WO2013022108A1 - Olefin polymerization catalyst and method for producing olefin polymer - Google Patents

Olefin polymerization catalyst and method for producing olefin polymer Download PDF

Info

Publication number
WO2013022108A1
WO2013022108A1 PCT/JP2012/070574 JP2012070574W WO2013022108A1 WO 2013022108 A1 WO2013022108 A1 WO 2013022108A1 JP 2012070574 W JP2012070574 W JP 2012070574W WO 2013022108 A1 WO2013022108 A1 WO 2013022108A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
ring
atom
tert
Prior art date
Application number
PCT/JP2012/070574
Other languages
French (fr)
Japanese (ja)
Inventor
正人 ▲高▼野
高沖 和夫
健二 十河
伊藤 和幸
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2013022108A1 publication Critical patent/WO2013022108A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Definitions

  • the present invention relates to a catalyst for olefin polymerization using a titanium, zirconium or hafnium complex and a method for producing an olefin polymer.
  • metallocene catalysts is one of the topics in recent years in the chemistry of olefin polymerization that has been greatly developed by Ziegler-Natta type magnesium-supported highly active titanium catalysts. Further, recently, development of so-called post metallocene catalysts has attracted attention as a catalyst for constructing a more precise polymerization process.
  • Patent Document 1 reports propylene polymerization using a diphenoxy titanium complex, a zirconium complex or a hafnium complex derived from ethane-1,2-dithiol.
  • Non-patent Document 1 diphenoxy titanium complex, zirconium complex and hafnium complex derived from trans-cyclooctane-1,2-dithiol have been reported. Furthermore, of these complexes, 1-hexene polymerization using a zirconium complex as a catalyst has been reported (Non-patent Document 2).
  • the problems to be solved by the present invention include an olefin polymerization catalyst capable of producing an olefin polymer with high activity in the presence of a catalyst obtained by contacting a transition metal complex, an activation promoter component and a support, and
  • An object of the present invention is to provide a method for producing an olefin polymer in which an olefin is polymerized in the presence of an olefin polymerization catalyst.
  • the present invention relates to an olefin polymerization catalyst obtained by contacting a complex represented by the general formula (1-1) or (1-2), an activation promoter component and a carrier.
  • a complex represented by the general formula (1-1) or (1-2) an activation promoter component and a carrier.
  • M represents a zirconium atom or a hafnium atom.
  • R 1 and R 5 are each independently Hydrogen atom, A halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An alkenyl group having 2 to 20 carbon atoms, An alkynyl group having 2 to 20 carbon atoms, An aralkyl group having 7 to 30 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, An aralkyloxy group having 7 to 30 carbon atoms, An aryloxy group having 6 to 30 carbon atoms or a substituted silyl group is represented.
  • R 2 to R 4 and R 6 to R 10 are each independently Hydrogen atom, A halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An alkenyl group having 2 to 20 carbon atoms, An alkynyl group having 2 to 20 carbon atoms, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, An aralkyloxy group having 7 to 30 carbon atoms, An aryloxy group having 6 to 30 carbon atoms, It represents a substituted silyl group or a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring.
  • the alkyl group, the cycloalkyl group, the alkenyl group, the alkynyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the heterocyclic compound in R 1 to R 10 Each residue may have a substituent.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 2 And R 9 and R 6 and R 10 may be independently connected to each other to form a ring, and these rings may have a substituent.
  • Each X is independently Hydrogen atom, A halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An alkenyl group having 2 to 20 carbon atoms, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, An aralkyloxy group having 7 to 30 carbon atoms, An aryloxy group having 6 to 30 carbon atoms, Substituted silyl groups, A substituted amino group, It represents a substituted thiolate group or a carboxylate group having 1 to 20 carbon atoms.
  • the alkyl group, the cycloalkyl group, the alkenyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the carboxylate group in X each have a substituent. Also good. Adjacent Xs may be connected to each other to form a ring.
  • L represents a neutral Lewis base. When there are a plurality of L, the plurality of L may be the same or different. l is 0, 1, or 2. )
  • the present invention also relates to a method for producing an olefin polymer in which an olefin is polymerized in the presence of the catalyst.
  • the present invention relates to an ethylene- ⁇ having a polymer particle content of not more than 2% by volume, a 50% volume particle size of not less than 500 ⁇ m, and a particle bulk density of not less than 400 kg / m 3. -Relating to olefin copolymer particles.
  • an olefin polymer can be produced with high productivity.
  • an ⁇ -olefin polymer having high stereoregularity can be produced with high productivity.
  • the olefin polymerization catalyst according to the present invention is obtained by contacting a complex represented by the following general formula (1-1) or (1-2), an activation promoter component and a carrier.
  • a complex represented by the following general formula (1-1) or (1-2) an activation promoter component and a carrier.
  • the complexes represented by the following general formulas (1-1) and (1-2) will be described.
  • M represents a zirconium atom or a hafnium atom. From the viewpoint of producing a high molecular weight polyolefin, hafnium atoms are preferred.
  • N is 1 or 2, preferably 2.
  • R 1 and R 5 are each independently Hydrogen atom, A halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An alkenyl group having 2 to 20 carbon atoms, An alkynyl group having 2 to 20 carbon atoms, An aralkyl group having 7 to 30 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, An aralkyloxy group having 7 to 30 carbon atoms, An aryloxy group having 6 to 30 carbon atoms or a substituted silyl group is represented.
  • R 1 and R 5 are preferably each independently Hydrogen atom, A halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An aralkyl group having 7 to 30 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, An aralkyloxy group having 7 to 30 carbon atoms, An aryloxy group having 6 to 30 carbon atoms, or a substituted silyl group, More preferably, each independently A halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An aralkyl group having 7 to 30 carbon atoms, or a substituted silyl group, R 1 and R 5 are particularly preferably when R 1 and R 5 are the same, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms
  • R 9 and R 10 are each independently Hydrogen atom, A halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An alkenyl group having 2 to 20 carbon atoms, An alkynyl group having 2 to 20 carbon atoms, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, An aralkyloxy group having 7 to 30 carbon atoms, An aryloxy group having 6 to 30 carbon atoms, It represents a substituted silyl group or a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring.
  • R 9 and R 10 are preferably each independently A halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, A substituted silyl group, or a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring, More preferably, each independently an alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, Or a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring, R 9 and R 10 are particularly preferably R 9 and R 10 are the same, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atom
  • R 2 to R 4 and R 6 to R 8 are each independently Hydrogen atom, A halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An alkenyl group having 2 to 20 carbon atoms, An alkynyl group having 2 to 20 carbon atoms, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, An aralkyloxy group having 7 to 30 carbon atoms, An aryloxy group having 6 to 30 carbon atoms, It represents a substituted silyl group or a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring.
  • R 2 to R 4 and R 6 to R 8 are preferably each independently Hydrogen atom, A halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, An aryloxy group having 6 to 30 carbon atoms, or a substituted silyl group, More preferably, each independently Hydrogen atom, A halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms or a substituted silyl group.
  • R 2 , R 4 , R 6 and R 8 are more preferably a hydrogen atom. More preferably, R 3 and R 7 are each independently A halogen atom, A cycloalkyl group having 3 to 10 carbon atoms constituting an alkyl group ring having 1 to 20 carbon atoms, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms or a substituted silyl group.
  • R 3 and R 7 are the same, A cycloalkyl group having 3 to 10 carbon atoms constituting an alkyl group ring having 1 to 20 carbon atoms, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, or a substituted silyl group, Most preferably, An alkyl group having 1 to 20 carbon atoms.
  • Each compound residue may have a substituent.
  • Examples of the halogen atom in R 1 to R 10 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the substituted or unsubstituted alkyl group having 1 to 20 carbon atoms in R 1 to R 10 include a perfluoromethyl group, a perfluoroethyl group, a perfluoro-n-propyl group, a perfluoroisopropyl group, and a perfluoro group.
  • the substituted or unsubstituted alkyl group having 1 to 20 carbon atoms in R 1 , R 5 , R 9 and R 10 is preferably an n-butyl group, sec-butyl group, isobutyl group, tert-butyl group, n- Alkyl groups having 4 to 10 carbon atoms such as pentyl group, isopentyl group, tert-pentyl group, neopentyl group, n-hexyl group, texyl group, neohexyl group, n-heptyl group, n-octyl group and n-decyl group And More preferably, it is a tertiary alkyl group having 4 to 10 carbon atoms such as a tert-butyl group, a tert-pentyl group, or a texyl group, Most preferred is a tertiary alkyl group having 5 to 10 carbon atoms
  • the substituted or unsubstituted alkyl group having 1 to 20 carbon atoms in R 2 to R 4 and R 6 to R 8 is preferably a perfluoromethyl group, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, n -Butyl group, sec-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, tert-pentyl group, neopentyl group, n-hexyl group, texyl group, neohexyl group, n-heptyl group, n
  • An alkyl group having 4 to 10 carbon atoms such as an octyl group or an n-decyl group, More preferably, it is an alkyl group having 1 to 8 carbon atoms such as perfluoromethyl group, methyl group, isopropyl group
  • Examples of the substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms constituting the ring in R 1 to R 10 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • Examples of the substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms in R 1 to R 10 include a vinyl group, an allyl group, a propenyl group, a 2-methyl-2-propenyl group, a homoallyl group, a pentenyl group, and a hexenyl. Group, heptenyl group, octenyl group, nonenyl group, decenyl group, etc., An alkenyl group having 3 to 6 carbon atoms is preferable, and an allyl group or a homoallyl group is more preferable.
  • Examples of the substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms in R 1 to R 10 include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, and 3-methyl-1-butynyl.
  • Examples of the substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms in R 1 to R 10 include benzyl group, (2-methylphenyl) methyl group, (3-methylphenyl) methyl group, (4-methyl Phenyl) methyl group, (2,3-dimethylphenyl) methyl group, (2,4-dimethylphenyl) methyl group, (2,5-dimethylphenyl) methyl group, (2,6-dimethylphenyl) methyl group, ( 3,4-dimethylphenyl) methyl group, (3,5-dimethylphenyl) methyl group, (2,3,4-trimethylphenyl) methyl group, (2,3,5-trimethylphenyl) methyl group, (2, 3,6-trimethylphenyl) methyl group, (3,4,5-trimethylphenyl) methyl group, (2,4,6-trimethylphenyl) methyl group, (2,3,4,5-te Lamethylphenyl) methyl group,
  • Examples of the substituted or unsubstituted aryl group having 6 to 30 carbon atoms in R 2 to R 4 and R 6 to R 10 include a phenyl group, a 2-tolyl group, a 3-tolyl group, a 4-tolyl group, 2 , 3-xylyl group, 2,4-xylyl group, 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 2,3,4-trimethylphenyl group 2,3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,4,6-trimethylphenyl group, 3,4,5-trimethylphenyl group, 2,3,4,5-tetra Methylphenyl group, 2,3,4,6-tetramethylphenyl group, 2,3,5,6-tetramethylphenyl group, pentamethylphenyl group, ethylphenyl group, n-propylphenyl group, isopropy
  • Examples of the substituted silyl group in R 1 to R 10 include a trimethylsilyl group, a triethylsilyl group, a tri-n-propylsilyl group, a triisopropylsilyl group, a tri-n-butylsilyl group, a triisobutylsilyl group, and a tert-butyldimethyl group.
  • Examples include silyl group, methyldiphenylsilyl group, dimethyl (phenyl) silyl group, tert-butyldiphenylsilyl group, triphenylsilyl group, methylbis (trimethylsilyl) silyl group, dimethyl (trimethylsilyl) silyl group, and tris (trimethylsilyl) silyl group.
  • a trialkylsilyl group having 3 to 20 carbon atoms such as trimethylsilyl group, triethylsilyl group, tri-n-propylsilyl group, triisopropylsilyl group, tert-butyldimethylsilyl group; methylbis (trimethylsilyl) silyl group, dimethyl group
  • Examples of the substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms in R 1 to R 10 include, for example, a perfluoromethoxy group, a perfluoroethoxy group, a perfluoro-n-propoxy group, a perfluoroisopropoxy group, a perfluoro group, Fluoro-n-butoxy group, perfluoro-sec-butoxy group, perfluoroisobutoxy group, perfluoro-n-pentyloxy group, perfluoronepentyloxy group, perfluoro-n-hexyloxy group, perfluoro-n -Heptyloxy group, perfluoro-n-octyloxy group, perfluoro-n-decyloxy group, perfluoro-n-dodecyloxy group, perfluoro-n-pentadecyloxy group, perfluoro-n-eicosyloxy group Methoxy group, e
  • Examples of the aryloxy group having 6 to 30 carbon atoms in R 1 to R 10 include, for example, phenoxy group, 2,3,4-trimethylphenoxy group, 2,3,5-trimethylphenoxy group, 2,3,6- Trimethylphenoxy group, 2,4,6-trimethylphenoxy group, 3,4,5-trimethylphenoxy group, 2,3,4,5-tetramethylphenoxy group, 2,3,4,6-tetramethylphenoxy group, 2,3,5,6-tetramethylphenoxy group, pentamethylphenoxy group, 2,6-diisopropylphenoxy group, 2-fluorophenoxy group, 3-fluorophenoxy group, 4-fluorophenoxy group, pentafluorophenoxy group, 2 -Trifluoromethylphenoxy group, 3-trifluoromethylphenoxy group, 4-trifluoromethylphenoxy group Group, 2,3-difluorophenoxy group, 2,4-fluorophenoxy group, 2,5-difluorophenoxy group, 2-chlorophenoxy group, 2,3-d
  • Examples of the substituted or unsubstituted aralkyloxy group having 7 to 30 carbon atoms in R 1 to R 10 include benzyloxy group, (2-methylphenyl) methoxy group, (3-methylphenyl) methoxy group, (4 -Methylphenyl) methoxy group, (2,3-dimethylphenyl) methoxy group, (2,4-dimethylphenyl) methoxy group, (2,5-dimethylphenyl) methoxy group, (2,6-dimethylphenyl) methoxy group (3,4-dimethylphenyl) methoxy group, (3,5-dimethylphenyl) methoxy group, (2,3,4-trimethylphenyl) methoxy group, (2,3,5-trimethylphenyl) methoxy group, 2,3,6-trimethylphenyl) methoxy group, (2,4,5-trimethylphenyl) methoxy group, (2,4,6-trimethylphenyl) Nyl) meth
  • Examples of the substituted or unsubstituted heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring in R 2 to R 4 and R 6 to R 10 include a thienyl group, a furyl group, and a 1-pyrrolyl group.
  • 1-imidazolyl group 1-pyrazolyl group, pyridyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, 2-isoindolyl group, 1-indolyl group, quinolyl group, dibenzo-1H-pyrrol-1-yl group, N-carbazolyl Groups, Preferred are thienyl group, furyl group, 1-pyrrolyl group, pyridyl group, pyrimidinyl group, 2-isoindolyl group, 1-indolyl group, quinolyl group, dibenzo-1H-pyrrol-1-yl group, or N-carbazolyl group. .
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 2 And R 9 and R 6 and R 10 may be independently connected to each other to form a ring, and these rings may have a substituent, preferably 2 on the benzene ring. It is a 4- to 10-membered hydrocarbyl ring or heterocyclic ring containing one carbon atom, and the ring may have a substituent.
  • the ring include cyclobutene ring, cyclopentene ring, cyclopentadiene ring, cyclohexene ring, cycloheptene ring, cyclooctene ring, benzene ring or naphthalene ring, furan ring, 2,5-dimethylfuran ring, thiophene ring, 2, 5-dimethylthiophene ring, pyridine ring and the like can be mentioned, and preferably a cyclopentene ring, cyclopentadiene ring, cyclohexene ring, benzene ring or naphthalene ring, more preferably R 1 and R 2 , R 5 and R 6 , A cyclopentene ring, a cyclohexene ring, a benzene ring or a naphthalene ring in which R 2 and R 9 and / or R 6 and R 10 are linked.
  • Each X is independently Hydrogen atom, A halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An alkenyl group having 2 to 20 carbon atoms, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, An aralkyloxy group having 7 to 30 carbon atoms, An aryloxy group having 6 to 30 carbon atoms, Substituted silyl groups, A substituted amino group, It represents a substituted thiolate group or a carboxylate group having 1 to 20 carbon atoms.
  • the alkyl group, the cycloalkyl group, the alkenyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the carboxylate group in X each have a substituent. Also good. Adjacent Xs may be connected to each other to form a ring, and the ring may have a substituent.
  • a halogen atom in X an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms constituting the ring, an alkenyl group having 2 to 20 carbon atoms, and an aralkyl group having 7 to 30 carbon atoms
  • An aryl group having 6 to 30 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aralkyloxy group having 7 to 30 carbon atoms, an aryloxy group having 6 to 30 carbon atoms, and a substituted silyl group, , R 2 to R 4 and R 6 to R 8 are the same as described above.
  • Examples of the substituted amino group in X include, for example, a dimethylamino group, a diethylamino group, a di-n-butylamino group, a di-n-propylamino group, a diisopropylamino group, a dibenzylamino group, or a diphenylamino group.
  • hydrocarbylamino groups A dimethylamino group, a diethylamino group, a di-n-propylamino group, a diisopropylamino group or a dibenzylamino group is preferable.
  • Examples of the substituted thiolate group in X include a thiophenoxy group, 2,3,4-trimethylthiophenoxy group, 2,3,5-trimethylthiophenoxy group, 2,3,6-trimethylthiophenoxy group, 2,4 , 6-trimethylthiophenoxy group, 3,4,5-trimethylthiophenoxy group, 2,3,4,5-tetramethylthiophenoxy group, 2,3,4,6-tetramethylthiophenoxy group, 2,3,5 , 6-tetramethylphenoxy group, pentamethylphenoxy group, 2-fluorothiophenoxy group, 3-fluorothiophenoxy group, 4-fluorophenoxy group, pentafluorothiophenoxy group, 2-trifluoromethylthiophenoxy group, 3-tri Fluoromethylthiophenoxy group, 4-trifluoromethylthiophenoxy group, 2,3 Difluorothiophenoxy group, 2,4-fluorothiophenoxy group, 2,5-difluorothiophenoxy group, 2-chlorothioph
  • Examples of the substituted or unsubstituted carboxylate group having 1 to 20 carbon atoms in X include an acetate group, propionate group, butyrate group, pentanate group, hexanoate group, 2-ethylhexanoate group or trifluoroacetate group. Named, A hydrocarbyl carboxylate group having 2 to 10 carbon atoms is preferred, and an acetate group, propionate group, 2-ethylhexanoate group or trifluoroacetate group is more preferred.
  • X is preferably a halogen atom, an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aralkyloxy group having 7 to 30 carbon atoms, An aryloxy group having 6 to 30 carbon atoms, or a substituted amino group, more preferably a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, or an aralkyl group having 7 to 30 carbon atoms.
  • L represents a neutral Lewis base.
  • L include ethers, amines or thioethers, and specific examples include tetrahydrofuran, diethyl ether, 1,4-dioxane, and pyridine.
  • L is preferably tetrahydrofuran.
  • l is 0, 1, or 2, preferably 0 or 1, and more preferably 0. When there are a plurality of L, the plurality of L may be the same or different.
  • the alkoxy group, the aralkyloxy group, the aryloxy group, the substituent that the carboxylate group may have, and the ring formed by linking X to each other.
  • substituent for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an oxygen atom, a silicon atom, a nitrogen atom, and a substituted group containing a phosphorus atom or a sulfur atom.
  • two benzyl groups directly bonded to the zirconium atom of each of the above compounds can be replaced with a chlorine atom, a methyl group, a dimethylamino group, an isopropoxy group, a tert-butoxy group, or a phenoxy group. Also included are modified compounds.
  • the group corresponding to R 3 and R 7 in the general formula (1-1) is changed to a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a methyl group.
  • the compound which was made is also mentioned.
  • Preferred examples of the complex represented by the formula (1-1) include the following compounds.
  • the group corresponding to R 3 and R 7 in the general formula (1-1) is changed to a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a methyl group.
  • the compound which was made is also mentioned.
  • More preferable examples of the complex represented by the formula (1-1) include the following compounds.
  • two benzyl groups directly bonded to the titanium atom of each of the above compounds can be replaced with a chlorine atom, a methyl group, a dimethylamino group, an isopropoxy group, a tert-butoxy group, or a phenoxy group. Also included are modified compounds.
  • the group corresponding to R 3 and R 7 in the general formula (1-2) is changed to a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a methyl group. Also included are the compounds.
  • Preferred examples of the complex represented by the formula (1-2) include the following compounds.
  • the group corresponding to R 3 and R 7 in the general formula (1-2) is changed to a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a methyl group. Also included are the compounds.
  • More preferable examples of the complex represented by the formula (1-2) include the following compounds.
  • Particularly preferable examples of the complex represented by the formula (1-2) include the following compounds.
  • complex (1) The complex represented by the general formula (1-1) and the complex represented by the general formula (1-2) (hereinafter collectively referred to as “complex (1)”) are described in, for example, the method described in Non-Patent Document 2.
  • the compound represented by the following general formula (2-1) or (2-2) hereinafter collectively referred to as “compound (2)”
  • compound (3) the following general formula (3-1) or (3 -2)
  • R 1 ⁇ R 8 and n in the general formula (2-1) is the same as the R 1 ⁇ R 8 and n in the general formula (1-1) in.
  • R 2 ⁇ R 4 in the general formula (2-2) R 6 ⁇ R 10 and n are the same as the general formula (1-2) in the R 2 ⁇ R 4, R 6 ⁇ R 10 and n is there.
  • M and X in the general formula (3-1) are the same as M and X in the general formula (1-1).
  • MX 4 includes, for example, Zr (CH 2 Ph) 4 , ZrCl 2 (CH 2 Ph) 2 , Zr (CH 2 SiMe 3 ) 4 , ZrF 4 , ZrCl 4 , ZrBr 4 , ZrI 4 , Zr (OMe) 4 , Zr (OEt) 4 , Zr (Oi-Pr) 4 , ZrCl 2 (Oi-Pr) 2 , Zr (On-Bu) 4 , Zr (Oi-Bu) 4 , Zr ( Ot-Bu) 4 , Zr (OPh) 4 , Zr (NMe 2 ) 4 , ZrCl 2 (NMe 2 ) 2 , Zr (NEt 2 ) 4 , Hf (CH 2 Ph) 4 , HfCl 2 (CH 2 Ph ) 2, Hf (CH 2 SiMe 3) 4,
  • TiX 4 examples include Ti (CH 2 Ph) 4 , TiCl 2 (CH 2 Ph) 2 , Ti (CH 2 SiMe 3 ) 4 , TiF 4 , TiCl 4 , TiBr 4 , TiI 4 , and Ti (OMe) 4. , Ti (OEt) 4 , Ti (Oi-Pr) 4 , TiCl 2 (Oi-Pr) 2 , Ti (On-Bu) 4 , Ti (Oi-Bu) 4 , Ti ( O-t-Bu) 4, Ti (OPh) 4, Ti (NMe 2) 4, TiCl 2 (NMe 2) 2, Ti (NEt 2) 4 and the like.
  • the complex (1) may be formed by reacting the compound (2) and the compound (3) as they are. If necessary, the compound (2) is reacted with a base and then the compound (3) is reacted. It may be formed. These reactions are usually performed in a solvent. Examples of the base to be used include organic lithium reagents, Grignard reagents and metal hydrides.
  • n-butyllithium, sec-butyllithium, tert-butyllithium, lithium diisopropylamide, lithium hexamethyldisilazane, Potassium hexamethyldisilazane, sodium hydride or potassium hydride can be mentioned, and preferably n-butyllithium, lithium diisopropylamide, potassium hexamethyldisilazane, sodium hydride or potassium hydride.
  • the reaction is preferably carried out under dehydration and deoxygenation. Specifically, it is under dry nitrogen or dry argon.
  • the amount of compound (2) used may be 1 molar equivalent or more with respect to compound (3), and is preferably in the range of 1.0 to 1.5 molar equivalents. Moreover, when the compound (2) remains in the course of the reaction, the compound (3) may be added during the reaction.
  • the temperature at which compound (2) and compound (3) are reacted is in the range of ⁇ 100 ° C. to 150 ° C., preferably in the range of ⁇ 80 ° C. to 50 ° C. However, it is not intended to be limited to this range.
  • the reaction of the compound (2) and the compound (3) may be carried out until the time when the yield of the product becomes the highest, preferably 5 minutes to 48 hours, more preferably 10 minutes to 24 hours.
  • the temperature at which the compound (2) reacts with the base is in the range of ⁇ 100 ° C. to 150 ° C., preferably in the range of ⁇ 80 ° C. to 50 ° C. However, it is not intended to be limited to this range.
  • the reaction time of the compound (2) and the base may be performed until the product yield becomes the highest, for example, 5 minutes to 24 hours, preferably 10 minutes to 12 hours, more preferably 30 minutes. ⁇ 3 hours.
  • the temperature at which the compound (2) and the compound produced by reacting the base and the compound (3) are reacted is in the range of ⁇ 100 ° C. to 150 ° C., preferably in the range of ⁇ 80 ° C. to 50 ° C. However, it is not intended to be limited to this range.
  • the reaction time of the compound produced by reacting the compound (2) with the base and the compound (3) may be up to the time when the yield of the product is the highest, for example, 5 minutes to 48 hours. It is preferably 10 minutes to 24 hours.
  • the solvent to be used is not particularly limited as long as it is a solvent generally used in similar reactions, and examples thereof include a hydrocarbon solvent or an ether solvent.
  • Preferred is toluene, benzene, o-xylene, m-xylene, p-xylene, hexane, pentane, heptane, cyclohexane, diethyl ether or tetrahydrofuran, and more preferred is diethyl ether, toluene, tetrahydrofuran, hexane, pentane, heptane. Or cyclohexane.
  • Compound (2) can be synthesized, for example, according to the method described in Reference: Journal of American Chemical Society, 2009, Volume 131, 13566-13567. Specifically, although it can manufacture by the following scheme 2, it should not be limited to this method. Hereinafter, each process will be described in detail.
  • a compound represented by the following general formula (4), (5-1), (5-2), (6-1), (6-2), (7-1), or (7-2) are represented by “compound (4)”, “compound (5-1)”, “compound (5-2)”, “compound (6-1)”, “compound (6-2)”, “compound (7- 1) "or” Compound (7-2) ".
  • compound (5-1) and “compound (5-2)” are collectively referred to as “compound (5)”
  • compound (6-1) and “compound (6-2)” are referred to as “compound (6-1)”.
  • compound (6) and “compound (7-1)” and “compound (7-2)” are collectively referred to as “compound (7)”.
  • R 1 ⁇ R 10 and n in each compound in scheme2 the general formula (1-1) and (1-2) is the same as R 1 ⁇ R 10 and n in.
  • X ′ represents an anionic leaving group such as a halogen atom, acetate group, trifluoroacetate group, benzoate group, CF 3 SO 3 group, CH 3 SO 3 group, 4-MeC 6 H 4 SO 3 group or PhSO 3 groups, etc. are mentioned, and preferred are a chlorine atom, a bromine atom, an iodine atom, a CF 3 SO 3 group, a CH 3 SO 3 group, a 4-MeC 6 H 4 SO 3 group or a PhSO 3 group.
  • Compound (6) can be synthesized by reacting compound (4) with 1.0 to 4.0 equivalents, preferably 1.0 to 1.5 equivalents of compound (5) in the presence of a base.
  • the base is not particularly limited, but includes inorganic bases such as potassium carbonate, calcium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and calcium hydrogen carbonate, and amine bases such as triethylamine and triisobutylamine. Preferably, it is an amine base.
  • This reaction can be performed in an atmosphere of air, helium, argon, or nitrogen.
  • it is under a helium, argon or nitrogen atmosphere, more preferably under a nitrogen or argon atmosphere.
  • the compound (6) may be purified as necessary.
  • a purification method for example, an ammonium chloride aqueous solution, a hydrochloric acid aqueous solution or a sodium chloride aqueous solution is added to the reaction solution, followed by addition of ethyl acetate or diethyl ether, and an extraction operation is performed to remove excess base or salt.
  • the purity of the compound (6) can be increased by purification operations such as distillation, recrystallization or silica gel chromatography.
  • Compound (2) can be synthesized by reacting compound (6) with 1.0 to 4.0 equivalents, preferably 1.0 to 1.5 equivalents of compound (7) in the presence of a base.
  • the base examples include inorganic bases such as potassium carbonate, calcium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and calcium hydrogen carbonate, and amine bases such as triethylamine and triisobutylamine, with amine bases being preferred.
  • inorganic bases such as potassium carbonate, calcium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and calcium hydrogen carbonate
  • amine bases such as triethylamine and triisobutylamine, with amine bases being preferred.
  • This reaction can be performed in an atmosphere of air, helium, argon, or nitrogen.
  • it is under a helium, argon or nitrogen atmosphere, more preferably under a nitrogen or argon atmosphere.
  • the compound (2) may be purified as necessary.
  • a purification method for example, an ammonium chloride aqueous solution, a hydrochloric acid aqueous solution or a sodium chloride aqueous solution is added to the reaction solution, followed by addition of ethyl acetate or diethyl ether, and an extraction operation is performed to remove excess base or salt.
  • the purity of the compound (2) can be increased by purification operations such as distillation, recrystallization or silica gel chromatography.
  • the compound (2) can also be obtained by reacting the compound (6) and the compound (7) produced in the reactor by controlling the reaction conditions of [step 1].
  • R 1 is the same as R 5 (or R 9 is R 10 )
  • R 2 is the same as R 6
  • R 3 is the same as R 7
  • R 4 is the same as R 8
  • the compound (5) and the compound (7) are combined, and the compound (4) is reacted with 2.0 to 8.0 equivalents, preferably 2.0 to 4.0 equivalents in the presence of a base. (2) can also be synthesized.
  • the groups corresponding to R 3 and R 7 in the general formula (2-1) in each of the above compounds are a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, Or the compound substituted with the methyl group is also mentioned.
  • Specific examples of the compound (2-2) include, in addition to the specific examples of the compound (2-1), the following compounds and R 3 and R 7 in the general formula (2-2) in these compounds. And a compound in which a group corresponding to is substituted with a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a methyl group.
  • the general formula (5-1) or (7-1) is a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom. , An iodine atom, or a compound substituted with a methyl group.
  • Specific examples of the compound (5-2) and the compound (7-2) include, in addition to the specific examples of the compound (5-1) and the compound (7-1), the following compounds and the above compounds in these compounds. And compounds in which the groups corresponding to R 3 and R 7 in formula (5-2) or (7-2) are substituted with a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a methyl group. .
  • the complex (1) described above is used as a polymerization catalyst component in the production of a polymer by homopolymerization of olefins or copolymerization of two or more polymerizable olefins.
  • the catalyst component for homopolymerization is used. It is.
  • the polymerization catalyst a polymerization catalyst obtained by bringing the complex (1), the activation promoter component and the carrier into contact with each other is used.
  • activation promoter component examples include an activation co-catalyst component containing a Group 13 element of the periodic table.
  • an organoaluminum compound (A), a boron compound (B), and boron described below are used.
  • the at least 1 sort (s) of compound chosen from the group which consists of a compound (C) can be mentioned.
  • the organoaluminum compound (A), the boron compound (B), and the boron compound (C) are respectively referred to as “activation promoter component (A)”, “activation promoter component (B)”, and “ Hereinafter, it may be referred to as “activation promoter component (C)”.
  • organoaluminum compound (A) in the present invention a known organoaluminum compound can be used.
  • any one of the following compounds (A-1), (A-2), and (A-3), or a mixture of 2 to 3 thereof can be exemplified.
  • A-1) Organoaluminum compound represented by general formula E 1 a AlY 1 3-a
  • A-2) General formula ⁇ -Al (E 2 ) —O— ⁇ having a structure represented by b
  • E 1 has 1 to E 2 and E 3 each independently represents a hydrocarbyl group having 1 to 8 carbon atoms, an alkoxy group containing an electron withdrawing group or an electron withdrawing group.
  • An aryloxy group to be contained is represented.
  • a plurality of E 1 s , E 2 s, and E 3 s may be the same or different.
  • Y 1 represents a hydrogen atom or a halogen atom, and a plurality of Y 1 may be the same or different.
  • a represents an integer of 0 ⁇ a ⁇ 3
  • b represents an integer of 2 or more
  • c represents an integer of 1 or more.
  • Examples of the hydrocarbyl group having 1 to 8 carbon atoms in E 1 to E 3 of the compounds (A-1) to (A-3) include a methyl group, an ethyl group, a normal propyl group, an isopropyl group, and a normal butyl group. Group, isobutyl group, normal pentyl group, and neopentyl group.
  • E 2 and E 3 of the compounds (A-2) and (A-3) may be an alkoxy group containing an electron withdrawing group or an aryloxy group containing an electron withdrawing group.
  • Hammett's rule substituent constant ⁇ and the like are known, and a functional group having positive ⁇ can be cited as an electron withdrawing group.
  • the electron withdrawing group include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, a carbonyl group, a sulfone group, and a phenyl group.
  • alkoxy group containing an electron withdrawing group in E 2 and E 3 examples include a fluoromethoxy group, a chloromethoxy group, a bromomethoxy group, an iodomethoxy group, a difluoromethoxy group, a dichloromethoxy group, a dibromomethoxy group, Iodomethoxy group, trifluoromethoxy group, trichloromethoxy group, tribromomethoxy group, triiodomethoxy group, 2,2,2-trifluoroethoxy group, 2,2,2-trichloroethoxy group, 2,2,2- Tribromoethoxy group, 2,2,2-triiodoethoxy group, pentafluoroethoxy group, pentachloroethoxy group, pentabromoethoxy group, pentaiodoethoxy group, 2,2,3,3,3-pentafluoropropoxy group 2,2,3,3,3-pentachloropropoxy group, 2,2,3,3 3-pen
  • Examples of the aryloxy group containing an electron withdrawing group in E 2 and E 3 include, for example, 2-fluorophenoxy group, 3-fluorophenoxy group, 4-fluorophenoxy group, 2,3-difluorophenoxy group, 2, 4-difluorophenoxy group, 2,5-difluorophenoxy group, 2,6-difluorophenoxy group, 3,4-difluorophenoxy group, 3,5-difluorophenoxy group, 2,3,4-trifluorophenoxy group, 2 , 3,5-trifluorophenoxy group, 2,3,6-trifluorophenoxy group, 2,4,5-trifluorophenoxy group, 2,4,6-trifluorophenoxy group, 3,4,5-tri Fluorophenoxy group, 2,3,4,5-tetrafluorophenoxy group, 2,3,4,6-tetrafluorophenoxy group, , 3,5,6-tetrafluorophenoxy group, 2,3,4,5,6-pentafluorophenoxy group, 2,3,
  • organoaluminum compound (A-1) represented by the general formula E 1 a AlY 1 3-a include trialkylaluminums such as trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, and trihexylaluminum.
  • Dialkylaluminum chlorides such as dimethylaluminum chloride, diethylaluminum chloride, dipropylaluminum chloride, diisobutylaluminum chloride, dihexylaluminum chloride; alkyls such as methylaluminum dichloride, ethylaluminum dichloride, propylaluminum dichloride, isobutylaluminum dichloride, hexylaluminum dichloride Aluminum dichloride; Dimethyla Mini um hydride, diethylaluminum hydride, dipropyl aluminum hydride, diisobutylaluminum hydride, dialkylaluminum hydride such as dihexyl aluminum hydride; and the like. Trialkylaluminum is preferable, and triethylaluminum or triisobutylaluminum is more preferable.
  • An aryloxy group containing an electron withdrawing group such as 4-fluorophenoxy group, 3,4,5-trifluorophenoxy group, 2,3,4,5,6-pentaflu
  • aluminoxane can be made by various methods. There is no restriction
  • the compound (A-2) and the compound (A-3) obtained by the above method may be used after removing volatile components by distillation, if necessary. Further, the compound obtained by distilling off the volatile components and drying may be washed with an appropriate organic solvent (benzene, toluene, aliphatic hydrocarbon, etc.) and dried again.
  • an appropriate organic solvent benzene, toluene, aliphatic hydrocarbon, etc.
  • B boron compound (B) in the present invention
  • B-1 Boron compound represented by the general formula BR 11 R 12 R 13
  • B-2 Boron compound represented by the general formula U + (BR 11 R 12 R 13 R 14 ) — 3
  • B 11 to R 14 each independently represents a halogen atom or a carbon atom number of 1
  • R 11 to R 14 may be the same as or different from each other.
  • R 11 to R 14 are preferably each independently a halogen atom, a hydrocarbyl group having 1 to 20 carbon atoms, or a halogenated hydrocarbyl group having 1 to 20 carbon atoms.
  • B is a boron atom in a trivalent valence state.
  • U + is an inorganic or organic cation.
  • T is a neutral Lewis base and (TH) + is a Bronsted acid.
  • U + that is an inorganic cation examples include a ferrocenium cation, an alkyl-substituted ferrocenium cation, and a silver cation.
  • Examples of U + that is an organic cation include a triphenylcarbenium cation.
  • borate represented by (BR 11 R 12 R 13 R 14 ) — include, for example, tetrakis (pentafluorophenyl) borate, tetrakis (2,3,5,6-tetrafluorophenyl) borate, tetrakis ( 2,3,4,5-tetrafluorophenyl) borate, tetrakis (3,4,5-trifluorophenyl) borate, tetrakis (2,2,4-trifluorophenyl) borate, phenylbis (pentafluorophenyl) borate -To, tetrakis (3,5-bistrifluoromethylphenyl) borate and the like.
  • Examples of (TH) + that is a Bronsted acid include trialkyl-substituted ammonium, N, N-dialkylanilinium, dialkylammonium, and triarylphosphonium.
  • boron compound (B-1) examples include triphenylborane, tris (pentafluorophenyl) borane, tris (2,3,5,6-tetrafluorophenyl) borane, and tris (2,3,4,5).
  • -Tetrafluorophenyl) borane tris (3,4,5-trifluorophenyl) borane, tris (2,3,4-trifluorophenyl) borane, phenylbis (pentafluorophenyl) borane, and the like.
  • boron compound (B-2) examples include ferrocenium tetrakis (pentafluorophenyl) borate, 1,1′-dimethylferrocenium tetrakis (pentafluorophenyl) borate, silver tetrakis (pentafluorophenyl) borate, Examples include triphenylcarbenium tetrakis (pentafluorophenyl) borate, triphenylcarbenium tetrakis (3,5-bistrifluoromethylphenyl) borate, and most preferred is triphenylcarbenium tetrakis (pentafluorophenyl) borate. .
  • boron compound (B-3) examples include triethylammonium tetrakis (pentafluorophenyl) borate, tripropylammonium tetrakis (pentafluorophenyl) borate, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, (N-butyl) ammonium tetrakis (3,5-bistrifluoromethylphenyl) borate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, N, N-diethylanilinium tetrakis (pentafluorophenyl) borate, N , N-2,4,6-pentamethylanilinium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis (3,5-bistrifluoromethyl
  • boron compound (C) in the present invention examples include use of any of the following compounds (C-1) and (C-2).
  • C-1) Boron compound represented by the general formula U + (BR 15 R 16 R 17 R 18 ) ⁇
  • C-2) General formula (TH) + (BR 15 R 16 R 17 R 18 ) - boron in the compound formulas, R 15 ⁇ R 18 represented by each independently, a halogen atom, a hydrocarbyl group having 1 to 20 carbon atoms, a halogenated hydrocarbyl of 1 to 20 carbon atoms Group, a substituted silyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a disubstituted amino group having 2 to 20 carbon atoms.
  • R 15 to R 18 may be the same or different from each other, but at least one of R 15 to R 18 has the general formula (ZH) (wherein Z represents O, S, NR or PR; R represents a hydrocarbyl group, a trihydrocarbylsilyl group, a trihydrocarbylgermyl group, or hydrogen.
  • B is a boron atom in a trivalent valence state.
  • U + is an inorganic or organic cation.
  • T is a neutral Lewis base and (TH) + is a Bronsted acid.
  • borate represented by (BR 15 R 16 R 17 R 18 ) — include triphenyl (hydroxyphenyl) borate, diphenyl di (hydroxyphenyl) borate, triphenyl (2,4-dihydroxyphenyl) borate, Tri (p-tolyl) (hydroxyphenyl) borate, tris (pentafluorophenyl) (4-hydroxyphenyl) borate, tris (2,4-dimethylphenyl) (hydroxyphenyl) borate, tris (3,5-dimethylphenyl) (Hydroxyphenyl) borate, tris (3,5-bis (trifluoromethyl) phenyl) (hydroxyphenyl) borate, tris (pentafluorophenyl) (2-hydroxyethyl) borate, tris (pentafluorophenyl) (4-hydroxy The Borate, tris (pentafluorophenyl) (2-hydroxycyclohexyl) borate, tris
  • boron compound (C-1) examples include ferrocenium tris (pentafluorophenyl) (4-hydroxyphenyl) borate, silver tris (pentafluorophenyl) (4-hydroxyphenyl) borate, triphenylcarbenium tris. (Pentafluorophenyl) (4-hydroxyphenyl) borate and the like.
  • boron compound (C-2) examples include triethylammonium tris (pentafluorophenyl) (4-hydroxyphenyl) borate, tripropylammonium tris (pentafluorophenyl) (4-hydroxyphenyl) borate, tri (n- Butyl) ammonium tris (pentafluorophenyl) (4-hydroxyphenyl) borate, tri (n-butyl) ammonium tris (pentafluorophenyl) (4-hydroxyphenyl) borate, N, N-dimethylanilinium tris (pentafluorophenyl) ) (4-hydroxyphenyl) borate, N, N-diethylanilinium tris (pentafluorophenyl) (4-hydroxyphenyl) borate, N, N-2,4,6-pentamethylanilinium tris Tafluorophenyl) (4-hydroxyphenyl) borate, N, N-dimethylanilinium tri
  • Carrier As the carrier, a porous material is preferably used, an inorganic material or an organic polymer is preferable, and an inorganic material is more preferable.
  • inorganic substance examples include inorganic oxides, magnesium compounds, clays, clay minerals, and combinations thereof. Among these, inorganic oxides are preferable.
  • Examples of the inorganic oxide SiO 2, Al 2 O 3 , MgO, ZrO 2, TiO 2, B 2 O 3, CaO, ZnO, BaO, ThO 2, V 2 O 5, Cr 2 O 3 , and mixtures thereof (For example, SiO 2 —MgO, SiO 2 —Al 2 O 3 , SiO 2 —TiO 2 , SiO 2 —V 2 O 5 , SiO 2 —Cr 2 O 3 , and SiO 2 —TiO 2 —MgO). . Of these, SiO 2 and / or Al 2 O 3 are preferable, and SiO 2 is particularly preferable.
  • the inorganic oxide includes a small amount of Na 2 CO 3 , K 2 CO 3 , CaCO 3 , MgCO 3 , Na 2 SO 4 , Al 2 (SO 4 ) 3 , BaSO 4 , KNO 3 , Mg (NO 3 ) 2. Carbonates, sulfates, nitrates or oxides such as Al (NO 3 ) 3 , Na 2 O, K 2 O, and Li 2 O may be included.
  • magnesium compound examples include magnesium halides such as magnesium chloride, magnesium bromide, magnesium iodide, and magnesium fluoride; methoxy magnesium chloride, ethoxy magnesium chloride, isopropoxy magnesium chloride, butoxy magnesium chloride, and octoxy magnesium chloride.
  • Alkoxymagnesium halides such as phenoxymagnesium chloride and methylphenoxymagnesium chloride; alkoxymagnesiums such as ethoxymagnesium, isopropoxymagnesium, butoxymagnesium, n-octoxymagnesium, and 2-ethylhexoxymagnesium; phenoxymagnesium And allilo such as dimethylphenoxymagnesium Shi magnesium; and carboxylic acid salts of magnesium such as magnesium laurate and magnesium stearate.
  • magnesium halide or alkoxymagnesium and more preferred is magnesium chloride or butoxymagnesium.
  • Examples of the clay or the clay mineral include kaolin, bentonite, kibushi clay, gyrome clay, allophane, hysinger gel, bayophilite, talc, ummo group, montmorillonite group, vermiculite, ryokdeite group, palygorskite, kaolinite, nacrite, Dickite, and halloysite.
  • preferred is smectite, montmorillonite, hectorite, laponite or saponite, and more preferred is montmorillonite or hectorite.
  • the inorganic substance is preferably dried to substantially remove moisture, and is preferably dried by heat treatment.
  • the heat treatment is usually carried out at a temperature of 100 to 1,500 ° C., preferably 100 to 1,000 ° C., more preferably 200 to 800 ° C. for inorganic substances whose moisture cannot be visually confirmed.
  • the heating time is not particularly limited, but is preferably 10 minutes to 50 hours, more preferably 1 hour to 30 hours.
  • Examples of the drying method include a method of circulating an inert gas (for example, nitrogen or argon) dried under heating at a constant flow rate, and a method of depressurizing under heating.
  • the average particle size of the inorganic substance is preferably 5 to 1000 ⁇ m, more preferably 10 to 500 ⁇ m, and still more preferably 10 to 100 ⁇ m.
  • the pore volume of the inorganic substance is preferably 0.1 ml / g or more, more preferably 0.3 to 10 ml / g.
  • the specific surface area of the inorganic substance is preferably 10 to 1000 m 2 / g, more preferably 100 to 500 m 2 / g.
  • organic polymer for the carrier a polymer having a functional group having active hydrogen or a non-proton donating Lewis basic functional group is preferred.
  • Examples of the functional group having active hydrogen include primary amino group, secondary amino group, imino group, amide group, hydrazide group, amidino group, hydroxy group, hydroperoxy group, carboxyl group, formyl group, carbamoyl group, sulfonic acid Groups, sulfinic acid groups, sulfenic acid groups, thiol groups, thioformyl groups, pyrrolyl groups, imidazolyl groups, piperidyl groups, indazolyl groups, and carbazolyl groups.
  • a primary amino group, a secondary amino group, an imino group, an amide group, an imide group, a hydroxy group, a formyl group, a carboxyl group, a sulfonic acid group or a thiol group particularly preferably a primary amino group, Secondary amino group, amide group or hydroxy group.
  • These functional groups may be substituted with a halogen atom or a hydrocarbyl group having 1 to 20 carbon atoms.
  • non-proton-donating Lewis basic functional group examples include pyridyl group, N-substituted imidazolyl group, N-substituted indazolyl group, nitrile group, azide group, N-substituted imino group, N, N-substituted amino group, N , N-substituted aminooxy group, N, N, N-substituted hydrazino group, nitroso group, nitro group, nitrooxy group, furyl group, carbonyl group, thiocarbonyl group, alkoxy group, alkyloxycarbonyl group, N, N-substituted Examples include a carbamoyl group, a thioalkoxy group, a substituted sulfinyl group, a substituted sulfonyl group, and a substituted sulfonic acid group.
  • heterocyclic group preferred is an aromatic heterocyclic group having an oxygen atom and / or a nitrogen atom in the ring, and particularly preferred are a pyridyl group, an N-substituted imidazolyl group, and an N-substituted indazolyl group. And most preferably a pyridyl group.
  • These functional groups may be substituted with a halogen atom or a hydrocarbyl group having 1 to 20 carbon atoms.
  • the amount of the functional group having active hydrogen or the non-proton-donating Lewis basic functional group is preferably 0.01 to 50 mmol / g as the molar amount of the functional group per gram of polymer unit, more preferably 0.8. 1 to 20 mmol / g.
  • a method for producing the polymer having the functional group a method of homopolymerizing a monomer having a functional group having active hydrogen or a non-proton donating Lewis basic functional group and one or more polymerizable unsaturated groups, And a method of copolymerizing the monomer and another monomer having a polymerizable unsaturated group.
  • the monomer is preferably combined with a crosslinking polymerizable monomer having two or more polymerizable unsaturated groups.
  • the monomer having a functional group having active hydrogen or a non-proton-donating Lewis basic functional group and one or more polymerizable unsaturated groups include (1) a functional group having active hydrogen and one or more polymerizations. And a monomer having an unsaturated proton group and (2) a monomer having a non-proton-donating Lewis basic functional group and one or more polymerizable unsaturated groups.
  • Monomers having a functional group having active hydrogen and one or more polymerizable unsaturated groups include vinyl group-containing primary amines, vinyl group-containing secondary amines, vinyl group-containing amide compounds, and vinyl group-containing hydroxy compounds. Can be mentioned. Specific examples include N- (1-ethenyl) amine, N- (2-propenyl) amine, N- (1-ethenyl) -N-methylamine, N- (2-propenyl) -N-methylamine, 1- And ethenylamide, 2-propenylamide, N-methyl- (1-ethenyl) amide, N-methyl- (2-propenyl) amide, vinyl alcohol, 2-propen-1-ol, and 3-buten-1-ol.
  • Monomers having a non-proton donating Lewis basic functional group and one or more polymerizable unsaturated groups include vinyl pyridine, vinyl (N-substituted) imidazole, and vinyl (N-substituted) indazole.
  • Examples of the other monomer having a polymerizable unsaturated group include ethylene, ⁇ -olefin, and aromatic vinyl compounds. Specific examples include ethylene, propylene, 1-butene, 1-hexene, 4- And methyl-1-pentene, styrene, and combinations of two or more thereof. Among these, ethylene or styrene is preferable.
  • Examples of the crosslinkable monomer having two or more polymerizable unsaturated groups include divinylbenzene.
  • the average particle size of the organic polymer is preferably 5 to 1000 ⁇ m, more preferably 10 to 500 ⁇ m.
  • the pore volume of the organic polymer is preferably 0.1 ml / g or more, more preferably 0.3 to 10 ml / g.
  • the specific surface area of the organic polymer is preferably 10 to 1000 m 2 / g, more preferably 50 to 500 m 2 / g.
  • the organic polymer is preferably dried to substantially remove moisture, and is preferably dried by heat treatment.
  • the heat treatment is usually carried out at a temperature of 30 to 400 ° C., preferably 50 to 200 ° C., more preferably 70 to 150 ° C. for an organic polymer whose moisture cannot be visually confirmed.
  • the heating time is not particularly limited, but is preferably 30 minutes to 50 hours, more preferably 1 hour to 30 hours.
  • Examples of the drying method include a method of circulating an inert gas (for example, nitrogen or argon) dried under heating at a constant flow rate, and a method of depressurizing under heating.
  • the volume standard geometric standard deviation of the particle size of the support is preferably 2.5 or less, more preferably 2.0 or less, and even more preferably 1.7 or less, from the viewpoint of the particle size distribution of the obtained polymer.
  • the carrier, inorganic material is preferred, the inorganic oxide is more preferably, SiO 2 is more preferred.
  • the olefin polymerization catalyst of the present invention can be obtained by contacting the complex represented by the general formula (1-1) or (1-2), the co-catalyst component for activation, and the support.
  • the activation promoter component is at least one compound selected from the group consisting of an organoaluminum compound (A), a boron compound (B), or a boron compound (C). Further, as the activation promoter component (A), a plurality of components among the organoaluminum compounds (A-1) to (A-3) may be used.
  • Method 1 A method in which a support is brought into contact with a contact product obtained by bringing the complex (1) into contact with an activation promoter component.
  • Method 2 A method in which the complex (1) is brought into contact with a contact product obtained by bringing the support into contact with the activating cocatalyst component.
  • Method 3 A method of bringing an activating co-catalyst component into contact with a contact product obtained by bringing the carrier into contact with the complex (1).
  • Method 4 A method in which the complex (1), the activating co-catalyst component and the support are simultaneously contacted.
  • the complex (1) may be an isolated one, or may be used as it is by contacting the compound (2) with the compound (3).
  • the contact product in contact with the support and the activation promoter component is brought into contact with the contact product in contact with the complex (1) and the activation promoter component.
  • the method is preferred.
  • the reaction it is preferable to carry out the reaction in the presence of a solvent.
  • the solvent include aromatic hydrocarbyl solvents such as benzene, toluene and xylene, aliphatic hydrocarbyl solvents such as hexane, heptane and octane, and halogenated hydrocarbyl solvents such as dichloromethane.
  • aromatic hydrocarbyl solvents such as benzene, toluene and xylene
  • aliphatic hydrocarbyl solvents such as hexane, heptane and octane
  • halogenated hydrocarbyl solvents such as dichloromethane.
  • the solvent which does not dissolve is preferable, and the solvent which dissolves the complex (1) and the promoter component for activation is more preferable.
  • the temperature and time for contact are not particularly limited.
  • the temperature is usually -100 ° C to 200 ° C, preferably -50 ° C to 150 ° C, more preferably -20 ° C to 120 ° C.
  • the contact time is usually about 30 minutes to 12 hours, preferably about 30 minutes to 8 hours, more preferably about 30 minutes to 6 hours.
  • the ratio of each component when contacting the carrier, the complex (1) and the activating cocatalyst component (A) is 0.05 to 20 parts by weight of the complex (1) per 1 part by weight of the carrier.
  • Component (A) is 10 to 300 parts by weight, preferably 0.1 to 10 parts by weight of complex (1) and 20 to 200 parts by weight of activation promoter component (A) per part by weight of the support.
  • the ratio of each component when contacting the carrier, the complex (1) and the activating co-catalyst component (B) is 0.05 to 20 parts by weight of the complex (1) per 1 part by weight of the carrier.
  • Component (B) is 0.1 to 60 parts by weight, preferably 0.1 to 10 parts by weight of complex (1) and 0.2 to 30 parts by weight of activation promoter component (B) per part by weight of the support. It is.
  • the olefin polymerization catalyst of the present invention can also be obtained by bringing the complex (1), the carrier and the activation promoter component (C) into contact with each other, but the activation promoter component (A) can be used in combination. preferable.
  • These contact methods are not particularly limited, and a plurality of components among the compounds (A-1) to (A-3) may be used as the activation promoter component (A).
  • the order of contacting the support, the complex (1) and the activating cocatalyst components (C) and (A) is not particularly limited, and examples thereof include the following methods. Preferably, it is Method 6, Method 7 or Method 8, and more preferably Method 6 or Method 8.
  • the order of charging in each contact of each method is not particularly limited, and some or all of these contacts may be performed in a polymerization tank or a reactor.
  • Method 5 A method of bringing the co-catalyst component for activation (C) into contact with the contact product obtained by bringing the co-catalyst component for activation (A) into contact with the carrier, and further bringing the complex (1) into contact therewith.
  • Method 6 A method in which the support is brought into contact with the contact product obtained by bringing the activating cocatalyst component (A) and the activating cocatalyst component (C) into contact, and the complex (1) is further brought into contact.
  • Method 7 A method in which the complex (1) is brought into contact with the contact product obtained by bringing the activating cocatalyst component (A) and the carrier into contact, and the activating cocatalyst component (C) is further brought into contact.
  • Method 8 A method of bringing the co-catalyst component for activation (C) into contact with the contact product obtained by bringing the co-catalyst component for activation (A) into contact with the carrier, and further bringing the complex (1) into contact therewith.
  • the complex (1) may be an isolated one, or may be used as it is by contacting the compound (2) with the compound (3).
  • the reaction it is preferable to carry out the reaction in the presence of a solvent.
  • the solvent include aromatic hydrocarbyl solvents such as benzene, toluene and xylene, aliphatic hydrocarbyl solvents such as hexane, heptane and octane, and halogenated hydrocarbyl solvents such as dichloromethane.
  • aromatic hydrocarbyl solvents such as benzene, toluene and xylene
  • aliphatic hydrocarbyl solvents such as hexane, heptane and octane
  • halogenated hydrocarbyl solvents such as dichloromethane.
  • the solvent which does not dissolve is preferable, and the solvent which dissolves the complex (1) and the promoter component for activation is more preferable.
  • the temperature and time for contact are not particularly limited.
  • the temperature is usually -100 ° C to 200 ° C, preferably -50 ° C to 150 ° C, more preferably -20 ° C to 120 ° C.
  • the contact time is usually about 30 minutes to 12 hours, preferably about 30 minutes to 8 hours, more preferably about 30 minutes to 6 hours.
  • the ratio of each component when contacting the support, the complex (1), the activating co-catalyst component (A) and the activating co-catalyst component (C) is 0.05% of complex (1) per 1 part by weight of the support.
  • the catalyst according to the present invention produced by the above-described method can be used for homopolymerization of olefins or for copolymerization of two or more olefins.
  • the catalyst according to the present invention can be particularly preferably used for homopolymerization of olefins having 2 to 6 carbon atoms or copolymerization of two or more olefins having 2 to 6 carbon atoms.
  • the method for producing an olefin polymer in the present invention is a method including polymerizing an olefin alone in the presence of the catalyst or copolymerizing two or more olefins.
  • the olefin can be a monoolefin or a diolefin.
  • the monoolefin include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 4-methyl-1-pentene, vinylcyclohexane, etc.
  • 1-alkene having 3 to 10 carbon atoms which may be branched), or cyclopentene, cyclohexene, 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, 5-phenylnorbornene, 5-benzylnorbornene , Tetracyclododecene, tricyclodecene, tricycloundecene, pentacyclopentadecene, pentacyclohexadecene, 8-methyltetracyclododecene, 8-ethyltetracyclododecene, 5-acetylnorbornene, 5-acetyloxynorbornene , 5-Met Sicarbonylnorbornene, 5-ethoxycarbonylnorbornene, 5-methyl-5-methoxycarbonylnorbornene, 5-cyanonorbornene, 8-methoxycarbonyltetra
  • diolefin examples include 1,5-hexadiene, 1,4-hexadiene, 1,6-heptadiene, 1,4-pentadiene, 1,7-octadiene, 1,8-nonadiene, 1,9-decadiene, 4 -Methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 7-methyl-1,6-octadiene, 5-ethylidene-2-norbornene, dicyclopentadiene, 5-vinyl-2-norbornene, 5 -Methyl-2-norbornene, norbornadiene, 5-methylene-2-norbornene, 1,5-cyclooctadiene, 5,8-endomethylenehexahydronaphthalene, 1,3-hexadiene, 1,3-octadiene, 1,3 -Cyclooctadiene, 1,3-cyclohexadiene, butad
  • Preferred monoolefins include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 4-methyl-1-pentene, vinylcyclohexane, and the like.
  • Olefin having 2 to 10 carbon atoms more preferably ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene, vinylcyclohexane and the like.
  • isotactic pentad fraction [mmmm] (%) is used.
  • the isotactic pentad fraction referred to here is A.I. Isotactic linkage at the pentad unit in a crystalline polypropylene molecular chain measured using the method published by Macrobells, 1973, No. 6, pp. 925-926, ie, using 13 C-NMR. In other words, it is the fraction of propylene monomer units at the center of a chain in which five propylene monomer units are continuously meso-bonded.
  • the monomer constituting the copolymer examples include ethylene and propylene, ethylene and 1-butene, ethylene and 1-pentene, ethylene and 1-hexene, ethylene and 1-octene, ethylene and 1-decene, ethylene and 4 -Methyl-1-pentene, ethylene and vinylcyclohexane, ethylene and 4-methyl-1-pentene, ethylene and butadiene, ethylene and 1,5-hexadiene.
  • ethylene and carbon such as ethylene and propylene, ethylene and 1-butene, ethylene and 1-pentene, ethylene and 1-hexene, ethylene and 1-octene, ethylene and vinylcyclohexane, ethylene and 4-methyl-1-pentene Copolymerization with olefins having 3 to 10 atoms, more preferably ethylene and carbon atoms such as ethylene and propylene, ethylene and 1-butene, ethylene and 1-hexene, ethylene and 1-octene, ethylene and vinylcyclohexane, etc. Copolymerization with olefins of 3 to 8.
  • the particle property is very high by the method of bringing the contact product in contact with the support and the activation promoter component into contact with the contact product in contact with the complex (1) and the activation promoter component.
  • the following ethylene- ⁇ -olefin copolymer excellent in the above can be obtained.
  • the following copolymer particles are not particles obtained by granulating copolymer particles obtained by copolymerization of ethylene and ⁇ -olefin, but directly by copolymerizing ethylene and ⁇ -olefin in a polymerization reactor. Means the resulting particles.
  • the ethylene- ⁇ -olefin copolymer having a volume particle size of 300 ⁇ m or less and a polymer particle content of 2% by volume or less, a 50% volume reference particle size (D50) of 500 ⁇ m or more, and a particle bulk density of 400 kg / m 3 or more. Polymer particles.
  • the amount of particles having a volume standard particle size of 300 ⁇ m or less is preferably smaller from the viewpoint of operational stability, preferably 2% by volume or less, more preferably 1% by volume or less, More preferably, it is 0.5 volume% or less.
  • the ethylene- ⁇ -olefin copolymer particles have a 50% volume standard particle diameter (D50) of 500 ⁇ m or more, and are preferably higher from the viewpoint of productivity, preferably 750 ⁇ m or more, more preferably 1000 ⁇ m or more. From the viewpoint of the fluidity of the particles, it is preferably not too large, preferably 4000 ⁇ m or less, more preferably 3500 ⁇ m or less, and still more preferably 3000 ⁇ m or less.
  • D50 50% volume standard particle diameter
  • the ethylene- ⁇ -olefin copolymer particles have a particle bulk density of 400 kg / m 3 or more, and preferably have a high particle bulk density from the viewpoint of enhancing production, preferably 425 kg / m 3 or more, and more preferably Is 450 kg / m 3 or more.
  • the particle bulk density (BD) can be determined by filling a 10 cc graduated cylinder from 10 cm above the powder and dividing the mass of the powder by the volume including the voids between the particles.
  • the particle size measurement on the volume basis of the polymer particles can be calculated, for example, by measuring the particle size distribution by dispersing the polymer particles in a dry state using a laser diffraction particle size distribution analyzer HELOS & RODOS system manufactured by SYMPATEC. Can do.
  • the content derived from ⁇ -olefin in the ethylene- ⁇ -olefin copolymer particles obtained by the production method of the present invention is preferably smaller from the viewpoint of the tackiness of the copolymer, and the number of short chain branches (N SCB ) Is less than 30 / 1000C, more preferably less than 25 / 1000C, and even more preferably less than 20 / 1000C.
  • the melt flow rate (MFR) of the ethylene- ⁇ -olefin copolymer obtained by the production method of the present invention is the method defined in JIS K7210-1995 under the conditions of a temperature of 190 ° C. and a load of 21.18 N. Is a value measured by.
  • the MFR of the ethylene- ⁇ -olefin copolymer obtained by the production method of the present invention is 0.1 to 100 g / 10 min.
  • the MFR is preferably 0.2 g / 10 min or more from the viewpoint of improving molding processability, particularly from the viewpoint of reducing the extrusion load. Further, from the viewpoint of increasing the melt tension and the mechanical strength of the resulting molded article, it is preferably 50 g / 10 min or less, more preferably 30 g / 10 min or less, and further preferably 20 g / 10 min or less.
  • H-MFR is a value of MFR measured under the conditions of a load of 211.82 N and a temperature of 190 ° C. in the method defined in JIS K7210-1995.
  • the MFRR is a value obtained by dividing H-MFR by the MFR measured under the conditions of a load of 21.18 N and a temperature of 190 ° C. in the method specified in JIS K7210-1995. is there.
  • the MFRR of the ethylene- ⁇ -olefin copolymer obtained by the production method of the present invention is preferably 70 or more, more preferably 100 or more, and still more preferably, from the viewpoint of further reducing the extrusion load during the molding process. Is 130 or more, particularly preferably 170 or more. Moreover, from a viewpoint which raises the mechanical strength of the molded object obtained more, Preferably it is 300 or less, More preferably, it is 250 or less.
  • the density of the ethylene- ⁇ -olefin copolymer obtained by the production method of the present invention is 850 to 940 kg / m 3 , and preferably 930 kg / m 3 from the viewpoint of increasing the impact strength of the mechanical strength of the obtained molded product. 3 or less. From the viewpoint of enhancing among tensile strength of mechanical strength of the resulting molded product, it is preferably 870 kg / m 3 or more, more preferably 880 kg / m 3 or more, more preferably 890 kg / m 3 or more, particularly preferably Is 900 kg / m 3 or more
  • the weight average molecular chain length (hereinafter sometimes referred to as “Aw”) and the number average molecular chain length (hereinafter referred to as “An”) of the ethylene- ⁇ -olefin copolymer obtained by the production method of the present invention is 2 to 10. If Aw / An is too small, the extrusion load at the time of molding may increase. Aw / An is preferably 2.5 or more. When Aw / An is too large, the mechanical strength of the obtained molded product may be lowered. Aw / An is preferably 6.5 or less, more preferably 6 or less, and even more preferably 5 or less.
  • N LCB has a carbon atom number of 5 or more, with the total area of all peaks observed at 5 to 50 ppm as 1000 from the 13 C-NMR spectrum measured by the carbon nuclear magnetic resonance ( 13 C-NMR) method. It is obtained by determining the area of the peak derived from the methine carbon to which the branch is bonded.
  • the peak derived from methine carbon to which a branch having 5 or more carbon atoms is bonded is around 38.2 ppm (Reference: Scientific literature “Macromolecules”, (USA), American Chemical Society, 1999, Vol. 32, p.3817-3818) ).
  • the N LCB of the ethylene- ⁇ -olefin copolymer obtained by the production method of the present invention is preferably at least 0.05, more preferably at least 0.10, per 1000 carbons from the viewpoint of processability. Especially preferably, it is 0.15 or more. From the viewpoint of the mechanical strength of the obtained polymer, it is preferably not too much, preferably 5 or less, more preferably 4 or less, and particularly preferably 3 or less.
  • the olefin polymer obtained by the method for producing an olefin polymer of the present invention has an extrusion load at the time of molding, bubble stability at the time of forming an inflation film, neck-in at the time of T-die film molding, and a shape retention of the parison at the time of hollow molding. Excellent moldability such as properties, and excellent mechanical strength. Moreover, the transparency of the molded product is also excellent.
  • the olefin polymer is molded by a known molding method, for example, an extrusion molding method such as an inflation film molding method and a T-die film molding method, a hollow molding method, an injection molding method, a compression molding method, or the like.
  • an extrusion molding method and a hollow molding method are preferably used, and an inflation film molding method, a T-die film molding method, and a hollow molding method are particularly preferably used.
  • the olefin polymer is used after being molded into various forms.
  • the form of a molded article is not specifically limited, it is used for a film, a sheet, a container (tray, bottle, etc.), etc.
  • the molded article is also suitably used for applications such as food packaging materials; pharmaceutical packaging materials; electronic component packaging materials used for packaging semiconductor products, etc .; surface protection materials.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of each polymer are based on the weight average molecular chain length (Aw) in terms of polystyrene and the number average molecular chain length (An) in terms of polystyrene. Factors were calculated from the following formulas with 17.7 and 26.4, respectively.
  • Molecular weight (Mw, Mn) molecular chain length (Aw, An) ⁇ Q factor
  • Density (d, unit: Kg / m 3 ) Measured according to the method defined in Method A of JIS K7112-1980. The sample was annealed according to JIS K6760-1995.
  • N SCB Number of short chain branches (N SCB , unit: 1 / 1000C)
  • FT-IR7300 infrared spectrophotometer
  • This N SCB value represents the content of monomer units derived from ⁇ -olefin in a copolymer of ethylene and ⁇ -olefin.
  • Melt flow rate (MFR, unit: g / 10 min) In the method defined in JIS K7210-1995, measurement was performed by the method A under the conditions of a load of 21.18 N and a temperature of 190 ° C.
  • H-MFR Melt flow rate ratio
  • Particle bulk density (10) Particle bulk density (BD)
  • the particle bulk density (BD) is a value obtained by dividing the mass of the powder by the volume including 10 cm of powder in a 10 cc graduated cylinder and including the voids between the particles.
  • Elemental analysis Aluminum and hafnium A metal component was extracted by irradiating an ultrasonic wave after throwing the sample into a sulfuric acid aqueous solution (1M). The obtained liquid portion was quantified by ICP emission spectrometry.
  • the formed precipitate was removed by filtration, and the filtrate was concentrated under reduced pressure.
  • Ether and saturated aqueous ammonium chloride solution were added to the resulting residue, and the ether layer was washed with water and dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure.
  • the obtained residue was purified by silica gel column chromatography (developing solvent hexane-dichloromethane 1: 1) to obtain 6.74 g (yield 89%) of the title compound as colorless crystals.
  • Triethylamine 6.5 mL (47 mmol) was added here, and it heated and refluxed for 3 hours.
  • the reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After evaporating volatile components from the filtrate under reduced pressure, ethyl acetate and water were added to the residue.
  • the organic layer was washed with 1 M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate.
  • the solvent was distilled off under reduced pressure to obtain 8.05 g of a mixture containing 5-tert-butyl-3-cumylsalicylaldehyde (purity 79.9%, yield 93%).
  • Triethylamine 1.1 mL (7.9 mmol) was added here, and it stirred at 0 degreeC for 1 hour, and 2 hours at room temperature. After the volatile components were distilled off from the reaction solution under reduced pressure, ethyl acetate and an aqueous ammonium chloride solution were added. The organic layer was washed with water and saturated brine in that order, and then dried over anhydrous magnesium sulfate.
  • Triethylamine 0.7 mL (5.0 mmol) was added here, and it stirred at 0 degreeC for 1 hour, and 2 hours at room temperature. Further, 0.05 g (0.013 mmol) of 5-tert-butyl-2-hydroxy-3- (3,5-dimethyl-1-adamantyl) benzyl bromide was added, and the mixture was stirred at room temperature for 1 hour. After the volatile components were distilled off from the reaction solution under reduced pressure, ethyl acetate and an aqueous ammonium chloride solution were added. The organic layer was washed with water and saturated brine in that order, and then dried over anhydrous magnesium sulfate.
  • reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After evaporating volatile components from the filtrate under reduced pressure, ethyl acetate and 2% HCl were added to the residue. The organic layer was washed with water and saturated brine in that order and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 2.2 g of a mixture containing 5-tert-butyl-3- [1- (3,5-dimethylphenyl) -1-methylethyl] salicylaldehyde (yield> 99%). Obtained.
  • Triethylamine 1.0 mL (7.2 mmol) was added here, and it stirred at room temperature for 15.5 hours.
  • the reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure.
  • Ethyl acetate and aqueous ammonium chloride solution were added to the resulting residue.
  • the organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in that order, and then dried over anhydrous magnesium sulfate.
  • Example 1 The autoclave with a stirrer with an internal volume of 400 mL was vacuum-dried and replaced with argon, 200 mL of hexane was charged as a solvent, and the reactor was heated to 70 ° C. After the temperature rise, the ethylene pressure was adjusted to 0.6 MPa and then fed, and 0.5 mL (0.5 mmol) of triisobutylaluminum (1.0 mol / L, toluene solution) was synthesized in Reference Example 7 [cyclooctane.
  • Example 2 [Cyclooctanediyl-trans-1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] synthesized in Reference Example 8 instead of dibenzylzirconium Example 1, except that 1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] dibenzylhafnium was used and the amount of MAO / SiO 2 was 17.1 mg. It carried out similarly. The results are shown in Table 1.
  • Example 3 An autoclave with a stirrer having an internal volume of 400 mL was vacuum-dried and replaced with argon, 185 mL of hexane was charged as a solvent, 15 mL of 1-hexene was charged as a comonomer, and the reactor was heated to 70 ° C. After raising the temperature, the ethylene pressure was adjusted to 0.6 MPa and then fed, and triisobutylaluminum (1.0 mol / L, toluene solution) 0.5 mL (0.5 mmol) was synthesized in Reference Example 5 [cyclooctanediyl.
  • Example 4 An autoclave with a stirrer having an internal volume of 400 mL was vacuum dried and replaced with argon, and then 40 mL of hexane as a solvent and 80 g of propylene as a monomer were charged, and the temperature of the reactor was raised to 70 ° C.
  • Example 5 [Cyclooctanediyl-trans-1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] synthesized in Reference Example 8 instead of dibenzylzirconium 1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] dibenzylhafnium (1.0 mmol / L, toluene solution) 0.2 mL (0.2 ⁇ mol) was used, The same operation as in Example 4 was carried out except that the amount of MAO / SiO 2 input was 20.4 mg. The results are shown in Table 2.
  • Table 2 shows the polymerization results obtained in Examples 4 and 5 and Comparative Examples 3 and 4.
  • Example 6 to 32 In Examples 6 to 19, the complex-supported catalyst 2 was used to examine ethylene-butene or ethylene-hexene copolymerization. During the polymerization, the temperature was kept constant, and the pressure was kept constant with ethylene gas to carry out the polymerization. The polymerization conditions and results are summarized in Tables 3 and 4.
  • Examples 20 to 28 the ethylene-butene or ethylene-hexene copolymerization was examined using the complex-supported catalysts 1, 3 to 9. During the polymerization, the temperature was kept constant, and the pressure was kept constant with ethylene gas to carry out the polymerization. The polymerization conditions and results are summarized in Table 5. In Examples 29 to 32, propylene was polymerized using complex-supported catalysts 1 to 4. The polymerization conditions and results are summarized in Table 6.
  • Example 13 The polymer particles obtained in Example 13 were observed with a scanning microscope (manufactured by KEYENCE, VE-8800). An SEM photograph taken at that time is shown in FIG. In addition, (a) and (b) of FIG. 1 image
  • the present invention is useful in the field relating to the production of polyolefins.

Abstract

An olefin polymerization catalyst is obtained by causing a complex represented by general formula (1-1) or (1-2), an activating co-catalyst component, and a carrier to contact one another.

Description

オレフィン重合用触媒及びオレフィン重合体の製造方法Olefin polymerization catalyst and process for producing olefin polymer
 本発明は、チタン、ジルコニウムまたはハフニウム錯体を用いたオレフィン重合用触媒及びオレフィン重合体の製造方法に関する。 The present invention relates to a catalyst for olefin polymerization using a titanium, zirconium or hafnium complex and a method for producing an olefin polymer.
 無機化合物または粒子状ポリマーなどの担体、遷移金属錯体および活性化用助触媒成分を接触させて得られる触媒の存在下でオレフィン類を重合または共重合するオレフィン重合体の製造方法が知られており、分子量および分子量分布といったポリマー構造、重合体の粒子性状、ならびに重合時の運転安定性といった観点から有利な製造方法である。しかしながら、オレフィン類を重合可能な全ての遷移金属化合物がこの製造方法に好適であるわけではない。 There is known a method for producing an olefin polymer in which olefins are polymerized or copolymerized in the presence of a catalyst obtained by contacting a carrier such as an inorganic compound or a particulate polymer, a transition metal complex, and a promoter component for activation. From the viewpoints of polymer structure such as molecular weight and molecular weight distribution, particle properties of the polymer, and operational stability during polymerization, this is an advantageous production method. However, not all transition metal compounds capable of polymerizing olefins are suitable for this production method.
 一方、チーグラ・ナッタ型マグネシウム担持高活性チタン触媒により大いに発展したオレフィン重合の化学において、近年、メタロセン触媒の開発がトピックスの一つである。さらに、最近ではさらなる精密な重合プロセスを構築するための触媒として、所謂ポストメタロセン系触媒の開発が注目されている。 On the other hand, the development of metallocene catalysts is one of the topics in recent years in the chemistry of olefin polymerization that has been greatly developed by Ziegler-Natta type magnesium-supported highly active titanium catalysts. Further, recently, development of so-called post metallocene catalysts has attracted attention as a catalyst for constructing a more precise polymerization process.
 特許文献1では、エタン-1,2-ジチオールから誘導されるジフェノキシチタン錯体、ジルコニム錯体またはハフニウム錯体を用いたプロピレン重合が報告されている。 Patent Document 1 reports propylene polymerization using a diphenoxy titanium complex, a zirconium complex or a hafnium complex derived from ethane-1,2-dithiol.
 また、trans-シクロオクタン-1,2-ジチオールから誘導されるジフェノキシチタン錯体、ジルコニウム錯体及びハフニウム錯体が報告されている(非特許文献1)。さらに、これらの錯体のうち、ジルコニウム錯体を触媒とした1-ヘキセンの重合が報告されている(非特許文献2)。 In addition, diphenoxy titanium complex, zirconium complex and hafnium complex derived from trans-cyclooctane-1,2-dithiol have been reported (Non-patent Document 1). Furthermore, of these complexes, 1-hexene polymerization using a zirconium complex as a catalyst has been reported (Non-patent Document 2).
国際公開:WO2007/075299号公報(公開日:2007年7月5日)International publication: WO2007 / 075299 (publication date: July 5, 2007)
 本発明が解決しようとする課題は、遷移金属錯体、活性化用助触媒成分および担体を接触させて得られる触媒の存在下でオレフィン重合体を高活性に製造し得るオレフィン重合用触媒、および前記オレフィン重合用触媒の存在下にオレフィンを重合させるオレフィン重合体の製造方法を提供することにある。 The problems to be solved by the present invention include an olefin polymerization catalyst capable of producing an olefin polymer with high activity in the presence of a catalyst obtained by contacting a transition metal complex, an activation promoter component and a support, and An object of the present invention is to provide a method for producing an olefin polymer in which an olefin is polymerized in the presence of an olefin polymerization catalyst.
 すなわち、本発明は一般式(1-1)または(1-2)で表される錯体、活性化用助触媒成分および担体を接触させてなるオレフィン重合用触媒に関するものである。
Figure JPOXMLDOC01-appb-C000002
(式中、nは1または2であり、
Mは、ジルコニウム原子またはハフニウム原子を表す。
 RおよびRは、それぞれ独立して、
水素原子、
ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数2~20のアルケニル基、
炭素原子数2~20のアルキニル基、
炭素原子数7~30のアラルキル基、
炭素原子数1~20のアルコキシ基、
炭素原子数7~30のアラルキルオキシ基、
炭素原子数6~30のアリールオキシ基、または
置換シリル基を表す。
 R~RおよびR~R10は、それぞれ独立して、
水素原子、
ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数2~20のアルケニル基、
炭素原子数2~20のアルキニル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
炭素原子数1~20のアルコキシ基、
炭素原子数7~30のアラルキルオキシ基、
炭素原子数6~30のアリールオキシ基、
置換シリル基、または
環を構成する炭素原子数が3~20のヘテロ環式化合物残基を表す。
 R~R10における上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アルキニル基、上記アラルキル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基および上記ヘテロ環式化合物残基はそれぞれ置換基を有していてもよい。
 上記R~R10の定義に関わらず、RとR、RとR、RとR、RとR、RとR、RとR、RとRおよびRとR10は、それぞれ独立して、互いに連結して環を形成してもよく、これらの環は置換基を有していてもよい。
 Xは、それぞれ独立して、
水素原子、
ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数2~20のアルケニル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
炭素原子数1~20のアルコキシ基、
炭素原子数7~30のアラルキルオキシ基、
炭素原子数6~30のアリールオキシ基、
置換シリル基、
置換アミノ基、
置換チオラート基、または
炭素原子数1~20のカルボキシラート基を表す。
 Xにおける上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アラルキル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基および上記カルボキシラート基はそれぞれ置換基を有していてもよい。
隣接するX同士は、相互に連結して環を形成してもよい。
 Lは中性のルイス塩基を表す。Lが複数ある場合は、複数のLは同一でも異なっていてもよい。lは、0、1、または2である。)
That is, the present invention relates to an olefin polymerization catalyst obtained by contacting a complex represented by the general formula (1-1) or (1-2), an activation promoter component and a carrier.
Figure JPOXMLDOC01-appb-C000002
(Wherein n is 1 or 2,
M represents a zirconium atom or a hafnium atom.
R 1 and R 5 are each independently
Hydrogen atom,
A halogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An alkenyl group having 2 to 20 carbon atoms,
An alkynyl group having 2 to 20 carbon atoms,
An aralkyl group having 7 to 30 carbon atoms,
An alkoxy group having 1 to 20 carbon atoms,
An aralkyloxy group having 7 to 30 carbon atoms,
An aryloxy group having 6 to 30 carbon atoms or a substituted silyl group is represented.
R 2 to R 4 and R 6 to R 10 are each independently
Hydrogen atom,
A halogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An alkenyl group having 2 to 20 carbon atoms,
An alkynyl group having 2 to 20 carbon atoms,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
An alkoxy group having 1 to 20 carbon atoms,
An aralkyloxy group having 7 to 30 carbon atoms,
An aryloxy group having 6 to 30 carbon atoms,
It represents a substituted silyl group or a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring.
The alkyl group, the cycloalkyl group, the alkenyl group, the alkynyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the heterocyclic compound in R 1 to R 10 Each residue may have a substituent.
Regardless of the definition of R 1 to R 10 above, R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 2 And R 9 and R 6 and R 10 may be independently connected to each other to form a ring, and these rings may have a substituent.
Each X is independently
Hydrogen atom,
A halogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An alkenyl group having 2 to 20 carbon atoms,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
An alkoxy group having 1 to 20 carbon atoms,
An aralkyloxy group having 7 to 30 carbon atoms,
An aryloxy group having 6 to 30 carbon atoms,
Substituted silyl groups,
A substituted amino group,
It represents a substituted thiolate group or a carboxylate group having 1 to 20 carbon atoms.
The alkyl group, the cycloalkyl group, the alkenyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the carboxylate group in X each have a substituent. Also good.
Adjacent Xs may be connected to each other to form a ring.
L represents a neutral Lewis base. When there are a plurality of L, the plurality of L may be the same or different. l is 0, 1, or 2. )
 また、本発明は上記触媒の存在下にオレフィンを重合させるオレフィン重合体の製造方法に関する。 The present invention also relates to a method for producing an olefin polymer in which an olefin is polymerized in the presence of the catalyst.
 さらに、本発明は、体積基準粒径300μm以下の重合粒子含量が2体積%以下であり、50%体積基準粒径が500μm以上であり、粒子嵩密度が400kg/m以上であるエチレン-α-オレフィン共重合体粒子に関する。 Furthermore, the present invention relates to an ethylene-α having a polymer particle content of not more than 2% by volume, a 50% volume particle size of not less than 500 μm, and a particle bulk density of not less than 400 kg / m 3. -Relating to olefin copolymer particles.
 本発明によれば、オレフィン重合体を生産性よく製造することができる。また、α-オレフィンの重合においては、立体規則性の高いα-オレフィン重合体を生産性よく製造することができる。 According to the present invention, an olefin polymer can be produced with high productivity. In the polymerization of α-olefin, an α-olefin polymer having high stereoregularity can be produced with high productivity.
一実施例において得られた重合粒子のSEM画像を示す図である。It is a figure which shows the SEM image of the polymer particle obtained in one Example.
〔オレフィン重合用触媒〕
 本発明に係るオレフィン重合用触媒は、下記一般式(1-1)または(1-2)で表される錯体、活性化用助触媒成分および担体を接触させてなる。
(錯体)
 下記一般式(1-1)および(1-2)で表される錯体について説明する。
Figure JPOXMLDOC01-appb-C000003
[Olefin polymerization catalyst]
The olefin polymerization catalyst according to the present invention is obtained by contacting a complex represented by the following general formula (1-1) or (1-2), an activation promoter component and a carrier.
(Complex)
The complexes represented by the following general formulas (1-1) and (1-2) will be described.
Figure JPOXMLDOC01-appb-C000003
 Mは、ジルコニウム原子またはハフニウム原子を表す。高分子量のポリオレフィンを製造するという観点から、ハフニウム原子が好ましい。 M represents a zirconium atom or a hafnium atom. From the viewpoint of producing a high molecular weight polyolefin, hafnium atoms are preferred.
 nは1または2であり、好ましくは2である。 N is 1 or 2, preferably 2.
 RおよびRは、それぞれ独立して、
水素原子、
ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数2~20のアルケニル基、
炭素原子数2~20のアルキニル基、
炭素原子数7~30のアラルキル基、
炭素原子数1~20のアルコキシ基、
炭素原子数7~30のアラルキルオキシ基、
炭素原子数6~30のアリールオキシ基、または
置換シリル基を表す。
 RおよびRとして好ましくは、それぞれ独立して、
水素原子、
ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数1~20のアルコキシ基、
炭素原子数7~30のアラルキルオキシ基、
炭素原子数6~30のアリールオキシ基、または
置換シリル基であり、
 より好ましくは、それぞれ独立して、
ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、または
置換シリル基であり、
 RおよびRは、特に好ましくは、RとRとが同一であって、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、または
置換シリル基である。
R 1 and R 5 are each independently
Hydrogen atom,
A halogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An alkenyl group having 2 to 20 carbon atoms,
An alkynyl group having 2 to 20 carbon atoms,
An aralkyl group having 7 to 30 carbon atoms,
An alkoxy group having 1 to 20 carbon atoms,
An aralkyloxy group having 7 to 30 carbon atoms,
An aryloxy group having 6 to 30 carbon atoms or a substituted silyl group is represented.
R 1 and R 5 are preferably each independently
Hydrogen atom,
A halogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An aralkyl group having 7 to 30 carbon atoms,
An alkoxy group having 1 to 20 carbon atoms,
An aralkyloxy group having 7 to 30 carbon atoms,
An aryloxy group having 6 to 30 carbon atoms, or a substituted silyl group,
More preferably, each independently
A halogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An aralkyl group having 7 to 30 carbon atoms, or a substituted silyl group,
R 1 and R 5 are particularly preferably when R 1 and R 5 are the same,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An aralkyl group having 7 to 30 carbon atoms or a substituted silyl group.
 RおよびR10は、それぞれ独立して、
水素原子、
ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数2~20のアルケニル基、
炭素原子数2~20のアルキニル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
炭素原子数1~20のアルコキシ基、
炭素原子数7~30のアラルキルオキシ基、
炭素原子数6~30のアリールオキシ基、
置換シリル基、または
環を構成する炭素原子数が3~20のヘテロ環式化合物残基を表す。
 RおよびR10として好ましくは、それぞれ独立して、
ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
置換シリル基、または
環を構成する炭素原子数が3~20のヘテロ環式化合物残基であり、
 より好ましくは、それぞれ独立して
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
または環を構成する炭素原子数が3~20のヘテロ環式化合物残基であり、
 RとR10は、特に好ましくは、RとR10とが同一であって、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、または
環を構成する炭素原子数が3~20のヘテロ環式化合物残基である。
R 9 and R 10 are each independently
Hydrogen atom,
A halogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An alkenyl group having 2 to 20 carbon atoms,
An alkynyl group having 2 to 20 carbon atoms,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
An alkoxy group having 1 to 20 carbon atoms,
An aralkyloxy group having 7 to 30 carbon atoms,
An aryloxy group having 6 to 30 carbon atoms,
It represents a substituted silyl group or a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring.
R 9 and R 10 are preferably each independently
A halogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
A substituted silyl group, or a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring,
More preferably, each independently an alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
Or a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring,
R 9 and R 10 are particularly preferably R 9 and R 10 are the same,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An aralkyl group having 7 to 30 carbon atoms,
It is an aryl group having 6 to 30 carbon atoms, or a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring.
 R~RおよびR~Rは、それぞれ独立して、
水素原子、
ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数2~20のアルケニル基、
炭素原子数2~20のアルキニル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
炭素原子数1~20のアルコキシ基、
炭素原子数7~30のアラルキルオキシ基、
炭素原子数6~30のアリールオキシ基、
置換シリル基、または
環を構成する炭素原子数が3~20のヘテロ環式化合物残基を表す。
 R~RおよびR~Rとして好ましくは、それぞれ独立して、
水素原子、
ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
炭素原子数1~20のアルコキシ基、
炭素原子数6~30のアリールオキシ基、または
置換シリル基であり、
 より好ましくは、それぞれ独立して、
水素原子、
ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、または
置換シリル基である。
 R、R、RおよびRとして、さらに好ましくは、水素原子である。
 RおよびRとしてさらに好ましくは、それぞれ独立して、
ハロゲン原子、
炭素原子数1~20のアルキル基
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、または
置換シリル基である。
 RおよびRとしては、特に好ましくは、RとRとが同一であって、
炭素原子数1~20のアルキル基
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、または
置換シリル基であり、
最も好ましくは、
炭素原子数1~20のアルキル基である。
R 2 to R 4 and R 6 to R 8 are each independently
Hydrogen atom,
A halogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An alkenyl group having 2 to 20 carbon atoms,
An alkynyl group having 2 to 20 carbon atoms,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
An alkoxy group having 1 to 20 carbon atoms,
An aralkyloxy group having 7 to 30 carbon atoms,
An aryloxy group having 6 to 30 carbon atoms,
It represents a substituted silyl group or a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring.
R 2 to R 4 and R 6 to R 8 are preferably each independently
Hydrogen atom,
A halogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
An alkoxy group having 1 to 20 carbon atoms,
An aryloxy group having 6 to 30 carbon atoms, or a substituted silyl group,
More preferably, each independently
Hydrogen atom,
A halogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms or a substituted silyl group.
R 2 , R 4 , R 6 and R 8 are more preferably a hydrogen atom.
More preferably, R 3 and R 7 are each independently
A halogen atom,
A cycloalkyl group having 3 to 10 carbon atoms constituting an alkyl group ring having 1 to 20 carbon atoms,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms or a substituted silyl group.
As R 3 and R 7 , particularly preferably, R 3 and R 7 are the same,
A cycloalkyl group having 3 to 10 carbon atoms constituting an alkyl group ring having 1 to 20 carbon atoms,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms, or a substituted silyl group,
Most preferably,
An alkyl group having 1 to 20 carbon atoms.
 R~R10における上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アルキニル基、上記アラルキル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基および上記へテロ環式化合物残基はそれぞれ置換基を有していてもよい。 The alkyl group, the cycloalkyl group, the alkenyl group, the alkynyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the heterocyclic group in R 1 to R 10 Each compound residue may have a substituent.
 R~R10におけるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。 Examples of the halogen atom in R 1 to R 10 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 R~R10における炭素原子数1~20の置換または無置換のアルキル基としては、例えば、パーフルオロメチル基、パーフルオロエチル基、パーフルオロ-n-プロピル基、パーフルオロイソプロピル基、パーフルオロ-n-ブチル基、パーフルオロ-sec-ブチル基、パーフルオロイソブチル基、パーフルオロ-tert-ブチル基、パーフルオロ-n-ペンチル基、パーフルオロイソペンチル基、パーフルオロ-tert-ペンチル基、パーフルオロネオペンチル基、パーフルオロ-n-ヘキシル基、パーフルオロ-n-ヘプチル基、パーフルオロ-n-オクチル基、パーフルオロ-n-デシル基、パーフルオロ-n-ドデシル基、パーフルオロ-n-ペンタデシル基、パーフルオロ-n-エイコシル基、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、n-ヘキシル基、テキシル基、ネオヘキシル基、n-ヘプチル基、n-オクチル基、n-デシル基、n-ドデシル基、n-ペンタデシル基、n-エイコシル基が挙げられる。 Examples of the substituted or unsubstituted alkyl group having 1 to 20 carbon atoms in R 1 to R 10 include a perfluoromethyl group, a perfluoroethyl group, a perfluoro-n-propyl group, a perfluoroisopropyl group, and a perfluoro group. -N-butyl, perfluoro-sec-butyl, perfluoroisobutyl, perfluoro-tert-butyl, perfluoro-n-pentyl, perfluoroisopentyl, perfluoro-tert-pentyl, perfluoro Fluoroneopentyl group, perfluoro-n-hexyl group, perfluoro-n-heptyl group, perfluoro-n-octyl group, perfluoro-n-decyl group, perfluoro-n-dodecyl group, perfluoro-n- Pentadecyl group, perfluoro-n-eicosyl group, methyl group, ethyl group, -Propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, tert-pentyl group, neopentyl group, n-hexyl group, texyl group, neohexyl Group, n-heptyl group, n-octyl group, n-decyl group, n-dodecyl group, n-pentadecyl group and n-eicosyl group.
 R、R、RおよびR10における炭素原子数1~20の置換または無置換のアルキル基として好ましくは、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、n-ヘキシル基、テキシル基、ネオヘキシル基、n-ヘプチル基、n-オクチル基、n-デシル基などの炭素原子数4~10のアルキル基であり、
さらに好ましくは、tert-ブチル基、tert-ペンチル基、テキシル基などの炭素原子数4~10の第3級アルキル基であり、
最も好ましくは、tert-ペンチル基、テキシル基などの炭素原子数5~10の第3級アルキル基である。
The substituted or unsubstituted alkyl group having 1 to 20 carbon atoms in R 1 , R 5 , R 9 and R 10 is preferably an n-butyl group, sec-butyl group, isobutyl group, tert-butyl group, n- Alkyl groups having 4 to 10 carbon atoms such as pentyl group, isopentyl group, tert-pentyl group, neopentyl group, n-hexyl group, texyl group, neohexyl group, n-heptyl group, n-octyl group and n-decyl group And
More preferably, it is a tertiary alkyl group having 4 to 10 carbon atoms such as a tert-butyl group, a tert-pentyl group, or a texyl group,
Most preferred is a tertiary alkyl group having 5 to 10 carbon atoms, such as a tert-pentyl group or a texyl group.
 R~RおよびR~Rにおける炭素原子数1~20の置換または無置換のアルキル基として好ましくは、パーフルオロメチル基、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、n-ヘキシル基、テキシル基、ネオヘキシル基、n-ヘプチル基、n-オクチル基、n-デシル基などの炭素原子数4~10のアルキル基であり、
より好ましくは、パーフルオロメチル基、メチル基、イソプロピル基、イソブチル基、tert-ブチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、テキシル基などの炭素原子数1~8のアルキル基であり、
さらに好ましくは、パーフルオロメチル基、メチル基、イソプロピル基、イソブチル基、tert-ブチル基などの炭素原子数1~4のアルキル基である。
The substituted or unsubstituted alkyl group having 1 to 20 carbon atoms in R 2 to R 4 and R 6 to R 8 is preferably a perfluoromethyl group, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, n -Butyl group, sec-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, tert-pentyl group, neopentyl group, n-hexyl group, texyl group, neohexyl group, n-heptyl group, n An alkyl group having 4 to 10 carbon atoms such as an octyl group or an n-decyl group,
More preferably, it is an alkyl group having 1 to 8 carbon atoms such as perfluoromethyl group, methyl group, isopropyl group, isobutyl group, tert-butyl group, isopentyl group, tert-pentyl group, neopentyl group, texyl group,
More preferred are alkyl groups having 1 to 4 carbon atoms such as perfluoromethyl group, methyl group, isopropyl group, isobutyl group and tert-butyl group.
 R~R10における環を構成する炭素原子数が3~10の置換または無置換のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、1-メチルシクロペンチル基、1-メチルシクロヘキシル基、1-フェニルシクロヘキシル基、1-インダニル基、2-インダニル基、ノルボルニル基、ボルニル基、メンチル基、1-アダマンチル基、2-アダマンチル基、3,5-ジメチルアダマンチル基、3,5,7-トリメチルアダマンチル基、3,5-ジエチルアダマンチル基、3,5,7-トリエチルアダマンチル基、3,5-ジイソプロピルアダマンチル基、3,5,7-トリイソプロピルアダマンチル基、3,5-ジイソブチルアダマンチル基、3,5,7-トリイソブチルアダマンチル基、3,5-ジフェニルアダマンチル基、3,5,7-トリフェニルアダマンチル基、3,5-ジ(p-トルイル)アダマンチル基、3,5,7-トリ(p-トルイル)アダマンチル基、3,5-ジ(3,5-キシリル)アダマンチル基、3,5,7-トリ(3,5-キシリル)アダマンチル基が挙げられ、
好ましくは、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、1-メチルシクロペンチル基、1-メチルシクロヘキシル基、1-インダニル基、2-インダニル基、ノルボルニル基、ボルニル基、メンチル基、1-アダマンチル基、2-アダマンチル基、3,5-ジメチルアダマンチル基、3,5-ジエチルアダマンチル基、3,5-ジフェニルアダマンチル基、3,5-ジ(p-トルイル)アダマンチル基、3,5-ジ(3,5-キシリル)アダマンチル基などの炭素原子数(環を構成する炭素原子以外の炭素原子も含めた数)5~26のシクロアルキル基であり、
より好ましくは、シクロヘキシル基、1-メチルシクロヘキシル基、ノルボルニル基、ボルニル基、1-アダマンチル基、2-アダマンチル基、3,5-ジメチルアダマンチル基、3,5-ジエチルアダマンチル基などの炭素原子数(環を構成する炭素原子以外の炭素原子も含めた数)6~14のシクロアルキル基である。
Examples of the substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms constituting the ring in R 1 to R 10 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group. Group, 1-methylcyclopentyl group, 1-methylcyclohexyl group, 1-phenylcyclohexyl group, 1-indanyl group, 2-indanyl group, norbornyl group, bornyl group, menthyl group, 1-adamantyl group, 2-adamantyl group, 3 , 5-dimethyladamantyl group, 3,5,7-trimethyladamantyl group, 3,5-diethyladamantyl group, 3,5,7-triethyladamantyl group, 3,5-diisopropyladamantyl group, 3,5,7-tri Isopropyl adamantyl group, 3,5-diisobutyl adamant Group, 3,5,7-triisobutyladamantyl group, 3,5-diphenyladamantyl group, 3,5,7-triphenyladamantyl group, 3,5-di (p-toluyl) adamantyl group, 7-tri (p-toluyl) adamantyl group, 3,5-di (3,5-xylyl) adamantyl group, 3,5,7-tri (3,5-xylyl) adamantyl group,
Preferably, a cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, 1-methylcyclopentyl group, 1-methylcyclohexyl group, 1-indanyl group, 2-indanyl group, norbornyl group, bornyl group, menthyl group, 1- Adamantyl group, 2-adamantyl group, 3,5-dimethyladamantyl group, 3,5-diethyladamantyl group, 3,5-diphenyladamantyl group, 3,5-di (p-toluyl) adamantyl group, 3,5-di (3,5-xylyl) adamantyl group and the like, which is a cycloalkyl group having 5 to 26 carbon atoms (including carbon atoms other than carbon atoms constituting the ring) of 5 to 26,
More preferably, the number of carbon atoms such as cyclohexyl group, 1-methylcyclohexyl group, norbornyl group, bornyl group, 1-adamantyl group, 2-adamantyl group, 3,5-dimethyladamantyl group, 3,5-diethyladamantyl group ( A number of carbon atoms other than the carbon atoms constituting the ring) 6 to 14 cycloalkyl groups.
 R~R10における炭素原子数2~20の置換または無置換のアルケニル基としては、例えば、ビニル基、アリル基、プロペニル基、2-メチル-2-プロペニル基、ホモアリル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基などが挙げられ、
好ましくは炭素原子数3~6のアルケニル基であり、より好ましくはアリル基またはホモアリル基である。
Examples of the substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms in R 1 to R 10 include a vinyl group, an allyl group, a propenyl group, a 2-methyl-2-propenyl group, a homoallyl group, a pentenyl group, and a hexenyl. Group, heptenyl group, octenyl group, nonenyl group, decenyl group, etc.,
An alkenyl group having 3 to 6 carbon atoms is preferable, and an allyl group or a homoallyl group is more preferable.
 R~R10における炭素原子数2~20の置換または無置換のアルキニル基としては、例えば、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、3-メチル-1-ブチニル基、3,3-ジメチル-1-ブチニル基、2-ブチニル基、3-ブチニル基、1-ペンチニル基、4-メチル-1-ペンチニル基、2-ペンチニル基、3-ペンチニル基、4-ペンチニル基、4-メチル-1-ペンテニル基、1-ヘキシニル基、1-オクチニル基、フェニルエチニル基が挙げられ、
好ましくは炭素原子数3~8のアルキニル基であり、より好ましくは3-メチル-1-ブチニル基、3,3-ジメチル-1-ブチニル基、4-メチル-1-ペンテニル基またはフェニルエチニル基である。
Examples of the substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms in R 1 to R 10 include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, and 3-methyl-1-butynyl. Group, 3,3-dimethyl-1-butynyl group, 2-butynyl group, 3-butynyl group, 1-pentynyl group, 4-methyl-1-pentynyl group, 2-pentynyl group, 3-pentynyl group, 4-pentynyl Group, 4-methyl-1-pentenyl group, 1-hexynyl group, 1-octynyl group, phenylethynyl group,
Preferably, it is an alkynyl group having 3 to 8 carbon atoms, more preferably a 3-methyl-1-butynyl group, a 3,3-dimethyl-1-butynyl group, a 4-methyl-1-pentenyl group or a phenylethynyl group. is there.
 R~R10における炭素原子数7~30の置換または無置換のアラルキル基としては、例えば、ベンジル基、(2-メチルフェニル)メチル基、(3-メチルフェニル)メチル基、(4-メチルフェニル)メチル基、(2,3-ジメチルフェニル)メチル基、(2,4-ジメチルフェニル)メチル基、(2,5-ジメチルフェニル)メチル基、(2,6-ジメチルフェニル)メチル基、(3,4-ジメチルフェニル)メチル基、(3,5-ジメチルフェニル)メチル基、(2,3,4-トリメチルフェニル)メチル基、(2,3,5-トリメチルフェニル)メチル基、(2,3,6-トリメチルフェニル)メチル基、(3,4,5-トリメチルフェニル)メチル基、(2,4,6-トリメチルフェニル)メチル基、(2,3,4,5-テトラメチルフェニル)メチル基、(2,3,4,6-テトラメチルフェニル)メチル基、(2,3,5,6-テトラメチルフェニル)メチル基、(ペンタメチルフェニル)メチル基、(エチルフェニル)メチル基、(n-プロピルフェニル)メチル基、(イソプロピルフェニル)メチル基、(n-ブチルフェニル)メチル基、(sec-ブチルフェニル)メチル基、(tert-ブチルフェニル)メチル基、(イソブチルフェニル)メチル基、(n-ペンチルフェニル)メチル基、(ネオペンチルフェニル)メチル基、(n-ヘキシルフェニル)メチル基、(n-オクチルフェニル)メチル基、(n-デシルフェニル)メチル基、ナフチルメチル基、アントラセニルメチル基、ジメチル(フェニル)メチル基、ジメチル(4-メチルフェニル)メチル基、ジメチル(1-ナフチル)メチル基、ジメチル(2-ナフチル)メチル基、メチル(ジフェニル)メチル基、メチルビス(4-メチルフェニル)メチル基、トリフェニルメチル基が挙げられ、
好ましくは、ベンジル基、ナフチルメチル基、アントラセニルメチル基、ジメチル(フェニル)メチル基、ジメチル(4-メチルフェニル)メチル基、ジメチル(1-ナフチル)メチル基、ジメチル(2-ナフチル)メチル基、メチル(ジフェニル)メチル基、メチルビス(4-メチルフェニル)メチル基、トリフェニルメチル基であり、
より好ましくは、ジメチル(フェニル)メチル基、ジメチル(4-メチルフェニル)メチル基、ジメチル(1-ナフチル)メチル基、ジメチル(2-ナフチル)メチル基、メチル(ジフェニル)メチル基、メチルビス(4-メチルフェニル)メチル基、トリフェニルメチル基などの炭素原子数9~20の第3級アラルキル基である。
Examples of the substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms in R 1 to R 10 include benzyl group, (2-methylphenyl) methyl group, (3-methylphenyl) methyl group, (4-methyl Phenyl) methyl group, (2,3-dimethylphenyl) methyl group, (2,4-dimethylphenyl) methyl group, (2,5-dimethylphenyl) methyl group, (2,6-dimethylphenyl) methyl group, ( 3,4-dimethylphenyl) methyl group, (3,5-dimethylphenyl) methyl group, (2,3,4-trimethylphenyl) methyl group, (2,3,5-trimethylphenyl) methyl group, (2, 3,6-trimethylphenyl) methyl group, (3,4,5-trimethylphenyl) methyl group, (2,4,6-trimethylphenyl) methyl group, (2,3,4,5-te Lamethylphenyl) methyl group, (2,3,4,6-tetramethylphenyl) methyl group, (2,3,5,6-tetramethylphenyl) methyl group, (pentamethylphenyl) methyl group, (ethylphenyl) ) Methyl group, (n-propylphenyl) methyl group, (isopropylphenyl) methyl group, (n-butylphenyl) methyl group, (sec-butylphenyl) methyl group, (tert-butylphenyl) methyl group, (isobutylphenyl) ) Methyl group, (n-pentylphenyl) methyl group, (neopentylphenyl) methyl group, (n-hexylphenyl) methyl group, (n-octylphenyl) methyl group, (n-decylphenyl) methyl group, naphthylmethyl Group, anthracenylmethyl group, dimethyl (phenyl) methyl group, dimethyl (4-methylphenyl) Methyl group, dimethyl (1-naphthyl) methyl, dimethyl (2-naphthyl) methyl group, methyl (diphenyl) methyl, methyl bis (4-methylphenyl) methyl group, and a triphenylmethyl group,
Preferably, benzyl group, naphthylmethyl group, anthracenylmethyl group, dimethyl (phenyl) methyl group, dimethyl (4-methylphenyl) methyl group, dimethyl (1-naphthyl) methyl group, dimethyl (2-naphthyl) methyl group Methyl (diphenyl) methyl group, methylbis (4-methylphenyl) methyl group, triphenylmethyl group,
More preferably, dimethyl (phenyl) methyl group, dimethyl (4-methylphenyl) methyl group, dimethyl (1-naphthyl) methyl group, dimethyl (2-naphthyl) methyl group, methyl (diphenyl) methyl group, methylbis (4- A tertiary aralkyl group having 9 to 20 carbon atoms, such as a methylphenyl) methyl group or a triphenylmethyl group;
 R~RおよびR~R10における炭素原子数6~30の置換または無置換のアリール基としては、例えば、フェニル基、2-トリル基、3-トリル基、4-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,4-キシリル基、3,5-キシリル基、2,3,4-トリメチルフェニル基、2,3,5-トリメチルフェニル基、2,3,6-トリメチルフェニル基、2,4,6-トリメチルフェニル基、3,4,5-トリメチルフェニル基、2,3,4,5-テトラメチルフェニル基、2,3,4,6-テトラメチルフェニル基、2,3,5,6-テトラメチルフェニル基、ペンタメチルフェニル基、エチルフェニル基、n-プロピルフェニル基、イソプロピルフェニル基、n-ブチルフェニル基、sec-ブチルフェニル基、tert-ブチルフェニル基、イソブチルフェニル基、n-ペンチルフェニル基、ネオペンチルフェニル基、n-ヘキシルフェニル基、n-オクチルフェニル基、n-デシルフェニル基、n-ドデシルフェニル基、n-テトラデシルフェニル基、ナフチル基、アントラセニル基、3,5-ジイソプロピルフェニル基、2,6-ジイソプロピルフェニル基、3,5-ジtert-ブチルフェニル基、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、ペンタフルオロフェニル基、2-トリフルオロメチルフェニル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基、2,3-ジフルオロフェニル基、2,4-ジフルオロフェニル基、2,5-ジフルオロフェニル基、2,6-ジフルオロフェニル基、2-クロロフェニル基、2,3-ジクロロフェニル基、2,4-ジクロロフェニル基、2,5-ジクロロフェニル基、2-ブロモフェニル基、3-ブロモフェニル基、4-ブロモフェニル基、2,3-ジブロモフェニル基、2,4-ジブロモフェニル基、2,5-ジブロモフェニル基が挙げられ、
好ましくは、フェニル基、2-トリル基、3-トリル基、4-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,4-キシリル基、3,5-キシリル基、2,3,4-トリメチルフェニル基、2,3,5-トリメチルフェニル基、2,3,6-トリメチルフェニル基、2,4,6-トリメチルフェニル基、3,4,5-トリメチルフェニル基、エチルフェニル基、n-プロピルフェニル基、イソプロピルフェニル基、3,5-ジイソプロピルフェニル基、2,6-ジイソプロピルフェニル基、3,5-ジtert-ブチルフェニル基などの炭素原子数6~20のフェニル基;2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、ペンタフルオロフェニル基、2,3-ジフルオロフェニル基、2,4-ジフルオロフェニル基、2,5-ジフルオロフェニル基、2,6-ジフルオロフェニル基などのフッ素化フェニル基;2-トリフルオロメチルフェニル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基などのフッ素化アルキルフェニル基であり、
より好ましくは、フェニル基、2-トリル基、3-トリル基、4-トリル基、2,6-キシリル基、3,5-キシリル基、2,4,6-トリメチルフェニル基、3,5-ジイソプロピルフェニル基、2,6-ジイソプロピルフェニル基、3,5-ジtert-ブチルフェニル基、2-フルオロフェニル基、ペンタフルオロフェニル基、2,3-ジフルオロフェニル基、2,4-ジフルオロフェニル基、2,5-ジフルオロフェニル基、2,6-ジフルオロフェニル基、2,4,6-トリフルオロフェニル基である。
Examples of the substituted or unsubstituted aryl group having 6 to 30 carbon atoms in R 2 to R 4 and R 6 to R 10 include a phenyl group, a 2-tolyl group, a 3-tolyl group, a 4-tolyl group, 2 , 3-xylyl group, 2,4-xylyl group, 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 2,3,4-trimethylphenyl group 2,3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,4,6-trimethylphenyl group, 3,4,5-trimethylphenyl group, 2,3,4,5-tetra Methylphenyl group, 2,3,4,6-tetramethylphenyl group, 2,3,5,6-tetramethylphenyl group, pentamethylphenyl group, ethylphenyl group, n-propylphenyl group, isopropylphenyl group, n - Ruphenyl group, sec-butylphenyl group, tert-butylphenyl group, isobutylphenyl group, n-pentylphenyl group, neopentylphenyl group, n-hexylphenyl group, n-octylphenyl group, n-decylphenyl group, n- Dodecylphenyl group, n-tetradecylphenyl group, naphthyl group, anthracenyl group, 3,5-diisopropylphenyl group, 2,6-diisopropylphenyl group, 3,5-ditert-butylphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, pentafluorophenyl group, 2-trifluoromethylphenyl group, 3-trifluoromethylphenyl group, 4-trifluoromethylphenyl group, 2,3-difluorophenyl group, 2 , 4-difluorophenyl group, 2,5- Fluorophenyl group, 2,6-difluorophenyl group, 2-chlorophenyl group, 2,3-dichlorophenyl group, 2,4-dichlorophenyl group, 2,5-dichlorophenyl group, 2-bromophenyl group, 3-bromophenyl group, 4-bromophenyl group, 2,3-dibromophenyl group, 2,4-dibromophenyl group, 2,5-dibromophenyl group, and the like.
Preferably, phenyl group, 2-tolyl group, 3-tolyl group, 4-tolyl group, 2,3-xylyl group, 2,4-xylyl group, 2,5-xylyl group, 2,6-xylyl group, 3 , 4-xylyl group, 3,5-xylyl group, 2,3,4-trimethylphenyl group, 2,3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,4,6-trimethyl Phenyl group, 3,4,5-trimethylphenyl group, ethylphenyl group, n-propylphenyl group, isopropylphenyl group, 3,5-diisopropylphenyl group, 2,6-diisopropylphenyl group, 3,5-ditert- A phenyl group having 6 to 20 carbon atoms such as butylphenyl group; 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, pentafluorophenyl group, 2, -Fluorinated phenyl groups such as difluorophenyl group, 2,4-difluorophenyl group, 2,5-difluorophenyl group, 2,6-difluorophenyl group; 2-trifluoromethylphenyl group, 3-trifluoromethylphenyl group , A fluorinated alkylphenyl group such as 4-trifluoromethylphenyl group,
More preferably, phenyl group, 2-tolyl group, 3-tolyl group, 4-tolyl group, 2,6-xylyl group, 3,5-xylyl group, 2,4,6-trimethylphenyl group, 3,5- Diisopropylphenyl group, 2,6-diisopropylphenyl group, 3,5-ditert-butylphenyl group, 2-fluorophenyl group, pentafluorophenyl group, 2,3-difluorophenyl group, 2,4-difluorophenyl group, 2,5-difluorophenyl group, 2,6-difluorophenyl group, 2,4,6-trifluorophenyl group.
 R~R10における置換シリル基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリ-n-プロピルシリル基、トリイソプロピルシリル基、トリ-n-ブチルシリル基、トリイソブチルシリル基、tert-ブチルジメチルシリル基、メチルジフェニルシリル基、ジメチル(フェニル)シリル基、tert-ブチルジフェニルシリル基、トリフェニルシリル基、メチルビス(トリメチルシリル)シリル基、ジメチル(トリメチルシリル)シリル基、トリス(トリメチルシリル)シリル基が挙げられ、
好ましくはトリメチルシリル基、トリエチルシリル基、トリ-n-プロピルシリル基、トリイソプロピルシリル基、tert-ブチルジメチルシリル基などの炭素原子数3~20のトリアルキルシリル基;メチルビス(トリメチルシリル)シリル基、ジメチル(トリメチルシリル)シリル基、トリス(トリメチルシリル)シリル基などの炭素原子数3~20のハイドロカルビルシリル基を置換基として有するシリル基である。
Examples of the substituted silyl group in R 1 to R 10 include a trimethylsilyl group, a triethylsilyl group, a tri-n-propylsilyl group, a triisopropylsilyl group, a tri-n-butylsilyl group, a triisobutylsilyl group, and a tert-butyldimethyl group. Examples include silyl group, methyldiphenylsilyl group, dimethyl (phenyl) silyl group, tert-butyldiphenylsilyl group, triphenylsilyl group, methylbis (trimethylsilyl) silyl group, dimethyl (trimethylsilyl) silyl group, and tris (trimethylsilyl) silyl group. ,
Preferably, a trialkylsilyl group having 3 to 20 carbon atoms such as trimethylsilyl group, triethylsilyl group, tri-n-propylsilyl group, triisopropylsilyl group, tert-butyldimethylsilyl group; methylbis (trimethylsilyl) silyl group, dimethyl group A silyl group having a hydrocarbylsilyl group having 3 to 20 carbon atoms as a substituent, such as (trimethylsilyl) silyl group and tris (trimethylsilyl) silyl group.
 R~R10における炭素原子数1~20の置換または無置換のアルコキシ基としては、例えば、パーフルオロメトキシ基、パーフルオロエトキシ基、パーフルオロ-n-プロポキシ基、パーフルオロイソプロポキシ基、パーフルオロ-n-ブトキシ基、パーフルオロ-sec-ブトキシ基、パーフルオロイソブトキシ基、パーフルオロ-n-ペンチルオキシ基、パーフルオロネオペンチルオキシ基、パーフルオロ-n-ヘキシルオキシ基、パーフルオロ-n-ヘプチルオキシ基、パーフルオロ-n-オクチルオキシ基、パーフルオロ-n-デシルオキシ基、パーフルオロ-n-ドデシルオキシ基、パーフルオロ-n-ペンタデシルオキシ基、パーフルオロ-n-エイコシルオキシ基、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、イソブトキシ基、n-ペンチルオキシ基、ネオペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-デシルオキシ基、n-ドデシルオキシ基、n-ペンタデシルオキシ基、n-エイコシルオキシ基が挙げられ、
好ましくは炭素原子数1~4のアルコキシ基であり、より好ましくはメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基である。
Examples of the substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms in R 1 to R 10 include, for example, a perfluoromethoxy group, a perfluoroethoxy group, a perfluoro-n-propoxy group, a perfluoroisopropoxy group, a perfluoro group, Fluoro-n-butoxy group, perfluoro-sec-butoxy group, perfluoroisobutoxy group, perfluoro-n-pentyloxy group, perfluoronepentyloxy group, perfluoro-n-hexyloxy group, perfluoro-n -Heptyloxy group, perfluoro-n-octyloxy group, perfluoro-n-decyloxy group, perfluoro-n-dodecyloxy group, perfluoro-n-pentadecyloxy group, perfluoro-n-eicosyloxy group Methoxy group, ethoxy group, n-propoxy group, isop Poxy group, n-butoxy group, sec-butoxy group, isobutoxy group, n-pentyloxy group, neopentyloxy group, n-hexyloxy group, n-heptyloxy group, n-octyloxy group, n-decyloxy group, n-dodecyloxy group, n-pentadecyloxy group, n-eicosyloxy group, and the like.
An alkoxy group having 1 to 4 carbon atoms is preferable, and a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, and an n-butoxy group are more preferable.
 R~R10における炭素原子数6~30のアリールオキシ基としては、例えば、フェノキシ基、2,3,4-トリメチルフェノキシ基、2,3,5-トリメチルフェノキシ基、2,3,6-トリメチルフェノキシ基、2,4,6-トリメチルフェノキシ基、3,4,5-トリメチルフェノキシ基、2,3,4,5-テトラメチルフェノキシ基、2,3,4,6-テトラメチルフェノキシ基、2,3,5,6-テトラメチルフェノキシ基、ペンタメチルフェノキシ基、2,6-ジイソプロピルフェノキシ基、2-フルオロフェノキシ基、3-フルオロフェノキシ基、4-フルオロフェノキシ基、ペンタフルオロフェノキシ基、2-トリフルオロメチルフェノキシ基、3-トリフルオロメチルフェノキシ基、4-トリフルオロメチルフェノキシ基、2,3-ジフルオロフェノキシ基、2,4-フルオロフェノキシ基、2,5-ジフルオロフェノキシ基、2-クロロフェノキシ基、2,3-ジクロロフェノキシ基、2,4-ジクロロフェノキシ基、2,5-ジクロロフェノキシ基、2-ブロモフェノキシ基、3-ブロモフェノキシ基、4-ブロモフェノキシ基、2,3-ジブロモフェノキシ基、2,4-ジブロモフェノキシ基、あるいは2,5-ジブロモフェノキシ基が挙げられ、
好ましくは炭素原子数6~14のアリールオキシ基であり、より好ましくは2,4,6-トリメチルフェノキシ基、3,4,5-トリメチルフェノキシ基、2,6-ジイソプロピルフェノキシ基、ペンタフルオロフェノキシ基である。
Examples of the aryloxy group having 6 to 30 carbon atoms in R 1 to R 10 include, for example, phenoxy group, 2,3,4-trimethylphenoxy group, 2,3,5-trimethylphenoxy group, 2,3,6- Trimethylphenoxy group, 2,4,6-trimethylphenoxy group, 3,4,5-trimethylphenoxy group, 2,3,4,5-tetramethylphenoxy group, 2,3,4,6-tetramethylphenoxy group, 2,3,5,6-tetramethylphenoxy group, pentamethylphenoxy group, 2,6-diisopropylphenoxy group, 2-fluorophenoxy group, 3-fluorophenoxy group, 4-fluorophenoxy group, pentafluorophenoxy group, 2 -Trifluoromethylphenoxy group, 3-trifluoromethylphenoxy group, 4-trifluoromethylphenoxy group Group, 2,3-difluorophenoxy group, 2,4-fluorophenoxy group, 2,5-difluorophenoxy group, 2-chlorophenoxy group, 2,3-dichlorophenoxy group, 2,4-dichlorophenoxy group, 2, 5-dichlorophenoxy group, 2-bromophenoxy group, 3-bromophenoxy group, 4-bromophenoxy group, 2,3-dibromophenoxy group, 2,4-dibromophenoxy group, or 2,5-dibromophenoxy group And
Preferably, it is an aryloxy group having 6 to 14 carbon atoms, more preferably 2,4,6-trimethylphenoxy group, 3,4,5-trimethylphenoxy group, 2,6-diisopropylphenoxy group, pentafluorophenoxy group. It is.
 R~R10における炭素原子数7~30の置換または無置換のアラルキルオキシ基としては、例えば、ベンジルオキシ基、(2-メチルフェニル)メトキシ基、(3-メチルフェニル)メトキシ基、(4-メチルフェニル)メトキシ基、(2,3-ジメチルフェニル)メトキシ基、(2,4-ジメチルフェニル)メトキシ基、(2,5-ジメチルフェニル)メトキシ基、(2,6-ジメチルフェニル)メトキシ基、(3,4-ジメチルフェニル)メトキシ基、(3,5-ジメチルフェニル)メトキシ基、(2,3,4-トリメチルフェニル)メトキシ基、(2,3,5-トリメチルフェニル)メトキシ基、(2,3,6-トリメチルフェニル)メトキシ基、(2,4,5-トリメチルフェニル)メトキシ基、(2,4,6-トリメチルフェニル)メトキシ基、(3,4,5-トリメチルフェニル)メトキシ基、(2,3,4,5-テトラメチルフェニル)メトキシ基、(2,3,4,6-テトラメチルフェニル)メトキシ基、(2,3,5,6-テトラメチルフェニル)メトキシ基、(ペンタメチルフェニル)メトキシ基、(エチルフェニル)メトキシ基、(n-プロピルフェニル)メトキシ基、(イソプロピルフェニル)メトキシ基、(n-ブチルフェニル)メトキシ基、(sec-ブチルフェニル)メトキシ基、(tert-ブチルフェニル)メトキシ基、(n-ヘキシルフェニル)メトキシ基、(n-オクチルフェニル)メトキシ基、(n-デシルフェニル)メトキシ基、(n-テトラデシルフェニル)メトキシ基、ナフチルメトキシ基、アントラセニルメトキシ基が挙げられ、
好ましくは炭素原子数7~12のアラルキルオキシ基であり、より好ましくはベンジルオキシ基である。
Examples of the substituted or unsubstituted aralkyloxy group having 7 to 30 carbon atoms in R 1 to R 10 include benzyloxy group, (2-methylphenyl) methoxy group, (3-methylphenyl) methoxy group, (4 -Methylphenyl) methoxy group, (2,3-dimethylphenyl) methoxy group, (2,4-dimethylphenyl) methoxy group, (2,5-dimethylphenyl) methoxy group, (2,6-dimethylphenyl) methoxy group (3,4-dimethylphenyl) methoxy group, (3,5-dimethylphenyl) methoxy group, (2,3,4-trimethylphenyl) methoxy group, (2,3,5-trimethylphenyl) methoxy group, 2,3,6-trimethylphenyl) methoxy group, (2,4,5-trimethylphenyl) methoxy group, (2,4,6-trimethylphenyl) Nyl) methoxy group, (3,4,5-trimethylphenyl) methoxy group, (2,3,4,5-tetramethylphenyl) methoxy group, (2,3,4,6-tetramethylphenyl) methoxy group, (2,3,5,6-tetramethylphenyl) methoxy group, (pentamethylphenyl) methoxy group, (ethylphenyl) methoxy group, (n-propylphenyl) methoxy group, (isopropylphenyl) methoxy group, (n- (Butylphenyl) methoxy group, (sec-butylphenyl) methoxy group, (tert-butylphenyl) methoxy group, (n-hexylphenyl) methoxy group, (n-octylphenyl) methoxy group, (n-decylphenyl) methoxy group , (N-tetradecylphenyl) methoxy group, naphthylmethoxy group, anthracenylmethoxy group It is,
Preferred is an aralkyloxy group having 7 to 12 carbon atoms, and more preferred is a benzyloxy group.
 R~RおよびR~R10における環を構成する炭素原子数が3~20の置換または無置換のヘテロ環式化合物残基としては、例えば、チエニル基、フリル基、1-ピロリル基、1-イミダゾリル基、1-ピラゾリル基、ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基、2-イソインドリル基、1-インドリル基、キノリル基、ジベンゾ-1H-ピロール-1-イル基、N-カルバゾリル基が挙げられ、
好ましくはチエニル基、フリル基、1-ピロリル基、ピリジル基、ピリミジニル基、2-イソインドリル基、1-インドリル基、キノリル基、ジベンゾ-1H-ピロール-1-イル基、またはN-カルバゾリル基である。
Examples of the substituted or unsubstituted heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring in R 2 to R 4 and R 6 to R 10 include a thienyl group, a furyl group, and a 1-pyrrolyl group. 1-imidazolyl group, 1-pyrazolyl group, pyridyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, 2-isoindolyl group, 1-indolyl group, quinolyl group, dibenzo-1H-pyrrol-1-yl group, N-carbazolyl Groups,
Preferred are thienyl group, furyl group, 1-pyrrolyl group, pyridyl group, pyrimidinyl group, 2-isoindolyl group, 1-indolyl group, quinolyl group, dibenzo-1H-pyrrol-1-yl group, or N-carbazolyl group. .
 上記R~R10の定義に関わらず、RとR、RとR、RとR、RとR、RとR、RとR、RとRおよびRとR10は、それぞれ独立して、互いに連結して環を形成してもよく、これらの環は置換基を有していてもよく、好ましくは、ベンゼン環上の2つの炭素原子を含む4~10員環のハイドロカルビル環または複素環であり、該環は置換基を有していてもよい。 Regardless of the definition of R 1 to R 10 above, R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 2 And R 9 and R 6 and R 10 may be independently connected to each other to form a ring, and these rings may have a substituent, preferably 2 on the benzene ring. It is a 4- to 10-membered hydrocarbyl ring or heterocyclic ring containing one carbon atom, and the ring may have a substituent.
 該環として具体的には、シクロブテン環、シクロペンテン環、シクロペンタジエン環、シクロヘキセン環、シクロヘプテン環、シクロオクテン環、ベンゼン環またはナフタレン環、フラン環、2,5-ジメチルフラン環、チオフェン環、2,5-ジメチルチオフェン環、ピリジン環などが挙げられ、好ましくは、シクロペンテン環、シクロペンタジエン環、シクロヘキセン環、ベンゼン環またはナフタレン環であり、より好ましくは、RとR、RとR、RとRおよび/またはRとR10とが連結したシクロペンテン環、シクロヘキセン環、ベンゼン環またはナフタレン環である。 Specific examples of the ring include cyclobutene ring, cyclopentene ring, cyclopentadiene ring, cyclohexene ring, cycloheptene ring, cyclooctene ring, benzene ring or naphthalene ring, furan ring, 2,5-dimethylfuran ring, thiophene ring, 2, 5-dimethylthiophene ring, pyridine ring and the like can be mentioned, and preferably a cyclopentene ring, cyclopentadiene ring, cyclohexene ring, benzene ring or naphthalene ring, more preferably R 1 and R 2 , R 5 and R 6 , A cyclopentene ring, a cyclohexene ring, a benzene ring or a naphthalene ring in which R 2 and R 9 and / or R 6 and R 10 are linked.
 Xは、それぞれ独立して、
水素原子、
ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数2~20のアルケニル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
炭素原子数1~20のアルコキシ基、
炭素原子数7~30のアラルキルオキシ基、
炭素原子数6~30のアリールオキシ基、
置換シリル基、
置換アミノ基、
置換チオラート基、または
炭素原子数1~20のカルボキシラート基を表す。
 Xにおける上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アラルキル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基および上記カルボキシラート基はそれぞれ置換基を有していてもよい。
 隣接するX同士は、相互に連結して環を形成してもよく、該環は置換基を有していてもよい。
 Xにおけるハロゲン原子、炭素原子数1~20のアルキル基、環を構成する炭素原子数が3~10のシクロアルキル基、炭素原子数2~20のアルケニル基、炭素原子数7~30のアラルキル基、炭素原子数6~30のアリール基、炭素原子数1~20のアルコキシ基、炭素原子数7~30のアラルキルオキシ基、炭素原子数6~30のアリールオキシ基、および置換シリル基は、それぞれ、R~RおよびR~Rにおいて説明したものと同様である。
Each X is independently
Hydrogen atom,
A halogen atom,
An alkyl group having 1 to 20 carbon atoms,
A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
An alkenyl group having 2 to 20 carbon atoms,
An aralkyl group having 7 to 30 carbon atoms,
An aryl group having 6 to 30 carbon atoms,
An alkoxy group having 1 to 20 carbon atoms,
An aralkyloxy group having 7 to 30 carbon atoms,
An aryloxy group having 6 to 30 carbon atoms,
Substituted silyl groups,
A substituted amino group,
It represents a substituted thiolate group or a carboxylate group having 1 to 20 carbon atoms.
The alkyl group, the cycloalkyl group, the alkenyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the carboxylate group in X each have a substituent. Also good.
Adjacent Xs may be connected to each other to form a ring, and the ring may have a substituent.
A halogen atom in X, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms constituting the ring, an alkenyl group having 2 to 20 carbon atoms, and an aralkyl group having 7 to 30 carbon atoms An aryl group having 6 to 30 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aralkyloxy group having 7 to 30 carbon atoms, an aryloxy group having 6 to 30 carbon atoms, and a substituted silyl group, , R 2 to R 4 and R 6 to R 8 are the same as described above.
 Xにおける置換アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジn-ブチルアミノ基、ジn-プロピルアミノ基、ジイソプロピルアミノ基、ジベンジルアミノ基またはジフェニルアミノ基などの炭素原子数2~14のハイドロカルビルアミノ基が挙げられ、
好ましくは、ジメチルアミノ基、ジエチルアミノ基、ジn-プロピルアミノ基、ジイソプロピルアミノ基またはジベンジルアミノ基である。
Examples of the substituted amino group in X include, for example, a dimethylamino group, a diethylamino group, a di-n-butylamino group, a di-n-propylamino group, a diisopropylamino group, a dibenzylamino group, or a diphenylamino group. 14 hydrocarbylamino groups,
A dimethylamino group, a diethylamino group, a di-n-propylamino group, a diisopropylamino group or a dibenzylamino group is preferable.
 Xにおける置換チオラート基としては、例えば、チオフェノキシ基、2,3,4-トリメチルチオフェノキシ基、2,3,5-トリメチルチオフェノキシ基、2,3,6-トリメチルチオフェノキシ基、2,4,6-トリメチルチオフェノキシ基、3,4,5-トリメチルチオフェノキシ基、2,3,4,5-テトラメチルチオフェノキシ基、2,3,4,6-テトラメチルチオフェノキシ基、2,3,5,6-テトラメチルフェノキシ基、ペンタメチルフェノキシ基、2-フルオロチオフェノキシ基、3-フルオロチオフェノキシ基、4-フルオロフェノキシ基、ペンタフルオロチオフェノキシ基、2-トリフルオロメチルチオフェノキシ基、3-トリフルオロメチルチオフェノキシ基、4-トリフルオロメチルチオフェノキシ基、2,3-ジフルオロチオフェノキシ基、2,4-フルオロチオフェノキシ基、2,5-ジフルオロチオフェノキシ基、2-クロロチオフェノキシ基、2,3-ジクロロチオフェノキシ基、2,4-ジクロロチオフェノキシ基、2,5-ジクロロチオフェノキシ基、2-ブロモチオフェノキシ基、3-ブロモチオフェノキシ基、4-ブロモチオフェノキシ基、2,3-ジブロモチオフェノキシ基、2,4-ジブロモチオフェノキシ基、および2,5-ジブロモチオフェノキシ基などの炭素原子数6~12のハイドロカルビルチオラート基が挙げられ、
好ましくはチオフェノキシ基、2,4,6-トリメチルチオフェノキシ基、3,4,5-トリメチルチオフェノキシ基、2,3,4,5-テトラメチルチオフェノキシ基、2,3,4,6-テトラメチルチオフェノキシ基、2,3,5,6-テトラメチルチオフェノキシ基、ペンタメチルチオフェノキシ基またはペンタフルオロチオフェノキシ基である。
Examples of the substituted thiolate group in X include a thiophenoxy group, 2,3,4-trimethylthiophenoxy group, 2,3,5-trimethylthiophenoxy group, 2,3,6-trimethylthiophenoxy group, 2,4 , 6-trimethylthiophenoxy group, 3,4,5-trimethylthiophenoxy group, 2,3,4,5-tetramethylthiophenoxy group, 2,3,4,6-tetramethylthiophenoxy group, 2,3,5 , 6-tetramethylphenoxy group, pentamethylphenoxy group, 2-fluorothiophenoxy group, 3-fluorothiophenoxy group, 4-fluorophenoxy group, pentafluorothiophenoxy group, 2-trifluoromethylthiophenoxy group, 3-tri Fluoromethylthiophenoxy group, 4-trifluoromethylthiophenoxy group, 2,3 Difluorothiophenoxy group, 2,4-fluorothiophenoxy group, 2,5-difluorothiophenoxy group, 2-chlorothiophenoxy group, 2,3-dichlorothiophenoxy group, 2,4-dichlorothiophenoxy group, 2, 5-dichlorothiophenoxy group, 2-bromothiophenoxy group, 3-bromothiophenoxy group, 4-bromothiophenoxy group, 2,3-dibromothiophenoxy group, 2,4-dibromothiophenoxy group, and 2,5 -Hydrocarbyl thiolate groups having 6 to 12 carbon atoms such as dibromothiophenoxy groups,
Preferably, thiophenoxy group, 2,4,6-trimethylthiophenoxy group, 3,4,5-trimethylthiophenoxy group, 2,3,4,5-tetramethylthiophenoxy group, 2,3,4,6-tetra A methylthiophenoxy group, a 2,3,5,6-tetramethylthiophenoxy group, a pentamethylthiophenoxy group or a pentafluorothiophenoxy group;
 Xにおける炭素原子数1~20の置換または無置換のカルボキシラート基としては、例えば、アセテート基、プロピオネート基、ブチレート基、ペンタネート基、ヘキサノエート基、2-エチルヘキサノエート基またはトリフルオロアセテート基が挙げられ、
好ましくは炭素原子数2~10のハイドロカルビルカルボキシラート基であり、より好ましくは、アセテート基、プロピオネート基、2-エチルヘキサノエート基またはトリフルオロアセテート基である。
Examples of the substituted or unsubstituted carboxylate group having 1 to 20 carbon atoms in X include an acetate group, propionate group, butyrate group, pentanate group, hexanoate group, 2-ethylhexanoate group or trifluoroacetate group. Named,
A hydrocarbyl carboxylate group having 2 to 10 carbon atoms is preferred, and an acetate group, propionate group, 2-ethylhexanoate group or trifluoroacetate group is more preferred.
 Xは、好ましくは、ハロゲン原子、炭素原子数1~20のアルキル基、炭素原子数7~30のアラルキル基、炭素原子数1~20のアルコキシ基、炭素原子数7~30のアラルキルオキシ基、炭素原子数6~30のアリールオキシ基、または置換アミノ基であり、より好ましくは、フッ素原子、塩素原子、臭素原子、炭素原子数1~20のアルキル基、炭素原子数7~30のアラルキル基、炭素原子数1~20のアルコキシ基、炭素原子数6~30のアリールオキシ基、または炭素原子数1~20のハイドロカルビルアミノ基であり、さらに好ましくは、塩素原子、臭素原子、炭素原子数1~6のアルキル基、炭素原子数7~10のアラルキル基、炭素原子数1~6のアルコキシ基、炭素原子数6~10のアリールオキシ基、または炭素原子数2~10のハイドロカルビルアミノ基であり、またさらに好ましくは、塩素原子、メチル基、エチル基、n-ブチル基、tert-ブチル基、ベンジル基、メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、フェノキシ基、ジメチルアミノ基、またはジエチルアミノ基であり、特に好ましくは、塩素原子、メチル基、ベンジル基、イソプロポキシ基、フェノキシ基、またはジメチルアミノ基であり、最も好ましくは、塩素原子、またはベンジル基である。 X is preferably a halogen atom, an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aralkyloxy group having 7 to 30 carbon atoms, An aryloxy group having 6 to 30 carbon atoms, or a substituted amino group, more preferably a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, or an aralkyl group having 7 to 30 carbon atoms. , An alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 30 carbon atoms, or a hydrocarbylamino group having 1 to 20 carbon atoms, and more preferably a chlorine atom, a bromine atom, or a carbon atom An alkyl group having 1 to 6 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, or a carbon atom A hydrocarbylamino group of 2 to 10, more preferably a chlorine atom, a methyl group, an ethyl group, an n-butyl group, a tert-butyl group, a benzyl group, a methoxy group, an ethoxy group, an isopropoxy group, a tert-butoxy group, a phenoxy group, a dimethylamino group, or a diethylamino group, particularly preferably a chlorine atom, a methyl group, a benzyl group, an isopropoxy group, a phenoxy group, or a dimethylamino group, most preferably chlorine An atom or a benzyl group.
 Lは中性のルイス塩基を表す。Lとしては、エーテル類、アミン類またはチオエーテル類などが挙げられ、具体的には、テトラヒドロフラン、ジエチルエーテル、1,4-ジオキサンまたはピリジンが挙げられる。Lとして好ましくは、テトラヒドロフランである。
 lは、0、1、または2であり、好ましくは0または1であり、さらに好ましくは0である。Lが複数ある場合は、複数のLは同一でも異なっていてもよい。
L represents a neutral Lewis base. Examples of L include ethers, amines or thioethers, and specific examples include tetrahydrofuran, diethyl ether, 1,4-dioxane, and pyridine. L is preferably tetrahydrofuran.
l is 0, 1, or 2, preferably 0 or 1, and more preferably 0. When there are a plurality of L, the plurality of L may be the same or different.
 R~R10における上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アルキニル基、上記アラルキル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基および上記ヘテロ環式化合物残基が有してもよい置換基、RとR、RとR、RとR、RとR、RとR、RとR、RとRもしくはRとR10が連結して形成された環が有していてもよい置換基、Xにおける上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アラルキル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基および上記カルボキシラート基が有していてもよい置換基、ならびにX同士が連結して形成された環が有していてもよい置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子、酸素原子、ケイ素原子、窒素原子、リン原子または硫黄原子を含む置換基などが挙げられる。 The alkyl group, the cycloalkyl group, the alkenyl group, the alkynyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the heterocyclic compound in R 1 to R 10 Substituents that the residue may have, R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 2 and R 9 or a ring formed by connecting R 6 and R 10 may have a substituent, the alkyl group in X, the cycloalkyl group, the alkenyl group, the aralkyl group, the aryl group, the above The alkoxy group, the aralkyloxy group, the aryloxy group, the substituent that the carboxylate group may have, and the ring formed by linking X to each other. As also substituent, for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an oxygen atom, a silicon atom, a nitrogen atom, and a substituted group containing a phosphorus atom or a sulfur atom.
 式(1-1)で表される錯体の具体例としては下記の化合物が挙げられるが、これらの化合物に限定される意図ではない。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Specific examples of the complex represented by the formula (1-1) include the following compounds, but are not intended to be limited to these compounds.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 また、これらの他にも、上記それぞれの化合物のジルコニウム原子に直接結合している2つのベンジル基を、塩素原子、メチル基、ジメチルアミノ基、イソプロポキシ基、tert-ブトキシ基、またはフェノキシ基に変更した化合物も挙げられる。 In addition to these, two benzyl groups directly bonded to the zirconium atom of each of the above compounds can be replaced with a chlorine atom, a methyl group, a dimethylamino group, an isopropoxy group, a tert-butoxy group, or a phenoxy group. Also included are modified compounds.
 さらには、上記それぞれの化合物におけるジルコニウム原子をハフニウム原子に変更した化合物も挙げられる。 Furthermore, compounds in which the zirconium atom in each of the above compounds is changed to a hafnium atom are also included.
 さらには、上記それぞれの化合物における、上記一般式(1-1)中のRおよびRに相当する基を、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、またはメチル基に変更した化合物も挙げられる。 Further, in each of the above compounds, the group corresponding to R 3 and R 7 in the general formula (1-1) is changed to a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a methyl group. The compound which was made is also mentioned.
 さらには、上記それぞれの化合物の硫黄原子を架橋するシクロオクタン環をシクロへプタン環で置換した化合物も挙げられる。 Furthermore, compounds obtained by substituting the cyclooctane ring that bridges the sulfur atom of each of the above compounds with a cycloheptane ring are also included.
 式(1-1)で表される錯体として好ましくは下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Preferred examples of the complex represented by the formula (1-1) include the following compounds.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 また、これらの他にも、上記それぞれの化合物のジルコニウム原子に直接結合している2つのベンジル基を、塩素原子、またはメチル基に変更した化合物も挙げられる。 In addition to these, compounds in which the two benzyl groups directly bonded to the zirconium atom of each of the above compounds are changed to chlorine atoms or methyl groups are also included.
 さらには、上記それぞれの化合物におけるジルコニウム原子をハフニウム原子に変更した化合物も挙げられる。 Furthermore, compounds in which the zirconium atom in each of the above compounds is changed to a hafnium atom are also included.
 さらには、上記それぞれの化合物における、上記一般式(1-1)中のRおよびRに相当する基を、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、またはメチル基に変更した化合物も挙げられる。 Further, in each of the above compounds, the group corresponding to R 3 and R 7 in the general formula (1-1) is changed to a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a methyl group. The compound which was made is also mentioned.
 式(1-1)で表される錯体としてさらに好ましくは下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
More preferable examples of the complex represented by the formula (1-1) include the following compounds.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 また、これらの他にも、上記それぞれの化合物のジルコニウム原子に直接結合している2つのベンジル基を、塩素原子に変更した化合物も挙げられる。 In addition to these, compounds in which the two benzyl groups directly bonded to the zirconium atom of each of the above compounds are changed to chlorine atoms can also be mentioned.
 さらには、上記それぞれの化合物における、上記一般式(1-1)中のRおよびRに相当する基を、メチル基に変更した化合物も挙げられる。 Furthermore, compounds in which the groups corresponding to R 3 and R 7 in the general formula (1-1) in each of the above compounds are changed to methyl groups are also included.
 式(1-1)で表される錯体として最も好ましくは下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000012
Most preferred examples of the complex represented by the formula (1-1) include the following compounds.
Figure JPOXMLDOC01-appb-C000012
 また、これらの他にも、上記それぞれの化合物のジルコニウム原子に直接結合している2つのベンジル基を、塩素原子に変更した化合物も挙げられる。 In addition to these, compounds in which the two benzyl groups directly bonded to the zirconium atom of each of the above compounds are changed to chlorine atoms can also be mentioned.
 さらには、上記それぞれの化合物におけるジルコニウム原子をハフニウム原子に変更した化合物も挙げられる。 Furthermore, compounds in which the zirconium atom in each of the above compounds is changed to a hafnium atom are also included.
 さらには、上記それぞれの化合物における、上記一般式(1-1)中のRおよびRに相当する基を、メチル基に変更した化合物も挙げられる。 Furthermore, compounds in which the groups corresponding to R 3 and R 7 in the general formula (1-1) in each of the above compounds are changed to methyl groups are also included.
 式(1-2)で表される錯体の具体例としては下記の化合物が挙げられるが、これらの化合物に限定される意図ではない。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Specific examples of the complex represented by the formula (1-2) include the following compounds, but are not intended to be limited to these compounds.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 また、これらの他にも、上記それぞれの化合物のチタン原子に直接結合している2つのベンジル基を、塩素原子、メチル基、ジメチルアミノ基、イソプロポキシ基、tert-ブトキシ基、またはフェノキシ基に変更した化合物も挙げられる。 In addition to these, two benzyl groups directly bonded to the titanium atom of each of the above compounds can be replaced with a chlorine atom, a methyl group, a dimethylamino group, an isopropoxy group, a tert-butoxy group, or a phenoxy group. Also included are modified compounds.
 さらには、上記それぞれの化合物における、上記一般式(1-2)中のRおよびRに相当する基を、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、またはメチル基に変更した化合物も挙げられる。 Further, in each of the above compounds, the group corresponding to R 3 and R 7 in the general formula (1-2) is changed to a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a methyl group. Also included are the compounds.
 さらには、上記それぞれの化合物の硫黄原子を架橋するシクロオクタン環をシクロへプタン環で置換した化合物も挙げられる。 Furthermore, compounds obtained by substituting the cyclooctane ring that bridges the sulfur atom of each of the above compounds with a cycloheptane ring are also included.
 式(1-2)で表される錯体として好ましくは下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Preferred examples of the complex represented by the formula (1-2) include the following compounds.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 また、これらの他にも、上記それぞれの化合物のチタン原子に直接結合している2つのベンジル基を、塩素原子、またはメチル基に変更した化合物も挙げられる。 In addition to these, compounds in which the two benzyl groups directly bonded to the titanium atom of each of the above compounds are changed to chlorine atoms or methyl groups are also included.
 さらには、上記それぞれの化合物における、上記一般式(1-2)中のRおよびRに相当する基を、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、またはメチル基に変更した化合物も挙げられる。 Further, in each of the above compounds, the group corresponding to R 3 and R 7 in the general formula (1-2) is changed to a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a methyl group. Also included are the compounds.
 さらには、上記それぞれの化合物の硫黄原子を架橋するシクロオクタン環をシクロへプタン環で置換した化合物も挙げられる。 Furthermore, compounds obtained by substituting the cyclooctane ring that bridges the sulfur atom of each of the above compounds with a cycloheptane ring are also included.
 式(1-2)で表される錯体としてさらに好ましくは下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
More preferable examples of the complex represented by the formula (1-2) include the following compounds.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 また、これらの他にも、上記それぞれの化合物のチタン原子に直接結合している2つのベンジル基を、塩素原子に変更した化合物も挙げられる。 In addition to these, compounds in which the two benzyl groups directly bonded to the titanium atom of each of the above compounds are changed to chlorine atoms can also be mentioned.
 さらには、上記それぞれの化合物における、上記一般式(1-2)中のRおよびRに相当する基を、メチル基に変更した化合物も挙げられる。 Furthermore, compounds in which the groups corresponding to R 3 and R 7 in the above general formula (1-2) in each of the above compounds are changed to methyl groups are also included.
 式(1-2)で表される錯体として特に好ましくは下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000023
Particularly preferable examples of the complex represented by the formula (1-2) include the following compounds.
Figure JPOXMLDOC01-appb-C000023
 また、これらの他にも、上記それぞれの化合物のチタン原子に直接結合しているベンジル基を、塩素原子に変更した化合物も挙げられる。 In addition to these, compounds in which the benzyl group directly bonded to the titanium atom of each of the above compounds is changed to a chlorine atom can also be mentioned.
 さらには、上記それぞれの化合物における、上記一般式(1-2)中のRおよびRに相当する基を、メチル基に変更した化合物も挙げられる。 Furthermore, compounds in which the groups corresponding to R 3 and R 7 in the above general formula (1-2) in each of the above compounds are changed to methyl groups are also included.
 一般式(1-1)表される錯体および一般式(1-2)で表される錯体(以下、まとめて「錯体(1)」と称す)は、例えば、非特許文献2に記載の方法により合成することができる。具体的には、下記一般式(2-1)または(2-2)で表される化合物(以下、まとめて「化合物(2)」と称する)および下記一般式(3-1)または(3-2)で表される化合物(以下、まとめて「化合物(3)」と称する)を出発原料として、下記scheme1により製造することができる。ただし、本方法に限定されるべきものではない。 The complex represented by the general formula (1-1) and the complex represented by the general formula (1-2) (hereinafter collectively referred to as “complex (1)”) are described in, for example, the method described in Non-Patent Document 2. Can be synthesized. Specifically, the compound represented by the following general formula (2-1) or (2-2) (hereinafter collectively referred to as “compound (2)”) and the following general formula (3-1) or (3 -2) (hereinafter collectively referred to as “compound (3)”) can be produced by the following scheme 1 as a starting material. However, it should not be limited to this method.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 一般式(2-1)中のR~Rおよびnは、一般式(1-1)中のR~Rおよびnと同じものである。一般式(2-2)中のR~R、R~R10およびnは、一般式(1-2)中のR~R、R~R10およびnと同じものである。 R 1 ~ R 8 and n in the general formula (2-1) is the same as the R 1 ~ R 8 and n in the general formula (1-1) in. R 2 ~ R 4 in the general formula (2-2), R 6 ~ R 10 and n are the same as the general formula (1-2) in the R 2 ~ R 4, R 6 ~ R 10 and n is there.
 一般式(3-1)中のMおよびXは、一般式(1-1)におけるMおよびXと同様である。MXとしては、例えば、Zr(CHPh)、ZrCl(CHPh)、Zr(CHSiMe)、ZrF、ZrCl、ZrBr、ZrI、Zr(OMe)、Zr(OEt)、Zr(O-i-Pr)、ZrCl(O-i-Pr)、Zr(O-n-Bu)、Zr(O-i-Bu)、Zr(O-t-Bu)、Zr(OPh)、Zr(NMe)、ZrCl(NMe)、Zr(NEt)、Hf(CHPh)、HfCl(CHPh)、Hf(CHSiMe)、HfF、HfCl、HfBr、HfI、Hf(OMe)、Hf(OEt)、Hf(O-i-Pr)、HfCl(O-i-Pr)、Hf(O-n-Bu)、Hf(O-i-Bu)、Hf(O-t-Bu)、Hf(OPh)、Hf(NMe)、HfCl(NMe)、Hf(NEt)が挙げられる。好ましくは、Zr(CHPh)、ZrCl(CHPh)、Zr(CHSiMe)、ZrCl、ZrBr、Zr(OMe)、Zr(OEt)、Zr(O-i-Pr)、Zr(O-i-Bu)、Zr(O-t-Bu)、Zr(OPh)、Zr(NMe)、ZrCl(NMe)、Zr(NEt)、Hf(CHPh)、HfCl(CHPh)、Hf(CHSiMe)、HfCl、HfBr、Hf(OMe)、Hf(OEt)、Hf(O-i-Pr)、Hf(O-i-Bu)、Hf(O-t-Bu)、Hf(OPh)、Hf(NMe)、HfCl(NMe)、またはHf(NEt)である。 M and X in the general formula (3-1) are the same as M and X in the general formula (1-1). MX 4 includes, for example, Zr (CH 2 Ph) 4 , ZrCl 2 (CH 2 Ph) 2 , Zr (CH 2 SiMe 3 ) 4 , ZrF 4 , ZrCl 4 , ZrBr 4 , ZrI 4 , Zr (OMe) 4 , Zr (OEt) 4 , Zr (Oi-Pr) 4 , ZrCl 2 (Oi-Pr) 2 , Zr (On-Bu) 4 , Zr (Oi-Bu) 4 , Zr ( Ot-Bu) 4 , Zr (OPh) 4 , Zr (NMe 2 ) 4 , ZrCl 2 (NMe 2 ) 2 , Zr (NEt 2 ) 4 , Hf (CH 2 Ph) 4 , HfCl 2 (CH 2 Ph ) 2, Hf (CH 2 SiMe 3) 4, HfF 4, HfCl 4, HfBr 4, HfI 4, Hf (OMe) 4, Hf (OEt) 4, Hf (O-i-Pr) 4, HfCl 2 (O -I-Pr) 2 , Hf (On-Bu) 4 , Hf (Oi-Bu) 4 , Hf (Ot- Bu) 4 , Hf (OPh) 4 , Hf (NMe 2 ) 4 , HfCl 2 (NMe 2 ) 2 , and Hf (NEt 2 ) 4 . Preferably, Zr (CH 2 Ph) 4 , ZrCl 2 (CH 2 Ph) 2 , Zr (CH 2 SiMe 3 ) 4 , ZrCl 4 , ZrBr 4 , Zr (OMe) 4 , Zr (OEt) 4 , Zr (O -i-Pr) 4, Zr ( O-i-Bu) 4, Zr (O-t-Bu) 4, Zr (OPh) 4, Zr (NMe 2) 4, ZrCl 2 (NMe 2) 2, Zr ( NEt 2) 4, Hf (CH 2 Ph) 4, HfCl 2 (CH 2 Ph) 2, Hf (CH 2 SiMe 3) 4, HfCl 4, HfBr 4, Hf (OMe) 4, Hf (OEt) 4, Hf (O-i-Pr) 4 , Hf (O-i-Bu) 4, Hf (O-t-Bu) 4, Hf (OPh) 4, Hf (NMe 2) 4, HfCl 2 (NMe 2) 2, Or Hf (NEt 2 ) 4 .
 一般式(3-2)中のXは、一般式(1-2)におけるXと同様である。TiXとしては、例えば、Ti(CHPh)、TiCl(CHPh)、Ti(CHSiMe)、TiF、TiCl、TiBr、TiI、Ti(OMe)、Ti(OEt)、Ti(O-i-Pr)、TiCl(O-i-Pr)、Ti(O-n-Bu)、Ti(O-i-Bu)、Ti(O-t-Bu)、Ti(OPh)、Ti(NMe)、TiCl(NMe)、Ti(NEt)が挙げられる。好ましくは、Ti(CHPh)、TiCl(CHPh)、Ti(CHSiMe)、TiCl、TiBr、Ti(OMe)、Ti(OEt)、Ti(O-i-Pr)、Ti(O-i-Bu)、Ti(O-t-Bu)、Ti(OPh)、Ti(NMe)、TiCl(NMe)、またはTi(NEt)である。 X in the general formula (3-2) is the same as X in the general formula (1-2). Examples of TiX 4 include Ti (CH 2 Ph) 4 , TiCl 2 (CH 2 Ph) 2 , Ti (CH 2 SiMe 3 ) 4 , TiF 4 , TiCl 4 , TiBr 4 , TiI 4 , and Ti (OMe) 4. , Ti (OEt) 4 , Ti (Oi-Pr) 4 , TiCl 2 (Oi-Pr) 2 , Ti (On-Bu) 4 , Ti (Oi-Bu) 4 , Ti ( O-t-Bu) 4, Ti (OPh) 4, Ti (NMe 2) 4, TiCl 2 (NMe 2) 2, Ti (NEt 2) 4 and the like. Preferably, Ti (CH 2 Ph) 4 , TiCl 2 (CH 2 Ph) 2 , Ti (CH 2 SiMe 3 ) 4 , TiCl 4 , TiBr 4 , Ti (OMe) 4 , Ti (OEt) 4 , Ti (O -i-Pr) 4, Ti ( O-i-Bu) 4, Ti (O-t-Bu) 4, Ti (OPh) 4, Ti (NMe 2) 4, TiCl 2 (NMe 2) 2 or Ti, (NEt 2 ) 4
 錯体(1)は、化合物(2)と化合物(3)とをそのまま反応させて形成してもよく、必要に応じて化合物(2)を塩基と反応させた後に化合物(3)を反応させて形成してもよい。これらの反応は、通常溶媒中で行う。用いる塩基としては、例えば、有機リチウム試薬、Grignard試薬および金属水素化物が挙げられ、具体的にはn-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、リチウムジイソプロピルアミド、リチウムヘキサメチルジシラザン、カリウムヘキサメチルジシラザン、水素化ナトリウムまたは水素化カリウムを挙げることができ、好ましくは、n-ブチルリチウム、リチウムジイソプロピルアミド、カリウムヘキサメチルジシラザン、水素化ナトリウムまたは水素化カリウムである。 The complex (1) may be formed by reacting the compound (2) and the compound (3) as they are. If necessary, the compound (2) is reacted with a base and then the compound (3) is reacted. It may be formed. These reactions are usually performed in a solvent. Examples of the base to be used include organic lithium reagents, Grignard reagents and metal hydrides. Specifically, n-butyllithium, sec-butyllithium, tert-butyllithium, lithium diisopropylamide, lithium hexamethyldisilazane, Potassium hexamethyldisilazane, sodium hydride or potassium hydride can be mentioned, and preferably n-butyllithium, lithium diisopropylamide, potassium hexamethyldisilazane, sodium hydride or potassium hydride.
 化合物(2)と塩基を反応させて得られる化合物、錯体(1)および化合物(3)は、通常空気および湿気に対して不安定であるため、反応は脱水脱酸素下で行うことが好ましい。具体的には、乾燥窒素下または乾燥アルゴン下である。 Since the compound obtained by reacting the compound (2) with a base, the complex (1) and the compound (3) are usually unstable to air and moisture, the reaction is preferably carried out under dehydration and deoxygenation. Specifically, it is under dry nitrogen or dry argon.
 化合物(2)の使用量は、化合物(3)に対して1モル当量以上であればよく、好ましくは、1.0~1.5モル当量の範囲である。また、反応の過程で化合物(2)が残存する場合は、反応の途中で化合物(3)を追加してもよい。 The amount of compound (2) used may be 1 molar equivalent or more with respect to compound (3), and is preferably in the range of 1.0 to 1.5 molar equivalents. Moreover, when the compound (2) remains in the course of the reaction, the compound (3) may be added during the reaction.
 化合物(2)と化合物(3)とを反応させる温度は、-100℃~150℃の範囲であり、好ましくは-80℃~50℃の範囲である。ただし、この範囲に限定される意図ではない。 The temperature at which compound (2) and compound (3) are reacted is in the range of −100 ° C. to 150 ° C., preferably in the range of −80 ° C. to 50 ° C. However, it is not intended to be limited to this range.
 化合物(2)と化合物(3)との反応は、生成物の収率が最も高くなる時間まで行えばよく、好ましくは5分間~48時間であり、より好ましくは10分間~24時間である。 The reaction of the compound (2) and the compound (3) may be carried out until the time when the yield of the product becomes the highest, preferably 5 minutes to 48 hours, more preferably 10 minutes to 24 hours.
 化合物(2)と塩基とを反応させる温度は、-100℃~150℃の範囲であり、好ましくは-80℃~50℃の範囲である。ただし、この範囲に限定される意図ではない。 The temperature at which the compound (2) reacts with the base is in the range of −100 ° C. to 150 ° C., preferably in the range of −80 ° C. to 50 ° C. However, it is not intended to be limited to this range.
 化合物(2)と塩基とを反応させる時間は、生成物の収率が最も高くなる時間まで行えばよく、例えば5分間~24時間であり、好ましくは10分間~12時間、より好ましくは30分間~3時間である。 The reaction time of the compound (2) and the base may be performed until the product yield becomes the highest, for example, 5 minutes to 24 hours, preferably 10 minutes to 12 hours, more preferably 30 minutes. ~ 3 hours.
 化合物(2)と塩基とを反応させて生じた化合物と、化合物(3)とを反応させる温度は、-100℃~150℃の範囲であり、好ましくは-80℃~50℃の範囲ある。ただし、この範囲に限定される意図ではない。 The temperature at which the compound (2) and the compound produced by reacting the base and the compound (3) are reacted is in the range of −100 ° C. to 150 ° C., preferably in the range of −80 ° C. to 50 ° C. However, it is not intended to be limited to this range.
 化合物(2)と塩基とを反応させて生じた化合物と、化合物(3)とを反応させる時間は、生成物の収率が最も高くなる時間まで行えばよく、例えば5分間~48時間であり、好ましくは10分間~24時間である。 The reaction time of the compound produced by reacting the compound (2) with the base and the compound (3) may be up to the time when the yield of the product is the highest, for example, 5 minutes to 48 hours. It is preferably 10 minutes to 24 hours.
 用いる溶媒は、類似の反応で一般的に用いられる溶媒であれば特に制限されるものではないが、例えば、ハイドロカーボン溶媒またはエーテル系溶媒が挙げられる。好ましくは、トルエン、ベンゼン、o-キシレン、m-キシレン、p-キシレン、ヘキサン、ペンタン、ヘプタン、シクロヘキサン、ジエチルエーテルまたはテトラヒドロフランであり、より好ましくは、ジエチルエーテル、トルエン、テトラヒドロフラン、ヘキサン、ペンタン、ヘプタン、またはシクロヘキサンである。 The solvent to be used is not particularly limited as long as it is a solvent generally used in similar reactions, and examples thereof include a hydrocarbon solvent or an ether solvent. Preferred is toluene, benzene, o-xylene, m-xylene, p-xylene, hexane, pentane, heptane, cyclohexane, diethyl ether or tetrahydrofuran, and more preferred is diethyl ether, toluene, tetrahydrofuran, hexane, pentane, heptane. Or cyclohexane.
 化合物(2)は、例えば、参考文献:Journal of American Chemical Society, 2009, Volume 131,13566-13567に記載の方法に準じて合成することができる。具体的には下記scheme2により製造することができるが、本方法に限定されるべきものではない。以下各工程について詳しく説明する。なお、下記一般式(4)、(5-1)、(5-2)、(6-1)、(6-2)、(7-1)、または(7-2)で表される化合物をそれぞれ「化合物(4)」、「化合物(5-1)」、「化合物(5-2)」、「化合物(6-1)」、「化合物(6-2)」、「化合物(7-1)」、または「化合物(7-2)」と以下称する。また、「化合物(5-1)」および「化合物(5-2)」をまとめて「化合物(5)」と以下称し、「化合物(6-1)」および「化合物(6-2)」をまとめて「化合物(6)」と以下称し、「化合物(7-1)」および「化合物(7-2)」をまとめて「化合物(7)」と以下称する。 Compound (2) can be synthesized, for example, according to the method described in Reference: Journal of American Chemical Society, 2009, Volume 131, 13566-13567. Specifically, although it can manufacture by the following scheme 2, it should not be limited to this method. Hereinafter, each process will be described in detail. A compound represented by the following general formula (4), (5-1), (5-2), (6-1), (6-2), (7-1), or (7-2) Are represented by “compound (4)”, “compound (5-1)”, “compound (5-2)”, “compound (6-1)”, “compound (6-2)”, “compound (7- 1) "or" Compound (7-2) ". Further, “compound (5-1)” and “compound (5-2)” are collectively referred to as “compound (5)”, and “compound (6-1)” and “compound (6-2)” are referred to as “compound (6-1)”. These are collectively referred to as “compound (6)”, and “compound (7-1)” and “compound (7-2)” are collectively referred to as “compound (7)”.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 scheme2における各化合物中のR~R10およびnは、一般式(1-1)および(1-2)中のR~R10およびnと同じものである。 R 1 ~ R 10 and n in each compound in scheme2 the general formula (1-1) and (1-2) is the same as R 1 ~ R 10 and n in.
 X’はアニオン性脱離基を表し、例えば、ハロゲン原子、アセテート基、トリフルオロアセテート基、ベンゾエート基、CF3SO3基、CH3SO3基、4-MeC64SO3基またはPhSO3基などが挙げられ、好ましくは塩素原子、臭素原子、ヨウ素原子、CF3SO3基、CH3SO3基、4-MeC64SO3基またはPhSO3基である。 X ′ represents an anionic leaving group such as a halogen atom, acetate group, trifluoroacetate group, benzoate group, CF 3 SO 3 group, CH 3 SO 3 group, 4-MeC 6 H 4 SO 3 group or PhSO 3 groups, etc. are mentioned, and preferred are a chlorine atom, a bromine atom, an iodine atom, a CF 3 SO 3 group, a CH 3 SO 3 group, a 4-MeC 6 H 4 SO 3 group or a PhSO 3 group.
[step1]
 化合物(4)に1.0~4.0当量、好ましくは1.0~1.5当量の化合物(5)を塩基存在下で反応させ、化合物(6)を合成することができる。
[Step 1]
Compound (6) can be synthesized by reacting compound (4) with 1.0 to 4.0 equivalents, preferably 1.0 to 1.5 equivalents of compound (5) in the presence of a base.
 塩基としては、特に限定されるべきものではないが、炭酸カリウム、炭酸カルシウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸水素カリウムおよび炭酸水素カルシウムなどの無機塩基、ならびにトリエチルアミンおよびトリイソブチルアミンなどのアミン塩基が挙げられ、好ましくはアミン塩基である。 The base is not particularly limited, but includes inorganic bases such as potassium carbonate, calcium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and calcium hydrogen carbonate, and amine bases such as triethylamine and triisobutylamine. Preferably, it is an amine base.
 本反応は、空気、ヘリウム、アルゴンまたは窒素雰囲気下で行うことができる。好ましくは、ヘリウム、アルゴンまたは窒素雰囲気下、より好ましくは、窒素またはアルゴン雰囲気下である。 This reaction can be performed in an atmosphere of air, helium, argon, or nitrogen. Preferably, it is under a helium, argon or nitrogen atmosphere, more preferably under a nitrogen or argon atmosphere.
 反応終了後、必要に応じて化合物(6)を精製してもよい。精製方法としては、例えば、反応溶液に対して塩化アンモニウム水溶液、塩酸水溶液または塩化ナトリウム水溶液を加え、次に酢酸エチルまたはジエチルエーテルを加え、抽出操作を行い、過剰の塩基または塩を除去する方法が挙げられる。さらに蒸留、再結晶またはシリカゲルクロマトグラフィー等の精製操作により、化合物(6)の純度を高めることができる。 After completion of the reaction, the compound (6) may be purified as necessary. As a purification method, for example, an ammonium chloride aqueous solution, a hydrochloric acid aqueous solution or a sodium chloride aqueous solution is added to the reaction solution, followed by addition of ethyl acetate or diethyl ether, and an extraction operation is performed to remove excess base or salt. Can be mentioned. Furthermore, the purity of the compound (6) can be increased by purification operations such as distillation, recrystallization or silica gel chromatography.
[step2]
 化合物(6)に1.0~4.0当量、好ましくは1.0~1.5当量の化合物(7)を塩基存在下で反応させ、化合物(2)を合成することができる。
[Step 2]
Compound (2) can be synthesized by reacting compound (6) with 1.0 to 4.0 equivalents, preferably 1.0 to 1.5 equivalents of compound (7) in the presence of a base.
 塩基としては、炭酸カリウム、炭酸カルシウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸水素カリウムおよび炭酸水素カルシウムなどの無機塩基、ならびにトリエチルアミンおよびトリイソブチルアミンなどのアミン塩基が挙げられ、好ましくはアミン塩基である。 Examples of the base include inorganic bases such as potassium carbonate, calcium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and calcium hydrogen carbonate, and amine bases such as triethylamine and triisobutylamine, with amine bases being preferred.
 本反応は、空気、ヘリウム、アルゴンまたは窒素雰囲気下で行うことができる。好ましくは、ヘリウム、アルゴンまたは窒素雰囲気下、より好ましくは、窒素またはアルゴン雰囲気下である。 This reaction can be performed in an atmosphere of air, helium, argon, or nitrogen. Preferably, it is under a helium, argon or nitrogen atmosphere, more preferably under a nitrogen or argon atmosphere.
 反応終了後、必要に応じて化合物(2)を精製してもよい。精製方法としては、例えば、反応溶液に対して塩化アンモニウム水溶液、塩酸水溶液または塩化ナトリウム水溶液を加え、次に酢酸エチルまたはジエチルエーテルを加え、抽出操作を行い、過剰の塩基または塩を除去する方法が挙げられる。さらに蒸留、再結晶またはシリカゲルクロマトグラフィー等の精製操作により、化合物(2)の純度を高めることができる。 After completion of the reaction, the compound (2) may be purified as necessary. As a purification method, for example, an ammonium chloride aqueous solution, a hydrochloric acid aqueous solution or a sodium chloride aqueous solution is added to the reaction solution, followed by addition of ethyl acetate or diethyl ether, and an extraction operation is performed to remove excess base or salt. Can be mentioned. Furthermore, the purity of the compound (2) can be increased by purification operations such as distillation, recrystallization or silica gel chromatography.
 [step1]の反応条件を制御することで、反応器内で生成した化合物(6)と化合物(7)とを反応させ、化合物(2)を得ることもできる。 The compound (2) can also be obtained by reacting the compound (6) and the compound (7) produced in the reactor by controlling the reaction conditions of [step 1].
 RがR(またはRがR10)と同じであり、RがRと同じであり、RがRと同じであり、かつRがRと同じである場合、化合物(5)と化合物(7)を合わせて、化合物(4)に対して2.0~8.0当量、好ましくは2.0~4.0当量を塩基存在下で反応させることで、化合物(2)を合成することもできる。 When R 1 is the same as R 5 (or R 9 is R 10 ), R 2 is the same as R 6 , R 3 is the same as R 7 and R 4 is the same as R 8 , The compound (5) and the compound (7) are combined, and the compound (4) is reacted with 2.0 to 8.0 equivalents, preferably 2.0 to 4.0 equivalents in the presence of a base. (2) can also be synthesized.
 化合物(2-1)の具体例としては下記の化合物が挙げられるが、これらの化合物に限定される意図ではない。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Specific examples of the compound (2-1) include the following compounds, but are not intended to be limited to these compounds.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 また、これらの他にも、上記それぞれの化合物における、上記一般式(2-1)中のRおよびRに相当する基を、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、またはメチル基で置換した化合物も挙げられる。 In addition to these, the groups corresponding to R 3 and R 7 in the general formula (2-1) in each of the above compounds are a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, Or the compound substituted with the methyl group is also mentioned.
 化合物(2-2)の具体例としては、上記化合物(2-1)の具体例に加えて、下記の化合物およびこれらの化合物における、上記一般式(2-2)中のRおよびRに相当する基を水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、またはメチル基で置換した化合物が挙げられる。 Specific examples of the compound (2-2) include, in addition to the specific examples of the compound (2-1), the following compounds and R 3 and R 7 in the general formula (2-2) in these compounds. And a compound in which a group corresponding to is substituted with a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a methyl group.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 化合物(5-1)および化合物(7-1)の具体例としては下記の化合物が挙げられるが、これらの化合物に限定される意図ではない。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Specific examples of the compound (5-1) and the compound (7-1) include the following compounds, but are not intended to be limited to these compounds.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 また、これらの他にも、上記それぞれの化合物、上記一般式(5-1)または(7-1)中のRまたはRに相当する基を水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、またはメチル基で置換した化合物も挙げられる。 In addition to these, a group corresponding to R 3 or R 7 in each of the above compounds, the general formula (5-1) or (7-1) is a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom. , An iodine atom, or a compound substituted with a methyl group.
 化合物(5-2)および化合物(7-2)の具体例としては、上記化合物(5-1)および化合物(7-1)の具体例に加えて、下記の化合物およびこれらの化合物における、上記一般式(5-2)または(7-2)中のRおよびRに相当する基を水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、またはメチル基で置換した化合物が挙げられる。 Specific examples of the compound (5-2) and the compound (7-2) include, in addition to the specific examples of the compound (5-1) and the compound (7-1), the following compounds and the above compounds in these compounds. And compounds in which the groups corresponding to R 3 and R 7 in formula (5-2) or (7-2) are substituted with a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a methyl group. .
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 上記で説明した錯体(1)は、オレフィンの単独重合または2種以上の重合可能なオレフィンの共重合により重合体を製造するに際して、重合用触媒成分として使用され、好ましくは、単独重合用触媒成分である。 The complex (1) described above is used as a polymerization catalyst component in the production of a polymer by homopolymerization of olefins or copolymerization of two or more polymerizable olefins. Preferably, the catalyst component for homopolymerization is used. It is.
 重合用触媒としては、錯体(1)、活性化用助触媒成分および担体を接触させて得られる重合用触媒が用いられる。 As the polymerization catalyst, a polymerization catalyst obtained by bringing the complex (1), the activation promoter component and the carrier into contact with each other is used.
(活性化用助触媒成分)
 活性化用助触媒成分としては、周期律表第13族元素を含む活性化用助触媒成分が挙げられ、例えば、以下に説明する、有機アルミニウム化合物(A)、ホウ素化合物(B)、およびホウ素化合物(C)よりなる群から選ばれる少なくとも1種の化合物を挙げることができる。なお、有機アルミニウム化合物(A)、ホウ素化合物(B)、およびホウ素化合物(C)は、それぞれ「活性化用助触媒成分(A)」、「活性化用助触媒成分(B)」、および「活性化用助触媒成分(C)」と以下称する場合がある。
(Activation promoter component)
Examples of the activation co-catalyst component include an activation co-catalyst component containing a Group 13 element of the periodic table. For example, an organoaluminum compound (A), a boron compound (B), and boron described below are used. The at least 1 sort (s) of compound chosen from the group which consists of a compound (C) can be mentioned. The organoaluminum compound (A), the boron compound (B), and the boron compound (C) are respectively referred to as “activation promoter component (A)”, “activation promoter component (B)”, and “ Hereinafter, it may be referred to as “activation promoter component (C)”.
 <有機アルミニウム化合物(A)>
 本発明における有機アルミニウム化合物(A)として、公知の有機アルミニウム化合物を用いることができる。好ましくは、下記の化合物(A-1)、(A-2)、および(A-3)のうちのいずれか、またはそれらの2~3種の混合物を例示することができる。
 (A-1):一般式 E AlY 3-aで表される有機アルミニウム化合物
 (A-2):一般式 {-Al(E)-O-}で表される構造を有する環状のアルミノキサン
 (A-3):一般式 E{-Al(E)-O-}AlE で表される構造を有する線状のアルミノキサン
 式中、Eは炭素原子数1~8のハイドロカルビル基を表し、EおよびEは、それぞれ独立して、炭素原子数1~8のハイドロカルビル基、電子求引性基を含有するアルコキシ基または電子求引性基を含有するアリールオキシ基を表す。複数のE同士、E同士およびE同士は同一でも異なっていてもよい。Yは水素原子またはハロゲン原子を表し、複数のYは同一でも異なっていてもよい。aは0<a≦3の整数を表し、bは2以上の整数を表し、cは1以上の整数を表す。
<Organic aluminum compound (A)>
As the organoaluminum compound (A) in the present invention, a known organoaluminum compound can be used. Preferably, any one of the following compounds (A-1), (A-2), and (A-3), or a mixture of 2 to 3 thereof can be exemplified.
(A-1): Organoaluminum compound represented by general formula E 1 a AlY 1 3-a (A-2): General formula {-Al (E 2 ) —O—} having a structure represented by b Cyclic aluminoxane (A-3): linear aluminoxane having a structure represented by the general formula E 3 {—Al (E 3 ) —O—} c AlE 3 2 wherein E 1 has 1 to E 2 and E 3 each independently represents a hydrocarbyl group having 1 to 8 carbon atoms, an alkoxy group containing an electron withdrawing group or an electron withdrawing group. An aryloxy group to be contained is represented. A plurality of E 1 s , E 2 s, and E 3 s may be the same or different. Y 1 represents a hydrogen atom or a halogen atom, and a plurality of Y 1 may be the same or different. a represents an integer of 0 <a ≦ 3, b represents an integer of 2 or more, and c represents an integer of 1 or more.
 化合物(A-1)~(A-3)のE~Eにおける炭素原子数1~8のハイドロカルビル基としては、例えば、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、ノルマルペンチル基、ネオペンチル基が挙げられる。 Examples of the hydrocarbyl group having 1 to 8 carbon atoms in E 1 to E 3 of the compounds (A-1) to (A-3) include a methyl group, an ethyl group, a normal propyl group, an isopropyl group, and a normal butyl group. Group, isobutyl group, normal pentyl group, and neopentyl group.
 化合物(A-2)および(A-3)のEおよびEは、電子求引性基を含有するアルコキシ基または電子求引性基を含有するアリールオキシ基であってもよいが、電子求引性の指標としては、ハメット則の置換基定数σなどが知られており、σが正である官能基が電子求引性基として挙げられる。 E 2 and E 3 of the compounds (A-2) and (A-3) may be an alkoxy group containing an electron withdrawing group or an aryloxy group containing an electron withdrawing group. As an index of attracting property, Hammett's rule substituent constant σ and the like are known, and a functional group having positive σ can be cited as an electron withdrawing group.
 電子求引性基の具体例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、カルボニル基、スルホン基、フェニル基が挙げられる。 Specific examples of the electron withdrawing group include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, a carbonyl group, a sulfone group, and a phenyl group.
 EおよびEにおける電子求引性基を含有するアルコキシ基としては、例えば、フルオロメトキシ基、クロロメトキシ基、ブロモメトキシ基、ヨードメトキシ基、ジフルオロメトキシ基、ジクロロメトキシ基、ジブロモメトキシ基、ジヨードメトキシ基、トリフルオロメトキシ基、トリクロロメトキシ基、トリブロモメトキシ基、トリヨードメトキシ基、2,2,2-トリフルオロエトキシ基、2,2,2-トリクロロエトキシ基、2,2,2-トリブロモエトキシ基、2,2,2-トリヨードエトキシ基、ペンタフルオロエトキシ基、ペンタクロロエトキシ基、ペンタブロモエトキシ基、ペンタヨードエトキシ基、2,2,3,3,3-ペンタフルオロプロポキシ基、2,2,3,3,3-ペンタクロロプロポキシ基、2,2,3,3,3-ペンタブロモプロポキシ基、2,2,3,3,3-ペンタヨードプロポキシ基、ヘプタフルオロプロポキシ基、ヘプタクロロプロポキシ基、ヘプタブロモプロポキシ基、ヘプタヨードプロポキシ基、2,2,2-トリフルオロ-1-トリフルオロメチルエトキシ基、2,2,2-トリクロロ1-トリクロロメチルエトキシ基、2,2,2-トリブロモ-1-トリブロモメチルエトキシ基、2,2,2-トリヨード-1-トリヨードメチルエトキシ基、1,1-ビス(トリフルオロメチル)-2,2,2-トリフルオロエトキシ基、1,1-ビス(トリクロロメチル)-2,2,2-トリクロロエトキシ基、1,1-ビス(トリブロモメチル)-2,2,2-トリブロモエトキシ基、1,1-ビス(トリヨードメチル)-2,2,2-トリヨードエトキシ基、1H,1H-パーフルオロブトキシ基、1H,1H-パーフルオロペントキシ基、1H,1H-パーフルオロヘキサノ基、1H,1H-パーフルオロオクタノキシ基が挙げられる。好ましくは、1,1-ビス(トリフルオロメチル)-2,2,2-トリフルオロエトキシ基である。 Examples of the alkoxy group containing an electron withdrawing group in E 2 and E 3 include a fluoromethoxy group, a chloromethoxy group, a bromomethoxy group, an iodomethoxy group, a difluoromethoxy group, a dichloromethoxy group, a dibromomethoxy group, Iodomethoxy group, trifluoromethoxy group, trichloromethoxy group, tribromomethoxy group, triiodomethoxy group, 2,2,2-trifluoroethoxy group, 2,2,2-trichloroethoxy group, 2,2,2- Tribromoethoxy group, 2,2,2-triiodoethoxy group, pentafluoroethoxy group, pentachloroethoxy group, pentabromoethoxy group, pentaiodoethoxy group, 2,2,3,3,3-pentafluoropropoxy group 2,2,3,3,3-pentachloropropoxy group, 2,2,3,3 3-pentabromopropoxy group, 2,2,3,3,3-pentaiodopropoxy group, heptafluoropropoxy group, heptachloropropoxy group, heptabromopropoxy group, heptaiodopropoxy group, 2,2,2-trifluoro 1-trifluoromethylethoxy group, 2,2,2-trichloro 1-trichloromethylethoxy group, 2,2,2-tribromo-1-tribromomethylethoxy group, 2,2,2-triiodo-1-tri Iodomethylethoxy group, 1,1-bis (trifluoromethyl) -2,2,2-trifluoroethoxy group, 1,1-bis (trichloromethyl) -2,2,2-trichloroethoxy group, 1,1 -Bis (tribromomethyl) -2,2,2-tribromoethoxy group, 1,1-bis (triiodomethyl) -2,2,2-tri Examples thereof include an iodoethoxy group, 1H, 1H-perfluorobutoxy group, 1H, 1H-perfluoropentoxy group, 1H, 1H-perfluorohexano group, and 1H, 1H-perfluorooctanoxy group. 1,1-bis (trifluoromethyl) -2,2,2-trifluoroethoxy group is preferred.
 EおよびEにおける電子求引性基を含有するアリールオキシ基としては、例えば、2-フルオロフェノキシ基、3-フルオロフェノキシ基、4-フルオロフェノキシ基、2,3-ジフルオロフェノキシ基、2,4-ジフルオロフェノキシ基、2,5-ジフルオロフェノキシ基、2,6-ジフルオロフェノキシ基、3,4-ジフルオロフェノキシ基、3,5-ジフルオロフェノキシ基、2,3,4-トリフルオロフェノキシ基、2,3,5-トリフルオロフェノキシ基、2,3,6-トリフルオロフェノキシ基、2,4,5-トリフルオロフェノキシ基、2,4,6-トリフルオロフェノキシ基、3,4,5-トリフルオロフェノキシ基、2,3,4,5-テトラフルオロフェノキシ基、2,3,4,6-テトラフルオロフェノキシ基、2,3,5,6-テトラフルオロフェノキシ基、2,3,4,5,6-ペンタフルオロフェノキシ基、2,3,5,6-テトラフルオロ-4-トリフルオロメチルフェノキシ基、2-クロロフェノキシ基、3-クロロフェノキシ基、4-クロロフェノキシ基、2,3-ジクロロフェノキシ基、2,4-ジクロロフェノキシ基、2,5-ジクロロフェノキシ基、2,6-ジクロロフェノキシ基、3,4-ジクロロフェノキシ基、3,5-ジクロロフェノキシ基、2,3,4-トリクロロフェノキシ基、2,3,5-トリクロロフェノキシ基、2,3,6-トリクロロフェノキシ基、2,4,5-トリクロロフェノキシ基、2,4,6-トリクロロフェノキシ基、3,4,5-トリクロロフェノキシ基、2,3,4,5-テトラクロロフェノキシ基、2,3,4,6-テトラクロロフェノキシ基、2,3,5,6-テトラクロロフェノキシ基、2,3,4,5,6-ペンタクロロフェノキシ基、2,3,5,6-テトラクロロ4-トリクロロメチルフェノキシ基、2-ブロモフェノキシ基、3-ブロモフェノキシ基、4-ブロモフェノキシ基、2,3-ジブロモフェノキシ基、2,4-ジブロモフェノキシ基、2,5-ジブロモフェノキシ基、2,6-ジブロモフェノキシ基、3,4-ジブロモフェノキシ基、3,5-ジブロモフェノキシ基、2,3,4-トリブロモフェノキシ基、2,3,5-トリブロモフェノキシ基、2,3,6-トリブロモフェノキシ基、2,4,5-トリブロモフェノキシ基、2,4,6-トリブロモフェノキシ基、3,4,5-トリブロモフェノキシ基、2,3,4,5-テトラブロモフェノキシ基、2,3,4,6-テトラブロモフェノキシ基、2,3,5,6-テトラブロモフェノキシ基、2,3,4,5,6-ペンタブロモフェノキシ基、2,3,5,6-テトラブロモ4-トリブロモメチルフェノキシ基、2-ヨードフェノキシ基、3-ヨードフェノキシ基、4-ヨードフェノキシ基、2,3-ジヨードフェノキシ基、2,4-ジヨードフェノキシ基、2,5-ジヨードフェノキシ基、2,6-ジヨードフェノキシ基、3,4-ジヨードフェノキシ基、3,5-ジヨードフェノキシ基、2,3,4-トリヨードフェノキシ基、2,3,5-トリヨードフェノキシ基、2,3,6-トリヨードフェノキシ基、2,4,5-トリヨードフェノキシ基、2,4,6-トリヨードフェノキシ基、3,4,5-トリヨードフェノキシ基、2,3,4,5-テトラヨードフェノキシ基、2,3,4,6-テトラヨードフェノキシ基、2,3,5,6-テトラヨードフェノキシ基、2,3,4,5,6-ペンタヨードフェノキシ基、2,3,5,6-テトラヨード4-トリヨードメチルフェノキシ基が挙げられる。好ましくは、3,4,5-トリフルオロフェノキシ基、または2,3,4,5,6-ペンタフルオロフェノキシ基である。 Examples of the aryloxy group containing an electron withdrawing group in E 2 and E 3 include, for example, 2-fluorophenoxy group, 3-fluorophenoxy group, 4-fluorophenoxy group, 2,3-difluorophenoxy group, 2, 4-difluorophenoxy group, 2,5-difluorophenoxy group, 2,6-difluorophenoxy group, 3,4-difluorophenoxy group, 3,5-difluorophenoxy group, 2,3,4-trifluorophenoxy group, 2 , 3,5-trifluorophenoxy group, 2,3,6-trifluorophenoxy group, 2,4,5-trifluorophenoxy group, 2,4,6-trifluorophenoxy group, 3,4,5-tri Fluorophenoxy group, 2,3,4,5-tetrafluorophenoxy group, 2,3,4,6-tetrafluorophenoxy group, , 3,5,6-tetrafluorophenoxy group, 2,3,4,5,6-pentafluorophenoxy group, 2,3,5,6-tetrafluoro-4-trifluoromethylphenoxy group, 2-chlorophenoxy Group, 3-chlorophenoxy group, 4-chlorophenoxy group, 2,3-dichlorophenoxy group, 2,4-dichlorophenoxy group, 2,5-dichlorophenoxy group, 2,6-dichlorophenoxy group, 3,4- Dichlorophenoxy group, 3,5-dichlorophenoxy group, 2,3,4-trichlorophenoxy group, 2,3,5-trichlorophenoxy group, 2,3,6-trichlorophenoxy group, 2,4,5-trichlorophenoxy group Group, 2,4,6-trichlorophenoxy group, 3,4,5-trichlorophenoxy group, 2,3,4,5-tetrachlorophenoxy group 2,3,4,6-tetrachlorophenoxy group, 2,3,5,6-tetrachlorophenoxy group, 2,3,4,5,6-pentachlorophenoxy group, 2,3,5,6- Tetrachloro 4-trichloromethylphenoxy group, 2-bromophenoxy group, 3-bromophenoxy group, 4-bromophenoxy group, 2,3-dibromophenoxy group, 2,4-dibromophenoxy group, 2,5-dibromophenoxy group 2,6-dibromophenoxy group, 3,4-dibromophenoxy group, 3,5-dibromophenoxy group, 2,3,4-tribromophenoxy group, 2,3,5-tribromophenoxy group, 2,3 , 6-tribromophenoxy group, 2,4,5-tribromophenoxy group, 2,4,6-tribromophenoxy group, 3,4,5-tribromophenoxy group, 2, , 4,5-tetrabromophenoxy group, 2,3,4,6-tetrabromophenoxy group, 2,3,5,6-tetrabromophenoxy group, 2,3,4,5,6-pentabromophenoxy group 2,3,5,6-tetrabromo-4-tribromomethylphenoxy group, 2-iodophenoxy group, 3-iodophenoxy group, 4-iodophenoxy group, 2,3-diiodophenoxy group, 2,4-di Iodophenoxy group, 2,5-diiodophenoxy group, 2,6-diiodophenoxy group, 3,4-diiodophenoxy group, 3,5-diiodophenoxy group, 2,3,4-triiodophenoxy group 2,3,5-triiodophenoxy group, 2,3,6-triiodophenoxy group, 2,4,5-triiodophenoxy group, 2,4,6-triiodophenoxy group, 3, , 5-triiodophenoxy group, 2,3,4,5-tetraiodophenoxy group, 2,3,4,6-tetraiodophenoxy group, 2,3,5,6-tetraiodophenoxy group, 2,3 4,5,6-pentaiodophenoxy group, 2,3,5,6-tetraiodo 4-triiodomethylphenoxy group. A 3,4,5-trifluorophenoxy group or a 2,3,4,5,6-pentafluorophenoxy group is preferable.
 一般式 E AlY 3-aで表される有機アルミニウム化合物(A-1)の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリイソブチルアルミニウム、トリヘキシルアルミニウム等のトリアルキルアルミニウム;ジメチルアルミニウムクロライド、ジエチルアルミニウムクロライド、ジプロピルアルミニウムクロライド、ジイソブチルアルミニウムハクロライド、ジヘキシルアルミニウムクロライド等のジアルキルアルミニウムクロライド;メチルアルミニウムジクロライド、エチルアルミニウムジクロライド、プロピルアルミニウムジクロライド、イソブチルアルミニウムジクロライド、ヘキシルアルミニウムジクロライド等のアルキルアルミニウムジクロライド;ジメチルアルミニウムハイドライド、ジエチルアルミニウムハイドライド、ジプロピルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、ジヘキシルアルミニウムハイドライド等のジアルキルアルミニウムハイドライド;等が挙げられる。好ましくは、トリアルキルアルミニウムであり、より好ましくは、トリエチルアルミニウム、またはトリイソブチルアルミニウムである。 Specific examples of the organoaluminum compound (A-1) represented by the general formula E 1 a AlY 1 3-a include trialkylaluminums such as trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, and trihexylaluminum. Dialkylaluminum chlorides such as dimethylaluminum chloride, diethylaluminum chloride, dipropylaluminum chloride, diisobutylaluminum chloride, dihexylaluminum chloride; alkyls such as methylaluminum dichloride, ethylaluminum dichloride, propylaluminum dichloride, isobutylaluminum dichloride, hexylaluminum dichloride Aluminum dichloride; Dimethyla Mini um hydride, diethylaluminum hydride, dipropyl aluminum hydride, diisobutylaluminum hydride, dialkylaluminum hydride such as dihexyl aluminum hydride; and the like. Trialkylaluminum is preferable, and triethylaluminum or triisobutylaluminum is more preferable.
 一般式 {-Al(E)-O-}で表される構造を有する環状のアルミノキサン(A-2)、および一般式 E{-Al(E)-O-}AlE で表される構造を有する線状のアルミノキサン(A-3)における、EおよびEの具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、n-ペンチル基、ネオペンチル基などのアルキル基、トリフルオロメトキシ基、1,1-ビス(トリフルオロ)メチル-2,2,2-トリフルオロエトキシ基などの電子求引性基を含有するアルコキシ基;4-フルオロフェノキシ基、3,4,5-トリフルオロフェノキシ基、2,3,4,5,6-ペンタフルオロフェノキシ基などの電子求引性基を含有するアリールオキシ基が挙げられる。好ましくは、EおよびEはメチル基またはイソブチル基であり、bは2~40、cは1~40である。 A cyclic aluminoxane (A-2) having a structure represented by the general formula {—Al (E 2 ) —O—} b , and a general formula E 3 {—Al (E 3 ) —O—} c AlE 3 2 Specific examples of E 2 and E 3 in the linear aluminoxane (A-3) having the structure represented by the formula: methyl group, ethyl group, n-propyl group, isopropyl group, normal butyl group, isobutyl group, Alkoxy groups containing electron-withdrawing groups such as alkyl groups such as n-pentyl group and neopentyl group, trifluoromethoxy groups, and 1,1-bis (trifluoro) methyl-2,2,2-trifluoroethoxy groups An aryloxy group containing an electron withdrawing group such as 4-fluorophenoxy group, 3,4,5-trifluorophenoxy group, 2,3,4,5,6-pentafluorophenoxy group; It is below. Preferably, E 2 and E 3 are methyl groups or isobutyl groups, b is 2 to 40, and c is 1 to 40.
 上記のアルミノキサンは各種の方法で作られる。その方法については特に制限はなく、公知の方法に準じて作ればよい。例えば、トリアルキルアルミニウム(例えば、トリメチルアルミニウムなど)を適当な有機溶剤(ベンゼン、トルエン、脂肪族ハイドロカーボンなど)に溶かした溶液を水と接触させてアルミノキサンを作る方法、トリアルキルアルミニウム(例えば、トリメチルアルミニウムなど)を、結晶水を含んでいる金属塩(例えば、硫酸銅水和物など)に接触させてアルミノキサンを作る方法、および安息香酸等を用いてアルミノキサンを作る方法が例示できる。 The above aluminoxane can be made by various methods. There is no restriction | limiting in particular about the method, What is necessary is just to make according to a well-known method. For example, a method in which a solution of trialkylaluminum (eg, trimethylaluminum) dissolved in an appropriate organic solvent (benzene, toluene, aliphatic hydrocarbon, etc.) is contacted with water to make aluminoxane, trialkylaluminum (eg, trimethylaluminum) Examples thereof include a method of making an aluminoxane by contacting a metal salt containing water of crystallization (for example, copper sulfate hydrate) and a method of making an aluminoxane using benzoic acid or the like.
 また、上記の方法で得られる化合物(A-2)および化合物(A-3)は、必要に応じて、揮発成分を留去して乾燥して用いてもよい。さらに、揮発成分を留去して乾燥してえられた化合物を適当な有機溶剤(ベンゼン、トルエン、脂肪族ハイドロカーボンなど)で洗浄して、再度乾燥し用いてもよい。 In addition, the compound (A-2) and the compound (A-3) obtained by the above method may be used after removing volatile components by distillation, if necessary. Further, the compound obtained by distilling off the volatile components and drying may be washed with an appropriate organic solvent (benzene, toluene, aliphatic hydrocarbon, etc.) and dried again.
 <ホウ素化合物(B)>
 本発明におけるホウ素化合物(B)として、下記の化合物(B-1)、(B-2)、および(B-3)のうちのいずれかを用いることが例示ができる。
 (B-1):一般式 BR111213 で表されるホウ素化合物
 (B-2):一般式 U(BR11121314 で表されるホウ素化合物
 (B-3):一般式 (T-H)(BR11121314 で表されるホウ素化合物
 式中、R11~R14は、それぞれ独立して、ハロゲン原子、炭素原子数1~20のハイドロカルビル基、炭素原子数1~20のハロゲン化ハイドロカルビル基、炭素原子数1~20の置換シリル基、炭素原子数1~20のアルコキシ基または炭素原子数2~20の2置換アミノ基を表す。R11~R14は互いに同一でも異なっていてもよい。R11~R14は、好ましくは、それぞれ独立して、ハロゲン原子、炭素原子数1~20のハイドロカルビル基、または炭素原子数1~20のハロゲン化ハイドロカルビル基である。
 Bは3価の原子価状態のホウ素原子である。Uは無機または有機のカチオンである。Tは中性ルイス塩基であり、(T-H)はブレンステッド酸である。
<Boron compound (B)>
Examples of the boron compound (B) in the present invention include use of any of the following compounds (B-1), (B-2), and (B-3).
(B-1): Boron compound represented by the general formula BR 11 R 12 R 13 (B-2): Boron compound represented by the general formula U + (BR 11 R 12 R 13 R 14 ) 3): Boron compound represented by the general formula (TH) + (BR 11 R 12 R 13 R 14 ) — wherein R 11 to R 14 each independently represents a halogen atom or a carbon atom number of 1 A hydrocarbyl group having 1 to 20 carbon atoms, a halogenated hydrocarbyl group having 1 to 20 carbon atoms, a substituted silyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or 2 to 20 carbon atoms Represents a disubstituted amino group. R 11 to R 14 may be the same as or different from each other. R 11 to R 14 are preferably each independently a halogen atom, a hydrocarbyl group having 1 to 20 carbon atoms, or a halogenated hydrocarbyl group having 1 to 20 carbon atoms.
B is a boron atom in a trivalent valence state. U + is an inorganic or organic cation. T is a neutral Lewis base and (TH) + is a Bronsted acid.
 無機のカチオンであるUとしては、例えば、フェロセニウムカチオン、アルキル置換フェロセニウムカチオン、銀陽イオンなどが挙げられる。有機のカチオンであるUとしては、例えば、トリフェニルカルベニウムカチオンなどが挙げられる。 Examples of U + that is an inorganic cation include a ferrocenium cation, an alkyl-substituted ferrocenium cation, and a silver cation. Examples of U + that is an organic cation include a triphenylcarbenium cation.
 (BR11121314で表されるボレートの具体例としては、例えば、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(2,3,5,6-テトラフルオロフェニル)ボレート、テトラキス(2,3,4,5-テトラフルオロフェニル)ボレート、テトラキス(3,4,5-トリフルオロフェニル)ボレート、テトラキス(2,2,4ートリフルオロフェニル)ボレート、フェニルビス(ペンタフルオロフェニル)ボレ-ト、テトラキス(3,5-ビストリフルオロメチルフェニル)ボレートなどが挙げられる。 Specific examples of the borate represented by (BR 11 R 12 R 13 R 14 ) include, for example, tetrakis (pentafluorophenyl) borate, tetrakis (2,3,5,6-tetrafluorophenyl) borate, tetrakis ( 2,3,4,5-tetrafluorophenyl) borate, tetrakis (3,4,5-trifluorophenyl) borate, tetrakis (2,2,4-trifluorophenyl) borate, phenylbis (pentafluorophenyl) borate -To, tetrakis (3,5-bistrifluoromethylphenyl) borate and the like.
 ブレンステッド酸である(T-H)としては、トリアルキル置換アンモニウム、N,N-ジアルキルアニリニウム、ジアルキルアンモニウム、トリアリールホスホニウムなどが挙げられる。 Examples of (TH) + that is a Bronsted acid include trialkyl-substituted ammonium, N, N-dialkylanilinium, dialkylammonium, and triarylphosphonium.
 ホウ素化合物(B-1)の具体例としては、トリフェニルボラン、トリス(ペンタフルオロフェニル)ボラン、トリス(2,3,5,6-テトラフルオロフェニル)ボラン、トリス(2,3,4,5-テトラフルオロフェニル)ボラン、トリス(3,4,5-トリフルオロフェニル)ボラン、トリス(2,3,4-トリフルオロフェニル)ボラン、フェニルビス(ペンタフルオロフェニル)ボランなどが挙げられ、最も好ましくは、トリフェニルボラン、またはトリス(ペンタフルオロフェニル)ボランである。 Specific examples of the boron compound (B-1) include triphenylborane, tris (pentafluorophenyl) borane, tris (2,3,5,6-tetrafluorophenyl) borane, and tris (2,3,4,5). -Tetrafluorophenyl) borane, tris (3,4,5-trifluorophenyl) borane, tris (2,3,4-trifluorophenyl) borane, phenylbis (pentafluorophenyl) borane, and the like. Is triphenylborane or tris (pentafluorophenyl) borane.
 ホウ素化合物(B-2)の具体例としては、フェロセニウムテトラキス(ペンタフルオロフェニル)ボレート、1,1’-ジメチルフェロセニウムテトラキス(ペンタフルオロフェニル)ボレート、銀テトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムテトラキス(3,5-ビストリフルオロメチルフェニル)ボレートなどが挙げられ、最も好ましくは、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートである。 Specific examples of the boron compound (B-2) include ferrocenium tetrakis (pentafluorophenyl) borate, 1,1′-dimethylferrocenium tetrakis (pentafluorophenyl) borate, silver tetrakis (pentafluorophenyl) borate, Examples include triphenylcarbenium tetrakis (pentafluorophenyl) borate, triphenylcarbenium tetrakis (3,5-bistrifluoromethylphenyl) borate, and most preferred is triphenylcarbenium tetrakis (pentafluorophenyl) borate. .
 ホウ素化合物(B-3)の具体例としては、トリエチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(3,5-ビストリフルオロメチルフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジエチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-2,4,6-ペンタメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(3,5-ビストリフルオロメチルフェニル)ボレート、ジイソプロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジシクロヘキシルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルホスホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(メチルフェニル)ホスホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(ジメチルフェニル)ホスホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートなどが挙げられ、最も好ましくは、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(ノルマルブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、またはN,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートである。 Specific examples of the boron compound (B-3) include triethylammonium tetrakis (pentafluorophenyl) borate, tripropylammonium tetrakis (pentafluorophenyl) borate, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, (N-butyl) ammonium tetrakis (3,5-bistrifluoromethylphenyl) borate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, N, N-diethylanilinium tetrakis (pentafluorophenyl) borate, N , N-2,4,6-pentamethylanilinium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis (3,5-bistrifluoromethylphenyl) , Diisopropylammonium tetrakis (pentafluorophenyl) borate, dicyclohexylammonium tetrakis (pentafluorophenyl) borate, triphenylphosphonium tetrakis (pentafluorophenyl) borate, tri (methylphenyl) phosphonium tetrakis (pentafluorophenyl) borate, tri (dimethyl) Phenyl) phosphonium tetrakis (pentafluorophenyl) borate, triphenylcarbenium tetrakis (pentafluorophenyl) borate and the like, and most preferably triphenylcarbenium tetrakis (pentafluorophenyl) borate, tri (normal butyl) ammonium tetrakis (Pentafluorophenyl) borate or N, N-dimethylanily Umutetorakisu (pentafluorophenyl) borate.
 <ホウ素化合物(C)>
本発明におけるホウ素化合物(C)として、下記の化合物(C-1)、および(C-2)のいずれかを用いることが例示ができる。
 (C-1):一般式 U(BR15161718 で表されるホウ素化合物
 (C-2):一般式 (T-H)(BR15161718 で表されるホウ素化合物
 式中、R15~R18は、それぞれ独立して、ハロゲン原子、炭素原子数1~20のハイドロカルビル基、炭素原子数1~20のハロゲン化ハイドロカルビル基、炭素原子数1~20の置換シリル基、炭素原子数1~20のアルコキシ基または炭素原子数2~20の2置換アミノ基を表す。R15~R18は互いに同一でも異なっていてもよいが、R15~R18の少なくとも一つは、一般式(Z-H)(式中、ZはO、S、NRまたはPRを表し、Rはヒドロカルビル基、トリヒドロカルビルシリル基、トリヒドロカルビルゲルミル基または水素を表す。)で表される活性水素部位を有する。
 Bは3価の原子価状態のホウ素原子である。Uは無機または有機のカチオンである。Tは中性ルイス塩基であり、(T-H)はブレンステッド酸である。
<Boron compound (C)>
Examples of the boron compound (C) in the present invention include use of any of the following compounds (C-1) and (C-2).
(C-1): Boron compound represented by the general formula U + (BR 15 R 16 R 17 R 18 ) (C-2): General formula (TH) + (BR 15 R 16 R 17 R 18 ) - boron in the compound formulas, R 15 ~ R 18 represented by each independently, a halogen atom, a hydrocarbyl group having 1 to 20 carbon atoms, a halogenated hydrocarbyl of 1 to 20 carbon atoms Group, a substituted silyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a disubstituted amino group having 2 to 20 carbon atoms. R 15 to R 18 may be the same or different from each other, but at least one of R 15 to R 18 has the general formula (ZH) (wherein Z represents O, S, NR or PR; R represents a hydrocarbyl group, a trihydrocarbylsilyl group, a trihydrocarbylgermyl group, or hydrogen.
B is a boron atom in a trivalent valence state. U + is an inorganic or organic cation. T is a neutral Lewis base and (TH) + is a Bronsted acid.
 Uおよび(T-H)は、上記ホウ素化合物(B)で説明したものと同様である。 U + and (TH) + are the same as those described for the boron compound (B).
 (BR15161718で表されるボレートの具体例としては、トリフェニル(ヒドロキシフェニル)ボレート、ジフェニルジ(ヒドロキシフェニル)ボレート、トリフェニル(2,4-ジヒドロキシフェニル)ボレート、トリ(p-トリル)(ヒドロキシフェニル)ボレート、トリス(ペンタフルオロフェニル)(4-ヒドロキシフェニル)ボレート、トリス(2,4-ジメチルフェニル)(ヒドロキシフェニル)ボレート、トリス(3,5-ジメチルフェニル)(ヒドロキシフェニル)ボレート、トリス(3,5-ビス(トリフルオロメチル)フェニル)(ヒドロキシフェニル)ボレート、トリス(ペンタフルオロフェニル)(2-ヒドロキシエチル)ボレート、トリス(ペンタフルオロフェニル)(4-ヒドロキシブチル)ボレート、トリス(ペンタフルオロフェニル)(2-ヒドロキシシクロヘキシル)ボレート、トリス(ペンタフルオロフェニル)(4-(4’-ヒドロキシフェニル)フェニル)ボレート、トリス(ペンタフルオロフェニル)(6-ヒドロキシ-2-ナフチル)ボレートなどが挙げられ、好ましくは、トリス(ペンタフルオロフェニル)(4-ヒドロキシフェニル)ボレートである。また、他の好ましいボレートとして、上記ボレートにおけるヒドロキシル基がアミノ基NHRで置換されたボレートが挙げられる。ただし、Rは好ましくはメチル基、エチル基またはブチル基である。 Specific examples of the borate represented by (BR 15 R 16 R 17 R 18 ) include triphenyl (hydroxyphenyl) borate, diphenyl di (hydroxyphenyl) borate, triphenyl (2,4-dihydroxyphenyl) borate, Tri (p-tolyl) (hydroxyphenyl) borate, tris (pentafluorophenyl) (4-hydroxyphenyl) borate, tris (2,4-dimethylphenyl) (hydroxyphenyl) borate, tris (3,5-dimethylphenyl) (Hydroxyphenyl) borate, tris (3,5-bis (trifluoromethyl) phenyl) (hydroxyphenyl) borate, tris (pentafluorophenyl) (2-hydroxyethyl) borate, tris (pentafluorophenyl) (4-hydroxy The Borate, tris (pentafluorophenyl) (2-hydroxycyclohexyl) borate, tris (pentafluorophenyl) (4- (4′-hydroxyphenyl) phenyl) borate, tris (pentafluorophenyl) (6-hydroxy-2) -Naphthyl) borate and the like, and tris (pentafluorophenyl) (4-hydroxyphenyl) borate is preferable. Other preferred borates include borates in which the hydroxyl group in the borate is substituted with an amino group NHR. However, R is preferably a methyl group, an ethyl group or a butyl group.
 ホウ素化合物(C-1)の具体例としては、フェロセニウムトリス(ペンタフルオロフェニル)(4-ヒドロキシフェニル)ボレート、銀トリス(ペンタフルオロフェニル)(4-ヒドロキシフェニル)ボレート、トリフェニルカルベニウムトリス(ペンタフルオロフェニル)(4-ヒドロキシフェニル)ボレートなどが挙げえられる。 Specific examples of the boron compound (C-1) include ferrocenium tris (pentafluorophenyl) (4-hydroxyphenyl) borate, silver tris (pentafluorophenyl) (4-hydroxyphenyl) borate, triphenylcarbenium tris. (Pentafluorophenyl) (4-hydroxyphenyl) borate and the like.
 ホウ素化合物(C-2)の具体例としては、トリエチルアンモニウムトリス(ペンタフルオロフェニル)(4-ヒドロキシフェニル)ボレート、トリプロピルアンモニウムトリス(ペンタフルオロフェニル)(4-ヒドロキシフェニル)ボレート、トリ(n-ブチル)アンモニウムトリス(ペンタフルオロフェニル)(4-ヒドロキシフェニル)ボレート、トリ(n-ブチル)アンモニウムトリス(ペンタフルオロフェニル)(4-ヒドロキシフェニル)ボレート、N,N-ジメチルアニリニウムトリス(ペンタフルオロフェニル)(4-ヒドロキシフェニル)ボレート、N,N-ジエチルアニリニウムトリス(ペンタフルオロフェニル)(4-ヒドロキシフェニル)ボレート、N,N-2,4,6-ペンタメチルアニリニウムトリス(ペンタフルオロフェニル)(4-ヒドロキシフェニル)ボレート、N,N-ジメチルアニリニウムトリス(ペンタフルオロフェニル)(4-ヒドロキシフェニル)ボレート、ジイソプロピルアンモニウムトリス(ペンタフルオロフェニル)(4-ヒドロキシフェニル)ボレート、ジシクロヘキシルアンモニウムトリス(ペンタフルオロフェニル)(4-ヒドロキシフェニル)ボレート、トリフェニルホスホニウムトリス(ペンタフルオロフェニル)(4-ヒドロキシフェニル)ボレート、トリ(メチルフェニル)ホスホニウムトリス(ペンタフルオロフェニル)(4-ヒドロキシフェニル)ボレート、トリ(ジメチルフェニル)ホスホニウムトリス(ペンタフルオロフェニル)(4-ヒドロキシフェニル)ボレートなどが挙げられる。 Specific examples of the boron compound (C-2) include triethylammonium tris (pentafluorophenyl) (4-hydroxyphenyl) borate, tripropylammonium tris (pentafluorophenyl) (4-hydroxyphenyl) borate, tri (n- Butyl) ammonium tris (pentafluorophenyl) (4-hydroxyphenyl) borate, tri (n-butyl) ammonium tris (pentafluorophenyl) (4-hydroxyphenyl) borate, N, N-dimethylanilinium tris (pentafluorophenyl) ) (4-hydroxyphenyl) borate, N, N-diethylanilinium tris (pentafluorophenyl) (4-hydroxyphenyl) borate, N, N-2,4,6-pentamethylanilinium tris Tafluorophenyl) (4-hydroxyphenyl) borate, N, N-dimethylanilinium tris (pentafluorophenyl) (4-hydroxyphenyl) borate, diisopropylammonium tris (pentafluorophenyl) (4-hydroxyphenyl) borate, dicyclohexyl Ammonium tris (pentafluorophenyl) (4-hydroxyphenyl) borate, triphenylphosphonium tris (pentafluorophenyl) borate, tri (methylphenyl) phosphonium tris (pentafluorophenyl) (4-hydroxyphenyl) Examples thereof include borate and tri (dimethylphenyl) phosphonium tris (pentafluorophenyl) (4-hydroxyphenyl) borate.
(担体)
 担体としては、多孔性物質を用いることが好ましく、無機物質または有機ポリマーが好適であり、無機物質がより好適である。
(Carrier)
As the carrier, a porous material is preferably used, an inorganic material or an organic polymer is preferable, and an inorganic material is more preferable.
 上記無機物質としては、例えば、無機酸化物、マグネシウム化合物、粘土、粘土鉱物およびこれらの組合せが挙げられる。中でも、無機酸化物が好適である。 Examples of the inorganic substance include inorganic oxides, magnesium compounds, clays, clay minerals, and combinations thereof. Among these, inorganic oxides are preferable.
 上記無機酸化物としては、SiO2、Al23、MgO、ZrO2、TiO2、B23、CaO、ZnO、BaO、ThO2、V25、Cr23およびこれらの混合物(例えば、SiO2-MgO、SiO2-Al23、SiO2-TiO2、SiO2-V25、SiO2-Cr23、およびSiO2-TiO2-MgO)が挙げられる。中でも、SiO2および/またはAl23が好ましく、特にSiO2が好ましい。上記無機酸化物には、少量のNa2CO3、K2CO3、CaCO3、MgCO3、Na2SO4、Al2(SO43、BaSO4、KNO3、Mg(NO32、Al(NO33、Na2O、K2O、およびLi2Oなどの、炭酸塩、硫酸塩、硝酸塩または酸化物を含有させてもよい。 Examples of the inorganic oxide, SiO 2, Al 2 O 3 , MgO, ZrO 2, TiO 2, B 2 O 3, CaO, ZnO, BaO, ThO 2, V 2 O 5, Cr 2 O 3 , and mixtures thereof (For example, SiO 2 —MgO, SiO 2 —Al 2 O 3 , SiO 2 —TiO 2 , SiO 2 —V 2 O 5 , SiO 2 —Cr 2 O 3 , and SiO 2 —TiO 2 —MgO). . Of these, SiO 2 and / or Al 2 O 3 are preferable, and SiO 2 is particularly preferable. The inorganic oxide includes a small amount of Na 2 CO 3 , K 2 CO 3 , CaCO 3 , MgCO 3 , Na 2 SO 4 , Al 2 (SO 4 ) 3 , BaSO 4 , KNO 3 , Mg (NO 3 ) 2. Carbonates, sulfates, nitrates or oxides such as Al (NO 3 ) 3 , Na 2 O, K 2 O, and Li 2 O may be included.
 上記マグネシウム化合物としては、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、およびフッ化マグネシウムなどのハロゲン化マグネシウム;メトキシ塩化マグネシウム、エトキシ塩化マグネシウム、イソプロポキシ塩化マグネシウム、ブトキシ塩化マグネシウム、およびオクトキシ塩化マグネシウムなどのアルコキシマグネシウムハライド;フェノキシ塩化マグネシウム、およびメチルフェノキシ塩化マグネシウムなどのアリロキシマグネシウムハライド;エトキシマグネシウム、イソプロポキシマグネシウム、ブトキシマグネシウム、n-オクトキシマグネシウム、および2-エチルヘキソキシマグネシウムなどのアルコキシマグネシウム;フェノキシマグネシウムおよびジメチルフェノキシマグネシウムなどのアリロキシマグネシウム;ならびにラウリン酸マグネシウムおよびステアリン酸マグネシウムなどのマグネシウムのカルボン酸塩が挙げられる。中でも、好ましくはハロゲン化マグネシウムまたはアルコキシマグネシウムであり、さらに好ましくは塩化マグネシウムまたはブトキシマグネシウムである。 Examples of the magnesium compound include magnesium halides such as magnesium chloride, magnesium bromide, magnesium iodide, and magnesium fluoride; methoxy magnesium chloride, ethoxy magnesium chloride, isopropoxy magnesium chloride, butoxy magnesium chloride, and octoxy magnesium chloride. Alkoxymagnesium halides; allyloxymagnesium halides such as phenoxymagnesium chloride and methylphenoxymagnesium chloride; alkoxymagnesiums such as ethoxymagnesium, isopropoxymagnesium, butoxymagnesium, n-octoxymagnesium, and 2-ethylhexoxymagnesium; phenoxymagnesium And allilo such as dimethylphenoxymagnesium Shi magnesium; and carboxylic acid salts of magnesium such as magnesium laurate and magnesium stearate. Among them, preferred is magnesium halide or alkoxymagnesium, and more preferred is magnesium chloride or butoxymagnesium.
 上記粘土または上記粘土鉱物としては、カオリン、ベントナイト、木節粘土、ガイロメ粘土、アロフェン、ヒシンゲル石、バイロフィライト、タルク、ウンモ群、モンモリロナイト群、バーミキュライト、リョクデイ石群、パリゴルスカイト、カオリナイト、ナクライト、ディッカイト、およびハロイサイトが挙げられる。中でも、好ましくはスメクタイト、モンモリロナイト、ヘクトライト、ラポナイトまたはサポナイトであり、さらに好ましくはモンモリロナイトまたはヘクトライトである。 Examples of the clay or the clay mineral include kaolin, bentonite, kibushi clay, gyrome clay, allophane, hysinger gel, bayophilite, talc, ummo group, montmorillonite group, vermiculite, ryokdeite group, palygorskite, kaolinite, nacrite, Dickite, and halloysite. Among them, preferred is smectite, montmorillonite, hectorite, laponite or saponite, and more preferred is montmorillonite or hectorite.
 上記無機物質は、乾燥し実質的に水分が除去されていることが好ましく、加熱処理により乾燥させたものが好ましい。加熱処理は通常、目視で水分を確認できない無機物質について温度100~1,500℃で、好ましくは100~1,000℃で、さらに好ましくは200~800℃で実施される。その加熱時間は特に限定されるものではないが、好ましくは10分間~50時間、より好ましくは1時間~30時間である。乾燥法としては、加熱下に乾燥した不活性ガス(例えば、窒素またはアルゴン)を一定の流速で流通させる方法、および加熱下に減圧する方法が挙げられる。 The inorganic substance is preferably dried to substantially remove moisture, and is preferably dried by heat treatment. The heat treatment is usually carried out at a temperature of 100 to 1,500 ° C., preferably 100 to 1,000 ° C., more preferably 200 to 800 ° C. for inorganic substances whose moisture cannot be visually confirmed. The heating time is not particularly limited, but is preferably 10 minutes to 50 hours, more preferably 1 hour to 30 hours. Examples of the drying method include a method of circulating an inert gas (for example, nitrogen or argon) dried under heating at a constant flow rate, and a method of depressurizing under heating.
 無機物質の平均粒径は、好ましくは5~1000μm、より好ましくは10~500μm、さらに好ましくは10~100μmである。無機物質の細孔容量は、好ましくは0.1ml/g以上、より好ましくは0.3~10ml/gである。無機物質の比表面積は、好ましくは10~1000m2/g、より好ましくは100~500m2/gである。 The average particle size of the inorganic substance is preferably 5 to 1000 μm, more preferably 10 to 500 μm, and still more preferably 10 to 100 μm. The pore volume of the inorganic substance is preferably 0.1 ml / g or more, more preferably 0.3 to 10 ml / g. The specific surface area of the inorganic substance is preferably 10 to 1000 m 2 / g, more preferably 100 to 500 m 2 / g.
 担体の有機ポリマーとして、活性水素を有する官能基または非プロトン供与性のルイス塩基性官能基を有する重合体が好ましい。 As the organic polymer for the carrier, a polymer having a functional group having active hydrogen or a non-proton donating Lewis basic functional group is preferred.
 上記活性水素を有する官能基としては、1級アミノ基、2級アミノ基、イミノ基、アミド基、ヒドラジド基、アミジノ基、ヒドロキシ基、ヒドロペルオキシ基、カルボキシル基、ホルミル基、カルバモイル基、スルホン酸基、スルフィン酸基、スルフェン酸基、チオール基、チオホルミル基、ピロリル基、イミダゾリル基、ピペリジル基、インダゾリル基、およびカルバゾリル基が挙げられる。中でも、好ましくは1級アミノ基、2級アミノ基、イミノ基、アミド基、イミド基、ヒドロキシ基、ホルミル基、カルボキシル基、スルホン酸基またはチオール基であり、特に好ましくは、1級アミノ基、2級アミノ基、アミド基またはヒドロキシ基である。これらの官能基はハロゲン原子または炭素原子数1~20のハイドロカルビル基で置換されていてもよい。 Examples of the functional group having active hydrogen include primary amino group, secondary amino group, imino group, amide group, hydrazide group, amidino group, hydroxy group, hydroperoxy group, carboxyl group, formyl group, carbamoyl group, sulfonic acid Groups, sulfinic acid groups, sulfenic acid groups, thiol groups, thioformyl groups, pyrrolyl groups, imidazolyl groups, piperidyl groups, indazolyl groups, and carbazolyl groups. Among them, preferably a primary amino group, a secondary amino group, an imino group, an amide group, an imide group, a hydroxy group, a formyl group, a carboxyl group, a sulfonic acid group or a thiol group, particularly preferably a primary amino group, Secondary amino group, amide group or hydroxy group. These functional groups may be substituted with a halogen atom or a hydrocarbyl group having 1 to 20 carbon atoms.
 上記非プロトン供与性のルイス塩基性官能基としては、ピリジル基、N-置換イミダゾリル基、N-置換インダゾリル基、ニトリル基、アジド基、N-置換イミノ基、N,N-置換アミノ基、N,N-置換アミノオキシ基、N,N,N-置換ヒドラジノ基、ニトロソ基、ニトロ基、ニトロオキシ基、フリル基、カルボニル基、チオカルボニル基、アルコキシ基、アルキルオキシカルボニル基、N,N-置換カルバモイル基、チオアルコキシ基、置換スルフィニル基、置換スルホニル基、および置換スルホン酸基が挙げられる。中でも、好ましくは複素環基であり、さらに好ましくは酸素原子および/または窒素原子を環内に有する芳香族複素環基であり、特に好ましくはピリジル基、N-置換イミダゾリル基、N-置換インダゾリル基であり、最も好ましくはピリジル基である。これらの官能基はハロゲン原子または炭素原子数1~20のハイドロカルビル基で置換されていてもよい。 Examples of the non-proton-donating Lewis basic functional group include pyridyl group, N-substituted imidazolyl group, N-substituted indazolyl group, nitrile group, azide group, N-substituted imino group, N, N-substituted amino group, N , N-substituted aminooxy group, N, N, N-substituted hydrazino group, nitroso group, nitro group, nitrooxy group, furyl group, carbonyl group, thiocarbonyl group, alkoxy group, alkyloxycarbonyl group, N, N-substituted Examples include a carbamoyl group, a thioalkoxy group, a substituted sulfinyl group, a substituted sulfonyl group, and a substituted sulfonic acid group. Among them, preferred is a heterocyclic group, more preferred is an aromatic heterocyclic group having an oxygen atom and / or a nitrogen atom in the ring, and particularly preferred are a pyridyl group, an N-substituted imidazolyl group, and an N-substituted indazolyl group. And most preferably a pyridyl group. These functional groups may be substituted with a halogen atom or a hydrocarbyl group having 1 to 20 carbon atoms.
 活性水素を有する官能基または非プロトン供与性のルイス塩基性官能基の量は、好ましくは重合体単位グラム当りの官能基のモル量として0.01~50mmol/gであり、より好ましくは0.1~20mmol/gである。 The amount of the functional group having active hydrogen or the non-proton-donating Lewis basic functional group is preferably 0.01 to 50 mmol / g as the molar amount of the functional group per gram of polymer unit, more preferably 0.8. 1 to 20 mmol / g.
 上記官能基を有する重合体の製造方法としては、活性水素を有する官能基または非プロトン供与性のルイス塩基性官能基と1個以上の重合性不飽和基とを有するモノマーを単独重合する方法、および該モノマーと重合性不飽和基を有する他のモノマーとを共重合する方法が挙げられる。該モノマーは、2個以上の重合性不飽和基を有する架橋重合性モノマーと組合せることが好ましい。該活性水素を有する官能基または非プロトン供与性のルイス塩基性官能基と1個以上の重合性不飽和基とを有するモノマーとしては、(1)活性水素を有する官能基と1個以上の重合性不飽和基とを有するモノマー、および(2)非プロトン供与性のルイス塩基性官能基と1個以上の重合性不飽和基とを有するモノマーを挙げることができる。 As a method for producing the polymer having the functional group, a method of homopolymerizing a monomer having a functional group having active hydrogen or a non-proton donating Lewis basic functional group and one or more polymerizable unsaturated groups, And a method of copolymerizing the monomer and another monomer having a polymerizable unsaturated group. The monomer is preferably combined with a crosslinking polymerizable monomer having two or more polymerizable unsaturated groups. Examples of the monomer having a functional group having active hydrogen or a non-proton-donating Lewis basic functional group and one or more polymerizable unsaturated groups include (1) a functional group having active hydrogen and one or more polymerizations. And a monomer having an unsaturated proton group and (2) a monomer having a non-proton-donating Lewis basic functional group and one or more polymerizable unsaturated groups.
 活性水素を有する官能基と1個以上の重合性不飽和基とを有するモノマーとしては、ビニル基含有1級アミン、ビニル基含有2級アミン、ビニル基含有アミド化合物、およびビニル基含有ヒドロキシ化合物が挙げられる。具体例として、N-(1-エテニル)アミン、N-(2-プロペニル)アミン、N-(1-エテニル)-N-メチルアミン、N-(2-プロペニル)-N-メチルアミン、1-エテニルアミド、2-プロペニルアミド、N-メチル-(1-エテニル)アミド、N-メチル-(2-プロペニル)アミド、ビニルアルコール、2-プロペン-1-オール、および3-ブテン-1-オールが挙げられる。非プロトン供与性のルイス塩基性官能基と1個以上の重合性不飽和基とを有するモノマーとしては、ビニルピリジン、ビニル(N-置換)イミダゾール、およびビニル(N-置換)インダゾールが挙げられる。 Monomers having a functional group having active hydrogen and one or more polymerizable unsaturated groups include vinyl group-containing primary amines, vinyl group-containing secondary amines, vinyl group-containing amide compounds, and vinyl group-containing hydroxy compounds. Can be mentioned. Specific examples include N- (1-ethenyl) amine, N- (2-propenyl) amine, N- (1-ethenyl) -N-methylamine, N- (2-propenyl) -N-methylamine, 1- And ethenylamide, 2-propenylamide, N-methyl- (1-ethenyl) amide, N-methyl- (2-propenyl) amide, vinyl alcohol, 2-propen-1-ol, and 3-buten-1-ol. It is done. Monomers having a non-proton donating Lewis basic functional group and one or more polymerizable unsaturated groups include vinyl pyridine, vinyl (N-substituted) imidazole, and vinyl (N-substituted) indazole.
 上記重合性不飽和基を有する他のモノマーとしては、エチレン、α-オレフィン、および芳香族ビニル化合物を例示することができ、具体例として、エチレン、プロピレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、スチレン、およびそれらの2以上の組合せが挙げられる。中でも、好ましくはエチレンまたはスチレンである。上記2個以上の重合性不飽和基を有する架橋重合性モノマーとしては、ジビニルベンゼンが挙げられる。 Examples of the other monomer having a polymerizable unsaturated group include ethylene, α-olefin, and aromatic vinyl compounds. Specific examples include ethylene, propylene, 1-butene, 1-hexene, 4- And methyl-1-pentene, styrene, and combinations of two or more thereof. Among these, ethylene or styrene is preferable. Examples of the crosslinkable monomer having two or more polymerizable unsaturated groups include divinylbenzene.
 有機ポリマーの平均粒径は、好ましくは5~1000μm、より好ましくは10~500μmである。有機ポリマーの細孔容量は、好ましくは0.1ml/g以上、より好ましくは0.3~10ml/gである。有機ポリマーの比表面積は、好ましくは10~1000m2/g、より好ましくは50~500m2/gである。 The average particle size of the organic polymer is preferably 5 to 1000 μm, more preferably 10 to 500 μm. The pore volume of the organic polymer is preferably 0.1 ml / g or more, more preferably 0.3 to 10 ml / g. The specific surface area of the organic polymer is preferably 10 to 1000 m 2 / g, more preferably 50 to 500 m 2 / g.
 有機ポリマーは、乾燥し実質的に水分が除去されていることが好ましく、加熱処理により乾燥させたものが好ましい。加熱処理は通常、目視で水分を確認できない有機ポリマーについて温度30~400℃で、好ましくは50~200℃で、さらに好ましくは70~150℃で実施される。その加熱時間は特に限定されるものではないが、好ましくは30分間~50時間、より好ましくは1時間~30時間である。乾燥法としては、加熱下に乾燥した不活性ガス(例えば、窒素またはアルゴン)を一定の流速で流通させる方法、および加熱下に減圧する方法が挙げられる。 The organic polymer is preferably dried to substantially remove moisture, and is preferably dried by heat treatment. The heat treatment is usually carried out at a temperature of 30 to 400 ° C., preferably 50 to 200 ° C., more preferably 70 to 150 ° C. for an organic polymer whose moisture cannot be visually confirmed. The heating time is not particularly limited, but is preferably 30 minutes to 50 hours, more preferably 1 hour to 30 hours. Examples of the drying method include a method of circulating an inert gas (for example, nitrogen or argon) dried under heating at a constant flow rate, and a method of depressurizing under heating.
 担体の粒径の体積基準の幾何標準偏差は、得られるポリマーの粒径分布の観点から、好ましくは2.5以下、より好ましくは2.0以下、さらに好ましくは1.7以下である。 The volume standard geometric standard deviation of the particle size of the support is preferably 2.5 or less, more preferably 2.0 or less, and even more preferably 1.7 or less, from the viewpoint of the particle size distribution of the obtained polymer.
 担体としては、無機物質が好ましく、無機酸化物がより好ましく、SiOがさらに好ましい。 The carrier, inorganic material is preferred, the inorganic oxide is more preferably, SiO 2 is more preferred.
(オレフィン重合用触媒の製造方法)
 本発明のオレフィン重合用触媒は、一般式(1-1)または(1-2)で表される錯体、活性化用助触媒成分、および担体を接触させることにより得られる。活性化用助触媒成分は、有機アルミニウム化合物(A)、ホウ素化合物(B)、またはホウ素化合物(C)よりなる群から選ばれる少なくとも1種の化合物である。また、活性化用助触媒成分(A)として、有機アルミニウム化合物(A-1)~(A-3)のうちの複数の成分を用いてもよい。
(Method for producing olefin polymerization catalyst)
The olefin polymerization catalyst of the present invention can be obtained by contacting the complex represented by the general formula (1-1) or (1-2), the co-catalyst component for activation, and the support. The activation promoter component is at least one compound selected from the group consisting of an organoaluminum compound (A), a boron compound (B), or a boron compound (C). Further, as the activation promoter component (A), a plurality of components among the organoaluminum compounds (A-1) to (A-3) may be used.
 オレフィン重合用触媒の製造方法としては、以下の方法が挙げられ、好ましくは方法2である。また、各方法の各々の接触における投入順序は特に限定されるものではなく、これらの接触の一部または全てを重合槽または反応器中で行ってもよい。
 方法1:錯体(1)と活性化用助触媒成分とを接触させた接触物に、担体を接触させる方法。
 方法2:担体と活性化用助触媒成分とを接触させた接触物に、錯体(1)を接触させる方法。
 方法3:担体と錯体(1)とを接触させた接触物に、活性化用助触媒成分を接触させる方法。
 方法4:錯体(1)と活性化用助触媒成分と担体とを同時に接触させる方法。
The following method is mentioned as a manufacturing method of the catalyst for olefin polymerization, Preferably it is method 2. In addition, the order of charging in each contact of each method is not particularly limited, and some or all of these contacts may be performed in a polymerization tank or a reactor.
Method 1: A method in which a support is brought into contact with a contact product obtained by bringing the complex (1) into contact with an activation promoter component.
Method 2: A method in which the complex (1) is brought into contact with a contact product obtained by bringing the support into contact with the activating cocatalyst component.
Method 3: A method of bringing an activating co-catalyst component into contact with a contact product obtained by bringing the carrier into contact with the complex (1).
Method 4: A method in which the complex (1), the activating co-catalyst component and the support are simultaneously contacted.
 上記のいずれの方法においても、錯体(1)は単離したものを用いてもよく、また、化合物(2)と化合物(3)とを接触させたものをそのまま用いてもよい。 In any of the above methods, the complex (1) may be an isolated one, or may be used as it is by contacting the compound (2) with the compound (3).
 得られるオレフィン重合体の粒子性状の観点から、担体および活性化用助触媒成分を接触させた接触物と、錯体(1)および活性化用助触媒成分を接触させた接触物と、を接触させる方法が好ましい。 From the viewpoint of the particle properties of the resulting olefin polymer, the contact product in contact with the support and the activation promoter component is brought into contact with the contact product in contact with the complex (1) and the activation promoter component. The method is preferred.
 上記方法における接触の際には、溶媒の存在下で反応させることが好ましい。溶媒としては、ベンゼン、トルエンおよびキシレンなどの芳香族ハイドロカルビル溶媒、ヘキサン、ヘプタンおよびオクタンなどの脂肪族ハイドロカルビル溶媒、ジクロロメタンなどのハロゲン化ハイドロカルビル溶媒が挙げられるが、各成分と反応しない溶媒が好ましく、錯体(1)および活性化用助触媒成分を溶解させる溶媒がより好ましい。 In the contact in the above method, it is preferable to carry out the reaction in the presence of a solvent. Examples of the solvent include aromatic hydrocarbyl solvents such as benzene, toluene and xylene, aliphatic hydrocarbyl solvents such as hexane, heptane and octane, and halogenated hydrocarbyl solvents such as dichloromethane. The solvent which does not dissolve is preferable, and the solvent which dissolves the complex (1) and the promoter component for activation is more preferable.
 接触させる温度および時間は特に限定されない。温度は通常-100℃~200℃、好ましくは-50℃~150℃、さらに好ましくは-20℃~120℃である。特に接触の初期は、反応による発熱を抑えるために低温で接触させるのが好ましい。接触時間は通常30分~12時間程度、好ましくは30分~8時間程度、さらに好ましくは30分~6時間程度である。 The temperature and time for contact are not particularly limited. The temperature is usually -100 ° C to 200 ° C, preferably -50 ° C to 150 ° C, more preferably -20 ° C to 120 ° C. In particular, in the initial stage of contact, it is preferable to contact at a low temperature in order to suppress heat generation due to the reaction. The contact time is usually about 30 minutes to 12 hours, preferably about 30 minutes to 8 hours, more preferably about 30 minutes to 6 hours.
 担体、錯体(1)および活性化用助触媒成分(A)を接触させる際の各成分の比率は、担体1重量部あたり、錯体(1)0.05~20重量部、活性化用助触媒成分(A)10~300重量部であり、好ましくは担体1重量部あたり、錯体(1)0.1~10重量部、活性化用助触媒成分(A)20~200重量部である。 The ratio of each component when contacting the carrier, the complex (1) and the activating cocatalyst component (A) is 0.05 to 20 parts by weight of the complex (1) per 1 part by weight of the carrier. Component (A) is 10 to 300 parts by weight, preferably 0.1 to 10 parts by weight of complex (1) and 20 to 200 parts by weight of activation promoter component (A) per part by weight of the support.
 担体、錯体(1)および活性化用助触媒成分(B)を接触させる際の各成分の比率は、担体1重量部あたり、錯体(1)0.05~20重量部、活性化用助触媒成分(B)0.1~60重量部であり、好ましくは担体1重量部あたり、錯体(1)0.1~10重量部、活性化用助触媒成分(B)0.2~30重量部である。 The ratio of each component when contacting the carrier, the complex (1) and the activating co-catalyst component (B) is 0.05 to 20 parts by weight of the complex (1) per 1 part by weight of the carrier. Component (B) is 0.1 to 60 parts by weight, preferably 0.1 to 10 parts by weight of complex (1) and 0.2 to 30 parts by weight of activation promoter component (B) per part by weight of the support. It is.
 本発明のオレフィン重合用触媒は、錯体(1)、担体および活性化用助触媒成分(C)を接触させることによっても得られるが、さらに活性化用助触媒成分(A)を併用することが好ましい。これらの接触方法は特に限定されるものではなく、また、活性化用助触媒成分(A)として、化合物(A-1)~(A-3)のうちの複数の成分を用いてもよい。 The olefin polymerization catalyst of the present invention can also be obtained by bringing the complex (1), the carrier and the activation promoter component (C) into contact with each other, but the activation promoter component (A) can be used in combination. preferable. These contact methods are not particularly limited, and a plurality of components among the compounds (A-1) to (A-3) may be used as the activation promoter component (A).
 担体、錯体(1)ならびに活性化用助触媒成分(C)および(A)の接触順序は特に限定されないが、例えば以下の方法が挙げられる。好ましくは、方法6、方法7または方法8であり、より好ましくは方法6または方法8である。また、各方法の各々の接触における投入順序は特に限定されるものではなく、これらの接触の一部または全てを重合槽または反応器中で行ってもよい。
 方法5:活性化用助触媒成分(A)と担体とを接触させた接触物に、活性化用助触媒成分(C)を接触させ、さらに錯体(1)を接触させる方法。
 方法6:活性化用助触媒成分(A)と活性化用助触媒成分(C)とを接触させた接触物に、担体を接触させ、さらに錯体(1)を接触させる方法。
 方法7:活性化用助触媒成分(A)と担体とを接触させた接触物に、錯体(1)を接触させ、さらに活性化用助触媒成分(C)を接触させる方法。
 方法8:活性化用助触媒成分(A)と担体とを接触させた接触物に、活性化用助触媒成分(C)を接触させ、さらに錯体(1)を接触させる方法。
The order of contacting the support, the complex (1) and the activating cocatalyst components (C) and (A) is not particularly limited, and examples thereof include the following methods. Preferably, it is Method 6, Method 7 or Method 8, and more preferably Method 6 or Method 8. In addition, the order of charging in each contact of each method is not particularly limited, and some or all of these contacts may be performed in a polymerization tank or a reactor.
Method 5: A method of bringing the co-catalyst component for activation (C) into contact with the contact product obtained by bringing the co-catalyst component for activation (A) into contact with the carrier, and further bringing the complex (1) into contact therewith.
Method 6: A method in which the support is brought into contact with the contact product obtained by bringing the activating cocatalyst component (A) and the activating cocatalyst component (C) into contact, and the complex (1) is further brought into contact.
Method 7: A method in which the complex (1) is brought into contact with the contact product obtained by bringing the activating cocatalyst component (A) and the carrier into contact, and the activating cocatalyst component (C) is further brought into contact.
Method 8: A method of bringing the co-catalyst component for activation (C) into contact with the contact product obtained by bringing the co-catalyst component for activation (A) into contact with the carrier, and further bringing the complex (1) into contact therewith.
 上記のいずれの方法においても、錯体(1)は単離したものを用いてもよく、また、化合物(2)と化合物(3)とを接触させたものをそのまま用いてもよい。 In any of the above methods, the complex (1) may be an isolated one, or may be used as it is by contacting the compound (2) with the compound (3).
 上記方法における接触の際には、溶媒の存在下で反応させることが好ましい。溶媒としては、ベンゼン、トルエンおよびキシレンなどの芳香族ハイドロカルビル溶媒、ヘキサン、ヘプタンおよびオクタンなどの脂肪族ハイドロカルビル溶媒、ジクロロメタンなどのハロゲン化ハイドロカルビル溶媒が挙げられるが、各成分と反応しない溶媒が好ましく、錯体(1)および活性化用助触媒成分を溶解させる溶媒がより好ましい。 In the contact in the above method, it is preferable to carry out the reaction in the presence of a solvent. Examples of the solvent include aromatic hydrocarbyl solvents such as benzene, toluene and xylene, aliphatic hydrocarbyl solvents such as hexane, heptane and octane, and halogenated hydrocarbyl solvents such as dichloromethane. The solvent which does not dissolve is preferable, and the solvent which dissolves the complex (1) and the promoter component for activation is more preferable.
 接触させる温度および時間は特に限定されない。温度は通常-100℃~200℃、好ましくは-50℃~150℃、さらに好ましくは-20℃~120℃である。特に接触の初期は、反応による発熱を抑えるために低温で接触させるのが好ましい。接触時間は通常30分~12時間程度、好ましくは30分~8時間程度、さらに好ましくは30分~6時間程度である。 The temperature and time for contact are not particularly limited. The temperature is usually -100 ° C to 200 ° C, preferably -50 ° C to 150 ° C, more preferably -20 ° C to 120 ° C. In particular, in the initial stage of contact, it is preferable to contact at a low temperature in order to suppress heat generation due to the reaction. The contact time is usually about 30 minutes to 12 hours, preferably about 30 minutes to 8 hours, more preferably about 30 minutes to 6 hours.
 担体、錯体(1)、活性化用助触媒成分(A)および活性化用助触媒成分(C)を接触させる際の各成分の比率は、担体1重量部あたり、錯体(1)0.05~20重量部、活性化用助触媒成分(A)10~300重量部、活性化用助触媒成分(C)1~30重量部であり、好ましくは担体1重量部あたり、錯体(1)0.1~10重量部、活性化用助触媒成分(A)20~200重量部、活性化用助触媒成分(C)2~15重量部である。 The ratio of each component when contacting the support, the complex (1), the activating co-catalyst component (A) and the activating co-catalyst component (C) is 0.05% of complex (1) per 1 part by weight of the support. To 20 parts by weight, 10 to 300 parts by weight of the activating cocatalyst component (A), 1 to 30 parts by weight of the activating cocatalyst component (C), preferably 1 part by weight of the complex (1) 0 1 to 10 parts by weight, 20 to 200 parts by weight of the activation promoter component (A), and 2 to 15 parts by weight of the activation promoter component (C).
 上述の方法などによって製造された本発明に係る触媒は、オレフィンの単独重合用としても、2種以上のオレフィン共重合用としても用いら得る。本発明に係る触媒は、炭素原子数2~6のオレフィン単独重合用または2種以上の炭素原子数2~6のオレフィン共重合用として特に好適に用いられ得る。 The catalyst according to the present invention produced by the above-described method can be used for homopolymerization of olefins or for copolymerization of two or more olefins. The catalyst according to the present invention can be particularly preferably used for homopolymerization of olefins having 2 to 6 carbon atoms or copolymerization of two or more olefins having 2 to 6 carbon atoms.
〔オレフィン重合体の製造方法〕
 本発明におけるオレフィン重合体の製造方法は、上記触媒の存在下にオレフィンを単独で重合させるか、また2種以上のオレフィンを共重合させることを含む方法である。
[Olefin polymer production method]
The method for producing an olefin polymer in the present invention is a method including polymerizing an olefin alone in the presence of the catalyst or copolymerizing two or more olefins.
 オレフィンは、モノオレフィンまたはジオレフィンであることができる。
 モノオレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、4-メチル-1-ペンテン、ビニルシクロヘキサンなどの炭素原子数3~10の1-アルケン(枝分かれしていてもよい)、または、シクロペンテン、シクロヘキセン、5-メチルノルボルネン、5-エチルノルボルネン、5-ブチルノルボルネン、5-フェニルノルボルネン、5-ベンジルノルボルネン、テトラシクロドデセン、トリシクロデセン、トリシクロウンデセン、ペンタシクロペンタデセン、ペンタシクロヘキサデセン、8-メチルテトラシクロドデセン、8-エチルテトラシクロドデセン、5-アセチルノルボルネン、5-アセチルオキシノルボルネン、5-メトキシカルボニルノルボルネン、5-エトキシカルボニルノルボルネン、5-メチル-5-メトキシカルボニルノルボルネン、5-シアノノルボルネン、8-メトキシカルボニルテトラシクロドデセン、8-メチル-8-テトラシクロドデセン、8-シアノテトラシクロドデセン等などの環状アルケン等が挙げられる。
The olefin can be a monoolefin or a diolefin.
Examples of the monoolefin include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 4-methyl-1-pentene, vinylcyclohexane, etc. 1-alkene having 3 to 10 carbon atoms (which may be branched), or cyclopentene, cyclohexene, 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, 5-phenylnorbornene, 5-benzylnorbornene , Tetracyclododecene, tricyclodecene, tricycloundecene, pentacyclopentadecene, pentacyclohexadecene, 8-methyltetracyclododecene, 8-ethyltetracyclododecene, 5-acetylnorbornene, 5-acetyloxynorbornene , 5-Met Sicarbonylnorbornene, 5-ethoxycarbonylnorbornene, 5-methyl-5-methoxycarbonylnorbornene, 5-cyanonorbornene, 8-methoxycarbonyltetracyclododecene, 8-methyl-8-tetracyclododecene, 8-cyanotetracyclo Examples thereof include cyclic alkenes such as dodecene.
 ジオレフィンとしては、例えば、1,5-ヘキサジエン、1,4-ヘキサジエン、1,6-ヘプタジエン、1,4-ペンタジエン、1,7-オクタジエン、1,8-ノナジエン、1,9-デカジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、7-メチル-1,6-オクタジエン、5-エチリデン-2-ノルボルネン、ジシクロペンタジエン、5-ビニル-2-ノルボルネン、5-メチル-2-ノルボルネン、ノルボルナジエン、5-メチレン-2-ノルボルネン、1,5-シクロオクタジエン、5,8-エンドメチレンヘキサヒドロナフタレン、1,3-ヘキサジエン、1,3-オクタジエン、1,3-シクロオクタジエン、1,3-シクロヘキサジエン、ブタジエン、等が挙げられる。 Examples of the diolefin include 1,5-hexadiene, 1,4-hexadiene, 1,6-heptadiene, 1,4-pentadiene, 1,7-octadiene, 1,8-nonadiene, 1,9-decadiene, 4 -Methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 7-methyl-1,6-octadiene, 5-ethylidene-2-norbornene, dicyclopentadiene, 5-vinyl-2-norbornene, 5 -Methyl-2-norbornene, norbornadiene, 5-methylene-2-norbornene, 1,5-cyclooctadiene, 5,8-endomethylenehexahydronaphthalene, 1,3-hexadiene, 1,3-octadiene, 1,3 -Cyclooctadiene, 1,3-cyclohexadiene, butadiene and the like.
 モノオレフィンとして好ましくは、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、4-メチル-1-ペンテン、ビニルシクロヘキサンなどの炭素原子数2~10のオレフィンであり、より好ましくは、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテン、ビニルシクロヘキサンなどの炭素原子数2~8のオレフィンであり、さらに好ましくは、エチレン、プロピレン、1-ブテン、1-ペンテンなどの炭素原子数2~5のオレフィンである。 Preferred monoolefins include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 4-methyl-1-pentene, vinylcyclohexane, and the like. Olefin having 2 to 10 carbon atoms, more preferably ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene, vinylcyclohexane and the like. An olefin having 2 to 8 carbon atoms, more preferably an olefin having 2 to 5 carbon atoms such as ethylene, propylene, 1-butene and 1-pentene.
 本発明の触媒を用いて炭素原子数3以上のオレフィンを重合した場合、高い立体規則性を有するポリオレフィンが得られる。 When a olefin having 3 or more carbon atoms is polymerized using the catalyst of the present invention, a polyolefin having high stereoregularity is obtained.
 立体規則性の尺度としては、アイソタクチック・ペンタッド分率[mmmm](%)が用いられる。ここでいうアイソタクチック・ペンタッド分率とは、A.ZambelliらによってMacromolecules、1973年、6号,925ページ~926ページに発表されている方法、すなわち13C-NMRを使用して測定される結晶性ポリプロピレン分子鎖中のペンタッド単位でのアイソタクチック連鎖、換言すればプロピレンモノマー単位が5個連続してメソ結合した連鎖の中心にあるプロピレンモノマー単位の分率である。 As a measure of stereoregularity, isotactic pentad fraction [mmmm] (%) is used. The isotactic pentad fraction referred to here is A.I. Isotactic linkage at the pentad unit in a crystalline polypropylene molecular chain measured using the method published by Macrobells, 1973, No. 6, pp. 925-926, ie, using 13 C-NMR. In other words, it is the fraction of propylene monomer units at the center of a chain in which five propylene monomer units are continuously meso-bonded.
 ジオレフィンとして好ましくは、1,5-ヘキサジエン、1,6-ヘプタジエン、5-エチリデン-2-ノルボルネン、ジシクロペンタジエン、5-ビニル-2-ノルボルネン、5-メチル-2-ノルボルネン、ノルボルナジエン、5-メチレン-2-ノルボルネン、1,5-シクロオクタジエン、1,3-シクロオクタジエン、1,3-シクロヘキサジエン、またはブタジエンであり、より好ましくは、1,5-ヘキサジエン、1,6-ヘプタジエン、1,3-シクロヘキサジエン、またはブタジエンである。 As the diolefin, 1,5-hexadiene, 1,6-heptadiene, 5-ethylidene-2-norbornene, dicyclopentadiene, 5-vinyl-2-norbornene, 5-methyl-2-norbornene, norbornadiene, 5- Methylene-2-norbornene, 1,5-cyclooctadiene, 1,3-cyclooctadiene, 1,3-cyclohexadiene, or butadiene, more preferably 1,5-hexadiene, 1,6-heptadiene, 1,3-cyclohexadiene or butadiene.
 共重合体を構成するモノマーの具体例としては、エチレンとプロピレン、エチレンと1-ブテン、エチレンと1-ペンテン、エチレンと1-ヘキセン、エチレンと1-オクテン、エチレンと1-デセン、エチレンと4-メチル-1-ペンテン、エチレンとビニルシクロヘキサン、エチレンと4-メチル-1-ペンテン、エチレンとブタジエン、エチレンと1,5-ヘキサジエンが挙げられる。
 好ましくは、エチレンとプロピレン、エチレンと1-ブテン、エチレンと1-ペンテン、エチレンと1-ヘキセン、エチレンと1-オクテン、エチレンとビニルシクロヘキサン、エチレンと4-メチル-1-ペンテンなどのエチレンと炭素原子数3~10のオレフィンとの共重合であり、より好ましくは、エチレンとプロピレン、エチレンと1-ブテン、エチレンと1-ヘキセン、エチレンと1-オクテン、エチレンとビニルシクロヘキサンなどのエチレンと炭素原子数3~8のオレフィンとの共重合である。
Specific examples of the monomer constituting the copolymer include ethylene and propylene, ethylene and 1-butene, ethylene and 1-pentene, ethylene and 1-hexene, ethylene and 1-octene, ethylene and 1-decene, ethylene and 4 -Methyl-1-pentene, ethylene and vinylcyclohexane, ethylene and 4-methyl-1-pentene, ethylene and butadiene, ethylene and 1,5-hexadiene.
Preferably, ethylene and carbon such as ethylene and propylene, ethylene and 1-butene, ethylene and 1-pentene, ethylene and 1-hexene, ethylene and 1-octene, ethylene and vinylcyclohexane, ethylene and 4-methyl-1-pentene Copolymerization with olefins having 3 to 10 atoms, more preferably ethylene and carbon atoms such as ethylene and propylene, ethylene and 1-butene, ethylene and 1-hexene, ethylene and 1-octene, ethylene and vinylcyclohexane, etc. Copolymerization with olefins of 3 to 8.
 本発明においては、担体および活性化用助触媒成分を接触させた接触物と、錯体(1)および活性化用助触媒成分を接触させた接触物と、を接触させる方法により、非常に粒子性状に優れた下記のエチレン-α-オレフィン共重合体を得ることができる。下記共重合体粒子とは、エチレンとα-オレフィンとの共重合により得られる共重合体粒子を造粒した粒子ではなく、エチレンとα-オレフィンとを重合反応槽内で共重合することにより直接得られる粒子を意味する。
 体積基準粒径300μm以下の重合粒子含量が2体積%以下であり、50%体積基準粒径(D50)が500μm以上であり、粒子嵩密度が400kg/m以上であるエチレン-α-オレフィン共重合体粒子。
In the present invention, the particle property is very high by the method of bringing the contact product in contact with the support and the activation promoter component into contact with the contact product in contact with the complex (1) and the activation promoter component. The following ethylene-α-olefin copolymer excellent in the above can be obtained. The following copolymer particles are not particles obtained by granulating copolymer particles obtained by copolymerization of ethylene and α-olefin, but directly by copolymerizing ethylene and α-olefin in a polymerization reactor. Means the resulting particles.
The ethylene-α-olefin copolymer having a volume particle size of 300 μm or less and a polymer particle content of 2% by volume or less, a 50% volume reference particle size (D50) of 500 μm or more, and a particle bulk density of 400 kg / m 3 or more. Polymer particles.
 上記エチレン-α-オレフィン共重合体粒子は、体積基準粒径300μm以下の粒子の存在量が、運転安定性の観点から少ないほうが好ましく、好ましくは2体積%以下、より好ましくは1体積%以下、さらに好ましくは0.5体積%以下である。 In the ethylene-α-olefin copolymer particles, the amount of particles having a volume standard particle size of 300 μm or less is preferably smaller from the viewpoint of operational stability, preferably 2% by volume or less, more preferably 1% by volume or less, More preferably, it is 0.5 volume% or less.
 上記エチレン-α-オレフィン共重合体粒子は、50%体積基準粒径(D50)が500μm以上であり、生産性の観点から高いほうが好ましく、好ましくは750μm以上、より好ましくは1000μm以上である。粒子の流動性の観点からは大きすぎないことが好ましく、好ましくは4000μm以下、より好ましくは3500μm以下、さらに好ましくは3000μm以下である。 The ethylene-α-olefin copolymer particles have a 50% volume standard particle diameter (D50) of 500 μm or more, and are preferably higher from the viewpoint of productivity, preferably 750 μm or more, more preferably 1000 μm or more. From the viewpoint of the fluidity of the particles, it is preferably not too large, preferably 4000 μm or less, more preferably 3500 μm or less, and still more preferably 3000 μm or less.
 上記エチレン-α-オレフィン共重合体粒子は、粒子嵩密度が400kg/m以上であり、生産を高める観点から粒子嵩密度が高いことが好ましく、好ましくは425kg/m以上であり、より好ましくは450kg/m以上である。粒子嵩密度(BD)は、10ccのメスシリンダーに粉体を10cm上より充填し、粒子間の空隙も含めた体積で粉体の質量を除して求めることができる。 The ethylene-α-olefin copolymer particles have a particle bulk density of 400 kg / m 3 or more, and preferably have a high particle bulk density from the viewpoint of enhancing production, preferably 425 kg / m 3 or more, and more preferably Is 450 kg / m 3 or more. The particle bulk density (BD) can be determined by filling a 10 cc graduated cylinder from 10 cm above the powder and dividing the mass of the powder by the volume including the voids between the particles.
 重合体粒子の体積基準での粒径測定は、例えば、SYMPATEC社製レーザー回折式粒度分布測定装置HELOS&RODOSシステムを使用して、重合粒子を乾燥状態で分散させて粒度分布を測定し、算出することができる。 The particle size measurement on the volume basis of the polymer particles can be calculated, for example, by measuring the particle size distribution by dispersing the polymer particles in a dry state using a laser diffraction particle size distribution analyzer HELOS & RODOS system manufactured by SYMPATEC. Can do.
 本発明の製造方法により得られるエチレン-α-オレフィン共重合体粒子のα-オレフィンに由来する含有量は、共重合体の粘着性の観点から少ない方が好ましく、短鎖分岐数(NSCB)が30/1000Cより小さく、より好ましくは25/1000Cより小さく、さらに好ましくは20/1000Cより小さい。 The content derived from α-olefin in the ethylene-α-olefin copolymer particles obtained by the production method of the present invention is preferably smaller from the viewpoint of the tackiness of the copolymer, and the number of short chain branches (N SCB ) Is less than 30 / 1000C, more preferably less than 25 / 1000C, and even more preferably less than 20 / 1000C.
 本発明の製造方法により得られるエチレン-α-オレフィン共重合体のメルトフローレート(MFR)は、JIS K7210-1995に規定された方法において、温度190℃、荷重21.18Nの条件で、A法により測定される値である。
 本発明の製造方法により得られるエチレン-α-オレフィン共重合体のMFRは、0.1~100g/10分である。該MFRは、成形加工性を高める観点、特に押出負荷を低減する観点から、好ましくは0.2g/10分以上である。また、溶融張力、得られる成形体の機械的強度を高める観点から、好ましくは50g/10分以下であり、より好ましくは30g/10分以下、さらに好ましくは20g/10分以下である。
The melt flow rate (MFR) of the ethylene-α-olefin copolymer obtained by the production method of the present invention is the method defined in JIS K7210-1995 under the conditions of a temperature of 190 ° C. and a load of 21.18 N. Is a value measured by.
The MFR of the ethylene-α-olefin copolymer obtained by the production method of the present invention is 0.1 to 100 g / 10 min. The MFR is preferably 0.2 g / 10 min or more from the viewpoint of improving molding processability, particularly from the viewpoint of reducing the extrusion load. Further, from the viewpoint of increasing the melt tension and the mechanical strength of the resulting molded article, it is preferably 50 g / 10 min or less, more preferably 30 g / 10 min or less, and further preferably 20 g / 10 min or less.
 H-MFRは、JIS K7210-1995に規定された方法において、荷重211.82N、温度190℃の条件で測定されるMFRの値である。
 MFRRは、JIS K7210-1995に規定された方法において、H-MFRを、JIS K7210-1995に規定された方法において、荷重21.18Nおよび温度190℃の条件で測定されるMFRで除した値である。
 本発明の製造方法により得られるエチレン-α-オレフィン共重合体のMFRRは、成形加工時の押出負荷をより低減する観点から、好ましくは70以上であり、より好ましくは100以上であり、さらに好ましくは130以上であり、特に好ましくは170以上である。また、得られる成形体の機械的強度をより高める観点から、好ましくは300以下であり、より好ましくは250以下である。
H-MFR is a value of MFR measured under the conditions of a load of 211.82 N and a temperature of 190 ° C. in the method defined in JIS K7210-1995.
The MFRR is a value obtained by dividing H-MFR by the MFR measured under the conditions of a load of 21.18 N and a temperature of 190 ° C. in the method specified in JIS K7210-1995. is there.
The MFRR of the ethylene-α-olefin copolymer obtained by the production method of the present invention is preferably 70 or more, more preferably 100 or more, and still more preferably, from the viewpoint of further reducing the extrusion load during the molding process. Is 130 or more, particularly preferably 170 or more. Moreover, from a viewpoint which raises the mechanical strength of the molded object obtained more, Preferably it is 300 or less, More preferably, it is 250 or less.
 本発明の製造方法により得られるエチレン-α-オレフィン共重合体の密度は、850~940kg/mであり、得られる成形体の機械強度のうち衝撃強度を高める観点から、好ましくは930kg/m以下である。得られる成形体の機械強度のうち引張強度を高める観点から、好ましくは870kg/m以上であり、より好ましくは880kg/m以上であり、さらに好ましくは890kg/m以上であり、特に好ましくは900kg/m以上である The density of the ethylene-α-olefin copolymer obtained by the production method of the present invention is 850 to 940 kg / m 3 , and preferably 930 kg / m 3 from the viewpoint of increasing the impact strength of the mechanical strength of the obtained molded product. 3 or less. From the viewpoint of enhancing among tensile strength of mechanical strength of the resulting molded product, it is preferably 870 kg / m 3 or more, more preferably 880 kg / m 3 or more, more preferably 890 kg / m 3 or more, particularly preferably Is 900 kg / m 3 or more
 本発明の製造方法により得られるエチレン-α-オレフィン共重合体の重量平均分子鎖長(以下、「Aw」と記載することがある。)と数平均分子鎖長(以下、「An」と記載することがある。)との比(以下、「Aw/An」と記載することがある。)は、2~10である。Aw/Anが小さすぎると、成形加工時の押出負荷が高くなることがある。Aw/Anは、好ましくは2.5以上である。Aw/Anが大きすぎると、得られる成形体の機械的強度が低くなることがある。Aw/Anは、好ましくは6.5以下であり、より好ましくは6以下であり、さらに好ましくは5以下である。 The weight average molecular chain length (hereinafter sometimes referred to as “Aw”) and the number average molecular chain length (hereinafter referred to as “An”) of the ethylene-α-olefin copolymer obtained by the production method of the present invention. The ratio (hereinafter sometimes referred to as “Aw / An”) is 2 to 10. If Aw / An is too small, the extrusion load at the time of molding may increase. Aw / An is preferably 2.5 or more. When Aw / An is too large, the mechanical strength of the obtained molded product may be lowered. Aw / An is preferably 6.5 or less, more preferably 6 or less, and even more preferably 5 or less.
 NLCBは、カーボン核磁気共鳴(13C-NMR)法によって測定された13C-NMRスペクトルから、5~50ppmに観測されるすべてのピークの面積の総和を1000として、炭素原子数5以上の分岐が結合したメチン炭素に由来するピークの面積を求めることにより得られる。炭素原子数5以上の分岐が結合したメチン炭素に由来するピークは38.2ppm付近(参考:学術文献「Macromolecules」,(米国),American Chemical Society,1999年,第32巻,p.3817-3819)に観測される。この炭素原子数5以上の分岐が結合したメチン炭素に由来するピークの位置は、測定装置および測定条件によりずれることがあるため、通常、測定装置および測定条件毎に、標品の測定を行って決定する。また、スペクトル解析には、窓関数として、負の指数関数を用いることが好ましい。
 本発明の製造方法により得られるエチレン-α-オレフィン共重合体のNLCBは、加工性の観点より、1000炭素あたり、好ましくは0.05以上であり、より好ましくは0.10以上であり、特に好ましくは0.15以上である。得られたポリマーの機械強度の観点より、多すぎないことが好ましく、好ましくは5以下、さらに好ましくは4以下、特に好ましくは3以下である。
N LCB has a carbon atom number of 5 or more, with the total area of all peaks observed at 5 to 50 ppm as 1000 from the 13 C-NMR spectrum measured by the carbon nuclear magnetic resonance ( 13 C-NMR) method. It is obtained by determining the area of the peak derived from the methine carbon to which the branch is bonded. The peak derived from methine carbon to which a branch having 5 or more carbon atoms is bonded is around 38.2 ppm (Reference: Scientific literature “Macromolecules”, (USA), American Chemical Society, 1999, Vol. 32, p.3817-3818) ). Since the position of the peak derived from methine carbon to which a branch having 5 or more carbon atoms is bonded may vary depending on the measuring device and the measuring conditions, the standard is usually measured for each measuring device and measuring conditions. decide. In the spectrum analysis, it is preferable to use a negative exponential function as the window function.
The N LCB of the ethylene-α-olefin copolymer obtained by the production method of the present invention is preferably at least 0.05, more preferably at least 0.10, per 1000 carbons from the viewpoint of processability. Especially preferably, it is 0.15 or more. From the viewpoint of the mechanical strength of the obtained polymer, it is preferably not too much, preferably 5 or less, more preferably 4 or less, and particularly preferably 3 or less.
 本発明のオレフィン重合体の製造方法により得られるオレフィン重合体は、成形加工時の押出負荷、インフレーションフィルム成形時のバブル安定性、Tダイフィルム成形時のネックイン、中空成形時のパリソンの形状保持性などの成形加工性に優れ、機械的強度に優れる。また、成形品の透明性にも優れる。 The olefin polymer obtained by the method for producing an olefin polymer of the present invention has an extrusion load at the time of molding, bubble stability at the time of forming an inflation film, neck-in at the time of T-die film molding, and a shape retention of the parison at the time of hollow molding. Excellent moldability such as properties, and excellent mechanical strength. Moreover, the transparency of the molded product is also excellent.
 上記オレフィン重合体は、公知の成形方法、例えば、インフレーションフィルム成形法およびTダイフィルム成形法などの押出成形法、中空成形法、射出成形法、圧縮成形法などにより成形される。成形方法としては、押出成形法、中空成形法が好適に用いられ、インフレーションフィルム成形法、Tダイフィルム成形法、中空成形法が特に好適に用いられる。 The olefin polymer is molded by a known molding method, for example, an extrusion molding method such as an inflation film molding method and a T-die film molding method, a hollow molding method, an injection molding method, a compression molding method, or the like. As the molding method, an extrusion molding method and a hollow molding method are preferably used, and an inflation film molding method, a T-die film molding method, and a hollow molding method are particularly preferably used.
 上記オレフィン重合体は、種々の形態に成形して用いられる。成形品の形態は特に限定されないが、フィルム、シート、容器(トレイ、ボトルなど)などに用いられる。該成形品は、食品包装材;医薬品包装材;半導体製品などの包装に用いる電子部品包装材;表面保護材などの用途にも好適に用いられる。 The olefin polymer is used after being molded into various forms. Although the form of a molded article is not specifically limited, it is used for a film, a sheet, a container (tray, bottle, etc.), etc. The molded article is also suitably used for applications such as food packaging materials; pharmaceutical packaging materials; electronic component packaging materials used for packaging semiconductor products, etc .; surface protection materials.
 以下、実施例および比較例によって本発明をさらに詳細に説明する。実施例中の各項目の測定値は、下記の方法で測定した。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. The measured value of each item in an Example was measured with the following method.
(1)融点
 熱分析装置 示差走査熱量計(Diamond DSC Perkin Elmer社製)を用いて下記の方法で測定した。
<ポリエチレン測定条件>
1)サンプル約10mgを窒素雰囲気下、150℃ 5分間保持
2)冷却   150℃~20℃(5℃/分)2分間保持
3)測定   20℃~150℃(5℃/分)
<ポリプロピレン測定条件>
 1)サンプル約10mgを窒素雰囲気下、220℃ 5分間保持
 2)冷却   220℃~20℃(5℃/分)2分間保持
 3)測定   20℃~220℃(5℃/分)
(1) Melting point Thermal analyzer The measurement was performed by the following method using a differential scanning calorimeter (manufactured by Diamond DSC Perkin Elmer).
<Polyethylene measurement conditions>
1) Hold about 10 mg of sample in a nitrogen atmosphere at 150 ° C. for 5 minutes 2) Cooling 150 ° C. to 20 ° C. (5 ° C./minute) Hold for 2 minutes 3) Measurement 20 ° C. to 150 ° C. (5 ° C./minute)
<Polypropylene measurement conditions>
1) Hold about 10 mg of sample under nitrogen atmosphere at 220 ° C. for 5 minutes 2) Cooling 220 ° C. to 20 ° C. (5 ° C./minute) Hold for 2 minutes 3) Measurement 20 ° C. to 220 ° C. (5 ° C./minute)
(2)分子量および分子量分布
 各重合体のポリスチレン換算重量平均分子鎖長(Aw)およびポリスチレン換算数平均分子鎖長(An)は、ゲルパーミエーションクロマトグラフィー(GPC)により下記条件で算出した。検量線は、標準ポリスチレンを用いて作成した。ポリスチレンのQファクターとして41.3を用いた。
<測定条件>
装置:TSK HLC-8121GPC/HT (東ソー社製)
カラム:TSKgel GMHHR-H(20) 2本
測定温度:152℃
溶媒:o-ジクロロベンゼン(0.05% BHT添加)
溶媒流量:1ml/min
試料濃度:0.05%
カラム・装置校正用試料:TSK標準ポリスチレンF-2000~A-1000(東ソー製)
(2) Molecular weight and molecular weight distribution The polystyrene equivalent weight average molecular chain length (Aw) and polystyrene equivalent number average molecular chain length (An) of each polymer were calculated by gel permeation chromatography (GPC) under the following conditions. A calibration curve was prepared using standard polystyrene. 41.3 was used as the Q factor of polystyrene.
<Measurement conditions>
Equipment: TSK HLC-8121GPC / HT (manufactured by Tosoh Corporation)
Column: TSKgel GMHHR-H (20) 2 Measurement temperature: 152 ° C
Solvent: o-dichlorobenzene (0.05% BHT added)
Solvent flow rate: 1 ml / min
Sample concentration: 0.05%
Sample for column / equipment calibration: TSK standard polystyrene F-2000 to A-1000 (manufactured by Tosoh)
 各重合体の重量平均分子量(Mw)と数平均分子量(Mn)は、ポリスチレン換算重量平均分子鎖長(Aw)、ポリスチレン換算数平均分子鎖長(An)をもとに、ポリエチレンおよびポリプロピレンのQファクターをそれぞれ17.7および26.4として下式より算出した。
分子量(Mw,Mn)=分子鎖長(Aw,An)×Qファクター
The weight average molecular weight (Mw) and number average molecular weight (Mn) of each polymer are based on the weight average molecular chain length (Aw) in terms of polystyrene and the number average molecular chain length (An) in terms of polystyrene. Factors were calculated from the following formulas with 17.7 and 26.4, respectively.
Molecular weight (Mw, Mn) = molecular chain length (Aw, An) × Q factor
(3)ポリプロピレンのアイソタクチック・ペンタッド分率([mmmm](%))
ポリプロピレンの[mmmm]分率は下記条件で測定した13C-NMRスペクトルにおける、19.4~22.2ppmのメチル炭素に帰属されるピーク面積(I(CH))に対する21.64~22.02ppmのmmmmペンタッドのメチル炭素に帰属されるピーク面積(I(mmmm))の割合として求めた。
<測定条件>
装置  :Bruker社製 AVANCE600 10mmクライオプローブ
測定溶媒:1,2-ジクロロベンゼン/1,2-ジクロロベンゼン-d=75/25(容積比)の混合液
測定温度:130℃
測定方法:プロトンデカップリング法
パルス幅:45度
パルス繰り返し時間:4秒
化学シフト値基準:テトラメチルシラン
(3) Isotactic pentad fraction of polypropylene ([mmmm] (%))
The [mmmm] fraction of polypropylene is 21.64 to 22.22 relative to the peak area (I (CH 3 )) attributed to 19.4 to 22.2 ppm of methyl carbon in the 13 C-NMR spectrum measured under the following conditions. The peak area (I (mmmm)) attributed to methyl carbon of 02 ppm mmmm pentad was determined.
<Measurement conditions>
Apparatus: Bruker AVANCE 600 10 mm cryoprobe measurement solvent: 1,2-dichlorobenzene / 1,2-dichlorobenzene-d 4 = 75/25 (volume ratio) mixture measurement temperature: 130 ° C.
Measuring method: Proton decoupling method Pulse width: 45 degrees Pulse repetition time: 4 seconds Chemical shift value Criteria: Tetramethylsilane
(4)固有粘度([η]、単位:dl/g)
 ウベローデ型粘度計を用い、測定温度135℃にて溶媒にテトラリンを用いて測定した。
(4) Intrinsic viscosity ([η], unit: dl / g)
Using an Ubbelohde viscometer, tetralin was used as a solvent at a measurement temperature of 135 ° C.
(5)密度(d、単位:Kg/m
 JIS K7112-1980のうち、A法に規定された方法に従って測定した。なお、試料には、JIS K6760-1995に記載のアニーリングを行った。
(5) Density (d, unit: Kg / m 3 )
Measured according to the method defined in Method A of JIS K7112-1980. The sample was annealed according to JIS K6760-1995.
(6)短鎖分岐数(NSCB、単位:1/1000C)
 赤外分光光度計(日本分光工業社製 FT-IR7300)を用い、エチレンとα-オレフィンの特性吸収より検量線を用いて炭素原子1000個当たりの短鎖分岐数(NSCB)を求めた。このNSCB値は、エチレンとα-オレフィンとの共重合体におけるα-オレフィンに由来する単量体単位の含有量を表す。
(6) Number of short chain branches (N SCB , unit: 1 / 1000C)
Using an infrared spectrophotometer (FT-IR7300, manufactured by JASCO Corporation), the number of short chain branches (N SCB ) per 1000 carbon atoms was determined using a calibration curve from the characteristic absorption of ethylene and α-olefin. This N SCB value represents the content of monomer units derived from α-olefin in a copolymer of ethylene and α-olefin.
(7)メルトフローレート(MFR、単位:g/10分)
 JIS K7210-1995に規定された方法において、荷重21.18N、温度190℃の条件で、A法により測定した。
(7) Melt flow rate (MFR, unit: g / 10 min)
In the method defined in JIS K7210-1995, measurement was performed by the method A under the conditions of a load of 21.18 N and a temperature of 190 ° C.
(8)メルトフローレート比(H-MFR)
 JIS K7210-1995に規定された方法において、試験荷重211.82N、測定温度190℃の条件で測定されるメルトフローレートにより測定した。
(8) Melt flow rate ratio (H-MFR)
In the method defined in JIS K7210-1995, the measurement was performed at a melt flow rate measured under conditions of a test load of 211.82 N and a measurement temperature of 190 ° C.
(9)スウェル比(SR)
 (7)のメルトフローレートの測定において、温度190℃、荷重21.18Nの条件で、オリフィスから15~20mm程度の長さで押出したエチレン-α-オレフィン共重合体のストランドを、空気中で冷却し、固体状のストランドを得た。次に、該ストランドの押出し上流側先端から約5mmの位置でのストランドの直径D(単位:mm)を測定し、その直径Dをオリフィス径2.095mm(D0)で除した値(D/D0)を算出し、スウェル比とした。
(9) Swell ratio (SR)
In the measurement of the melt flow rate in (7), an ethylene-α-olefin copolymer strand extruded at a length of about 15 to 20 mm from an orifice under the conditions of a temperature of 190 ° C. and a load of 21.18 N Cooled to obtain a solid strand. Next, the diameter D (unit: mm) of the strand at a position of about 5 mm from the upstream end of extrusion of the strand was measured, and the value obtained by dividing the diameter D by the orifice diameter 2.095 mm (D 0 ) (D / D 0 ) was calculated and used as the swell ratio.
(10)粒子嵩密度(BD)
 粒子嵩密度(BD)は10ccのメスシリンダーに粉体を10cm上より充填し、粒子間の空隙も含めた体積で、粉体の質量を除した値である。
(10) Particle bulk density (BD)
The particle bulk density (BD) is a value obtained by dividing the mass of the powder by the volume including 10 cm of powder in a 10 cc graduated cylinder and including the voids between the particles.
(11)元素分析
 アルミニウムおよびハフニウム:試料を硫酸水溶液(1M)に投じたのち超音波を照射し金属成分を抽出した。得られた液体部分についてICP発光分析法により定量した。
フッ素:酸素を充填させたフラスコ中で試料を燃焼させて生じた燃焼ガスを水酸化ナトリ
ウム水溶液(10%)に吸収させ、得られた当該水溶液についてイオン電極法を用いて定
量した。
(11) Elemental analysis Aluminum and hafnium: A metal component was extracted by irradiating an ultrasonic wave after throwing the sample into a sulfuric acid aqueous solution (1M). The obtained liquid portion was quantified by ICP emission spectrometry.
A combustion gas generated by burning a sample in a flask filled with fluorine: oxygen was absorbed in an aqueous sodium hydroxide solution (10%), and the obtained aqueous solution was quantified using an ion electrode method.
(12)重合体粒子の体積基準での粒径測定
 SYMPATEC社製レーザー回折式粒度分布測定装置HELOS&RODOSシステムを使用して以下の測定条件により、重合粒子を乾燥状態で分散させて粒度分布を測定し、10%体積基準粒径(D10)、50%体積基準粒径(D50)、および90%体積基準粒径(D90)を算出した。
(12) Particle size measurement based on volume of polymer particles The particle size distribution was measured by dispersing polymer particles in a dry state under the following measurement conditions using a laser diffraction particle size distribution analyzer HELOS & RODOS system manufactured by SYMPATEC. A 10% volume reference particle size (D10), a 50% volume reference particle size (D50), and a 90% volume reference particle size (D90) were calculated.
  (測定条件)
    レンジ   :18~3500μm
    トリガー条件:リファレンス持続時間 2秒
          :タイムベース 100m秒
          :スタート channel 15≧0.5%
          :停止 2s、channel 15≦0.5%、 10s実時間    分散条件  :RODOS(乾式気流型分散ユニット)直投式
          :フィーダー VIBRI
          :送り 50%
          :インジェクター 4mm
          :分散圧 1.5bar
(Measurement condition)
Range: 18-3500μm
Trigger condition: Reference duration 2 seconds: Time base 100 ms: Start channel 15 ≧ 0.5%
: Stop 2s, channel 15 ≦ 0.5%, 10s real time Dispersion condition: RODOS (dry airflow type dispersion unit) direct throwing type: Feeder VIBRI
: Feed 50%
: Injector 4mm
: Dispersion pressure 1.5bar
 粒子の体積基準粒径が300μm以下である粒子の含有量
 上記で測定した粒度分布から、粒径が300μm以下の粒子の量を体積換算で算出した。
Content of Particles whose Volume-Based Particle Size is 300 μm or Less From the particle size distribution measured above, the amount of particles whose particle size is 300 μm or less was calculated in terms of volume.
(参考例1)
trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロヘキサンの合成
 アルゴン雰囲気下、trans-シクロヘキサン-1,2-ジチオール1.08g(7.3mmol)と臭化3,5-ジ-t-ブチル-2-ヒドロキシベンジル4.58g(15.3mmol)をテトラヒドロフラン90mLに溶かし0℃に冷却した。そこに、トリエチルアミン2.13mL(15.3mmol)を加え、0℃で15時間撹拌した。生成した沈殿物を濾過で除き、濾液を減圧下濃縮した。得られた残渣にエーテルと希塩酸を加え、エーテル層を水洗、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン-ジクロロメタン 1:1)で精製し無色結晶として表題化合物3.86g(収率90%)を得た。
融点:104-106℃ 分解(エタノールより再結晶)
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.19-1.43 (m, 44 H), 2.09-2.15 (m, 2 H), 2.58-2.61 (m, 2 H), 3.79 (s, 4 H), 6.75 (s, 2 H), 6.93 (d, J = 2 Hz, 2 H), 7.25 (d, J = 2 Hz, 2 H).
13C-NMR (100.7 MHz,δ, CDCl3)
24.7, 29.7, 31.6, 32.6, 33.9, 34.2, 35.0, 48.1, 121.6, 123.7, 125.2, 137.3, 142.2, 152.0. 
元素分析:計算値(C36H56O2S2)C, 73.92%; H, 9.34%.
実測値: C, 74.17%; H, 9.31%.
(Reference Example 1)
Synthesis of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclohexane 1.08 g (7.3 mmol) of trans-cyclohexane-1,2-dithiol and bromide 3 under argon atmosphere Then, 4.58 g (15.3 mmol) of 5-di-t-butyl-2-hydroxybenzyl was dissolved in 90 mL of tetrahydrofuran and cooled to 0 ° C. Triethylamine 2.13mL (15.3mmol) was added there, and it stirred at 0 degreeC for 15 hours. The formed precipitate was removed by filtration, and the filtrate was concentrated under reduced pressure. Ether and dilute hydrochloric acid were added to the resulting residue, the ether layer was washed with water and dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent hexane-dichloromethane 1: 1) to obtain 3.86 g (yield 90%) of the title compound as colorless crystals.
Melting point: 104-106 ℃ Decomposition (recrystallization from ethanol)
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.19-1.43 (m, 44 H), 2.09-2.15 (m, 2 H), 2.58-2.61 (m, 2 H), 3.79 (s, 4 H), 6.75 (s, 2 H), 6.93 (d, J = 2 Hz, 2 H), 7.25 (d, J = 2 Hz, 2 H).
13 C-NMR (100.7 MHz, δ, CDCl 3 )
24.7, 29.7, 31.6, 32.6, 33.9, 34.2, 35.0, 48.1, 121.6, 123.7, 125.2, 137.3, 142.2, 152.0.
Elemental analysis: calculated (C 36 H 56 O 2 S 2 ) C, 73.92%; H, 9.34%.
Found: C, 74.17%; H, 9.31%.
(参考例2)
[シクロヘキサンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウムの合成
 以下の実験はアルゴン雰囲気のグローブボックス中で行った。50 mLのシュレンク管中、trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロヘキサン 300 mg(0.513 mmol)をトルエン5 mLに溶かし、この溶液に室温でテトラベンジルジルコニウム234 mg(0.513 mmol)のトルエン溶液5 mLを滴下し、さらに2時間撹拌した。トルエンを減圧下留去し、残渣をペンタン2 mLで洗浄後乾燥し、無色結晶として表題化合物176 mg(収率40%)を得た。
1H-NMR (500 MHz,δ, ppm, C6D6)
0.42-1.08 (m, 8 H, major, minor), 1.22 (s, 18 H, major), 1.24 (s, 18 H, minor), 1.57-1.61 (m, 2 H, major), 1.77 (s, 18 H, major), 1.80 (s, 18 H, minor), 1.84 (d, J = 9 Hz, 2 H, major), 1.96-2.02 (m, 2 H, minor), 2.16 (d, J = 10 Hz, 2 H, minor), 2.64 (d, J = 9 Hz, 2 H, major), 2.79 (d, J = 10 Hz, 2 H, minor), 2.94 (d, J = 12 Hz, 2 H, major), 3.22 (d, J = 15 Hz, 2 H, major), 3.23 (d, J = 15 Hz, 2 H, minor), 3.52 (d, J = 15 Hz, 2 H, minor), 6.57 (d, J = 2 Hz, 2 H, major), 6.63 (d, J = 2 Hz, 2 H, minor), 6.90-7.27 (m, 10 H, major, minor), 7.42 (d, J = 2 Hz, 2 H, major), 7.52 (d, J = 2 Hz, 2 H, minor).
(Reference Example 2)
Synthesis of [cyclohexanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylzirconium The following experiment was performed in a glove box under an argon atmosphere. In a 50 mL Schlenk tube, 300 mg (0.513 mmol) of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclohexane was dissolved in 5 mL of toluene, and this solution was dissolved at room temperature. 5 mL of a toluene solution of 234 mg (0.513 mmol) of tetrabenzylzirconium was added dropwise, and the mixture was further stirred for 2 hours. Toluene was distilled off under reduced pressure, and the residue was washed with 2 mL of pentane and dried to obtain 176 mg (yield 40%) of the title compound as colorless crystals.
1 H-NMR (500 MHz, δ, ppm, C 6 D 6 )
0.42-1.08 (m, 8 H, major, minor), 1.22 (s, 18 H, major), 1.24 (s, 18 H, minor), 1.57-1.61 (m, 2 H, major), 1.77 (s, 18 H, major), 1.80 (s, 18 H, minor), 1.84 (d, J = 9 Hz, 2 H, major), 1.96-2.02 (m, 2 H, minor), 2.16 (d, J = 10 Hz, 2 H, minor), 2.64 (d, J = 9 Hz, 2 H, major), 2.79 (d, J = 10 Hz, 2 H, minor), 2.94 (d, J = 12 Hz, 2 H, major), 3.22 (d, J = 15 Hz, 2 H, major), 3.23 (d, J = 15 Hz, 2 H, minor), 3.52 (d, J = 15 Hz, 2 H, minor), 6.57 ( d, J = 2 Hz, 2 H, major), 6.63 (d, J = 2 Hz, 2 H, minor), 6.90-7.27 (m, 10 H, major, minor), 7.42 (d, J = 2 Hz , 2 H, major), 7.52 (d, J = 2 Hz, 2 H, minor).
(参考例3)
[シクロヘキサンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルハフニウムの合成
 以下の実験はアルゴン雰囲気のグローブボックス中で行った。100mLのシュレンク管中、trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロヘキサン 200.0mg(0.342mmol)をトルエン10mLに溶かし、この溶液に室温でテトラベンジルハフニウム185.7mg(0.342mmol)のトルエン溶液10mLを滴下し、さらに1時間攪拌した。トルエンを減圧下留去し、残渣をヘキサン2mLで3回洗浄後乾燥し、無色結晶として表題化合物のジアステレオマー混合物として201.3mg(収率62%)を得た。ジアステレオマー比は、64/36であった。
Major:1H-NMR (400 MHz,δ, ppm, CD3C6D5)
1.06-1.92 (m, 44H), 2.55 (d, J = 12 Hz, 2H), 2.84 (d, J = 12 Hz, 2H), 3.21 (d, J = 14 Hz, 2H), 3.37 (d, J = 14 Hz, 2H), 6.62 (d, J = 2 Hz, 2H), 6.74-6.81 (m, 2H), 7.04-7.12 (m, 6H), 7.25 (d, J = 8 Hz, 4H), 7.54 (d, J = 2 Hz, 2H).
Minor:1H-NMR (400 MHz,δ, ppm, CD3C6D5)
1.06-1.92 (m, 44H), 2.38 (d, J = 12 Hz, 2H), 2.85 (d, J = 14 Hz, 2H), 2.94(d, J = 12 Hz, 2H), 3.18(d, J = 14 Hz, 2H), 6.59 (d, J = 2 Hz, 2H), 6.74-6.81 (m, 2H), 7.04-7.12(m, 6H), 7.31 (d, J = 8 Hz, 4H), 7.47 (d, J = 2 Hz, 2H).
(Reference Example 3)
Synthesis of [cyclohexanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylhafnium The following experiment was conducted in a glove box under an argon atmosphere. In a 100 mL Schlenk tube, 200.0 mg (0.342 mmol) of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclohexane is dissolved in 10 mL of toluene, and tetrabenzyl is dissolved in this solution at room temperature. 10 mL of a toluene solution of 185.7 mg (0.342 mmol) of hafnium was added dropwise, and the mixture was further stirred for 1 hour. Toluene was distilled off under reduced pressure, and the residue was washed 3 times with 2 mL of hexane and dried to obtain 201.3 mg (yield 62%) as a diastereomeric mixture of the title compound as colorless crystals. The diastereomeric ratio was 64/36.
Major: 1 H-NMR (400 MHz, δ, ppm, CD 3 C 6 D 5 )
1.06-1.92 (m, 44H), 2.55 (d, J = 12 Hz, 2H), 2.84 (d, J = 12 Hz, 2H), 3.21 (d, J = 14 Hz, 2H), 3.37 (d, J = 14 Hz, 2H), 6.62 (d, J = 2 Hz, 2H), 6.74-6.81 (m, 2H), 7.04-7.12 (m, 6H), 7.25 (d, J = 8 Hz, 4H), 7.54 (d, J = 2 Hz, 2H).
Minor: 1 H-NMR (400 MHz, δ, ppm, CD 3 C 6 D 5 )
1.06-1.92 (m, 44H), 2.38 (d, J = 12 Hz, 2H), 2.85 (d, J = 14 Hz, 2H), 2.94 (d, J = 12 Hz, 2H), 3.18 (d, J = 14 Hz, 2H), 6.59 (d, J = 2 Hz, 2H), 6.74-6.81 (m, 2H), 7.04-7.12 (m, 6H), 7.31 (d, J = 8 Hz, 4H), 7.47 (d, J = 2 Hz, 2H).
(参考例4)
trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロオクタンの合成
 アルゴン雰囲気下、trans-シクロオクタン-1,2-ジチオール2.18g(12.4mmol)と臭化3,5-ジ-t-ブチル-2-ヒドロキシベンジル7.52g(25.1mmol)をテトラヒドロフラン80mLに溶かし0℃に冷却した。そこに、トリエチルアミン3.5mL(24.9mmol)を加え、0℃で1時間、室温で終夜撹拌した。生成した沈殿物を濾過して除き、濾液を減圧下濃縮した。得られた残渣にエーテルと飽和塩化アンモニウム水溶液を加え、エーテル層を水洗、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン-ジクロロメタン 1:1)で精製し無色結晶として表題化合物6.74g(収率89%)を得た。
融点:122-123℃(ヘキサンより再結晶)
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.12-1.94 (m, 48 H), 2.63-2.65 (m, 2 H), 3.81 (d, J = 13 Hz, 2 H), 3.90 (d, J = 13 Hz, 2 H), 6.92 (d, J = 2 Hz, 2 H), 6.95 (s, 2 H), 7.26 (d, J = 2 Hz, 2 H).
13C-NMR (100.7 MHz,δ, CDCl3)
25.7, 25.8, 29.8, 31.2, 31.6, 34.2, 35.0, 35.4, 49.6, 121.6, 123.7, 125.4, 137.4, 142.0, 152.2. 
元素分析:計算値(C38H60O2S2)C, 74.45%; H, 9.87%.
実測値: C, 74.39%; H, 10.09%.
(Reference Example 4)
Synthesis of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclooctane 2.18 g (12.4 mmol) of trans-cyclooctane-1,2-dithiol and odor under argon atmosphere 7.55 g (25.1 mmol) of 3,5-di-t-butyl-2-hydroxybenzyl was dissolved in 80 mL of tetrahydrofuran and cooled to 0 ° C. Triethylamine 3.5mL (24.9mmol) was added there, and it stirred at 0 degreeC for 1 hour and room temperature all night. The formed precipitate was removed by filtration, and the filtrate was concentrated under reduced pressure. Ether and saturated aqueous ammonium chloride solution were added to the resulting residue, and the ether layer was washed with water and dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent hexane-dichloromethane 1: 1) to obtain 6.74 g (yield 89%) of the title compound as colorless crystals.
Melting point: 122-123 ° C (recrystallized from hexane)
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.12-1.94 (m, 48 H), 2.63-2.65 (m, 2 H), 3.81 (d, J = 13 Hz, 2 H), 3.90 (d, J = 13 Hz, 2 H), 6.92 (d, J = 2 Hz, 2 H), 6.95 (s, 2 H), 7.26 (d, J = 2 Hz, 2 H).
13 C-NMR (100.7 MHz, δ, CDCl 3 )
25.7, 25.8, 29.8, 31.2, 31.6, 34.2, 35.0, 35.4, 49.6, 121.6, 123.7, 125.4, 137.4, 142.0, 152.2.
Elemental analysis: calculated (C 38 H 60 O 2 S 2 ) C, 74.45%; H, 9.87%.
Found: C, 74.39%; H, 10.09%.
(参考例5)
[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウムの合成
 以下の実験はアルゴン雰囲気のグローブボックス中で行った。50mLのシュレンク管中、trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロオクタン 207 mg(0.336 mmol)をトルエン10 mLに溶かし、この溶液に室温でテトラベンジルジルコニウム153 mg(0.336 mmol)のトルエン溶液10 mLを滴下し、さらに1時間撹拌した。トルエンを減圧下留去し、残渣をヘキサン2 mLで洗浄後乾燥し、無色結晶として表題化合物216 mg(収率76%)を得た。
融点:181-183℃ 分解
1H-NMR (400 MHz,δ, ppm, C6D6)
1.16-1.80 (m, 48H), 2.16 (d, J = 10 Hz, 2H), 2.42 (m, 2H), 2.78 (d, J = 10 Hz, 2H), 3.16 (d, J = 14 Hz, 2H), 3.50 (d, J = 14 Hz, 2H), 6.61 (d, J = 2 Hz, 2H), 6.90 (t, J = 8 Hz, 2H), 7.09 (t, J = 8 Hz, 4H), 7.25 (t, J = 8 Hz, 4H), 7.52 (d, J = 2 Hz, 2H). 
13C-NMR (100.4 MHz,δ, ppm, C6D6
25.2, 26.1, 28.6, 30.6, 31.7, 34.2, 34.8, 35.7, 48.7, 64.0, 122.0, 123.1, 124.3, 126.2, 128.5, 128.7, 129.6, 140.9, 145.8, 158.0. 
元素分析:計算値(C52H72O2S2Zr)C, 70.61%; H, 8.21%.
実測値:C, 70.54%; H, 8.31%.
(Reference Example 5)
Synthesis of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylzirconium The following experiment was performed in a glove box under an argon atmosphere. In a 50 mL Schlenk tube, 207 mg (0.336 mmol) of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclooctane was dissolved in 10 mL of toluene, and this solution was dissolved at room temperature. 10 mL of a toluene solution of tetrabenzylzirconium 153 mg (0.336 mmol) was added dropwise, and the mixture was further stirred for 1 hour. Toluene was distilled off under reduced pressure, and the residue was washed with 2 mL of hexane and dried to obtain 216 mg (yield 76%) of the title compound as colorless crystals.
Melting point: 181-183 ° C decomposition
1 H-NMR (400 MHz, δ, ppm, C 6 D 6 )
1.16-1.80 (m, 48H), 2.16 (d, J = 10 Hz, 2H), 2.42 (m, 2H), 2.78 (d, J = 10 Hz, 2H), 3.16 (d, J = 14 Hz, 2H ), 3.50 (d, J = 14 Hz, 2H), 6.61 (d, J = 2 Hz, 2H), 6.90 (t, J = 8 Hz, 2H), 7.09 (t, J = 8 Hz, 4H), 7.25 (t, J = 8 Hz, 4H), 7.52 (d, J = 2 Hz, 2H).
13 C-NMR (100.4 MHz, δ, ppm, C 6 D 6 )
25.2, 26.1, 28.6, 30.6, 31.7, 34.2, 34.8, 35.7, 48.7, 64.0, 122.0, 123.1, 124.3, 126.2, 128.5, 128.7, 129.6, 140.9, 145.8, 158.0.
Elemental analysis: calculated (C 52 H 72 O 2 S 2 Zr) C, 70.61%; H, 8.21%.
Found: C, 70.54%; H, 8.31%.
(参考例6)
trans-1,2-ビス(5-tert-ブチル-3-クミル-2-ヒドロキシベンジルスルファニル)シクロオクタンの合成
(1)4-tert-ブチル-2-クミルフェノールの合成
 窒素置換した200 mL二口フラスコに4-tert-ブチルフェノール12.7 g(84.6 mmol)、α-メチルスチレン 5.5 mL(42 mmol)およびシクロヘキサン100 mLを加え、50 ℃まで昇温した。ここに、p-トルエンスルホン酸 73 mg(0.42 mmol)を加え、4時間撹拌した。反応溶液を室温まで冷却した後、水とジクロロメタンを加えた。有機層を無水硫酸マグネシウムで乾燥後、減圧下揮発成分を留去した。得られた無色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 ジクロロメタン:ヘプタン=1:3)で精製することで4-tert-ブチル-2-クミルフェノール 8.06 g(収率 71%)を無色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.35 (s, 9H), 1.69 (s, 6H), 4.17(s, 1H), 6.68 (d, J = 8 Hz, 1H), 7.19 (dd, J = 2 Hz, 8 Hz, 1H), 7.2~7.3 (5H), 7.48 (d, J = 2 Hz, 1H).
13C{1H}-NMR (100.4 MHz,δ, ppm, CDCl3)
29.6, 31.6, 34.3, 41.8, 117.1, 123.1, 124.7, 126.0, 126.9, 129.1, 134.5, 143.1, 148.5, 151.4
(2)4-tert-ブチル-6-クミル-2-ヒドロキシメチルフェノールの合成
 窒素置換した200mL二口フラスコに4-tert-ブチル-2-クミルフェノール7.25 g(23.3 mmol,純度86.3%)、塩化マグネシウム4.44 g(46.6 mmol)、パラホルムアルデヒド3.50 g(117 mmol)およびテトラヒドロフラン145 mLを加えた。ここにトリエチルアミン6.5 mL(47 mmol)を加え、3時間加熱還流した。反応溶液を室温まで放冷した後、不溶物を濾過した。濾液から減圧下揮発成分を留去した後、残渣に酢酸エチルと水を加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下溶媒を留去することで、5-tert-ブチル-3-クミルサリチルアルデヒド(純度79.9%, 収率93%)を含む混合物8.05 gを得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.42 (s, 9H), 1.74(s, 6H), 7.1~7.4(5H), 7.39 (d, J = 2 Hz, 1H), 7.74 (d, J = 2 Hz, 1H), 9.81 (s, 1H), 11.2 (s, 1H)
 窒素置換した100 mLフラスコに上記混合物 8.05 gとテトラヒドロフラン40 mLおよびメタノール40 mLを加え、氷冷した。ここに水素化ホウ素ナトリウム 340 mg(8.97 mmol)をゆっくり加え、室温まで昇温後、7時間撹拌した。反応溶液から減圧下揮発成分を留去した後、水と酢酸エチルを加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。得られた無色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:15~1:5)で精製することで4-tert-ブチル-6-クミル-2-ヒドロキシメチルフェノール4.88 g(収率 75%)を無色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.34 (s, 9H), 1.70 (s, 6H), 2.16 (t, J = 6 Hz, 1H), 4.65 (d, J = 6 Hz, 2H), 5.56 (s,1H),7.09 (d, J = 2 Hz, 1H), 7.2~7.4(5H), 7.45 (d, J = 2 Hz, 1H).
(3)臭化 5-tert-ブチル-3-クミル-2-ヒドロキシベンジルの合成
 窒素置換した50 mLシュレンクに4-tert-ブチル-6-クミル-2-ヒドロキシメチルフェノール4.88 g(16.4 mmol)とジクロロメタン24 mLを加えた。ここに、三臭化リン8.2 mL(1.0 M ジクロロメタン溶液, 8.2 mmol)を加え室温で、1.5時間撹拌した。反応溶液に水を加え、有機層をさらに水で2回洗浄した後、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧下揮発成分を留去することで、臭化 5-tert-ブチル-3-クミル-2-ヒドロキシベンジル5.76 g(収率 98%)を無色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.35 (s, 9H), 1.69 (s, 6H), 4.47 (s, 2H), 7.24 (d, J = 2 Hz, 1H), 7.2~7.4(5H), 7.48 (d, J = 2 Hz, 1H).
(4)trans-1,2-ビス(5-tert-ブチル-3-クミル-2-ヒドロキシベンジルスルファニル)シクロオクタンの合成
 窒素置換した100 mL二口フラスコに臭化 5-tert-ブチル-3-クミル-2-ヒドロキシベンジル2.85 g(7.89 mmol)とtrans-シクロオクタン-1,2-ジチオール 7.6 mL(0.5 M テトラヒドロフラン溶液, 3.8 mmol)とテトラヒドロフラン 21 mLを加え、氷冷した。ここに、トリエチルアミン1.1 mL(7.9 mmol)を加え、0℃で1時間、室温で2時間撹拌した。反応溶液から減圧下揮発成分を留去した後、酢酸エチルと塩化アンモニウム水溶液を加えた。有機層を水、飽和食塩水の順で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒 ジクロロメタン:へキサン=1:1)で精製することで、trans-1,2-ビス(5-tert-ブチル-3-クミル-2-ヒドロキシベンジルスルファニル)シクロオクタンとtrans-1-(5-tert-ブチル-3-クミル-2-ヒドロキシベンジルスルファニル)-2-スルファニルシクロオクタンの2:1混合物2.26 gを得た。この混合物をテトラヒドロフラン4 mLに溶解し、臭化5-tert-ブチル-3-クミル-2-ヒドロキシベンジル0.42 g(1.2 mmol)およびトリエチルアミン0.2 mL(1.4 mmol)を室温で加えた。2時間撹拌後、減圧下揮発成分を留去した。得られた反応混合物に酢酸エチルと塩化アンモニウム水溶液を加え、有機層をさらに水、飽和食塩水の順で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られたオイルをシリカゲルカラムクロマトグラフィー(展開溶媒 ジクロロメタン:へキサン=1:1)で精製することで、trans-1,2-ビス(5-tert-ブチル-3-クミル-2-ヒドロキシベンジルスルファニル)シクロオクタン2.30 g(収率 89%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.35 (s, 18H), 1.68(s, 6H), 1.69 (s, 6H), 1.13~1.79 (m, 12H), 2.55 (m, 2H), 3.64 (d, J = 14 Hz, 2H), 3.68 (d, J = 14 Hz, 2H), 5.77 (s, 2H), 7.03 (d, J = 2 Hz, 2H), 7.13~7.26 (10H), 7.39 (d, J = 2 Hz, 2H).
13C{1H}-NMR (100.4 MHz,δ, ppm, CDCl3)
25.8, 25.9, 29.4, 30.0, 31.0, 31.6, 34.0, 34.3, 42.1, 49.9, 123.1, 123.4, 125.67, 125.74, 126.0, 128.2, 136.1, 142.1, 150.2, 150.8.
(Reference Example 6)
Synthesis of trans-1,2-bis (5-tert-butyl-3-cumyl-2-hydroxybenzylsulfanyl) cyclooctane (1) Synthesis of 4-tert-butyl-2-cumylphenol 200 mL 4-Tert-butylphenol 12.7 g (84.6 mmol), α-methylstyrene 5.5 mL (42 mmol) and cyclohexane 100 mL were added to the neck flask, and the temperature was raised to 50 ° C. To this, 73 mg (0.42 mmol) of p-toluenesulfonic acid was added and stirred for 4 hours. After the reaction solution was cooled to room temperature, water and dichloromethane were added. The organic layer was dried over anhydrous magnesium sulfate, and the volatile component was distilled off under reduced pressure. The resulting colorless oil is purified by silica gel column chromatography (developing solvent: dichloromethane: heptane = 1: 3) to give 8.06 g (yield 71%) of 4-tert-butyl-2-cumylphenol as a colorless oil. It was.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.35 (s, 9H), 1.69 (s, 6H), 4.17 (s, 1H), 6.68 (d, J = 8 Hz, 1H), 7.19 (dd, J = 2 Hz, 8 Hz, 1H), 7.2 ~ 7.3 (5H), 7.48 (d, J = 2 Hz, 1H).
13 C { 1 H} -NMR (100.4 MHz, δ, ppm, CDCl 3 )
29.6, 31.6, 34.3, 41.8, 117.1, 123.1, 124.7, 126.0, 126.9, 129.1, 134.5, 143.1, 148.5, 151.4
(2) Synthesis of 4-tert-butyl-6-cumyl-2-hydroxymethylphenol In a 200 mL two-necked flask purged with nitrogen, 7.25 g (23.3 mmol, purity 86.3%) of 4-tert-butyl-2-cumylphenol, Magnesium chloride 4.44 g (46.6 mmol), paraformaldehyde 3.50 g (117 mmol) and tetrahydrofuran 145 mL were added. Triethylamine 6.5 mL (47 mmol) was added here, and it heated and refluxed for 3 hours. The reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After evaporating volatile components from the filtrate under reduced pressure, ethyl acetate and water were added to the residue. The organic layer was washed with 1 M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 8.05 g of a mixture containing 5-tert-butyl-3-cumylsalicylaldehyde (purity 79.9%, yield 93%).
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.42 (s, 9H), 1.74 (s, 6H), 7.1 to 7.4 (5H), 7.39 (d, J = 2 Hz, 1H), 7.74 (d, J = 2 Hz, 1H), 9.81 (s, 1H ), 11.2 (s, 1H)
To a 100 mL flask purged with nitrogen, 8.05 g of the above mixture, 40 mL of tetrahydrofuran and 40 mL of methanol were added, and the mixture was ice-cooled. Sodium borohydride 340 mg (8.97 mmol) was slowly added here, and it heated up to room temperature, and stirred for 7 hours. After distilling off volatile components from the reaction solution under reduced pressure, water and ethyl acetate were added. The organic layer was washed with 1 M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The obtained colorless oil was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 15 to 1: 5) to give 4.88 g of 4-tert-butyl-6-cumyl-2-hydroxymethylphenol ( Yield 75%) was obtained as a colorless oil.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.34 (s, 9H), 1.70 (s, 6H), 2.16 (t, J = 6 Hz, 1H), 4.65 (d, J = 6 Hz, 2H), 5.56 (s, 1H), 7.09 (d, J = 2 Hz, 1H), 7.2 to 7.4 (5H), 7.45 (d, J = 2 Hz, 1H).
(3) Synthesis of 5-tert-butyl-3-cumyl-2-hydroxybenzyl bromide Nitrogen-substituted 50 mL Schlenk was charged with 4.88 g (16.4 mmol) of 4-tert-butyl-6-cumyl-2-hydroxymethylphenol. Dichloromethane 24 mL was added. To this, 8.2 mL of phosphorus tribromide (1.0 M dichloromethane solution, 8.2 mmol) was added and stirred at room temperature for 1.5 hours. Water was added to the reaction solution, and the organic layer was further washed twice with water and then with saturated brine. The organic layer was dried over anhydrous magnesium sulfate, and volatile components were distilled off under reduced pressure to obtain 5.76 g (98% yield) of 5-tert-butyl-3-cumyl-2-hydroxybenzyl bromide as a colorless oil. It was.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.35 (s, 9H), 1.69 (s, 6H), 4.47 (s, 2H), 7.24 (d, J = 2 Hz, 1H), 7.2 to 7.4 (5H), 7.48 (d, J = 2 Hz, 1H ).
(4) Synthesis of trans-1,2-bis (5-tert-butyl-3-cumyl-2-hydroxybenzylsulfanyl) cyclooctane 5-tert-butyl-3-bromide bromide in a nitrogen-substituted 100 mL two-necked flask Cumyl-2-hydroxybenzyl 2.85 g (7.89 mmol), trans-cyclooctane-1,2-dithiol 7.6 mL (0.5 M tetrahydrofuran solution, 3.8 mmol) and tetrahydrofuran 21 mL were added, and the mixture was ice-cooled. Triethylamine 1.1 mL (7.9 mmol) was added here, and it stirred at 0 degreeC for 1 hour, and 2 hours at room temperature. After the volatile components were distilled off from the reaction solution under reduced pressure, ethyl acetate and an aqueous ammonium chloride solution were added. The organic layer was washed with water and saturated brine in that order, and then dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, it was purified by silica gel column chromatography (developing solvent: dichloromethane: hexane = 1: 1) to obtain trans-1,2-bis (5-tert-butyl-3-cumyl-2 There was obtained 2.26 g of a 2: 1 mixture of -hydroxybenzylsulfanyl) cyclooctane and trans-1- (5-tert-butyl-3-cumyl-2-hydroxybenzylsulfanyl) -2-sulfanylcyclooctane. This mixture was dissolved in 4 mL of tetrahydrofuran, and 0.42 g (1.2 mmol) of 5-tert-butyl-3-cumyl-2-hydroxybenzyl bromide and 0.2 mL (1.4 mmol) of triethylamine were added at room temperature. After stirring for 2 hours, volatile components were distilled off under reduced pressure. Ethyl acetate and aqueous ammonium chloride solution were added to the obtained reaction mixture, and the organic layer was further washed with water and saturated brine in this order. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The obtained oil was purified by silica gel column chromatography (developing solvent: dichloromethane: hexane = 1: 1) to obtain trans-1,2-bis (5-tert-butyl-3-cumyl-2-hydroxybenzylsulfanyl) ) 2.30 g (89% yield) of cyclooctane was obtained as a white solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.35 (s, 18H), 1.68 (s, 6H), 1.69 (s, 6H), 1.13 to 1.79 (m, 12H), 2.55 (m, 2H), 3.64 (d, J = 14 Hz, 2H), 3.68 (d, J = 14 Hz, 2H), 5.77 (s, 2H), 7.03 (d, J = 2 Hz, 2H), 7.13 to 7.26 (10H), 7.39 (d, J = 2 Hz, 2H).
13 C { 1 H} -NMR (100.4 MHz, δ, ppm, CDCl 3 )
25.8, 25.9, 29.4, 30.0, 31.0, 31.6, 34.0, 34.3, 42.1, 49.9, 123.1, 123.4, 125.67, 125.74, 126.0, 128.2, 136.1, 142.1, 150.2, 150.8.
(参考例7)
[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-3-クミル-2-オキソイルベンジルスルファニル)]ジベンジルジルコニウムの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス(5-tert-ブチル-3-クミル-2-ヒドロキシベンジルスルファニル)シクロオクタン 200 mg(0.27 mmol)のトルエン(5 mL)溶液に、テトラベンジルジルコニウム124 mg(0.27 mmol)のトルエン(5 mL)溶液を室温で滴下した。1時間後、反応溶液を濾過し、濾液から減圧下揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下乾燥することで、[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-3-クミル-2-オキソイルベンジルスルファニル)]ジベンジルジルコニウム 121 mg (収率 44%)を黄色粉末として得た。
1H-NMR (400 MHz,δ, ppm, トルエン-d8)
0.79~1.8 (m, 12H), 1.23 (s, 18H), 1.84 (s, 6H), 1.99 (s, 6H), 2.03 (d, J = 10 HZ), 2.29 (m, 2H), 3.11 (d, J = 14 Hz, 2H), 3.41 (d, J = 14 Hz, 2H), 6.49 (d, J = 8 Hz, 4H), 6.63 (d, J = 2 Hz, 2H), 6.85 (t, J = 8 Hz, 2H), 7.0-7.1 (4H), 7.16 (t, J = 8 Hz, 2H), 7.25 (t, J = 8 Hz, 4H), 7.34 (d, J = 8 Hz, 4H), 7.44 (d, J = 2 Hz, 2H).
(Reference Example 7)
Synthesis of [cyclooctanediyl-trans-1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] dibenzylzirconium Trans in a 50 mL Schlenk tube in a glove box under nitrogen atmosphere To a solution of 1,2-bis (5-tert-butyl-3-cumyl-2-hydroxybenzylsulfanyl) cyclooctane 200 mg (0.27 mmol) in toluene (5 mL), tetrabenzylzirconium 124 mg (0.27 mmol) A toluene (5 mL) solution was added dropwise at room temperature. After 1 hour, the reaction solution was filtered, and volatile components were removed from the filtrate under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to give [cyclooctanediyl-trans-1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] dibenzyl Zirconium (121 mg, yield 44%) was obtained as a yellow powder.
1 H-NMR (400 MHz, δ, ppm, toluene-d 8 )
0.79-1.8 (m, 12H), 1.23 (s, 18H), 1.84 (s, 6H), 1.99 (s, 6H), 2.03 (d, J = 10 HZ), 2.29 (m, 2H), 3.11 (d , J = 14 Hz, 2H), 3.41 (d, J = 14 Hz, 2H), 6.49 (d, J = 8 Hz, 4H), 6.63 (d, J = 2 Hz, 2H), 6.85 (t, J = 8 Hz, 2H), 7.0-7.1 (4H), 7.16 (t, J = 8 Hz, 2H), 7.25 (t, J = 8 Hz, 4H), 7.34 (d, J = 8 Hz, 4H), 7.44 (d, J = 2 Hz, 2H).
(参考例8)
[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-3-クミル-2-オキソイルベンジルスルファニル)]ジベンジルハフニウムの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス(5-tert-ブチル-3-クミル-2-ヒドロキシベンジルスルファニル)シクロオクタン 200 mg(0.27 mmol)のトルエン(5 mL)溶液に、テトラベンジルハフニウム147 mg(0.27 mmol)のトルエン(5 mL)溶液を室温で滴下した。1時間後、反応溶液を濾過し、濾液から減圧下揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下乾燥することで、[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-3-クミル-2-オキソイルベンジルスルファニル)]ジベンジルハフニウム 215 mg (収率 72%)を白色粉末として得た。
1H-NMR (400 MHz,δ, ppm, トルエン-d8)
0.86~1.4 (m, 12H), 1.20 (s, 18H), 1.44 (d, J = 12 Hz, 2H), 1.85 (d, J = 12 Hz, 2H), 1.92 (s, 6H), 1.94 (s, 6H), 2.21 (m, 2H), 3.04 (d, J = 14 Hz, 2H), 3.13 (d, J = 14 Hz, 2H), 6.62 (d, J = 8 Hz, 2H), 6.74 (t, J = 8 Hz, 2H), 6.89 (d, J = 8 Hz, 4H), 7.05-7.16 (4H), 7.25 (t, J = 8 Hz, 4H), 7.40 (d, J = 8 Hz, 4H), 7.52 (d, J = 2 Hz, 2H).
(Reference Example 8)
Synthesis of [cyclooctanediyl-trans-1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] dibenzylhafnium trans in 50 mL Schlenk tube in a glove box under nitrogen To a solution of 1,2-bis (5-tert-butyl-3-cumyl-2-hydroxybenzylsulfanyl) cyclooctane 200 mg (0.27 mmol) in toluene (5 mL), tetrabenzylhafnium 147 mg (0.27 mmol) was added. A toluene (5 mL) solution was added dropwise at room temperature. After 1 hour, the reaction solution was filtered, and volatile components were removed from the filtrate under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to obtain [cyclooctanediyl-trans-1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] dibenzyl Hafnium 215 mg (yield 72%) was obtained as a white powder.
1 H-NMR (400 MHz, δ, ppm, toluene-d 8 )
0.86 to 1.4 (m, 12H), 1.20 (s, 18H), 1.44 (d, J = 12 Hz, 2H), 1.85 (d, J = 12 Hz, 2H), 1.92 (s, 6H), 1.94 (s , 6H), 2.21 (m, 2H), 3.04 (d, J = 14 Hz, 2H), 3.13 (d, J = 14 Hz, 2H), 6.62 (d, J = 8 Hz, 2H), 6.74 (t , J = 8 Hz, 2H), 6.89 (d, J = 8 Hz, 4H), 7.05-7.16 (4H), 7.25 (t, J = 8 Hz, 4H), 7.40 (d, J = 8 Hz, 4H ), 7.52 (d, J = 2 Hz, 2H).
(参考例9)
MAO/SiOの合成
 窒素置換した攪拌機付きの50リットルの反応器に、固体状担体として窒素流通下で300℃において加熱処理したシリカ(デビソン社製 Sylopol948;平均粒径=55μm;細孔容量=1.67ml/g;比表面積=325m2/g)9.68kgを入れた。トルエンを100リットル加えた後、2℃に冷却した。これにメチルアルモキサンのトルエン溶液(東ソー・ファインケム社製)(2.9M)26.3リットルを1時間かけて滴下した。5℃にて30分間攪拌した後、90分間かけて95℃まで加熱し、4時間攪拌した。その後40℃へ冷却した後、40分間静置し、固体成分を沈降させ、上層のスラリー部分を取り除いた。洗浄操作として、これに、トルエン100リットルを加え、10分間攪拌した後、攪拌を停止して静置し固体成分を沈降させ、同様に上層のスラリー部分を取り除いた。以上の洗浄操作を計3回繰り返した。さらに、トルエン100リットルを加え、攪拌を行った後、攪拌を止めると同時にろ過した。この操作をもう1回繰り返した後、ヘキサン110リットルを加え、同様の方法にてろ過した。この操作をもう一度繰り返した。その後、窒素流通下70℃で7時間乾燥してMAO/SiO12.6kgを得た。元素分析の結果、Al=4.4mmol/gであった。
(Reference Example 9)
Synthesis of MAO / SiO 2 Silica (Sypolol 948 manufactured by Devison Corp .; average particle size = 55 μm; pore volume = silica) heat-treated at 300 ° C. under nitrogen flow as a solid support in a 50-liter reactor equipped with a nitrogen-substituted stirrer 1.67 ml / g; specific surface area = 325 m 2 / g) 9.68 kg was added. After adding 100 liters of toluene, it was cooled to 2 ° C. To this, 26.3 liters of a toluene solution of methylalumoxane (manufactured by Tosoh Finechem) (2.9M) was added dropwise over 1 hour. After stirring at 5 ° C. for 30 minutes, the mixture was heated to 95 ° C. over 90 minutes and stirred for 4 hours. After cooling to 40 ° C., the mixture was allowed to stand for 40 minutes to allow the solid component to settle, and the upper slurry portion was removed. As a washing operation, 100 liters of toluene was added thereto, and the mixture was stirred for 10 minutes. Then, the stirring was stopped and the mixture was allowed to stand to settle the solid component. Similarly, the upper slurry portion was removed. The above washing operation was repeated 3 times in total. Furthermore, after adding 100 liters of toluene and stirring, it filtered simultaneously with stopping stirring. After repeating this operation once more, 110 liters of hexane was added, followed by filtration in the same manner. This operation was repeated once more. Then, to obtain a MAO / SiO 2 12.6 kg was dried for 7 hours in a nitrogen flow under 70 ° C.. As a result of elemental analysis, it was Al = 4.4 mmol / g.
(参考例10)
[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル)]ジクロロハフニウムの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス(5-tert-ブチル-2-ヒドロキシ-3-(トリフェニルメチル)ベンジルスルファニル)シクロオクタン 0.40 g(0.41 mmol)のトルエン(4 mL)溶液に、ジクロロジベンジルハフニウム・ジエチルエーテル錯体 0.21 g(0.41 mmol)のトルエン(4 mL)溶液を室温で滴下した。6時間後、反応溶液を濾過し、濾液から減圧下揮発成分を留去した。得られた残渣をヘキサンで洗浄後、ジエチルエーテル/ヘキサン混合溶媒に溶解した。減圧下濃縮した後、ヘキサンを加え3日間室温で静置した。析出した固体を回収し、減圧下乾燥させることで、[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル)]ジクロロハフニウム 0.31 g (収率 62%)を白色粉末として得た。
1H NMR (500 MHz,δ, ppm, CDCl3)
0.50-1.6 (m, 30H), 1.83 (brs, 2H), 3.44 (d, J = 14 Hz, 2H), 3.98 (d, J = 14 Hz, 2H), 6.7-7.4 (m, 34H).
(Reference Example 10)
Synthesis of [cyclooctanediyl-trans-1,2-bis (5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl)] dichlorohafnium 50 mL Schlenk tube in a glove box under nitrogen atmosphere Trans-1,2-bis (5-tert-butyl-2-hydroxy-3- (triphenylmethyl) benzylsulfanyl) cyclooctane in a solution of 0.40 g (0.41 mmol) in toluene (4 mL) with dichlorodibenzylhafnium -A solution of 0.21 g (0.41 mmol) of diethyl ether complex in toluene (4 mL) was added dropwise at room temperature. After 6 hours, the reaction solution was filtered, and volatile components were removed from the filtrate under reduced pressure. The obtained residue was washed with hexane and then dissolved in a mixed solvent of diethyl ether / hexane. After concentration under reduced pressure, hexane was added and the mixture was allowed to stand at room temperature for 3 days. The precipitated solid was collected and dried under reduced pressure to obtain [cyclooctanediyl-trans-1,2-bis (5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl)] dichlorohafnium 0.31 g (62% yield) was obtained as a white powder.
1 H NMR (500 MHz, δ, ppm, CDCl 3 )
0.50-1.6 (m, 30H), 1.83 (brs, 2H), 3.44 (d, J = 14 Hz, 2H), 3.98 (d, J = 14 Hz, 2H), 6.7-7.4 (m, 34H).
(参考例11)
trans-1,2-ビス(5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシベンジルスルファニル)シクロオクタンの合成
(1)4-tert-ブチル-2-(3, 5-ジメチル-1-アダマンチル)フェノールの合成
 窒素置換した50 mLシュレンクに4-tert-ブチルフェノール3.3 g(22 mmol)、 3,5-ジメチル-1-アダマンタノール 4.0 g(22 mmol)およびジクロロメタン20 mLを加え、氷浴で0 ℃まで冷却した。ここに硫酸 1.2 mL(22 mmol)を加え、室温で1時間撹拌した。反応溶液を炭酸水素ナトリウム水溶液に注いだ。有機層を無水硫酸マグネシウムで乾燥後、減圧下揮発成分を留去した。得られた白色固体をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:10)で精製することで4-tert-ブチル-2-(3, 5-ジメチル-1-アダマンチル)フェノール 4.0 g(収率 59%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.874 (s, 6H), 1.20 (s, 2H), 1.29 (s, 9H), 1.35~1.45 (m, 4H), 1.70~1.78 (m, 4H), 1.95 (m,2H), 2.17 (m, 1H), 4.56 (s, 1H), 6.56 (d, J = 8 Hz, 1H), 7.06 (dd, J = 2 Hz, 8 Hz, 1H), 7.2~7.3 (1H), 7.24 (d, J = 2 Hz, 1H).
(2)4-tert-ブチル-6-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシメチルフェノールの合成
 窒素置換した100mL二口フラスコに4-tert-ブチル-2-(3, 5-ジメチル-1-アダマンチル)フェノール4.0 g(13 mmol,)、塩化マグネシウム4.8 g(50 mmol)、パラホルムアルデヒド2.1 g(70 mmol)およびテトラヒドロフラン50 mLを加えた。ここにトリエチルアミン6.7 mL(48 mmol)を加え、3時間加熱還流した。反応溶液を室温まで放冷した後、不溶物を濾過した。濾液から減圧下揮発成分を留去した後、残渣に酢酸エチルと水を加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下溶媒を留去することで、5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)サリチルアルデヒド(収率96%)を含む混合物4.2 gを得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.874 (s, 6H), 1.2~2.2 (m, 22H), 7.32 (d, J = 2 Hz, 1H), 7.53 (d, J = 2 Hz, 1H), 9.85 (s, 1H), 11.7 (s, 1H).
 窒素置換した100 mLフラスコに上記混合物 4.2 gとテトラヒドロフラン20 mLおよびメタノール20 mLを加え、氷冷した。ここに水素化ホウ素ナトリウム 490 mg(13 mmol)をゆっくり加え、室温まで昇温後、1時間撹拌した。反応溶液から減圧下揮発成分を留去した後、水と酢酸エチルを加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。得られた無色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:10~1:5)で精製することで4-tert-ブチル-6-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシメチルフェノール3.4 g(収率 81%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.875 (s, 6H), 1.2~2.2 (m, 23H), 4.85 (d, J = 5 Hz, 2H), 6.88 (d, J = 2 Hz, 1H), 7.22 (d, J = 2 Hz, 1H), 7.55 (s, 1H).
(3)臭化 5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシベンジルの合成
 窒素置換した200 mLフラスコに4-tert-ブチル-6-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシメチルフェノール3.4 g(9.9 mmol)とジクロロメタン20 mLを加えた。ここに、三臭化リン6.6 mL(1.0 M ジクロロメタン溶液, 6.6 mmol)を加え室温で、1時間撹拌した。反応溶液に水を加え、有機層をさらに水で2回洗浄した後、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧下揮発成分を留去することで、臭化 5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシベンジル3.95 g(収率 98%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.882 (s, 6H), 1.22 (s, 2H), 1.28 (s, 9H), 1.35~1.45 (m, 4H), 1.70~1.78 (m, 4H), 1.96 (m,2H), 2.19 (m, 1H), 4.57 (s, 1H), 7.08 (d, J = 2 Hz, 1H), 7.27 (d, J = 2 Hz, 1H).
(4)trans-1,2-ビス(5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシベンジルスルファニル)シクロオクタンの合成
 窒素置換した50 mLシュレンクに臭化 5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシベンジル1.0 g(2.5 mmol)とtrans-シクロオクタン-1,2-ジチオール 0.18 g(1.0 mmol)とテトラヒドロフラン 7 mLを加え、氷冷した。ここに、トリエチルアミン 0.7 mL(5.0 mmol)を加え、0℃で1時間、室温で2時間撹拌した。さらに臭化 5-tert-ブチル-2-ヒドロキシ-3-(3, 5-ジメチル-1-アダマンチル)ベンジル0.05 g(0.013 mmol)を加え、室温で1時間攪拌した。反応溶液から減圧下揮発成分を留去した後、酢酸エチルと塩化アンモニウム水溶液を加えた。有機層を水、飽和食塩水の順で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:10)で精製することで、trans-1,2-ビス(5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシベンジルスルファニル)シクロオクタン1.0 g(収率 >99%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.88 (s, 12H), 1.2~2.2 (m, 56H), 2.59 (m, 2H), 3.77 (d, J = 14 Hz, 2H), 3.87 (d, J = 14 Hz, 2H), 6.89 (d, J = 2 Hz, 2H), 7.19 (d, J = 2 Hz, 2H).
(Reference Example 11)
Synthesis of trans-1,2-bis (5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-hydroxybenzylsulfanyl) cyclooctane (1) 4-tert-butyl-2- ( Synthesis of 3,5-dimethyl-1-adamantyl) phenol Nitrogen-substituted 50 mL Schlenk with 4-tert-butylphenol 3.3 g (22 mmol), 3,5-dimethyl-1-adamantanol 4.0 g (22 mmol) and dichloromethane 20 mL was added and cooled to 0 ° C. in an ice bath. Sulfuric acid 1.2 mL (22 mmol) was added here, and it stirred at room temperature for 1 hour. The reaction solution was poured into an aqueous sodium bicarbonate solution. The organic layer was dried over anhydrous magnesium sulfate, and the volatile component was distilled off under reduced pressure. The obtained white solid was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10) to give 4.0 g of 4-tert-butyl-2- (3,5-dimethyl-1-adamantyl) phenol ( Yield 59%) was obtained as a white solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.874 (s, 6H), 1.20 (s, 2H), 1.29 (s, 9H), 1.35 to 1.45 (m, 4H), 1.70 to 1.78 (m, 4H), 1.95 (m, 2H), 2.17 (m, 1H), 4.56 (s, 1H), 6.56 (d, J = 8 Hz, 1H), 7.06 (dd, J = 2 Hz, 8 Hz, 1H), 7.2 to 7.3 (1H), 7.24 (d, J = (2 Hz, 1H).
(2) Synthesis of 4-tert-butyl-6- (3,5-dimethyl-1-adamantyl) -2-hydroxymethylphenol 4-tert-butyl-2- (3, 5 -Dimethyl-1-adamantyl) phenol 4.0 g (13 mmol), magnesium chloride 4.8 g (50 mmol), paraformaldehyde 2.1 g (70 mmol) and tetrahydrofuran 50 mL were added. Triethylamine 6.7 mL (48 mmol) was added here, and it heated and refluxed for 3 hours. The reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After evaporating volatile components from the filtrate under reduced pressure, ethyl acetate and water were added to the residue. The organic layer was washed with 1 M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 4.2 g of a mixture containing 5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) salicylaldehyde (yield 96%).
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.874 (s, 6H), 1.2-2.2 (m, 22H), 7.32 (d, J = 2 Hz, 1H), 7.53 (d, J = 2 Hz, 1H), 9.85 (s, 1H), 11.7 (s , 1H).
4.2 g of the above mixture, 20 mL of tetrahydrofuran and 20 mL of methanol were added to a 100 mL flask purged with nitrogen, and the mixture was ice-cooled. 490 mg (13 mmol) of sodium borohydride was slowly added here, and it heated up to room temperature, and stirred for 1 hour. After distilling off volatile components from the reaction solution under reduced pressure, water and ethyl acetate were added. The organic layer was washed with 1 M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The resulting colorless oil was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10-1: 5) to give 4-tert-butyl-6- (3,5-dimethyl-1-adamantyl) ) -2-hydroxymethylphenol (3.4 g, yield 81%) was obtained as a white solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.875 (s, 6H), 1.2-2.2 (m, 23H), 4.85 (d, J = 5 Hz, 2H), 6.88 (d, J = 2 Hz, 1H), 7.22 (d, J = 2 Hz, 1H ), 7.55 (s, 1H).
(3) Synthesis of 5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-hydroxybenzyl bromide In a 200 mL flask purged with nitrogen, 4-tert-butyl-6- (3, 5 -Dimethyl-1-adamantyl) -2-hydroxymethylphenol 3.4 g (9.9 mmol) and dichloromethane 20 mL were added. To this was added 6.6 mL of phosphorus tribromide (1.0 M dichloromethane solution, 6.6 mmol), and the mixture was stirred at room temperature for 1 hour. Water was added to the reaction solution, and the organic layer was further washed twice with water and then with saturated brine. After drying the organic layer over anhydrous magnesium sulfate, the volatile component was distilled off under reduced pressure to give 3.95 g of 5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-hydroxybenzyl bromide ( Yield 98%) as a white solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.882 (s, 6H), 1.22 (s, 2H), 1.28 (s, 9H), 1.35 to 1.45 (m, 4H), 1.70 to 1.78 (m, 4H), 1.96 (m, 2H), 2.19 (m, 1H), 4.57 (s, 1H), 7.08 (d, J = 2 Hz, 1H), 7.27 (d, J = 2 Hz, 1H).
(4) Synthesis of trans-1,2-bis (5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-hydroxybenzylsulfanyl) cyclooctane bromide into nitrogen-substituted 50 mL Schlenk 5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-hydroxybenzyl 1.0 g (2.5 mmol), trans-cyclooctane-1,2-dithiol 0.18 g (1.0 mmol) and tetrahydrofuran 7 mL was added and ice-cooled. Triethylamine 0.7 mL (5.0 mmol) was added here, and it stirred at 0 degreeC for 1 hour, and 2 hours at room temperature. Further, 0.05 g (0.013 mmol) of 5-tert-butyl-2-hydroxy-3- (3,5-dimethyl-1-adamantyl) benzyl bromide was added, and the mixture was stirred at room temperature for 1 hour. After the volatile components were distilled off from the reaction solution under reduced pressure, ethyl acetate and an aqueous ammonium chloride solution were added. The organic layer was washed with water and saturated brine in that order, and then dried over anhydrous magnesium sulfate. After evaporating the solvent under reduced pressure, the residue was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10) to obtain trans-1,2-bis (5-tert-butyl-3- (3 , 5-dimethyl-1-adamantyl) -2-hydroxybenzylsulfanyl) cyclooctane (1.0 g, yield> 99%) was obtained as a white solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.88 (s, 12H), 1.2-2.2 (m, 56H), 2.59 (m, 2H), 3.77 (d, J = 14 Hz, 2H), 3.87 (d, J = 14 Hz, 2H), 6.89 (d , J = 2 Hz, 2H), 7.19 (d, J = 2 Hz, 2H).
(参考例12)
{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3- (3, 5-ジメチル-1-アダマンチル) -2-オキソイルベンジルスルファニル]}ジクロロハフニウムの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス[5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシベンジルスルファニル]シクロオクタン 83 mg(0.10 mmol)のトルエン(1 mL)溶液に、ジクロロ{1,1’-オキシビス[エタン][ビス(フェニルメチル)ハフニウム]}51 mg(0.10 mmol)のトルエン(1 mL)溶液を室温で滴下した。1.5時間後、減圧下揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下乾燥することで、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3- (3, 5-ジメチル-1-アダマンチル) -2-オキソイルベンジルスルファニル]}ジクロロハフニウム 55 mg (収率 51%)を白色粉末として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.901 (s, 12H), 1.0~2.4 (m, 56H), 2.58 (brs, 2H), 3.88 (d, J = 14 Hz, 2H), 4.54 (d, J = 14 Hz, 2H), 6.85 (d, J = 2 Hz, 2H), 7.37 (d, J = 2 Hz, 2H).
(Reference Example 12)
Synthesis of {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-oxoylbenzylsulfanyl]} dichlorohafnium Globe under nitrogen atmosphere In a box, in a 50 mL Schlenk tube, trans-1,2-bis [5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-hydroxybenzylsulfanyl] cyclooctane 83 mg (0.10 mmol) A toluene (1 mL) solution of 51 mg (0.10 mmol) of dichloro {1,1′-oxybis [ethane] [bis (phenylmethyl) hafnium]} in a toluene (1 mL) solution at room temperature was added dropwise. After 1.5 hours, volatile components were distilled off under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to obtain {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) − 2-Oxoylbenzylsulfanyl]} dichlorohafnium 55 mg (51% yield) was obtained as a white powder.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.901 (s, 12H), 1.0-2.4 (m, 56H), 2.58 (brs, 2H), 3.88 (d, J = 14 Hz, 2H), 4.54 (d, J = 14 Hz, 2H), 6.85 (d , J = 2 Hz, 2H), 7.37 (d, J = 2 Hz, 2H).
(参考例13)
{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3- (3, 5-ジメチル-1-アダマンチル) -2-オキソイルベンジルスルファニル]}ジクロロジルコニウムの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス(5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシベンジルスルファニル)シクロオクタン 83 mg(0.10 mmol)のトルエン(1 mL)溶液に、テトラクロロジルコニウム23 mg(0.10 mmol)のトルエン(1 mL)溶液を室温で滴下した。1.5時間後、減圧下揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下乾燥することで、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3- (3, 5-ジメチル-1-アダマンチル) -2-オキソイルベンジルスルファニル]}ジクロロジルコニウム 51 mg (収率 52%)を白色粉末として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.903 (s, 12H), 1.0~2.4 (m, 56H), 2.55 (brs, 2H), 3.84 (d, J = 14 Hz, 2H), 4.52 (d, J = 14 Hz, 2H), 6.85 (d, J = 2 Hz, 2H), 7.34 (d, J = 2 Hz, 2H).
(Reference Example 13)
Synthesis of {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-oxoylbenzylsulfanyl]} dichlorozirconium Globe under nitrogen atmosphere In a box, in a 50 mL Schlenk tube, trans-1,2-bis (5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-hydroxybenzylsulfanyl) cyclooctane 83 mg (0.10 mmol) Toluene (1 mL) solution of tetrachlorozirconium 23 mg (0.10 mmol) in toluene (1 mL) was added dropwise at room temperature. After 1.5 hours, volatile components were distilled off under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to obtain {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) − 2-Oxoylbenzylsulfanyl]} dichlorozirconium 51 mg (52% yield) was obtained as a white powder.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.903 (s, 12H), 1.0-2.4 (m, 56H), 2.55 (brs, 2H), 3.84 (d, J = 14 Hz, 2H), 4.52 (d, J = 14 Hz, 2H), 6.85 (d , J = 2 Hz, 2H), 7.34 (d, J = 2 Hz, 2H).
(参考例14)
trans-1,2-ビス{5-tert-ブチル-3-[1-(3, 5-ジメチルフェニル)-1-メチルエチル]-2-ヒドロキシベンジルスルファニル}シクロオクタンの合成
(1)1-(3, 5-ジメチルフェニル)-1-メチルエタノールの合成
 窒素置換した200 mL四口フラスコにTHF60mL、3, 5-ジメチルフェニルマグネシウムブロマイド40mL(0.50 M THF溶液, 20 mmmol)を加えた。-65℃まで冷却した後、アセトン5.2 mL(71 mmol)を滴下した。室温まで昇温し、2.5時間攪拌した後、氷水60 gに注いだ。1 M HCl、ジエチルエーテルを加えた。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムにより乾燥した。無水硫酸マグネシウムで乾燥後、減圧下揮発成分を留去した。得られた薄黄色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:10~1:4)で精製した後、再度シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:9)で精製することで1-(3, 5-ジメチルフェニル)-1-メチルエタノール1.7 g(収率 50%)を淡黄色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.56 (s, 6H), 1.76 (s, 1H), 2.33 (s, 6H), 6.89 (s, 1H), 7.10 (s, 2H).
(2)4-tert-ブチル-2-[1-(3, 5-ジメチルフェニル)-1-メチルエチル]フェノールの合成
 窒素置換した100 mLフラスコに1-(3, 5-ジメチルフェニル)-1-メチルエタノール1.7 g(10 mmol)、4-tert-ブチルフェノール3.0 g(20 mmol)、ヘプタン40 mLを加えた。ここにp-トルエンスルホン酸40 mg(0.23 mmol)を加え、100℃まで昇温し、16時間攪拌した。反応溶液を室温まで冷却した後、水および酢酸エチルを加えた。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムにより乾燥した後、減圧下揮発成分を留去した。得られた薄橙色固体をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:20)で精製した後、再度シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:50)で精製することで4-tert-ブチル-2-(1-(3, 5-ジメチルフェニル)-1-メチルエチル)フェノール1.9 g(収率 66%)を無色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.36 (s, 9H), 1.65 (s, 6H), 2.28 (s, 6H), 4.38 (s, 1H), 6.68 (d, J = 8 Hz, 1H), 6.89 (s, 1H), 6.94 (s, 2H), 7.18 (dd, J = 2 Hz, 8 Hz, 1H), 7.46 (d, J = 2 Hz, 1H).
(3)4-tert-ブチル-6-[1-(3, 5-ジメチルフェニル)-1-メチルエチル]-2-ヒドロキシメチルフェノールの合成
 窒素置換した100mL四口フラスコに4-tert-ブチル-2-[1-(3, 5-ジメチルフェニル)-1-メチルエチル]フェノール1.9 g(6.5 mmol,)、塩化マグネシウム1.3 g(13 mmol)、パラホルムアルデヒド0.98 g(33 mmol)およびテトラヒドロフラン38 mLを加えた。ここにトリエチルアミン1.8 mL(13 mmol)を加え、100分間加熱還流した。反応溶液を室温まで放冷した後、不溶物を濾過した。濾液から減圧下揮発成分を留去した後、残渣に酢酸エチルと2% HClを加えた。有機層を水、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下溶媒を留去することで、5-tert-ブチル-3-[1-(3, 5-ジメチルフェニル)-1-メチルエチル]サリチルアルデヒド(収率>99%)を含む混合物2.2 gを得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.37 (s, 9H), 1.71 (s, 6H), 2.26 (s, 6H), 6.79 (s, 2H), 6.81 (s, 1H), 7.39 (s, 1H), 7.72 (s, 1H), 9.83 (s, 1H), 11.2 (s, 1H).
 窒素置換した200 mL四口フラスコに上記混合物 2.5 gとテトラヒドロフラン40 mLおよびメタノール20 mLを加え、氷冷した。ここに水素化ホウ素ナトリウム 180 mg(4.8 mmol)をゆっくり加え、室温まで昇温後、15時間撹拌した。反応溶液から減圧下揮発成分を留去した後、2 M HClと酢酸エチルを加えた。飽和食塩水で洗浄し、無水硫酸マグネシウムにより乾燥した。得られた無色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:6~1:4)で精製することで4-tert-ブチル-6-[1-(3, 5-ジメチルフェニル)-1-メチルエチル]-2-ヒドロキシメチルフェノール2.2 g(収率 86%)を無色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.35 (s, 9H), 1.66 (s, 6H), 2.24 (t, J = 6 Hz, 1H), 2.28 (s, 6H), 4.62 (d, J = 6 Hz, 2H), 5.26 (s, 1H), 6.89 (s, 1H), 6.93 (s, 2H), 7.12 (s, J = 2 Hz, 1H), 7.43 (s, J = 2 Hz, 1H).
(3)臭化 5-tert-ブチル-3-[1-(3, 5-ジメチルフェニル)-1-メチルエチル]-2-ヒドロキシベンジルの合成
 窒素置換した100 mL四口フラスコに4-tert-ブチル-6-[1-(3, 5-ジメチルフェニル)-1-メチルエチル]-2-ヒドロキシメチルフェノール2.2 g(6.8 mmol)とジクロロメタン30 mLを加えた。ここに、ジクロロメタン2 mLと三臭化リン0.43 mLの混合溶液(4.1 mmol)を加え室温で、3時間撹拌した。反応溶液を氷水に加え、有機層を飽和食塩水で2回洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧下揮発成分を留去することで、臭化 5-tert-ブチル-3-[1-(3, 5-ジメチルフェニル)-1-メチルエチル]-2-ヒドロキシベンジル2.8 g(収率 >99%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.35 (s, 9H), 1.65 (s, 6H), 2.28 (s, 6H), 4.48 (s, 2H), 6.91 (s, 1H), 6.94 (s, 2H), 7.23 (s, J = 2 Hz, 1H), 7.46 (s, J = 2 Hz, 1H).
(4)trans-1,2-ビス{5-tert-ブチル-3-[1-(3, 5-ジメチルフェニル)-1-メチルエチル]-2-ヒドロキシベンジルスルファニル}シクロオクタンの合成
 窒素置換した100 mL四口フラスコに、臭化 5-tert-ブチル-3-[1-(3, 5-ジメチルフェニル)-1-メチルエチル]-2-ヒドロキシベンジル 1.8 g(4.7 mmol)、trans-シクロオクタン-1,2-ジチオール 0.42 g(2.4 mmol)およびテトラヒドロフラン 30 mLを加え、氷冷した。ここに、トリエチルアミン 1. 0 mL(7.2 mmol)を加え、室温で15.5時間撹拌した。反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加えた。有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:40~1:20)で精製することで、trans-1,2-ビス{5-tert-ブチル-2-ヒドロキシ-3-[1-(3, 5-ジメチルフェニル)-1-メチルエチル]ベンジルスルファニル}シクロオクタンとtrans-1-{5-tert-ブチル-2-ヒドロキシ-3-[1-(3, 5-ジメチルフェニル)-1-メチルエチル]ベンジルスルファニル}-2-スルファニルシクロオクタンとの7:3混合物1.7 gを得た。この混合物および臭化5-tert-ブチル-3-[1-(3, 5-ジメチルフェニル)-1-メチルエチル]-2-ヒドロキシベンジル0.50 g(1.3 mmol)をテトラヒドロフラン20 mLに溶解し、氷冷した。ここに、トリエチルアミン0.25 mL(1.8 mmol)を加え、21.5時間撹拌した。反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加え、有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:40)で精製することで、trans-1,2-ビス{5-tert-ブチル-3-[1-(3, 5-ジメチルフェニル)-1-メチルエチル]-2-ヒドロキシベンジルスルファニル}シクロオクタン 1.8 g(収率 94%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.2~2.0 (m, 42H), 2.25 (s, 12H), 2.64 (brs, 2H), 3.67 (s, 4H), 5.56 (s, 2H), 6.82 (s, 2H), 6.86 (s, 4H), 7.09 (d, J = 2 Hz, 2H), 7.36 (d, J = 2 Hz, 2H).
(Reference Example 14)
Synthesis of trans-1,2-bis {5-tert-butyl-3- [1- (3,5-dimethylphenyl) -1-methylethyl] -2-hydroxybenzylsulfanyl} cyclooctane (1) 1- ( Synthesis of 3,5-dimethylphenyl) -1-methylethanol To a nitrogen-substituted 200 mL four-necked flask, 60 mL of THF and 40 mL of 3,5-dimethylphenylmagnesium bromide (0.50 M THF solution, 20 mmmol) were added. After cooling to -65 ° C, 5.2 mL (71 mmol) of acetone was added dropwise. The mixture was warmed to room temperature, stirred for 2.5 hours, and poured into 60 g of ice water. 1 M HCl, diethyl ether was added. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. After drying over anhydrous magnesium sulfate, volatile components were distilled off under reduced pressure. The obtained pale yellow oil was purified by silica gel column chromatography (developing solvent, ethyl acetate: hexane = 1: 10 to 1: 4), and then purified again by silica gel column chromatography (developing solvent, ethyl acetate: hexane = 1: 9). Purification gave 1.7 g (yield 50%) of 1- (3,5-dimethylphenyl) -1-methylethanol as a pale yellow oil.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.56 (s, 6H), 1.76 (s, 1H), 2.33 (s, 6H), 6.89 (s, 1H), 7.10 (s, 2H).
(2) Synthesis of 4-tert-butyl-2- [1- (3,5-dimethylphenyl) -1-methylethyl] phenol In a 100 mL flask purged with nitrogen, 1- (3,5-dimethylphenyl) -1 -1.7 g (10 mmol) of methyl ethanol, 3.0 g (20 mmol) of 4-tert-butylphenol and 40 mL of heptane were added. 40 mg (0.23 mmol) of p-toluenesulfonic acid was added thereto, the temperature was raised to 100 ° C., and the mixture was stirred for 16 hours. After the reaction solution was cooled to room temperature, water and ethyl acetate were added. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate, and then the volatile component was distilled off under reduced pressure. The obtained light orange solid was purified by silica gel column chromatography (developing solvent, ethyl acetate: hexane = 1: 20), and then purified again by silica gel column chromatography (developing solvent, ethyl acetate: hexane = 1: 50). 1.9 g (66% yield) of 4-tert-butyl-2- (1- (3,5-dimethylphenyl) -1-methylethyl) phenol was obtained as a colorless oil.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.36 (s, 9H), 1.65 (s, 6H), 2.28 (s, 6H), 4.38 (s, 1H), 6.68 (d, J = 8 Hz, 1H), 6.89 (s, 1H), 6.94 (s , 2H), 7.18 (dd, J = 2 Hz, 8 Hz, 1H), 7.46 (d, J = 2 Hz, 1H).
(3) Synthesis of 4-tert-butyl-6- [1- (3,5-dimethylphenyl) -1-methylethyl] -2-hydroxymethylphenol 4-tert-butyl-into a nitrogen-substituted 100 mL four-necked flask 2- [1- (3,5-dimethylphenyl) -1-methylethyl] phenol 1.9 g (6.5 mmol), magnesium chloride 1.3 g (13 mmol), paraformaldehyde 0.98 g (33 mmol) and tetrahydrofuran 38 mL. added. Triethylamine 1.8 mL (13 mmol) was added here, and it heated and refluxed for 100 minutes. The reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After evaporating volatile components from the filtrate under reduced pressure, ethyl acetate and 2% HCl were added to the residue. The organic layer was washed with water and saturated brine in that order and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 2.2 g of a mixture containing 5-tert-butyl-3- [1- (3,5-dimethylphenyl) -1-methylethyl] salicylaldehyde (yield> 99%). Obtained.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.37 (s, 9H), 1.71 (s, 6H), 2.26 (s, 6H), 6.79 (s, 2H), 6.81 (s, 1H), 7.39 (s, 1H), 7.72 (s, 1H), 9.83 (s, 1H), 11.2 (s, 1H).
To a 200 mL four-necked flask purged with nitrogen, 2.5 g of the above mixture, 40 mL of tetrahydrofuran and 20 mL of methanol were added and cooled on ice. To this, 180 mg (4.8 mmol) of sodium borohydride was slowly added, and the mixture was warmed to room temperature and stirred for 15 hours. After evaporating volatile components from the reaction solution under reduced pressure, 2 M HCl and ethyl acetate were added. The extract was washed with saturated brine and dried over anhydrous magnesium sulfate. The resulting colorless oil was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 6 to 1: 4) to give 4-tert-butyl-6- [1- (3,5-dimethylphenyl) ) -1-methylethyl] -2-hydroxymethylphenol (2.2 g, yield 86%) was obtained as a colorless oil.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.35 (s, 9H), 1.66 (s, 6H), 2.24 (t, J = 6 Hz, 1H), 2.28 (s, 6H), 4.62 (d, J = 6 Hz, 2H), 5.26 (s, 1H ), 6.89 (s, 1H), 6.93 (s, 2H), 7.12 (s, J = 2 Hz, 1H), 7.43 (s, J = 2 Hz, 1H).
(3) Synthesis of 5-tert-butyl-3- [1- (3,5-dimethylphenyl) -1-methylethyl] -2-hydroxybenzyl bromide 4-nitro-substituted 4-tert- Butyl-6- [1- (3,5-dimethylphenyl) -1-methylethyl] -2-hydroxymethylphenol 2.2 g (6.8 mmol) and dichloromethane 30 mL were added. A mixed solution (4.1 mmol) of 2 mL of dichloromethane and 0.43 mL of phosphorus tribromide was added thereto, and the mixture was stirred at room temperature for 3 hours. The reaction solution was added to ice water, and the organic layer was washed twice with saturated brine. The organic layer is dried over anhydrous magnesium sulfate, and the volatile components are distilled off under reduced pressure to give 5-tert-butyl-3- [1- (3,5-dimethylphenyl) -1-methylethyl] -2 2.8 g (yield> 99%) of -hydroxybenzyl were obtained as a white solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.35 (s, 9H), 1.65 (s, 6H), 2.28 (s, 6H), 4.48 (s, 2H), 6.91 (s, 1H), 6.94 (s, 2H), 7.23 (s, J = 2 Hz , 1H), 7.46 (s, J = 2 Hz, 1H).
(4) Synthesis of trans-1,2-bis {5-tert-butyl-3- [1- (3,5-dimethylphenyl) -1-methylethyl] -2-hydroxybenzylsulfanyl} cyclooctane In a 100 mL four-necked flask, 1.8 g (4.7 mmol) of 5-tert-butyl-3- [1- (3,5-dimethylphenyl) -1-methylethyl] -2-hydroxybenzyl bromide, trans-cyclooctane 1,2-Dithiol 0.42 g (2.4 mmol) and tetrahydrofuran 30 mL were added, and the mixture was ice-cooled. Triethylamine 1.0 mL (7.2 mmol) was added here, and it stirred at room temperature for 15.5 hours. The reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. Ethyl acetate and aqueous ammonium chloride solution were added to the resulting residue. The organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in that order, and then dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, it was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 40-1: 20) to obtain trans-1,2-bis {5-tert-butyl 2-hydroxy-3- [1- (3,5-dimethylphenyl) -1-methylethyl] benzylsulfanyl} cyclooctane and trans-1- {5-tert-butyl-2-hydroxy-3- [1- 1.7 g of a 7: 3 mixture with (3,5-dimethylphenyl) -1-methylethyl] benzylsulfanyl} -2-sulfanylcyclooctane was obtained. This mixture and 5-tert-butyl-3- [1- (3,5-dimethylphenyl) -1-methylethyl] -2-hydroxybenzyl bromide 0.50 g (1.3 mmol) were dissolved in 20 mL of tetrahydrofuran, and iced. Chilled. Triethylamine 0.25 mL (1.8 mmol) was added here, and it stirred for 21.5 hours. The reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. Ethyl acetate and an aqueous ammonium chloride solution were added to the obtained residue, and the organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in this order. The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 40), whereby trans-1,2-bis {5-tert-butyl-3- [1- (3, 1.8 g (yield 94%) of 5-dimethylphenyl) -1-methylethyl] -2-hydroxybenzylsulfanyl} cyclooctane was obtained as a white solid.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
1.2 to 2.0 (m, 42H), 2.25 (s, 12H), 2.64 (brs, 2H), 3.67 (s, 4H), 5.56 (s, 2H), 6.82 (s, 2H), 6.86 (s, 4H) , 7.09 (d, J = 2 Hz, 2H), 7.36 (d, J = 2 Hz, 2H).
(参考例15)
{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(1-(3, 5-ジメチルフェニル)-1-メチルエチル)ベンジルスルファニル]}ジクロロハフニウムの合成
 窒素雰囲気下のグローブボックス中、100 mLシュレンク管でtrans-1,2-ビス{5-tert-ブチル-3-[1-(3, 5-ジメチルフェニル)-1-メチルエチル]-2-ヒドロキシベンジルスルファニル}シクロオクタン 1.0g(1.3 mmol)のトルエン(5 mL)溶液に、ジクロロ{1,1’-オキシビス[エタン][ビス(フェニルメチル)ハフニウム]}640 mg(1.3 mmol)のトルエン(5 mL)溶液を室温で滴下した。1時間攪拌後、減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(1-(3, 5-ジメチルフェニル)-1-メチルエチル)ベンジルスルファニル]}ジクロロハフニウム 1.1 g (収率 81%)を白色粉末として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.73~1.7 (m, 36H), 1.96 (s, 6H), 2.08 (brs, 2H), 2.21 (s, 12H), 3.53 (d, J = 14 Hz, 4H), 4.05 (d, J = 14 Hz, 4H), 6.72 (s, 2H), 6.83 (d, J = 2 Hz, 2H), 6.90 (s, 4H), 7.51 (d, J = 2 Hz, 2H).
(Reference Example 15)
Synthesis of {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1- (3,5-dimethylphenyl) -1-methylethyl) benzylsulfanyl]} dichlorohafnium Trans-1,2-bis {5-tert-butyl-3- [1- (3,5-dimethylphenyl) -1-methylethyl] -2-hydroxy in a 100 mL Schlenk tube in a glove box under nitrogen atmosphere To a solution of benzylsulfanyl} cyclooctane 1.0 g (1.3 mmol) in toluene (5 mL), dichloro {1,1′-oxybis [ethane] [bis (phenylmethyl) hafnium]} 640 mg (1.3 mmol) in toluene (5 mL) The solution was added dropwise at room temperature. After stirring for 1 hour, volatile components were distilled off under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to give {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1- (3, 5 -Dimethylphenyl) -1-methylethyl) benzylsulfanyl]} dichlorohafnium 1.1 g (81% yield) was obtained as a white powder.
1 H-NMR (400 MHz, δ, ppm, CDCl 3 )
0.73 to 1.7 (m, 36H), 1.96 (s, 6H), 2.08 (brs, 2H), 2.21 (s, 12H), 3.53 (d, J = 14 Hz, 4H), 4.05 (d, J = 14 Hz , 4H), 6.72 (s, 2H), 6.83 (d, J = 2 Hz, 2H), 6.90 (s, 4H), 7.51 (d, J = 2 Hz, 2H).
(参考例16)
担体Aの合成
 固体状担体として窒素流通下で300℃において加熱処理したシリカ(デビソン社製 Sylopol948;平均粒径=55μm;細孔容量=1.67ml/g;比表面積=325m2/g)9.68kgを入れた。トルエンを100L加えた後、2℃に冷却した。これにメチルアルモキサンのトルエン溶液(PMAO-S)(東ソー・ファインケム社製)23.3Kg(75.9mol)を1時間かけて滴下した。5℃にて30分間攪拌した後、90分間かけて95℃まで加熱し、4時間攪拌した。その後40℃へ冷却した後、40分間静置し、固体成分を沈降させ、ディップ管にてトルエンを取り除いた。洗浄操作として、これに、トルエン100Lを加え、攪拌した後、攪拌を停止して40分間静置し固体成分を沈降させ、同様にトルエンを取り除いた。以上の洗浄操作を計5回繰り返した。さらに、ヘキサン110Lを加え、攪拌を行った後、ろ過した。この操作をもう一度繰り返した。その後、減圧下70℃で7時間乾燥して担体A 12.6kgを得た。元素分析の結果、Al=4.4mmol/gであった。
(Reference Example 16)
Synthesis of carrier A Silica heat-treated at 300 ° C. under a nitrogen flow as a solid carrier (Sypolol 948 manufactured by Devison; average particle size = 55 μm; pore volume = 1.67 ml / g; specific surface area = 325 m 2 / g) 9 .68 kg was added. After adding 100 L of toluene, it was cooled to 2 ° C. To this was added dropwise 23.3 kg (75.9 mol) of methylalumoxane in toluene (PMAO-S) (manufactured by Tosoh Finechem) over 1 hour. After stirring at 5 ° C. for 30 minutes, the mixture was heated to 95 ° C. over 90 minutes and stirred for 4 hours. After cooling to 40 ° C., the mixture was allowed to stand for 40 minutes to allow the solid component to settle, and toluene was removed with a dip tube. As a washing operation, 100 L of toluene was added thereto and stirred, and then stirring was stopped and the mixture was allowed to stand for 40 minutes to precipitate a solid component, and toluene was similarly removed. The above washing operation was repeated 5 times in total. Further, 110 L of hexane was added and stirred, followed by filtration. This operation was repeated once more. Thereafter, it was dried at 70 ° C. under reduced pressure for 7 hours to obtain 12.6 kg of carrier A. As a result of elemental analysis, it was Al = 4.4 mmol / g.
(参考例17)
担体Bの合成
 窒素置換した100ml4口フラスコに、固体状担体として窒素流通下で300℃において加熱処理したシリカ(デビソン社製 Sylopol948;平均粒径=55μm;細孔容量=1.67ml/g;比表面積=325m2/g)5.03gを入れた。トルエンを50ml加えた後、5℃に冷却した。これにメチルアルモキサンのトルエン溶液(TMAO-211)(東ソー・ファインケム社製)(3.2M)11.9mlを1時間かけて滴下した。5℃にて30分間攪拌した後、90分間かけて95℃まで加熱し、4時間攪拌した。その後30℃へ冷却した後、10分間静置し、固体成分を沈降させ、G3グレード(最大細孔の大きさ(20-30μm))のグラスフィルターでトルエンを取り除いた。洗浄操作として、これに、トルエン50mlを加え、2分間攪拌した後、攪拌を停止して静置し固体成分を沈降させ、同様にトルエンを取り除いた。以上の洗浄操作を計3回繰り返した。さらに、ヘキサン50mlを加え、攪拌を行った後、同様の方法にてろ過した。この操作をもう一度繰り返した。その後、減圧下70℃で2時間乾燥して担体B 6.51gを得た。元素分析の結果、Al=3.2mmol/gであった。
(Reference Example 17)
Synthesis of carrier B Silica heated at 300 ° C. under nitrogen flow as a solid carrier in a nitrogen-substituted 100 ml four-necked flask (Sypolol 948 manufactured by Devison; average particle size = 55 μm; pore volume = 1.67 ml / g; ratio (Surface area = 325 m 2 / g) 5.03 g was added. After adding 50 ml of toluene, it was cooled to 5 ° C. To this was added dropwise 11.9 ml of a toluene solution of methylalumoxane (TMAO-211) (manufactured by Tosoh Finechem) (3.2M) over 1 hour. After stirring at 5 ° C. for 30 minutes, the mixture was heated to 95 ° C. over 90 minutes and stirred for 4 hours. After cooling to 30 ° C., the mixture was allowed to stand for 10 minutes to precipitate the solid components, and toluene was removed with a glass filter of G3 grade (maximum pore size (20-30 μm)). As a washing operation, 50 ml of toluene was added thereto, and the mixture was stirred for 2 minutes. Then, the stirring was stopped and the mixture was allowed to stand to precipitate a solid component, and toluene was similarly removed. The above washing operation was repeated 3 times in total. Further, 50 ml of hexane was added and stirred, followed by filtration in the same manner. This operation was repeated once more. Then, it dried at 70 degreeC under pressure reduction for 2 hours, and obtained the support B 6.51g. As a result of elemental analysis, it was Al = 3.2 mmol / g.
(参考例18)
担体Cの合成
 窒素置換済みの300ml4口フラスコに担体Aを10.42g、トルエン180ml導入した。3,4,5-トリフルオロフェノール9.89gのトルエン溶液を室温にて加え、3時間攪拌を行った。3Gのグラスフィルターを用いて、濾過を行い、トルエン180mlにて4回、ヘキサン180ml1回洗浄を行い、減圧乾燥し、担体C 14.43gを得た。
元素分析の結果、Al=2.9mmol/g、F=6.3mmol/gであった。
(Reference Example 18)
Synthesis of carrier C 10.42 g of carrier A and 180 ml of toluene were introduced into a nitrogen-substituted 300 ml four-necked flask. A toluene solution of 9.89 g of 3,4,5-trifluorophenol was added at room temperature and stirred for 3 hours. Filtration was performed using a 3G glass filter, and the resultant was washed with 180 ml of toluene four times and hexane 180 ml once and dried under reduced pressure to obtain 14.43 g of carrier C.
As a result of elemental analysis, Al = 2.9 mmol / g and F = 6.3 mmol / g.
(参考例19)
錯体担持触媒1
 窒素置換済みの4口100mlフラスコに担体Aを2.00g、トルエン10mlを導入した。別のフラスコにて[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-3-クミル-2-オキソイルベンジルスルファニル)]ジクロロジルコニウム89.7mgとトルエン3.5mlを混合した後、TMAO-212(東ソー・ファインケム社製 3.1mmol―Al/ml)6.5mlを加え、1時間攪拌し、100mlフラスコに加えた。50℃にて4時間反応させ、3Gグレードのガラスフィルターを用いて、溶媒を除去した。ヘキサン20mlを加え、担体を洗浄後、再度グラスフィルターを用いて、溶媒を除去した。上記の操作をもう一度繰り返した後、室温にて減圧下、乾燥を行った。
その結果、錯体が担持された担体1.90gを得た。
元素分析の結果Al=5.2mmol/g、Zr=13μmol/gであった。
(Reference Example 19)
Complex supported catalyst 1
2.00 g of carrier A and 10 ml of toluene were introduced into a 4-necked 100 ml flask that had been purged with nitrogen. After mixing 89.7 mg of [cyclooctanediyl-trans-1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] dichlorozirconium and 3.5 ml of toluene in another flask. TMAO-212 (3.1 mmol-Al / ml manufactured by Tosoh Finechem) was added and stirred for 1 hour and added to a 100 ml flask. The mixture was reacted at 50 ° C. for 4 hours, and the solvent was removed using a 3G grade glass filter. After adding 20 ml of hexane and washing the carrier, the solvent was removed again using a glass filter. The above operation was repeated once, followed by drying at room temperature under reduced pressure.
As a result, 1.90 g of a carrier carrying the complex was obtained.
As a result of elemental analysis, Al = 5.2 mmol / g and Zr = 13 μmol / g.
(参考例20)
錯体担持触媒2
 窒素置換済みの4口100mlフラスコに担体Aを2.01g、トルエン10mlを導入した。別のフラスコにて[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル)]ジクロロハフニウム123.2mgとトルエン3.5mlを混合した後、TMAO-212(東ソー・ファインケム社製 3.1mmol―Al/ml)6.5mlを加え、1時間攪拌した溶液を、100mlフラスコに加えた。50℃にて4時間反応させ、3Gグレードのガラスフィルターを用いて、溶媒を除去した。ヘキサン20mlを加え、担体を洗浄後、再度グラスフィルターを用いて、溶媒を除去した。上記の操作をもう一度繰り返した後、室温にて減圧下、乾燥を行った。
その結果、錯体が担持された担体2.06gを得た。
元素分析の結果Al=5.2mmol/g、Hf=13μmol/gであった。
(Reference Example 20)
Complex supported catalyst 2
2.01 g of carrier A and 10 ml of toluene were introduced into a 4-neck 100 ml flask that had been purged with nitrogen. In a separate flask, [cyclooctanediyl-trans-1,2-bis (5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl)] dichlorohafnium 123.2 mg and toluene 3.5 ml. After mixing, 6.5 ml of TMAO-212 (3.1 mmol-Al / ml manufactured by Tosoh Finechem) was added, and the solution stirred for 1 hour was added to a 100 ml flask. The mixture was reacted at 50 ° C. for 4 hours, and the solvent was removed using a 3G grade glass filter. After adding 20 ml of hexane and washing the carrier, the solvent was removed again using a glass filter. The above operation was repeated once, followed by drying at room temperature under reduced pressure.
As a result, 2.06 g of a carrier carrying the complex was obtained.
As a result of elemental analysis, Al = 5.2 mmol / g and Hf = 13 μmol / g.
(参考例21)
錯体担持触媒3
 窒素置換済みの4口100mlフラスコに担体Aを2.02g、トルエン10mlを導入した。別のフラスコにて{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-オキソイルベンジルスルファニル]}ジクロロハフニウム107.2mgとトルエン3.5mlを混合した後、TMAO-212(東ソー・ファインケム社製 3.1mmol―Al/ml)6.5mlを加え、1時間攪拌した溶液を、100mlフラスコに加えた。50℃にて4時間反応させ、3Gグレードのガラスフィルターを用いて、溶媒を除去した。ヘキサン20mlを加え、担体を洗浄後、再度グラスフィルターを用いて、溶媒を除去した。上記の操作をもう一度繰り返した後、室温にて減圧下、乾燥を行った。
その結果、錯体が担持された担体2.03gを得た。
元素分析の結果Al=5.2mmol/g、Hf=15μmol/gであった。
(Reference Example 21)
Complex supported catalyst 3
2.02 g of carrier A and 10 ml of toluene were introduced into a 4-necked 100 ml flask that had been purged with nitrogen. In another flask, {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-oxoylbenzylsulfanyl]} dichlorohafnium107. After mixing 2 mg and 3.5 ml of toluene, 6.5 ml of TMAO-212 (3.1 mmol-Al / ml manufactured by Tosoh Finechem) was added, and the solution stirred for 1 hour was added to a 100 ml flask. The mixture was reacted at 50 ° C. for 4 hours, and the solvent was removed using a 3G grade glass filter. After adding 20 ml of hexane and washing the carrier, the solvent was removed again using a glass filter. The above operation was repeated once, followed by drying at room temperature under reduced pressure.
As a result, 2.03 g of a carrier carrying the complex was obtained.
As a result of elemental analysis, Al = 5.2 mmol / g and Hf = 15 μmol / g.
(参考例22)
錯体担持触媒4
 窒素置換済みの4口100mlフラスコに担体Aを2.00g、トルエン10mlを導入した。別のフラスコにて{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-オキソイルベンジルスルファニル]}ジクロロジルコニウム98.5mgとトルエン3.5mlを混合した後、TMAO-212(東ソー・ファインケム社製 3.1mmol―Al/ml)6.5mlを加え、1時間攪拌した溶液を、100mlフラスコに加えた。50℃にて4時間反応させ、3Gグレードのガラスフィルターを用いて、溶媒を除去した。ヘキサン20mlを加え、担体を洗浄後、再度グラスフィルターを用いて、溶媒を除去した。上記の操作をもう一度繰り返した後、室温にて減圧下、乾燥を行った。
その結果、錯体が担持された担体1.96gを得た。
元素分析の結果Al=4.8mmol/g、Zr=15μmol/gであった。
(Reference Example 22)
Complex supported catalyst 4
2.00 g of carrier A and 10 ml of toluene were introduced into a 4-necked 100 ml flask that had been purged with nitrogen. In another flask, {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-oxoylbenzylsulfanyl]} dichlorozirconium 98. After mixing 5 mg and 3.5 ml of toluene, 6.5 ml of TMAO-212 (3.1 mmol-Al / ml manufactured by Tosoh Finechem) was added, and the solution stirred for 1 hour was added to a 100 ml flask. The mixture was reacted at 50 ° C. for 4 hours, and the solvent was removed using a 3G grade glass filter. After adding 20 ml of hexane and washing the carrier, the solvent was removed again using a glass filter. The above operation was repeated once, followed by drying at room temperature under reduced pressure.
As a result, 1.96 g of a carrier carrying the complex was obtained.
As a result of elemental analysis, Al = 4.8 mmol / g and Zr = 15 μmol / g.
(参考例23)
錯体担持触媒5
 窒素置換済みの4口100mlフラスコに担体Bを2.00g、トルエン10mlを導入した。別のフラスコにて[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル)]ジクロロハフニウム123.2mgとトルエン3.5mlを混合した後、TMAO-212(東ソー・ファインケム社製 3.1mmol―Al/ml)6.5mlを加え、1時間攪拌した溶液を、100mlフラスコに加えた。50℃にて4時間反応させ、3Gグレードのガラスフィルターを用いて、溶媒を除去した。ヘキサン20mlを加え、担体を洗浄後、再度グラスフィルターを用いて、溶媒を除去した。上記の操作をもう一度繰り返した後、室温にて減圧下、乾燥を行った。
その結果、錯体が担持された担体1.96gを得た。
(Reference Example 23)
Complex supported catalyst 5
2.00 g of carrier B and 10 ml of toluene were introduced into a 4-neck 100 ml flask that had been purged with nitrogen. In a separate flask, [cyclooctanediyl-trans-1,2-bis (5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl)] dichlorohafnium 123.2 mg and toluene 3.5 ml. After mixing, 6.5 ml of TMAO-212 (3.1 mmol-Al / ml manufactured by Tosoh Finechem) was added, and the solution stirred for 1 hour was added to a 100 ml flask. The mixture was reacted at 50 ° C. for 4 hours, and the solvent was removed using a 3G grade glass filter. After adding 20 ml of hexane and washing the carrier, the solvent was removed again using a glass filter. The above operation was repeated once, followed by drying at room temperature under reduced pressure.
As a result, 1.96 g of a carrier carrying the complex was obtained.
(参考例24)
錯体担持触媒6
 窒素置換済みの4口100mlフラスコに担体Cを2.01g、トルエン10mlを導入した。別のフラスコにて[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル)]ジクロロハフニウム123.2mgとトルエン3.5mlを混合した後、TMAO-212(東ソー・ファインケム社製 3.1mmol―Al/ml)6.5mlを加え、1時間攪拌した溶液を、100mlフラスコに加えた。50℃にて4時間反応させ、3Gグレードのガラスフィルターを用いて、溶媒を除去した。ヘキサン20mlを加え、担体を洗浄後、再度グラスフィルターを用いて、溶媒を除去した。上記の操作をもう一度繰り返した後、室温にて減圧下、乾燥を行った。
その結果、錯体が担持された担体2.02gを得た。
(Reference Example 24)
Complex supported catalyst 6
2.01 g of carrier C and 10 ml of toluene were introduced into a 4-neck 100 ml flask that had been purged with nitrogen. In a separate flask, [cyclooctanediyl-trans-1,2-bis (5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl)] dichlorohafnium 123.2 mg and toluene 3.5 ml. After mixing, 6.5 ml of TMAO-212 (3.1 mmol-Al / ml manufactured by Tosoh Finechem) was added, and the solution stirred for 1 hour was added to a 100 ml flask. The mixture was reacted at 50 ° C. for 4 hours, and the solvent was removed using a 3G grade glass filter. After adding 20 ml of hexane and washing the carrier, the solvent was removed again using a glass filter. The above operation was repeated once, followed by drying at room temperature under reduced pressure.
As a result, 2.02 g of a carrier carrying the complex was obtained.
(参考例25)
錯体担持触媒7
 窒素置換済みの4口100mlフラスコに担体Aを2.00g、トルエン10mlを導入した。別のフラスコにて[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-2-オキソイル-3-(ジメチル-3, 5-ジメチルフェニル-メチル)ベンジルスルファニル)]ジクロロハフニウム104.1mgとトルエン3.5mlを混合した後、TMAO-212(東ソー・ファインケム社製 3.1mmol―Al/ml)6.5mlを加え、1時間攪拌した溶液を、100mlフラスコに加えた。50℃にて4時間反応させ、3Gグレードのガラスフィルターを用いて、溶媒を除去した。ヘキサン20mlを加え、担体を洗浄後、再度グラスフィルターを用いて、溶媒を除去した。上記の操作をもう一度繰り返した後、室温にて減圧下、乾燥を行った。
その結果、錯体が担持された担体1.92gを得た。
(Reference Example 25)
Complex supported catalyst 7
2.00 g of carrier A and 10 ml of toluene were introduced into a 4-necked 100 ml flask that had been purged with nitrogen. In another flask [cyclooctanediyl-trans-1,2-bis (5-tert-butyl-2-oxoyl-3- (dimethyl-3,5-dimethylphenyl-methyl) benzylsulfanyl)] dichlorohafnium 104. After mixing 1 mg and 3.5 ml of toluene, 6.5 ml of TMAO-212 (3.1 mmol-Al / ml manufactured by Tosoh Finechem) was added, and the solution stirred for 1 hour was added to a 100 ml flask. The mixture was reacted at 50 ° C. for 4 hours, and the solvent was removed using a 3G grade glass filter. After adding 20 ml of hexane and washing the carrier, the solvent was removed again using a glass filter. The above operation was repeated once, followed by drying at room temperature under reduced pressure.
As a result, 1.92 g of a carrier carrying the complex was obtained.
(参考例26)
錯体担持触媒8
 窒素置換済みの4口100mlフラスコに担体Aを2.00g、トルエン10mlを導入した。別のフラスコにて[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル)]ジクロロハフニウム123.2mgとトルエン10mlを混合した溶液を、100mlフラスコに加えた。50℃にて4時間反応させ、3Gグレードのガラスフィルターを用いて、溶媒を除去した。ヘキサン20mlを加え、担体を洗浄後、再度グラスフィルターを用いて、溶媒を除去した。上記の操作をもう一度繰り返した後、室温にて減圧下、乾燥を行った。
その結果、錯体が担持された担体1.72gを得た。
(Reference Example 26)
Complex supported catalyst 8
2.00 g of carrier A and 10 ml of toluene were introduced into a 4-necked 100 ml flask that had been purged with nitrogen. In another flask, 123.2 mg of [cyclooctanediyl-trans-1,2-bis (5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl)] dichlorohafnium and 10 ml of toluene were mixed. The solution was added to a 100 ml flask. The mixture was reacted at 50 ° C. for 4 hours, and the solvent was removed using a 3G grade glass filter. After adding 20 ml of hexane and washing the carrier, the solvent was removed again using a glass filter. The above operation was repeated once, followed by drying at room temperature under reduced pressure.
As a result, 1.72 g of a carrier carrying the complex was obtained.
(参考例27)
錯体担持触媒9
 窒素置換済みの4口100mlフラスコに担体Aを2.00g、トルエン10mlを導入した。別のフラスコにて[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル)]ジクロロハフニウム123.2mgとトルエン9ml、トルエンのトリイソブチルアルミニウム溶液1ml(1mmol/ml)を混合した溶液を、100mlフラスコに加えた。50℃にて4時間反応させ、3Gグレードのガラスフィルターを用いて、溶媒を除去した。ヘキサン20mlを加え、担体を洗浄後、再度グラスフィルターを用いて、溶媒を除去した。上記の操作をもう一度繰り返した後、室温にて減圧下、乾燥を行った。
その結果、錯体が担持された担体1.89gを得た。
(Reference Example 27)
Complex supported catalyst 9
2.00 g of carrier A and 10 ml of toluene were introduced into a 4-necked 100 ml flask that had been purged with nitrogen. In a separate flask, [cyclooctanediyl-trans-1,2-bis (5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl)] dichlorohafnium 123.2 mg and toluene 9 ml, A solution mixed with 1 ml (1 mmol / ml) of triisobutylaluminum solution was added to a 100 ml flask. The mixture was reacted at 50 ° C. for 4 hours, and the solvent was removed using a 3G grade glass filter. After adding 20 ml of hexane and washing the carrier, the solvent was removed again using a glass filter. The above operation was repeated once, followed by drying at room temperature under reduced pressure.
As a result, 1.89 g of a carrier carrying the complex was obtained.
<エチレン系重合>
(実施例1)
 内容積400mLの撹拌機付きオートクレーブを真空乾燥してアルゴンで置換後、溶媒としてヘキサン200mLを仕込み、反応器を70℃まで昇温した。昇温後、エチレン圧を0.6MPaに調整しながらフィードし、トリイソブチルアルミニウム(1.0 mol/L、トルエン溶液)0.5 mL(0.5mmol)、参考例7で合成した[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-3-クミル-2-オキソイルベンジルスルファニル)]ジベンジルジルコニウム(1.0mmol/L、トルエン溶液)1.0 mL(1.0 μmol)、続いてMAO/SiO 14.5 mgを投入して重合を開始した。温度を70℃に保ちながら、60分間重合を行った。結果を表1に示した。
<Ethylene polymerization>
(Example 1)
The autoclave with a stirrer with an internal volume of 400 mL was vacuum-dried and replaced with argon, 200 mL of hexane was charged as a solvent, and the reactor was heated to 70 ° C. After the temperature rise, the ethylene pressure was adjusted to 0.6 MPa and then fed, and 0.5 mL (0.5 mmol) of triisobutylaluminum (1.0 mol / L, toluene solution) was synthesized in Reference Example 7 [cyclooctane. Diyl-trans-1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] dibenzylzirconium (1.0 mmol / L, toluene solution) 1.0 mL (1.0 μmol) Subsequently, 14.5 mg of MAO / SiO 2 was added to initiate polymerization. Polymerization was performed for 60 minutes while maintaining the temperature at 70 ° C. The results are shown in Table 1.
(比較例1)
 [シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-3-クミル-2-オキソイルベンジルスルファニル)]ジベンジルジルコニウムの代わりに参考例2で合成した[シクロヘキサンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウムを用い、MAO/SiOの投入量12.8mgとしたこと以外は、実施例1と同様にして実施した。結果を表1に示した。
(Comparative Example 1)
[Cyclooctanediyl-trans-1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] [cyclohexanediyl-trans-1 synthesized in Reference Example 2 instead of dibenzylzirconium , 2-Bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylzirconium and the amount of MAO / SiO 2 charged was 12.8 mg, the same as in Example 1. Carried out. The results are shown in Table 1.
(実施例2)
 [シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-3-クミル-2-オキソイルベンジルスルファニル)]ジベンジルジルコニウムの代わりに参考例8で合成した[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-3-クミル-2-オキソイルベンジルスルファニル)]ジベンジルハフニウムを用い、MAO/SiOの投入量17.1mgとしたこと以外は、実施例1と同様にして実施した。結果を表1に示した。
(Example 2)
[Cyclooctanediyl-trans-1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] synthesized in Reference Example 8 instead of dibenzylzirconium Example 1, except that 1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] dibenzylhafnium was used and the amount of MAO / SiO 2 was 17.1 mg. It carried out similarly. The results are shown in Table 1.
(比較例2)
 [シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-3-クミル-2-オキソイルベンジルスルファニル)]ジベンジルジルコニウムの代わりに参考例3で合成した[シクロヘキサンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルハフニウム(1.0 mmol/L、トルエン溶液)2.0mL(2.0 μmol)を用い、MAO/SiOの投入量19.5mgとしたこと以外は、実施例1と同様にして実施した。結果を表1に示した。
(Comparative Example 2)
[Cyclooctanediyl-trans-1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] [cyclohexanediyl-trans-1 synthesized in Reference Example 3 instead of dibenzylzirconium , 2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylhafnium (1.0 mmol / L, toluene solution) 2.0 mL (2.0 μmol) The same operation as in Example 1 was carried out except that the amount of SiO 2 input was 19.5 mg. The results are shown in Table 1.
(実施例3)
 内容積400mLの撹拌機付きオートクレーブを真空乾燥してアルゴンで置換後、溶媒としてヘキサン185mLを仕込み、コモノマーとして1-ヘキセン15mLを仕込み、反応器を70℃まで昇温した。昇温後、エチレン圧を0.6MPaに調整しながらフィードし、トリイソブチルアルミニウム(1.0mol/L、トルエン溶液)0.5 mL(0.5mmol)、参考例5で合成した[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウム(1.0μmol/mL、トルエン溶液)1.0mL(1.0μmol)、続いてMAO/SiO 21.1 mgを投入して重合を開始した。温度を70℃に保ちながら、60分間重合を行った。結果を表1に示した。
(Example 3)
An autoclave with a stirrer having an internal volume of 400 mL was vacuum-dried and replaced with argon, 185 mL of hexane was charged as a solvent, 15 mL of 1-hexene was charged as a comonomer, and the reactor was heated to 70 ° C. After raising the temperature, the ethylene pressure was adjusted to 0.6 MPa and then fed, and triisobutylaluminum (1.0 mol / L, toluene solution) 0.5 mL (0.5 mmol) was synthesized in Reference Example 5 [cyclooctanediyl. -Trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylzirconium (1.0 μmol / mL, toluene solution) 1.0 mL (1.0 μmol) followed by Polymerization was initiated by charging 21.1 mg of MAO / SiO 2 . Polymerization was performed for 60 minutes while maintaining the temperature at 70 ° C. The results are shown in Table 1.
 実施例1~3および比較例1、2で得られた重合結果を表1に示す。 The polymerization results obtained in Examples 1 to 3 and Comparative Examples 1 and 2 are shown in Table 1.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
<プロピレン重合>
(実施例4)
 内容積400mLの撹拌機付きオートクレーブを真空乾燥してアルゴンで置換後、溶媒としてヘキサン40mL、モノマーとしてプロピレン80gを仕込み、反応器を70℃まで昇温した。昇温後、トリイソブチルアルミニウム(1.0mol/L、トルエン溶液)0.5 mL(0.5mmol)、参考例7で合成した[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-3-クミル-2-オキソイルベンジルスルファニル)]ジベンジルジルコニウム(1.0mmol/L、トルエン溶液)2.0mL(2.0μmol)、続いてMAO/SiO 17.0mgを投入して重合を開始した。温度を70℃に保ちながら、60分間重合を行った。結果を表2に示した。
<Propylene polymerization>
(Example 4)
An autoclave with a stirrer having an internal volume of 400 mL was vacuum dried and replaced with argon, and then 40 mL of hexane as a solvent and 80 g of propylene as a monomer were charged, and the temperature of the reactor was raised to 70 ° C. After raising the temperature, 0.5 mL (0.5 mmol) of triisobutylaluminum (1.0 mol / L, toluene solution) was synthesized in Reference Example 7 [cyclooctanediyl-trans-1,2-bis (5-tert- Butyl-3-cumyl-2-oxoylbenzylsulfanyl)] dibenzylzirconium (1.0 mmol / L, toluene solution) 2.0 mL (2.0 μmol) followed by MAO / SiO 2 17.0 mg for polymerization Started. Polymerization was performed for 60 minutes while maintaining the temperature at 70 ° C. The results are shown in Table 2.
(比較例3)
 [シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-3-クミル-2-オキソイルベンジルスルファニル)]ジベンジルジルコニウムの代わりに参考例2で合成した[シクロヘキサンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウム(1.0 mmol/L、トルエン溶液)0.5 mL(0.5 μmol)を用い、MAO/SiOの投入量13.1mgとしたこと以外は、実施例4と同様にして実施した。結果を表2に示した。
(Comparative Example 3)
[Cyclooctanediyl-trans-1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] [cyclohexanediyl-trans-1 synthesized in Reference Example 2 instead of dibenzylzirconium , 2-Bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylzirconium (1.0 mmol / L, toluene solution) 0.5 mL (0.5 μmol) This was carried out in the same manner as in Example 4 except that the amount of / SiO 2 input was 13.1 mg. The results are shown in Table 2.
(実施例5)
 [シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-3-クミル-2-オキソイルベンジルスルファニル)]ジベンジルジルコニウムの代わりに参考例8で合成した[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-3-クミル-2-オキソイルベンジルスルファニル)]ジベンジルハフニウム(1.0mmol/L、トルエン溶液)0.2 mL(0.2 μmol)を用い、MAO/SiOの投入量20.4mgとしたこと以外は、実施例4と同様にして実施した。結果を表2に示した。
(Example 5)
[Cyclooctanediyl-trans-1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] synthesized in Reference Example 8 instead of dibenzylzirconium 1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] dibenzylhafnium (1.0 mmol / L, toluene solution) 0.2 mL (0.2 μmol) was used, The same operation as in Example 4 was carried out except that the amount of MAO / SiO 2 input was 20.4 mg. The results are shown in Table 2.
(比較例4)
 [シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-3-クミル-2-オキソイルベンジルスルファニル)]ジベンジルジルコニウムの代わりに参考例3で合成した[シクロヘキサンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルハフニウム(1.0 mmol/L、トルエン溶液)0.5mL(0.5 μmol)を用い、MAO/SiOの投入量18.8mgとしたこと以外は、実施例4と同様にして実施した。結果を表2に示した。
(Comparative Example 4)
[Cyclooctanediyl-trans-1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] [cyclohexanediyl-trans-1 synthesized in Reference Example 3 instead of dibenzylzirconium , 2-Bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylhafnium (1.0 mmol / L, toluene solution) 0.5 mL (0.5 μmol) The same operation as in Example 4 was carried out except that the input amount of SiO 2 was 18.8 mg. The results are shown in Table 2.
 実施例4、5および比較例3、4で得られた重合結果を表2に示す。 Table 2 shows the polymerization results obtained in Examples 4 and 5 and Comparative Examples 3 and 4.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
(実施例6~32)
 実施例6~19では、錯体担持触媒2を用いてエチレン-ブテンまたは、エチレン-ヘキセン共重合の検討を行った。重合中は温度を一定に保ち、エチレンガスにて圧力を一定に保ち重合を行った。重合条件および結果を表3、4にまとめた。
(Examples 6 to 32)
In Examples 6 to 19, the complex-supported catalyst 2 was used to examine ethylene-butene or ethylene-hexene copolymerization. During the polymerization, the temperature was kept constant, and the pressure was kept constant with ethylene gas to carry out the polymerization. The polymerization conditions and results are summarized in Tables 3 and 4.
 実施例20~28では、錯体担持触媒1、3~9を用いてエチレン-ブテンまたは、エチレン-ヘキセン共重合の検討を行った。重合中は温度を一定に保ち、エチレンガスにて圧力を一定に保ち重合を行った。重合条件および結果を表5にまとめた。
 また、実施例29~32では、錯体担持触媒1~4を用いてプロピレンを重合した。重合条件および結果を表6にまとめた。
In Examples 20 to 28, the ethylene-butene or ethylene-hexene copolymerization was examined using the complex-supported catalysts 1, 3 to 9. During the polymerization, the temperature was kept constant, and the pressure was kept constant with ethylene gas to carry out the polymerization. The polymerization conditions and results are summarized in Table 5.
In Examples 29 to 32, propylene was polymerized using complex-supported catalysts 1 to 4. The polymerization conditions and results are summarized in Table 6.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
 実施例7、8、13、23、24について、粒径および粒径嵩密度を表7にまとめた。 For Examples 7, 8, 13, 23, and 24, the particle size and particle size bulk density are summarized in Table 7.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
 実施例13で得られた重合粒子について、走査型顕微鏡(KEYENCE社製、VE-8800)で観察した。その際に撮影したSEM写真を図1に示す。なお、図1の(a)および(b)は、同一試料中の別々の視野を撮影したものである。図1に示されるように、重合粒子の形状は、ほぼ球形であった。 The polymer particles obtained in Example 13 were observed with a scanning microscope (manufactured by KEYENCE, VE-8800). An SEM photograph taken at that time is shown in FIG. In addition, (a) and (b) of FIG. 1 image | photographs the separate visual field in the same sample. As shown in FIG. 1, the shape of the polymer particles was almost spherical.
 本発明は、ポリオレフィンの製造に関する分野において有用である。 The present invention is useful in the field relating to the production of polyolefins.

Claims (13)

  1.  一般式(1-1)または(1-2)で表される錯体、活性化用助触媒成分および担体を接触させてなるオレフィン重合用触媒。
    Figure JPOXMLDOC01-appb-C000001
    (式中、nは1または2であり、
    Mは、ジルコニウム原子またはハフニウム原子を表す。
     RおよびRは、それぞれ独立して、
    水素原子、
    ハロゲン原子、
    炭素原子数1~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数2~20のアルケニル基、
    炭素原子数2~20のアルキニル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数1~20のアルコキシ基、
    炭素原子数7~30のアラルキルオキシ基、
    炭素原子数6~30のアリールオキシ基、または
    置換シリル基を表す。
     R~RおよびR~R10は、それぞれ独立して、
    水素原子、
    ハロゲン原子、
    炭素原子数1~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数2~20のアルケニル基、
    炭素原子数2~20のアルキニル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数6~30のアリール基、
    炭素原子数1~20のアルコキシ基、
    炭素原子数7~30のアラルキルオキシ基、
    炭素原子数6~30のアリールオキシ基、
    置換シリル基、または
    環を構成する炭素原子数が3~20のヘテロ環式化合物残基を表す。
     R~R10における上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アルキニル基、上記アラルキル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基および上記ヘテロ環式化合物残基はそれぞれ置換基を有していてもよい。
     上記R~R10の定義に関わらず、RとR、RとR、RとR、RとR、RとR、RとR、RとRおよびRとR10は、それぞれ独立して、互いに連結して環を形成してもよく、これらの環は置換基を有していてもよい。
     Xは、それぞれ独立して、
    水素原子、
    ハロゲン原子、
    炭素原子数1~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数2~20のアルケニル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数6~30のアリール基、
    炭素原子数1~20のアルコキシ基、
    炭素原子数7~30のアラルキルオキシ基、
    炭素原子数6~30のアリールオキシ基、
    置換シリル基、
    置換アミノ基、
    置換チオラート基、または
    炭素原子数1~20のカルボキシラート基を表す。
     Xにおける上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アラルキル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基および上記カルボキシラート基はそれぞれ置換基を有していてもよい。
    隣接するX同士は、相互に連結して環を形成してもよい。
     Lは中性のルイス塩基を表す。Lが複数ある場合は、複数のLは同一でも異なっていてもよい。lは、0、1、または2である。)
    A catalyst for olefin polymerization comprising contacting a complex represented by the general formula (1-1) or (1-2), an activation promoter component and a carrier.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein n is 1 or 2,
    M represents a zirconium atom or a hafnium atom.
    R 1 and R 5 are each independently
    Hydrogen atom,
    A halogen atom,
    An alkyl group having 1 to 20 carbon atoms,
    A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
    An alkenyl group having 2 to 20 carbon atoms,
    An alkynyl group having 2 to 20 carbon atoms,
    An aralkyl group having 7 to 30 carbon atoms,
    An alkoxy group having 1 to 20 carbon atoms,
    An aralkyloxy group having 7 to 30 carbon atoms,
    An aryloxy group having 6 to 30 carbon atoms or a substituted silyl group is represented.
    R 2 to R 4 and R 6 to R 10 are each independently
    Hydrogen atom,
    A halogen atom,
    An alkyl group having 1 to 20 carbon atoms,
    A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
    An alkenyl group having 2 to 20 carbon atoms,
    An alkynyl group having 2 to 20 carbon atoms,
    An aralkyl group having 7 to 30 carbon atoms,
    An aryl group having 6 to 30 carbon atoms,
    An alkoxy group having 1 to 20 carbon atoms,
    An aralkyloxy group having 7 to 30 carbon atoms,
    An aryloxy group having 6 to 30 carbon atoms,
    It represents a substituted silyl group or a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring.
    The alkyl group, the cycloalkyl group, the alkenyl group, the alkynyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the heterocyclic compound in R 1 to R 10 Each residue may have a substituent.
    Regardless of the definition of R 1 to R 10 above, R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 2 And R 9 and R 6 and R 10 may be independently connected to each other to form a ring, and these rings may have a substituent.
    Each X is independently
    Hydrogen atom,
    A halogen atom,
    An alkyl group having 1 to 20 carbon atoms,
    A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
    An alkenyl group having 2 to 20 carbon atoms,
    An aralkyl group having 7 to 30 carbon atoms,
    An aryl group having 6 to 30 carbon atoms,
    An alkoxy group having 1 to 20 carbon atoms,
    An aralkyloxy group having 7 to 30 carbon atoms,
    An aryloxy group having 6 to 30 carbon atoms,
    Substituted silyl groups,
    A substituted amino group,
    It represents a substituted thiolate group or a carboxylate group having 1 to 20 carbon atoms.
    The alkyl group, the cycloalkyl group, the alkenyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the carboxylate group in X each have a substituent. Also good.
    Adjacent Xs may be connected to each other to form a ring.
    L represents a neutral Lewis base. When there are a plurality of L, the plurality of L may be the same or different. l is 0, 1, or 2. )
  2.  上記活性化用助触媒成分がホウ素化合物および有機アルミニウム化合物の少なくともいずれか一方である請求項1に記載の触媒。 The catalyst according to claim 1, wherein the activation promoter component is at least one of a boron compound and an organoaluminum compound.
  3.  RおよびRが、それぞれ独立して、
    ハロゲン原子、
    炭素原子数1~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数7~30のアラルキル基、または
    置換シリル基
    であり、該アルキル基、該シクロアルキル基および該アラルキル基は置換基を有していてもよい、請求項1または2に記載の触媒。
    R 1 and R 5 are each independently
    A halogen atom,
    An alkyl group having 1 to 20 carbon atoms,
    A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
    The catalyst according to claim 1 or 2, which is an aralkyl group having 7 to 30 carbon atoms or a substituted silyl group, and the alkyl group, the cycloalkyl group and the aralkyl group may have a substituent.
  4.  RおよびR10が、それぞれ独立して、
    ハロゲン原子、
    炭素原子数1~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数6~30のアリール基、
    置換シリル基、または
    環を構成する炭素原子数が3~20のヘテロ環式化合物残基
    であり、該アルキル基、該シクロアルキル基、該アラルキル基、該アリール基および該ヘテロ環式化合物残基はそれぞれ置換基を有していてもよい、請求項1~3のいずれか1項に記載の触媒。
    R 9 and R 10 are each independently
    A halogen atom,
    An alkyl group having 1 to 20 carbon atoms,
    A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
    An aralkyl group having 7 to 30 carbon atoms,
    An aryl group having 6 to 30 carbon atoms,
    A substituted silyl group or a heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring, the alkyl group, the cycloalkyl group, the aralkyl group, the aryl group, and the heterocyclic compound residue The catalyst according to any one of claims 1 to 3, wherein each may have a substituent.
  5.  R、R、RおよびR10のアルキル基が、炭素原子数4~10のアルキル基であり、該アルキル基は置換基を有していてもよい、請求項1~4のいずれか1項に記載の触媒。 The alkyl group of R 1 , R 5 , R 9 and R 10 is an alkyl group having 4 to 10 carbon atoms, and the alkyl group may have a substituent. 2. The catalyst according to item 1.
  6.  R~RおよびR~Rが、それぞれ独立して、
    水素原子、
    ハロゲン原子、
    炭素原子数1~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数6~30のアリール基、または
    置換シリル基
    であり、該アルキル基、該シクロアルキル基、該アラルキル基および該アリール基はそれぞれ置換基を有していてもよい、請求項1~5のいずれか1項に記載の触媒。
    R 2 to R 4 and R 6 to R 8 are each independently
    Hydrogen atom,
    A halogen atom,
    An alkyl group having 1 to 20 carbon atoms,
    A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
    An aralkyl group having 7 to 30 carbon atoms,
    6. An aryl group having 6 to 30 carbon atoms or a substituted silyl group, wherein the alkyl group, the cycloalkyl group, the aralkyl group, and the aryl group each may have a substituent. The catalyst of any one of these.
  7.  RおよびRが、それぞれ独立して、
    ハロゲン原子、
    炭素原子数1~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数6~30のアリール基、または
    置換シリル基
    であり、該アルキル基、該シクロアルキル基、該アラルキル基および該アリール基はそれぞれ置換基を有していてもよい、請求項1~6のいずれか1項に記載の触媒。
    R 3 and R 7 are each independently
    A halogen atom,
    An alkyl group having 1 to 20 carbon atoms,
    A cycloalkyl group having 3 to 10 carbon atoms constituting the ring,
    An aralkyl group having 7 to 30 carbon atoms,
    An aryl group having 6 to 30 carbon atoms or a substituted silyl group, wherein the alkyl group, the cycloalkyl group, the aralkyl group and the aryl group each may have a substituent. The catalyst of any one of these.
  8.  R、R、RおよびRが水素原子である請求項1~7のいずれか1項に記載の触媒。 The catalyst according to any one of claims 1 to 7, wherein R 2 , R 4 , R 6 and R 8 are hydrogen atoms.
  9.  Xが、ハロゲン原子、
    炭素原子数1~20のアルキル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数1~20のアルコキシ基、
    炭素原子数7~30のアラルキルオキシ基、
    炭素原子数6~30のアリールオキシ基、または
    置換アミノ基
    であり、該アルキル基、該アラルキル基、該アルコキシ基、該アラルキルオキシ基および該アリールオキシ基はそれぞれ置換基を有していてもよい、請求項1~8のいずれか1項に記載の触媒。
    X is a halogen atom,
    An alkyl group having 1 to 20 carbon atoms,
    An aralkyl group having 7 to 30 carbon atoms,
    An alkoxy group having 1 to 20 carbon atoms,
    An aralkyloxy group having 7 to 30 carbon atoms,
    An aryloxy group having 6 to 30 carbon atoms, or a substituted amino group, and the alkyl group, the aralkyl group, the alkoxy group, the aralkyloxy group, and the aryloxy group each may have a substituent. The catalyst according to any one of claims 1 to 8.
  10.  nが2である請求項1~9のいずれか1項に記載の触媒。 The catalyst according to any one of claims 1 to 9, wherein n is 2.
  11.  炭素原子数2~6のオレフィン単独重合用または2種以上の炭素原子数2~6のオレフィン共重合用である請求項1~10のいずれか1項に記載の触媒。 The catalyst according to any one of claims 1 to 10, which is used for homopolymerization of an olefin having 2 to 6 carbon atoms or copolymerization of two or more olefins having 2 to 6 carbon atoms.
  12.  請求項1~11のいずれか1項に記載の触媒の存在下にオレフィンを重合させるオレフィン重合体の製造方法。 A process for producing an olefin polymer, wherein an olefin is polymerized in the presence of the catalyst according to any one of claims 1 to 11.
  13.  体積基準粒径300μm以下の重合粒子含量が2体積%以下であり、50%体積基準粒径が500μm以上であり、粒子嵩密度が400kg/m以上であるエチレン-α-オレフィン共重合体粒子。 Ethylene-α-olefin copolymer particles having a volume particle size of 300 μm or less and a polymer particle content of 2% by volume or less, a 50% volume reference particle size of 500 μm or more, and a particle bulk density of 400 kg / m 3 or more .
PCT/JP2012/070574 2011-08-11 2012-08-10 Olefin polymerization catalyst and method for producing olefin polymer WO2013022108A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011175679A JP2014198744A (en) 2011-08-11 2011-08-11 Olefin polymerization catalyst and method for producing olefin polymer
JP2011-175679 2011-08-11

Publications (1)

Publication Number Publication Date
WO2013022108A1 true WO2013022108A1 (en) 2013-02-14

Family

ID=47668610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070574 WO2013022108A1 (en) 2011-08-11 2012-08-10 Olefin polymerization catalyst and method for producing olefin polymer

Country Status (2)

Country Link
JP (1) JP2014198744A (en)
WO (1) WO2013022108A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133005A1 (en) * 2013-02-27 2014-09-04 三井化学株式会社 Catalyst for olefin multimerization and method for producing olefin multimer in presence of catalyst for olefin multimerization
US10358397B2 (en) 2017-06-29 2019-07-23 Exxonmobil Chemical Patents Inc. Production of olefin dimers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001829A (en) * 2001-02-13 2009-01-08 Fina Technol Inc Preparation method for metallocene catalyst
WO2011099584A1 (en) * 2010-02-12 2011-08-18 国立大学法人埼玉大学 Ethylene polymerisation catalyst and ethylene polymer production method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001829A (en) * 2001-02-13 2009-01-08 Fina Technol Inc Preparation method for metallocene catalyst
WO2011099584A1 (en) * 2010-02-12 2011-08-18 国立大学法人埼玉大学 Ethylene polymerisation catalyst and ethylene polymer production method
WO2011099583A1 (en) * 2010-02-12 2011-08-18 国立大学法人埼玉大学 Stereoselective olefin polymerization catalyst, and stereoselective polyolefin production method

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CAPACCHIONE C. ET AL.: "Synthesis of Branched Polyethylene by Ethylene Homopolymerization Using Titanium Catalysts that Contain a Bridged Bis(phenolate) Ligand", JOURNAL OF POLYMER SCIENCE: PART A: POLYMER CHEMISTRY, vol. 42, 2004, pages 2815 - 2822 *
ISHII A. ET AL.: "Synthesis of Titanium(IV) and Zirconium(IV) Complexes with an [OSSO]-Type Bis(phenolate) Ligand Bearing a trans- Cyclohexane-1,2-diyl Ring and 1-Hexene", POLYMERIZATION, ORGANOMETALLICS, vol. 30, 11 May 2011 (2011-05-11), pages 2947 - 2956 *
ISHII A. ET AL.: "Zirconium Complex of an [OSSO]-Type Diphenolate Ligand Bearing trans- 1,2-Cyclooctanediylbis(thio) Core: Synthesis, Structure, and Isospecific 1-Hexene Polymerization", JOURNAL OF AMERICAN CHEMICAL SOCIETY, vol. 131, 2009, pages 13566 - 13567 *
NAKATA N. ET AL.: "Recent advances in the chemistry of Group 4 metal complexes incorporating [OSSO]-type bis(phenolato) ligands as post-metallocene catalysts", POLYMER CHEMISTRY, vol. 2, 16 March 2011 (2011-03-16), pages 1597 - 1610 *
TODA T. ET AL.: "Synthesis and structures of dialkyl zirconium complexes with an [OSSO]-type bis(phenolate) ligand bearing a trans-1,2- cyclooctanediylbis(thio) unit", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 696, 15 March 2011 (2011-03-15), pages 1258 - 1261 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133005A1 (en) * 2013-02-27 2014-09-04 三井化学株式会社 Catalyst for olefin multimerization and method for producing olefin multimer in presence of catalyst for olefin multimerization
JP2016203173A (en) * 2013-02-27 2016-12-08 三井化学株式会社 Catalyst for olefin multimerization and method for producing olefin multimer in presence of catalyst for olefin multimerization
JPWO2014133005A1 (en) * 2013-02-27 2017-02-02 三井化学株式会社 Olefin multimerization catalyst and process for producing olefin multimer in the presence of the catalyst
US9616421B2 (en) 2013-02-27 2017-04-11 Mitsui Chemicals, Inc. Catalyst for olefin multimerization and method for producing olefin multimer in presence of catalyst for olefin multimerization
US10358397B2 (en) 2017-06-29 2019-07-23 Exxonmobil Chemical Patents Inc. Production of olefin dimers

Also Published As

Publication number Publication date
JP2014198744A (en) 2014-10-23

Similar Documents

Publication Publication Date Title
US6548686B2 (en) Transition metal compound, catalyst for addition polymerization, and process for producing addition polymer
US8383848B2 (en) Transition metal compound and catalyst for olefin polymerization
US20130005931A1 (en) Ethylenic polymer
US8871885B2 (en) Ethylene-a-olefin copolymer and molded article
US20100310799A1 (en) ETHYLENE-a-OLEFIN COPOLYMER AND MOLDED ARTICLE
JPWO2011099584A1 (en) Catalyst for ethylene polymerization and method for producing ethylene polymer
US20130041119A1 (en) Olefin polymer producing method, ethylene polymer, and mold product
US9695260B2 (en) Method for producing olefin block polymer using plurality of types of transition metal catalysts
US20040039140A1 (en) Catalyst precursor and olefin polymerization processes
WO2012147995A1 (en) Method for producing olefin block polymer
WO2012111779A1 (en) Catalyst for ethylene polymerization and method for producing ethylenic polymer
WO2013022108A1 (en) Olefin polymerization catalyst and method for producing olefin polymer
WO2002051878A1 (en) Modified particle, support, catalyst component for addition polymerization, catalyst for addition polymerization, and process for producing addition polymer
WO2012111780A1 (en) Catalyst for olefin polymerization and method for producing olefin polymer
JP2013166735A (en) New complex, catalyst for polymerization and catalyst for oligomerization including the complex, and use thereof
JP2013166898A (en) Olefin polymerization catalyst, and method for production of olefinic polymer
JP2007217284A (en) Transition metal complex, method for producing transition metal complex, substituted fluorene compound, method for producing substituted fluorene compound, catalyst component for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer
WO2013022103A1 (en) Method for producing olefin block polymer using group 4 transition metal complex
WO2013022102A1 (en) Ethylene polymerization catalyst and method for producing ethylene polymer
WO2012115259A1 (en) ETHYLENE-α-OLEFIN COPOLYMER AND MOLDED ARTICLE
WO2012111777A1 (en) Catalyst for olefin polymerisation, and manufacturing method for olefin polymer
WO2012111778A1 (en) Catalyst for olefin polymerisation, and manufacturing method for olefin polymer
JP2013166897A (en) Catalyst for polymerizing olefin, and method for producing olefinic polymer
WO2012169641A1 (en) Complex, catalyst for polymerization of olefins, and process for producing olefin polymers
JP2013053309A (en) Olefin polymerization catalyst and method for producing olefin polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP