl]} dichlorotitanium 100 mg (yield 60%) was obtained as a red powder.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.5 to 2.4 (m, 56H), 2.6 to 3.9 (m, 4H), 4.6 to 4.8 (m, 2H), 6.8 to 7.0 (m, 2H), 7.2 to 7.4 (m, 2H).
(参考例21)
{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3- (1-メチルシクロヘキシル)ベンジルスルファニル]}ジクロロジルコニウムの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3-(1-メチルシクロヘキシル)ベンジルスルファニル]シクロオクタン 140 mg(0.20 mmol)のトルエン(1 mL)溶液に、テトラクロロジルコニウム46 mg(0.20 mmol)のトルエン(1 mL)溶液を室温で滴下した。1.5時間後、減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3- (1-メチルシクロヘキシル)ベンジルスルファニル]}ジクロロジルコニウム 80 mg (収率 47%)を白色粉末として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.8~2.4 (m, 56H), 2.71 (brs, 2H), 3.83 (d, J = 14 Hz, 2H), 4.53 (d, J = 14 Hz, 2H), 6.86 (s 2H), 7.38 (s, 2H).
(Reference Example 21)
Synthesis of {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methylcyclohexyl) benzylsulfanyl]} dichlorozirconium 50 mL Schlenk in a glove box under nitrogen atmosphere In a tube, add trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methylcyclohexyl) benzylsulfanyl] cyclooctane 140 mg (0.20 mmol) in toluene (1 mL) to tetrachloro A solution of zirconium (46 mg, 0.20 mmol) in toluene (1 mL) was added dropwise at room temperature. After 1.5 hours, volatile components were distilled off under reduced pressure. The residue obtained was washed with pentane and dried under reduced pressure to give {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methylcyclohexyl) benzyl Sulfanyl]} dichlorozirconium 80 mg (yield 47%) was obtained as a white powder.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.8 to 2.4 (m, 56H), 2.71 (brs, 2H), 3.83 (d, J = 14 Hz, 2H), 4.53 (d, J = 14 Hz, 2H), 6.86 (s 2H), 7.38 (s, 2H).
(参考例22)
trans-1,2-ビス(2-ヒドロキシ-3-トリメチルシリル-5-メチルベンジルスルファニル)シクロオクタンの合成
(1)3-トリメチルシリル-5-メチル-2-ヒドロキシベンジルアルコールの合成
 2-ヒドロキソ-5-メチル-3- (トリメチルシリル)ベンズアルデヒド9.57 g(45.9 mmol)をジエチルエーテル70 mLに溶解し、0℃に冷却した。そこに、水素化アルミニウムリチウム2.27 g(59.8 mmol)を加えた後、0℃で2時間攪拌した。希塩酸およびジエチルエーテルを加え、エーテル層を水洗し、無水硫酸ナトリウムで乾燥した後、減圧下で溶媒を留去し、無色結晶として3-トリメチルシリル-5-メチル-2-ヒドロキシベンジルアルコール9.57 g(収率98%)を得た。
1H NMR (500 MHz, δ, ppm, CDCl3)
0.30 (s, 9H), 2.03 (br s, 1H), 2.25 (s, 3H), 4.83 (br s, 1H), 6.84 (d, J = 2 Hz, 1H), 7.11 (d, J = 2 Hz, 1H), 7.39 (s, 1H).
(2)trans-1,2-ビス(2-ヒドロキシ-3-トリメチルシリル-5-メチルベンジルスルファニル)シクロオクタンの合成
 アルゴン雰囲気下、3-トリメチルシリル-5-メチル-2-ヒドロキシベンジルアルコール1.03 g(4.87 mmol)をジエチルエーテル30 mLに溶解し、0℃に冷却した。そこに、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン6.2 mL(44.5 mmol)を加えた後、三臭化リン0.35 mL(3.69 mmol)を加え、25℃で2時間攪拌した。そこに、アルゴン雰囲気下、trans-シクロオクタン-1,2-ジチオール(文献既知)289.2 mg(1.64 mmol)をジエチルエーテル20 mLに溶解した溶液をチューブトランスファーし、加熱還流下で13時間攪拌した。希塩化アンモニウム水溶液およびジエチルエーテルを加え、エーテル層を水洗し、無水硫酸ナトリウムで乾燥した後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 ジクロロメタン)で精製し、無色オイルとしてtrans-1,2-ビス(2-ヒドロキシ-3-トリメチルシリル-5-メチルベンジルスルファニル)シクロオクタン672.9 mg(収率73%)を得た。
1H NMR (500 MHz, δ, ppm, CDCl3)
0.29 (s, 18H), 1.15-1.96 (m, 12H), 2.25 (s, 6H), 2.65 (br s, 2H), 3.73-3.85 (m, 4H), 6.85 (d, J = 2 Hz, 2H), 6.90 (s, 2H), 7.10 (d, J = 2 Hz, 2H).
13C NMR (125.7 MHz, δ, ppm, CDCl3)
-0.88, 20.5, 25.7, 26.0, 30.9, 34.5, 49.9, 120.8, 127.7, 129.1, 132.4, 135.2, 158.4.
(Reference Example 22)
Synthesis of trans-1,2-bis (2-hydroxy-3-trimethylsilyl-5-methylbenzylsulfanyl) cyclooctane (1) Synthesis of 3-trimethylsilyl-5-methyl-2-hydroxybenzyl alcohol 2-Hydroxo-5- 9.57 g (45.9 mmol) of methyl-3- (trimethylsilyl) benzaldehyde was dissolved in 70 mL of diethyl ether and cooled to 0 ° C. Thereto was added 2.27 g (59.8 mmol) of lithium aluminum hydride, and the mixture was stirred at 0 ° C. for 2 hours. Dilute hydrochloric acid and diethyl ether were added, and the ether layer was washed with water and dried over anhydrous sodium sulfate, and then the solvent was distilled off under reduced pressure to give 9.57 g of 3-trimethylsilyl-5-methyl-2-hydroxybenzyl alcohol as colorless crystals. Rate 98%).
1 H NMR (500 MHz, δ, ppm, CDCl 3 )
0.30 (s, 9H), 2.03 (br s, 1H), 2.25 (s, 3H), 4.83 (br s, 1H), 6.84 (d, J = 2 Hz, 1H), 7.11 (d, J = 2 Hz , 1H), 7.39 (s, 1H).
(2) Synthesis of trans-1,2-bis (2-hydroxy-3-trimethylsilyl-5-methylbenzylsulfanyl) cyclooctane 1.03 g (4.87) of 3-trimethylsilyl-5-methyl-2-hydroxybenzyl alcohol under argon atmosphere mmol) was dissolved in 30 mL of diethyl ether and cooled to 0 ° C. 1,8-diazabicyclo [5.4.0] undec-7-ene 6.2 mL (44.5 mmol) was added thereto, and then phosphorus tribromide 0.35 mL (3.69 mmol) was added, followed by stirring at 25 ° C. for 2 hours. Thereto, a solution obtained by dissolving 289.2 mg (1.64 mmol) of trans-cyclooctane-1,2-dithiol (document known) in 20 mL of diethyl ether was transferred in a tube under an argon atmosphere and stirred for 13 hours under heating and reflux. A dilute aqueous ammonium chloride solution and diethyl ether were added, and the ether layer was washed with water and dried over anhydrous sodium sulfate, and then the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent: dichloromethane), and trans-1,2-bis (2-hydroxy-3-trimethylsilyl-5-methylbenzylsulfanyl) cyclooctane 672.9 mg (yield as a colorless oil) 73%).
1 H NMR (500 MHz, δ, ppm, CDCl 3 )
0.29 (s, 18H), 1.15-1.96 (m, 12H), 2.25 (s, 6H), 2.65 (br s, 2H), 3.73-3.85 (m, 4H), 6.85 (d, J = 2 Hz, 2H ), 6.90 (s, 2H), 7.10 (d, J = 2 Hz, 2H).
13 C NMR (125.7 MHz, δ, ppm, CDCl 3)
-0.88, 20.5, 25.7, 26.0, 30.9, 34.5, 49.9, 120.8, 127.7, 129.1, 132.4, 135.2, 158.4.
(参考例23)
[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3-トリメチルシリル-5-メチルベンジルスルファニル)]ジクロロジルコニウムの合成
 以下の実験はアルゴン雰囲気下で行った。50 mLのシュレンク管中、trans-1,2-ビス(2-ヒドロキシ-3-トリメチルシリル-5-メチルベンジルスルファニル)シクロオクタン501.5 mg(0.894 mmol)をジエチルエーテル20 mLに溶解し、この溶液にノルマルブチルリチウム1.3 mL(1.65 mol/L, 2.15 mmol)を加え、0℃で3時間攪拌した。この溶液を-78℃でテトラクロロジルコニウム280 mg(1.20 mmol)のジエチルエーテル溶液10 mLへと滴下し、さらに終夜攪拌した。生成した沈殿物を濾過して除き、濾液を減圧下濃縮した。残渣をヘキサンで洗浄した後、乾燥し、無色結晶として[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3-トリメチルシリル-5-メチルベンジルスルファニル)]ジクロロジルコニウム427 mg(収率66%)を得た。
1H NMR (500 MHz, δ, ppm, C6D6)
0.53-1.31 (m, 12H), 0.72 (s, 18H), 2.13 (s, 6H), 2.50 (br s, 2H), 3.14 (d, J = 14 Hz, 2H), 4.30 (d, J = 14 Hz, 2H), 6.36 (s, 2H), 7.34 (s, 2H).
13C NMR (125.7 MHz, δ, ppm, C6D6)
-2.30, 18.5, 23.0, 24.0, 26.5, 33.2, 47.3, 117.7, 127.4, 127.5, 130.7, 135.0, 161.2.
(Reference Example 23)
Synthesis of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3-trimethylsilyl-5-methylbenzylsulfanyl)] dichlorozirconium The following experiment was conducted under an argon atmosphere. In a 50 mL Schlenk tube, 501.5 mg (0.894 mmol) of trans-1,2-bis (2-hydroxy-3-trimethylsilyl-5-methylbenzylsulfanyl) cyclooctane is dissolved in 20 mL of diethyl ether. Butyllithium 1.3 mL (1.65 mol / L, 2.15 mmol) was added, and the mixture was stirred at 0 ° C. for 3 hours. This solution was added dropwise to 10 mL of diethyl ether solution of 280 mg (1.20 mmol) of tetrachlorozirconium at −78 ° C., and further stirred overnight. The formed precipitate was removed by filtration, and the filtrate was concentrated under reduced pressure. The residue was washed with hexane, dried, and [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3-trimethylsilyl-5-methylbenzylsulfanyl)] dichlorozirconium 427 mg (yield 66) as colorless crystals. %).
1 H NMR (500 MHz, δ, ppm, C 6 D 6 )
0.53-1.31 (m, 12H), 0.72 (s, 18H), 2.13 (s, 6H), 2.50 (br s, 2H), 3.14 (d, J = 14 Hz, 2H), 4.30 (d, J = 14 Hz, 2H), 6.36 (s, 2H), 7.34 (s, 2H).
13 C NMR (125.7 MHz, δ, ppm, C 6 D 6 )
-2.30, 18.5, 23.0, 24.0, 26.5, 33.2, 47.3, 117.7, 127.4, 127.5, 130.7, 135.0, 161.2.
(参考例24)
trans-1,2-ビス(3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジルスルファニル)シクロオクタンの合成
(1)2-tert-アミル-4-tert-ブチルフェノールの合成
 窒素置換した50 mLシュレンクに4-tert-ブチルフェノール3.3 g(22 mmol)、tert-アミルアルコール 2.4 mL(22 mmol)およびジクロロメタン20 mLを加え、氷浴で0℃まで冷却した。ここに硫酸 1.2 mL(22 mmol)を加え、室温で20分間撹拌した。反応溶液を炭酸水素ナトリウム水溶液に注いだ。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去した。得られた白色固体をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:10)で精製することで2-tert-アミル-4-tert-ブチルフェノール 3.7 g(収率 75%)を無色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.682 (t, J = 8 Hz, 3H), 1.29 (s, 9H), 1.37 (s, 6H), 1.84 (q, J = 8 Hz, 2H), 4.57 (s, 1H), 6.57 (d, J = 8 Hz, 1H), 7.06 (dd, J = 2 Hz, 8 Hz, 1H), 7.23 (d, J = 2 Hz, 1H).
(2)6-tert-アミル-4-tert-ブチル-2-ヒドロキシメチルフェノールの合成
 窒素置換した200mL四口フラスコに、2-tert-アミル-4-tert-ブチルフェノール3.7 g(17 mmol)、塩化マグネシウム3.2 g(33 mmol)、パラホルムアルデヒド2.5 g(83 mmol)およびテトラヒドロフラン75 mLを加えた。ここにトリエチルアミン4.6 mL(33 mmol)を加え、1.5時間加熱還流した。反応溶液を室温まで放冷した後、不溶物を濾過した。濾液から減圧下で揮発成分を留去した後、残渣に酢酸エチルおよび水を加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下で溶媒を留去することで、3-tert-アミル-5-tert-ブチルサリチルアルデヒド(収率94%)を含む混合物3.9 gを得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.648 (t, J = 8 Hz, 3H), 1.28 (s, 9H), 1.37 (s, 6H), 1.90 (q, J = 8 Hz, 2H), 7.33 (d, J = 2 Hz, 1H), 7.54 (d, J = 2 Hz, 1H), 9.86 (s, 1H), 11.6 (s, 1H).
 窒素置換した200mL四口フラスコに、上記混合物 3.9 gとテトラヒドロフラン40 mLおよびメタノール20 mLとを加え、氷冷した。ここに水素化ホウ素ナトリウム 360 mg(9.5 mmol)をゆっくり加え、室温まで昇温後、15時間撹拌した。反応溶液から減圧下で揮発成分を留去した後、水および酢酸エチルを加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下、溶媒を留去した後、得られた無色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:20~1:9)で精製することで6-tert-アミル-4-tert-ブチル-2-ヒドロキシメチルフェノール2.4 g(収率 61%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.681 (t, J = 7 Hz, 3H), 1.28 (s, 9H), 1.38 (s, 6H), 1.90 (q, J = 7 Hz, 2H), 4.84 (s, 2H), 6.88 (d, J = 2 Hz, 1H), 7.21 (d, J = 2 Hz, 1H), 7.48 (s, 1H).
(3)臭化 3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジルの合成
 窒素置換した200mL四口フラスコに、6-tert-アミル-4-tert-ブチル-2-ヒドロキシメチルフェノール2.4 g(9.4 mmol)およびジクロロメタン40 mLを加えた。ここに、三臭化リン5.7 mL(1.0 M ジクロロメタン溶液, 5.7 mmol)を加え、室温で3.5時間撹拌した。反応溶液に水を加え、有機層をさらに水で2回洗浄した後、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去することで、臭化 3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジル3.2 g(収率 >99%)を淡黄色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.676 (t, J = 8 Hz, 3H), 1.29 (s, 9H), 1.37 (s, 6H), 1.86 (q, J = 7 Hz, 2H), 4.58 (s, 2H), 7.09 (d, J = 2 Hz, 1H), 7.26 (d, J = 2 Hz, 1H).
(4)trans-1,2-ビス(3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジルスルファニル)シクロオクタンの合成
 窒素置換した50 mL四口フラスコに、臭化 3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジル 1.4 g(4.5 mmol)とtrans-シクロオクタン-1,2-ジチオール 0.40 g(2.2 mmol)とテトラヒドロフラン 22 mLを加え、氷冷した。ここに、トリエチルアミン 1.0 mL(7.2 mmol)を加え、室温で22.5時間撹拌した。反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加えた。有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:20)で精製することで、trans-1,2-ビス(3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジルスルファニル)シクロオクタンとtrans-1-(3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジルスルファニル)-2-スルファニルシクロオクタンの6:1混合物1.5 gを得た。この混合物および臭化 3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジル0.20 g(0.64 mmol)をテトラヒドロフラン100 mLに溶解し、氷冷した。ここに、トリエチルアミン0.12 mL(0.86 mmol)を加え、22.5時間撹拌した。反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加え、有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:40)で精製することで、trans-1,2-ビス(3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジルスルファニル)シクロオクタン1.5 g(収率 >99%)を黄色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.649 (t, J = 8 Hz, 6H), 1.1~2.0 (m, 46H), 2.64 (m, 2H), 3.81 (d, J = 13 Hz, 2H), 3.90 (d, J = 13 Hz, 2H), 6.90 (d, J = 2 Hz, 2H), 7.19 (d, J = 2 Hz, 2H).
(Reference Example 24)
Synthesis of trans-1,2-bis (3-tert-amyl-5-tert-butyl-2-hydroxybenzylsulfanyl) cyclooctane (1) Synthesis of 2-tert-amyl-4-tert-butylphenol Nitrogen-substituted 50 To mL Schlenk, 3.3 g (22 mmol) of 4-tert-butylphenol, 2.4 mL (22 mmol) of tert-amyl alcohol and 20 mL of dichloromethane were added and cooled to 0 ° C. in an ice bath. Sulfuric acid 1.2 mL (22 mmol) was added here, and it stirred at room temperature for 20 minutes. The reaction solution was poured into an aqueous sodium bicarbonate solution. After the organic layer was dried over anhydrous magnesium sulfate, the volatile component was distilled off under reduced pressure. The obtained white solid was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10) to give 3.7 g of 2-tert-amyl-4-tert-butylphenol (yield 75%) as a colorless oil. Obtained.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.682 (t, J = 8 Hz, 3H), 1.29 (s, 9H), 1.37 (s, 6H), 1.84 (q, J = 8 Hz, 2H), 4.57 (s, 1H), 6.57 (d, J = 8 Hz, 1H), 7.06 (dd, J = 2 Hz, 8 Hz, 1H), 7.23 (d, J = 2 Hz, 1H).
(2) Synthesis of 6-tert-amyl-4-tert-butyl-2-hydroxymethylphenol In a 200 mL four-necked flask purged with nitrogen, 3.7 g (17 mmol) of 2-tert-amyl-4-tert-butylphenol, chloride Magnesium 3.2 g (33 mmol), paraformaldehyde 2.5 g (83 mmol) and tetrahydrofuran 75 mL were added. Triethylamine 4.6 mL (33 mmol) was added here, and it heated and refluxed for 1.5 hours. The reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate and water were added to the residue. The organic layer was washed with 1 M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 3.9 g of a mixture containing 3-tert-amyl-5-tert-butylsalicylaldehyde (yield 94%).
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.648 (t, J = 8 Hz, 3H), 1.28 (s, 9H), 1.37 (s, 6H), 1.90 (q, J = 8 Hz, 2H), 7.33 (d, J = 2 Hz, 1H), 7.54 (d, J = 2 Hz, 1H), 9.86 (s, 1H), 11.6 (s, 1H).
To a 200 mL four-necked flask purged with nitrogen, 3.9 g of the above mixture, 40 mL of tetrahydrofuran and 20 mL of methanol were added and ice-cooled. Sodium borohydride 360 mg (9.5 mmol) was slowly added here, and it heated up to room temperature, and stirred for 15 hours. After distilling off volatile components from the reaction solution under reduced pressure, water and ethyl acetate were added. The organic layer was washed with 1 M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. After evaporating the solvent under reduced pressure, the colorless oil obtained was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 20 to 1: 9) to give 6-tert-amyl-4- 2.4 g (61% yield) of tert-butyl-2-hydroxymethylphenol was obtained as a white solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.681 (t, J = 7 Hz, 3H), 1.28 (s, 9H), 1.38 (s, 6H), 1.90 (q, J = 7 Hz, 2H), 4.84 (s, 2H), 6.88 (d, J = 2 Hz, 1H), 7.21 (d, J = 2 Hz, 1H), 7.48 (s, 1H).
(3) Synthesis of 3-tert-amyl-5-tert-butyl-2-hydroxybenzyl bromide In a 200 mL four-necked flask purged with nitrogen, 6-tert-amyl-4-tert-butyl-2-hydroxymethylphenol 2.4 g (9.4 mmol) and 40 mL of dichloromethane were added. To this, 5.7 mL of phosphorus tribromide (1.0 M dichloromethane solution, 5.7 mmol) was added, and the mixture was stirred at room temperature for 3.5 hours. Water was added to the reaction solution, and the organic layer was further washed twice with water and then with saturated brine. After drying the organic layer over anhydrous magnesium sulfate, the volatile components are distilled off under reduced pressure to give 3.2 g of 3-tert-amyl-5-tert-butyl-2-hydroxybenzyl bromide (yield> 99%) Was obtained as a pale yellow oil.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.676 (t, J = 8 Hz, 3H), 1.29 (s, 9H), 1.37 (s, 6H), 1.86 (q, J = 7 Hz, 2H), 4.58 (s, 2H), 7.09 (d, J = 2 Hz, 1H), 7.26 (d, J = 2 Hz, 1H).
(4) Synthesis of trans-1,2-bis (3-tert-amyl-5-tert-butyl-2-hydroxybenzylsulfanyl) cyclooctane In a 50 mL four-necked flask purged with nitrogen, 3-tert-amyl bromide -5-tert-butyl-2-hydroxybenzyl 1.4 g (4.5 mmol), trans-cyclooctane-1,2-dithiol 0.40 g (2.2 mmol), and tetrahydrofuran 22 mL were added, and the mixture was ice-cooled. Triethylamine 1.0 mL (7.2 mmol) was added here, and it stirred at room temperature for 22.5 hours. The reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. Ethyl acetate and aqueous ammonium chloride solution were added to the resulting residue. The organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in that order, and then dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, it was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 20) to obtain trans-1,2-bis (3-tert-amyl-5-tert 1.5 g of a 6: 1 mixture of 2-butyl-2-hydroxybenzylsulfanyl) cyclooctane and trans-1- (3-tert-amyl-5-tert-butyl-2-hydroxybenzylsulfanyl) -2-sulfanylcyclooctane It was. This mixture and 0.20 g (0.64 mmol) of 3-tert-amyl-5-tert-butyl-2-hydroxybenzyl bromide were dissolved in 100 mL of tetrahydrofuran and ice-cooled. Triethylamine 0.12 mL (0.86 mmol) was added here, and it stirred for 22.5 hours. The reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. Ethyl acetate and an aqueous ammonium chloride solution were added to the obtained residue, and the organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in this order. The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 40) to obtain trans-1,2-bis (3-tert-amyl-5-tert-butyl-2- Hydroxybenzylsulfanyl) cyclooctane 1.5 g (yield> 99%) was obtained as a yellow oil.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.649 (t, J = 8 Hz, 6H), 1.1 to 2.0 (m, 46H), 2.64 (m, 2H), 3.81 (d, J = 13 Hz, 2H), 3.90 (d, J = 13 Hz, 2H ), 6.90 (d, J = 2 Hz, 2H), 7.19 (d, J = 2 Hz, 2H).
(参考例25)
[シクロオクタンジイル-trans-1,2-ビス(3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジルスルファニル)]ジクロロチタンの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス(3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジルスルファニル)シクロオクタン 130 mg(0.20 mmol)のジクロロメタン(1 mL)溶液に、ジクロロジイソプロポキシチタン50 mg(0.17 mmol)のジクロロメタン(1 mL)溶液を室温で滴下した。1.5時間後、減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、[シクロオクタンジイル-trans-1,2-ビス(3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジルスルファニル)]ジクロロチタン 81 mg (収率 54%)を赤色粉末として得た。
(Reference Example 25)
Synthesis of [cyclooctanediyl-trans-1,2-bis (3-tert-amyl-5-tert-butyl-2-hydroxybenzylsulfanyl)] dichlorotitanium in a 50 mL Schlenk tube in a glove box under nitrogen atmosphere -1,2-bis (3-tert-amyl-5-tert-butyl-2-hydroxybenzylsulfanyl) cyclooctane 130 mg (0.20 mmol) in dichloromethane (1 mL) was added to dichlorodiisopropoxytitanium 50 mg ( 0.17 mmol) in dichloromethane (1 mL) was added dropwise at room temperature. After 1.5 hours, volatile components were distilled off under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to obtain [cyclooctanediyl-trans-1,2-bis (3-tert-amyl-5-tert-butyl-2-hydroxybenzylsulfanyl)] Dichlorotitanium 81 mg (54% yield) was obtained as a red powder.
(参考例26)
[シクロオクタンジイル-trans-1,2-ビス(3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジルスルファニル)]ジクロロジルコニウムの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス(3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジルスルファニル)シクロオクタン 130 mg(0.20 mmol)のトルエン(1 mL)溶液に、テトラクロロジルコニウム46 mg(0.20 mmol)のトルエン(1 mL)溶液を室温で滴下した。1.5時間後、減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、[シクロオクタンジイル-trans-1,2-ビス(3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジルスルファニル)]ジクロロジルコニウム 80 mg (収率 47%)を白色粉末として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.707 (t, J = 7 Hz, 6H), 1.1~2.3 (m, 46H), 2.57 (brs, 2H), 3.81 (d, J = 14 Hz, 2H), 4.46 (d, J = 14 Hz, 2H), 6.86 (d, J = 2 Hz, 2H), 7.31 (d, J = 2 Hz, 1H).
(Reference Example 26)
Synthesis of [cyclooctanediyl-trans-1,2-bis (3-tert-amyl-5-tert-butyl-2-hydroxybenzylsulfanyl)] dichlorozirconium in a 50 mL Schlenk tube in a glove box under nitrogen atmosphere To a solution of 1,2-bis (3-tert-amyl-5-tert-butyl-2-hydroxybenzylsulfanyl) cyclooctane 130 mg (0.20 mmol) in toluene (1 mL), tetrachlorozirconium 46 mg (0.20 mmol) ) In toluene (1 mL) was added dropwise at room temperature. After 1.5 hours, volatile components were distilled off under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to obtain [cyclooctanediyl-trans-1,2-bis (3-tert-amyl-5-tert-butyl-2-hydroxybenzylsulfanyl)] Dichlorozirconium 80 mg (yield 47%) was obtained as a white powder.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.707 (t, J = 7 Hz, 6H), 1.1-2.3 (m, 46H), 2.57 (brs, 2H), 3.81 (d, J = 14 Hz, 2H), 4.46 (d, J = 14 Hz, 2H ), 6.86 (d, J = 2 Hz, 2H), 7.31 (d, J = 2 Hz, 1H).
(参考例27)
(d-MAO(乾燥メチルアルミノキサン)の調製)
 3方コックを取り付けた攪拌子入りの200mL2つ口フラスコを窒素置換し、東ソー・ファインケム社製PMAO-Sトルエン溶液(アルミニウム含量6.1wt%)を100mLシリンジで測り取り、フラスコに投入した。この溶液を減圧し揮発成分を除去した。得られた白色固体を脱水トルエン100mLに再溶解した後、揮発成分を減圧除去した。この操作を更に2回繰り返し、白色粉末14.1gを得た。
(Reference Example 27)
(Preparation of d-MAO (dry methylaluminoxane))
A 200 mL two-necked flask containing a stirring bar equipped with a three-way cock was purged with nitrogen, and a PMAO-S toluene solution (aluminum content 6.1 wt%) manufactured by Tosoh Finechem Co. was measured with a 100 mL syringe and charged into the flask. The solution was depressurized to remove volatile components. The obtained white solid was redissolved in 100 mL of dehydrated toluene, and then volatile components were removed under reduced pressure. This operation was further repeated twice to obtain 14.1 g of white powder.
<エチレン単独重合>
(実施例1)
 内容積400mLの撹拌機付きオートクレーブを真空乾燥してアルゴンで置換した後、溶媒としてトルエン200mLを仕込み、反応器を40℃まで昇温した。昇温後、エチレン圧を0.6MPaに調整しながらフィードし、d-MAO119 mgを投入し、続いて参考例2で合成した[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロチタン(0.5mmol/L、トルエン溶液)0.10mL(0.050μmol)を投入して重合を開始した。温度を40℃に保ちながら、60分間重合を行った。得られた重合体について、融点、分子量および分子量分布を測定した。結果を表1に示す。
<Ethylene homopolymerization>
Example 1
The autoclave with a stirrer with an internal volume of 400 mL was vacuum-dried and replaced with argon, and then 200 mL of toluene was charged as a solvent, and the temperature of the reactor was raised to 40 ° C. After raising the temperature, the ethylene pressure was fed while adjusting the pressure to 0.6 MPa, 119 mg of d-MAO was added, and then synthesized in Reference Example 2 [cyclooctanediyl-trans-1,2-bis (2-oxoyl- 3,5-Di-tert-butylbenzylsulfanyl)] dichlorotitanium (0.5 mmol / L, toluene solution) was added in an amount of 0.10 mL (0.050 μmol) to initiate polymerization. Polymerization was carried out for 60 minutes while maintaining the temperature at 40 ° C. About the obtained polymer, melting | fusing point, molecular weight, and molecular weight distribution were measured. The results are shown in Table 1.
(実施例2)
 内容積400mLの撹拌機付きオートクレーブを真空乾燥してアルゴンで置換した後、溶媒としてトルエン200mLを仕込み、反応器を40℃まで昇温した。昇温後、エチレン圧を0.6MPaに調整しながらフィードし、d-MAO 122 mgを投入し、続いて参考例1で合成したtrans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロオクタンとTiBnとの1:1反応混合物(チタン濃度1.0 mmol/L、トルエン溶液)0.5mL(チタン錯体 0.50 μmol)を投入して重合を開始した。温度を40℃に保ちながら、60分間重合を行った。得られた重合体について、融点、分子量および分子量分布を測定した。結果を表1に示す。
(Example 2)
The autoclave with a stirrer with an internal volume of 400 mL was vacuum-dried and replaced with argon, and then 200 mL of toluene was charged as a solvent, and the temperature of the reactor was raised to 40 ° C. After raising the temperature, the ethylene pressure was fed while adjusting the pressure to 0.6 MPa, 122 mg of d-MAO was added, and then trans-1,2-bis (2-hydroxy-3,5- Di-tert-butylbenzylsulfanyl) cyclooctane and TiBn 4 1: 1 reaction mixture (titanium concentration 1.0 mmol / L, toluene solution) 0.5 mL (titanium complex 0.50 μmol) was added to polymerize. Started. Polymerization was carried out for 60 minutes while maintaining the temperature at 40 ° C. About the obtained polymer, melting | fusing point, molecular weight, and molecular weight distribution were measured. The results are shown in Table 1.
(実施例3)
 d-MAO投入量を141mgとし、trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロオクタンの代わりに参考例5で合成したtrans-1,2-ビス(5-tert-ブチル-3-クミル-2-ヒドロキシベンジルスルファニル)シクロオクタンを用いたこと以外は、実施例2と同様にして実施した。結果を表1に示す。
(Example 3)
The amount of d-MAO input was 141 mg, and trans-1,2-synthesized in Reference Example 5 was used instead of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclooctane. The same procedure as in Example 2 was performed except that bis (5-tert-butyl-3-cumyl-2-hydroxybenzylsulfanyl) cyclooctane was used. The results are shown in Table 1.
(実施例4)
 d-MAO投入量を149mgとし、trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロオクタンの代わりに参考例7で合成したtrans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-ヒドロキシベンジルスルファニル]シクロオクタンを用いたこと以外は、実施例2と同様にして実施した。結果を表1に示す。
Example 4
The amount of d-MAO input was 149 mg, and trans-1,2-synthesized in Reference Example 7 was used instead of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclooctane. The same procedure as in Example 2 was performed except that bis [3- (1-adamantyl) -5-methyl-2-hydroxybenzylsulfanyl] cyclooctane was used. The results are shown in Table 1.
(実施例5)
 d-MAO投入量を123mgとし、trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロオクタンの代わりに参考例9で合成したtrans-1,2-ビス[3-(N-カルバゾリル)-2-ヒドロキシ-5-メチルベンジルスルファニル]シクロオクタンを用い、反応混合物(チタン濃度 2.0mmol/L、トルエン溶液)の投入量を0.5mL(チタン量 1.0 μmol)としたこと以外は、実施例2と同様にして実施した。結果を表1に示す。
(Example 5)
The trans-1,2-synthesized in Reference Example 9 was used instead of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclooctane, with a d-MAO input of 123 mg. Using bis [3- (N-carbazolyl) -2-hydroxy-5-methylbenzylsulfanyl] cyclooctane, the input amount of the reaction mixture (titanium concentration 2.0 mmol / L, toluene solution) was 0.5 mL (titanium amount 1 0.0 μmol), and the same procedure as in Example 2 was performed. The results are shown in Table 1.
(実施例6)
 d-MAO投入量を124mgとし、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロチタン(0.5mmol/L、トルエン溶液)0.10mL(0.050μmol)の代わりに参考例11で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシベンジルスルファニル]}ジクロロチタン(1.0mmol/L、トルエン溶液)1.0mL(1.0μmol)を用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(Example 6)
The amount of d-MAO charged was 124 mg, and [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium (0.5 mmol / L, toluene solution) ) Synthesized in Reference Example 11 instead of 0.10 mL (0.050 μmol) {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3,5-dimethyl-1-adamantyl)] -2-hydroxybenzylsulfanyl]} dichlorotitanium (1.0 mmol / L, toluene solution) 1.0 mL (1.0 μmol) was used, and the same procedure as in Example 1 was performed. The results are shown in Table 1.
(実施例7)
 d-MAO投入量を127mgとし、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロチタン(0.5mmol/L、トルエン溶液)0.10mL(0.050μmol)の代わりに参考例14で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(2-フェニル-2-ブチル)-2-ヒドロキシベンジルスルファニル]}ジクロロチタン(1.0mmol/L、トルエン溶液)1.0mL(1.0μmol)を用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(Example 7)
The amount of d-MAO charged was 127 mg, and [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium (0.5 mmol / L, toluene solution) ) {Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (2-phenyl-2-butyl) -2] synthesized in Reference Example 14 instead of 0.10 mL (0.050 μmol) -Hydroxybenzylsulfanyl]} dichlorotitanium (1.0 mmol / L, toluene solution), except that 1.0 mL (1.0 μmol) was used. The results are shown in Table 1.
(実施例8)
 d-MAO投入量を136mgとし、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロチタン(0.5mmol/L、トルエン溶液)0.10mL(0.050μmol)の代わりに参考例17で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3-(1-メチル-1-ナフチルエチル)ベンジルスルファニル]}ジクロロチタン(1.0mmol/L、トルエン溶液)1.0mL(1.0μmol)を用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(Example 8)
The amount of d-MAO charged was 136 mg, and [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium (0.5 mmol / L, toluene solution) ) {Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methyl-1-) synthesized in Reference Example 17 instead of 0.10 mL (0.050 μmol) Naphthylethyl) benzylsulfanyl]} dichlorotitanium (1.0 mmol / L, toluene solution) was used in the same manner as in Example 1 except that 1.0 mL (1.0 μmol) was used. The results are shown in Table 1.
(実施例9)
 d-MAO投入量を148mgとし、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロチタン(0.5mmol/L、トルエン溶液)0.10mL(0.050μmol)の代わりに参考例20で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3-(1-メチルシクロヘキシル)ベンジルスルファニル]}ジクロロチタン(1.0mmol/L、トルエン溶液)1.0mL(1.0μmol)を用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
Example 9
d-MAO input was 148 mg, [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium (0.5 mmol / L, toluene solution) ) {Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methylcyclohexyl) benzyl] synthesized in Reference Example 20 instead of 0.10 mL (0.050 μmol) Sulfanyl]} dichlorotitanium (1.0 mmol / L, toluene solution) was used in the same manner as in Example 1 except that 1.0 mL (1.0 μmol) was used. The results are shown in Table 1.
(実施例10)
 d-MAO投入量を111mgとし、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロチタン(0.5mmol/L、トルエン溶液)0.10mL(0.050μmol)の代わりに参考例25で合成した[シクロオクタンジイル-trans-1,2-ビス(3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジルスルファニル)]ジクロロチタン(1.0mmol/L、トルエン溶液)1.0mL(1.0μmol)を用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(Example 10)
d-MAO input was 111 mg, and [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium (0.5 mmol / L, toluene solution) ) Synthesized in Reference Example 25 instead of 0.10 mL (0.050 μmol) [cyclooctanediyl-trans-1,2-bis (3-tert-amyl-5-tert-butyl-2-hydroxybenzylsulfanyl)] The same procedure as in Example 1 was performed except that 1.0 mL (1.0 μmol) of dichlorotitanium (1.0 mmol / L, toluene solution) was used. The results are shown in Table 1.
(比較例1)
 d-MAO投入量を111mgとし、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロチタンの代わりに参考例3で合成した[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウムを用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(Comparative Example 1)
The amount of d-MAO input was 111 mg, and synthesized in Reference Example 3 instead of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium. The same procedure as in Example 1 was performed except that [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylzirconium was used. The results are shown in Table 1.
(比較例2)
 d-MAO投入量を119mgとし、trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロオクタンの代わりに参考例4で合成したtrans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロヘキサンを用い、反応混合物(チタン濃度 2.0mmol/L、トルエン溶液)の投入量を0.25mL(チタン量 0.5μmol)としたこと以外は、実施例2と同様にして実施した。結果を表1に示す。
(Comparative Example 2)
The amount of d-MAO input was 119 mg, and trans-1,2-synthesized in Reference Example 4 was used instead of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclooctane. Using bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclohexane, the input amount of the reaction mixture (titanium concentration 2.0 mmol / L, toluene solution) was 0.25 mL (titanium amount 0.5 μmol) The same procedure as in Example 2 was performed except that. The results are shown in Table 1.
(比較例3)
 d-MAO投入量を129mgとし、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロチタンの代わりに参考例6で合成した[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-3-クミル-2-オキソイルベンジルスルファニル)]ジベンジルジルコニウムを用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(Comparative Example 3)
The amount of d-MAO input was 129 mg, and synthesized in Reference Example 6 instead of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium. Performed in the same manner as in Example 1 except that [cyclooctanediyl-trans-1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] dibenzylzirconium was used. . The results are shown in Table 1.
(比較例4)
 d-MAO投入量を149mgとし、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロチタンの代わりに参考例8で合成した{シクロオクタンジイル-trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-ヒドロキシベンジルスルファニル]}ジベンジルジルコニウムを用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(Comparative Example 4)
The amount of d-MAO input was 149 mg, and synthesized in Reference Example 8 instead of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium. {Cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-hydroxybenzylsulfanyl]} Performed in the same manner as in Example 1 except that dibenzylzirconium was used. did. The results are shown in Table 1.
(比較例5)
 d-MAO投入量を122mgとし、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロチタンの代わりに参考例12で合成した[シクロヘプタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロジルコニウム(0.5mmol/L、トルエン溶液)0.1mL(0.05μmol)を用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(Comparative Example 5)
The amount of d-MAO input was 122 mg, and synthesized in Reference Example 12 instead of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium. [Cycloheptanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorozirconium (0.5 mmol / L, toluene solution) 0.1 mL (0.05 μmol) This was carried out in the same manner as in Example 1 except that was used. The results are shown in Table 1.
(比較例6)
 重合時間を15分に、d-MAO投入量を117mgとし、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロチタンの代わりに参考例15で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(2-フェニル-2-ブチル)-2-ヒドロキシベンジルスルファニル]}ジクロロジルコニウム(0.05mmol/L、トルエン溶液)0.2mL(0.01μmol)を用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(Comparative Example 6)
Instead of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium with a polymerization time of 15 minutes and a d-MAO charge of 117 mg {Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (2-phenyl-2-butyl) -2-hydroxybenzylsulfanyl]} dichlorozirconium (0. The same procedure as in Example 1 was carried out except that 0.2 mL (0.01 μmol) of 05 mmol / L, toluene solution) was used. The results are shown in Table 1.
(比較例7)
 d-MAO投入量を123mgとし、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロチタンの代わりに参考例18で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3- (1-メチル-1-ナフチルエチル)ベンジルスルファニル]}ジクロロジルコニウム(0.05mmol/L、トルエン溶液)0.1mL(0.05μmol)を用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(Comparative Example 7)
The amount of d-MAO used was 123 mg, and synthesized in Reference Example 18 instead of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium. {Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methyl-1-naphthylethyl) benzylsulfanyl]} dichlorozirconium (0.05 mmol / L, toluene solution ) The same procedure as in Example 1 was performed except that 0.1 mL (0.05 μmol) was used. The results are shown in Table 1.
(比較例8)
 d-MAO投入量を142mgとし、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロチタンの代わりに参考例21で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3- (1-メチルシクロヘキシル)ベンジルスルファニル]}ジクロロジルコニウム(0.05 mmol/L、トルエン溶液)0.2mL(0.01μmol)を用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(Comparative Example 8)
The amount of d-MAO input was 142 mg, and synthesized in Reference Example 21 instead of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium. {Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methylcyclohexyl) benzylsulfanyl]} dichlorozirconium (0.05 mmol / L, toluene solution) It implemented like Example 1 except having used 2 mL (0.01 micromol). The results are shown in Table 1.
(比較例9)
 d-MAO投入量を122mgとし、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロチタンの代わりに参考例26で合成した[シクロオクタンジイル-trans-1,2-ビス(3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジルスルファニル)]ジクロロジルコニウム(0.05 mmol/L、トルエン溶液)0.2mL(0.01μmol)を用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
実施例1~10、比較例1~9で得られた重合結果を表1に示す。
(Comparative Example 9)
The amount of d-MAO input was 122 mg, and synthesized in Reference Example 26 instead of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium. [Cyclooctanediyl-trans-1,2-bis (3-tert-amyl-5-tert-butyl-2-hydroxybenzylsulfanyl)] dichlorozirconium (0.05 mmol / L, toluene solution) 0.2 mL (0 .01 μmol) was carried out in the same manner as in Example 1. The results are shown in Table 1.
Table 1 shows the polymerization results obtained in Examples 1 to 10 and Comparative Examples 1 to 9.
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
<プロピレン単独重合>
(実施例11)
 内容積400 mLの撹拌機付きオートクレーブを真空乾燥してアルゴンで置換した後、溶媒としてトルエン40mL、モノマーとしてプロピレン80gを仕込み、反応器を40℃まで昇温した。昇温後、d-MAO125mgを投入し、続いて参考例2で合成した[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロチタン(0.5mmol/L、トルエン溶液)1.0mL(0.50μmol)を投入して重合を開始した。温度を40℃に保ちながら、60分間重合を行った。得られた重合体について、融点、分子量および分子量分布を測定した。結果を表2に示す。
<Propylene homopolymerization>
(Example 11)
The autoclave with a stirrer having an internal volume of 400 mL was vacuum-dried and replaced with argon, and then 40 mL of toluene as a solvent and 80 g of propylene as a monomer were charged, and the reactor was heated to 40 ° C. After raising the temperature, 125 mg of d-MAO was added, and then [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichloro synthesized in Reference Example 2 Polymerization was initiated by adding 1.0 mL (0.50 μmol) of titanium (0.5 mmol / L, toluene solution). Polymerization was carried out for 60 minutes while maintaining the temperature at 40 ° C. About the obtained polymer, melting | fusing point, molecular weight, and molecular weight distribution were measured. The results are shown in Table 2.
(実施例12)
 内容積400 mLの撹拌機付きオートクレーブを真空乾燥してアルゴンで置換した後、溶媒としてトルエン40mL、モノマーとしてプロピレン80gを仕込み、反応器を40℃まで昇温した。昇温後、d-MAO125mgを投入し、続いて参考例1で合成したtrans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロオクタンとTiBnとの1:1反応混合物(チタン濃度1.0mmol/L、トルエン溶液)3.0mL(チタン錯体 3.0μmol)を投入して重合を開始した。温度を40℃に保ちながら、60分間重合を行った。得られた重合体について、融点、分子量および分子量分布を測定した。結果を表2に示す。
(Example 12)
The autoclave with a stirrer having an internal volume of 400 mL was vacuum-dried and replaced with argon, and then 40 mL of toluene as a solvent and 80 g of propylene as a monomer were charged, and the reactor was heated to 40 ° C. After raising the temperature, 125 mg of d-MAO was added, and subsequently trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclooctane synthesized in Reference Example 1 and TiBn 4 Polymerization was started by charging 3.0 mL of a 1: 1 reaction mixture (titanium concentration 1.0 mmol / L, toluene solution) (titanium complex 3.0 μmol). Polymerization was carried out for 60 minutes while maintaining the temperature at 40 ° C. About the obtained polymer, melting | fusing point, molecular weight, and molecular weight distribution were measured. The results are shown in Table 2.
(実施例13)
 d-MAO投入量を144mgとし、trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロオクタンの代わりに、参考例5で合成したtrans-1,2-ビス(5-tert-ブチル-3-クミル-2-ヒドロキシベンジルスルファニル)シクロオクタンを用い、反応混合物(チタン濃度 1.0mmol/L、トルエン溶液)の投入量を1.0mL(チタン量 1.0μmol)としたこと以外は実施例12と同様に実施した。結果を表2に示す。
(Example 13)
The amount of d-MAO input was 144 mg, and trans-1,2 synthesized in Reference Example 5 was used instead of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclooctane. -Bis (5-tert-butyl-3-cumyl-2-hydroxybenzylsulfanyl) cyclooctane was used, and the input amount of the reaction mixture (titanium concentration 1.0 mmol / L, toluene solution) was 1.0 mL (titanium amount 1. This was carried out in the same manner as in Example 12 except that the amount was 0 μmol). The results are shown in Table 2.
(実施例14)
 d-MAO投入量を131.6mgとし、trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロオクタンの代わりに、参考例7で合成したtrans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-ヒドロキシベンジルスルファニル]シクロオクタンを用いたこと以外は実施例12と同様に実施した。結果を表2に示す。
(Example 14)
The trans-1 synthesized in Reference Example 7 was used instead of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclooctane, with an input amount of d-MAO of 131.6 mg. , 2-bis [3- (1-adamantyl) -5-methyl-2-hydroxybenzylsulfanyl] cyclooctane was used in the same manner as Example 12, except that 2-bis [3- (1-adamantyl) -5-methyl-2-hydroxybenzylsulfanyl] cyclooctane was used. The results are shown in Table 2.
(実施例15)
 d-MAO投入量を144mgとし、trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロオクタンの代わりに、参考例9で合成したtrans-1,2-ビス[3-(N-カルバゾリル)-2-ヒドロキシ-5-メチルベンジルスルファニル]シクロオクタンを用い、反応混合物(チタン濃度 2.0mmol/L、トルエン溶液)の投入量を2.5mL(チタン量 5.0μmol)としたこと以外は実施例12と同様に実施した。結果を表2に示す。
(Example 15)
The amount of d-MAO input was 144 mg, and trans-1,2 synthesized in Reference Example 9 was used instead of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclooctane. -Bis [3- (N-carbazolyl) -2-hydroxy-5-methylbenzylsulfanyl] cyclooctane was used, and the reaction mixture (titanium concentration 2.0 mmol / L, toluene solution) was added in 2.5 mL (titanium amount) The same procedure as in Example 12 was carried out except that the amount was 5.0 μmol). The results are shown in Table 2.
(実施例16)
 d-MAO投入量を134 mgとし、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロチタンの代わりに参考例14で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(2-フェニル-2-ブチル)-2-ヒドロキシベンジルスルファニル]}ジクロロチタン(1.0mmol/L、トルエン溶液)5.0 mL(5.0μmol)を用いたこと以外は、実施例11と同様にして実施した。結果を表2に示した。
(Example 16)
The amount of d-MAO used was 134 mg and synthesized in Reference Example 14 instead of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium. {Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (2-phenyl-2-butyl) -2-hydroxybenzylsulfanyl]} dichlorotitanium (1.0 mmol / L, toluene solution) ) The same procedure as in Example 11 was performed except that 5.0 mL (5.0 μmol) was used. The results are shown in Table 2.
(実施例17)
 d-MAO投入量を119mgとし、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロチタンの代わりに参考例20で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3-(1-メチルシクロヘキシル)ベンジルスルファニル]}ジクロロチタン(1.0 mmol/L、トルエン溶液)5.0mL(5.0μmol)を用いたこと以外は、実施例11と同様にして実施した。結果を表2に示した。
(Example 17)
The amount of d-MAO input was 119 mg, and synthesized in Reference Example 20 instead of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium. {Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methylcyclohexyl) benzylsulfanyl]} dichlorotitanium (1.0 mmol / L, toluene solution) 5. It implemented like Example 11 except having used 0 mL (5.0 micromol). The results are shown in Table 2.
(実施例18)
 d-MAO投入量を124mgとし、trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロオクタンの代わりに、参考例22で合成したtrans-1,2-ビス(2-ヒドロキシ-3-トリメチルシリル-5-メチルベンジルスルファニル)シクロオクタンを用い、反応混合物(チタン濃度 10mmol/L、トルエン溶液)の投入量を1.0mL(チタン量 10μmol)としたこと以外は、実施例12と同様にして実施した。結果を表2に示した。
(Example 18)
The trans-1,2 synthesized in Reference Example 22 was used instead of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclooctane, with a d-MAO input of 124 mg. Except that -bis (2-hydroxy-3-trimethylsilyl-5-methylbenzylsulfanyl) cyclooctane was used and the input amount of the reaction mixture (titanium concentration 10 mmol / L, toluene solution) was 1.0 mL (titanium amount 10 μmol) Was carried out in the same manner as in Example 12. The results are shown in Table 2.
(実施例19)
 d-MAO投入量を119mgとし、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロチタンの代わりに参考例25で合成した[シクロオクタンジイル-trans-1,2-ビス(3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジルスルファニル)]ジクロロチタン(1.0 mmol/L、トルエン溶液)5.0 mL(5.0μmol)を用いたこと以外は、実施例11と同様にして実施した。結果を表2に示した。
(Example 19)
The amount of d-MAO input was 119 mg, and synthesized in Reference Example 25 instead of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium. [Cyclooctanediyl-trans-1,2-bis (3-tert-amyl-5-tert-butyl-2-hydroxybenzylsulfanyl)] dichlorotitanium (1.0 mmol / L, toluene solution) 5.0 mL ( The same procedure as in Example 11 was carried out except that 5.0 μmol) was used. The results are shown in Table 2.
(比較例10)
 d-MAO投入量を123mgとし、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロチタンの代わりに参考例3で合成した[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウム(5.0mmol/L、トルエン溶液)0.5mL(5.0μmol)を用いたこと以外は、実施例11と同様にして実施した。結果を表2に示した。
(Comparative Example 10)
The amount of d-MAO used was 123 mg, and synthesized in Reference Example 3 instead of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium. [Cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylzirconium (5.0 mmol / L, toluene solution) 0.5 mL (5.0 μmol) ) Was carried out in the same manner as in Example 11 except that. The results are shown in Table 2.
(比較例11)
 d-MAO投入量を123mgとし、trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロオクタンの代わりに、参考例4で合成したtrans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロヘキサンを用い、反応混合物(チタン濃度 2.0mmol/L、トルエン溶液)の投入量を2.5mL(チタン量5.0μmol)としたこと以外は実施例12と同様に実施した。結果を表2に示す。
(Comparative Example 11)
The trans-1,2 synthesized in Reference Example 4 was used instead of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclooctane, with a d-MAO input of 123 mg. -Bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclohexane was used, and the reaction mixture (titanium concentration 2.0 mmol / L, toluene solution) was added in 2.5 mL (titanium amount 5.0 μmol). This was carried out in the same manner as in Example 12 except that. The results are shown in Table 2.
(比較例12)
 d-MAO投入量を131mgとし、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロチタンの代わりに参考例6で合成した[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-3-クミル-2-オキソイルベンジルスルファニル)]ジベンジルジルコニウム(0.5mmol/L、トルエン溶液)1.0mL(0.5μmol)を用いたこと以外は、実施例11と同様にして実施した。結果を表2に示す。
(Comparative Example 12)
The amount of d-MAO input was 131 mg, and synthesized in Reference Example 6 instead of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium. [Cyclooctanediyl-trans-1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] dibenzylzirconium (0.5 mmol / L, toluene solution) 1.0 mL (0. The same procedure as in Example 11 was carried out except that 5 μmol) was used. The results are shown in Table 2.
(比較例13)
 d-MAO投入量を140mgとし、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロチタンの代わりに参考例8で合成した{シクロオクタンジイル-trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-ヒドロキシベンジルスルファニル]}ジベンジルジルコニウム(0.5mmol/L、トルエン溶液)1.0mL(0.5μmol)を用いたこと以外は、実施例11と同様にして実施した。結果を表2に示す。
(Comparative Example 13)
The amount of d-MAO input was 140 mg, and synthesized in Reference Example 8 instead of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium. {Cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-hydroxybenzylsulfanyl]} dibenzylzirconium (0.5 mmol / L, toluene solution) 1.0 mL (0 0.5 μmol) was carried out in the same manner as in Example 11. The results are shown in Table 2.
(比較例14)
 重合温度を40℃に、d-MAO投入量を118 mgにし、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロチタンの代わりに、参考例15で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(2-フェニル-2-ブチル)-2-ヒドロキシベンジルスルファニル]}ジクロロジルコニウム(0.5mmol/L、トルエン溶液)0.10mL(0.050μmol)を用いたこと以外は実施例11と同様に実施した。結果を表2に示した。
(Comparative Example 14)
The polymerization temperature was 40 ° C., the d-MAO charge was 118 mg, and [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium Instead, {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (2-phenyl-2-butyl) -2-hydroxybenzylsulfanyl]} dichlorozirconium synthesized in Reference Example 15 ( The same procedure as in Example 11 was performed except that 0.10 mL (0.050 μmol) of 0.5 mmol / L, toluene solution) was used. The results are shown in Table 2.
(比較例15)
 重合温度を40℃に、d-MAO投入量を144 mgにし、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロチタンの代わりに、参考例21で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3- (1-メチルシクロヘキシル)ベンジルスルファニル]}ジクロロジルコニウム(0.5 mmol/L、トルエン溶液)0.10 mL(0.050μmol)を用いたこと以外は実施例11と同様に実施した。結果を表2に示した。
(Comparative Example 15)
The polymerization temperature was 40 ° C., the amount of d-MAO charged was 144 mg, and [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium Instead, {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methylcyclohexyl) benzylsulfanyl]} dichlorozirconium synthesized in Reference Example 21 (0.5 The same procedure as in Example 11 was carried out except that 0.10 mL (0.050 μmol) of mmol / L, toluene solution) was used. The results are shown in Table 2.
(比較例16)
 重合温度を40℃に、d-MAO投入量を129 mgにし、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロチタンの代わりに、参考例24で合成した[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3-トリメチルシリル-5-メチルベンジルスルファニル)]ジクロロジルコニウム(0.5mmol/L、トルエン溶液)1.0mL(0.50μmol)を用いたこと以外は実施例11と同様に実施した。結果を表2に示した。
(Comparative Example 16)
The polymerization temperature was 40 ° C., the amount of d-MAO charged was 129 mg, and [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium Instead, [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3-trimethylsilyl-5-methylbenzylsulfanyl)] dichlorozirconium synthesized in Reference Example 24 (0.5 mmol / L, toluene solution) 1 The same procedure as in Example 11 was performed except that 0.0 mL (0.50 μmol) was used. The results are shown in Table 2.
(比較例17)
 d-MAO投入量を111 mgにし、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロチタン(0.5mmol/L、トルエン溶液)0.1mL(0.050μmol)の代わりに参考例26で合成した[シクロオクタンジイル-trans-1,2-ビス(3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジルスルファニル)]ジクロロジルコニウム(0.1 mmol/L、トルエン溶液)1.0 mL(0.10μmol)を用いたこと以外は実施例11と同様に実施した。結果を表2に示した。
(Comparative Example 17)
The amount of d-MAO charged was 111 mg, and [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorotitanium (0.5 mmol / L, toluene Solution) [cyclooctanediyl-trans-1,2-bis (3-tert-amyl-5-tert-butyl-2-hydroxybenzylsulfanyl) synthesized in Reference Example 26 instead of 0.1 mL (0.050 μmol) It carried out like Example 11 except having used 1.0 mL (0.10 micromol) of dichloro zirconium (0.1 mmol / L, toluene solution). The results are shown in Table 2.
 実施例11~19、比較例10~17で得られた重合結果を表2に示す。 The polymerization results obtained in Examples 11 to 19 and Comparative Examples 10 to 17 are shown in Table 2.
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
 本発明は、ポリオレフィンの製造に関する分野に有用である。 The present invention is useful in the field relating to the production of polyolefins.

Claims (27)

  1.  一般式(1)で表される錯体と活性化用助触媒成分とを接触させてなる、オレフィン重合用触媒。
    Figure JPOXMLDOC01-appb-C000001
    (式中、nは1または2であり、
    ~R12は、それぞれ独立に、
    水素原子、
    ハロゲン原子、
    炭素原子数1~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数2~20のアルケニル基、
    炭素原子数2~20のアルキニル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数6~30のアリール基、
    炭素原子数1~20のアルコキシ基、
    炭素原子数7~30のアラルキルオキシ基、
    炭素原子数6~30のアリールオキシ基、
    置換シリル基、
    または環を構成する炭素原子数が3~20のヘテロ環式化合物残基を表す。
    ~R12における上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アルキニル基、上記アラルキル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基および上記ヘテロ環式化合物残基は置換基を有していてもよい。
    上記R~R12の定義に関わらず、RとR、RとR、RとR、RとR、RとR、RとR、RとR10、およびR11とR12とは、それぞれ独立に、互いに連結して環を形成してもよく、これらの環は置換基を有していてもよい。
    Xは、それぞれ独立に、水素原子、ハロゲン原子、
    炭素原子数1~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数2~20のアルケニル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数6~30のアリール基、
    炭素原子数1~20のアルコキシ基、
    炭素原子数7~30のアラルキルオキシ基、
    炭素原子数6~30のアリールオキシ基、
    置換シリル基、
    置換アミノ基、
    置換チオラート基、または
    炭素原子数1~20のカルボキシラート基を表す。
    Xにおける上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アラルキル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基および上記カルボキシラート基は置換基を有していてもよい。
    隣接するX同士は、相互に連結して環を形成してもよい。
    Lは中性のルイス塩基を表す。Lが複数ある場合は、複数のLは同一でも異なっていてもよい。lは、0、1、または2である。)
    An olefin polymerization catalyst obtained by bringing a complex represented by the general formula (1) into contact with an activation promoter component.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein n is 1 or 2,
    R 1 to R 12 are each independently
    Hydrogen atom,
    A halogen atom,
    An alkyl group having 1 to 20 carbon atoms,
    A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
    An alkenyl group having 2 to 20 carbon atoms,
    An alkynyl group having 2 to 20 carbon atoms,
    An aralkyl group having 7 to 30 carbon atoms,
    An aryl group having 6 to 30 carbon atoms,
    An alkoxy group having 1 to 20 carbon atoms,
    An aralkyloxy group having 7 to 30 carbon atoms,
    An aryloxy group having 6 to 30 carbon atoms,
    Substituted silyl groups,
    Alternatively, it represents a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring.
    The alkyl group, the cycloalkyl group, the alkenyl group, the alkynyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the heterocyclic compound in R 1 to R 12 The residue may have a substituent.
    Regardless of the definition of R 1 to R 12 above, R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 9 And R 10 , and R 11 and R 12 may be independently connected to each other to form a ring, and these rings may have a substituent.
    X is independently a hydrogen atom, a halogen atom,
    An alkyl group having 1 to 20 carbon atoms,
    A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
    An alkenyl group having 2 to 20 carbon atoms,
    An aralkyl group having 7 to 30 carbon atoms,
    An aryl group having 6 to 30 carbon atoms,
    An alkoxy group having 1 to 20 carbon atoms,
    An aralkyloxy group having 7 to 30 carbon atoms,
    An aryloxy group having 6 to 30 carbon atoms,
    Substituted silyl groups,
    A substituted amino group,
    It represents a substituted thiolate group or a carboxylate group having 1 to 20 carbon atoms.
    The alkyl group, the cycloalkyl group, the alkenyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the carboxylate group in X may have a substituent. Good.
    Adjacent Xs may be connected to each other to form a ring.
    L represents a neutral Lewis base. When there are a plurality of L, the plurality of L may be the same or different. l is 0, 1, or 2. )
  2.  R~R12が、
    水素原子である、請求項1に記載の触媒。
    R 9 to R 12 are
    The catalyst according to claim 1, which is a hydrogen atom.
  3.  上記活性化用助触媒成分がホウ素化合物および有機アルミニウム化合物の少なくともいずれか一方である、請求項1または2に記載の触媒。 The catalyst according to claim 1 or 2, wherein the activating co-catalyst component is at least one of a boron compound and an organoaluminum compound.
  4.  RおよびRが、それぞれ独立して、
    ハロゲン原子、
    炭素原子数1~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数6~30のアリール基、
    置換シリル基、
    または環を構成する炭素原子数が3~20のヘテロ環式化合物残基であり、該アルキル基、該シクロアルキル基、該アラルキル基および該アリール基は置換基を有していてもよい、請求項1~3のいずれか1項に記載の触媒。
    R 1 and R 5 are each independently
    A halogen atom,
    An alkyl group having 1 to 20 carbon atoms,
    A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
    An aralkyl group having 7 to 30 carbon atoms,
    An aryl group having 6 to 30 carbon atoms,
    Substituted silyl groups,
    Or a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring, and the alkyl group, the cycloalkyl group, the aralkyl group, and the aryl group may have a substituent, Item 4. The catalyst according to any one of Items 1 to 3.
  5.  RおよびRのアルキル基が、置換または無置換の炭素原子数5~20のアルキル基である、請求項1~4のいずれか1項に記載の触媒。 The catalyst according to any one of claims 1 to 4, wherein the alkyl group of R 1 and R 5 is a substituted or unsubstituted alkyl group having 5 to 20 carbon atoms.
  6.  R~RおよびR~Rがそれぞれ独立して、
    水素原子、
    ハロゲン原子、
    炭素原子数1~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数6~30のアリール基、
    または置換シリル基であり、該アルキル基、該シクロアルキル基、該アラルキル基および該アリール基は置換基を有していてもよい、請求項1~5のいずれか1項に記載の触媒。
    R 2 to R 4 and R 6 to R 8 are each independently
    Hydrogen atom,
    A halogen atom,
    An alkyl group having 1 to 20 carbon atoms,
    A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
    An aralkyl group having 7 to 30 carbon atoms,
    An aryl group having 6 to 30 carbon atoms,
    The catalyst according to any one of claims 1 to 5, which is a substituted silyl group, and the alkyl group, the cycloalkyl group, the aralkyl group and the aryl group may have a substituent.
  7.  RおよびRがそれぞれ独立して、
    ハロゲン原子、
    炭素原子数1~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数6~30のアリール基、
    または置換シリル基であり、該アルキル基、該シクロアルキル基、該アラルキル基および該アリール基は置換基を有していてもよい、請求項1~6のいずれか1項に記載の触媒。
    R 3 and R 7 are each independently
    A halogen atom,
    An alkyl group having 1 to 20 carbon atoms,
    A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
    An aralkyl group having 7 to 30 carbon atoms,
    An aryl group having 6 to 30 carbon atoms,
    The catalyst according to any one of claims 1 to 6, which is a substituted silyl group, and the alkyl group, the cycloalkyl group, the aralkyl group and the aryl group may have a substituent.
  8.  R、R、RおよびRが水素原子である、請求項1~7のいずれか1項に記載の触媒。 The catalyst according to any one of claims 1 to 7, wherein R 2 , R 4 , R 6 and R 8 are hydrogen atoms.
  9. Xが、ハロゲン原子、
    炭素原子数1~20のアルキル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数1~20のアルコキシ基、
    炭素原子数7~30のアラルキルオキシ基、
    炭素原子数6~30のアリールオキシ基、
    または置換アミノ基であり、該アルキル基、該アラルキル基、該アルコキシ基、該アラルキルオキシ基および該アリールオキシ基は置換基を有していてもよい、請求項1~8のいずれか1項に記載の触媒。
    X is a halogen atom,
    An alkyl group having 1 to 20 carbon atoms,
    An aralkyl group having 7 to 30 carbon atoms,
    An alkoxy group having 1 to 20 carbon atoms,
    An aralkyloxy group having 7 to 30 carbon atoms,
    An aryloxy group having 6 to 30 carbon atoms,
    Or a substituted amino group, and the alkyl group, the aralkyl group, the alkoxy group, the aralkyloxy group, and the aryloxy group may have a substituent, according to any one of claims 1 to 8. The catalyst described.
  10.  nが2である、請求項1~9のいずれか1項に記載の触媒。 The catalyst according to any one of claims 1 to 9, wherein n is 2.
  11.  炭素原子数2~6のオレフィン単独重合用または2種以上の炭素原子数2~6のオレフィン共重合用である、請求項1~10のいずれか1項に記載の触媒。 The catalyst according to any one of claims 1 to 10, which is used for homopolymerization of olefins having 2 to 6 carbon atoms or for copolymerization of two or more olefins having 2 to 6 carbon atoms.
  12.  請求項1~11のいずれか1項に記載の触媒を用いる、オレフィン重合体の製造方法。 An olefin polymer production method using the catalyst according to any one of claims 1 to 11.
  13.  一般式(1’)で表される錯体。
    Figure JPOXMLDOC01-appb-C000002
    (式中、n’は1または2であり、
    ’~R12’は、それぞれ独立に、
    水素原子、
    ハロゲン原子、
    炭素原子数1~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数2~20のアルケニル基、
    炭素原子数2~20のアルキニル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数6~30のアリール基、
    炭素原子数1~20のアルコキシ基、
    炭素原子数7~30のアラルキルオキシ基、
    炭素原子数6~30のアリールオキシ基、
    置換シリル基、
    または環を構成する炭素原子数が3~20のヘテロ環式化合物残基を表す。ただし、R’とR’とは同時にtert-ブチル基ではない。
    ’~R12’における上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アルキニル基、上記アラルキル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基および上記ヘテロ環式化合物残基は置換基を有していてもよい。
    上記R’~R12’の定義に関わらず、R’とR’、R’とR’、R’とR’、R’とR’、R’とR’、R’とR’、R’とR10’、およびR11’とR12’とは、それぞれ独立に、互いに連結して環を形成してもよく、これらの環は置換基を有していてもよい。
    X’は、それぞれ独立に、
    水素原子、
    ハロゲン原子、
    炭素原子数1~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数2~20のアルケニル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数6~30のアリール基、
    炭素原子数1~20のアルコキシ基、
    炭素原子数7~30のアラルキルオキシ基、
    炭素原子数6~30のアリールオキシ基、
    置換シリル基、
    置換アミノ基、
    置換チオラート基、または
    炭素原子数1~20のカルボキシラート基を表す。
    X’における上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アラルキル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基および上記カルボキシラート基は置換基を有していてもよい。
    隣接するX’同士は、相互に連結して環を形成してもよい。
    L’は中性のルイス塩基を表す。Lが複数ある場合は、複数のL’は同一でも異なっていてもよい。l’は、0、1、または2である。)
    A complex represented by the general formula (1 ′).
    Figure JPOXMLDOC01-appb-C000002
    (Wherein n ′ is 1 or 2,
    R 1 ′ to R 12 ′ are each independently
    Hydrogen atom,
    A halogen atom,
    An alkyl group having 1 to 20 carbon atoms,
    A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
    An alkenyl group having 2 to 20 carbon atoms,
    An alkynyl group having 2 to 20 carbon atoms,
    An aralkyl group having 7 to 30 carbon atoms,
    An aryl group having 6 to 30 carbon atoms,
    An alkoxy group having 1 to 20 carbon atoms,
    An aralkyloxy group having 7 to 30 carbon atoms,
    An aryloxy group having 6 to 30 carbon atoms,
    Substituted silyl groups,
    Alternatively, it represents a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring. However, R 1 ′ and R 5 ′ are not simultaneously a tert-butyl group.
    R 1 ′ to R 12 ′ The alkyl group, the cycloalkyl group, the alkenyl group, the alkynyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the heterocyclic ring The formula compound residue may have a substituent.
    Despite the definition of the R 1 '~ R 12', R 1 ' and R 2', R 2 'and R 3', R 3 'and R 4', 'a R 6' R 5, and R 6 ' R 7 ′, R 7 ′ and R 8 ′, R 9 ′ and R 10 ′, and R 11 ′ and R 12 ′ may be independently connected to each other to form a ring. May have a substituent.
    X ′ is independently
    Hydrogen atom,
    A halogen atom,
    An alkyl group having 1 to 20 carbon atoms,
    A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
    An alkenyl group having 2 to 20 carbon atoms,
    An aralkyl group having 7 to 30 carbon atoms,
    An aryl group having 6 to 30 carbon atoms,
    An alkoxy group having 1 to 20 carbon atoms,
    An aralkyloxy group having 7 to 30 carbon atoms,
    An aryloxy group having 6 to 30 carbon atoms,
    Substituted silyl groups,
    A substituted amino group,
    It represents a substituted thiolate group or a carboxylate group having 1 to 20 carbon atoms.
    The alkyl group, the cycloalkyl group, the alkenyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the carboxylate group in X ′ have a substituent. Also good.
    Adjacent X ′ may be connected to each other to form a ring.
    L ′ represents a neutral Lewis base. When there are a plurality of L, the plurality of L ′ may be the same or different. l ′ is 0, 1, or 2. )
  14.  R’~R12’が、
    水素原子である、請求項13に記載の錯体。
    R 9 'to R 12 ' are
    The complex according to claim 13, which is a hydrogen atom.
  15.  R’およびR’が、それぞれ独立して、
    ハロゲン原子、
    炭素原子数5~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数6~30のアリール基、
    置換シリル基、
    または環を構成する炭素原子数が3~20のヘテロ環式化合物残基であり、該アルキル基、該シクロアルキル基、該アラルキル基、該アリール基および該ヘテロ環式化合物残基は置換基を有していてもよい、請求項13または14に記載の錯体。
    R 1 ′ and R 5 ′ are each independently
    A halogen atom,
    An alkyl group having 5 to 20 carbon atoms,
    A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
    An aralkyl group having 7 to 30 carbon atoms,
    An aryl group having 6 to 30 carbon atoms,
    Substituted silyl groups,
    Or a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring, and the alkyl group, the cycloalkyl group, the aralkyl group, the aryl group, and the heterocyclic compound residue are substituted. The complex according to claim 13 or 14, which may have.
  16.  R’~R’およびR’~R’がそれぞれ独立して、
    水素原子、
    ハロゲン原子、
    炭素原子数1~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数6~30のアリール基
    または置換シリル基であり、該アルキル基、該シクロアルキル基、該アラルキル基および該アリール基は置換基を有していてもよい、請求項13~15のいずれか1項に記載の錯体。
    R 2 ′ to R 4 ′ and R 6 ′ to R 8 ′ are each independently
    Hydrogen atom,
    A halogen atom,
    An alkyl group having 1 to 20 carbon atoms,
    A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
    An aralkyl group having 7 to 30 carbon atoms,
    The aryl group or substituted silyl group having 6 to 30 carbon atoms, wherein the alkyl group, the cycloalkyl group, the aralkyl group, and the aryl group may have a substituent. The complex according to claim 1.
  17.  R’およびR’がそれぞれ独立して、
    ハロゲン原子、
    炭素原子数1~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数6~30のアリール基、
    または置換シリル基であり、該アルキル基、該シクロアルキル基、該アラルキル基および該アリール基は置換基を有していてもよい、請求項13~16のいずれか1項に記載の錯体。
    R 3 ′ and R 7 ′ are each independently
    A halogen atom,
    An alkyl group having 1 to 20 carbon atoms,
    A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
    An aralkyl group having 7 to 30 carbon atoms,
    An aryl group having 6 to 30 carbon atoms,
    The complex according to any one of claims 13 to 16, which is a substituted silyl group, and the alkyl group, the cycloalkyl group, the aralkyl group and the aryl group may have a substituent.
  18.  R’、R’、R’およびR’が水素原子である、請求項13~17のいずれか1項に記載の錯体。 The complex according to any one of claims 13 to 17, wherein R 2 ', R 4 ', R 6 'and R 8 ' are hydrogen atoms.
  19.  X’が、ハロゲン原子、
    炭素原子数1~20のアルキル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数1~20のアルコキシ基、
    炭素原子数7~30のアラルキルオキシ基、
    炭素原子数6~30のアリールオキシ基、
    または置換アミノ基であり、該アルキル基、該アラルキル基、該アルコキシ基、該アラルキルオキシ基および該アリールオキシ基は置換基を有していてもよい、請求項13~18のいずれか1項に記載の錯体。
    X ′ is a halogen atom,
    An alkyl group having 1 to 20 carbon atoms,
    An aralkyl group having 7 to 30 carbon atoms,
    An alkoxy group having 1 to 20 carbon atoms,
    An aralkyloxy group having 7 to 30 carbon atoms,
    An aryloxy group having 6 to 30 carbon atoms,
    Or a substituted amino group, and the alkyl group, the aralkyl group, the alkoxy group, the aralkyloxy group, and the aryloxy group may have a substituent, according to any one of claims 13 to 18; The complex described.
  20.  n’が2である、請求項13~19のいずれか1項に記載の錯体。 The complex according to any one of claims 13 to 19, wherein n 'is 2.
  21.  一般式(2’)で表される化合物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、n’は1または2であり、
    ’~R12’は、それぞれ独立に、
    水素原子、
    ハロゲン原子、
    炭素原子数1~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数2~20のアルケニル基、
    炭素原子数2~20のアルキニル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数6~30のアリール基、
    炭素原子数1~20のアルコキシ基、
    炭素原子数7~30のアラルキルオキシ基、
    炭素原子数6~30のアリールオキシ基、
    置換シリル基、
    または環を構成する炭素原子数が3~20のヘテロ環式化合物残基を表す。ただし、R’とR’とは同時にtert-ブチル基ではない。
    ’~R12’における上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アルキニル基、上記アラルキル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基および上記ヘテロ環式化合物残基は置換基を有していてもよい。
    上記R’~R12’の定義に関わらず、R’とR’、R’とR’、R’とR’、R’とR’、R’とR’、R’とR’、R’とR10’、およびR11’とR12’とは、それぞれ独立に、互いに連結して環を形成してもよく、これらの環は置換基を有していてもよい。)
    A compound represented by the general formula (2 ′).
    Figure JPOXMLDOC01-appb-C000003
    (Wherein n ′ is 1 or 2,
    R 1 ′ to R 12 ′ are each independently
    Hydrogen atom,
    A halogen atom,
    An alkyl group having 1 to 20 carbon atoms,
    A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
    An alkenyl group having 2 to 20 carbon atoms,
    An alkynyl group having 2 to 20 carbon atoms,
    An aralkyl group having 7 to 30 carbon atoms,
    An aryl group having 6 to 30 carbon atoms,
    An alkoxy group having 1 to 20 carbon atoms,
    An aralkyloxy group having 7 to 30 carbon atoms,
    An aryloxy group having 6 to 30 carbon atoms,
    Substituted silyl groups,
    Alternatively, it represents a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring. However, R 1 ′ and R 5 ′ are not simultaneously a tert-butyl group.
    R 1 ′ to R 12 ′ The alkyl group, the cycloalkyl group, the alkenyl group, the alkynyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the heterocyclic ring The formula compound residue may have a substituent.
    Despite the definition of the R 1 '~ R 12', R 1 ' and R 2', R 2 'and R 3', R 3 'and R 4', 'a R 6' R 5, and R 6 ' R 7 ′, R 7 ′ and R 8 ′, R 9 ′ and R 10 ′, and R 11 ′ and R 12 ′ may be independently connected to each other to form a ring. May have a substituent. )
  22.  R’~R12’が、
    水素原子である、請求項21に記載の化合物。
    R 9 'to R 12 ' are
    The compound according to claim 21, which is a hydrogen atom.
  23.  R’およびR’が、それぞれ独立して、
    ハロゲン原子、
    炭素原子数5~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数6~30のアリール基、
    置換シリル基、
    または環を構成する炭素原子数が3~20のヘテロ環式化合物残基であり、該アルキル基、該シクロアルキル基、該アラルキル基、該アリール基および該ヘテロ環式化合物残基は置換基を有していてもよい、請求項21または22に記載の化合物。
    R 1 ′ and R 5 ′ are each independently
    A halogen atom,
    An alkyl group having 5 to 20 carbon atoms,
    A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
    An aralkyl group having 7 to 30 carbon atoms,
    An aryl group having 6 to 30 carbon atoms,
    Substituted silyl groups,
    Or a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring, and the alkyl group, the cycloalkyl group, the aralkyl group, the aryl group, and the heterocyclic compound residue are substituted. 23. The compound according to claim 21 or 22, which may be present.
  24.  R’~R’およびR’~R’がそれぞれ独立して、
    水素原子、
    ハロゲン原子、
    炭素原子数1~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数6~30のアリール基
    または置換シリル基であり、該アルキル基、該シクロアルキル基、該アラルキル基および該アリール基は置換基を有していてもよい、請求項21~23のいずれか1項に記載の化合物。
    R 2 ′ to R 4 ′ and R 6 ′ to R 8 ′ are each independently
    Hydrogen atom,
    A halogen atom,
    An alkyl group having 1 to 20 carbon atoms,
    A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
    An aralkyl group having 7 to 30 carbon atoms,
    The aryl group or substituted silyl group having 6 to 30 carbon atoms, wherein the alkyl group, the cycloalkyl group, the aralkyl group, and the aryl group may have a substituent. 2. The compound according to item 1.
  25.  R’およびR’がそれぞれ独立して、
    ハロゲン原子、
    炭素原子数1~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数6~30のアリール基、
    または置換シリル基であり、該アルキル基、該シクロアルキル基、該アラルキル基および該アリール基は置換基を有していてもよい、請求項21~24のいずれか1項に記載の化合物。
    R 3 ′ and R 7 ′ are each independently
    A halogen atom,
    An alkyl group having 1 to 20 carbon atoms,
    A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
    An aralkyl group having 7 to 30 carbon atoms,
    An aryl group having 6 to 30 carbon atoms,
    The compound according to any one of claims 21 to 24, wherein the compound is a substituted silyl group, and the alkyl group, the cycloalkyl group, the aralkyl group, and the aryl group may have a substituent.
  26.  R’、R’、R’およびR’が水素原子である、請求項21~25のいずれか1項に記載の化合物。 The compound according to any one of claims 21 to 25, wherein R 2 ', R 4 ', R 6 'and R 8 ' are hydrogen atoms.
  27.  n’が2である、請求項21~26のいずれか1項に記載の化合物。 The compound according to any one of claims 21 to 26, wherein n 'is 2.
PCT/JP2012/053731 2011-02-18 2012-02-16 Catalyst for olefin polymerization and method for producing olefin polymer WO2012111780A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011-033818 2011-02-18
JP2011033818 2011-02-18
JP2011033821 2011-02-18
JP2011033820 2011-02-18
JP2011-033820 2011-02-18
JP2011-033821 2011-02-18
JP2011176422 2011-08-11
JP2011-176422 2011-08-11

Publications (1)

Publication Number Publication Date
WO2012111780A1 true WO2012111780A1 (en) 2012-08-23

Family

ID=46672692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053731 WO2012111780A1 (en) 2011-02-18 2012-02-16 Catalyst for olefin polymerization and method for producing olefin polymer

Country Status (1)

Country Link
WO (1) WO2012111780A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105017306A (en) * 2015-06-17 2015-11-04 吉林大学 Large steric hindrance tridentate ligand fourth subgroup metal coordination compound and applications thereof
US10358397B2 (en) 2017-06-29 2019-07-23 Exxonmobil Chemical Patents Inc. Production of olefin dimers
CN110799477A (en) * 2017-06-29 2020-02-14 埃克森美孚化学专利公司 Preparation of olefin dimers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099583A1 (en) * 2010-02-12 2011-08-18 国立大学法人埼玉大学 Stereoselective olefin polymerization catalyst, and stereoselective polyolefin production method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099583A1 (en) * 2010-02-12 2011-08-18 国立大学法人埼玉大学 Stereoselective olefin polymerization catalyst, and stereoselective polyolefin production method
WO2011099584A1 (en) * 2010-02-12 2011-08-18 国立大学法人埼玉大学 Ethylene polymerisation catalyst and ethylene polymer production method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANGEW.CHEM.INT.ED., vol. 49, 2010, pages 5784 - 5787 *
J.AM.CHEM.SOC., vol. 131, no. 38, 2009, pages 13566 - 13567 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105017306A (en) * 2015-06-17 2015-11-04 吉林大学 Large steric hindrance tridentate ligand fourth subgroup metal coordination compound and applications thereof
CN105017306B (en) * 2015-06-17 2018-10-16 吉林大学 The 4th subgroup metal complex of tridentate ligand with large space steric hindrance and application
US10358397B2 (en) 2017-06-29 2019-07-23 Exxonmobil Chemical Patents Inc. Production of olefin dimers
CN110799477A (en) * 2017-06-29 2020-02-14 埃克森美孚化学专利公司 Preparation of olefin dimers

Similar Documents

Publication Publication Date Title
US7241927B2 (en) Transition metal complexes, ligands, catalysts for olefin polymerization, and process for production of olefin polymers
KR20020000120A (en) Transition metal compound, catalyst for addition polymerization, and process for producing addition polymer
WO2011099583A1 (en) Stereoselective olefin polymerization catalyst, and stereoselective polyolefin production method
US6642400B2 (en) Linked metallocene complexes, catalyst systems, and olefin polymerization processes using same
JP2013053308A (en) Olefin polymer producing method, ethylene polymer and mold product
WO2012111779A1 (en) Catalyst for ethylene polymerization and method for producing ethylenic polymer
WO2012111780A1 (en) Catalyst for olefin polymerization and method for producing olefin polymer
JP2011084508A (en) Transition metal complex
JP2013166735A (en) New complex, catalyst for polymerization and catalyst for oligomerization including the complex, and use thereof
JP2013166898A (en) Olefin polymerization catalyst, and method for production of olefinic polymer
JP4882391B2 (en) Transition metal complex, method for producing transition metal complex, substituted fluorene compound, method for producing substituted fluorene compound, catalyst component for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer
WO2013022102A1 (en) Ethylene polymerization catalyst and method for producing ethylene polymer
WO2013022108A1 (en) Olefin polymerization catalyst and method for producing olefin polymer
JP2010095519A (en) Transition metal complex
JP4389889B2 (en) Transition metal complex, catalyst for olefin polymerization, and method for producing olefin polymer
WO2012169641A1 (en) Complex, catalyst for polymerization of olefins, and process for producing olefin polymers
JP2013166897A (en) Catalyst for polymerizing olefin, and method for producing olefinic polymer
JP2004131391A (en) Transition metal complex, catalyst for polymerizing olefin and method for producing olefin polymer using the same
WO2012111777A1 (en) Catalyst for olefin polymerisation, and manufacturing method for olefin polymer
WO2012111778A1 (en) Catalyst for olefin polymerisation, and manufacturing method for olefin polymer
JP4411884B2 (en) Transition metal complex, ligand, catalyst for olefin polymerization, and method for producing olefin polymer
US8288490B2 (en) Process for producing catalyst component for addition polymerization
JP2009019035A (en) Transition metal complex, its ligand, catalyst for olefin polymerization and method for producing olefin polymer
JP2013053309A (en) Olefin polymerization catalyst and method for producing olefin polymer
JP2007191534A (en) Manufacturing method of olefin polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12746746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP